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Abstract

This thesis is concerned with the solution of the shallow water wave equa-

tions. To solve the equations for a real life domain of flow a numerical solution

is required. Analytical solutions are useful for testing numerical solutions.

Previous research in this area is examined. Existing analytical solutions

of the nonlinear shallow water equations involving moving boundaries do

not include bottom friction. Existing analytical solutions of the nonlinear

shallow water equations involving fixed boundaries can be modified. The

SLM (Selective Lumped Mass) scheme for numerically solving the shallow

water equations has been used to accurately model tides both in bays with

fixed boundaries and bays with moving boundaries. The SLM scheme for

domains with moving boundaries has not been fully explained in published

papers.

Analytical solutions are established for moving boundary shallow wa-

ter equations involving nonlinear continuity for unforced frictional flow in

parabolic canals, circular paraboloids and elliptical paraboloids, and both

for forced frictional flow and unforced frictionless flow in a parabolic canal.

Analytical solutions are established for one dimensional nonlinear frictionless

shallow water wave flow in a basin of constant depth, with a fixed boundary

and with a sinusoidal input at the open boundary.

The SLM scheme is coded in Visual C ++ and validated against an ana-

lytical solution, a convergence study is carried out for the SLM scheme and

a computer program is written in Visual C ++ to generate finite element

meshes. The SLM scheme is used to model one dimensional nonlinear shal-

low water flow in a basin of constant depth, with fixed boundary and with



sinusoidal input at the open boundary; results obtained were close to those

in the analytical solution.

The SLM scheme when applied to a moving boundary domain has been

modified, with the resultant scheme used to model forced frictionless flow

and forced frictional flow in a parabolic canal, with results close to those of

the analytical solutions developed.

The SLM scheme is applied to model accurately the existing tidal heights

and currents in Port Phillip Bay, Victoria, Australia. The SLM scheme is

applied to model the effect of proposed channel deepening on the tides in

Port Phillip Bay; the effect is small, increasing the tidal heights by at most

seven millimetres.

The conclusion of this thesis is that successful analytical and numerical

solutions of the shallow water equations are developed both for domains with

fixed boundaries and domains with moving boundaries.
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Chapter 1

Summary of the thesis

This thesis develops new solutions of the shallow water wave equations, some

analytical and some numerical.

Shallow water wave models are applicable where the water depth is much

less than the horizontal scale of motion. They are used to represent the flow

of water waves in coastal seas and estuaries (e.g. tides or tsunamis or storm

surges). Such models are used to predict the water velocity and water height

at various points within a region of flow at different times during a long

period of time (e.g. model a tide in a bay every 100 seconds over a period of

24 hours).

Shallow water wave models are simultaneous nonlinear partial differen-

tial equation models representing conservation of mass and conservation of

momentum. In some circumstances the nonlinear terms can be left out of

the equations. Exact solutions of the shallow water wave models have been

found only for a small number of domains of flow. All such domains of flow

have simple geometric shapes. As real life domains of flow do not have sim-

ple geometric shapes, analytical (exact) solutions cannot be found for such

domains. For domains of flow without exact solutions the equations must be

solved numerically (i.e. approximately). One technique is to use the finite
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element method in space and the finite difference method in time. Another

technique is to use the finite difference method in space and in time. Ana-

lytical solutions for domains of flow with simple geometric shapes are very

useful for testing numerical solutions as they give the height and velocity for

every point in the domain and every time, whereas for real life domains there

is only limited experimental data.

One aim of this thesis is to develop new analytical solutions of the nonlin-

ear shallow water wave equations both for domains with moving boundaries

and for domains with fixed boundaries. Another aim of this thesis is to de-

velop a numerical model to accurately model nonlinear shallow water wave

flow in domains with fixed boundaries and domains with moving boundaries.

There exist analytical solutions of both linear and nonlinear shallow water

wave equations for domains with fixed boundaries. Also, there exist analyt-

ical solutions of both linear and nonlinear moving boundary shallow water

wave equations. None of the moving boundary solutions contain friction.

Some moving boundary analytical solutions of the nonlinear shallow water

wave equations involving nonlinear continuity and linear friction for unforced

flow in a two dimensional circular paraboloidal basin, a two dimensional

elliptical paraboloidal basin and a one dimensional parabolic canal will be

developed in this thesis. Also, some moving boundary analytical solutions

of the nonlinear shallow water wave equations involving nonlinear continuity

and both for no friction and linear friction for forced flow in a one dimensional

bed with quadratically varying depth will be obtained. Also, some analytical

solutions of the one dimensional nonlinear shallow water wave equations for

a basin with a horizontal bed and constant rectangular cross section will be

developed in this thesis; the basin is closed at one end and at the other end

has an open sea boundary, at which there is sinusoidal forcing.

The numerical method that is used in this thesis is the Selective Lumped
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Mass (SLM) model, developed by Kawahara, Hirano and Tsubota [46]. The

SLM model can be applied both to domains with fixed boundaries and do-

mains with moving boundaries. With the moving boundary scheme some

elements are wet for part of the time and dry for part of the time. The SLM

method has the advantage of giving explicit solutions of the shallow water

wave equations. It has the disadvantage of being subject to node to node

oscillations [29]. However, these oscillations can be minimised by using el-

ements with sides that are small compared with the wavelength [29]. The

SLM model is implemented in this thesis in a manner that the quadratic

friction term does not become infinite at a moving shoreline. In addition,

a wetting and drying scheme for domains with moving boundaries has been

developed.

The SLM model is coded in Visual C++ and validated both against

analytical solutions for flow in a basin of constant depth and in a basin of

linearly varying depth. Convergence studies for a basin of constant depth

have already been published [29, 46]. In this thesis a convergence study

of the SLM model is carried out for a rectangular basin of linearly varying

depth using analytical solutions of the one dimensional linear shallow water

wave equations. The convergence study uses a computer program written in

Visual C++ to generate meshes. A wetting and drying scheme is applied to

both moving boundary forced frictionless flow and moving boundary forced

linear frictional flow above a bed with quadratically varying depth. The

results are compared with the results from analytical solutions developed in

this thesis.

The SLM model is applied to model accurately the existing tidal heights

and tidal currents in Port Phillip Bay, Victoria, Australia; the SLM model is

also applied to model the effects of proposed channel deepening on the tides

in Port Phillip Bay.
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Computer programs written in Visual C++ or Mathematica by the author

of this thesis are used extensively as well as some Mathematica packages

written by Alan Easton, the main supervisor of the thesis.

The structure of this thesis is outlined below. Chapter 2 presents the

shallow water equations, and then reviews existing analytical and numeri-

cal solutions of these equations which are related to this thesis. Chapter 3

presents some new analytical solutions of the nonlinear shallow water equa-

tions for domains with moving boundaries. Chapter 4 discusses some new

analytical solutions of the nonlinear shallow water equations for domains

with fixed boundaries. Chapter 5 discusses the SLM (selective lumped mass

model) in detail plus the results of a convergence study of the SLM. Chap-

ter 6 discusses a wetting and drying scheme which is a modification of the

scheme of Kawahara, Hirano and Tsubota; the new scheme has been applied

to moving boundary forced frictional flow in a bed of quadratically varying

depth. The results are compared with the results from analytical solutions

developed in this thesis. Chapter 7 presents the SLM method to model the

existing tidal heights and tidal currents in Port Phillip Bay. The SLM model

is applied to model the effects of proposed channel deepening on the tides in

Port Phillip Bay. In Chapter 8 the conclusions of this thesis are presented

with suggestions for further research.
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Chapter 2

Shallow water wave models

2.1 Introduction

Shallow water wave models are applicable where the water depth is much less

than the horizontal scale of motion. Shallow water models are also called long

wave models as the wavelength is long compared with the depth. They are

used to represent the flow of water waves in coastal seas and estuaries (e.g.

of tides or tsunamis or storm surges). They can also be used to model lake

flows. Such models are used to predict the water velocity and water height

at various points within a region of flow at different times. The time period

of interest for a tidal model is 12 to 24 hours and the variation over a month

or a season may be important. The time period of interest for tsunamis is

usually 15 to 30 minutes, while the period of interest for storm surges is

several days.

Shallow water wave models are important because they describe real life

situations that are critical to large numbers of people. For example, a knowl-

edge of tides and tidal currents is important for shipping. For example, an

estimate of the effect of the proposed deepening of some shipping channels in

Port Phillip Bay, Victoria, Australia on tides and storm surges is important
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for neighbouring communities. A knowledge of water levels and currents in

bays and estuaries is important for an understanding of the local environment

(e.g. the aftermath of an oil spill) and the wellbeing of coastal communities.

Shallow water wave models are one way of predicting tides and tidal currents

in a given coastal region. Global warming could inundate coastal areas (e.g.

near Townsville, Australia) and knowledge of the present low and high tides

would help in understanding how warming would affect sea levels in a region.

Another example is tsunamis (often incorrectly called tidal waves), which can

be caused by earthquakes or underwater volcanoes. These can kill large num-

bers of people. If these are predicted, lives can be saved. One might also

want to know in hindsight the effects of a tsunami, e.g. the 2004 tsunami in

the Indian Ocean. Or one might want to forecast what might happen if a

tsunami were to arrive at a certain coastal area. Another example is storm

surges. In Bangladesh many people are killed by storm surges (increase of

water level caused by storms) as the sea inundates low lying land. This is a

substantial problem for the government of Bangladesh and they need more

information about these surges.

In this chapter the shallow water equations, which are used to model

shallow water flow, will be discussed. This chapter contains a review of

literature that is relevant to this thesis. First there is a review of some of the

analytical solutions of the shallow water wave equations both for domains

with fixed boundaries and domains with moving boundaries. Secondly, there

is a review of some of the numerical solutions of the shallow water wave

equations both for domains with fixed boundaries and domains with moving

boundaries, with particular emphasis on the latter.
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2.2 The shallow water wave equations

The two-dimensional depth-averaged shallow water wave equations are a set

of nonlinear partial differential equations [52, 108]. In Cartesian form they

consist of the conservation of momentum equation in the East direction

∂U

∂t
+U

∂U

∂x
+V

∂U

∂y
− fV − ν

(
∂2U

∂x2
+

∂2U

∂y2

)
+ τU + g

∂ζ

∂x
− KW 2 cos φ

H
= 0,

(2.1)

the conservation of momentum equation in the North direction

∂V

∂t
+U

∂V

∂x
+V

∂V

∂y
+ fU − ν

(
∂2V

∂x2
+

∂2V

∂y2

)
+ τV + g

∂ζ

∂y
− KW 2 sin φ

H
= 0,

(2.2)

and the continuity (conservation of mass) equation

∂ζ

∂t
+

∂(h + ζ)U

∂x
+

∂(h + ζ)V

∂y
= 0, (2.3)

where ζ(x, y, t) is the height of the water surface above a horizontal datum,

z = −h(x, y) is the bottom surface, H(x, y, t) = h(x, y)+ζ(x, y, t) is the total

depth of the fluid, f is the Coriolis parameter, W is the wind speed 10 m

above the water surface, K is a function of W , u(x, y, z, t) is the East compo-

nent of the water velocity, U(x, y, t) is the depth averaged velocity component

of the water current to the East defined by U =
∫ ζ

−h
u dz, v(x, y, z, t) is the

North component of the water velocity, V (x, y, t) is the depth averaged ve-

locity component of the water current to the North defined by V =
∫ ζ

−h
v dz,

φ is the angle of the wind direction measured anticlockwise from the East,

τ is the water bed friction parameter, ν is the horizontal eddy viscosity, g is

the acceleration due to gravity and t is the time. The friction parameter, τ ,

is either given the value zero for frictionless flow, a constant positive value

for linear friction or for quadratic friction

τ =
n2g

√
U2 + V 2

H4/3
, (2.4)
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where n is Manning’s coefficient of bottom roughness. Equation (2.4) is

based on Manning’s formula for open-channel flow [15]. The advective (con-

vective) terms are the terms U ∂U
∂x

, V ∂U
∂y

, U ∂V
∂x

and V ∂V
∂y

, the Coriolis terms

are the terms −fV and fU , the viscosity terms are the terms −ν(∂2U
∂x2 + ∂2U

∂y2 )

and −ν(∂2V
∂x2 + ∂2V

∂y2 ) and the wind stress terms are the terms −KW 2 cosΦ
H

and

−KW 2 sin Φ
H

.

A vertical cross-section of a body of shallow water is shown in Figure

2.1. Sometimes the horizontal datum is taken to be mean sea level at a cer-

tain place. Sometimes the datum is taken to be the geoid, the equipotential

surface of the Earth’s gravity field which best fits, using the least squares

method, global mean sea level. Solution of the shallow water wave equations

(2.1), (2.2) and (2.3) is sought for ζ(x, y, t), U(x, y, t) and V (x, y, t) in a two

dimensional domain Ω. If the domain is the datum surface for a bay, the

boundary τ comprises two parts: the land boundary, τL, and the open sea

boundary, τS. The shallow water wave equations can also be written in polar

form [67] and in spherical form [50, 52]. The shallow water equations (2.1),

(2.2)and (2.3) are called the primitive equations. Sometimes the continu-

ity equation is replaced by a second order equation called the WCE (Wave

Continuity Equation) [69], or the GWCE (Generalised Wave Continuity

Equation) [49], which is a modification of the WCE.

Exact solutions of the shallow water wave equations are known only for

a small number of domains of flow, in some cases for linearised forms of the

equations; all such domains of flow have simple geometric shapes. These

models are discussed in Section 2.3. As real life domains of flow do not

have simple geometric shapes, analytical (exact) solutions cannot be found

for such domains. For these domains of flow the equations must be solved

numerically (i.e. approximately). These models are discussed in Section

2.4. Although analytical solutions have been developed only for domains of
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Figure 2.1: Shallow water flow cross section

flow with simple geometric shapes they are very useful for testing numerical

solutions as they solve for the height and velocity of the wave for every point

in the domain and every time, whereas for real life domains there is only

limited experimental data. Conversely, numerical models are also useful in

validating analytical models.

2.3 Analytical solutions

Analytical solutions of the shallow water wave equations exist both for do-

mains with fixed boundaries and domains with moving boundaries. Some of

these solutions are for linearised forms of the shallow water wave equations

while others are for the nonlinear shallow water wave equations.

The linearised equations used ignore the advective (convective) terms

(i.e. the terms U ∂U
∂x

, V ∂U
∂y

, U ∂V
∂x

and V ∂V
∂y

in the momentum equations), the

Coriolis terms, the viscosity terms and the wind stress terms. They assume

that the oscillations of the water surface, ζ, are small compared to the total

depth, h + ζ, and hence that the nonlinear continuity terms ∂(h+ζ)U
∂x

and

∂(h+ζ)V
∂y

are respectively replaced with the linear continuity terms ∂(hU)
∂x

and

∂(hV )
∂y

. They also use a linear friction term.
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2.3.1 Fixed boundary analytical solutions

Lamb [55] solved linearised forms of the shallow water wave equations to

model tidal flow in canals of different shapes for frictionless flow. Ippen [39]

solved linearised forms of the shallow water wave equations to model tidal

flow in canals of different shapes both for frictionless flow and linear frictional

flow. Lynch and Gray [67] developed analytical solutions of the linearised

shallow water wave equations. The equations included linear friction and a

wind stress term. Solutions obtained included for the case where there is

no wind stress. The domains considered were of constant depth and linearly

varying depth and quadratically varying depths with cartesian and polar

geometries. The domains were periodically forced. The authors stated that

their analytical solutions should prove useful for comparison with numerical

models. The advantage of these analytical solutions over previous analytical

solutions is that most previous analytical solutions were for frictionless flow

and where they were for frictional flow were for simple cases. One of Lynch

and Gray’s analytical solutions will be used in Chapter 5 of this thesis to

test against a numerical model. Prandle and Rahman [80] modelled tidal

oscillations with linear friction in canals of varying depth and cross-section.

Some authors have considered tidal oscillations in estuaries when the wa-

ter elevation, ζ, is not small compared with the mean water depth. Tidal

oscillations in one dimensional estuaries were investigated by Airy in 1845

(discussed in [55] and [83]) using the method of successive approximation.

Wind stresses, bottom friction, viscosity and the Coriolis forces were omitted.

Flow is in the x direction only. The resulting shallow water equations with

advective terms included are nonlinear. The estuary is of constant depth and

is of semi-infinite length and the tidal oscillation is specified at the open sea.

The solutions for ζ and U have terms involving ω, the angular frequency of

the tidal oscillation, plus terms involving twice the frequency, 2ω, the latter
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terms representing overtides, or tides of the second order. Airy’s analysis did

not extend to tides of higher order, i.e. those whose frequencies are three,

four or more times that of that of the forced frequency. Airy’s solution is dis-

cussed further in chapter 4. Kreiss [54] included linear friction in analysing

nonlinear oscillations in a tidal channel of finite length. He had a tidal os-

cillation of angular frequency, ω, at the open sea boundary. He obtained

a solution for the velocity including a second order overtide using the per-

turbation method. Proudman [82] included quadratic friction in analysing

nonlinear oscillations due to tide and surge in a channel of finite length. He

had a prescribed incident wave of first order at the mouth plus a reflected

wave of first order plus second order terms which reduce to a reflected wave

at the mouth. Knight [51] extended Proudman’s work. Gallagher and Munk

[27], Kabbaj and Provost [43], and DiLorenzo [17] all found second order

solutions for quadratic frictional tidal flow in channels of finite length using

perturbation methods. Friedrichs and Madsen [26] produced a table showing

the ratio of local acceleration to friction and of advection to friction in twelve

estuaries, in ten of which both of these ratios are very small but both are

significant in the other two. They found approximate analytical solutions for

quadratic frictional tidal flow in estuaries in which the local acceleration and

advection were assumed to be insignificant.

2.3.2 Moving boundary analytical solutions

This subsection is concerned with moving boundary analytical solutions of

the shallow water wave equations. Because in the vicinity of a moving bound-

ary the oscillations of the water surface, ζ, are comparable to the total depth,

h+ ζ, the shallow water wave equations need to include nonlinear continuity

terms to accurately model moving boundary flow. Nevertheless, there do ex-

ist moving boundary solutions of linearised forms of the shallow water wave
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equations (e.g. [48, 76]).

Carrier and Greenspan [11] obtained moving boundary analytical solu-

tions of the nonlinear shallow water equations for a water wave climbing a

linearly sloping beach. Carrier and Greenspan’s proof is discussed in detail in

[42] and [116]. The procedure is discussed in detail here to show the compli-

cations involved in computing the analytical solutions for later comparison

with new solutions.

The equations of motion to be solved are based on equations (2.1), (2.2)

and (2.3), with flow assumed only in the x-direction and without any Coriolis,

viscosity, friction or wind terms. The resultant equations are

∂U

∂t
+ U

∂U

∂x
+ g

∂ζ

∂x
= 0, (2.5)

and
∂ζ

∂t
+

∂(h + ζ)U

∂x
= 0. (2.6)

The equations are then rewritten in terms of u′, ζ ′, x′ and t′, which are

successively dimensionless forms of u, ζ, x and t. Then two new variables,

σ and λ are introduced. These are defined in terms of the dimensionless

variables (with primes dropped)

σ = 4
√

ζ − x (2.7)

and

λ = 2(u + t). (2.8)

Then equations (2.5) and (2.6) transform to the equations

∂σ

∂t
+ u

∂σ

∂x
+

(σ

4

) ∂λ

∂x
= 0, (2.9)

∂λ

∂t
+ u

∂λ

∂x
+

(σ

4

) ∂σ

∂x
= 0. (2.10)
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The hodograph transformation, i.e transforming the equations so that the

independent and dependent variables are interchanged, [42] is used on equa-

tions (2.9) and (2.10), giving

∂x

∂λ
− u

∂t

∂λ
+

(σ

4

) ∂t

∂σ
= 0, (2.11)

∂x

∂σ
− u

∂t

∂σ
+

(σ

4

) ∂t

∂λ
= 0. (2.12)

Substituting t = λ
2
− u into these equations gives

(
x +

u2

2

)

λ

− σ

4
uσ − u

2
= 0, (2.13)

(
x +

u2

2
+

σ2

16

)

σ

−
(σu

4

)
λ

= 0, (2.14)

where the derivatives are represented by subscripted variables.

It follows from equation (2.14) that there is a variable φ(σ, λ), such that

x +
u2

2
+

σ2

16
=

φλ

4
, (2.15)

and
σu

4
=

φσ

4
. (2.16)

Substituting (2.15) and (2.16) into (2.13) gives a linear equation

(σφσ)σ − σφλλ = 0. (2.17)

Thus, the original nonlinear equations have been reduced to a linear equa-

tion. The instantaneous shoreline is at σ = 0. Far away from the shoreline

nonlinear effects are small and σ = 4 [100].

Carrier and Greenspan obtained a number of solutions of (2.17). One

solution of (2.17) is

φ = AJ0(σ) cos λ. (2.18)

Using (2.7), (2.8), (2.15), (2.16) and (2.18), exact solutions for ζ(x, t) and

u(x, t) can be found in terms of σ and λ as

ζ =
φλ

4
− u2

2
= −A

4
J0(σ) sin λ − A2J2

1 (σ)

2σ2
cos2 λ (2.19)
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u =
φσ

σ
= −AJ1(σ) cos λ

σ
(2.20)

x = −σ2

16
+

φλ

4
− u2

2
= −σ2

16
− A

4
J0(σ) sin λ− A2J2

1 (σ)

2σ2
cos2 λ (2.21)

t =
λ

2
− u =

λ

2
+

AJ1(σ) cos λ

σ
(2.22)

The resulting wave running up the sloping beach is periodic for 0 < A ≤ 1.

To find the resultant wave at any time t, a value of σ is substituted in

(2.22) to find λ numerically using iteration. Then the values of σ and λ are

substituted in equations (2.19), (2.20) and (2.21) to find x, u and ζ. Then

using another value of σ another value of λ is found, and so on. Then the

process is repeated for other values of t.

The analytical solutions of Carrier and Greenspan (including (2.19) to

(2.22)) have been used to test many numerical models [10, 14, 16, 34, 40,

52, 61, 74, 81, 87, 95, 96, 107, 115, 116]. A number of other analytical

solutions have been found that are modifications of Carrier and Greenspan’s

solutions. A prime motivation for these solutions is to provide further tests

for numerical techniques and codes.

Ball [5] found exact moving boundary solutions of the nonlinear shallow

water equations in Lagrangian form for flow in a parabolic trough and in

a paraboloid of revolution. Sielecki and Wurtele [96] tested their numeri-

cal model against these solutions. Keller and Keller [48] obtained moving

boundary analytical solutions of the linearised shallow water equations for a

periodic water wave travelling across an ocean of constant depth then run-

ning up a uniform plane beach. Shuto [92] found exact moving boundary

solutions of the linearised shallow water equations in Lagrangian form for

flow on a sloping beach. His results for runup height were found to be in

close agreement to experimental results. Tuck and Hwang [105] investigated

the generation of waves on a linear slope to simulate a tsunami due to seismic

disturbances, using linearised equations. They also considered runup using
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nonlinear equations which they transformed into linear equations which they

solved.

Thacker [102], using Eulerian equations, obtained exact moving bound-

ary frictionless solutions of the shallow water wave equations similar to those

obtained by Ball [5] using Lagrangian equations. Thacker’s approach, like

Ball’s, was to make assumptions about the nature of the motion and then

to solve for the basin shape in which that motion should be possible. First

Thacker assumed that the velocity was a function of time only. This implied

that the water surface was a plane for all time and that such flow could

take place in a circular paraboloid, parabolic canal or elliptical paraboloid.

For the circular paraboloid the moving shoreline is a circle in the xy plane,

with the centre of the circle orbiting the centre of the basin. Also, Thacker

considered flow in a circular paraboloid with the velocity assumed to be a

function of position and time. This implied that the water surface is an os-

cillating paraboloid. Finally, Thacker obtained a solution corresponding to

a flood wave caused by a parabolic mound spreading over a plane. A num-

ber of numerical models have been tested against Thacker’s exact solutions

[6, 35, 61, 77, 112]. There will be further discussion of Thacker’s model in

Chapter 3 in which new moving boundary shallow water wave solutions are

presented. These are modifications of Thacker’s solutions.

Sachdev, Paliannapan and Sarathy [88] built on Thacker’s work, pro-

ducing periodic solutions for frictionless flow involving the Coriolis force in

parabolic canals, circular paraboloids and elliptical paraboloids. Johns [40]

expressed Carrier and Greenspan’s [11] exact solution for moving boundary

periodic flow in a simpler form, which involved periodic forcing at the open

sea boundary. Li and Raichlen [62] studied the runup of solitary waves on

a uniform plane beach connected to an open beach of constant depth. They

obtained an analytical nonlinear solution using an approach based on that of
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Carrier and Greenspan [11]. The solution was in close agreement to exper-

imental results, giving slightly better results for maximum runup than the

approximate linear theory of Synolakis [100]. Kanoglu [44] solved analyti-

cally Carrier and Greenspan’s equations for the evolution of waves climbing

sloping beaches for a number of different initial waveforms.

2.4 Numerical solutions

For domains of flow without exact solutions the equations must be solved

numerically (i.e. approximately). One technique is to use the finite difference

method in space and in time. Another technique is to use the finite element

method in space and the finite difference method in time, often referred to

as the finite element method. The finite element numerical method has the

advantage over the finite difference numerical method that it can represent

the boundaries and topography of domains of flow more accurately. In all

numerical models one must specify initial conditions, i.e. state the water

heights and velocities in the region at the starting time of the calculation.

One might assume a cold start, i.e. initially the water in the region is calm.

As this is unrealistic this will cause transient solutions. One must also specify

boundary conditions, i.e. state what physical conditions must be satisfied on

the boundaries of the region of flow. For example, for a tidal flow one can

specify the height of the water on the open sea boundary, τS , at different

times and that no water can flow across the seashore boundary, τL. This is

not always a good representation, as water can flow through a pervious sea

wall. Often it is sufficiently accurate to assume that the shoreline is fixed.

However, in some regions of flow significant tidal flats may be covered and

uncovered during a tidal period, meaning that the shoreline changes position

substantially during any day. Also, tsunamis flow inland, often a distance
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of several kilometres. As well, extreme water levels due to storm surges can

lead to water flow inland.

At a moving boundary the boundary condition is that the total depth of

water, H, is zero. Specifying the height of the water on the sea boundary is

an appropriate procedure if only tides are represented. It is also correct to

use the velocity rather than the height.

In a finite difference or finite element numerical model the domain of flow

is broken up into a grid, with the water depth below the datum specified at

the nodes. These nodes are joined in elements or grid blocks or cells, which

are usually square in finite difference schemes and usually triangular in finite

element schemes. The water height, ζ, and velocity components, U and V ,

are usually calculated at each node at the end of each time step, δt.

With some moving boundary schemes the elements are fixed; at the end of

each time step some elements will be wet and some will be dry. For example,

in some finite element schemes an element is classified as wet only if all its

nodes are wet, otherwise an element is taken to be dry. With schemes with

fixed elements a decision must be made at the end of each time step whether

any nodes change status from wet to dry or dry to wet. The usual way

of deciding whether a node changes from wet to dry is to see whether its

calculated total depth is at or below some minimum value, e.g. zero and

then the total depth is set to the minimum value and the velocity to zero.

There are various methods used to decide whether a previously dry node

becomes wet, with some based on the continuity equation and some based

on whether the water at an adjacent wet node becomes higher than the land

height of the previously dry node.

With some moving boundary schemes elements with sides on the moving

boundary change shape over time with nodes initially on the shoreline moving

with the shoreline over time.
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Some numerical models have been found to have artificial short wave

length waves in their solution. These so called 2δx (or node to node) oscil-

lations, of wavelength twice δx, the grid spacing [66], have sometimes been

found to be substantial in models based on the primitive form of the shallow

water equations but much reduced when the continuity equation is replaced

by the wave continuity equation [31].

Reid and Bodine [85] numerically modelled a storm surge in Galveston

Bay, Texas, using a finite difference scheme. Advection was considered neg-

ligible for most of the bay and was not included in the model except at cer-

tain regions (submerged barriers and narrow channels) where the effect was

included implicitly through the use of nonlinear discharge relations. Grid

blocks could flood or dry. Their model included formulas for flooding rates

at the shoreline boundary based on empirical expressions for flow over weirs.

The model was first tested with a tide and was found to fit the measured

tide with a suitable bottom friction factor. The scheme was then used to

model water levels and velocities due to Hurricane Carla (September 1961),

with the wind stress values used based on meteorological data from the U.S.

Weather Bureau. A tidal oscillation was imposed at the open sea bound-

ary. Comparison of the modelled and observed water levels at four places

for Hurricane Carla showed a good fit. The scheme was then used to model

water levels and velocity due to Hurricane Cindy (1963). Again, comparison

of the modelled and observed levels at four sites for Hurricane Carla showed

a good fit.

The paper by Leendertse [60] involves the simulation of water quality in

well-mixed estuaries and coastal seas. The model, which is finite difference

and moving boundary, solves the shallow water equations for the motion of

tides including motion on tidal flats and the advective diffusion equation

representing the movement of dissolved waste constituents. The numerical
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solutions are finite difference. The computational procedures were tested in

modelling tidal levels and velocities in Jamaica Bay, Long Island, New York,

a bay which has many tidal flats. In addition, the dispersion of coliform

bacteria from a large number of time-varying sources was computed. Leen-

dertse’s land-water boundary moved in discrete steps. Leendertse noted that

if discrete changes are made local discontinuities are generated which then

radiate from the location of change as small waves through the system. He

approached this problem as follows. The search for the new boundary is

made at larger intervals than the time step. The computational noise gen-

erated by the boundary decays during this interval. If in a particular field

a cross-section decreases to less than a preset small value during ebb, then

that field is taken out of the computation. As negative cross sections are

not allowed to occur, this preset value is close to zero, but positive. During

rising water levels, grid points are added to the computation if the average

of the adjacent fields which are under water are larger than the preset value.

The water level of the newly wetted field is taken to be the average of the

adjacent fields. Flooding can occur from one to four sides of a grid field. The

tidal flow was forced by a prescribed sinusoidal vertical tide at an inlet. A

diagram is shown of tidal velocity vectors at ebb tide.

Sielecki and Wurtele [96] tested three different finite difference schemes

against some moving boundary shallow water analytical solutions, including

solutions by Ball [5] and Carrier and Greenspan [11]. The three schemes

each gave results that were highly accurate. The position of the shoreline at

a given time was estimated by an extrapolation of the water level, based on

the continuity equation, from the last two underwater grid points to the first

underground grid point. The velocity was calculated at underwater points

only and at underground nodes was set to zero.

Ramming [84] modelled the tide in the Outer Elbe River, Germany, using
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a finite difference scheme. No details of the numerical scheme were given.

Some points in the river are dry for part of the day and wet for part of the

day. Comparison of the computed and observed time variation of water level

at three points in the river showed good agreement. Two of the points were

dry for part of the day.

Apelt, Gout and Szewczyk [3] presented a finite difference model to sim-

ulate the dispersion and transport of pollutants in bays and estuaries. The

equations solved are the shallow water wave equations for tidal flow, with al-

lowance made for a mean water level which is not horizontal, and a pollutant

equation. The regions modelled include intertidal flats. There is a drying of

various regions during tidal motion. Depth values in the vicinity of the mov-

ing land-sea boundary must be adjusted so that no instability is introduced

by spurious negative depths entering the computation. There was no expla-

nation of the drying and wetting scheme. The model was tested for a number

of cases, with good agreement with experimental data. In addition, the tides

were simulated for a small bay off the northeastern coast of Australia, which

has intertidal flats. Two different approaches were used. The first approach

made the water surface over the newly wetted areas horizontal initially, at

a level corresponding to the average of the nearby points over deeper water.

This approach seemed to work well but generated some small disturbances.

The second approach set the water surface over the newly wetted areas to

have the same gradient in the direction of the main tidal flow as exists in the

adjacent deeper water areas. The second approach gave improved results.

Flather and Heaps [24] presented a finite difference scheme for mod-

elling the M2 tide in Morecambe Bay, England, which contains large areas of

sandbanks exposed at low tide. They used a minimum water depth for the

denominator in the quadratic frictional term (2.4), which would otherwise

have a singularity at the shoreline, where the depth is zero. Tests are car-
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ried out at the end of each time interval to determine whether a grid point

is wet or dry; if a grid point is dry its current is set to zero. These tests

allow flow at a grid point only when certain conditions on both depth and

elevation gradient are satisfied. Three schemes were used; two involving ad-

vection, the other without it. Flather and Heaps pointed out that Charnock

and Crease [12] presented a dimensional analysis showing that advection is

important in the equations of motion when the water elevation is comparable

to the mean depth, which implies that advection is important for flow near

a moving boundary. Advective terms were removed at points close to the

open sea boundary to remove grid scale oscillations. All schemes gave stable

solutions. It was found that leaving advection out at all points caused a vari-

ation in amplitude of at most 2 per cent. Comparison of the amplitude and

phase of water elevation at the one point where data was available showed

a good fit. Comparison of computed and modelled velocity ellipses at one

point showed a good fit using one scheme and a bad fit using the other two

schemes. Diagrams showing velocity vectors and dry areas in Morecambe

Bay were presented. Flather and Heaps [25] refined the techniques of their

earlier article, allowing for partial wetting or drying of a cell. They used

coarse and fine grid models, the latter giving more accurate results.

Herrling [33] presents a finite element model to simulate flow in an estuary

with tidal flats. He has a fixed grid with three types of elements: dry, partly

flooded or flooded. The first type has all its nodes dry, the second has at

least one dry and one wet node and the last has all its nodes wet. The latter

two elements are used in the computation. An extrapolation is used to find

the actual boundary. The model was first tested for frictional forced flow in

a rectangular basin with linearly varying slope and open to the sea. There is

no analytical solution against which to test the modelled results. The second

test modelled flow in the Jade estuary in Germany. There was no comparison
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with experimental results.

Runchal [87] developed a finite difference model suitable for storm surges

and tidal run-up. His model involves the wetting and drying of cells. There

are two ways in which the run-up/draw-down conditions were implemented.

The first, implicit, is partly based on Leendertse’s scheme [60]. The second

is explicit. He tested his models against a number of moving boundary

analytical solutions, including solutions by Carrier and Greenspan [11]. The

model gave results close to the analytical solutions for most cases. It was

found that when the advective term was modelled by the central difference

scheme in testing against one of Carrier and Greenspan’s solutions that a

spurious solution of wave length 2δx was superimposed on the true solution

if δx was above a certain value.

Ages and Woollard [1] modelled the tides on the Fraser River, Canada,

using a one dimensional finite difference model. The model was calibrated

with fifteen tidal gauges, with the amplitude and phase of water level at all

places in good agreement with the modelled values. They had no data for

current velocity against which they could test their model.

Gray and Lynch [31] investigated the finite element representations of the

one dimensional linearised shallow water equations in conjunction with ten

different time stepping schemes using a Fourier analysis. One of the schemes

involved replacing the continuity equation with the wave continuity equation

(WCE), a second order partial differential equation obtained from both the

continuity and momentum equations. They investigated the stability of the

time stepping schemes and errors in wave amplitudes and phase. Oscillations

of wavelength 2δx (node to node oscillations) arose in the computed solutions

for some schemes. The schemes that suppressed these waves contained second

derivatives in space of the water level and velocity. The analysis by Lynch

and Gray looked only at linearised shallow water equations. The effects of
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nonlinear terms (e.g. advection) on stability and node to node oscillations

were not examined.

Lynch and Gray [69] extended their WCE (the wave continuity equation)

[31] to include nonlinear terms. They developed a finite element model based

on this equation and the momentum equations. They tested their numeri-

cal model against their analytical solution of the two dimensional linearised

shallow water equations for flow in an annular region [67]. Results obtained

with linear triangles and quadratic quadrilaterals compared well with ana-

lytical solutions. Node to node oscillations in both the circumferential and

radial directions were fairly small.

A number of papers have been published on modelling the tides in Port

Phillip Bay, Victoria, Australia. These include papers by Easton [19], Black,

Hatton and Rosenberg [9], Walker [109], Hubbert and McIntosh [37] and

Lawson and Treloar [56, 57]. All of these papers used the shallow water equa-

tions except for Walker’s, which used a three dimensional model. Modelling

of the tides in Port Phillip Bay will be discussed in detail in chapter 7.

Hibberd and Peregrine [34] modelled run-up on a beach using an ex-

plicit finite difference scheme. The shoreline was obtained by extrapolation

from nearby points. Their scheme was tested against analytical solutions for

runup by Carrier and Greenspan [11] and Spielvogel [97]. There was close

agreement between the numerical scheme and the analytical solutions except

in regions where they believed that discretisation gave insufficient resolution.

Lynch [66] presented a substantial literature review on finite element

numerical models of shallow water flow; most of the models were for domains

with fixed boundaries.

Lynch and Gray [68, 70] developed a finite element technique for solving

moving boundary flow problems using Galerkin’s method. The method in-

volved continuous grid deformation during simulation. They first discussed
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two common alternative numerical approaches to the moving boundary prob-

lem and the possible errors in such approaches. The first and simpler ap-

proach is to construct an imaginary vertical barrier near the moving shoreline

and assume no flux through the vertical barrier. This is a good approxima-

tion provided that the real shoreline does not move very far from the assumed

shoreline. If the boundary motion is significant compared to the spatial dis-

cretisation various errors can arise including the reflection of waves from the

fixed boundary. The second and more complicated approach is to consider

each element in the domain to be either wet or dry at any computed time.

A problem with this approach is that while in actuality it might take some-

thing in the order of twenty to two hundred time steps for an element to

wet, the approach will wet an element in one time step. Lynch and Gray

considered that this instantaneous wetting may generate spurious waves at

the boundary.

The application of the Galerkin finite element technique by Lynch and

Gray to flow with moving boundaries using a continuously deforming grid,

in which each element is wet at any computed time, involves basis functions

which are functions of time and space. In contrast the application of the

Galerkin finite element technique by some other authors (e.g. Kawahara,

Hirano and Tsubota [46]) to flow with moving boundaries using a fixed grid,

in which an element is either wet or dry at any computed time, involves

basis functions which are functions of space only. Lynch and Gray’s scheme

involves the changing in the shape of elements which have a side on the mov-

ing boundary. For these elements terms extra to those used in the Galerkin

scheme for fixed grids are required. Lynch and Gray’s scheme was used to

model flow in two canals and one harbour. The results were stable over time.

The first canal, one dimensional with constant bathymetry, was subject to a

surge at the entrance. The surge increased towards an asymptotic value over
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time. The moving boundary condition was applied at the landward boundary

and the solution compared to that obtained by applying a no-flux condition

at the point where the beach begins. The surface elevation as a function of

time at a point approximately half way along the canal both for the moving

boundary case and the no flux case were compared. It was found over time

that both solutions agreed quite well. This agreed with the assumption that

the authors made - that while the detailed solution at the beach boundary

should depend heavily on the choice of boundary condition, the solutions in

the interior should be substantially the same. The second example involved

a canal with linear bathymetry subject to sinusoidal forcing at the seaward

end. This problem was solved using two dimensional linear triangles. The

surface elevation as a function of time for the moving boundary and fixed

boundary case was compared at a number of nodes. The further away a node

was from the moving boundary the closer were the surface elevation graphs

for the two cases to each other. The final problem involved a rectangular

bay. At the entrance a storm surge, which increased towards an asymptotic

value over time, was imposed. One boundary was moving and the rest fixed.

At the moving boundary quadratic friction was computed based on a depth

of one foot. The positions over time of nodes on the moving boundary were

plotted. Boundary points closest to the entrance move the most over time.

Velocity vectors in the harbour were plotted over time. The velocities were

as expected.

Shuto and Goto [94] solved numerically a linearised set of shallow water

equations in Lagrangian form. Numerical finite difference results for wave

runup were compared with analytical results for a simple topography and the

agreement was good. Numerical results were also calculated for other simple

topographies for which there is no analytical solution. The computations

were found to be stable. The authors considered that the equations used
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were suitable for analysing tsunami run-up.

Goto [30] derived a linear set and a nonlinear set of shallow water equa-

tions in Lagrangian form. These equations were solved for wave runup using

an explicit finite difference scheme. No details of the scheme were provided.

In the numerical experiment water overlays a uniform slope connected to a

channel of constant depth. The initial condition is that the water particles

are not moving and the water surface is horizontal in the channel. The off-

shore boundary condition is that a sinusoidal progressive wave train enters

from the farthest end of the channel of constant depth. Analytical solutions

of runup height for the linear case were derived by Shuto [93]. The numer-

ical results, both for the linear and nonlinear case, were compared with the

analytical solutions. For the linear case the analytical and numerical results

for runup height at different times were in good agreement. The nonlinear

results differed by 10 to 20 percent from the linear analytical results. The

wave profile for both the linear wave and the nonlinear wave was shown on a

diagram as numerically computed at two different times. They were moder-

ately similar, with the shoreline at one time being the same for both waves

but quite different at the other time.

Yeh and Chou [111] developed a moving boundary finite difference storm

surge model. At water-land boundaries the normal velocity is set equal to

zero. The water-land boundaries are not fixed but allowed to move depending

on the storm surge elevations. During a rising surge a grid point is added

to the computation system if the surge elevation of any of its neighbouring

points is above the bottom of the grid point. During the receding surge a

grid point is taken out of the computation if its total water depth decreases

below a preset value. However, if any of its four neighbouring points has a

surge elevation above its bottom value the removal is overruled. A Fourier

analysis of a linearised version of the shallow water equations showed that
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the model is conditionally stable. In four numerical experiments the scheme

was tested against a fixed boundary scheme and involved both hypothetical

and actual storms. In most cases the moving boundary scheme gave better

results than the fixed boundary scheme.

Pearson [74] used a finite difference moving boundary solution of the

shallow water equations in Lagrangian form. He compared his numerical so-

lution with an analytical one dimensional solution by Carrier and Greenspan

[11]. With 100 mesh points the analytical and numerical results corresponded

to better than three significant figures, both for the shoreline position and

the wave shape. Pearson also modelled a slowly rising, then periodic wave

incident on a coastal depth profile representative of a portion of the West

coast of the U.S. The results for this case were checked by repeating the

calculation with several different mesh spacings in space and time. A graph

showed the wave profile at different times, while another showed beach runup

as a function of time.

Holz and Nitsche [36] developed an explicit finite element scheme for

modelling tidal flow in intertidal flats. They said that the typical topography

of estuaries with intertidal flats is characterised by deep channels with steep

banks flowing through nearly horizontal planes. To obtain a high resolution

of the topography, small elements have to be used for the steep banks, while

on the tidal flats and in the deep water region larger elements can be used.

They compared two techniques. The first, with triangular elements, involves

the removal of dry elements from the computational scheme and the wetting

of dry elements by interpolation. The second, involves modifying the grid

for the first technique so that a moving coastline is calculated. This involves

generating at the coastline triangular and trapezoidal elements whose shapes

vary over time. They found that the schemes could be made stable if second

order viscosity or numerical diffusion were used. As the the quadratic friction
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formula implies infinite friction at the shoreline, they modified the formula

near the shoreline. They found that they could smooth out undesirable

disturbances by time-averaging every 10 to 30 time steps. They modelled

flow in an estuary with tidal flats. They found that the velocities given by

the former scheme were too high.

Johns [40] developed a finite difference scheme to solve the one dimen-

sional shallow water equations for flow over a sloping shelf involving a con-

tinuously moving shoreline. Johns modified the analytical solutions obtained

by Carrier and Greenspan [11] for a non-breaking standing wave with pre-

scribed oscillatory forcing in which the shoreline moves up and down a sloping

shelf. In the numerical scheme a variable X is defined so that the moving

shoreline always corresponds to X = 1. The numerical solutions were com-

pared with the modified analytical solutions for both tsunami and tidal scale

oscillations. The forced oscillation for both cases was of amplitude one me-

tre, with the former of period 15 minutes and the latter 12.4 hours. Very

close agreement for shoreline displacement as a function of time was found

for both oscillations.

Johns et al. [41] used two finite difference models for flow with a continu-

ously moving lateral boundary. They modelled the water levels and velocities

in the storm surge caused by the 1977 Andhra cyclone in India. One model

uses a fixed coastline. The other is a deforming coastline model with a coordi-

nate transformation used to simplify the numerical treatment of an irregular

boundary configuration so that calculations are done using a rectangular grid.

The two models give similar results, with the latter slightly better.

Kawahara, Hirano and Tsubota [46] developed a two dimensional shallow

water finite element model. The numerical scheme for the time variation is an

explicit two step scheme. As this scheme involves a combination of lumped

and unlumped coefficients, the scheme is called a selective lumping scheme.
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The Selective Lumped Mass matrix model (SLM) is discussed in much more

detail in chapter 5. A weighting parameter, sr, the selective lumping pa-

rameter, is used, ranging in value from 0 to less than 1. Kawahara, Hirano

and Tsubota developed a CFL (Courant-Friedrichs-Lewy) stability criterion

for their scheme. Goraya [29] stated that their stability criterion is incorrect

and developed a new stability criterion for the SLM method using Fourier

analysis. Kawahara, Hirano and Tsubota said that in practice one should

use 0.85 < sr < 0.95 because in their numerical experiments there was not

erroneous numerical damping with sr in these limits. They applied their

model to four different situations. The first case was the analysis of a soli-

tary wave propagating along a one-dimensional channel with uniform bottom

slope. The results were compared with an analytical solution. Results were

computed for sr equalling 0, 0.6 and 0.8 and various discretisations. It was

found that the higher the value of sr and the finer the mesh, the closer that

the numerical solution was to the analytical solution. They concluded that to

obtain reasonably accurate solutions that at least forty nodal points should

be included in one half of a wave length. The time increment, δt, was chosen

to be as long as possible but within the limit where stable computations are

obtained. The second case was the computation of the propagation of a si-

nusoidal wave along a rectangular channel, with the water elevation specified

at one end, AB, and a progressive wave condition specified at both ends, AB

and CD. The ratio of the computed water elevation, ζ, at CD to the specified

ζ at AB, was plotted against sr, with calculations being for sr equalling 0,

0.2, 0.4, 0.6, 0.8 and 0.9. The ratio increased with increasing sr, being 0.85

for sr equalling zero and 0.99 for sr equalling 0.95. The time increment, δt,

reduced with increasing sr.

Kawahara, Hirano and Tsubota used the SLM scheme to model the tides

in Osaka Bay, Japan, comparing computed results with observed results.
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They used 609 nodes and 1055 triangular elements. Along the coastline the

normal velocity was taken to be zero. At the two open sea boundaries tidal

elevations of period 12 hours and with amplitudes and phases varying along

the boundaries were specified. The observed velocity and computed velocity

at a certain location were found to be in agreement for sr equalling 0.92. The

smaller the value of sr the smaller the computed velocity, being slightly less

than 40 percent of the observed value for when sr was zero.

Kawahara, Hirano and Tsubota also modelled the tidal current flow in

Yatsushiro Bay, Japan, with 759 nodes and 1279 triangular elements. Along

the coastline there are several areas at which the sea bed is exposed at low

tide. This is dealt with by having the triangles in such areas wet for part of

the time and dry for part of the time. In the wetting and drying scheme of

Kawahara, Hirano and Tsubota, at each node i of a finite element that is in

the domain of computation the water elevation, ζ, and velocity components,

U and V , are calculated at the end of each half time step. There are three

possible outcomes:

(i) for each node in an element the total depth, Hi > 0 ;

(ii) at least one value of Hi is Hi > 0 and the rest of Hi have Hi ≤ 0; and

(iii) all values of Hi are Hi ≤ 0 .

In case (i), the element is taken to be under water. In case (ii), at any nodal

point at which Hi > 0, the water elevation, ζi , and the current velocity

are computed and at nodal points at which Hi ≤ 0 the water elevation is

computed but the current velocity is treated as zero. In case (iii) the element

is on the exposed sea bed and is omitted from the computation. Kawahara

et al. do not discuss certain aspects of their calculations:

(a) whether all the nodes at t = 0 are subject to a cold start (e.g. if a node

whose depth is above sea level has an initial zero water level this implies that

the water is initially underground);
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(b) how they decide when a previously dry element becomes wet plus what

height the water becomes at a previously dry node that has become wet;

(c) how they deal with the problem that the quadratic friction (which appears

in the momentum equations), which is inversely proportional to Hi , becomes

infinite at the shoreline, where Hi equals zero.

Experimental data shows that the semi-diurnal tide in Yatsushiro Bay is

predominant. Hence, the tidal elevation specified at the open sea boundaries

has period 12 hours with its amplitudes the sum of the M2 and S2 amplitudes.

The computed velocity vectors were shown at low tide, low tide plus 3 hours,

high tide and high tide plus 3 hours. The shoal area is largest at low tide,

decreases at low tide plus 3 hours, disappears at high tide and starts to

reappear at high tide plus 3 hours; hence the model gives expected results in

the tidal flats region.

Kawahara and Umetsu [47] used the SLM method to analyse river flow

with a moving boundary. The two unknown variables are discharge per unit

width and water elevation. They used the wetting and drying scheme of

Kawahara, Hirano and Tsubota, [46]. For their first computation flow in

an open channel with a solid wall was calculated, with discharge specified

at the start of the channel. Plots of velocity and elevation were shown at

various time steps. For the second computation, flow through a channel with

three mounds on the channel bottom was computed, with a longitudinal ve-

locity and water elevation specified at the channel entrance. Plots of velocity

and elevation were shown at various time steps, showing the mounds being

eventually submerged. In the final computation, flow in the Arakawa River,

Japan, was computed. At the starting cross-section of the river the velocity

normal to the cross-section and the elevation were specified. Plots of velocity

at various times showed that some parts of the river were submerged for part

of the time and exposed for part of the time.
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Lewis and Adams [61] developed an explicit one-dimensional finite dif-

ference scheme to model tsunami flooding. The model includes quadratic

friction and advection. The stability of a linearised version of the scheme was

derived using the von Neumann method. The scheme involves the wetting

and drying of cells. The scheme was tested against the analytical solution

by Thacker [102] for water sloshing in a parabolic canal. Three different

finite difference expressions were used to approximate the advective terms

even though Thacker’s solution involved no advection terms. With the first

advective expression an oscillation of wavelength 2δx developed rapidly. The

first advective formulation was abandoned. With the second advective for-

mulation an initially plane surface in time developed kinks even though the

analytical surface is plane for all time. A third advective expression was

then used to test against another of Thacker’s analytical solutions, with the

water surface being parabolic. Smoothing operators were used to dampen

all waves components of wavelength 2δx. The surface produced was at times

quite different from the analytical parabolic surface. As well, the numerical

scheme was tested against a numerical scheme by Carrier and Greenspan

[11] for a wave climbing a sloping beach without breaking. The numerical

and analytical values for the wave’s maximum runup were in agreement.

Pedersen and Gjevik [75] used an implicit finite difference model based

on a Lagrangian description to study runup of long water waves. The nu-

merical results were compared with analytical solutions by Spielvogel [97]

and experimental data. The analytical and numerical solutions were in close

agreement. Simulations of the run-up of solitary waves on relatively steep

planes showed surface displacements and runup heights in reasonably good

agreement with experiments. The stability of the scheme was investigated

using a linear analysis.

Stelling [98] developed a finite difference method to model tidal flow in
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regions including tidal flats. This model was used to simulate flow in the

Eems-Dollard estuary, Netherlands, about half of which is tidal flats. Water

elevation as a function of time was set at two open sea boundaries. At other

points the water level and velocities were set at zero initially; this caused

transients which quickly died out. Velocity vector diagrams at different times

showed the wetting and drying of tidal flats.

Zech, Sorel and Vansnick [113] used an explicit finite difference scheme

to model the flooding and uncovering of banks and islands in rivers. The

model allows for the introduction of new meshes or the taking away of old

ones. A new square mesh is introduced when the mean value of the four

surrounding water levels exceeds two centimetres. To overcome the problem

that the quadratic friction formula implies a very large friction force for very

small depths in such cases the water depth is increased by an arbitrary value.

The time step was found using the Courant stability condition. Flow was

modelled in a rectangular basin with constant bottom slope. On the left

boundary the water level varied sinusoidally over time. The motion was

given a cold start. A diagram showed the water surface at different times.

As well, flow was modelled in a stretch of the Scheldt river, Northern Europe,

which includes flood plains. Two diagrams of velocity vectors were shown,

one at a time before flooding, another at a time of flooding. Some banks

which were uncovered in the first diagram are shown covered in the second

diagram.

Peterson et al. [77] developed a numerical scheme for flow involving mov-

ing boundaries. It involves a finite element grid with the movement of grid

points permitted at the boundary but not in the interior. The scheme is finite

difference in time. It was tested against two moving boundary analytical so-

lutions by Thacker [102] for motion in a parabolic canal, one with a surface

that remains plane and one with a surface that stays parabolic. Comparison
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of the modelled water surfaces with the analytical water surfaces at various

times showed virtually perfect agreement.

Zelt [114] derived a set of long wave equations in Lagrangian form. A

finite element model was used to model the runup of solitary waves on a

coastline with variable bottom topography and a curved shoreline.

Falconer and Owens [22] used two different approaches to simulate flood-

ing and drying of tidal reaches in the Humber Estuary, England. The advec-

tive terms were expressed at the intermediate time step to ensure stability.

If any of the four cross-sections for a wet grid cell were less than some pre-

determined critical total depth the cell was removed from the computational

field and the de Chezy coefficient and velocity components around the cell

were set to zero. As a grid cell was allowed to dry, it was assumed that

a layer of still water remained over the cell, the depth of this layer corre-

sponding to the value calculated for the cell immediately before it became

dry. For the flooding procedure, at multiple time steps, a check was made

on the four grid cells surrounding any dry cells to determine which, if any,

of the cells were wet. If any of the surrounding cells were found to be wet,

the corresponding water elevations were averaged and if the average were

found to be larger than the elevation retained on the dry cell when it first

became dry, the cell was allowed to flood again. When the flooding and dry-

ing technique was applied to the Humber estuary no stable solutions were

obtained for any of the parameter variations. The numerical solution was

continuously swamped by spurious waves generated at the moving bound-

aries. The scheme was improved by reducing the discontinuity in the depth

mean velocity when a grid cell was removed. Falconer and Owens first tested

their original scheme and the modified scheme on an idealised basin with a

uniformly sloping bed. At the open boundary a sinusoidal water variation

was assumed. While it was found that the first scheme developed substantial
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spurious waves, in the second scheme the spurious waves were substantially

reduced. The modified scheme was then applied to flow in the Humber Estu-

ary. The open sea boundary comprised two adjacent perpendicular straight

line segments. On one segment the velocity was assumed to be parallel to

the segment which was treated as a free slip wall. On the other segment an

elevation was imposed based on tidal data from a nearby point in the estu-

ary. At the landward boundary experimental water elevations and velocities

were used. The new technique gave much more realistic predictions for the

water elevations and velocity fields than the original technique. Using the

new scheme velocity vector diagrams were drawn at low tide and high tide,

with the former showing regions of no flow, i.e. dry regions.

Akanbi and Katopedes [2] simulated flood waves propagating on an ini-

tially dry bed. They used a finite element scheme that they say is accurate

and suppresses the spurious oscillations that are generated in the solution as

a result of nonlinear instabilities. Akanbi and Katopedes reformulated the

governing equations in a moving coordinate system (ξ, η, t) with respect to

the original frame of reference (x, y, t). Then, using the moving coordinate

system, they set up finite element equations. Their choice of the weighting

function differed from the Galerkin method, where the weighting function

is identical to the shape function. A second order difference scheme is em-

ployed for the integration in time. The resulting implicit nonlinear equations

are solved by the Newton-Raphson method. At the beginning of each time

step the boundary node locations are evaluated using the values of nodal

velocities from the previous time step. The model was tested against exper-

imental results. The experiments involved a steep increase in discharge in

an initially dry permeable rectangular channel. The finite element grid was

a rectangular domain with three elements in the y-direction and 10 in the

x-direction. Flow was in the x-direction. A plot of the x-coordinate of the
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front against time showed close agreement between modelled and measured

data. The model was also applied to a hypothetical problem involving a

flood wave spreading radially on an impervious bed. The flow domain was

discretised into quadrilateral finite elements.

Siden and Lynch [95] used the deforming finite element system of Lynch

and Gray [70] to solve moving boundary problems involving estuarine length

scales. All interior elements deformed. To overcome advective instabilities

the advective momentum terms were made explicit. The model was tested

against two analytical solutions by Carrier and Greenspan [11], one of which

had been expressed in a similar form by Johns [40]. They obtained good

agreement between the numerical and analytical solutions.

Gopalakrishnan [28] developed a numerical model for computing two

dimensional circulation in regions using the Galerkin finite element method.

The model can accommodate a changing domain boundary. This is done

by using finite elements that change shape to move with the shoreline. The

model was used to represent tidal motion in Kuwait Bay, which contains

tidal flats, with widths up to five kilometres. Tidal forcing of period about

24 hours is assumed to take place along an open sea boundary. Given that

the position of a node on the shoreline at time t is a certain point, the water

surface at time t + ∆t above that point is projected onto the land to give

the node’s shoreline position at time t + ∆t. At the shoreline boundary

the total depth is taken to be zero and the normal velocity is taken to be

zero. To ensure that no element becomes excessively large due to the moving

boundary, a maximum elongation of about twice the length perpendicular

to the boundary is set as a limit. If further expansion is needed the original

discretisation is modified. To ensure that the trajectories of boundary nodes

do not cross and hence lead to overlapping elements the lines of movement

were predetermined as radially outward normals. At the end of each time step
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the coefficient matrices of the elements is updated. The mesh of triangular

elements was generated using an automatic mesh generation scheme. The

generated mesh was was for the water body up to the lower water mark.

The time step of 100 seconds was obtained using the Courant condition.

Diagrams were shown of velocity vectors in Kuwait Bay. Computations were

begun from the low-water mark and continued for 24.75 hours, one cycle of

the tide. The model was run for three different values of Manning’s constant,

n, with a value of 0.05 giving the closest values for amplitude and phase of

water level fluctuations to the measured ones at Doha. A comparison of

modelled and measured velocity at a station in the middle of the bay showed

good agreement.

Roig [86] used a finite element scheme to model flow in tidal flats and

tidal marshes adjacent to large estuaries. The scheme used a stationary grid

with the fixed boundaries of the fully flooded domain. Roig’s scheme allows

partially dry elements to remain in the computational grid. The equations

describing flow on these elements incorporated a domain coefficient, which

was used to ensure that the simulated fluid volume, which is distributed

over the whole element, is approximately equal to the actual fluid volume

on the partially wet element. Dry elements wetted as soon as at least one

node rose above a minimum value. All nodes belonging to an element had

to be dry before the element was removed. Roig’s scheme, called the marsh

element method, was compared against two deforming boundary methods

to model flow in a straight river with a shallow sloping rise along one side.

A flow of 500 cfs was set at the upstream boundary while a constant water

elevation of 2.5 feet was set at the downstream boundary. Although the

marsh method with a coarse grid did not track the shoreline as closely as

the deforming grid it conserved mass better. Next, the marsh method and

a deforming grid method were used to model flow in the Batiquitos Lagoon
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in southern California. Field data were not available for calibration of either

method; therefore only a quantitative comparison was possible. The lagoon

has a seaward boundary and a landward boundary, the mouth of a stream,

which contributes a discharge of about 500 cfs at the lagoon’s entrance.

The lagoon consists of broad shallow tidal flats with a central channel. In

the model a fluctuating surface elevation of period 12 hours was fixed at

the seaward boundary and at the landward boundary a 500 cfs inflow was

imposed. Diagrams of volume flow over time across four reference cross-

sections indicate that both methods gave similar results.

Leclerc et al. [58] developed an algorithm that takes into account the

moving boundary process in free surface flows. The model, which is finite

element, has a fixed spatial mesh, with elements becoming dry or wet in a

continuous manner. There are three types of elements: dry, partly dry and

wet. The algorithm was used to model two different flow situations. They

used six node triangular elements with quadratic velocity and linear elevation

approximations. If the total water depth at a node is less than some small

fixed amount the node is assumed to be dry and the velocity set to zero. On

partly wet elements the Reynolds stresses were set to one order of magnitude

less than those used on the global flow domain. This range of values is used

to ensure is used to ensure a stable behaviour of the model as well as a proper

smoothing of the flow field in the vicinity of the moving boundary. Flow in a

rectangular basin with a variable slope and with sinusoidal variation of water

height over time at one end was modelled. Over time part of the basin was

uncovered and later flooded. As well, tidal flow in the Manicougan River

estuary, Canada was simulated. At the open sea boundary tidal height as a

function of time was imposed. At the upstream boundary an input discharge

was imposed. The tide was semi-diurnal. About two thirds of the region

undergoes wetting and drying during a tidal cycle. Measured tidal heights
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and velocities at a number of locations were obtained; the modelled values

compared favourably. Diagrams of velocity fields were shown at six different

stages of the tidal cycle. For the first three cases there is ebb tide, with

gradual uncovering of the tidal flats. In the fourth case the water is almost

slack and the tidal flat zones are at their maximum. In the fifth case there

is a flood tide and intertidal flats are being recovered. In the sixth case, at

lower high tide, flow is slack.

Mader [71] used the SWAN code, which is finite difference, to model two

different theoretical tsunamis using the nonlinear shallow water equations.

He also used the ZUNI code, which solves the incompressible Navier-Stokes

equations, to model one of the tsunamis. The SWAN code was used to model

a tsunami wave with 900 second period and a 3 metre half-height travelling

3 kilometres in 12 metres deep water before it interacted with a frictionless

one per cent slope. The wave was found to run up the shore over time. Then

the periods, slopes and amount of friction were varied. Also studied was

a one metre high tsunami, propagating in 4.55 km. deep water. Both the

SWAN and ZUNI codes were used. The study showed that the shallow water

tsunamis shoal higher, steeper and faster than the Navier-Stokes waves.

Bills [7] modelled the tides in Spencer Gulf, South Australia, using two

models. The first model had a fixed shoreline while the second (also re-

ported in Bills and Noye [8]) included the wetting and drying of sandbars

and coastal flats. Both models were accurate when compared with experi-

mental data. From now on only the second model is discussed. In the second

study tidal flats are defined as regions exposed between ISLW (Indian Spring

Low Water) and ISHW (Indian Spring High Water). The wetting and drying

scheme is based on that of Flather and Heaps [24]. The tide was modelled

as consisting of M2, S2, K1 and O1 components. In calculating quadratic

friction, H, the total depth in the quadratic friction term, is replaced by
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another term, Hf . If H is less than some minimum value, Hmin (e.g. 1.0

m.), Hf equals Hmin; otherwise Hf equals H. Advection and viscosity terms

which used values of U and V at the high tide coastal boundary or the open

boundary were omitted as their inclusion was found to give unrealistic re-

sults for the velocity vector. The ISLW and MSL (mean sea level) values of

elements in the flats region were estimated, being a combination of plausi-

ble estimates and numerical experiment because no datum level was given

on the charts for a lot of the tidal flats. Plots of the predicted elevation

signals against time for eight tidal flat elements were shown. Clipping (i.e.

horizontal portions of plotted curves) corresponding to drying occurs in all

the signals. This occurs when the total depth is zero. There are wiggles in

the plots immediately following the wetting. Bills suggested that the wiggles

were due to grid-scale oscillations superimposed on the solution because the

coastal boundary is caused to move in discrete steps of element size by the

wetting/drying scheme. Bills used a grid-scale filter with the advective terms

to help suppress these waves. The simulation was run for 32 days. Results

for the first three days were discarded because of transients present. A com-

parison of the predicted and observed tidal constituents at the six available

stations showed good agreement except for the O1 phases, which were about

50 percent above observed values. Comparison of predicted and observed

velocity ellipse characteristics at one station showed good agreement.

Mason et al. [72] modelled the bathymetry in the intertidal region of the

Wash, England using the waterline method. This method combines a satellite

image, which gives the instantaneous location of the shoreline, with numeri-

cally modelled sea elevations along the shoreline. The numerical model was

a finite difference moving boundary model. A set of the coastlines with their

modelled heights was used to produce the bathymetry. Model heights were

corrected using local tide gauge information.
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The ADCIRC model [16, 63, 64] solves the shallow water wave equations

in the form of the GWCE (Generalised Wave Continuity Equation) plus the

momentum equations. The GWCE is a second order differential equation

obtained from the continuity and momentum equations. The GWCE, intro-

duced by Kinnmark [49], is a modification of the WCE (Wave Continuity

equation), introduced by Lynch and Gray [69]. GWCE largely eliminates

the large 2δx modes that often occur when the primitive equations are used.

ADCIRC is finite element in space and finite difference in time. ADCIRC can

be run using either a Cartesian or a spherical coordinate system. In its origi-

nal form ADCIRC did not have provision for wetting and drying [63]. In its

later versions e.g. Dietrich, Kolar and Luettich [16] and Luettich, Westerink

and Scheffner [64], wetting and drying was allowed for. ADCIRC assumes

that wetting and drying can be represented by turning areas of the grid on

and off element by element. An element is wet if all the nodes are wet and dry

if at least one node is dry. The algorithm is located in the middle of the loop,

after the solution of the continuity equation, but before the solution of the

momentum equation. First, the total water depth at every node is checked

against a minimum wetness height, H0 (e.g. 0.01 m). If the total water depth

is larger than or equal to this minimum value, then the node remains active

(wet) and is included in the rest of the calculations. However, if the total

water depth is below this minimum value then the node is deemed inactive

(dry) and removed from the calculations and the velocity set to zero. If the

depth falls below H0/10 the depth is reset to H0/10. Secondly, each element

that contains only one dry node is tested to determine whether conditions are

favourable for wetting that node. The steady state velocity, VS , that would

result from a momentum balance between the water level gradient and the

bottom friction between a wet and dry node is checked against a minimum
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wetting velocity, Vmin (e.g. 0.05 ms−1). The balance is given by

VS =
g(ζi−1 − ζi)

τiδsi

, (2.23)

where g is the acceleration due to gravity, ζi−1 is the larger water elevation

of the two wet nodes in the element, ζi is the water elevation of the previ-

ously dry node, τi is the bottom friction coefficient at the node and δsi is the

distance between the nodes. The node is wetted if VS is greater than Vmin.

Dietrich, Kolar and Luettich [16] commented that in this case the Vmin cri-

terion almost becomes a height restriction, where a node wets if the adjacent

node’s free surface elevation is sufficiently larger than its own. A landlocked

wet node is assumed to be dry. Luettich, Westerink and Scheffner [63] said

that the wetting and drying introduce small oscillations into the solution

that cause nodes to repeatedly wet and dry in a non-physical manner. To

minimise this effect a node must remain wet for a minimum number of time

steps before it can dry (e.g. 300/δt). A similar constraint is applied for the

wetting of dry nodes. It is not stated in the relevant papers [16, 64] what

values of U , V and ζ are given to the newly wetted node. Dietrich, Kolar

and Luettich tested their numerical scheme against an analytical solution by

Johns [40] (which is a modification of a result by Carrier and Greenspan

[11] for frictionless moving boundary flow with periodic forcing over a linear

slope). Because the ADCIRC model is unstable without friction the model

was run with a small amount of friction. The motion was begun with a cold

start. The transients due to the cold start had died out after half a period.

After that the numerical results were in good agreement with the analytical

results.

Zelt and Raichlen [115] studied inundation by solitary waves over a hor-

izontal bed both experimentally and numerically. They used a Lagrangian

finite element model. A variable sized grid was used to increase the resolu-

tion of the numerical model near the shoreline to resolve adequately the wave
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shoaling and inundation flow. Flow both over an initially dry bed and an

initially wet bed was examined. For the dry bed the position of the shoreline

as a function of time was found to be very similar for both the numerical and

experimental results. For the wet bed the numerical solution was unstable.

Westerink et al. [110] used the ADCIRC model [63] to study flow due

to tides and hurricane storm surges on the coast between Mississippi Sound

and Florida. The open sea boundaries for the tides were forced with K1,

O1, P1, M2 and S2 components. The Manning coefficient was taken to be

0.030. A minimum bathymetry of 3 m was specified. The grid was generated

with the program GREDIT. Initially a fine grid was used. When the standard

conservative form of the convective terms in the GWCE was used, convective

instabilities occurred in some regions. To ensure stability the GWCE had

to be formulated in nonconservative form. Coarser grids did not exhibit

any convective instabilities regardless of the way that the convective terms

were treated in the GWCE. The simulation was run for 96 days of which

the first 6 were discarded. A time step of 90 seconds was used. A time

step of 180 seconds led to long-term instabilities. There was good agreement

between simulated and field data considering that no tuning was done in the

simulation. Simulations with early coarse grids indicate that there needed to

be at least about 30 elements per M2 wavelength. The storm surge due to

Hurricane Kate in 1985 was modelled. The shoreline was taken to be a fixed

boundary. Tides were forced at the open sea boundary. The wind forcing

was computed using a standard hurricane model plus forcing for Hurricane

Kate. Predicted and measured water elevations at two stations were in good

agreement.

Aramaki et al. [4] modelled tidal flow of period 12 hours in the Ariake

Sea, Japan, using the Selective Lumped Mass scheme of Kawahara, Hirano

and Tsubota [46], which uses the selective lumping parameter, a weighting
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parameter. It was found at a given node that, for a given time interval,

the lower the selective lumping parameter the lower the tide amplitude. At a

given time interval the tide amplitude reaches a certain maximum at a certain

selective lumping parameter. If the selective lumping parameter is any higher

divergence occurs. It was also found that the smaller the time interval the

larger the selective lumping parameter at which divergence occurs. When the

modelled tide height as a function of time was plotted against the observed

tidal height at a station good agreement was obtained.

Cheng, Casulli and Gartner [13] used a semi-implicit finite difference

method to model tides in San Francisco Bay, California. The model involves

flooding and drying of computational cells. The model was calibrated and

tested against field data from San Francisco Bay, California. The bay includes

intertidal flats; the depth data for such areas was sparse and inadequate. If

the total depth of a point is computed as negative, it is reset to zero and the

velocity to zero. The simulation was begun with a cold start. The open sea

boundary conditions for tides were specified using seven tidal constituents,

with the values based on data from a nearby shore station. The Manning

coefficient was varied, increasing with decreasing depth. Comparison of mod-

elled tides with measured tides at a number of stations showed fairly close

agreement. Comparison of speed and direction of tidal current at one station

showed moderate agreement. Comparison of speed of tidal current at seven

stations showed good agreement.

Kowalik and Murty [52] used a one dimensional moving boundary finite

difference scheme to model long wave runup and compared their results with

an analytical solution by Carrier and Greenspan [11]. They used an algo-

rithm by Flather and Heaps [24] to identify wet and dry points. Then they

used Sielecki and Wurtele’s [96] extrapolation of the sea level to the first

dry point at the water-land boundary. Spurious short period oscillations in
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the water level occurred near the boundary. These were removed by a filter.

There was good agreement between the numerical and analytical solutions.

Ninomiya and Onishi [73] used the SLM scheme of Kawahara, Hirano

and Tsubota [46] to model tidal flow. They wrote a program in BASIC to

implement the scheme. First they modelled flow in a rectangular channel of

constant depth open to the sea at one end and closed at the other. The water

elevation of an incident sine wave function of time of amplitude 0.5 m and

period 1 hour was imposed at the open boundary. A plot was shown of the

calculated elevation over time at two points. Next the tide in Ariake Bay,

Japan, was modelled with an incident wave of amplitude 1.3 m and period 12

hours prescribed along the mouth. The time increment was set to 8 seconds

using the stability criterion of Kawahara et al. Manning’s coefficient was set

to 0.025. With the cold start a periodic tidal current was obtained after 3

periods of the incident wave. Velocity vectors and water level vectors were

plotted every 3 hours. The calculated water elevations over time at five

locations were shown.

Easton, Singh and Goraya [20] modelled the tidal flow in Lake Welling-

ton, Victoria, Australia, using the SLM method of Kawahara, Hirano and

Tsubota [46]. Tides flow into the lake through a narrow entrance at the

eastern end. Lake Wellington was discretised into a mesh of nodes and tri-

angles. The positions of the nodes were selected by following the external

boundary and internal depth contours on the chart to obtain an appropriate

description of the topography of the lake. Once the triangles were drawn

depth contours were drawn based on the triangulation. After these depth

contours were compared with the depth contours of the nautical chart the

positions of the nodes were modified and hence also the triangle boundaries.

The final triangulation had 115 nodes and 174 elements. A sinusoidal water

level was prescribed at the entrance nodes, with an amplitude of 0.1 m and
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a period of 12.42 hours. The motion began with a cold start. At the time of

maximum velocity at the entrance, the water velocity was found to be signif-

icant only close to the entrance. At a node at the western end the amplitude

of the water level was found to be 0.07 m and the velocity to be zero.

Titov and Synolakis [103] developed a finite difference model to represent

the propagation and runup of one dimensional long waves. The grid spacing

changes over time so that the number of gridpoints per wavelength remains

constant. The model’s results were compared with an analytical solution

by Tadepalli and Synolakis [101], other numerical computations and with

laboratory data for breaking and nonbreaking solitary waves. The model

described the evolution and runup of nonbreaking waves well, but was not

so accurate with breaking waves. Titov and Synolakis [104] developed a

numerical scheme involving the method of characteristics. The scheme did

not involve bottom friction. The model was validated using experimental

data for a solitary wave running up a conical island. The scheme was also

used to model actual tsunamis in Japan, Russia and Peru. The model was

found to reproduce accurately overland flow.

Zhang [116] developed a new finite difference numerical model for com-

puting wave run-up on beaches. The model is based on local Lagrangian

coordinates. A transformation is used to transform the computational do-

main from a moving boundary domain to a fixed boundary domain. The

model was tested against the analytical solutions of Carrier and Greenspan

[11] for run-up of periodic waves on a beach of constant slope. The numerical

solutions were close to the analytical solutions. The model was also tested

against an analytical solution by Spielvogel [97] for releasing an initial ex-

cess mass of water supported underneath by a sloping sea bed. The time for

the waterline to move from its initial position to the origin was 3.94 seconds

versus Spielvogel’s 4 seconds.
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Henry et al. [32] numerically modelled tides and storm surges in eastern

Bangladesh waters, with a wave equation replacing the continuity equation

[69]. The tidal elevations modelled were close to measured elevations at three

coastal sites. However, the model substantially underestimated water level

and current speed at an offshore site, south of Sandwip Island, which is close

to the coast. It was presumed that the reason that the current was under-

estimated was due to not including discharge from the Sandwip channel in

the model. A storm surge was modelled with the atmospheric pressure being

calculated using a model in which the pressure is a function of radial distance

from the cyclone centre. The surface wind field was calculated from the pres-

sure distribution using the gradient wind equation. The open sea boundary

tidal water levels were estimated from satellite observations. At one location

the model overestimated maximum water level substantially. The authors

assumed that this was because inundation was not included, although the

model can simulate it. At another site the modelled and observed elevations

during the surge were quite close.

Balzano [6] reviewed and evaluated seven implicit finite difference shemes

for two dimensional flow including wetting and drying. The models were

compared for three one dimensional test cases and one two dimensional test

case. The first one dimensional case was for a basin 13800 m long and with

a uniformly sloping bed. Its depth was 5 m at the open boundary, where

a sinusoidal water level variation was imposed, and zero at the other end,

where it was closed. Some methods showed smooth water surfaces at various

stages while some methods showed wiggles in the free surface profiles at

various times. For the next two one dimensional cases some of the methods

showed shortcomings. Balzano proposed three new methods to overcome the

shortcomings in the three one dimensional test cases. These did not show

the unrealistic results of some of the other methods. Balzano then tested
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the three new methods plus five of the other methods for two dimensional

motion with a paraboloidal water surface and a paraboloidal bottom. The

results were compared with analytical solutions by Thacker [102]. Balzano’s

methods gave the best results. One of the methods did not converge. The

remaining methods gave moderately accurate results.

Ip, Lynch and Friedrichs [38] developed a finite element model to simulate

tidal flooding and dewatering of shallow estuaries. The model involved two

dimensional shallow water wave physics, with a porous medium below the

open channel to incorporate the realistic drainage of dry elements on a fixed

high resolution mesh. Dry areas continued to participate hydraulically in

the overall system and the free surface was allowed to fall below the usual

bathymetric depth. The Galerkin method was used on linear triangular finite

elements and solved implicitly in time. Ip, Lynch and Friedrichs stated that

scale analysis and numerical simulation as well as field observation indicate

that the primary force balance is between friction and the pressure gradient in

shallow tidal embayments; because of this they left out the acceleration terms

in the momentum equations. First the model was tested in three hypothetical

embayments, each 3 km by 3 km. The first embayment had a uniformly

sloping bathymetry, the second a sloping V-shaped bathymetry and the last

a sloping W-shaped bathymetry. Each embayment was forced with an M2

tide at the seaward boundary. For the first embayment the solutions were

smooth at all times, with no oscillations. The wet/dry interface migrated

over a distance of 1 km during one period. The solutions for the V-shaped

embayment also were smooth. The results for the W-shaped embayment were

smooth except over a small region, which was said to be due to a resolution

issue. Also, the finite element model was applied to model M2 tides in the

Great Bay Estuary system, New Hampshire. The system has tidal flats

in the south. The computational grid consisted of 2861 nodes and 5185
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elements, with an average resolution of 50 m and a minimum grid spacing of

25 m. Tidal forcing was an 0.9 m amplitude water elevation on the northern

inlet boundary. Dynamic equilibrium was established rapidly. While the

results seemed realistic no comparison was made between computed and

experimental elevations and velocities. This was done in a later study by

Erturk [21].

Kashiyama et al. [45] developed an implicit finite element model to sim-

ulate frictional flows involving moving boundaries. They used a deforming

flood domain. They modelled flow of water in a water tank, the flow being

subject to an incident sinusoidal wave. Comparison of measured and mod-

elled runup height at different times showed similar results. There was also

good agreement for measured and modelled water elevations.

Vemulakonda et al. [106] used the ADCIRC model [64] to model flood-

ing due to Hurricanes Betsy (1965) and Andrew (1992) in Louisiana. A fixed

grid was used with provision for wetting and drying of elements. The grid

contained 25,732 nodes and 50,215 elements. There was tidal forcing at the

open boundaries, using 5 constituents (M2, S2, K1, O1 and P1). Data for the

wind forcing was obtained from the National Hurricane Center’s hurricane

database. Comparison of the observed maximum surges with the modelled

maximum surges at selected stations showed good agreement both for Hur-

ricane Betsy and Hurricane Andrew.

Erturk [21] modelled tidal flow in Great Bay, New Hampshire, with in-

clusion of the effect of the frictional effects of eelgrass on the flow. A finite

element model, ADAM, was used. The ADAM model is two dimensional,

with a porous medium below the sediment surface to simulate the wetting

and drying process in the tidal flats. The ADAM model was developed by Ip,

Lynch and Friedrichs [38]. The acceleration terms in the momentum equa-

tions were neglected. Tidal flow for the M2, S2, and N2 constituents was
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modelled. The mesh, which was generated using the TRIANGLE mesh gen-

erator, contained 26,455 nodes and 46,740 elements. Generally, the modelled

and measured tidal elevations and velocities were found to be close.

Goraya [29] developed a new criterion for the SLM finite element method

of Kawahara, Hirano and Tsubota [46], stating that the original citerion,

as worked out by Kawahara, Hirano and Tsubota gave stability for a range

of values of sr, the selective lumping parameter, a weighting function, in

which the SLM scheme is unstable. Goraya showed that the scheme is stable

provided that the time step δt satisfies

δt ≤ dmδx√
gh

, (2.24)

where δx is the smallest space step, and dm, which depends on sr, is obtained

from a table by Goraya. The stability condition has been established only for

the one dimensional shallow water equations for a constant depth h. Goraya

showed, by analysing its complex propagation factor, that the SLM method

converges to the correct analytical solution as the number of wavelengths be-

come large and that any 2δx waves introduced into the solution decrease with

decreasing space interval. The complex propagation factor was introduced

by Leendertse [59]. Goraya compared analytical solutions for linear flow in

a rectangular harbour and a quarter annular harbour [67] with numerical

solutions using three finite element models: the SLM model, an harmonic

model and the ADCIRC model [63]. There was reasonable agreement of

results. Node-to-node oscillations were observed in all models, with the SLM

method giving the worst results. Goraya did a convergence study of the SLM

method. Linear flow in a rectangular basin of constant depth with forcing

at one end and a closed wall at the other end was modelled. Three different

meshes were used in the study. The numerical solutions were compared with

analytical solutions by Lynch and Gray [67]. It was found that the finer

the mesh the closer the results were to analytical solutions. The tides in
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Jervis Bay, Australia, were modellled using both the SLM and the ADCIRC

models using both a coarse and fine mesh. The ADCIRC model was stable

only for the coarse mesh whereas the SLM model was stable for both meshes.

Reasonable agreement was obtained with experimental data.

Kowalik et al. [53] developed a new model of global tsunamis. It is finite

difference using spherical coordinates. The poles were excluded from the

computational domain. A decision is made at each time step whether a wet

point will dry and whether a dry point will wet, the latter occurring if the

water level at a neighbouring wet point is higher than the land level at the

dry point. If the node wets the velocity from the wet point is extrapolated

to the previously dry point, while the water level is calculated with the

continuity equation. The computational domain involved close to 200 million

grid points. The model was applied to the Indian Ocean tsunami in 2004.

The tsunami was taken to be generated by an abrupt slip at the India/Burma

plate. Computations were made for 50 hours so that the tsunami signal could

travel the entire world ocean. Comparison of the observed and modelled

travel times of the tsunami showed good agreement at a large proportion of

stations.

Luettich [65] used the ADCIRC numerical model [64] to simulate the

storm surge due to hurricane Katrina in the USA in 2005. Luettich said

that the ADCIRC model has been run for many historical hurricanes and

computed surges have compared favorably with measured water levels but

that no systematic attempt has been made to verify the surges computed for

Hurricane Katrina. Luettich said that in these runs, one of the largest areas

of uncertainty in the surge computations is the hurricane wind field.
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Chapter 3

Moving boundary analytical

solutions of the nonlinear

shallow water wave equations

3.1 Introduction

Exact solutions of the nonlinear shallow water wave equations were found

by Thacker [102] for frictionless flow involving the Coriolis force in parabolic

canals and circular paraboloids and without the Coriolis force for elliptical

paraboloids. Thacker’s approach was to make assumptions about the nature

of the motion and then to solve for the basin in which that motion should

be possible. Thacker assumed that the velocity was a function of time only.

This implied that the water surface was a plane for all time and that such

flow could take place in a circular paraboloid, parabolic canal or elliptical

paraboloid. The solutions involve moving shorelines. The motion is oscil-

latory and continues indefinitely over time. For the circular paraboloid the

moving shoreline is a circle in the xy plane, with the centre of the circle

orbiting the centre of the basin.
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Sachdev, Paliannapan and Sarathy [88] built on Thacker’s work, pro-

ducing periodic solutions for frictionless flow involving the Coriolis force in

parabolic canals, circular paraboloids and elliptical paraboloids. Balzano

[6], Holdahl, Holden and Lie [35], Lewis and Adams [61], Peterson, Hauser,

Thacker and Eppel [77] and Yoon and Cho [112] have compared numerical

solutions of the nonlinear shallow water wave equations with some of the

analytical solutions in Thacker [102].

The work in this chapter of the thesis builds on the work of Thacker [102].

New exact solutions of the two dimensional nonlinear shallow water wave

equations have been found for unforced flow involving linear bottom friction

and without the Coriolis force in parabolic canals, circular paraboloids and

elliptical paraboloids. The motion decays over time. These solutions involve

moving shorelines.

Also exact solutions of the two dimensional nonlinear shallow water wave

equations for forced flow and without the Coriolis force in beds with quadrat-

ically varying depths have been found for two different types of forcing. For

one type of forcing the flow is frictionless while for the other type of forcing

the flow is linear frictional. The solutions involve moving shorelines for both

types of forcing. For the frictionless flow the motion is oscillatory while for

the frictional flow the motion decays over time.

3.2 Thacker’s solutions

Thacker [102] considered the case where the motion of water in a basin is

governed by two dimensional shallow water equations. The equations that

he used are based on equations (2.1), (2.2) and (2.3), with the assumption

that wind, bottom friction and horizontal eddy viscosity are negligible. The

resulting equations are
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∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
− fV + g

∂ζ

∂x
= 0, (3.1)

∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
+ fU + g

∂ζ

∂y
= 0, (3.2)

∂ζ

∂t
+

∂(h + ζ)U

∂x
+

∂(h + ζ)V

∂y
= 0. (3.3)

Thacker assumed that

U = u0(t), (3.4)

V = v0(t). (3.5)

It can be shown that equations (3.1) and (3.2) together with equations (3.4)

and (3.5) imply that

ζ(x, y, t) = ζ0(t) + xζ1(t) + yζ2(t), (3.6)

where

ζ1(t) = −1

g

(
du0(t)

dt
− fv0(t)

)
, (3.7)

ζ2(t) = −1

g

(
dv0(t)

dt
+ fu0(t)

)
. (3.8)

Thacker assumed that flow takes place in what he termed a parabolic

canal, defined by

h = h0

(
1 − x2

a2

)
, (3.9)

with h0 and a constant. Substituting (3.4) (3.5) and (3.9) in (3.3) gives

dζ0 (t)

dt
+x

dζ1 (t)

dt
+y

dζ2 (t)

dt
− 2u0(t)h0x

a2
+u0(t)ζ1 (t)+v0(t)ζ2 (t) = 0. (3.10)
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Equating the time-varying coefficients of the linearly independent terms 1, x

and y

dζ0 (t)

dt
+ u0(t)ζ1 (t) + v0(t)ζ2 (t) = 0, (3.11)

dζ1 (t)

dt
− 2u0(t)h0

a2
= 0, (3.12)

dζ2 (t)

dt
= 0. (3.13)

Substituting (3.7) in (3.12)

d2u0 (t)

dt2
− f

dv0

dt
+

2gh0u0 (t)

a2
= 0. (3.14)

Substituting (3.8) in (3.13)

d2v0 (t)

dt2
+ f

du0

dt
= 0. (3.15)

Substituting (3.7) and (3.8) in (3.11)

dζ0 (t)

dt
− 1

g
u0(t)

du0

dt
− 1

g
v0(t)

dv0

dt
= 0. (3.16)

Thacker gave solutions to equations (3.14), (3.15) and (3.16) without

explaining how he obtained his solutions. In the discussion below it is shown

how one could obtain Thacker’s solutions. If one differentiates (3.14) with

respect to t and makes use of (3.15) one obtains a third order differential

equation for u0(t)

d3u0(t)

dt3
+ (f 2 +

2gh0

a2
)
du0(t)

dt
= 0. (3.17)

It can be shown that a solution is

u0(t) = −GΩ sin(Ωt), (3.18)

55



where G is a constant and

Ω =

(
f 2 +

2gh0

a2

) 1
2

. (3.19)

Substitution of (3.18) in (3.15) gives a solution

v0(t) = −Gf cos(Ωt). (3.20)

Substitution of (3.18) and (3.20) in (3.16) and then integration with respect

to t gives a solution

ζ0(t) = −G2h0

a2
cos2(Ωt). (3.21)

Substitution of (3.18) and (3.20) in (3.7) gives

ζ1(t) =
2Gh0

a2
cos(Ωt). (3.22)

Substitution of (3.18) and (3.20) in (3.7) gives

ζ2 = 0. (3.23)

Substitution of (3.21) and (3.22) and (3.23) in (3.6) gives

ζ(x, y, t) = −G2h0

a2
cos2(Ωt) +

2Gh0

a2
(cos(Ωt))x. (3.24)

At the shoreline the total depth is

h + ζ = 0. (3.25)

Substitution of (3.9) and (3.24) in (3.25) gives the shorelines

x = G cos(Ωt) ± a. (3.26)

Thacker derived similar results for flow in circular paraboloidal basins and

elliptical paraboloidal basins.
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3.3 Model equations

In the following sections of this chapter new analytical moving boundary

solutions of the shallow water equations are derived, being modifications of

Thacker’s solutions. The equations used are based on equations (2.1), (2.2)

and (2.3), with the assumption that wind, Coriolis force and horizontal eddy

viscosity are negligible. The resulting equations are

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
+ τU + g

∂ζ

∂x
= 0, (3.27)

∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
+ τV + g

∂ζ

∂y
= 0, (3.28)

∂ζ

∂t
+

∂(h + ζ)U

∂x
+

∂(h + ζ)V

∂y
= 0. (3.29)

The bottom friction parameter, τ , is considered to be constant.

Equations (3.27), (3.28) and (3.29) differ from Thacker’s in that whereas

Thacker’s equations included Coriolis force terms but did not include friction

terms and horizontal eddy viscosity terms, equations (3.27), (3.28) and (3.29)

do not include Coriolis force terms or horizontal eddy viscosity, but do include

friction terms.

Following Thacker [102] assume solutions for U and V are of the form

U = u0(t), (3.30)

V = v0(t). (3.31)

Substituting (3.30) in (3.27)

du0(t)

dt
+ τu0(t) + g

∂ζ

∂x
= 0, (3.32)

which implies that
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∂ζ

∂x
= ζ1(t), (3.33)

where

ζ1(t) = −1

g

(
du0(t)

dt
+ τu0(t)

)
. (3.34)

Similarly, substituting (3.31) in (3.28)

∂ζ

∂y
= ζ2(t), (3.35)

where

ζ2(t) = −1

g

(
dv0(t)

dt
+ τv0(t)

)
. (3.36)

Integrating (3.33) with respect to x

ζ(x, y, t) = xζ1(t) + g(y, t). (3.37)

Partially differentiating (3.37) with respect to y

∂ζ

∂y
=

∂g(y, t)

∂y
. (3.38)

Hence, using (3.35) and (3.38)

∂g(y, t)

∂y
= ζ2(t). (3.39)

Integrating (3.39) with respect to y

g(y, t) = ζ0(t) + yζ2(t). (3.40)

Substituting (3.40) in (3.37)

ζ(x, y, t) = ζ0(t) + xζ1(t) + yζ2(t). (3.41)

It will be shown later how ζ0(t) is determined. It can be seen from equation

(3.41) that at any time t the water surface is a plane.
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Figure 3.1: Canal of parabolic cross-section

In the discussion that follows flow will be considered in parabolic canals,

circular paraboloids, elliptical paraboloids and beds with quadratically vary-

ing depths. The discussion is similar to that in Thacker [102], but because

the shallow water equations (3.27), (3.28) and (3.29) used in this paper have

a slightly different form to Thacker’s the discussion leads to different conclu-

sions.

3.4 New solutions for unforced frictional flow

in a parabolic canal

3.4.1 Equations

Assume that

h = h0

(
1 − x2

a2

)
, (3.42)

with h0 and a constant, so that flow takes place in a canal of parabolic cross

section. A diagram of the canal is shown in Figure 3.1.

59



Substituting (3.30), (3.31), (3.41) and (3.42) in (3.29) gives

dζ0 (t)

dt
+x

dζ1 (t)

dt
+y

dζ2 (t)

dt
− 2u0(t)h0x

a2
+u0(t)ζ1 (t)+v0(t)ζ2 (t) = 0. (3.43)

Equating the time-varying coefficients of the linearly independent terms 1,

x, and y, respectively

dζ0 (t)

dt
+ u0(t)ζ1 (t) + v0(t)ζ2 (t) = 0, (3.44)

dζ1 (t)

dt
− 2u0(t)h0

a2
= 0, (3.45)

dζ2 (t)

dt
= 0. (3.46)

Substituting (3.34) in (3.45)

d2u0 (t)

dt2
+ τ

du0 (t)

dt
+

2gh0u0 (t)

a2
= 0. (3.47)

Substituting (3.36) in (3.46)

d2v0 (t)

dt2
+ τ

dv0 (t)

dt
= 0. (3.48)

Equations (3.47) and (3.48) have to be solved for u0(t) and v0(t).

As equations (3.47) and (3.48) are both second order differential equa-

tions, each equation requires two boundary conditions. The solution of (3.47)

can be substituted in (3.34) to find ζ1(t) and the solution of (3.48) can be

substituted in (3.36) to find ζ2(t). The solutions of (3.47) and (3.48) plus the

solutions for ζ1(t) and ζ2(t) can be substituted in (3.44), which is first order

and hence needs one boundary condition to be solved uniquely for ζ0(t).

The auxiliary equation for (3.47) is

λ2 + τλ +
2gh0

a2
= 0. (3.49)
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The roots of (3.49) are

λ =
−τ ±

√
τ 2 − p2

2
, (3.50)

where p is defined by

p =

√
8gh0

a2
. (3.51)

Hence, the three possible solutions of (3.49) are for when τ < p, τ > p, and

τ = p. Consideration of some typical values of a, h0 and τ shows that all

the possible solutions are realistic solutions of (3.49). Thus there are three

realistically possible solutions of (3.47).

The solution of (3.48) is

v0(t) = C + De−τt, (3.52)

where C and D are constants. If it is assumed that as t → ∞, v0(t) → 0

then

C = 0. (3.53)

If it is assumed that v0(0) = 0, then

D = 0, (3.54)

and hence

v0(t) = 0. (3.55)

Substituting (3.55) in (3.36),

ζ2(t) = 0. (3.56)

Hence, making use of the three possible solutions of (3.47) plus the results

of (3.55) gives three possible solutions of (3.44). The solutions of (3.41),
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(3.44) and (3.47) for τ < p, τ > p, and τ = p are discussed in the subsections

below.

3.4.2 Parabolic canal: flow for τ < p

If τ < p, then the solution of (3.47) is

u0(t) = e−
τt
2

(
A cos

(√
p2 − τ 2

2
t

)
+ B sin

(√
p2 − τ 2

2
t

))
, (3.57)

where A and B are constants, obtained by using given values for u0(0) and

u′0(0). It can be seen from (3.57) that as t →∞, u0(t) → 0.

If A and B are chosen so that A = 0 and B 6= 0, i.e. u0(0) = 0 and

u′0(0) = Bs, then

u0(t) = Be−(τt)/2 sin st, (3.58)

where

s =

√
p2 − τ 2

2
. (3.59)

Substituting (3.58) in (3.34)

ζ1(t) = −e−(τt)/2

g

(
Bs cos st +

τB

2
sin st

)
. (3.60)

Substituting (3.55), (3.56), (3.58) and (3.60) into (3.44) and integrating with

respect to t gives

ζ0(t) =
a2B2e−τt

8g2h0

(
−sτ sin 2st +

(
τ 2

4
− s2

)
cos 2st

)
− B2e−τt

4g
, (3.61)

with the constant of integration being zero because it is assumed that as

t →∞, ζ0(t) → 0.
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Substituting (3.56), (3.60) and (3.61) into (3.41)

ζ(x, t) =
a2B2e−τt

8g2h0

(
−sτ sin 2st +

(
τ 2

4
− s2

)
cos 2st

)
− B2e−τt

4g

−e−(τt)/2

g

(
Bs cos st +

τB

2
sin st

)
x. (3.62)

It can be seen that as t → ∞, ζ(t) → 0, i.e. the displacement of the fluid

from equilibrium gradually dies out over time, which is the result that one

would expect with a bottom friction force acting on the fluid.

At the shoreline, the total depth

h + ζ = 0. (3.63)

Substituting (3.42) and (3.62) in (3.63) gives

h0(1 − x2

a2
) +

a2B2e−τt

8g2h0

(
−sτ sin 2st +

(
τ 2

4
− s2

)
cos 2st

)
− B2

4g

−e−(τt)/2

g

(
Bs cos st +

τB

2
sin st

)
x = 0. (3.64)

Multiplying equation (3.64) by a2

h0
and rearranging gives

x2 +
a2Be−(τt)/2

gh0

(
s cos st +

τ

2
sin st

)
x = a2 − a4B2e−τtτs

8g2h2
0

sin 2st

+
a4B2τ 2e−τt

32g2h2
0

cos 2st − a4B2s2e−τt

8g2h2
0

cos 2st − a2B2e−τt

4gh0

. (3.65)

Completing the square on the left hand side gives

(
x− a2Be−(τt)/2

2gh0

(
−s cos st − τ

2
sin st

))2

= a2 − a4B2e−τtτs

8g2h2
0

sin 2st

+
a4B2τ 2e−τt

32g2h2
0

cos 2st − a4B2s2e−τt

8g2h2
0

cos 2st − a2B2e−τt

4gh0

+
a4B2e−τts2

4g2h2
0

cos2 st +
a4B2e−τtτ 2

16g2h2
0

sin2 st +
a4B2e−τtτs

4g2h2
0

sin st cos st.(3.66)

Using (3.59) and trigonometric identities equation (3.66) simplifies to
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(
x− a2e−(τt)/2

2gh0

(
−Bs cos st − τB

2
sin st

))2

= a2. (3.67)

Hence, the projection of the moving shorelines on the xy plane is two parallel

straight lines

x =
a2e−(τt)/2

2gh0

(
−Bs cos st− τB

2
sin st

)
± a. (3.68)

The water moves backwards and forwards across the canal with motion

dying out as t →∞. As t →∞ the shorelines approach

x = ±a, (3.69)

the shorelines for an undisturbed surface, and ζ → 0, so that friction will

cause the initial disturbance to eventually die out. The motion is like that

of a damped pendulum.

Consider a parabolic canal for which a = 3 km, h0 = 10 m, and τ = 0.001

s −1, for motion in which B = 5 ms−1. The development of the motion from

t = 0 s to t = 3400 s, in increments of 200 s, is shown in Figure 3.2. The

vertical displacement of the water surface from equilibrium as a function of

time at x = 0 is shown in Figure 3.3. The velocity of the fluid as a function

of time is shown in Figure 3.4. The x-coordinate of the left hand shoreline

as a function of time is shown in Figure 3.5.

3.4.3 Parabolic canal: flow for τ > p

When τ > p, then the solution of (3.47) is

u0(t) = Aeqt + Bert, (3.70)

where A and B are constants, obtained by using given values for u0(0) and

u′0(0), and where q and r are defined by
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Figure 3.2: The development of the motion of fluid in a parabolic canal with

τ < p, a = 3 km, h0 = 10 m, and τ = 0.001s−1, A = 0 and B = 5 ms−1, from

t = 0 s to t = 3400 s, in increments of 200 s. Dimensions are in metres.
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Figure 3.3: The vertical displacement of the water surface from equilibrium

in a parabolic canal with τ < p, a = 3 km, h0 = 10 m, τ = 0.001s−1, A = 0

and B = 5ms−1, at x = 0 km. Dimensions are in metres on the vertical axis

and thousands of seconds on the horizontal axis.
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Figure 3.4: The velocity of the fluid in ms −1 in a parabolic canal with τ < p,

a = 3 km, h0 = 10 m, and τ = 0.001 s−1, A = 0 and B = 5 ms−1. Dimensions

are in metres per second on the vertical axis and thousands of seconds on

the horizontal axis.
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Figure 3.5: The location of the left hand shoreline in a parabolic canal with

τ < p, a = 3 km, h0 = 10 m, and τ = 0.001 s−1 A = 0 and B = 5 ms−1.

Dimensions are in metres per second on the vertical axis and thousands of

seconds on the horizontal axis.

q =
−τ +

√
τ 2 − p2

2
(3.71)

and

r =
−τ −

√
τ 2 − p2

2
. (3.72)

If A is chosen to be zero and hence u0(0) = B, u′0(0) = Br, then

u0(t) = Bert. (3.73)

It can be shown that

ζ(x, t) =
1

g

((
r + τ

2r

) (
B2e2rt

))− 1

g
(r + τ) Bertx. (3.74)

At the shoreline, the total depth

h + ζ = 0. (3.75)

Substituting (3.42) and (3.74) in (3.75)
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(
x +

a2

2gh0

(
B(r + τ)ert

))2

= a2. (3.76)

Hence, the projection of the moving shoreline on the xy plane is two parallel

straight lines

x = − a2

2gh0

(
B(r + τ)ert

) ± a. (3.77)

As t →∞ , the shorelines approach

x = ±a, (3.78)

the shorelines for an undisturbed surface, and ζ → 0 so that friction will

cause the initial disturbance to eventually die out.

Consider a parabolic canal for which a = 30 km, h0 = 10 m, and τ =

0.001s−1, for motion in which B = 0.1 ms−1 and hence u0(0) = 0.1 ms−1

and u′0(0) = -0.000068 ms−2 from t = 0 s to t = 7200 s. Figure 3.6 shows

the horizontal displacement of the right hand shoreline of this canal from its

equilibrium position, while Figure 3.7 shows the vertical displacement of the

canal’s water surface from its equilibrium position at x = 27 km.

3.4.4 Parabolic canal: flow for τ = p

When τ = p, the solution of (3.47) is

u0(t) = e−
τt
2 (A + Bt), (3.79)

where A and B are constants, obtained by using given values for u0(0) and

u′0(0) . It can be seen from equation (3.79) that as t →∞, u0(t) → 0 .

It can be shown that
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Figure 3.6: The horizontal displacement of the right hand shoreline from

equilibrium for a parabolic canal for which a = 30 km, h0 = 10 m, and

τ = 0.001 s−1, for motion in which A = 0, B = 0.1 ms−1 and τ > p.

Dimensions are in metres on the vertical axis and thousands of seconds on

the horizontal axis.
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Figure 3.7: The vertical displacement of the water surface from equilibrium

at x = 27 km for a parabolic canal for which a = 30 km, h0 = 10 m,

and τ = 0.001 s−1, for motion in which A = 0, B = 0.1 ms−1 and τ > p.

Dimensions are in metres on the vertical axis and thousands of seconds on

the horizontal axis.
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ζ(x, t) = −e−τt

τ

(
K + L

(
t +

1

τ

))
− e−τt

τ

(
M

(
t2 +

2t

τ
+

2

τ 2

))

−x

g

(
B +

τ

2
(A + Bt)

)
e−τt/2, (3.80)

where

K =
1

g

(
AB +

τA2

2

)
, (3.81)

L =
1

g

(
B2 + τAB

)
, (3.82)

and

M =
τB2

2g
. (3.83)

It can be seen that as t →∞, ζ → 0. At the shoreline, the total depth

h + ζ = 0. (3.84)

Substituting (3.42) and (3.80) in (3.84)

(
x +

a2

2gh0

e−
τt
2

(
B +

τ

2
(A + Bt)

))2

= a2. (3.85)

Hence the projection of the moving shoreline on the xy plane is two parallel

straight lines

x = − a2

2gh0

e−
τt
2

(
B +

τ

2
(A + Bt)

)
± a. (3.86)

As t →∞ the shorelines approach

x = ±a, (3.87)

the shorelines for an undisturbed surface, and ζ → 0, so that friction will

cause the initial disturbance to eventually die out.
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Figure 3.8: The horizontal displacement of the right hand shoreline from

equilibrium for a parabolic canal for which a = 10 km and h0 = 10m and

τ = 0.00280143 s−1, for motion in which A = 1 and B = −0.001 ms−1

and τ = p. Dimensions are in metres on the vertical axis and thousands of

seconds on the horizontal axis.

Consider a parabolic canal for which a = 10 km and h0 = 10m and

τ = 0.00280143 s−1, for motion in which A = 1ms −1 and B = −0.001 ms −1

and hence u0(0) = 1 ms −1 and u′0(0) = −0.00240071 ms −2. Figure 3.8 shows

the horizontal displacement of the right hand shoreline of this canal from its

equilibrium position from t = 0 s to t = 7200 s, while Figure 3.9 shows

the vertical displacement of the canal’s water surface from its equilibrium

position at x = 9 km from t = 0 s to t = 7200 s.

3.5 New solutions for unforced frictional flow

in a circular paraboloid

3.5.1 Equations

For flow in a circular paraboloid, assume that

h = h0

(
1 − x2

a2
− y2

a2

)
, (3.88)
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Figure 3.9: The vertical displacement of the right hand shoreline from equi-

librium at x = 9 km for a parabolic canal for which a = 10 km and h0 = 10m

and τ = 0.00280143 s−1, for motion in which A = 1 and B = −0.001 ms−1

and τ = p. Dimensions are in kilometres on the vertical axis and thousands

of seconds on the horizontal axis.

with h0 and a constant. The flow represented could be flow in a lake. A

diagram of the basin is shown in Figure 3.10.

Substituting (3.30), (3.31), (3.41), and (3.88) in (3.29) gives

dζ0 (t)

dt
+x

dζ1 (t)

dt
+y

dζ2 (t)

dt
−2u0(t)h0x

a2
+u0(t)ζ1 (t)−2v0(t)h0y

a2
+v0(t)ζ2 (t) = 0.

(3.89)

Equating the time-varying coefficients of the linearly independent terms 1,

x, and y, respectively

dζ0 (t)

dt
+ u0(t)ζ1 (t) + v0(t)ζ2 (t) = 0, (3.90)

dζ1 (t)

dt
− 2u0(t)h0

a2
= 0, (3.91)

dζ2 (t)

dt
− 2v0(t)h0

a2
= 0. (3.92)
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Figure 3.10: Circular paraboloidal basin

Substituting (3.34) in (3.91)

d2u0 (t)

dt2
+ τ

du0 (t)

dt
+

2gh0u0 (t)

a2
= 0. (3.93)

Substituting (3.36) in (3.92)

d2v0 (t)

dt2
+ τ

dv0 (t)

dt
+

2gh0v0 (t)

a2
= 0. (3.94)

Equations (3.93) and (3.94) have to be solved for u0(t) and v0(t).

As equations (3.93) and (3.94) are both second order differential equa-

tions, each equation requires two boundary conditions. The solution of (3.93)

can be substituted in (3.34) to find ζ1(t) and the solution of (3.94) can be

substituted in (3.36) to find ζ2(t). The solutions of (3.93) and (3.94) plus the

solutions for ζ1(t) and ζ2(t) can be substituted in (3.90), which is first order

and hence needs one boundary condition to be solved uniquely for ζ0(t).

The auxiliary equation for (3.93) and (3.94) is
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λ2 + τλ +
2gh0

a2
= 0. (3.95)

The roots of (3.95) are

λ =
−τ ±

√
τ 2 − p2

2
, (3.96)

where p is defined by

p =

√
8gh0

a2
. (3.97)

Hence, the three possible solutions of (3.49) are for when τ < p, τ > p,

and τ = p. The solutions of (3.90), (3.93) and (3.94) for τ < p, τ > p, and

τ = p, are discussed in the subsections below.

3.5.2 Circular paraboloid: flow for τ < p

If τ < p, then the solution of (3.93) is

u0(t) = e−
τt
2

(
A cos

(√
p2 − τ 2

2
t

)
+ B sin

(√
p2 − τ 2

2
t

))
, (3.98)

where A and B are constants, obtained by using given values for u0(0) and

u′0(0). It can be seen from (3.98) that as t →∞, u0(t) → 0.

Similarly, the solution of (3.94) is

v0(t) = e−
τt
2

(
C cos

(√
p2 − τ 2

2
t

)
+ D sin

(√
p2 − τ 2

2
t

))
, (3.99)

where C and D are constants, obtained by using given values v0(0) and v′0(0).

It can be seen from (3.99) that as t →∞, v0(t) → 0.

If A, B, C and D are chosen so that A = D = 0 and B = C 6= 0, i.e.

u0(0) = 0 = v′0(0) and u′0(0) = Bs and v0(0) = B, then
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u0(t) = Be−
τt
2 sin st (3.100)

and

v0(t) = Be−
τt
2 sin st, (3.101)

where

s =

√
p2 − τ 2

2
. (3.102)

Substituting (3.100) in (3.34)

ζ1(t) = −e−
τt
2

g

(
Bs cos st +

τB

2
sin st

)
. (3.103)

Substituting (3.101) in (3.36)

ζ2(t) =
e−

τt
2

g

(
Bs sin st− τB

2
cos st

)
. (3.104)

Substituting (3.100), (3.101), (3.103) and (3.104) into (3.90) and integrating

with respect to t gives

ζ0(t) = −B2e−τt

2g
, (3.105)

with the constant of integration being zero because it is assumed that as

t →∞, ζ0(t) → 0. Substituting (3.103), (3.104) and (3.105) into (3.41) gives

ζ(x, y, t) = −B2e−τt

2g
− e−

τt
2

g

(
Bs cos st +

τB

2
sin st

)
x

+
e−

τt
2

g

(
Bs sin st − τB

2
cos st

)
y. (3.106)

It can be seen that as t → ∞, ζ(t) → 0, i.e. the displacement of the fluid

from equilibrium gradually dies out over time, which is the result that one

would expect with a bottom friction force acting on the fluid.
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At the shoreline, the total depth

h + ζ = 0. (3.107)

Substituting (3.88) and (3.106) in (3.107) gives

h0

(
1 − x2

a2
− y2

a2

)
− B2e−τt

2g
− e−

τt
2

g

(
Bs cos st +

τB

2
sin st

)
x

+
e−

τt
2

g

(
Bs sin st− τB

2
cos st

)
y = 0. (3.108)

Equation (3.108) can be shown to simplify to

(
x− a2e−

τt
2

2h0g

(
−Bs cos st − τB

2
sin st

))2

+

(
y − a2e−

τt
2

2h0g

(
Bs sin st− τB

2
cos st

))2

= a2. (3.109)

Hence, the projection of the moving shoreline on the xy plane is a circle,

which has a moving centre, with its x-coordinate equal to

a2e−
τt
2

2h0g

(
−Bs cos st− τB

2
sin st

)

and with its y-coordinate equal to

a2e−
τt
2

2h0g

(
Bs sin st− τB

2
cos st

)
,

and with constant radius a . A plan view of the moving shoreline at time t is

shown in Figure 3.11. As t → ∞ the centre of the circle spirals in towards

the origin and the shoreline approaches

x2 + y2 = a2, (3.110)

the shoreline for an undisturbed surface, and ζ → 0, so that friction will

cause the initial disturbance to eventually die out.

The diagram in Figure 3.12 shows the path of the centre of the projection

on the plane of the moving shoreline from t = 0 seconds to t = 7200 s for
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x

y

a

Figure 3.11: A plan view of the moving shoreline at time t for flow in a

circular paraboloid. The shoreline is a circle with a moving centre.

motion for which a = 5 km, h0 = 50 m, τ = 0.001 s−1 , u0(0) = 0 m s−1,

u′0 = 0.0062 m s−2 , v0(0) = 0 m s−1, and v′0(0) = 4 m s−1 . The centre

gradually spirals clockwise into the origin. The coordinates of the circle’s

centre in metres are (-159.13,-12.74) at t = 0 s, (-10.85,140.32) at t = 252 s

and (-21.27,-1.70) at t = 4025 s.

For the motion in the basin described in the previous paragraph, the

vertical displacement of the water surface at the point on the basin, at which

x = 1 km and y = 0 km, is shown in Figure 3.13.

3.5.3 Circular paraboloid: flow for τ > p

When τ > p then the solution of (3.93) is

u0(t) = Aeqt + Bert, (3.111)

where A and B are constants, obtained by using given values for u0(0) and

u′0(0), and the solution of (3.94)
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Figure 3.12: The path of the centre of the projection on the xy plane of the

moving shoreline. Dimensions are in metres.
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Figure 3.13: The vertical displacement of the water surface at the point on

the basin at which x = 1 km and y = 0 km. Dimensions are in metres on

the vertical axis and thousands of seconds on the horizontal axis.

78



v0(t) = Ceqt + Dert, (3.112)

where C and D are constants, obtained by using given values for v0(0) and

v′0(0), and where q and r are defined by

q =
−τ +

√
τ 2 − p2

2
(3.113)

and

r =
−τ −

√
τ 2 − p2

2
. (3.114)

If A,B, C and D are chosen so that A = D = 0 and B = C and hence

u0(0) = B, u′0(0) = Br, v0(0) = B, v′0(0) = Bq, then

u0(t) = Bert (3.115)

and

v0(t) = Beqt. (3.116)

It can be shown that

ζ(x, t) =
1

g

((
r + τ

2r

) (
B2e2rt

))
+

1

g

((
q + τ

2q

) (
B2e2rt

))

−1

g
(r + τ) Bertx− 1

g
(q + τ) Beqty. (3.117)

At the shoreline, the total depth

h + ζ = 0. (3.118)

Substituting (3.88) and (3.117) in (3.118)

(
x +

a2

2gh0

(
B(r + τ)ert

))2

+

(
y +

a2

2gh0

(
B(q + τ)eqt

))2

= a2. (3.119)
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Hence, the projection of the moving shoreline on the xy plane is a circle of

radius a, with a moving centre. As t →∞, the centre of the circle spirals in

towards the origin and the shoreline approaches

x2 + y2 = a2, (3.120)

the shoreline for an undisturbed surface, and ζ → ∞, so that friction will

cause the initial disturbance to eventually die out.

3.5.4 Circular paraboloid: flow for τ = p

When τ = p, the solution of (3.93) is

u0(t) = e−
τt
2 (A + Bt), (3.121)

where A and B are constants, obtained by using given values for u0(0) and

u′0(0) .

When τ = p, the solution of (3.94) is

v0(t) = e−
τt
2 (C + Dt) (3.122)

where C and D are constants, obtained by using given values for v0(0) and

v′0(0) . It can be seen from equations (3.121) and (3.122) respectively that as

t →∞, u0(t) → 0 and v0(t) → 0. If C and D are chosen so that C = D = 0

then

v0(t) = 0. (3.123)

It can be shown that

ζ(x, t) = −e−τt

τ

(
K + L

(
t +

1

τ

))
− e−τt

τ

(
M

(
t2 +

2t

τ
+

2

τ 2

))

−x

g

(
B +

τ

2
(A + Bt)

)
e−

τt
2 , (3.124)
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where

K =
1

g

(
AB +

τA2

2

)
, (3.125)

L =
1

g

(
B2 + τAB

)
, (3.126)

and

M =
τB2

2g
. (3.127)

It can be seen that as t →∞, ζ → 0.

At the shoreline, the total depth

h + ζ = 0. (3.128)

Substituting (3.88) and (3.124) in (3.128)

(
x +

a2

2gh0

e−
τt
2

(
B +

τ

2
(A + Bt)

))2

+ y2 = a2. (3.129)

Hence the projection of the moving shoreline on the xy plane is a circle,

which has a moving centre and whose radius is a .

As t → ∞, the centre of the circle moves in towards the origin and the

shoreline approaches

x2 + y2 = a2, (3.130)

the shoreline for an undisturbed surface, and ζ → 0, so that friction will

cause the initial disturbance to eventually die out.
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3.6 New solutions for unforced frictional flow

in an elliptical paraboloid

3.6.1 Basic equations

For flow in an elliptical paraboloid assume that

h = h0

(
1 − x2

a2
− y2

b2

)
, (3.131)

with h0, a and b constants. The flow represented could be flow in a lake.

Substituting (3.30), (3.31), (3.41), and (3.131) in (3.29) gives

dζ0 (t)

dt
+x

dζ1 (t)

dt
+y

dζ2 (t)

dt
−2u0(t)h0x

a2
+u0(t)ζ1 (t)−2v0(t)h0y

b2
+v0(t)ζ2 (t) = 0.

(3.132)

Equating the time-varying coefficients of the linearly independent terms 1,

x, and y, respectively,

dζ0 (t)

dt
+ u0(t)ζ1 (t) + v0(t)ζ2 (t) = 0, (3.133)

dζ1 (t)

dt
− 2u0(t)h0

a2
= 0, (3.134)

dζ2 (t)

dt
− 2v0(t)h0

b2
= 0. (3.135)

Substituting (3.34) in (3.134)

d2u0 (t)

dt2
+ τ

du0 (t)

dt
+

2gh0u0 (t)

a2
= 0. (3.136)

Substituting (3.36) in (3.135)

d2v0 (t)

dt2
+ τ

dv0 (t)

dt
+

2gh0v0 (t)

b2
= 0. (3.137)
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Equations (3.136) and (3.137) have to be solved for u0(t) and v0(t).

As equations (3.136) and (3.137) are both second order differential equa-

tions, each equation requires two boundary conditions. The solution of

(3.136) can be substituted in (3.34) to find ζ1(t) and the solution of (3.137)

can be substituted in (3.36) to find ζ2(t). The solutions of (3.136) and (3.137)

plus the solutions for ζ1(t) and ζ2(t) can be substituted in (3.133), which is

first order and hence needs one boundary condition to be solved uniquely for

ζ0(t).

The auxiliary equation for (3.136) is

λ2 + τλ +
2gh0

a2
= 0. (3.138)

The roots of (3.138) are

λ =
−τ ±

√
τ 2 − p2

2
, (3.139)

where p is defined by

p =

√
8gh0

a2
. (3.140)

In this thesis, only the case for λ complex (i.e. for τ < p) is discussed. In

this case the solution of (3.136) is

u0(t) = e−
τt
2

(
A cos

(√
p2 − τ 2

2
t

)
+ B sin

(√
p2 − τ 2

2
t

))
, (3.141)

where A and B are constants, obtained by using given values for u0(0) and

u′0(0). The constant A will be chosen to be zero and B to be nonzero. Hence

u0(t) = Be−τt/2 sin st, (3.142)

where

s =

√
p2 − τ 2

2
. (3.143)
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Similarly, the auxiliary equation for (3.137) is

m2 + τm +
2gh0

a2
= 0. (3.144)

The roots of (3.144) are

m =
−τ ±√

τ 2 − n2

2
, (3.145)

where n is defined by

n =

√
8gh0

b2
. (3.146)

In this thesis, only the case for m complex (i.e. for τ < n) is discussed.

In this case the solution of (3.137) is

v0(t) = e−
τt
2

(
C cos

(√
n2 − τ 2

2
t

)
+ D sin

(√
n2 − τ 2

2
t

))
, (3.147)

where C and D are constants, obtained by using given values v0(0) and v′0(0).

The constant C will be chosen to be zero and D to be equal to B. Hence

v0(t) = Be−(τt)/2 sin kt, (3.148)

where

k =

√
n2 − τ 2

2
. (3.149)

The solutions of the shallow water equations sought will be for τ < p and

τ < n. Substituting (3.142) in (3.34)

ζ1(t) = −e−
τt
2

g

(
Bs cos st +

τB

2
sin st

)
. (3.150)

Substituting (3.148) in (3.36)

ζ2(t) = −e−
τt
2

g

(
Bk cos kt +

τB

2
sin kt

)
. (3.151)
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Substituting (3.142), (3.148), (3.150) and (3.151) into (3.133) and inte-

grating with respect to t gives

ζ0(t) =
a2B2e−τt

8g2h0

(
−sτ sin 2st +

(
τ 2

4
− s2

)
cos 2st

)

+
b2B2e−τt

8g2h0

(
−kτ sin 2kt +

(
τ 2

4
− k2

)
cos 2kt

)

−B2e−τt

2g
, (3.152)

with the constant of integration being zero because it is assumed that as

t →∞, ζ0(t) → 0. Substituting (3.150), (3.151), and(3.152) into (3.41)

ζ(x, y, t) =
a2B2e−τt

8g2h0

(
−sτ sin 2st +

(
τ 2

4
− s2

)
cos 2st

)

+
b2B2e−τt

8g2h0

(
−kτ sin 2kt +

(
τ 2

4
− k2

)
cos 2kt

)

−B2e−τt

2g
− e−

τt
2

g

(
Bs cos st +

τB

2
sin st

)
x

−e−
τt
2

g

(
Bk cos kt +

τB

2
sin kt

)
y. (3.153)

It can be seen that as t → ∞ ζ(t) → 0, i.e. the displacement of the fluid

from equilibrium gradually dies out over time, which is the result that one

would expect with a bottom friction force acting on the fluid.

At the shoreline, the total depth

h + ζ = 0. (3.154)

Substituting (3.131) and (3.153) in (3.154) gives

(1/(a2))

(
x− a2e−

τt
2

2h0g

(
−Bs cos st − τB

2
sin st

))2

+ (1/(b2))

(
y − b2e−

τt
2

2h0g

(
−Bk cos kt − τB

2
sin kt

))2

= 1. (3.155)
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Figure 3.14: The path of the centre of the projection on the xy plane of the

moving shoreline from t = 0 s to t = 7200 s for flow in an elliptical paraboloid

with a = 2 km, b = 3 km, B = 1 ms−1, h0 = 10 km, and τ = 0.001 s−1.

Dimensions are in metres .

Hence, the projection of the moving shoreline on the xy plane is an ellipse.

The path of the centre of the moving ellipse for t = 0 to t = 7200 s. for a =

2 km., b = 3 km., h0 = 10 m, (⇒ p = 0.0141 s−1, n = 0.0094 s −1), τ = 0.001

s −1 and B = 1 is shown in Figure 3.14.

3.7 New solutions for forced flow above a bed

with quadratically varying depth

3.7.1 Introduction

Carrier and Greenspan [11] obtained moving boundary analytical solutions

of the one dimensional nonlinear shallow water wave equations for motion

caused by periodic forcing in a frictionless fluid above a bed of constant slope.

Johns [40] expressed these results in a simpler form. In both the solutions
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by Carrier and Greenspan and the solutions by Johns ζ and u are implicitly

defined.

In this section moving boundary analytical solutions of the two dimen-

sional nonlinear shallow water wave equations for motion caused by periodic

forcing in a frictionless fluid above a bed with quadratically varying depth

are derived. In addition moving boundary analytical solutions of the two

dimensional nonlinear shallow water wave equations for forced motion in a

linear frictional fluid above a bed with quadratically varying depth are de-

rived; the forced motion decays over time. These latter solutions are similar

to those for unforced moving boundary motion in a parabolic canal as given

in Section 3.4. In both of the solutions ζ and u are explicitly defined.

Consider the case of motion of shallow water above a bed with quadrati-

cally varying depth defined by

h = h0

(
1 − x2

a2

)
, x ≥ 0. (3.156)

It will be assumed that the motion is one dimensional and the velocity is a

function of time only and hence

U = u0(t), (3.157)

V = 0. (3.158)

Hence, using equations (3.29), (3.34), (3.36), (3.41), (3.156), (3.157) and

(3.158) it follows, using similar reasoning to that in Section 3.3 and Subsec-

tion 3.4.1, that

ζ(x, y, t) = ζ0(t) + xζ1(t), (3.159)

dζ0 (t)

dt
+ u0(t)ζ1 (t) = 0, (3.160)
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and

ζ1(t) = −1

g

(
du0(t)

dt
+ τu0(t)

)
, (3.161)

and
d2u0 (t)

dt2
+ τ

du0 (t)

dt
+

2gh0u0 (t)

a2
= 0. (3.162)

3.7.2 Frictionless flow

The solution given below is a modification of Thacker’s solution for friction-

less flow in a parabolic canal as discussed in section 3.2.

Assume that the motion is frictionless, i.e.

τ = 0, (3.163)

and subject to forcing

ζ(0, t) = P cos(ωt). (3.164)

Equations (3.162) and (3.163) imply that

d2u0 (t)

dt2
+

2gh0u0 (t)

a2
= 0. (3.165)

The general solution of (3.165) is

u0(t) = A cos ψt + B sin ψt, (3.166)

where

ψ =

√
2gh0

a
. (3.167)

Substituting (3.163) and (3.166) into (3.161) gives

ζ1(t) = −1

g
(−ψA sin ψt + ψB cos ψt) . (3.168)

Substituting (3.166) and (3.168) in (3.160) gives

∂ζ0

∂t
= −ψ(A2 − B2) sin 2ψt

2g
+

ψAB cos 2ψt

g
. (3.169)
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Integrating (3.169) with respect to t gives

ζ0(x, t) =
(A2 −B2) cos 2ψt

4g
+

AB sin 2ψt

2g
+ C, (3.170)

where C is a constant. Substituting (3.168) and (3.170) into (3.159) gives

ζ(x, t) =
(A2 −B2) cos 2ψt

4g
+

AB sin 2ψt

2g
+C− 1

g
(−ψA sin ψt + ψB cos ψt) x.

(3.171)

Equation (3.171) implies that the boundary condition given in (3.164) will

be satisfied if

ω = 2ψ =

√
8gh0

a2
, (3.172)

and

C = 0, (3.173)

and

AB = 0, (3.174)

and

P =
A2 −B2

4g
. (3.175)

It follows from (3.174) that either A = 0 or B = 0. If A = 0, then

ζ(x, t) =
−B2 cos 2ψt

4g
− (ψB cos ψt)x

g
(3.176)

and

U = B sin ψt, (3.177)

and the forcing function is

ζ(0, t) = −B2

4g
cos

(
2
√

2gh0t

a

)
, (3.178)

If B = 0, then

ζ(x, t) =
A2 cos 2ψt

4g
+

(ψA sin ψt)x

g
, (3.179)
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and

U = A cos ψt, (3.180)

and the forcing function is

ζ(0, t) =
A2

4g
cos

(
2
√

2gh0t

a

)
. (3.181)

At the shoreline, the total depth

h + ζ = 0. (3.182)

Consider the shoreline for A = 0. Substituting (3.156) and (3.176) into

(3.182) gives

(
x− Ba2

2h0g
(−ψ cos ψt)

)2

= a2(1 +
B2

4h0g
). (3.183)

Hence, the x coordinate of the shoreline is given by

x = a

√
1 +

B2

4gh0

− Ba√
2gh0

cos

√
2gh0t

a
. (3.184)

Consider a bed with quadratically varying depth for which a = 3 km,

h0 = 10 m and for motion in which B = 5 ms−1 and A = 0 ms−1. The period

of the motion is 1345.71 s. The development of the motion from t = 0 to

t = 1270.95 seconds is shown in Figure 3.15. The periodic forcing at x = 0

is shown in Figure 3.16. The vertical displacement of the water surface from

equilibrium as a function of time at x = 0 is shown in Figure 3.17. The

velocity of the fluid as a function of time is shown in Figure 3.18. The x-

coordinate of the left hand shoreline as a function of time is shown in Figure

3.19.
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Figure 3.15: The development of the motion of fluid, for a bed with quadrat-

ically varying depth with a = 3 km, h0 = 10 m, and B = 5 ms−1, from t = 0

s to t = 1270.95 s, in increments of 74.762 s. Dimensions are in metres.
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Figure 3.16: The periodic forcing of the water surface at x = 0 km above

a bed with quadratically varying depth with a = 3 km, h0 = 10 m, and

B = 5 ms−1. Dimensions are in metres on the vertical axis and thousands of

seconds on the horizontal axis.
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Figure 3.17: The vertical displacement of the water surface at x = 500 m

for a bed with quadratically varying depth with a = 3 km, h0 = 10 m, and

B = 5 ms −1. Dimensions are in metres on the vertical axis and thousands

of seconds on the horizontal axis.
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Figure 3.18: The velocity at any time for a bed with quadratically varying

depth with a = 3 km, h0 = 10 m, and B = 5 ms−1. Dimensions are in metres

per second on the vertical axis and thousands of seconds on the horizontal

axis.
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Figure 3.19: The location of the right hand shoreline at any time for a bed

with quadratically varying depth with a = 3 km, h0 = 10 m, and B = 5 ms

−1. Dimensions are in metres per second on the vertical axis and thousands

of seconds on the horizontal axis.
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3.7.3 Frictional flow

In this subsection linear frictional flow above a bed with quadratically varying

depth will be considered, with τ < p, where

p =

√
8gh0

a2
, (3.185)

subject to a forcing at x = 0, given by

ζ(0, t) = e−γt(P sin ωt + Q cos ωt + R). (3.186)

A solution of (3.162) is

u0(t) = Be−
τt
2 sin st, (3.187)

where

s =

√
p2 − τ 2

2
. (3.188)

Substituting (3.187) in (3.161) gives

ζ1(t) = −e−τt

g

(
Bs cos st +

τB

2
sin st

)
. (3.189)

Substituting (3.187) and (3.189) in (3.160) and integrating with respect to t

gives

ζ0(t) =
a2B2e−τt

8g2h0

(
−sτ sin 2st +

(
τ 2

4
− s2

)
cos 2st

)
− B2e−τt

4g
, (3.190)

with the constant of integration being zero because it is assumed that as

t →∞ ζ0(t) → 0. Substituting (3.189) and (3.190) in (3.159) gives

ζ(x, t) =
a2B2e−τt

8g2h0

(
−sτ sin 2st +

(
τ 2

4
− s2

)
cos 2st

)
− B2e−τt

4g

−e−
τt
2

g

(
Bs cos st +

τB

2
sin st

)
x. (3.191)

Using equation (3.191) it can be seen that (3.186) will be satisfied if

γ = τ, (3.192)
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ω =

√
8gh0

a2
− τ 2, (3.193)

P = −a2B2sτ

8g2h0

, (3.194)

Q =
a2B2

8g2h0

(
τ 2

4
− s2), (3.195)

and

R = −B2

4g
. (3.196)

At the shoreline, the total depth

h + ζ = 0. (3.197)

Substituting (3.156) and (3.191) in (3.197) the resulting equation simpli-

fies to

x =
a2e−

τt
2

2h0g

(
−Bs cos st− τB

2
sin st

)
+ a, (3.198)

the x-coordinate of the shoreline.

3.8 Conclusions

In this chapter exact solutions of the two dimensional nonlinear shallow water

wave equations in the case of unforced flow involving linear bottom friction

and without the Coriolis force have been found for flow in parabolic canals,

circular paraboloids and elliptical paraboloids. These solutions involve mov-

ing shorelines. The motion decays over time, which is what one would expect

in a motion involving friction and no input force. In contrast Thacker found

exact solutions of the two dimensional nonlinear shallow water wave equa-

tions in the case of flow involving the Coriolis force but without bottom
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friction for flow in a parabolic canal. These solutions also involve moving

shorelines. The motion is oscillatory and continues indefinitely over time,

which is what one would expect in a motion involving no friction.

In addition analytical moving boundary solutions of the two dimensional

nonlinear shallow water wave equations in the case of forced flow above a

bed with quadratically varying depth have been found both without and

with bottom friction, the latter being linear.

The solutions found in this chapter are useful for testing numerical so-

lutions of the nonlinear shallow water wave equations which include linear

bottom friction and whose flow involves moving shorelines. Testing of the

analytical solutions for forced frictionless flow above a bed with quadratically

varying depth against a numerical model in Chapter 6 of this thesis will show

the numerical results to be in close agreement with the analytical solutions;

likewise for testing of the analytical solutions for forced linear frictional flow

above a bed with quadratically varying depth against a numerical model.
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Chapter 4

Fixed boundary analytical

solutions of the nonlinear

shallow water wave equations

4.1 Introduction

In this chapter new fixed boundary analytical solutions of the one dimensional

nonlinear shallow water wave equations will be developed. The testing of

these solutions against numerical solutions will be discussed in Chapter 5.

The analytical solutions developed are a modification of solutions developed

by Airy in 1845 (discussed in [55] and [83]).

4.2 Airy’s solutions

In 1845 Airy investigated tidal flow in a channel of constant mean water

depth, h, defined for 0 ≤ x ≤ ∞, for when ζ, the water level, is not small

compared with h. The equations that he used are based on equations (2.1),

(2.2) and (2.3) with wind stresses, bottom friction, viscosity and the Coriolis
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forces omitted, but the nonlinear continuity and advective terms included.

The resulting nonlinear shallow water equations are

∂U

∂t
+ U

∂U

∂x
+ g

∂ζ

∂x
= 0, (4.1)

∂ζ

∂t
+

∂(h + ζ)U

∂x
= 0. (4.2)

The canal communicates at its mouth, x = 0, with the open sea, where

the water elevation is given by

ζ(0, t) = a1 cos ωt. (4.3)

To solve this problem Airy used the method of successive approximation.

The solutions for ζ and U have terms involving ω, the angular frequency of

the tidal oscillation plus terms involving twice the frequency, 2ω, the latter

terms representing overtides, or tides of the second order. Airy’s analysis did

not extend to tides of higher order, i.e. whose frequencies are three, four or

more times that of that of the forced frequency.

As a first approximation to the nonlinear shallow water equations we have

the linear equations
∂U

∂t
+ g

∂ζ

∂x
= 0, (4.4)

∂ζ

∂t
+ h

∂U

∂x
= 0. (4.5)

The solutions of (4.4) and (4.5) which are consistent with (4.3) are

ζ = a1 cos ω
(
t− x

c

)
, (4.6)

U =
ga1

c
cos ω

(
t− x

c

)
, (4.7)

where c, the wave speed, is given by
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c =
√

gh. (4.8)

The wave is a progressive wave.

As a second approximation these values of ζ and U in (4.6) and (4.7) are

substituted in the nonlinear terms of (4.1) and (4.2) to obtain

∂U

∂t
= −g

∂ζ

∂x
− ωga2

1

2ch
sin 2ω

(
t− x

c

)
, (4.9)

∂ζ

∂t
= −h

∂U

∂x
− ωa2

1

h
sin 2ω

(
t − x

c

)
. (4.10)

Eliminating U from equations (4.9) and (4.10) one obtains

∂2ζ

∂t2
= gh

∂2ζ

∂x2
− κ cos 2ω

(
t− x

c

)
, (4.11)

where

κ =
a2

1gω2

c2
+

2a2
1ω

2

h
. (4.12)

Neither Lamb [55] nor Rahman [83] explained how Airy solved (4.11);

it can be solved by assuming that

ζ = a1 cos ω
(
t− x

c

)
+ Ex cos 2ω

(
t− x

c

)
+ Fx sin 2ω

(
t− x

c

)
, (4.13)

where E and F are constants. The constants E and F can be found by

substituting (4.13) in (4.11) and equating coefficients of cos ω(t − x
c
) and

sin ω(t− x
c
), giving

ζ = a1 cos ω
(
t− x

c

)
−

(
3a2

1gω

4c3

)
x sin 2ω

(
t − x

c

)
. (4.14)

Eliminating ζ from equations (4.9) and (4.10) one obtains

∂2U

∂t2
= gh

∂2U

∂x2
− 3a2

1gω2

ch
cos 2ω

(
t− x

c

)
. (4.15)
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If one assumes that

U =
ga1

c
cos ω

(
t− x

c

)
+ P cos 2ω

(
t− x

c

)
+ Q sin 2ω

(
t− x

c

)

+Rx cos 2ω
(
t− x

c

)
+ Sx sin 2ω

(
t− x

c

)
, (4.16)

where P , Q, R and S are constants, then substitutes (4.16) in (4.15) one

obtains

R = 0, (4.17)

S = −3a2
1ω

4h2
. (4.18)

Substituting (4.17) and (4.18) in (4.16) gives

U =
ga1

c
cos ω

(
t− x

c

)
+ P cos 2ω

(
t− x

c

)
+ Q sin 2ω

(
t− x

c

)

−3a2
1ω

4h2
x sin 2ω

(
t− x

c

)
. (4.19)

Substituting (4.14) and (4.19) in (4.9) gives

P = −a2
1g

8ch
, (4.20)

Q = 0. (4.21)

Substituting (4.20) and (4.21)in (4.19) gives

U =
ga1

c
cos ω

(
t − x

c

)
− a2

1g

8ch
cos 2ω

(
t− x

c

)

−3a2
1ω

4h2
x sin 2ω

(
t− x

c

)
. (4.22)

From equation (4.14) it can be seen that the approximate solution will be

valid provided that the amplitude of the overtide term (i.e. the second order

term) is small compared with the amplitude of the linear term, i.e. a1ωx
ch

, is

small.
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4.3 Other authors’ solutions

As was discussed in the literature review in Chapter 2, a number of authors

have developed solutions for tidal flow in estuaries in which ζ, the water level,

is not small compared with the undisturbed water depth, h. Kreiss [54]

included linear friction in analysing nonlinear oscillations in a tidal channel

of finite length. Kreiss had a tidal oscillation of angular frequency, ω, at

the open sea boundary. He obtained a solution for the velocity including

a second order overtide using the perturbation method. Proudman [82]

included quadratic friction in analysing nonlinear oscillations due to tide

and surge in a channel of finite length. He had a prescribed incident wave

of first order at the mouth plus a reflected wave of first order plus second

order terms which reduced to a reflected wave at the mouth. He obtained

solutions for ζ and U by in each case integrating twice a second order partial

differential equation. Knight [51] extended Proudman’s work. Gallagher and

Munk [27], Kabbaj and Provost [43] and DiLorenzo [17] all found second

order solutions for quadratic frictional tidal flow in channels of finite length

using perturbation methods. Gallagher and Munk and DiLorenzo included

an overtide in the open sea forcing expression. At the open sea boundary

Kabbaj and Provost specified U + 2
√

g(h + ζ) to be 2 + 2A cos ωt, with A

and ω constant.

4.4 New solutions involving nonlinear conti-

nuity and advection

In this section new analytical solutions are developed. The motion considered

here is for tidal flow in a channel of length L with h, the undisturbed depth

of the water, assumed constant. The water is subject to forcing at x = L and
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has a barrier at x = 0. The shallow water equations used are the same that

Airy used (equations (4.1) and (4.2)) but with different boundary conditions

ζ(L, t) = a1 cos ωt, (4.23)

U(0, t) = 0. (4.24)

Solutions will be obtained using the method of successive aproximation, the

method that Airy used.

As a first approximation to the nonlinear equations (4.1) and (4.2), the

linear equations (4.4) and (4.5) are used. A solution of these equations which

satisfies the boundary conditions (4.23) and (4.24) was obtained by Lynch

and Gray [67]

ζ(x, t) =
a1 cos c1x

cos c1L
cos ωt, (4.25)

U(x, t) =
ga1c1 sin c1x

ω cos c1L
sin ωt, (4.26)

where

c1 = ω/c. (4.27)

As a second approximation these values of ζ and U are substituted in the

nonlinear terms of (4.1) and (4.2) to obtain

∂U

∂t
= −g

∂ζ

∂x
− a2

1c
3
1g

2

4ω2 cos2 c1L
sin 2c1x(1 − cos 2ωt), (4.28)

∂ζ

∂t
= −h

∂U

∂x
− a2

1c
2
1g

2

2ω cos2 c1L
cos 2c1x sin 2ωt. (4.29)

Eliminating U from (4.28) and (4.29) one obtains

∂2ζ

∂t2
= gh

∂2ζ

∂x2
+

a2
1c

4
1g

2h

2ω2cos2c1L
cos 2c1x(1 − cos 2ωt)

− a2
1c

2
1g

cos2c1L
cos 2c1x cos 2ωt. (4.30)
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To solve (4.30) for ζ and then solve for U (using (4.28)) assume, as a

second approximation,

ζ(x, t) =
a1 cos c1x

cos c1L
cos ωt + f1(x) sin 2ωt + g1(x) cos 2ωt

+d2 cos 2c1x + b2, (4.31)

U(x, t) =
ga1c1 sin c1x

ω cos c1L
sin ωt + p1(x) sin 2ωt + q1(x) cos 2ωt. (4.32)

where f1(x), g1(x), p1(x) and q1(x) are functions of x which need to be

determined and b2 and d2 are constants which need to be determined.

Substituting x = L in (4.31) and making use of (4.23) gives

a1 cos ωt+ f1(L) sin 2ωt+ g1(L) cos 2ωt+d2 cos 2c1L+ b2 = a1 cos ωt. (4.33)

Equation (4.33) implies that

b2 = −d2 cos 2c1L, (4.34)

f1(L) = 0, (4.35)

and

g1(L) = 0. (4.36)

Equations (4.24) and (4.32) imply that

p1(0) sin 2ωt + q1(0) cos 2ωt = 0, (4.37)

which implies that

p1(0) = 0, (4.38)

and

q1(0) = 0. (4.39)
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Substituting (4.31) in (4.30) one obtains

−4ω2f1(x) sin 2ωt− 4ω2g1(x) cos 2ωt

= ghf
′′
1 (x) sin 2ωt + ghg

′′
1 (x) cos 2ωt

−4c2
1d2gh cos 2c1x

+
a2

1c
4
1g

2h

2ω2 cos2 c1L
cos 2c1x

− a2
1c

4
1g

2h

2ω2cos2c1L
cos 2c1x cos 2ωt

− a2
1c

2
1g

cos2 c1L
cos 2c1x cos 2ωt.

(4.40)

Equating the coefficients of the cos 2c1x terms gives

d2 =
a2

1c
2
1g

8ω2 cos2 c1L
. (4.41)

Equations (4.34) and (4.41) imply that

b2 = −a2
1c

2
1g cos 2c1L

8ω2 cos2 c1L
. (4.42)

Equating the coefficients of the sin 2ωt terms in (4.40) gives

ghf
′′
1 (x) + 4ω2f1(x) = 0. (4.43)

The general solution to (4.43) is

f1(x) = E sin 2c1x + F cos 2c1x, (4.44)

where E and F are constants.

Substituting (4.44) in (4.35) implies that

E sin 2c1L + F cos 2c1L = 0. (4.45)

Substituting (4.31) and (4.32) in (4.28) gives

2ωp1(x) cos 2ωt − 2ωq1(x) sin 2ωt + gf
′
1(x) sin 2ωt + gg

′
1(x) cos 2ωt

=
a2

1c
3
1g

2

4ω2 cos2 c1L
sin 2c1x cos 2ωt. (4.46)
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Substituting x = 0 in (4.46) and making use of (4.38) and (4.39) gives

f ′
1(0) = 0, (4.47)

and

g′1(0) = 0. (4.48)

Equations (4.44) and (4.47) imply that

E = 0. (4.49)

Equations (4.45) and (4.49) imply that either

F = 0, (4.50)

or

cos 2c1L = 0. (4.51)

Hence, substituting (4.49) and (4.50) or (4.51) in (4.44) gives

f1(x) = 0. (4.52)

Equating the coefficients of the cos 2ωt terms in (4.40) gives

g′′1(x) +
4ω2

gh
g1(x) =

3a2
1c

2
1 cos 2c1x

2h cos2 c1L
. (4.53)

The solution of (4.53) which satisfies (4.36) and (4.48) is

g1(x) =
3a2

1c
2
1

8h cos2 c1L
(−L tan(2c1L) cos 2c1x + x sin 2c1x). (4.54)

Substituting (4.41), (4.42), (4.52) and (4.54) in (4.31) gives

ζ(x, t) =
a1 cos c1x

cos c1L
cos ωt +

a2
1c

2
1g

8ω2 cos2 c1L
cos 2c1x− a2

1c
2
1g cos 2c1L

8ω2 cos2 c1L

+
3a2

1c1

8h cos2 c1L
(−L tan(2c1L) cos 2c1x + x sin 2c1x) cos 2ωt.

(4.55)
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The second and third terms, which are zero frequency terms, are gener-

ated by the advective term U ∂U
∂x

. As with Airy’s solution, the approximate

solution will be valid provided a1ωx
ch

is small.

Substituting (4.32) and (4.55) in (4.28) gives

2ωp1(x) cos 2ωt − 2ωq1(x) sin 2ωt = (p2(x) + p3(x) + p4(x)) cos 2ωt.

(4.56)

where

p2(x) = −
(

3a2
1c

2
1gL tan 2c1L

4h cos2 c1L

)
sin c1x, (4.57)

p3(x) = − 3a2
1c1g

8h cos2 c1L
(2c1x cos 2c1x + sin 2c1x) , (4.58)

and

p4(x) =
a2

1c
3
1g

2

4ω2 cos2 c1L
sin 2c1x. (4.59)

Equating the coefficients of cos 2ωt in (4.56) gives

p1(x) =
1

2ω
(p2(x) + p3(x) + p4(x)) (4.60)

which satisfies (4.38). Equating the coefficients of sin 2ωt in (4.56) gives

q1(x) = 0. (4.61)

Substituting (4.60) and (4.61) in (4.32), and simplifying, gives

U(x, t) = u1(x) sin ωt + u2(x) sin 2ωt, (4.62)

where

u1(x) =
a1c1g sin c1x

ω cos c1L
, (4.63)
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and

u2(x) = − a2
1c1g

8wh cos2 c1L

((
3c1L tan c1L +

1

2

)
sin 2c1x + 3c1x cos 2c1x

)
.

(4.64)

The analytical solutions found in this chapter are useful for testing nu-

merical solutions of the nonlinear shallow water wave equations which include

nonlinear continuity and advection. In Chapter 5 of this thesis the analytical

solutions found in this chapter will be compared with numerical solutions.
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Chapter 5

Selective lumped mass matrix

numerical method

5.1 Introduction

Kawahara, Hirano and Tsubota [46] developed a two dimensional shallow

water finite element model. The numerical scheme for the time variation is an

explicit two step scheme. As this scheme involves a combination of lumped

and unlumped coefficients, the scheme is called a selective lumping scheme.

The selective lumped mass matrix model (SLM) has already been discussed

in the literature review in Chapter 2. The SLM method has been discussed

in some detail and applied by Ninomiya and Onishi [73], Aramaki et al.

[4], Easton, Singh and Goraya [20] and Goraya [29]. Further details will be

given of the SLM method in this chapter. The SLM method will be used in

this thesis to test against the new analytical solutions discussed in Chapter

4 and to model the effect of proposed channel deepening on the tides in Port

Phillip Bay, with the domain of flow in both cases having a fixed boundary.

In Chapter 6 the wetting and drying algorithm used in the SLM method will

be modified from its original form. The resultant modified SLM model will
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be tested against the analytical solution for moving boundary flow discussed

in subsections 3.7.2 and 3.7.3.

5.2 Derivation

5.2.1 Equations

The SLM numerical model is derived in this section. The shallow water

equations used are equations (2.1), (2.2) and (2.3), excluding the wind stress

terms. The resultant equations are the conservation of momentum equation

in the East direction

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
− fV − ν

(
∂2U

∂x2
+

∂2U

∂y2

)
+ τU + g

∂ζ

∂x
= 0, (5.1)

the conservation of momentum equation in the North direction

∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
+ fU − ν

(
∂2V

∂x2
+

∂2V

∂y2

)
+ τV + g

∂ζ

∂y
= 0, (5.2)

and the continuity (conservation of mass) equation

∂ζ

∂t
+

∂(HU)

∂x
+

∂(HV )

∂y
= 0. (5.3)

5.2.2 Finite element formulation

The first step in developing the SLM scheme to approximately solve the

shallow water equations is to apply the Galerkin finite element procedure, in

which each equation is multiplied by a weight w(x, y) and then integrated

with respect to area over Ω, the horizontal region of flow, with dΩ = dxdy .

With the above operations applied to the continuity equation (5.3) one

obtains

∫ ∫

Ω

w
∂ζ

∂t
dΩ +

∫ ∫

Ω

w
∂(HU)

∂x
dΩ +

∫ ∫

Ω

w
∂(HV )

∂y
dΩ = 0, (5.4)
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Using integration by parts, Green’s theorem, putting w equal to zero on

the sea boundary and putting the normal velocity equal to zero on the land

boundary, equation (5.4) becomes

∫ ∫

Ω

w
∂ζ

∂t
dΩ −

∫ ∫

Ω

(
∂w

∂x
HU +

∂w

∂y
HV

)
dΩ = 0, (5.5)

The domain Ω is divided into triangular elements, called finite elements.

Computationally, these integrals are calculated separately for each of the

elements.

The water elevation ζ, the mean velocity components U and V , and the

total water depth H are linearly interpolated using

ζ(x, y, t) =
∑

α

φα(x, y)ζα(t), (5.6)

U(x, y, t) =
∑

α

φα(x, y)Uα(t), (5.7)

V (x, y, t) =
∑

α

φα(x, y)Vα(t), (5.8)

H(x, y, t) =
∑

α

φα(x, y)Hα(t), (5.9)

where the φα are basis functions, α = 1, 2, ..., N , where N is the total num-

ber of nodes in the domain Ω, and ζα, Uα, Vα and Hα are nodal values

of the corresponding unknowns. The weighting function w is chosen to be

φ1, φ2, ..., φN in turn. In any given triangular element e containing a node

with node number α

φα =
1

2∆e
(aα + bαx + cαy), (5.10)

with aα, bα and cα constants for that element and ∆e the area of the element.

If node number α is not a node in a given element e, then φα is zero in that

element. For any triangle, e, the three triangle vertices, called nodes, are

numbered 1, 2 and 3 (the numbering being anticlockwise, it being immaterial

which node is used as the starting node).
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Hence (5.5) can be rewritten as

∑
e

∫ ∫

e

w
∂ζ

∂t
de−

∑
e

∫ ∫

e

(
∂w

∂x
HU +

∂w

∂y
HV

)
de = 0, (5.11)

with e = 1, 2, ..., E, with E being the number of triangular elements. Sub-

stituting (5.6), (5.7), (5.8) and (5.9) into (5.11), with the integration taken

over a given triangular element, and using w = φα, gives N equations, one

for each value of α, of the form

∑
e

(

∫ ∫

e

φα

∑

β

(φβ ζ̇β)de−
∫ ∫

e

∂φα

∂x

∑
γ

(φγHγ)
∑

β

(φβUβ)de

−
∫ ∫

e

∂φα

∂y

∑
γ

(φγHγ)
∑

β

(φβVβ)de) = 0, (5.12)

with β = 1, 2, ..., N , γ = 1, 2, ..., N . Equation (5.12) can be written in matrix

form as

Mż− LH = 0, (5.13)

where M and L are matrices, and ż and H are N -dimensional vectors. The

global matrices can be written as M =
∑

e Me, L =
∑

e Le, where Me is the

contribution to M for triangular element e, and Le is the contribution to L

for triangular element e, while the vectors are

ż =




ζ̇1

.

.

.

˙ζN



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and

H =




H1

.

.

.

HN




.

The element matrix Me is defined by

M e
αβ =

∫ ∫

e

φαφβde, (5.14)

while the element matrix Le is defined by

Le
αβ =

∫ ∫

e

∂φα

∂x
φβ

∑
γ

(φγUγ)de +

∫ ∫

e

∂φα

∂y
φβ

∑
γ

(φγVγ)de.

For convenience of notation, the contribution from each triangular ele-

ment e can be written as

Me =
∆e

12




2 1 1

1 2 1

1 1 2


 ,

że =




ζ̇1

ζ̇2

ζ̇3


 ,

He =




H1

H2

H3


 ,

and

Le = Xe + Ye, (5.15)
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where

Xe =
1

24








2b1 b1 b1

2b2 b2 b2

2b3 b3 b3


 U1 +




b1 2b1 b1

b2 2b2 b2

b3 2b3 b3


 U2 +




b1 b1 2b1

b2 b2 2b2

b3 b3 2b3


 U3





with b1 = y2 − y3 and b2 = y3 − y1 , and b3 = y1 − y2, and

Ye =
1

24








2c1 c1 c1

2c2 c2 c2

2c3 c3 c3


 V1 +




c1 2c1 c1

c2 2c2 c2

c3 2c3 c3


 V2 +




c1 c1 2c1

c2 c2 2c2

c3 c3 2c3


 V3





with c1 = x3 − x2 and c2 = x1 − x3 , and c3 = x2 − x1.

The continuity equation can be simplified with equation (5.3) replaced

by the equation
∂ζ

∂t
+

∂(hU)

∂x
+

∂(hV )

∂y
= 0. (5.16)

The Galerkin finite element procedure is applied to equation (5.16) with h

linearly interpolated using

h(x, y, t) =
∑

α

φα(x, y)hα(t). (5.17)

One obtains an equation similar to equation (5.13), the only change being

that H is replaced by h, where

h =




h1

.

.

.

hN




.

It follows that for the linear case, equation (5.13) is replaced with

Mż− Lh = 0. (5.18)
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The contributions of each triangular element can be written as Me, że

and Le are defined as for the nonlinear case and

he =




h1

h2

h3


 ,

and he can be replaced by

he
av = he

av




1

1

1


 ,

where

he
av =

h1 + h2 + h3

3
,

i.e. hav is the average nodal depth for a given triangle.

Using a similar method to that described above for the continuity equa-

tion, the momentum equations (5.1) and (5.2) are transformed into matrix

terms

MU̇ + AU−NV−DU + BU + gPz = 0, (5.19)

and

MV̇ + AV + NU−DV + BV + gQz = 0. (5.20)

The global matrices can be written as M =
∑

e Me, A =
∑

e Ae, P =
∑

e Pe, N =
∑

e Ne, B =
∑

e Be, D =
∑

e De, Q =
∑

e Qe, while the vectors

are

U̇ =




U̇1

.

.

.

U̇N




,
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U =




U1

.

.

.

UN




,

V̇ =




V̇1

.

.

.

˙VN




,

V =




V1

.

.

.

VN




,

z =




ζ1

.

.

.

ζN




.

The element matrix Me was defined in (5.14) while the other element

matrices are defined by

Ae
αβ =

∑
γ

{(∫ ∫

e

φe
αφe

β

∂φe
γ

∂x
de

)
U e

γ +

(∫ ∫

e

φe
αφe

β

∂φe
γ

∂y
de

)
V e

γ

}
, (5.21)

P e
αβ =

∫ ∫

e

φe
α

∂φe
β

∂x
de, (5.22)
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N e
αβ = f

∫ ∫

e

φe
αφe

βde, (5.23)

Be
αβ =

∫ ∫

e

τ eφe
αφe

βde, (5.24)

De
αβ = ν

∫ ∫

e

∂φe
α

∂x

∂φe
β

∂x
+

∂φe
α

∂y

∂φe
β

∂y
de, (5.25)

Qe
αβ =

∫ ∫

e

φe
α

∂φe
β

∂y
de. (5.26)

For convenience of notation the contribution from each triangular element

can be written as

U̇
e
=




U̇1

U̇2

U̇3


 ,

V̇
e
=




V̇1

V̇2

V̇3


 ,

Ue =




U1

U2

U3


 ,

Ve =




V1

V2

V3


 ,

ze =




ζ1

ζ2

ζ3


 ,

Ae = Se + Te,
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where

Se =
1

24








2b1 2b2 2b3

b1 b2 b3

b1 b2 b3


 U1 +




b1 b2 b3

2b1 2b2 2b3

b1 b2 b3


 U2 +




b1 b2 b3

b1 b2 b3

2b1 2b2 2b3


 U3





and

Te =
1

24








2c1 2c2 2c3

c1 c2 c3

c1 c2 c3


 V1 +




c1 c2 c3

2c1 2c2 2c3

c1 2c2 c3


 V2 +




c1 c2 c3

c1 c2 c3

2c1 2c2 2c3


 V3





,

Ne =
f∆e

12




2 1 1

1 2 1

1 1 2


 ,

De =
ν

4∆e




b2
1 + c2

1 b1b2 + c1c2 b1b3 + c1c3

b2b1 + c2c1 b2
2 + c2

2 b2b3 + c2c3

b3b1 + c3c1 b3b2 + c3c2 b2
3 + c2

3


 ,

Be =
τ e∆e

12




2 1 1

1 2 1

1 1 2


 ,

(with

τ e =
n2g

3

3∑
i=1

√
U2

i + V 2
i

H
4/3
i

for the quadratic friction case, τ e a constant for the linear friction case and

τ e zero for the frictionless case),

Pe =
1

6




b1 b2 b3

b1 b2 b3

b1 b2 b3


 ,

and
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Qe =
1

6




c1 c2 c3

b1 b2 b3

b1 b2 b3


 ,

5.2.3 Time-stepping

The finite element equations (5.13), (5.19) and (5.20) are solved using an

explicit modified Euler time stepping scheme. For the first half time step,

from time nδt to time (n + 1
2
δt), the equations are

M̄zn+ 1
2 = M̃zn +

δt

2
LnHn, (5.27)

M̄Un+ 1
2 = M̃Un +

δt

2
(−AnUn + NVn + DUn −BUn − gPzn) , (5.28)

M̄Vn+ 1
2 = M̃Vn +

δt

2
(−AnVn −NUn + DVn −BVn − gQzn) , (5.29)

where M̄ is the lumped mass matrix, with the element lumped mass matrix

defined by

M̄
e
=

∆e

12




4 0 0

0 4 0

0 0 4


 ,

and M̃ is the selective lumped mass matrix, with the element selective

lumped mass matrix,M̃
e
,defined by

M̃
e
= srM̄

e
+ (1 − sr)M

e

where sr is the selective lumping parameter.
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The element selective lumped mass matrix is

M̃
e
=

∆e

12




2 + 2sr 1 − sr 1 − sr

1 − sr 2 + 2sr 1 − sr

1 − sr 1 − sr 2 + 2sr


 ,

For the second half time step, the equations are

M̄zn+1 = M̃zn + δtLn+ 1
2Hn+ 1

2 , (5.30)

M̄Un+1 = M̃Un +δt(−An+ 1
2Un+ 1

2 +NVn+ 1
2 +DUn+ 1

2 −BUn+ 1
2 −gPzn+ 1

2 ),

(5.31)

M̄Vn+1 = M̃Vn +δt(−An+ 1
2Vn+ 1

2 −NUn+ 1
2 +DVn+ 1

2 −BVn+ 1
2 −gQzn+ 1

2 ),

(5.32)

The scheme consisting of the equations (5.27), (5.28) and (5.29) for the

first stage and equations (5.30), (5.31) and (5.32) for the second stage is

called the selective lumped mass (SLM) scheme. It is relatively simple to

apply but is conditionally stable. For the one dimensional linearised scheme,

the scheme is stable provided that the time step satisfies

δt ≤ dmδx/
√

gh, (5.33)

where δx is the smallest space step, and dm is a function of sr, obtained from

a table by Goraya [29]. The stability condition has been established only

for the linearised one dimensional shallow water equations for h a constant.

For h variable the stability criterion is applied using the maximum value of

h. The resulting value is only a guide for two dimensional models with δt

given by

δt ≤ dmδx/
√

gh, (5.34)
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with dm defined as for one dimensional scheme, δx is the smallest side of any

triangular element used, and h taken to be the maximum water depth.

With the SLM method applied to the two dimensional shallow water

equations to model tides initially the sea is assumed to be calm in Ω, the

horizontal domain of flow, i.e. U = 0 and V = 0 at time t = 0 and at t = 0

ζ = 0 except at the open sea boundary, where the water level, ζ is specified

as a function of time, t.

5.3 Convergence study

5.3.1 Introduction

Goraya [29] did a convergence study of the SLM method. He modelled linear

flow in a rectangular basin of constant depth with forcing at one end and a

closed wall at the other end. Three different meshes were used in the study.

The numerical solutions were compared with analytical solutions by Lynch

and Gray [67]. It was found that the finer the mesh the closer the results

were to analytical solutions. Node-to-node oscillations were not included in

Goraya’s study.

This thesis discusses a numerical convergence study for a particular rect-

angular basin of linearly varying depth in which the results for the selective

lumped matrix method for various numbers of triangular finite elements were

compared to the analytic solution. The analytical solution is for a one dimen-

sional representation of the basin. It was found that the larger the number

of finite elements used the closer were the computed amplitudes and phases

of the tidal height and velocity at various nodes to the analytical values. It

was also found that the larger the number of finite elements used the smaller

the node-to-node oscillations.
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Figure 5.1: Rectangular harbour. Plan view.

5.3.2 The analytical solution used for comparison

The analytical solution used is for one dimensional frictionless linear flow in a

rectangular harbour as illustrated in Figure 5.1. The depth varies according

to

h =
x− x2

x1 − x2

h1 +
x− x1

x2 − x1

h2, (5.35)

as shown in Figure 5.2. The solution was obtained by Lynch and Gray [67].

The flow in the harbour is modelled by linearised shallow water equations.

These equations are obtained from the shallow water equations ( 2.1), ( 2.2)

and ( 2.3) by leaving out the nonlinear terms in equations ( 2.1) and ( 2.3),

setting the bottom friction to zero and eliminating ( 2.2). The equations are

∂ζ

∂t
+

∂(hU)

∂x
= 0, (5.36)

∂U

∂t
+ g

∂ζ

∂x
= 0, (5.37)

The land boundary is at x = x1 and the sea boundary at x = x2. On the

land boundary the current velocity is set to zero, i.e.

U(x1, t) = 0, (5.38)

while on the sea boundary equation the water level, ζS, is specified by

ζS ≡ ζ(x2, t) = A cos(
2πt

T
), (5.39)
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Figure 5.2: Vertical section. Plan view.

where A is the amplitude of the tidal wave component and T is its period.

The analytical solution for ζ(x, t) is assumed to be of the form

ζ(x, t) = z(x)ejωt, (5.40)

where

ω =
2π

T
, (5.41)

and

j =
√−1, (5.42)

and the analytical solution for U is assumed to be of the form

U(x, t) = u(x)ejωt. (5.43)

Substitution of (5.35), (5.40) and (5.43) into (5.36) and (5.37) gives

z(x) = c1J0

(
2ω

√
x√

gH0

)
+ c2Y0

(
2ω

√
x√

gH0

)
, (5.44)

and

u(x) =
g

jω

(
c1J1

(
2ω

√
x√

gH0

)
ω√

gH0x
+ c2Y1

(
2ω

√
x√

gH0

)
ω√

gH0x

)
, (5.45)

where

H0 =
h2

x2

, (5.46)

and c1 and c2 are constants.
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Expressions for c1 and c2 are obtained by using the boundary conditions

(5.38) and (5.39), giving

c2 =
AJ1

(
2ω

√
x1√

gH0

)

Y0

(
2ω

√
x2√

gH0

)
J1

(
2ω

√
x1√

gH0

)
− Y1

(
2ω

√
x1√

gH0

)
J0

(
2ω

√
x2√

gH0

) , (5.47)

and

c1 = −
c2Y1

(
2ω

√
x1√

gH0

)

J1

(
2ω

√
x1√

gH0

) . (5.48)

5.3.3 Numerical experiments: the SLM solution ver-

sus the analytical solution

A computer program using Visual C++, which is listed in Appendix A,

has been written to solve the SLM equations corresponding to the linearised

shallow water equations (5.36) and (5.37) for finite element meshes of varying

size.

The SLM equations for the first half time step are

M̄zn+ 1
2 = M̃zn +

δt

2
Lnhn, (5.49)

M̄Un+ 1
2 = M̃Un − gδt

2
Pzn, (5.50)

M̄Vn+ 1
2 = M̃Vn − gδt

2
Qzn. (5.51)

The SLM equations for the second half time step are

M̄zn+1 = M̃zn + δtLn+ 1
2hn+ 1

2 , (5.52)

M̄Un+1 = M̃Un − gδtPzn+ 1
2 , (5.53)
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M̄Vn+1 = M̃Vn − gδtQzn+ 1
2 . (5.54)

The computer program has been used to simulate the flow for a rectangu-

lar basin of width 5000 metres (in the y-direction) and length 10,000 metres

(in the x−direction) and varying linearly in depth from 2 m at the left end

to 10 m at the right end (the open end) with the amplitude of the forcing

function A = 0.5 m, and the period of the forcing function T = 1 hour. The

program has been run for five different meshes with sr set to 0.98 and the

time step, δt, set to 30 seconds for the two coarsest meshes and the time step

set to 8 seconds for the other three meshes. The results of the program were

compared with the 1D analytical solutions. The basin as shown in Figures

5.1 and 5.2, has the following dimensions x1 = 2500 m, x2 = 12500 m,

h1 = 2 m and h2 = 10 m.

Five different finite element meshes have been used in order to investigate

the convergence of the method of solution. The first mesh has 6 nodes and

4 triangular elements, each triangle being a right-angled isosceles triangle

with the equal sides being 5000 metres in length. The mesh is called mesh

1 and is shown in Figure 5.3. The second mesh, called mesh 2, has 15

nodes and 16 triangular elements, each triangle being a right-angled isosceles

triangle with the equal sides being 2500 metres in length. Mesh 2 is shown in

Figure 5.4. The third mesh, called mesh 3, has 45 nodes and 64 triangular

elements, each triangle being a right-angled isosceles triangle with the equal

sides being 1250 metres in length. Mesh 3 is shown in Figure 5.5. The fourth

mesh, called mesh 4, has 153 nodes and 256 triangular elements, each triangle

being a right-angled isosceles triangle with the equal sides being 625 metres

in length. Mesh 4 is shown in Figure 5.6. The fifth mesh, called mesh 5, has

561 nodes and 1024 triangular elements, each triangle being a right-angled

isosceles triangle with the equal sides being 312.5 metres in length. Mesh 5
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Figure 5.3: Mesh 1
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Figure 5.4: Mesh 2

is shown in Figure 5.7. The second mesh has four times as many elements as

the first mesh, the third mesh has four times as many elements as the second

mesh, etc.

For each mesh the values of U , V and ζ at all the nodes were computed at

every time interval for a computed time of several days. The computed period

was chosen so that the initial transients have disappeared for a computed

period of two days. It was known that the initial transients have disappeared

from an analysis of the data using a FFT (Fast Fourier Transform) computer

program.

A FFT computer program was used to analyse results at selected nodes.
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Figure 5.5: Mesh 3
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Figure 5.6: Mesh 4
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Figure 5.7: Mesh 5

For meshes 1 to 4 these were the nodes along the left boundary, the right

boundary and the line parallel to the left boundary and right boundary and

midway between them. For mesh 5 the nodes were along the along the left

boundary, the right boundary and the line parallel to the left boundary and

right boundary and midway between them only up to the line parallel to and

midway between the bottom boundary and the top boundary. The FFT was

used to find the amplitude and phase for the sinusoidal functions of time of

ζ, U and V that remained at these nodes after the transients have died. The

FFT was applied at a selection of nodes, it being assumed that the results at

a substantial proportion of the nodes would give an indication of the results

for all the nodes. The FFT was applied to the data over 2 days. For meshes

1, 2 and 3 the FFT was applied to the data for a period from 4 days to

6 days. For meshes 4 and 5 the FFT was applied to the data for different

periods ranging from 2 days to 4 days up to 70 days to 72 days, a typical

value for the ζ and U values in mesh 4 being 18 to 20 days and for the V

values being 6 to 8 days, and a typical value for the ζ and U values in mesh
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5 being 70 to 72 days and for the V values being 2 to 4 days. In some cases

the FFT was applied to the data at a given node in a given mesh for more

than one period - for example the U values at node 1 in mesh 5 had the

FFT applied to them from 30 days to 32 days, from 32 to 34 days, and from

34 to 36 days - and in all cases where this had been done the results for

the amplitude and phase were either very close or the same. The results of

the FFT analyses are shown in Tables 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7,

5.8, 5.9, 5.10, 5.11, 5.12, 5.13, 5.14 and 5.15. The analytical phase for ζ at

the right boundary is 0◦ . The U velocity is out of phase from ζ at the right

boundary by −90◦ . All phases of ζ, U and V in the tables are given with

reference to the analytical phase for ζ at the right boundary.

The FFT results for the amplitude and phase of ζ, U and V at each

selected node were compared with the 1D SWES analytical solutions at the

given node. Tables 5.1 to 5.15 show these results, with ζ being in metres

and U and V in metres per second. The time steps used in calculating ζ,

U and V all satisfied the stability criterion used in equation (5.34). For the

two coarsest meshes, time steps of 30 seconds were used. For the finest three

meshes time steps of 8 seconds were used.

A comparison of the errors in water level, ζ, U -velocity, and V -velocity at

selected points in the rectangular bay is given in Tables 5.17 to 5.21, with

the error of any quantity defined as its computed value minus its analytical

value. The selected points (labelled O, P, Q, R, S, T, U, V and W) are

shown in Figure 5.8. The amplitudes and phase lags at these points for the

analytical shallow water model are shown in Table 5.16.

The graph of the analytical solution for ζ when the water is at its maxi-

mum height at the right hand boundary is shown in Figure 5.9. The graph

of the analytical solution for U when U has its maximum value at the right

hand boundary is shown in Figure 5.10.
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Figure 5.8: Selected points in the rectangular harbour. Dimensions are in

metres.
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Figure 5.9: The analytical solution for ζ at the time when ζ is a maximum

at the right boundary for a basin with dimensions x1 = 2500 m, x2 = 12500

m, h1 = 2 m, h2 = 10 m, A = 0.5 m and t = 3600 s. Dimensions of the x

axis are in metres.
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Figure 5.10: The analytical solution for U at the time when U is a maximum

at the right boundary for a basin with dimensions x1 = 2500 m, x2 = 12500

m, h1 = 2 m, h2 = 10 m, A = 0.5 m, and t = 3600 s. Dimensions of the x

axis are in metres.

From Tables 5.1, 5.2 and 5.3 it can be seen that at nodes 1, 6, 2 and 5 in

Mesh 1, the result for the computed SLM amplitude for the water level ζ is

of the right general shape, though significantly different from the analytical

value, with the percentage error ranging from 41% to 110%. Similarly, the

phase is significantly different, with the percentage error ranging from 174%

to 197%. As the analytical U -velocity amplitudes at nodes 1 and 6 are

zero, a percentage error cannot be calculated at these nodes. However, it

can be said that the error is substantial in absolute terms, being of the order

of 0.9 ms−1. At the other nodes the error ranges in value from 40% to

76%. The errors in the phase of the U -velocity range from 15% to 31%. As

the analytical V -velocity amplitude at all nodes is zero, a percentage error

cannot be calculated at these nodes. However, it can be said that the error

in absolute terms is substantial at most nodes, ranging from 0.00 8 ms−1 to

0.738 ms−1, the worst result being at the top left hand corner node.

From Tables 5.4, 5.5 and 5.6 it can be seen that the results for ζ in

Mesh 2 are an improvement on those in Mesh 1, with the percentage error for
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Table 5.1: Comparison of computed SLM and analytical values of the am-

plitude (m) and phase (degrees) of ζ for mesh 1.

Amplitude (m) Phase (degrees)

Node No. SLM Analytical SLM Analytical

1 0.687 1.173 -132.50 180

6 0.984 1.173 -174.60 180

2 0.646 0.307 143.57 180

5 0.443 0.307 154.19 180

Table 5.2: Comparison of computed SLM and analytical values of the am-

plitude (ms−1) and phase (degrees) of U for mesh 1.

Amplitude (ms−1) Phase (degrees)

Node No. SLM Analytical SLM Analytical

1 0.891 0.000 -29.72 -

6 0.857 0.000 -60.29 -

2 0.645 1.180 -61.69 -90

5 0.706 1.180 -76.29 -90

3 1.029 0.584 -115.23 -90

4 0.939 0.584 -113.00 -90
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Table 5.3: Comparison of computed SLM and analytical values of the am-

plitude (ms−1) and phase (degrees) of V for mesh 1.

Amplitude (m/s) Phase (degrees)

Node No. SLM Analytical SLM Analytical

1 0.261 0.000 37.46 -

6 0.738 0.000 52.86 -

2 0.232 0.000 -120.68 -

5 0.082 0.000 18.48 -

3 0.118 0.000 -115.54 -

4 0.008 0.000 9.30 -

the amplitude ranging from 3% to 43%. The error for the phase ranges from

1% to 30%. The errors in the U -velocity amplitude along the right hand

boundary and the central line parallel to this boundary are a substantial

improvement on the Mesh 1 values, ranging from 4% to 8%. Along the left

hand boundary the error is substantial, ranging from about 0.3 to 0.5 ms−1.

The error in the phase is small, ranging from 0.07% to 2%. For some nodes

the V -velocity is zero to 3 decimal places. The error is still significant at

nodes 1 and 11 along the left boundary, being 0.236 ms−1. At the other

nodes the error is small, ranging from .012 to .073 (ms−1). The results for

the amplitude of water level ζ and the velocities are accurate except along

the left hand boundary, where the errors in the velocity values are still quite

large. It can be seen that at any two nodes that are an equal distance from

the line which runs parallel to the x-axis and which is midway between the

top boundary and bottom boundary of the bay that the phases of the V -

velocities differ by 180◦ , whereas the amplitudes and phases of the water

level ζ and the U -velocity and the amplitude of the V -velocity are the same.

From Tables 5.7, 5.8 and 5.9 it can be seen that the results for ζ, U
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Table 5.4: Comparison of computed SLM and analytical values of the am-

plitude (m) and phase (degrees) of ζ for mesh 2.

Amplitude (m) Phase (degrees)

Node No. SLM Analytical SLM Analytical

1 1.206 1.173 -179.00 180

10 0.969 1.173 172.43 180

11 1.206 1.173 -179.00 180

3 0.173 0.307 126.45 180

8 0.236 0.307 99.64 180

13 0.173 0.307 126.45 180

Table 5.5: Comparison of computed SLM and analytical values of the am-

plitude (ms−1) and phase (degrees) of U for mesh 2.

Amplitude (m/s) Phase (degrees)

Node No. SLM Analytical SLM Analytical

1 0.529 0.000 -95.94 -

10 0.290 0.000 -146.70 -

11 0.529 0.000 -95.94 -

3 1.236 1.180 -91.59 -90

8 1.272 1.180 -89.94 -90

13 1.236 1.180 -91.59 -90

5 0.561 0.584 -89.56 -90

6 0.559 0.584 -88.95 -90

15 0.561 0.584 -89.56 -90
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Table 5.6: Comparison of computed SLM and analytical values of the am-

plitude (ms−1) and phase (degrees) of V for mesh 2.

Amplitude (m/s) Phase (degrees)

Node No. SLM Analytical SLM Analytical

1 0.236 0.000 -79.71 -

10 0.000 0.000 - -

11 0.236 0.000 100.29 -

3 0.073 0.000 -47.26 -

8 0.000 0.000 - -

13 0.073 0.000 132.75 -

5 0.012 0.000 154.84 -

6 0.000 0.000 - -

15 0.012 0.000 -25.17 -

and V in Mesh 3 are an improvement on those in Mesh 2. The errors in

the amplitude of ζ range from 0.26% to 7%. The errors in the phase of ζ

range from 1% up to 9%. The errors in the U -velocity amplitude are still

significant on the left hand boundary nodes, ranging from about .14 to .27

(ms−1). The errors in the phase range up to 7%. The errors in the V -velocity

amplitude are significant only at nodes 1 and 37, being .123 (ms−1). At the

other nodes the errors are small, ranging from 0 to 0.025 (ms−1). It can be

seen that along a line of nodes with the same x-values, inter-nodal oscillation

of amplitude and phase values occurs.

The calculations of amplitude and phase of ζ, U and V at various nodes

in Meshes 1, 2 and 3 were calculated using the FFT program for a period

from 4 days 8 seconds to 6 days. This calculation was repeated at some of

the nodes in the meshes for a period from 6 days 8 seconds to 8 days and the

same results were obtained for the amplitudes and phases.
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Table 5.7: Comparison of computed SLM and analytical values of the am-

plitude (m) and phase (degrees) of ζ for mesh 3.

Amplitude (m) Phase (degrees)

Node No. SLM Analytical SLM Analytical

1 1.170 1.173 178.32 180.00

18 1.113 1.173 175.97 180.00

19 1.182 1.173 179.07 180.00

36 1.113 1.173 175.97 180.00

37 1.170 1.173 178.32 180.00

5 0.289 0.307 166.37 180.00

14 0.293 0.307 164.62 180.00

23 0.287 0.307 166.54 180.00

32 0.293 0.307 164.62 180.00

41 0.289 0.307 166.37 180.00
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Table 5.8: Comparison of computed SLM and analytical values of the am-

plitude (ms−1) and phase (degrees) of U for mesh 3.

Amplitude (m/s) Phase (degrees)

Node No. SLM Analytical SLM Analytical

1 0.269 0.000 -99.96 -

18 0.141 0.000 -139.53 -

19 0.267 0.000 -100.26 -

36 0.141 0.000 -139.27 -

37 0.269 0.000 -99.96 -

5 1.180 1.180 -91.28 -90

14 1.185 1.180 -90.66 -90

23 1.184 1.180 -91.16 -90

32 1.185 1.180 -90.66 -90

41 1.180 1.180 -91.28 -90

9 0.559 0.584 -95.10 -90

10 0.546 0.584 -96.47 -90

27 0.557 0.584 -95.31 -90

28 0.546 0.584 -96.47 -90

45 0.559 0.584 -95.10 -90
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Table 5.9: Comparison of computed SLM and analytical values of the am-

plitude (ms−1) and phase (degrees) of V for mesh 3.

Amplitude (m/s) Phase (degrees)

Node No. SLM Analytical SLM Analytical

1 0.123 0.000 -99.27 -

18 0.025 0.000 96.93 -

19 0.000 0.000 - -

36 0.025 0.000 -83.07 -

37 0.123 0.000 80.73 -

5 0.010 0.000 -32.12 -

14 0.002 0.000 178.61 -

23 0.000 0.000 - -

32 0.002 0.000 -1.39 -

41 0.010 0.000 147.88 -

9 0.002 0.000 141.91 -

10 0.000 0.000 - -

27 0.000 0.000 - -

28 0.000 0.000 - -

45 0.002 0.000 -38.09 -
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From Tables 5.10, 5.11 and 5.12 it can be seen that the results for ζ, U

and V in Mesh 4 are an improvement on those in Mesh 3. The errors in the

amplitude of ζ range from 0.09% to 2%. The errors in the phase of ζ range

from 0.3% to 2%. The errors in U -velocity amplitude are significant only at

the left boundary nodes 1, 35, 69, 103 and 137, ranging from 0.083 to 0.095

ms−1. Elsewhere they are small, ranging from 0% to 4%. The errors in U

phase are small, ranging up to 2%. The errors in V -velocity amplitude are

significant only at nodes 1 and 137 (0.055 ms−1). Elsewhere the errors are

small, ranging from 0 to 0.016 ms−1.

From Tables 5.1 to 5.12 it can be seen that the values of ζ, U and V for

the nodes in meshes 1 to 4 are symmetric about the line that is parallel to

and midway between the bottom and top boundaries. For this reason, with

mesh 5 the nodes used for the FFT analysis were along the along the left

boundary, the right boundary and the line parallel to the left boundary and

right boundary and midway between them only up to the line parallel to and

midway between the bottom boundary and the top boundary.

From Tables 5.13, 5.14 and 5.15 it can be seen that the results for Mesh

5 are an improvement on those in Mesh 4, with no significant errors at any

points, the most significant being 0.032 ms−1 for the U -velocity at node 1

(and, by the symmetry that was shown to exist in previous meshes, at node

529).

The Tables 5.17, 5.18 5.19, 5.20 and 5.21 show how the errors have

gradually decreased with an increased number of elements, with the worst

results being for the U -velocity along the left boundary. As there is no value

for the analytical phase of the U -velocity at the left boundary and no value

for the analytical phase of the V -velocity at all nodes, no error values are

shown in the tables for these cases. It took a long period of time to get rid

of the transients in the FFT analysis of data, ranging from 2 days (48 time
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Table 5.10: Comparison of computed SLM and analytical values of the am-

plitude (m) and phase (degrees) of ζ for mesh 4.

Amplitude (m) Phase (degrees)

Node No. SLM Analytical SLM Analytical

1 1.172 1.173 179.30 180

34 1.155 1.173 179.23 180

35 1.177 1.173 179.41 180

68 1.151 1.173 179.15 180

69 1.179 1.173 179.46 180

102 1.151 1.173 179.15 180

103 1.177 1.173 179.41 180

136 1.155 1.173 179.23 180

137 1.172 1.173 179.30 180

9 0.300 0.307 176.51 180

26 0.301 0.307 176.29 180

43 0.300 0.307 176.57 180

60 0.301 0.307 176.06 180

77 0.300 0.307 176.59 180

94 0.301 0.307 176.06 180

111 0.300 0.307 176.57 180

128 0.301 0.307 176.29 180

145 0.300 0.307 176.51 180
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Table 5.11: Comparison of computed SLM and analytical values of the am-

plitude (ms−1) and phase (degrees) of U for mesh 4.

Amplitude (m/s) Phase (degrees)

Node No. SLM Analytical SLM Analytical

1 0.095 0.000 -101.46 -

34 0.031 0.000 -149.92 -

35 0.086 0.000 -109.25 -

68 0.017 0.000 -154.29 -

69 0.083 0.000 -110.14 -

102 0.017 0.000 -154.29 -

103 0.086 0.000 -109.25 -

136 0.031 0.000 -149.92 -

137 0.095 0.000 -101.46 -

9 1.180 1.180 -90.32 -90

26 1.181 1.180 -90.17 -90

43 1.180 1.180 -90.31 -90

60 1.181 1.180 -90.15 -90

77 1.180 1.180 -90.30 -90

94 1.181 1.180 -90.15 -90

111 1.180 1.180 -90.31 -90

128 1.181 1.180 -90.17 -90

145 1.180 1.180 -90.32 -90

17 0.577 0.584 -91.04 -90

18 0.570 0.584 -91.71 -90

51 0.576 0.584 -91.24 -90

52 0.572 0.584 -91.55 -90

85 0.576 0.584 -91.25 -90

86 0.572 0.584 -91.55 -90

119 0.576 0.584 -91.24 -90

120 0.570 0.584 -91.71 -90

153 0.577 0.584 -91.04 -90
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Table 5.12: Comparison of computed SLM and analytical values of the am-

plitude (ms−1) and phase (degrees) of V for mesh 4.

Amplitude (m/s) Phase (degrees)

Node No. SLM Analytical SLM Analytical

1 0.055 0.000 -124.55 -

34 0.016 0.000 72.46 -

35 0.012 0.000 -106.77 -

68 0.006 0.000 85.82 -

69 0.000 0.000 - -

102 0.006 0.000 -94.18 -

103 0.012 0.000 83.23 -

136 0.016 0.000 -107.54 -

137 0.055 0.000 -65.45 -

9 0.003 0.000 -34.35 -

43 0.002 0.000 -25.90 -

77 0.000 0.000 - -

17 0.001 0.000 139.42 -

51 0.000 0.000 - -

85 0.000 0.000 - -
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Table 5.13: Comparison of computed SLM and analytical values of the am-

plitude (m) and phase (degrees) of ζ for mesh 5.

Amplitude (m) Phase (degrees)

Node No. SLM Analytical SLM Analytical

1 1.172 1.173 179.80 180.00

66 1.169 1.173 179.84 180.00

67 1.173 1.173 179.80 180.00

132 1.168 1.173 179.83 180.00

133 1.174 1.173 179.82 180.00

198 1.167 1.173 179.82 180.00

199 1.174 1.173 179.83 180.00

264 1.167 1.173 179.11 180.00

265 1.174 1.173 179.09 180.00

17 0.305 0.307 179.11 180.00

50 0.305 0.307 179.09 180.00

83 0.305 0.307 179.12 180.00

116 0.305 0.307 179.04 180.00

149 0.305 0.307 179.13 180.00

182 0.305 0.307 179.02 180.00

215 0.305 0.307 179.13 180.00

248 0.305 0.307 179.00 180.00

281 0.305 0.307 179.14 180.00
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Table 5.14: Comparison of computed SLM and analytical values of the am-

plitude (ms−1) and phase (degrees) of U for mesh 5.

Amplitude (m/s) Phase (degrees)

Node No. SLM Analytical SLM Analytical

11 0.032 0.000 -97.54 -

66 0.009 0.000 -84.60 -

67 0.024 0.000 -111.85 -

132 0.003 0.000 -146.73 -

133 0.022 0.000 -114.13 -

198 0.003 0.000 -134.24 -

199 0.022 0.000 -115.45 -

264 0.003 0.000 -131.97 -

265 0.022 0.000 -115.77 -

17 1.180 1.180 -90.08 -90.00

50 1.180 1.180 -90.04 -90.00

83 1.180 1.180 -90.08 -90.00

116 1.180 1.180 -90.04 -90.00

149 1.180 1.180 -90.08 -90.00

182 1.180 1.180 -90.03 -90.00

215 1.180 1.180 -90.07 -90.00

248 1.180 1.180 -90.03 -90.00

281 1.180 1.180 -90.07 -90.00

33 0.583 0.584 -90.16 -90.00

34 0.580 0.584 -90.50 -90.00

99 0.582 0.584 -90.28 -90.00

100 0.580 0.584 -90.41 -90.00

165 0.582 0.584 -90.30 -90.00

166 0.581 0.584 -90.38 -90.00

231 0.582 0.584 -90.30 -90.00

232 0.581 0.584 -90.36 -90.00

297 0.582 0.584 -90.30 -90.00
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Table 5.15: Comparison of computed SLM and analytical values of the am-

plitude (ms−1) and phase (degrees) of V for mesh 5.

Amplitude (m/s) Phase (degrees)

Node No. SLM Analytical SLM Analytical

1 0.020 0.000 -139.44 -

66 0.006 0.000 61.54 -

67 0.006 0.000 -115.53 -

132 0.005 0.000 79.31 -

133 0.003 0.000 -104.53 -

198 0.003 0.000 90.75 -

199 0.002 0.000 -100.63 -

264 0.000 0.000 - -

265 0.000 0.000 - -

17 0.000 0.000 - -

149 0.000 0.000 - -

281 0.000 0.000 - -

33 0.000 0.000 - -

165 0.000 0.000 - -

297 0.000 0.000 - -
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Table 5.16: Amplitudes and phase lags for the analytical shallow water model

Water level (ζ) (m) U -velocity (ms−1) V -velocity(ms−1)

Node No. Amp (m) Phase (◦) Amp (m/s) Phase (◦) Amp (m/s) Phase (◦)

O 1.173 180.00 0.000 - 0.000 -

P 1.173 180.00 0.000 - 0.000 -

Q 1.173 180.00 0.000 - 0.000 -

R 0.307 180.00 1.180 -90.00 0.000 -

S 0.307 180.00 1.180 -90.00 0.000 -

T 0.307 180.00 1.180 -90.00 0.000 -

U 0.500 0.00 0.584 -90.00 0.000 -

V 0.500 0.00 0.584 -90.00 0.000 -

W 0.500 0.00 0.584 -90.00 0.000 -

periods) to 70 days (1680 time periods).

In addition, the FFT results for the amplitude and phase of ζ at nodes

1 and 9 in Mesh 4 were calculated using different values of sr (the selective

lumping parameter) with a time step of 8 seconds. The results are shown in

Tables 5.22 and 5.23. At node 1 the analytical amplitude is 1.173 metres

and the analytical phase is 180 degrees, whereas at node 9 the analytical

amplitude is 0.307 metres and the analytical phase is 180 degrees.

The best results for the amplitude of ζ at node 1 in mesh 4 were obtained

when sr was 0.97 (to 4 decimal places the amplitude was 1.1718 for sr equal

to 0.97 and 1.1716 for sr equal to 0.98) and the best results for phase are

obtained when sr is 0.98. The least satisfactory results are obtained for sr

equal to zero where the error is 15%.

The best results for the amplitude of ζ at node 9 in mesh 4 were obtained

for sr equal to 0.9 (to 4 decimal places the error is 0.0007 for sr equal to 0.9

and 0.0010 for sr equal to 0.89). The least satisfactory results were obtained
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Table 5.17: Error in amplitudes (m) for the water level (ζ)

Mesh

Node 6 node 15 node 45 node 153 node 561 node

O -0.486 -0.033 -0.002 -0.001 -0.001

P n.a n.a -0.060 0.004 0.001

Q n.a -0.204 0.010 0.006 0.002

R 0.339 -0.134 -0.018 -0.006 -0.002

S n.a n.a -0.014 -0.007 -0.002

T n.a -0.070 -0.019 -0.007 -0.002

Table 5.18: Error in the phase lags (degrees) for water level (ζ)

Mesh

Node 6 node 15 node 45 node 153 node 561 node

O -37.50 1.00 -1.68 -0.70 -0.20

P n.a. n.a. -4.03 -0.59 -0.19

Q n.a. -7.57 -0.93 -0.54 -0.17

R -36.44 -53.55 -13.63 -3.49 -0.89

S n.a. n.a. -15.38 -3.43 -0.87

T n.a. -80.36 -13.46 -3.41 -0.86
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Table 5.19: Error in the amplitudes (ms−1) for U -velocity

Mesh

Node 6 node 15 node 45 node 153 node 561 node

O 0.891 0.529 0.269 0.095 0.031

P n.a. n.a. 0.141 0.086 0.022

Q n.a. 0.290 0.267 0.083 0.022

R -0.535 0.056 -0.002 -0.001 0.000

S n.a. n.a. 0.005 0.000 0.000

T n.a. 0.092 0.003 0.000 0.000

U 0.445 -0.023 -0.025 -0.007 -0.001

V n.a. n.a. -0.038 -0.008 -0.002

W n.a. -0.025 -0.027 -0.009 -0.002

Table 5.20: Error in phase lags (degrees) for U -velocity

Mesh

Node 6 node 15 node 45 node 153 node 561 node

R 28.31 -1.59 -1.28 -0.32 -0.08

S n.a. n.a. -0.66 -0.31 -0.08

T n.a. 0.06 -1.16 -0.30 -0.07

U -25.23 0.44 -5.10 -1.04 -0.16

V n.a. n.a. -6.47 -1.24 -0.30

W n.a. 1.05 -5.31 -1.25 -0.30
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Table 5.21: Error in the amplitudes (ms−1) for V -velocity

Mesh

Node 6 node 15 node 45 node 153 node 561 node

O 0.261 0.236 0.123 0.055 0.020

P n.a. n.a. 0.025 0.012 0.003

Q n.a. 0.003 0.000 0.000 0.000

R 0.232 0.073 0.010 0.003 0.000

S n.a. n.a. 0.003 0.002 0.000

T n.a. 0.000 0.000 0.000 0.000

U 0.118 0.012 0.002 0.001 0.000

V n.a. n.a. 0.000 0.000 0.000

W n.a. 0.000 0.000 0.000 0.000

for sr equal to 0.0, where the error is 45%.

5.3.4 Conclusions

It was found that when the selective lumped matrix method was used to ap-

proximate the shallow water equations for a particular region with particular

boundary conditions that the larger the number of elements used to cover

the domain of interest the closer the computed results for ζ, U and V and

get to the analytical results. This can be seen by comparing the results from

Tables 1, 2, 3, 4 and 5 and looking at Tables 7, 8 and 9. It is only with

Mesh 5, with 561 nodes and 1024 elements, that the errors in ζ, U and V at

all the nodes examined can said to be insignificant. The results support the

conclusions of Kawahara, Hirano and Tsubota [46] that about 40 elements

per half of a wavelength are required to obtain accurate results using the

SLM method. The finer the grid, the larger the number of time steps before

transients are eliminated and satisfactory results obtained.
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Table 5.22: The values of the computed amplitude and phase of ζ at node

1 in mesh 4 for different values of sr (time step: δt = 8 s ). The analytical

amplitude is 1.173 m. The analytical phase is 180 degrees.

Value of sr Computed SLM Computed SLM Period of days

ζ amplitude (m) ζ phase (degrees ) over which FFT

was calculated

0.000 0.999 156.01 18-20

0.100 1.023 158.27 18-20

0.200 1.047 160.55 18-20

0.300 1.070 162.84 18-20

0.400 1.092 165.15 18-20

0.500 1.112 167.51 18-20

0.600 1.130 169.93 18-20

0.700 1.144 172.45 18-20

0.800 1.155 175.06 18-20

0.900 1.166 177.61 18-20

0.960 1.171 178.92 18-20

0.970 1.172 179.11 18-20

0.980 1.172 179.30 18-20

0.985 1.171 179.39 38-40

0.990 1.170 179.46 38-40

1.000 Diverges Diverges -
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Table 5.23: The values of the computed amplitude and phase of ζ at node

9 in Mesh 4 for different values of sr (time step: δt = 8 s). The analytical

amplitude is 0.307 m. The analytical phase is 180 degrees.

Value of sr Computed SLM Computed SLM Period of days

ζ amplitude (m) ζ phase (degrees ) over which FFT

was calculated

0.00 0.444 124.07 18-20

0.10 0.438 126.46 18-20

0.20 0.430 129.06 18-20

0.30 0.419 131.95 18-20

0.40 0.406 135.23 18-20

0.50 0.390 139.06 18-20

0.60 0.371 143.71 18-20

0.70 0.349 149.55 18-20

0.80 0.326 157.14 18-20

0.89 0.308 166.03 18-20

0.90 0.306 167.16 18-20

0.98 0.300 176.51 18-20

0.99 0.298 176.63 38-40

1.00 Diverges Diverges -
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Figure 5.11: Rectangular basin in which nonlinear shallow water flow is forced

by a specified water level, ζS, at the boundary.

The best results for the lumping mass parameter, sr, were when sr was

in the range 0.9 to less than 1. In contrast, Kawahara, Hirano and Tsubota

[46] obtained the best results for sr between 0.85 and 0.95.

5.4 Testing the numerical model against a

fixed boundary nonlinear analytical model

Testing of the analytical solutions found in Chapter 4 for nonlinear shallow

water flow in a rectangular harbour against SLM solutions shows the results

to be close.

The flow was in a rectangular basin of width 60,000 m and length 120000

m and of constant depth 40 m (see Figure 5.11). The flow is forced at the

right hand side open sea boundary by a specified water level, ζS, which is a

cosine function of time, with amplitude 0.5 m and period 12 hours.

The finite element mesh used had 1024 nodes and 561 triangles. The

numerical parameters used were sr = 0.98 and δt = 50 seconds.

A comparison of the numerical and analytical values is given in Tables 5.24

and 5.25. It can be seen that the numerical results are in close agreement
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Table 5.24: Comparison of the analytical values for ζ, (amplitudes in m,

phases in degrees and periods in hours), at two nodes, with the numerical

values.

Node Analytical Numerical

Solution Solution

Period Amp Phase Amp Phase

A 12 0.786 0.00 0.786 0.01

6 0.026 0.00 0.026 -0.36

Zero 0.002 - 0.002 -

frequency

B 12 0.711 0.00 0.711 0.02

6 0.019 0.00 0.019 -0.34

Zero 0.002 - 0.002 -

frequency

with the analytical results.
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Table 5.25: Comparison of the analytical values for U -velocity, (amplitudes

in ms−1 and phases, for sine waves, in degrees) at three nodes, with the

numerical values.

nodes Analytical Numerical Solution

Solution

Period Amp Phase Amp Phase

A 12 0.000 - 0.000 -

6 0.000 - 0.000 -

B 12 0.166 0.00 0.166 0.07

6 0.009 0.00 0.009 -0.31

C 12 0.300 0.00 0.300 0.02

6 0.013 0.00 0.013 -0.29
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Chapter 6

A new moving boundary

numerical scheme

6.1 Introduction

This chapter presents the details of the development of a moving boundary

shallow water wave equation numerical model. The model is adapted from

the SLM (Selective Lumped Mass) numerical scheme of Kawahara, Hirano

and Tsubota [46, 47], which was discussed in detail in Chapter 5. The SLM

scheme is finite element in space, using fixed triangular elements. It is finite

difference in time and is explicit. The wetting and drying algorithm in the

model is different to that of Kawahara, Hirano and Tsubota.

The two-dimensional depth-averaged shallow water wave equations that

Kawahara, Hirano and Tsubota solve are equations (2.1) and (2.2), modified

to exclude the wind stress terms, plus equation (2.3). The resultant equations

are the conservation of momentum equation in the East direction

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
− fV − ν

(
∂2U

∂x2
+

∂2U

∂y2

)
+ τU + g

∂ζ

∂x
= 0, (6.1)

154



the conservation of momentum equation in the North direction

∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
+ fU − ν

(
∂2V

∂x2
+

∂2V

∂y2

)
+ τV + g

∂ζ

∂y
= 0, (6.2)

and the continuity (conservation of mass) equation

∂ζ

∂t
+

∂(h + ζ)U

∂x
+

∂(h + ζ)V

∂y
= 0. (6.3)

In the wetting and drying scheme of Kawahara, Hirano and Tsubota at

each node i of a finite element that is in the domain of computation the water

elevation, ζ, and velocity components, U and V , are calculated at the end of

each half time step. There are three possible outcomes:

(i) for each node in an element the total depth, Hi > 0 ;

(ii) at least one value of Hi is Hi > 0 and the rest of Hi have Hi ≤ 0; and

(iii) all values of Hi are Hi ≤ 0 .

In case (i), the element is taken to be under water. In case (ii), at any

nodal point at which Hi > 0, the water elevation, ζi, and the current velocity

are computed and at nodal points at which Hi ≤ 0 the water elevation is

computed but the current velocity is treated as zero. In case (iii) the element

is on the exposed sea bed and is omitted from the computation.

In the scheme of Kawahara, Hirano and Tsubota a node which has a

negative total water depth can sometimes be retained in the calculation. As

a negative total water depth is physically unrealistic, in this thesis if a node

is found to have a total water depth Hi ≤ 0 then the node is regarded as dry.

Kawahara, Hirano and Tsubota do not discuss certain aspects of their

calculations:

(a) whether all the nodes at t = 0 are subject to a cold start (e.g. if a node

whose depth is above sea level has an initial zero water level this implies that

the water is initially underground);

(b) how they decide when a previously dry element becomes wet plus what

height the water becomes at a previously dry node that has become wetted;
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(c) how they deal with the problem that the quadratic friction (which appears

in the momentum equations), which is inversely proportional to Hi , becomes

infinite at the shoreline, where Hi equals zero. Section 6.2 discusses how these

aspects are dealt with in this thesis.

6.2 The moving boundary numerical model

In the moving boundary model, a critical decision on whether a node is dry

or wet must be made at the end of each time step δt. Some nodes will be

initially made wet while others will be initially made dry. Some nodes will

change from dry to wet or wet to dry at the end of a time step, while some

nodes will remain wet or remain dry. There will be wet and dry elements,

with an element being wet if all the nodes are wet and dry if at least one node

is dry. At any time step or half time step the SLM calculations will be made

only for elements that were wet at the end of the last time step. If the total

water depth, H, is calculated as less than or equal to 0 at the end of a time

step it is reset to 0 and the node is regarded as inactive (i.e. dry) and the

velocity set to zero and the triangle that it is in is removed from calculations.

As H equals ζ plus h ζ is set to −h at a node which changes from wet to

dry. If the total water depth at a previously wet node is calculated as less

than or equal to zero at the end of a half time step ζ is set to −h and the

velocity is set to zero, but the node is still deemed wet.

As was said in the previous section, Kawahara, Hirano and Tsubota do

not discuss certain aspects of their calculations. Aspect (a) is dealt with in

this thesis as follows. If the initial values of ζi , ui and vi are not known

then nodes not on the open sea boundary and with positive or zero values

of hi at time t are subject to a cold start. Nodes that are above mean sea

level (i.e. with hi < 0) are not given a cold start, because as Hi = hi + ζi, a
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cold start for nodes above mean sea level would imply that Hi < 0 , which

is unrealistic. Nodes that are at or above mean sea level are regarded as dry

at time t = 0; other nodes are regarded as wet. On the other hand, if the

initial values of ζi , Ui and Vi are known they will be used in the numerical

model, with a node initially wet only if Hi is positive.

Aspect (b) is dealt with in this thesis as follows. At the end of each time

step each element that contains only one inactive (dry) node will be tested

to determine whether conditions are favourable for wetting that node. A

formula for calculating ζ at the previously dry node at time t+ δt was devel-

oped by the author of this thesis. The formula is based on the approximation

δζ ≈ ∂ζ
∂x

δx + ∂ζ
∂y

δy and the momentum equations (with the assumption that

the advective, Coriolis and eddy viscosity terms are negligible). The formula

is

ζt+δt
i = ζt+δt

i−1 − δx

g

(
U t+δt

i−1 − U t
i−1

δt
+ τi−1U

t+δt
i−1

)

−δy

g

(
V t+δt

i−1 − V t
i−1

δt
+ τi−1V

t+δt
i−1

)
, (6.4)

where ζi is the water elevation of the previously dry node and ζi−1 is the

larger water elevation of the two previously wet nodes in the element. If ζi

is found to be greater than −hi (i.e. the total depth, Hi , is positive) then

the node wets; otherwise it stays dry. If the node wets then the velocity at

node i will be set equal to that at node i− 1 .

Aspect (c) is dealt with in this thesis as follows (following Bills and Noye

[8]). In calculating quadratic friction, H, the total depth in the quadratic

friction term, is replaced by another term, Hf . If H is less than some mini-

mum value, Hmin (e.g. 1.0 m), Hf equals Hmin; otherwise Hf equals H.
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6.3 Testing the numerical model

The moving boundary numerical model, which was implemented using a

program written in Visual C++ by the author of this thesis, which is listed

in Appendix A, was tested against two moving boundary analytical solutions

presented earlier in this thesis, in Chapter 3.

6.3.1 The first analytical solution used for comparison

The moving boundary numerical model was first tested against an analytical

solution for shallow water frictionless flow with no eddy viscosity and with

no Coriolis force and with cosine forcing in a bed with quadratically varying

depth. This solution was derived in subsection 3.7.2. The bed has its depth,

h, below the x-axis, given by

h = h0

(
1 − x2

a2

)
, x ≥ 0. (6.5)

The forcing occurs at x = 0 and is given by

ζ(0, t) =
−B2 cos 2ψt

4g
, (6.6)

where

ψ =

√
2gh0

a
(6.7)

and B is a constant. The analytical solution for the water level, ζ, is

ζ(x, t) =
−B2 cos 2ψt

4g
− (ψB cos ψt)x

g
(6.8)

and for the velocity U is

U = B sin ψt. (6.9)

The x-coordinate of the shoreline is given by

x = a

√
1 +

B2

4gh0

− Ba√
2gh0

cos

√
2gh0t

a
. (6.10)
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Figure 6.1: A vertical cross-section of the initial position of the water for

frictionless flow above a bed with quadratically varying depth for h0 = 10 m,

a = 3000 m and B = 2 ms−1.

6.3.2 The first analytical solution versus the numerical

solution

For the numerical model the values chosen were h0 = 10 m, a = 3000 m and

B = 2 ms−1 with the initial values of ζ and U set to those of the analytical

model. The initial position of the water surface above the bed is shown in

Figure 6.1. The initial water velocity was set to the analytical initial water

velocity (0 m/s). At the open water boundary, at x = 0, the water level

was specified as the same function of time as in the analytical model. The

calculation was done over one period (1345.71 seconds).

In the numerical model three different triangular meshes were used, each

one covering a rectangular region of length 4320 m in the x direction but with

different widths, i.e. in the y direction. The width of the rectangular region

used in the first and coarsest mesh, Mesh 1, was 2160 metres. The width

of the second mesh, Mesh 2, which was finer than Mesh 1, was 720 metres.

The width of the finest mesh, Mesh 3, was 240 metres. The coordinates,
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Figure 6.2: The second triangular mesh, Mesh 2, used in the numerical model

of the flow.

node numbers and triangle numbers in each mesh were generated using a

program written in Visual C++ by the author of this thesis that is listed in

Appendix B. The meshes were plotted using a Mathematica package. Each

triangle in each mesh is an isosceles right angled triangle. Mesh 1 has 561

nodes and 1024 elements. Mesh 2, shown in Figure 6.2, has 1649 nodes and

3072 elements. Mesh 3 contains 4913 nodes and 9216 elements.

As the velocity in the analytical solution is a function of t only, the

advective terms are zero; for this reason with with each mesh the model was

initially run without the advective terms, for one period, T , 1345.71 seconds.

It was found that the finer the mesh overall the more accurate the results at

a number of nodes of varying x-values at different times for water height, ζ,

and U -velocity. An indication of the convergence is given by comparing the

numerical values of the amplitudes and phases of ζ, U and V (obtained using

a Fast Fourier Transform package) at a number of nodes of different x-values,

the nodes all lying along a line that runs parallel to the x-axis and is midway

between the base of the rectangle and the top of the rectangle. In general,

the finer the mesh the better overall the results for amplitude and phase. The

best results for mesh 1 were for δt = 3.11 s and sr = 0.875, for mesh 2 were

for δt = 0.195 s and sr = 0.944, and for mesh 3 were for δt = 0.195 s and

sr = 0.7. Table 6.1 compares the analytical values for amplitude and phase

of water height, ζ, at three x-values against the numerical nonadvective flow
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Table 6.1: Comparison of the analytical values for water height, ζ (amplitudes

in m and phases, for cosine waves, in degrees), at three x-values, with the

numerical values for three different meshes for nonadvective flow.

x-values Analytical Mesh 1 Mesh 2 Mesh 3

Solution

Period Amp Phase Amp Phase Amp Phase Amp Phase

x=1080 m 1345.71 1.028 0 1.031 -5.7 1.016 -2.0 1.020 -0.7

678.86 0.102 0 0.119 16.2 0.122 9.5 0.118 4.5

Zero 0 - 0.032 - 0.011 - 0.004 -

frequency

x=2025 m 1345.71 1.928 0 1.912 -5.8 1.897 -2.0 1.905 -0.7

678.86 0.102 0 0.082 12.7 0.109 8.5 0.111 4.4

Zero 0 - 0.057 - 0.017 - 0.006 -

frequency

x=2565 m 1345.71 2.442 0 2.375 -5.6 2.386 -1.8 2.406 -0.6

678.86 0.102 0 0.005 212.7 0.063 9.1 0.084 5.2

Zero 0 - 0.069 - 0.022 - 0.006 -

frequency

values for three different meshes, while Table 6.2 compares values of the u-

velocity. The last set of values, for x = 2565 m, is for nodes close to the

region of wetting and drying.

A comparison of the numerical (without advection) and analytical values

of the water surface at times T/2 and T for Mesh 3 is shown in the graphs

in Figures 6.3 and 6.4. A plot of the numerical (without advection) and

analytical values of the x-coordinate of the shoreline as a function of time

over one period for Mesh 3 is shown in Figure 6.5. It can be seen that the

analytical and numerical solutions were in good agreement.
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Table 6.2: Comparison of the analytical values for U -velocity, (amplitudes

in ms−1 and phases, for sine waves, in degrees), at three x-values, with the

numerical values for three different meshes 3 for nonadvective flow.

x-values Analytical Mesh 1 Mesh 2 Mesh 3

Solution

Period Amp Phase Amp Phase Amp Phase Amp Phase

x=0 m 1345.71 2.000 0.0 1.912 -5.8 1.940 -2.0 1.969 -0.7

x=1080 m 1345.71 2.000 0.0 1.873 -6.3 1.934 -2.1 1.966 -0.7

x=2025 m 1345.71 2.000 0.0 1.796 -6.4 1.907 -2.0 1.955 -0.7

x=2565 m 1345.71 2.000 0.0 1.528 -5.3 1.803 0.0 1.909 1.0
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Figure 6.3: A comparison of the numerical (nonadvective flow) and analytical

values of the water surface at time t = T/2. The analytical solution is a

continuous line whereas the numerical solution is a dashed line.
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Figure 6.4: A comparison of the numerical (nonadvective flow) and analytical

values of the water surface at time t = T . The analytical solution is a

continuous line whereas the numerical solution is a dashed line.
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Figure 6.5: A plot of the numerical (nonadvective flow) and analytical values

of the x-coordinate of the shoreline as a function of time. The analytical

solution is a continuous curve while the numerical solution is a number of

black dots.
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After the model was run without the advective terms, the model was

run with the advective terms with the finest mesh only for one period, T

(1345.71 seconds); better results overall were obtained using advective terms

than were found without the advective terms. The best results for advective

flow in mesh 3 were found for with sr=.95 and δt=.195 s. The numerical

values of the amplitudes and phases of the water level (obtained using a Fast

Fourier Transform package) are compared with the analytical values at three

different nodes in Table 6.3. It can be seen that the values are in reasonable

agreement. The next table, Table 6.4, shows results for U -velocity at four

nodes in Mesh 3 for advective flow.

The results for mesh 3 advective flow only are presented in the rest of

this section. The values of water elevation and velocity discussed below

are for nodes sitting on a line parallel to the base of the rectangular region

and half way between the base and top of the region. A comparison of the

numerical (with advection) and analytical values of the water level, ζ, at

times t = T/8, T/4, 3T/8, T/2, 5T/8, 3T/4, 7T/8 and T respectively for mesh

3 is shown in the graphs in Figures 6.6, 6.7, 6.8, 6.9, 6.10, 6.11, 6.12 and

6.13. In each figure the analytical solution is a continuous line whereas the

numerical solution is a series of dashed lines. At all the time steps there is

good agreement.

A plot of the numerical (with advection) and analytical values of the x-

coordinate of the shoreline as a function of time over one period for mesh 3 is

shown in Figure 6.14. The analytical solution is a continuous curve while the

numerical solution is a series of dots. As can be seen there is good agreement

between the analytical and numerical values. Presumably a finer mesh would

give even better results. Comparison of Figures 6.5 (for nonadvective flow)

and Figure 6.14 (for advective flow) shows that the latter gives slightly better

results particularly towards the end of the period.
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Table 6.3: Comparison of the analytical values for ζ (amplitudes in metres

and phases, for cosine waves, in degrees), at three x-values, with the numer-

ical values for Mesh 3 for advective flow.

x-values Analytical Mesh 3

Solution

Period Amp Phase Amp Phase

x=1080 m 1345.71 1.028 0 1.038 -0.6

678.86 0.102 0 0.095 3.5

Zero 0 - 0.003 -

frequency

x=2025 m 1345.71 1.928 0 1.943 -0.4

678.86 0.102 0 0.098 -2.0

Zero 0 - 0.000 -

frequency

x=2565 m 1345.71 2.442 0 2.453 -0.4

678.86 0.102 0 0.101 -8.4

Zero 0 - 0.003 -

frequency
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Table 6.4: Comparison of the analytical values for U -velocity, (amplitudes

in ms−1 and phases, for sine waves, in degrees), at three x-values, with the

numerical values for Mesh 3 for advective flow.

x-values Analytical Mesh 3

Solution

Period Amp Phase Amp Phase

x=0 m 1345.71 2.000 0.0 2.024 1.3

x=1080 m 1345.71 2.000 0.0 2.001 -0.3

x=2025 m 1345.71 2.000 0.0 1.992 -0.3

x=2565 m 1345.71 2.000 0.0 1.954 0.1
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Figure 6.6: A comparison of the numerical (advective flow) and analytical

values of the water surface at time t = T/8. The analytical solution is a

continuous line whereas the numerical solution is a dashed line.
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Figure 6.7: A comparison of the numerical (advective flow) and analytical

values of the water surface at time t = T/4. The analytical solution is a

continuous line whereas the numerical solution is a dashed line.
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Figure 6.8: A comparison of the numerical (advective flow) and analytical

values of the water surface at time t = 3T/8. The analytical solution is a

continuous line whereas the numerical solution is a dashed line.

169



1000 2000 3000 4000
x HmL

-5

0

5

10

Ζ HmL

Figure 6.9: A comparison of the numerical (advective flow) and analytical

values of the water surface at time t = T/2. The analytical solution is a

continuous line whereas the numerical solution is a dashed line.
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Figure 6.10: A comparison of the numerical (advective flow) and analytical

values of the water surface at time t = 5T/8. The analytical solution is a

continuous line whereas the numerical solution is a dashed line.
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Figure 6.11: A comparison of the numerical (advective flow) and analytical

values of the water surface at time t = 3T/4. The analytical solution is a

continuous line whereas the numerical solution is a dashed line.
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Figure 6.12: A comparison of the numerical (advective flow) and analytical

values of the water surface at time t = 7T/8. The analytical solution is a

continuous line whereas the numerical solution is a dashed line.
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Figure 6.13: A comparison of the numerical (advective flow) and analytical

values of the water surface at time t = T . The analytical solution is a

continuous line whereas the numerical solution is a dashed line.
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Figure 6.14: The numerical (advective flow) x-coordinate of the shoreline

against time plotted together with the analytical x-coordinate of the shore-

line against time. The analytical solution is a continuous curve while the

numerical solution is a series of black dots.
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A graphical comparison of the numerical and analytical values for ζ, the

water height above the x-axis, against time over one period at three nodes

sitting on a line parallel to the base of the rectangular mesh 3 region and

half way between the base and top of the region (for x = 750 m, x = 1500

m and x = 2250 m) are shown respectively in Figures 6.15, 6.16 and 6.17.

It can be seen that in each graph that the values are close.

A graphical comparison of the numerical and analytical values for the

U -velocity against time at four mesh 3 nodes sitting on a line parallel to the

base of the rectangular region and half way between the base and top of the

region (for x = 0 m, x = 750 m, x = 1500 m and x = 2250 m) are shown

respectively in Figures 6.18, 6.19, 1 6.20 and 6.21. It can be seen that the

values are close. The closer a node is to the left hand side of the mesh, the

closer the numerical values are to the analytical values.

The graph in Figure 6.22 compares the analytical U -velocity against the

numerical U -velocity (using the advective scheme) at time t = T/4. It shows

good agreement.

6.3.3 The second analytical solution used for compar-

ison

The moving boundary numerical model was secondly tested against an ana-

lytical solution for shallow water linear frictional flow with no eddy viscosity

and with no Coriolis force and with forcing which decays over time in a bed

with quadratically varying depth. This solution was derived in subsection

3.7.3. The bed has its depth below the x-axis given by

h = h0

(
1 − x2

a2

)
, x ≥ 0. (6.11)
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Figure 6.15: The numerical (advective flow) water level against time plotted

together with the analytical zeta against time at a node at x = 750 m and

midway between the top and bottom boundary of Mesh 3, with the numerical

plot a series of dots and the analytical plot a continuous line.
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Figure 6.16: The numerical (advective flow) water level against time plotted

together with the analytical zeta against time at a node at x = 1500 m and

midway between the top and bottom boundary of Mesh 3, with the numerical

plot a series of dots and the analytical plot a continuous line.
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Figure 6.17: The numerical (advective flow) water level against time plotted

together with the analytical zeta against time at a node at x = 2250 m and

midway between the top and bottom boundary of Mesh 3, with the numerical

plot a series of dots and the analytical plot a continuous line.
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Figure 6.18: The numerical (advective flow) U -velocity against time plotted

together with the analytical U -velocity against time at a node at x = 0 m

and midway between the top and bottom boundary of Mesh 3, with the

numerical plot a series of dots and the analytical plot a continuous line.
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Figure 6.19: The numerical (advective flow) U -velocity against time plotted

together with the analytical U -velocity against time at a node at x = 750

m and midway between the top and bottom boundary of Mesh 3, with the

numerical plot a series of dots and the analytical plot a continuous line.
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Figure 6.20: The numerical (advective flow) U -velocity against time plotted

together with the analytical U -velocity against time at a node at x = 1500

m and midway between the top and bottom boundary of Mesh 3, with the

numerical plot a series of dots and the analytical plot a continuous line.
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Figure 6.21: The numerical (advective flow) U -velocity against time plotted

together with the analytical U -velocity against time at a node at x = 2250

m and midway between the top and bottom boundary of Mesh 3, with the

numerical plot a series of dots and the analytical plot a continuous line.
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Figure 6.22: The analytical U -velocity against the numerical (advective flow)

U -velocity at time t = T/4. The analytical solution is a continuous line

whereas the numerical solution is a dashed line.
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The bottom friction parameter, τ , is taken to be a constant, and with τ < p,

where

p =

√
8gh0

a2
. (6.12)

The forcing occurs at x = 0, and is given by

ζ(0, t) =
a2B2e−τt

8g2h0

(
−sτ sin 2st +

(
τ 2

4
− s2

)
cos 2st

)
− B2e−τt

4g
, (6.13)

where B is a constant, and

s =

√
8gh0 − τ 2

2a
. (6.14)

The analytical solution for the water level, τ , is

ζ(x, t) =
a2B2e−τt

8g2h0

(
−sτ sin 2st +

(
τ 2

4
− s2

)
cos 2st

)
− B2e−τt

4g

−e−
τt
2

g

(
Bs cos st +

τB

2
sin st

)
x, (6.15)

and for the velocity, U , is

U = Be−(τt)/2 sin st. (6.16)

The x-coordinate of the shoreline is given by

x =
a2e−(τt)/2

2gh0

(
−Bs cos st− τB

2
sin st

)
+ a. (6.17)

6.3.4 The second analytical solution versus the numer-

ical solution

For the numerical model the values chosen were h0 = 10 m, a = 3000m,

τ = 0.001 s−1 and B = 2 ms−1 with the initial values of ζ and U set to

those of the analytical model. The period of the trigonometric terms in the

motion, T , is 1353.49 s. The initial position of the water surface is shown in

Figure 6.23. The initial velocity is 0 ms−1. At the open water boundary, at
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Figure 6.23: A vertical cross-section of the initial position of the water for

linear frictional flow above a bed with quadratically varying depth for h0 = 10

m, a = 3000 m, τ = 0.001 s−1 and B = 2 ms−1.
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x = 0, the water level was specified as the same function of time as in the

analytical model. The calculation was done over eight periods (10827.90 s).

A triangular mesh was used, covering a rectangular region of width 4320

m in the x direction and height 240 m in the y direction. Each triangle in the

mesh is an isosceles right angled triangle. The mesh contains 4913 nodes and

9216 elements. As the velocity in the analytical solution is a function of t

only, the advective terms are zero; for this reason the model was run without

advective terms. The numerical model was run initially with sr = 0.99. It

was found that δt had to be set to 0.195 s for convergence. It was also found

that the larger sr was the larger the maximum value of δt for convergence.

The results presented below are for sr = 0.99 and δt = 0.195 s. The values of

water elevation, ζ, and the U -velocity discussed below are for nodes sitting

on a line parallel to the base of the rectangular region and half way between

the base and top of the region.

A plot of the numerical and analytical x-coordinates of the shoreline as

a function of time over one period is shown in Figure 6.24 and over eight

periods is shown in Figure 6.25. The analytical solution is shown in each

diagram as a continuous curve while the numerical solution is a number of

points; these points are so close together that they appear to be a number

of straight lines parallel to the time axis. As the distance between successive

nodes is 15 m, the distance between successive apparent straight lines is 15 m,

which means that numerically when the shoreline moves it moves 15 m in one

time step. As can be seen, there is good agreement between the analytical

and numerical values.

A graphical comparison of the numerical and analytical values for ζ, the

water height above the x-axis, against time, t, is shown over one period at

the node at which x = 750 m in Figure 6.26. Figures 6.27, 6.28, 6.29 and

6.30 show the water heights over eight periods at the four nodes for which
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Figure 6.24: A plot of the numerical and analytical values of the x-coordinate

of the shoreline as a function of time over one period. The analytical solution

is a continuous curve while the numerical solution is a number of points.
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Figure 6.25: A plot of the numerical and analytical values of the x-coordinate

of the shoreline as a function of time over eight periods. The analytical

solution is a continuous curve while the numerical solution is a number of

points.
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x = 750 m, x = 1500 m, x = 2250 m and x = 2565 m. It can be seen that in

each graph that the analytical and numerical values are close.

Figures 6.31, 6.32, 6.33, 6.34 and 6.35 show the U -velocity over eight

periods at the four nodes for which x = 750 m, x = 1500 m, x = 2250 m

and x = 2565 m. It can be seen that in each graph that the analytical and

numerical values are close.

Figures 6.36, 6.37, 6.38 and 6.39 show the water level, ζ against x at

times t = T/2, t = T , t = 3T/2 and 2T respectively. It can be seen that in

each graph that the analytical and numerical values are close

The graph in Figure 6.40 compares the analytical U -velocity against the

mumerical U -velocity at time t = T/4. It shows good agreement.

6.4 Conclusions

A moving boundary shallow water wave numerical model has been developed

which is a modification of the Selective Lumped Mass model and is useful for

comparing against analytical moving boundary solutions and for modelling

tidal flow in bays which contain tidal flats, i.e a region which is wet for part of

the day and dry for part of the day. It has been tested against two analytical

solutions developed by author. One solution was for the case of frictionless

one dimensional moving boundary shallow water wave flow with cosine forc-

ing above a bed with quadratically varying depth. A comparison was made

for nonadvective flow for successively finer finite element meshes. There is

good agreement between the numerical and analytical solutions with better

solutions the finer the mesh. The numerical model was also run with advec-

tive flow for the finest mesh. It was found that the advective numerical model

gave better results than the nonadvective numerical model. Presumably, a

finer mesh than the last one used would give a better result. The second an-
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Figure 6.26: The numerical water level against time plotted together with

the analytical zeta against time over one period at a node at x = 750 m

and midway between the top and bottom boundary of the mesh, with the

numerical plot a series of dots and the analytical plot a continuous line.
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Figure 6.27: The numerical water level against time plotted together with

the analytical zeta against time over eight periods at a node at x = 750 m

and midway between the top and bottom boundary of the mesh, with the

numerical plot a series of dots and the analytical plot a continuous line.
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Figure 6.28: The numerical water level against time plotted together with

the analytical zeta against time over eight periods at a node at x = 1500 m

and midway between the top and bottom boundary of the mesh, with the

numerical plot a series of dots and the analytical plot a continuous line.
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Figure 6.29: The numerical water level against time plotted together with

the analytical zeta against time over eight periods at a node at x = 2250 m

and midway between the top and bottom boundary of the mesh, with the

numerical plot a series of dots and the analytical plot a continuous line.
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Figure 6.30: The numerical water level against time plotted together with

the analytical zeta against time over eight periods at a node at x = 2565 m

and midway between the top and bottom boundary of the mesh, with the

numerical plot a series of dots and the analytical plot a continuous line.

195



2000 4000 6000 8000 10000
Time HsL

-1

-0.5

0.5

1

1.5

U-velocity Hms-1L

Figure 6.31: The numerical U -velocity against time plotted together with the

analytical zeta against time over one period at a node at x = 0 m and midway

between the top and bottom boundary of the mesh, with the numerical plot

a series of dots and the analytical plot a continuous line.
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Figure 6.32: The numerical U -velocity against time plotted together with

the analytical zeta against time over eight periods at a node at x = 750 m

and midway between the top and bottom boundary of the mesh, with the

numerical plot a series of dots and the analytical plot a continuous line.
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Figure 6.33: The numerical U -velocity against time plotted together with

the analytical zeta against time over eight periods at a node at x = 1500 m

and midway between the top and bottom boundary of the mesh, with the

numerical plot a series of dots and the analytical plot a continuous line.
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Figure 6.34: The numerical U -velocity against time plotted together with

the analytical zeta against time over eight periods at a node at x = 2250 m

and midway between the top and bottom boundary of the mesh, with the

numerical plot a series of dots and the analytical plot a continuous line.
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Figure 6.35: The numerical U -velocity against time plotted together with

the analytical zeta against time over eight periods at a node at x = 2565 m

and midway between the top and bottom boundary of the mesh, with the

numerical plot a series of dots and the analytical plot a continuous line.
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Figure 6.36: A comparison of the numerical and analytical values of the water

surface at time t = T/2. The analytical solution is a continuous line whereas

the numerical solution is a series of dots.
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Figure 6.37: A comparison of the numerical and analytical values of the water

surface at time t = T . The analytical solution is a continuous line whereas

the numerical solution is a series of dots.

1000 2000 3000 4000
x HmL

-5

0

5

10

Ζ HmL

Figure 6.38: A comparison of the numerical and analytical values of the

water surface at time t = 3T/2. The analytical solution is a continuous line

whereas the numerical solution is a series of dots.
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Figure 6.39: A comparison of the numerical and analytical values of the water

surface at time t = 2T . The analytical solution is a continuous line whereas

the numerical solution is a series of dots.

alytical solution was for the case of linear frictional one dimensional moving

boundary shallow water wave flow with forcing which decays over time above

a bed with quadratically varying depth. There is good agreement between

the numerical and analytical solutions.
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Figure 6.40: The analytical U -velocity against the numerical U -velocity at

time t = T/4. The analytical solution is a continuous line whereas the

numerical solution is a dashed line.
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Chapter 7

Modelling the effect of

proposed channel deepening on

the tides in Port Phillip Bay

7.1 Introduction

At present, the guaranteed minimum depth in the main commercial shipping

channels of Port Phillip Bay, Victoria, Australia, is 11.6 metres at all tides.

The government of Victoria, in the late 1990s, announced plans to deepen

the channels in Port Phillip Bay so that they can accommodate ships of up

to 14 metres draft at all tides. This involves deepening sections of the Great

Ship Channel at the Bay’s entrance, the South Channel and channels going

into Port Melbourne and Williamstown. In July 2004 the Port of Melbourne

Corporation (which had assumed some of the duties of the former Victorian

Channel Authority), the Victorian State government authority responsible

for the channel deepening project, released the Environmental Effects State-

ment on the channel deepening project. Figure 7.1 shows details of the

proposed channel deepening. The Victorian Government appointed an inde-
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Figure 7.1: Overall Locality Plan Port Phillip Bay Channel Deepening

Project
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pendent panel to hold an enquiry on the Environmental Effects Statement

on the channel deepening project in Port Phillip Bay beginning August 2004.

Interested parties were invited to make a written submission to the panel.

The author of this thesis, together with his Ph. D. supervisors, made a sub-

mission on that section of the Environmental Effects Statement dealing with

the effect of the channel deepening on the astronomical tides, the periodic

rise and fall of the sea due to the gravitational attraction of the Moon and

Sun. This section of the Environmental Effects Statement was written by

Lawson and Treloar [56, 57].

Lawson and Treloar modelled the astronomical tides in Phillip Bay. The

levels of tides for the existing topography and for the topography including

the proposed channel deepening were computed. Their results show that the

effect of the proposed channel deepening on astronomical tidal levels in Port

Phillip Bay will be to increase the maximum tidal height at most locations,

with the greatest increase eight mm and the greatest reduction two mm.

The model used in this thesis gives results very close to those of Lawson

and Treloar, with the maximum tidal height increasing at most locations,

but with a greatest increase of seven mm and a greatest reduction of two

mm.

The results at seven sites show that the model used in this thesis accu-

rately models the existing tides, as does the model of Lawson and Treloar and

that of Walker [109]. The results for the post-channel deepening, predicting

the largest increase in maximum tidal height of seven mm, are very close to

those of Lawson and Treloar, who predict eight mm.
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7.2 Literature review

A number of papers have been published on modelling the tides in Port

Phillip Bay, Victoria, Australia. These include papers by Easton [19], Black,

Hatton and Rosenberg [9], Walker [109], Hubbert and McIntosh [37] and

Lawson and Treloar [56, 57]. All of these papers used the shallow water

equations except for Walker’s, which used a three dimensional model. Port

Phillip Bay has a very narrow entrance. Experimental measurements [56]

show that the the current is fast in the vicinity of the entrance, of the order

of 3.5 ms−1, but very small for most of the bay and that the tidal height

diminishes sharply from Point Lonsdale at the entrance to Queenscliff which

is about 4 kms away inside the bay. The sea levels at the entrance are

about 90 degrees out of phase with those just beyond the Sands region in

the South of the bay. However, there is little change in the amplitudes of the

constituents at locations North of Queenscliff. There are strong currents in

the channels in the Sands region. In the northern part of the bay the tidal

currents are negligible.

Easton [19] used a finite difference approach to model the M2 tides in

Corio Bay, situated at the end of the western arm of Port Phillip Bay. Waste

is discharged into the bay by various industries on the coastline. A grid

length of 375 m was chosen for both the x and y directions. An amplitude of

0.5 m was specified on the open sea boundary, which was some distance East

of Corio Bay. A filter was used to minimise 2δx oscillations. An amplitude

of 0.5 m was specified on the open sea boundary. the model showed that

there was very little phase lag of the maximum tide. At a certain node the

tide height was found to be out of phase with the velocity components by

90 degrees as is the case with a standing wave. The ebb and flood tides

were almost identical except for their opposite directions. The maximum

flow within Corio Bay is of the order of 0.1 ms−1, which would result in a
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horizontal movement of about 1 km, much smaller than the length of the

bay; hence, normal tidal flow conditions are insufficient to flush the bay.

Black, Hatton and Rosenberg [9] measured amplitudes and phases of the

M2, S2, K1 and O1 tidal constituents at a point about 30 kms south of Pt.

Lonsdale. Pt. Lonsdale is at the entrance to the bay. They modelled the

tides with a finite difference scheme, using these constituents for forcing at

a boundary in Bass Strait, mainly running at 20 km South of Pt. Lonsdale.

They found accurate tidal levels at Geelong and Williamstown, at the North

of the bay, and at Pt. Lonsdale except for the M2 amplitude that was 30 %

too large. They attributed this to an insufficiently fine grid. The results for

the currents were not as good as those for water levels but were nevertheless

moderately accurate.

Walker [109] used a three dimensional model to simulate the M2, S2,

K1, O1 and N2 tidal constituents in Port Phillip Bay. Because of experimen-

tal evidence that there are rapid spatial changes in tidal amplitudes in the

neighbouring region Walker concluded that the Pt. Lonsdale sea level data

was not suitable for forcing his model. Walker used modified values of the

Lorne data for forcing. Lorne is about 60 kms South West of Pt. Lonsdale.

Comparison of modelled water levels at five locations showed close agreement

with experimental data. Similarly, comparison of modelled water currents at

five locations showed close agreement with experimental data.

Hubbert and McIntosh [37] produced a moving boundary scheme to

model coastal flooding due to storm surges in Port Hedland, Western Aus-

tralia, and in Port Phillip Bay. In the scheme the wetting and drying depends

not only on the sea surface height relative to the adjacent topography but

also on the distance travelled by the coastal interface based on the current

immediately seaward of the boundary. This means that the inclusion or re-

moval of a grid point may take more than a single time step to accomplish
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even though the height criterion may be satisfied. The scheme was used to

model the storm surge at Port Hedland, Western Australia, 1939, caused by

a tropical cyclone. The surface pressure and wind fields during the cyclone,

required to drive the storm surge model, were reconstructed by fitting an

analytical tropical cyclone model to available weather observations in the

region. The modelled peak sea level during the storm surge was close to the

measured peak sea level. The scheme was also used to model storm surges

that occurred in Port Phillip Bay in 1994. The graph of observed and mod-

elled sea levels at one location over a 60 hour period shows the two curves to

be fairly close to each other.

Lawson and Treloar [56, 57] modelled the M2, S2, K1, O1 and N2 tidal

constituents in Port Phillip Bay. Lawson and Treloar used a curvilinear grid

ranging in size from 30-35 m at the entrance to 300-500 m in the North.

Lawson and Treloar’s scheme is finite difference both in time and space.

Lawson and Treloar’s model area included all of Port Phillip Bay and ex-

tended 15 km offshore into Bass Strait. Lawson and Treloar [57] found that

all tidal constituents in the region of their open sea boundary in Bass Strait

had similar values to those at Lorne, which is about 60 kms. south west of

Pt. Lonsdale, with the exception of the M2 constituent which was about 10

% larger. Lawson and Treloar used modified values of the Lorne data for

forcing. Lawson and Treloar’s values for the tidal heights at six locations

were found to be close to experimental values. Lawson and Treloar’s values

for the tidal currents at six locations were found to be moderately close to

experimental values. Lawson and Treloar modelled the change in tidal levels

at five locations, obtaining a maximum change in level of 8 mm. Lawson

and Treloar modelled the change in tidal currents at five locations, obtaining

small changes.
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7.3 The model

In this thesis the existing astronomical tides and the astronomical tides with

the proposed channel deepening in Port Phillip Bay have been modelled, us-

ing numerical solutions of the two-dimensional depth-averaged shallow water

wave equations [108]. The results of this study are compared in Table 7.4

with the results of Lawson and Treloar [56, 57].

In this thesis a different numerical scheme to that of Lawson and Treloar

has been used, with slightly different boundary conditions and a different

mesh. The grid used in this thesis contains 2618 triangular elements and

1429 nodes, with a fine grid near the entrance to the bay. Triangle sides

range from 300 m in the entrance to 2-2.5 km in the North of the bay. The

grid, which was designed by hand and checked using computer programs, is

shown in Figure 7.2. The scheme used in this thesis is finite element in space

and finite difference in time and explicit. The model area used in this thesis

included all of Port Phillip Bay apart from Swan Bay and extended into Bass

Strait, a region of water south of Port Phillip Bay, a distance ranging from

10 to 25 km.

The two-dimensional depth-averaged shallow water wave equations used

are based on equations (2.1), (2.2) and (2.3) with the assumption that the

wind is negligible. The equations used consist of the conservation of momen-

tum equation in the East direction

∂U

∂t
+U

∂U

∂x
+V

∂U

∂y
− ν

(
∂2U

∂x2
+

∂2U

∂y2

)
+

gn2U
√

U2 + V 2

(h + ζ)
4
3

+ g
∂ζ

∂x
= 0, (7.1)

the conservation of momentum equation in the North direction

∂V

∂t
+U

∂V

∂x
+V

∂V

∂y
−ν

(
∂2V

∂x2
+

∂2V

∂y2

)
+

gn2V
√

U2 + V 2

(h + ζ)
4
3

+g
∂ζ

∂y
= 0, (7.2)

and the conservation of mass equation

∂ζ

∂t
+

∂(h + ζ)U

∂x
+

∂(h + ζ)V

∂y
= 0. (7.3)
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Figure 7.2: Finite element mesh in Port Phillip Bay.
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The initial conditions used in the model in this chapter are ζ = 0, U = 0

and V = 0 at time t = 0. At land boundaries, the flow normal to the

coastline is zero. At the sea boundary, which consists of two straight line

segments,shown in the bottom left hand corner of Figure 7.3, the sea surface

elevation, ζb, is specified for all time as the sum of five tidal constituents (M2,

S2, K1, O1 and N2), i.e.

ζb =
5∑

j=1

aj cos(ωjt − γj), (7.4)

where, for tidal constituent j, aj is the amplitude, γj is the phase, and ωj is

the angular frequency. The tidal constituents are shown in Table 7.1. Using

similar forcing data for the same constituents as did Lawson and Treloar gave

accurate values for amplitudes and phases of tidal levels at five points inside

the bay but gave M2 amplitudes about 50 % larger than the observed at

Queenscliff and Pt. Lonsdale but accurate phases. Perhaps this is because

the triangles used at the entrance are not small enough to represent the

tidal motion. It was found that if amplitudes and phases of the constituents

at Pt. Lonsdale were used for tidal forcing at the boundary in Bass Strait

that accurate results were obtained at all seven locations inside the bay for

which there are observed values. Then the values of these amplitudes and

phases were modified to minimise the errors in the modelled data at the seven

locations. Five tidal constituents only were used as these five constituents

measure about 75 % of the tidal variation [78, 79], thus giving an accurate

estimate of the total change that channel deepening will cause.

The equations were solved numerically using the Selective Lumped Mass

scheme [46]. A computer program was written in Visual C++ to implement

the scheme. This computer program is listed in Appendix A. The scheme

solves for ζ, U and V at each time step, δt. The scheme involves a selective

lumping parameter, sr. The Selective Lumped Mass scheme is restricted by
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Table 7.1: Tidal Constituents

Name of constituent Period (in hours)

M2 12.42

S2 12.00

K1 23.93

O1 25.82

N2 12.66

a stability requirement [29],

δt ≤ dmδx/
√

gh, (7.5)

where δx is the smallest space step, and dm is a function of sr. The time step

used was 13.5 seconds while sr was chosen to be 0.98.

The modelled results for the amplitudes and phases of the tidal con-

stituents at seven locations were compared with the observed results. The

data for the observed amplitudes and phases of the tide are obtained from

the Port of Melbourne Corporation Tables [78, 79]. The most accurate val-

ues were found when n was chosen to be 0.020 m− 1
3 s−1 and ν to be 6 m2s−1.

The latter value was used to minimise node-to-node oscillations.

7.4 Existing data

The results in this study for the amplitude and phase of the tide at seven

locations (Pt. Lonsdale, Queenscliff, Hovell Pile, West Channel Pile, Pt.

Richards Channel No. 1, Geelong and Williamstown) were obtained by run-

ning the model for a simulated 32 days and analysing the data over the last

29 days using a FFT (Fast Fourier Transform) package, and compared with

the observed data and at five locations compared with those of Lawson and
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Treloar [56] and Walker [109]. As there were transients in the data for the

first three days the data for this time was not used. It can be shown [18]

that 29 days is the minimum period over which data, which is hourly or a

divisor of an hour, can be analysed to obtain accurate results for the five

tidal constituents. The results of the FFT analysis are shown in Table 7.2

and in three cases compared with those of Lawson and Treloar [56] and of

Walker [109]. The data for West Channel Pile, Hovell Pile and Pt. Richards

Channel No. 1 are not shown due to lack of space. The amplitude difference

is the observed value minus the modelled value. The vector difference is ob-

tained by regarding each constituent as a vector, with its magnitude equal to

the amplitude of the constituent and its phase the phase of the constituent.

The vector difference is the magnitude of the vector joining the ends of the

modelled vector and the observed vector. From the results shown in Table

7.2, it can be seen that the results are close to those of Lawson and Treloar

and those of Walker. Perhaps the results would have been better if more

constituents were used. As the modelled values for the existing tide are close

to those of the observed values, the prediction on the effects of the astro-

nomical tides of post-channel deepening should be accurate. The model is

neither inferior nor superior to the other two. The results for modelled tidal

currents at three locations (labelled S (in Symonds Channel), A (in South

Channel) and T (in Portsea Channel)) in comparison with the modelled val-

ues of Black Hatton and Rosenberg [9] and Lawson and Treloar [56] and the

observed values of Black, Hatton and Rosenberg [9] are shown in Table 7.3.

It can be seen that the modelled results for tidal current are of the same

order as Lawson and Treloar’s but not as accurate of those of Black, Hatton

and Rosenberg.

The bathymetry together with the ten locations are shown in Figure 7.3.

The observed and modelled water level as a function of time at Geelong
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Table 7.2: Comparison of tidal constituents between models and measure-

ments

Tidal Amplitude Amplitude difference (m) Vector difference (m)

constituent (m) This LT W This LT W

observed study study

Geelong

M2 0.268 0.000 -0.003 0.001 0.022 0.003 0.015

S2 0.064 0.003 0.001 -0.003 0.008 0.004 0.003

N2 0.046 -0.003 0.006 0.002 0.009 0.007 0.002

K1 0.099 -0.007 -0.007 -0.012 0.012 0.012 0.013

O1 0.070 -0.011 -0.008 -0.006 0.003 0.006 0.006

Queenscliff

M2 0.258 -0.006 0.013 -0.033 0.016 0.050 0.047

S2 0.070 0.000 0.002 -0.015 0.005 0.015 0.028

N2 0.049 -0.005 0.008 0.000 0.008 0.011 0.006

K1 0.109 -0.004 0.004 -0.001 0.009 0.005 0.028

O1 0.082 0.011 -0.007 -0.001 0.004 0.007 0.019

Pt. Lonsdale

M2 0.440 0.002 0.039

S2 0.127 0.011 0.011

N2 0.088 -0.003 0.004

K1 0.144 0.002 0.004

O1 0.104 -0.001 0.002

Williamstown

M2 0.234 -0.006 0.002 0.007 0.016 0.004 0.012

S2 0.054 0.000 0.001 -0.003 0.006 0.003 0.005

N2 0.041 -0.003 0.006 -0.001 0.005 0.007 0.002

K1 0.097 -0.006 -0.004 -0.008 0.010 0.004 0.009

O1 0.068 -0.011 -0.007 -0.006 0.011 0.011 0.006
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Table 7.3: Comparison of tidal currents between models and measurements.

No data is available for observed N2 currents.

Tidal Tidal Tidal ellipse, Direction Direction

constituent ellipse, major semi-axes (degrees) (degrees)

major modelled (cm s−1) observed modelled

semi- This LT BHR This BHR

axes study study

observed

(cm s−1)

Symonds

Channel

M2 83.5 72.1 89.1 89.5 49 47 46

S2 26.1 17.2 20.6 29.9 49 47 46

N2 n.a. 13.0 12.9 n.a. n.a. 47 n.a.

K1 13.6 16.0 18.9 49.3 48 47 46

O1 12.9 11.5 12.3 15.3 49 47 44

South

Channel

M2 66.5 55.2 83.6 78.3 171 165 179

S2 20.8 13.4 20.6 26.8 171 165 179

N2 n.a. 10.1 12.6 n.a. n.a. 165 n.a.

K1 12.1 14.1 22.7 48.6 174 164 179

O1 11.5 10.3 17.7 15.7 173 164 175

Portsea

Channel

M2 53.0 41.8 62.3 52.0 161 179 179

S2 13.0 10.0 14.2 17.4 162 179 179

N2 n.a. 7.6 8.4 n.a. n.a. 179 n.a.

K1 8.7 9.9 13.0 29.2 163 179 0

O1 6.9 7.1 10.6 8.4 161 0 1217
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Figure 7.3: Depth contours (m) and locations in Port Phillip Bay. Locations

are indicated by letters; P is for Pt. Lonsdale, R for Pt. Richards Channel

No. 1, Q for Queenscliff, H for Hovell Pile, C for West Channel Pile, G for

Geelong, W for Williamstown, A is in the South Channel, S is in the Symonds

Channel and T is in the Portsea Channel.
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Figure 7.4: Water level (m) as a function of time at Geelong over 32 days.

Observed data is a continuous line while modelled data is a dashed line.

are graphed together over 32 days in Figure 7.4, at Hovells Pile in Figure 7.5,

at Pt Lonsdale in Figure 7.6, at Pt Richards in Figure 7.7, at Queenscliff in

Figure 7.8, at West Channel Pile in Figure 7.9, and at Williamstown in

Figure 7.10; it can be seen from the graphs that at all locations that the

modelled and observed water levels are very close.

The contour lines for the amplitudes of the modelled M2 water level,

ζ, are shown in Figure 7.11; it can be seen that the amplitude decreases

substantially a short distance inside the entrance. The contour lines for the

phases of the modelled M2 water level are shown in Figure 7.12. The contour

lines for for K1 water level amplitudes are shown in Figure 7.13 and phases

in Figure 7.14, . Similar results were obtained for the N2, O1 and S2 water

levels.

The contour lines for amplitudes of the modelled M2 U -velocity com-

ponent are shown in Figure 7.15 and for the phases of the modelled M2
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Figure 7.5: Water level (m) as a function of time at Hovell’s Pile over 32

days. Observed data is a continuous line while modelled data is a dashed

line.
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Figure 7.6: Water level (m) as a function of time at Pt. Lonsdale over 32

days. Observed data is a continuous line while modelled data is a dashed

line.
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Figure 7.7: Water level (m) as a function of time at Pt. Richards Channel

No. 1 over 32 days. Observed data is a continuous line while modelled data

is a dashed line.

222



5 10 15 20 25 30
Time HdaysL

-0.4

-0.2

0

0.2

0.4

Water level Hm.L

Figure 7.8: Water level (m) as a function of time at Queenscliff over 32 days.

Observed data is a continuous line while modelled data is a dashed line.

constituent are shown in Figure 7.16. Similar results were obtained for the

U -velocity components of the other tidal constituents, K1, N2, O1 and S2.

The contour lines for amplitudes of the modelled M2 V -velocity compo-

nent are shown in Figure 7.17. Similar contour lines were obtained for the

V -velocity components of K1, N2, O1 and S2. The velocity vectors at a time

of high tide at Point Lonsdale are shown in figure 7.18. The velocity vectors

at a time of low tide at Point Lonsdale are shown in Figure 7.19. The contour

lines for the water level heights at a time of high tide at Point Lonsdale are

shown in Figure 7.20, while the water level heights at a time of low tide at

Point Lonsdale are shown in Figure 7.21. The M2 velocity ellipses are shown

in Figure 7.22.
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Figure 7.9: Water level (m) as a function of time at West Channel Pile over

32 days. Observed data is a continuous line while modelled data is a dashed

line.
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Figure 7.10: Water level (m) as a function of time at Williamstown over 32

days. Observed data is a continuous line while modelled data is a dashed

line.
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Figure 7.11: The contours of the amplitudes (m) of the modelled M2 water

level component.
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Figure 7.12: The contours of the phases (degrees) of the modelled M2 water

level component.
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Figure 7.13: The contours of the amplitudes (m) of the modelled K1 water

level component.
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Figure 7.14: The contours of the phases (degrees) of the modelled K1 water

level component.
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Figure 7.15: The contours of the amplitudes (ms−1) of the modelled M2

U -velocity.
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Figure 7.16: The contours of the phases (degrees) of the modelled M2 U -

velocity.
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Figure 7.17: The contours of the amplitudes (ms−1) of the modelled M2

V -velocity.
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Figure 7.18: The velocity vectors at a time of high tide at Point Lonsdale.
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Figure 7.19: The velocity vectors at a time of low tide at Point Lonsdale.
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Figure 7.20: The contours of the water level heights (m) at a time of high

tide at Point Lonsdale.
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Figure 7.21: The contours of the water level heights (m) at a time of low tide

at Point Lonsdale.
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Figure 7.22: The M2 velocity ellipses in Port Phillip Bay.
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7.5 Post channel deepening data

Increasing the depth of the channel at the entrance to the Bay will increase

the volume of water flowing into the Bay. The numerical model used in this

thesis showed that the tidal levels increased at most locations and decreased

at others. The modelled existing tidal levels at seven different locations were

compared with the modelled post-channel deepening tidal levels and these

results were compared with those of Lawson and Treloar [57]. The results

at four locations are shown in Table 7.4. It can be seen that the results are

in close agreement with those of Lawson and Treloar for amplitude change.

The results for phase change are in good agreement with those of Lawson

and Treloar at Geelong and Williamstown. There is some discrepancy in

the results for phase change at Queenscliff and Hovell Pile although the

differences are small.

The values shown in Table 7.5 were calculated using the experimental data

for the observed present tide (called E), the modelled present tide (called M)

and the modelled post-channel deepening tide (called P ). The terms E, M

and P were all calculated using only M2, S2, N2, K1 and O1 components.

Because the model of the existing tide is slightly inaccurate the change in

existing height is estimated by (E/M)/P − E.

The results for the tidal currents, given in Table 7.6, show the changes

to be small, at most 5%. The largest percentage change was at the South

Channel location, where channel deepening is to occur and where current

would be expected to have the greatest change. The results are comparable

to those of Lawson and Treloar.
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Table 7.4: Comparison of tidal constituents between modelled existing and

modelled post channel deepening.

Tidal Amplitude Phase Vector

constituent change (m) change (degrees) difference (m)

This LT This LT This LT

study study study

Geelong

M2 +0.004 +0.005 +0.1 0.0 0.004 0.005

S2 +0.001 +0.001 +0.1 +0.1 0.001 0.001

N2 +0.000 +0.001 +0.2 0.0 0.000 0.001

K1 +0.001 +0.002 −0.4 −0.4 0.001 0.002

O1 +0.001 +0.001 −0.5 −0.3 0.001 0.001

Queenscliff

M2 −0.002 0.000 +0.6 −0.1 0.003 0.001

S2 0.000 0.000 +0.5 −0.2 0.001 0.000

N2 0.000 0.000 +0.7 +0.3 0.001 0.000

K1 0.000 0.000 +0.3 −0.2 0.001 0.000

O1 0.000 0.000 +0.4 +0.2 0.000 0.001

Williamstown

M2 +0.004 +0.004 −0.1 0.0 0.004 0.004

S2 +0.001 +0.001 +0.1 +0.1 0.001 0.001

N2 0.000 0.000 +0.2 0.0 0.001 0.000

K1 +0.001 +0.002 −0.4 −0.4 0.001 0.002

O1 +0.001 +0.002 −0.5 −0.3 0.000 0.002

Hovell Pile

M2 +0.003 +0.004 0.0 −1.4 0.003 0.006

S2 +0.001 +0.001 +0.2 −1.9 0.001 0.002

N2 +0.001 +0.001 +0.3 −1.6 0.001 0.001

K1 +0.002 +0.002 −0.4 −1.2 0.002 0.003

O1 +0.001 +0.002 −0.5 −1.1 0.001 0.002
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Table 7.5: Modelled changes in maximum tidal height at various locations

due to the channel deepening.

Location Change in maximum tidal height (m)

This study Lawson and Treloar

Point Lonsdale −0.001

Queenscliff −0.002 −0.002

Hovell Pile +0.007 +0.005

West Channel Pile +0.006

Point Richards +0.007

Channel No. 1

Geelong +0.006

Williamstown +0.006 +0.008

7.6 Conclusions

The conclusion of this chapter is that the effect of the proposed channel

deepening on astronomical tidal levels in Port Phillip Bay will be to increase

the maximum tidal height at most locations, with the largest increase in

maximum tidal height predicted to be seven mm. The results are in close

agreement with those of Lawson and Treloar, who found that the maximum

tidal height will increase at most locations, with the largest increase in max-

imum tidal height predicted to be eight mm.
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Table 7.6: Comparison of modelled existing tidal currents with modelled

post-channel deepening currents.

Tidal Tidal Ellipse Tidal Ellipse, Percentage Change

Constituent Major semi- Major semi- This LT

axes axes Study

modelled modelled

existing post-channelled

(cm s−1) deepening

(cm s−1)

Symonds

Channel

M2 72.1 71.9 -0.3 0.5

S2 17.2 17.1 -0.6 -0.3

N2 13.0 12.9 -0.8 0.0

K1 16.0 15.8 -1.3 -1.5

O1 11.5 11.4 -0.9 1.2

South

Channel

M2 55.2 57.2 3.6 5.8

S2 13.4 14.0 4.5 5.6

N2 10.1 10.5 4.0 8.2

K1 14.1 14.7 4.3 8.9

O1 10.3 10.7 3.9 5.0

Portsea

Channel

M2 41.8 40.7 -2.6 0.9

S2 10.0 9.8 -2.0 0.8

N2 7.6 7.6 0.0 1.4

K1 9.9 9.6 -3.0 0.3

O1 7.1 6.8 -4.2 0.6241



Chapter 8

Conclusions

In this thesis some new solutions of the shallow water wave equations were

developed, some analytical and some numerical.

The main achievements of this thesis are:

(i) analytical solutions have been established for moving boundary one dimen-

sional nonlinear shallow water wave equations involving nonlinear continuity

and linear friction for unforced flow in a parabolic canal;

(ii) analytical solutions have been established for moving boundary two di-

mensional nonlinear shallow water wave equations involving nonlinear con-

tinuity and linear friction for unforced flow in a circular paraboloidal basin

and an elliptical paraboloidal basin;

(iii) analytic solutions have been established for moving boundary one dimen-

sional nonlinear shallow water wave equations involving nonlinear continuity

and both no friction and linear friction for forced flow in a bed with quadrat-

ically varying depth;

(iv) analytical solutions have been established for one dimensional nonlin-

ear frictionless shallow water wave flow involving advection and nonlinear

continuity in a basin of constant depth, with a fixed boundary and with a

sinusoidal input at the open sea boundary;
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(v) the SLM model of Kawahara, Hirano and Tsubota [46] has been coded

in Visual C++ and validated against an analytical solution;

(vi) a convergence study has been carried out for the SLM model;

(vii) a computer program has been written in Visual C++ to generate finite

element meshes;

(viii) the fixed boundary analytical solutions that have been developed in

(iv) have been compared with numerical solutions obtained by the selective

lumped mass model with results in close agreement;

(ix) the SLM model has been applied to moving boundary forced frictionless

flow above a bed with quadratically varying depth and moving boundary

forced linear frictional flow above a bed with quadratically varying depth;

the wetting and drying scheme used was a modification of the scheme of

Kawahara, Hirano and Tsubota.The results were compared with the results

from the analytical solution developed in this thesis and found to be in close

agreement;

(x) the SLM model has been applied to model accurately the existing tidal

heights and tidal currents in Port Phillip Bay, Victoria, Australia;

(xi) the SLM model has been applied to model the effects of proposed chan-

nel deepening on the tides in Port Phillip Bay. The effect has been found

to be very small, affecting the tidal heights by seven millimetres, a result

very close to the eight millimetres achieved by consultants to the Victorian

government using a different numerical model.

The SLM method that was used in numerical modelling in this thesis has

the advantage of giving explicit solutions of the shallow water wave equations.

It does however have the disadvantage of being subject to node to node

oscillations [29]. However, these oscillations can be minimised by using

elements with sides that are small compared with the wavelength as Goraya

[29] showed. This also was shown in the convergence study in this thesis. It
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was found in the modelling of the Port Phillip Bay tides that these oscillations

can be further reduced by using turbulent viscosity terms.

The work presented in this thesis can be extended in a number of ways.

The analytical moving boundary solutions could be extended to include Cori-

olis terms. The numerical moving boundary model developed in this thesis

was tested against two of the analytical moving boundary solutions developed

in the thesis; it could be tested against the other analytical moving bound-

ary solutions developed in the thesis. In addition, the numerical moving

boundary model could be used to model tidal flow in regions with significant

tidal flats, e.g. Swan Bay, Westernport Bay and Corner Inlet, all in Victoria,

Australia.

Also, the numerical moving boundary scheme could be used to model

tsunamis with suitable boundary conditions. The boundary conditions could

be the displacement of part of the sea bed due to an earthquake. In this

case the depth of the sea bottom would vary over time in the vicinity of an

earthquake. As well, the numerical moving boundary scheme could be used to

model storm surges e.g. those generated from tropical cyclones on the Pacific

and Indian Ocean coasts of Australia. The numerical scheme would need to

be modified to include pressure gradient and wind stress terms. The surface

pressure and wind fields during the cyclone would need to be specified.

In this thesis the numerical moving boundary scheme used fixed nodes

and hence fixed elements. The scheme could be modified so that nodes

initially on the shoreline stay on the shoreline over time. Hence there would

be moving nodes and some elements changing shape over time.
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Appendix A

Visual C++ code for shallow
water wave flow

/* Recttidalcalc.cpp:a computer program to predict

tidal flow or other shallow water flow

in a domain with a fixed boundary

or a domain with a moving boundary,

and with linear or quadratic friction,

and with turbulent viscosity, using the

selective lumped mass scheme.

The selective lumped mass scheme,

developed by Kawahara, Hirano and Tsubota,

is used to solve the shallow water equations,

three simultaneous nonlinear partial d.e’s, which represent tidal or

other shallow water flow.

The selective lumped mass scheme is finite element in space,

finite difference in time, and is explicit.

The wetting and drying scheme used is that of the author of this

computer program.

The water level at the open sea boundary

must be specified at each time step.

At the end of each time step, at each node,

the U-velocity, V-velocity and water level,

represented in the program by u, w and zeta, are calculated.

As well, at the end of each time step, it is calculated whether a
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node is wet or dry and whether a triangle is wet or dry.

Joe Sampson*/

# include <stdio.h>

# include <math.h>

# include <cstdlib>

int i,k,l,m2,m3,n,n1,n4;

double x[4920],y[4920]; /* x and y coordinates [m] */

double d[9220];/*water depth [m]*/

double adj;/*amount by which the water depth is adjusted*/

double xbai,ybai,dbai; /* scale factors*/

int ii[9220][3];/* nodenumber(triangle no.,vertex no.)*/

int ml2[5];/*the total number of nodes on the land boundary*/

int ni[5];/*the total number of nodes on the island*/

int ibu[250]; /* the numbers assigned to the nodes on the land boundary*/

int ilu[20]; /*the numbers assigned to the nodes on the island boundary*/

int ibh[20]; /*the numbers assigned to the nodes on the open sea boundary*/

double del[9220]; /*the area of the triangle element [sq. m] */

double ltau;/*the linear friction factor*/

double qtau[9220];/*the quadratic friction factor*/

double tau; /* the friction factor, set equal to ltau for linear friction

(including zero friction) and qtau for quadratic friction */

double u[4920],w[4920]; /* the u-velocity and v-velocity

at the nth time step [m/sec]*/

double zeta[4920];/* the computed tidal height at the nth time step [m]*/

double exptlzeta[4920];/* the actual tidal height at the nth time

step [m] for selected points using the observed M2, S2, K1, O1 and

N2 amplitudes and phases*/

double modelzeta[4920];/* the modelled tidal height

at the nth time step [m] for selected points

using the modelled M2, S2, K1, O1 and N2 amplitudes and phases*/

int idisk, iqfr;

int iprog;

double un[4920], wn[4920], dn[4920]; /* (u, v, zeta) at each half-time step */

double um[4920], wm[4920], em[4920]; /* (u, v, zeta)*am (see next line for

definition of am) at each half-time step */

double am[4920]; /* (sum of triangle areas)/3 for a given node */

double su[3], sw[3], se[3],e0; /* used in calculating u, v, and zeta */

/*double uu[13][6], ww[13][6], dd[13][6]; *//* (u,v,zeta) values

output to a file */
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double a,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15;

double pai, delk, delt, g6;

double dt,ds,t, dtt,dt24, tlimit,tt, tt1, tt2, tt3, tt4, tt5;

double ph1, ph2, ph3, ph4, ph5 ,ph6,ph7, ph8,ph9,ph10,ph11,ph12,ph13,ph14,

ph15;

int i1, i2, i3,i4, im, ir, iq, id, nn2, kk1, kk2,j2, nn3;

double b1, b2, b3, c1, c2, c3,the, biui, ciui, biei, bdt, de12,

u1,u2,u3,w1, w2, w3;

double biwi, ciwi, ciei, cdt, d1, d2, d3,dav, bihi, cihi, bucw, e1, e2, e3,

twoh1, twoh2, twoh3,twohu,twohw,s0,s1,s2,q1,q2,q3;

int jj, nh, ns, nit,istep;

int nstep;

double eps; /* the lumping parameter epsilon*/

double ae,be;

double nmann; /* nmann is the Manning friction factor*/

double cf; /* cf is the friction coefficient */

double cf1[4920],cf2[4920],cf3[4920];

/* cf1, cf2, and cf3 are friction coefficients */

double p1;

double p2[4920];

double db[4920];

double d1b,d2b,d3b;

double adv;/*adv is set to 1.0 for advective flow and

0.0 for nonadvective flow */

double hmin;

double visc;

double ed[3][3];

double turb;

int nd1, nd2,nd3;

int i123;

int nwtotal;

int trianglewet[9220],nodewet[4920], twet[4920];

double tauwetnode, depthwetnode, qtauwetnode;

double b, aq, h0;

int incl[4920];

double mindepth, zdiff;

FILE *frectxyddata;

FILE *frectnodedata;

FILE *flanddata;

FILE *fislanddata;

FILE *frectseadata;
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FILE *frecttidalcalc;

FILE *frecttidaltrace;

FILE *fxydout;

FILE *fzuvout;

FILE *fexptltidal;

FILE *ftidalday;

FILE *fmodeltidal;

void vector()

{/*calculating the velocity components and the tidal height*/

for(k=0;k<n;k++){

if (nodewet[k]==1)

{um[k]=0;

wm[k]=0;

em[k]=0;

am[k]=0;

};

};

dt24=dtt/24.0;

g6=9.81/6.0;

/*calculating b1,b2,b3,c1,c2 and c3 for each wet triangle*/

/*printf("time during vector calc b1 etc %lf\n",t);*/

for(k=0;k<n1;k++){

if (trianglewet[k]==1)

{delt=del[k]/3.0;

for(im=0;im<3;im++){

ir=ii[k][im];

am[ir]=am[ir]+delt;

/*fprintf(frecttidaltrace," time %lf ir %i am %lf \n",t);*/

};

i1=ii[k][0];

i2=ii[k][1];

i3=ii[k][2];

b1=y[i2]-y[i3];

b2=y[i3]-y[i1];

b3=y[i1]-y[i2];

c1=x[i3]-x[i2];

c2=x[i1]-x[i3];

c3=x[i2]-x[i1];
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d1=dn[i1]+d[i1];

d2=dn[i2]+d[i2];

d3=dn[i3]+d[i3];

ed[1][1]=(b1*b1+c1*c1)*(turb/(4*del[k]));

ed[1][2]=(b1*b2+c1*c2)*(turb/(4*del[k]));

ed[1][3]=(b1*b3+c1*c3)*(turb/(4*del[k]));

ed[2][1]=ed[1][2];

ed[2][2]=(b2*b2+c2*c2)*(turb/(4*del[k]));

ed[2][3]=(b2*b3+c2*c3)*(turb/(4*del[k]));

ed[3][1]=ed[1][3];

ed[3][2]=ed[2][3];

ed[3][3]=(b3*b3+c3*c3)*(turb/(4*del[k]));

/* cf is the friction coefficient */

/*original expression for p1, which I believe is incorrect */

/*p1=pow(((d[i1]*d[i1]+d[i2]*d[i2]+d[i3]*d[i3])/3.0),(-1.0/3.0));*/

/*new expression for p1, which I believe is correct */

/*p1=pow(((d[i1]+d[i2]+d[i3])/3.0),(-1.0/3.0));

cf=(1.0/3.0)*(nmann*nmann)*9.81*p1;*/

/* cf1, cf2, and cf3 are friction coefficients */

/*db[i1]=d[i1];

if (d[i1]<1.0) db[i1]=1.0;

db[i2]=d[i2];

if (d[i2]<1.0) db[i2]=1.0;

db[i3]=d[i3];

if (d[i3]<1.0) db[i3]=1.0;

p2[i1]=pow(db[i1],(-1.0/3.0));

p2[i2]=pow(db[i2],(-1.0/3.0));

p2[i3]=pow(db[i3],(-1.0/3.0));

cf1[i1]=(1.0/3.0)*(nmann*nmann)*9.81*p2[i1];

cf1[i2]=(1.0/3.0)*(nmann*nmann)*9.81*p2[i2];

cf1[i3]=(1.0/3.0)*(nmann*nmann)*9.81*p2[i3];*/

/* calculating qtau[k], the quadratic friction factor, for each triangle */

d1b=d1;

if (d1<hmin) d1b=hmin;

d2b=d2;

if (d2<hmin) d2b=hmin;

d3b=d3;

if (d3<hmin) d3b=hmin;
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/* cf1, cf2, and cf3 are friction coefficients */

p2[i1]=pow(d1b,(-1.0/3.0));

p2[i2]=pow(d2b,(-1.0/3.0));

p2[i3]=pow(d3b,(-1.0/3.0));

cf1[i1]=(1.0/3.0)*(nmann*nmann)*9.81*p2[i1];

cf1[i2]=(1.0/3.0)*(nmann*nmann)*9.81*p2[i2];

cf1[i3]=(1.0/3.0)*(nmann*nmann)*9.81*p2[i3];

/* qtau[k]=cf*(sqrt(un[i1]*un[i1]+wn[i1]*wn[i1])/d1+sqrt(un[i2]*un[i2]

+wn[i2]*wn[i2])/d2+sqrt(un[i3]*un[i3]+wn[i3]*wn[i3])/d3);*/

qtau[k]=cf1[i1]*sqrt(un[i1]*un[i1]+wn[i1]*wn[i1])/d1b

+cf1[i2]*sqrt(un[i2]*un[i2]+wn[i2]*wn[i2])/d2b

+cf1[i3]*sqrt(un[i3]*un[i3]+wn[i3]*wn[i3])/d3b;

/*if (t==5.0*dt) {fprintf(frecttidaltrace,"cf is %lf\n",

cf);};*/

/*setting tau, the friction factor; if linear friction (

including zero friction)is used, tau is set equal to ltau,

and if quadratic friction is used, tau is set equal to qtau[k];*/

tau=ltau;/*linear friction is used in the model */

/*tau=qtau[k];*//*quadratic friction is used in the model */

/*u component for each triangle */

biui=b1*un[i1]+b2*un[i2]+b3*un[i3];

ciui=c1*un[i1]+c2*un[i2]+b3*un[i3];

biei=(b1*dn[i1]+b2*dn[i2]+b3*dn[i3])*g6;

/* bie=b1*dn[i1]+b2*dn[i2]+b3*dn[i3];*/

/* bi1=b1*dn[i1];*/

/* bi2=b2*dn[i2];*/

/* bi3=b3*dn[i3];*/

/* if (t==2.0*dt) {fprintf(frecttidaltrace,"%.9f \n",bie);};*/

/*if (t==2.0*dt) {fprintf(frecttidaltrace,"%.9f %.9f %.9f \n",

bi1,bi2,bi3);};*/

/* if (t==2.0*dt) {fprintf(frecttidaltrace,"%.9f %.9f %.9f %.9f

%.9f %.9f\n", b1,b2,b3,dn[i1],dn[i2],dn[i3]);};*/

/* if (t==2.0*dt) {fprintf(frecttidaltrace,"%.9f %.9f\n",biui, biei);};*/

/* if (t==2.0*dt) {fprintf(frecttidaltrace,"%.9f \n",g6);};*/

u1=un[i1]*biui+wn[i1]*ciui;

u2=un[i2]*biui+wn[i2]*ciui;
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u3=un[i3]*biui+wn[i3]*ciui;

/*if (t==1.5*dt) {fprintf(frecttidaltrace,"%.9f %.9f %.9f \n",

u1,u2,u3);};*/

/*if (t==1.5*dt) {fprintf(frecttidaltrace,"%.9f %.9f %.9f \n",

un[i1],un[i2],un[i3]);};*/

bdt=dtt*biei;

/*if (t==2.0*dt) {fprintf(frecttidaltrace,"%f\n",bdt);};*/

de12=del[k]/12.0;

/*if (t==1.5*dt) {fprintf(frecttidaltrace,"%f\n",

del[k]);};*/

/* if (t==1.5*dt) {fprintf(frecttidaltrace,"%f\n",

de12);};*/

/* s0=(ae*u[i1]+be*u[i2]+be*u[i3])*del[k]/12.0;*/

/* definition of su[0] for the nonadvective case*/

/*su[0]=(ae*u[i1]+be*u[i2]+be*u[i3])*del[k]/12.0-bdt

-dtt*(2.0*un[i1]+un[i2]+un[i3])*tau*del[k]/12.0;*/

/*definition of su[0] for the nonadvective or advective case*/

su[0]=(ae*u[i1]+be*u[i2]+be*u[i3])*del[k]/12.0-bdt-adv*dt24*

(2.0*u1+u2+u3)-dtt*(2.0*un[i1]+un[i2]+un[i3])*tau*del[k]/12.0

+dtt*(ed[1][1]*un[i1]+ed[1][2]*un[i2]+ed[1][3]*un[i3])*visc*turb;

/*s0=-(2.0*un[i1]+un[i2]+un[i3])*tau*del[k]/12.0;

if (t==150.0*dt) {fprintf(frecttidaltrace,"s0 equals %.9lf\n",

s0);};

if (t==0.9*tt) {fprintf(frecttidaltrace,"tau equals %.9lf\n",

tau);};*/

/*s1=(be*u[i1]+ae*u[i2]+be*u[i3])*del[k]/12.0;

/*definition of su[1] for the nonadvective case*/

/*su[1]=(be*u[i1]+ae*u[i2]+be*u[i3])*del[k]/12.0-bdt

-dtt*(un[i1]+2.0*un[i2]+un[i3])*tau*del[k]/12.0;*/

/*definition of su[1] for the nonadvective or advective case*/

su[1]=(be*u[i1]+ae*u[i2]+be*u[i3])*del[k]/12.0-bdt-adv*dt24*

(u1+2.0*u2+u3)-dtt*(un[i1]+2.0*un[i2]+un[i3])*tau*del[k]/12.0

+dtt*(ed[2][1]*un[i1]+ed[2][2]*un[i2]+ed[2][3]*un[i3])*visc*turb;

/*s2=(be*u[i1]+be*u[i2]+ae*u[i3])*del[k]/12.0;*/

/*definition of su[2] for the nonadvective case*/

/*su[2]=(be*u[i1]+be*u[i2]+ae*u[i3])*del[k]/12.0-bdt

-dtt*(un[i1]+un[i2]+2.0*un[i3])*tau*del[k]/12.0;*/

/*definition of su[2] for the nonadvective or advective case*/

su[2]=(be*u[i1]+be*u[i2]+ae*u[i3])*del[k]/12.0-bdt

-adv*dt24*(u1+u2+2.0*u3)-dtt*(un[i1]+un[i2]+2.0*un[i3])*tau*del[k]/12.0

+dtt*(ed[3][1]*un[i1]+ed[3][2]*un[i2]+ed[3][3]*un[i3])*visc*turb;;
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/* if (t==1.5*dt) {fprintf(frecttidaltrace,"%.9f\n",

s1);};*/

/* if (t==2.0*dt) {fprintf(frecttidaltrace,"%.9f %.9f %.9f \n",

su[0],su[1],su[2]);};*/

/*if (t==1.5*dt) {fprintf(frecttidaltrace,"%.9f %.9f %.9f \n",

u[i1],u[i2],u[i3]);};*/

/*v component for each triangle, with "v" given the symbol

"w" in this program*/

biwi=b1*wn[i1]+b2*wn[i2]+b3*wn[i3];

ciwi=c1*wn[i1]+c2*wn[i2]+b3*wn[i3];

ciei=(c1*dn[i1]+c2*dn[i2]+c3*dn[i3])*g6;

w1=un[i1]*biwi+wn[i1]*ciwi;

w2=un[i2]*biwi+wn[i2]*ciwi;

w3=un[i3]*biwi+wn[i3]*ciwi;

cdt=dtt*ciei;

/*if (t==2.0*dt) {fprintf(frecttidaltrace,"%f\n",cdt);};*/

/*if (t==2.0*dt) {fprintf(frecttidaltrace,"%.9f %.9f %.9f \n",

c1,c2,c3);};*/

/*q0=(ae*w[i1]+be*w[i2]+be*w[i3])*del[k]/12.0;*/

/* definition of sw[0] for the nonadvective case*/

/*sw[0]=(ae*w[i1]+be*w[i2]+be*w[i3])*del[k]/12.0-cdt

-dtt*(2.0*wn[i1]+wn[i2]+wn[i3])*tau*del[k]/12.0;*/

/* definition of sw[0] for the nonadvective or advective case*/

sw[0]=(ae*w[i1]+be*w[i2]+be*w[i3])*del[k]/12.0-cdt-adv*dt24*(2.0*w1+w2+w3)

-dtt*(2.0*wn[i1]+wn[i2]+wn[i3])*tau*del[k]/12.0

+dtt*(ed[1][1]*wn[i1]+ed[1][2]*wn[i2]+ed[1][3]*wn[i3])*visc*turb;

/*q1=(be*w[i1]+ae*w[i2]+be*w[i3])*del[k]/12.0;*/

/* definition of sw[1] for the nonadvective case*/

/*sw[1]=(be*w[i1]+ae*w[i2]+be*w[i3])*del[k]/12.0-cdt

-dtt*(wn[i1]+2.0*wn[i2]+wn[i3])*tau*del[k]/12.0;*/

/* definition of sw[1] for the nonadvective or advective case*/

sw[1]=(be*w[i1]+ae*w[i2]+be*w[i3])*del[k]/12.0-cdt-adv*dt24*

(w1+2.0*w2+w3)-dtt*(wn[i1]+2.0*wn[i2]+wn[i3])*tau*del[k]/12.0

+dtt*(ed[2][1]*wn[i1]+ed[2][2]*wn[i2]+ed[2][3]*wn[i3])*visc*turb;

/* q2=(be*w[i1]+be*w[i2]+ae*w[i3])*del[k]/12.0;*/

/* definition of sw[2] for the nonadvective case*/

/*sw[2]=(be*w[i1]+be*w[i2]+ae*w[i3])*del[k]/12.0-cdt

-dtt*(wn[i1]+wn[i2]+2.0*wn[i3])*tau*del[k]/12.0;*/

/* definition of sw[2] for the nonadvective or advective case*/

sw[2]=(be*w[i1]+be*w[i2]+ae*w[i3])*del[k]/12.0-cdt-adv*dt24*(w1+w2+2.0*w3)
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-dtt*(wn[i1]+wn[i2]+2.0*wn[i3])*tau*del[k]/12.0

+dtt*(ed[3][1]*wn[i1]+ed[3][2]*wn[i2]+ed[3][3]*wn[i3])*visc*turb;

/*zeta component for each triangle */

/*d1=dn[i1]+d[i1];

d2=dn[i2]+d[i2];

d3=dn[i3]+d[i3];*/

/*if (t==1.0*dt) {fprintf(frecttidaltrace,"%.9f %.9f %.9f \n",

dn[i1],dn[i2],dn[i3]);};*/

/*if (t==1.0*dt) {fprintf(frecttidaltrace,"%.9f %.9f %.9f \n",

d[i1],d[i2],d[i3]);};*/

/*if (t==1.0*dt) {fprintf(frecttidaltrace,"%.9f %.9f %.9f \n",

d1,d2,d3);};*/

/* definitions of twoh1, twoh2, and twoh3 for the

continuity equation using the divergence of the

depth below mean sea level times velocity i.e. linear continuity*/

/*dav=(d[i1]+d[i2]+d[i3])/3;

twoh1=2*dav+dav+dav;

twoh2=dav+2*dav+dav;

twoh3=dav+dav+2*dav;*/

/* definitions of twoh1, twoh2, and twoh3 for the

continuity equation using the divergence of the

total depth times velocity i.e. nonlinear continuity*/

twoh1=2*d1+d2+d3;

twoh2=d1+2*d2+d3;

twoh3=d1+d2+2*d3;

/*if (t==1.0*dt) {fprintf(frecttidaltrace,"%.9f %.9f %.9f \n",

twoh1,twoh2,twoh3);};*/

twohu=twoh1*un[i1]+twoh2*un[i2]+twoh3*un[i3];

twohw=twoh1*wn[i1]+twoh2*wn[i2]+twoh3*wn[i3];

/*if (t==2.0*dt) {fprintf(frecttidaltrace,"%.9f %.9f \n",

twohu,twohw);};*/

/*if (t==1.0*dt) {fprintf(frecttidaltrace,"%.9f \n",

twohu);};*/

/*e0=(ae*zeta[i1]+be*zeta[i2]+be*zeta[i3])*del[k]/12.0;
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if (t==1.0*dt) {fprintf(frecttidaltrace,"%f\n",e0);};*/

/* if (t==1.0*dt) {fprintf(frecttidaltrace,"%.9f %.9f %.9f \n",

zeta[i1],zeta[i2],zeta[i3]);};*/

se[0]=(ae*zeta[i1]+be*zeta[i2]+be*zeta[i3])*del[k]/12.0

+dt24*(b1*twohu+c1*twohw);

/*if (t==1.0*dt) {fprintf(frecttidaltrace,"%f\n",se[0]);};*/

/*e1=(be*zeta[i1]+ae*zeta[i2]+be*zeta[i3])*del[k]/12.0;*/

se[1]=(be*zeta[i1]+ae*zeta[i2]+be*zeta[i3])*del[k]/12.0

+dt24*(b2*twohu+c2*twohw);

/*e2=(be*zeta[i1]+be*zeta[i2]+ae*zeta[i3])*del[k]/12.0;*/

se[2]=(be*zeta[i1]+be*zeta[i2]+ae*zeta[i3])*del[k]/12.0

+dt24*(b3*twohu+c3*twohw);

/*if (t==2.0*dt) {fprintf(frecttidaltrace,"%.9f %.9f %.9f \n",

se[0],se[1],se[2]);};*/

for(im=0;im<3;im++){

ir=ii[k][im];

um[ir]=um[ir]+su[im];

wm[ir]=wm[ir]+sw[im];

em[ir]=em[ir]+se[im];

};

/* if (t==1.5*dt) {fprintf(frecttidaltrace,"%f\n",del[k]);};*/

};

};

/*incl[k] is the number of wet triangles that node k is included in*/

for (k=0;k<n;k++){

incl[k]=0;};

for (k=0;k<n1;k++){

for (im=0;im<3;im++){

ir=ii[k][im];

incl[ir]=incl[ir]+trianglewet[k];};

};

for (k=0;k<n;k++){

if (incl[k]>=1)

{un[k]=um[k]/am[k];

wn[k]=wm[k]/am[k];
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dn[k]=em[k]/am[k];

/*fprintf(frecttidaltrace," vectorend %i time %lf dn %lf am %lf nw %i\n",

k,t,dn[k],am[k],nodewet[k]);*/

};

};

}

/*calculating the tidal height on the sea boundary*/

void boundary()

{

for(k=0;k<n4;k++){

l=ibh[k];

/*fprintf(frecttidaltrace,"node %i time %lf\n",l,t);*/

dn[l]=a1*cos(pai/tt1*t-ph1*pai/360)+a2*cos(pai/tt2*t-ph2*pai/360)

+a3*cos(pai/tt3*t-ph3*pai/360)+a4*cos(pai/tt4*t-ph4*pai/360)

+a5*cos(pai/tt5*t-ph5*pai/360);

/*set wn[l] to zero for quadratic bed; do not set a value of wn[l] */

/*otherwise wn[l]=0.0;*/

/*fprintf(frecttidaltrace," boundary node %i time %lf dn %lf\n",l,t,dn[l]);*/

};

}

void semidryhalftimestep()

{/* at the end of a half time step, if the water is calculated to be

under the sea bed, reset the total depth to 0 m and the velocity

to zero */

for (k=0;k<n;k++){

if (nodewet[k]==1)

{ds=d[k]+dn[k];

if(ds<=0.0)

{un[k]=0.0;

wn[k]=0.0;

dn[k]=-d[k];

};

};

};

/*If a node k is wet and not in a wet triangle

the total water depth is made zero */

for (k=0;k<n;k++){
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if ((nodewet[k]==1) && (incl[k]==0))

{un[k]=0.0;

wn[k]=0.0;

dn[k]=-d[k];};

};

}

void dryfulltimestep()

{/* at the end of a full time step, if the water is calculated to be

under the sea bed, reset the total depth to 0 m and the velocity

to zero and dry the node, i.e. set nodewet to zero*/

for (k=0;k<n;k++){

if (nodewet[k]==1)

{ds=d[k]+dn[k];

if(ds<=0.0)

{un[k]=0.0;

wn[k]=0.0;

dn[k]=-d[k];

nodewet[k]=0;

};

};

};

/*If a node k is wet and not in a wet triangle it is made dry */

for (k=0;k<n;k++){

if ((nodewet[k]==1) && (incl[k]==0))

{un[k]=0.0;

wn[k]=0.0;

dn[k]=-d[k];

nodewet[k]=0;};

};

/*fprintf(frecttidaltrace,"dryfulltimestep t %lf i %i %i\n",t,k,

nodewet[k]);*/

/* for (k=264;k<265;k++) {fprintf(frecttidalcalc,"dryft % lf %lf",

t,dn[k]);};

for (k=265;k<296;k++) {fprintf(frecttidalcalc," %lf",dn[k]);};

for (k=296;k<297;k++) {fprintf(frecttidalcalc," %lf\n",dn[k]);};*/

/*for (k=264;k<265;k++) {fprintf(frecttidaltrace,

"dryfulltimestep t %lf i %i %i",t,k,nodewet[k]);};

for (k=265;k<296;k++) {fprintf(frecttidaltrace,"
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%i %i",k,nodewet[k]);};

for (k=296;k<297;k++)

{fprintf(frecttidaltrace," %i %i\n",k,nodewet[k]);};*/

}

void wettingcheck ()

{

/* Calculating nwtotal in a triangle at the end of each time step.

if nwtotal=2, this is an interface triangle, i.e. with two wet nodes

and one dry node. Zeta, the water height above mean water level,

will be calculated at the dry node using a momentum equation formula.

If zeta is found to be greater than -h,

where h is the depth of the bed

from mean water level, then the node wets. The velocity is set equal

to that of the other nodes which has the higher water elevation.

twet[i] makes node i wet but this is not activated till later in

principalloop() in which if twet[i]=1 nodewet[i]=1*/

for (k=0;k<n1;k++)

{

i1=ii[k][0];

i2=ii[k][1];

i3=ii[k][2];

nwtotal=nodewet[i1]+nodewet[i2]+nodewet[i3];

/*fprintf(frecttidaltrace,"triangle %i nwtotal %i time %lf \n",

k,nwtotal,t);*/

/*Case 1: See whether node i3, which was

previously dry, wets */

if ((nwtotal==2)&&(nodewet[i1]==1)&&(nodewet[i2]==1))

{i123=i1;

if (dn[i2]>dn[i1]) i123=i2;

/*Calculating qtauwetnode, the quadratic friction factor

for node i123*/

/*depthwetnode=dn[i123]+d[i123];

if (depthwetnode<hmin)

depthwetnode=hmin;

qtauwetnode=(1.0)/(3.0)*(nmann*nmann)*9.81

*pow(depthwetnode,(-4.0,3.0));*/
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/*fprintf(frecttidaltrace,"triangle %i qtauwetnode %lf time %lf

\n",

k,qtauwetnode,t);*/

/*tauwetnode=qtauwetnode;*/

/*quadratic friction is used in the model*/

tauwetnode=ltau;/*linear friction is used in the model*/

/*Initial wetting scheme:

calculating a value for the water elevation at the dry node, i3.

If this value is greater than -h the node wets;

otherwise it remains dry. */

dn[i3]=dn[i123]-((x[i3]-x[i123])/9.81)*((un[i123]-u[i123])/dt+

tauwetnode*un[i123])

-((y[i3]-y[i123])/9.81)*((wn[i123]-w[i123])/dt+

tauwetnode*wn[i123]);

un[i3]=un[i123];

wn[i3]=wn[i123];

twet[i3]=0;

if (dn[i3]>-d[i3]){twet[i3]=1;};

/*2nd wetting scheme:Calculating whether node i123

is sufficiently high above node i3

for the latter node to dry*/

/*twet[i3]=0;

if (dn[i123]-dn[i3]>zdiff)

{dn[i3]=-d[i3]+mindepth;

un[i3]=un[i123];

wn[i3]=wn[i123];

twet[i3]=1;};*/

/*fprintf(frecttidaltrace,"t %lf i3 %i i123 %i dni123 %lf dni3

%lf di3 %lf xi3 %lf xi123 %lf\n",

t,i3,i123,dn[i123],dn[i3],d[i3],x[i3],x[i123]);

fprintf(frecttidaltrace,"t %lf uni123 %lf ui123 %lf dt %lf\n",

t,un[i123],u[i123],dt);

fprintf(frecttidaltrace,"t %lf tri %i i3 %i wet %i\n",t,k,i3,

nodewet[i3]);*/

/*Initial wetting scheme*/

if (dn[i3]<=-d[i3])

{dn[i3]=-d[i3];

un[i3]=0.0;
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wn[i3]=0.0;

nodewet[i3]=0;};

/*2nd wetting scheme*/

/* if (dn[i3]<=-d[i3]+mindepth)

{dn[i3]=-d[i3];

un[i3]=0.0;

wn[i3]=0.0;

nodewet[i3]=0;};*/

/*fprintf(frecttidaltrace," wcheck t %lf tri %i i3 %i wet %i\n",

t,k,i3,nodewet[i3]);*/

};

/*Case 2: See whether node i2, which was

previously dry, wets */

if ((nwtotal==2)&&(nodewet[i1]==1)&&(nodewet[i3]==1))

{

i123=i1;

if (dn[i3]>dn[i1]) i123=i3;

/*Calculating qtauwetnode, the quadratic friction factor

for node i123*/

/*depthwetnode=dn[i123]+d[i123];*/

/*fprintf(frecttidaltrace," triangle %i depthwetnode %lf time

%lf\n",k,depthwetnode,t);*/

/*if (depthwetnode<hmin)

depthwetnode=hmin;

qtauwetnode=(1.0)/(3.0)*(nmann*nmann)*9.81

*pow(depthwetnode,(-4.0,3.0));*/

/*fprintf(frecttidaltrace,"triangle %i qtauwetnode %lf time %lf

\n",k,qtauwetnode,t);*/

/*tauwetnode=qtauwetnode;*/

/*quadratic friction is used in the model*/

tauwetnode=ltau;/*linear friction is used in the model*/

/*Initial wetting scheme:

calculating a value for the water elevation at the dry node, i2.

If this value is greater than -h the node wets;

otherwise it remains dry. */

dn[i2]=dn[i123]-((x[i2]-x[i123])/9.81)*((un[i123]-u[i123])/dt+

tauwetnode*un[i123])

-((y[i2]-y[i123])/9.81)*((wn[i123]-w[i123])/dt+

tauwetnode*wn[i123]);
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un[i2]=un[i123];

wn[i2]=wn[i123];

twet[i2]=0;

if (dn[i2]>-d[i2]){twet[i2]=1;};

/*2nd wetting scheme:Calculating whether node i123 is

sufficiently high above node i2 for the latter node to dry*/

/*twet[i2]=0;

if (dn[i123]-dn[i2]>zdiff)

{dn[i2]=-d[i2]+mindepth;

un[i2]=un[i123];

wn[i2]=wn[i123];

twet[i2]=1;};*/

/*fprintf(frecttidaltrace,"t %lf i2 %i i123 %i dni123 %lf

dni2 %lf di2 %lf xi2 %lf xi123 %lf\n",

t,i2,i123,dn[i123],dn[i2],d[i2],x[i2],x[i123]);

fprintf(frecttidaltrace,"t %lf uni123 %lf ui123 %lf dt %lf\n",

t,un[i123],u[i123],dt);

fprintf(frecttidaltrace,"t %lf tri %i i2 %i wet %i\n",t,

k,i2,nodewet[i2]);*/

/*Initial wetting scheme*/

if (dn[i2]<=-d[i2])

{dn[i2]=-d[i2];

un[i2]=0.0;

wn[i2]=0.0;

nodewet[i2]=0;};

/*2nd wetting scheme*/

/*if (dn[i2]<=-d[i2]+mindepth)

{dn[i2]=-d[i2];

un[i2]=0.0;

wn[i2]=0.0;

nodewet[i2]=0;};*/

/*fprintf(frecttidaltrace,"wcheck t %lf tri %i i2 %i wet %i\n",

t,k,i2,nodewet[i2]);*/

};

/*Case 3: See whether node i1, which was

previously dry, wets */

if ((nwtotal==2)&&(nodewet[i2]==1)&&(nodewet[i3]==1))
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{

i123=i2;

if (dn[i3]>dn[i2]) i123=i3;

/*Calculating qtauwetnode, the quadratic friction factor

for node i123*/

/*depthwetnode=dn[i123]+d[i123];*/

/*if (depthwetnode<hmin)

depthwetnode=hmin;

qtauwetnode=(1.0)/(3.0)*(nmann*nmann)*9.81*pow(depthwetnode,(

-4.0,3.0));*/

/*fprintf(frecttidaltrace,"triangle %i qtauwetnode %lf time %lf

\n",k,qtauwetnode,t);*/

/*tauwetnode=qtauwetnode;*/

/*quadratic friction is used in the model*/

tauwetnode=ltau;/*linear friction is used in the model*/

/*Initial wetting scheme:

calculating a value for the water elevation at the dry node, i1.

If this value is greater than -h the node wets;

otherwise it remains dry. */

dn[i1]=dn[i123]-((x[i1]-x[i123])/9.81)*((un[i123]-u[i123])/dt+

tauwetnode*un[i123])

-((y[i1]-y[i123])/9.81)*((wn[i123]-w[i123])/dt+

tauwetnode*wn[i123]);

un[i1]=un[i123];

wn[i1]=wn[i123];

twet[i1]=0;

if (dn[i1]>-d[i1]){twet[i1]=1;};

/*2nd wetting scheme:Calculating whether node i123 is

sufficiently high above node i1 for the latter node to dry*/

/*twet[i1]=0;

if (dn[i123]-dn[i1]>zdiff)

{dn[i1]=-d[i1]+mindepth;

un[i1]=un[i123];

wn[i1]=wn[i123];

twet[i1]=1;};*/

/*fprintf(frecttidaltrace,"t %lf i1 %i i123 %i dni123 %lf dni1

% lf di1 %lf xi1 %lf xi123 %lf\n",

t,i1,i123,dn[i123],dn[i1],d[i1],x[i1],x[i123]);
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fprintf(frecttidaltrace,"t %lf uni123 %lf ui123 %lf dt %lf\n",

t,un[i123],u[i123],dt);

fprintf(frecttidaltrace,"t %lf tri %i i1 %i wet %i\n",t,k,i1,

nodewet[i1]);*/

/*Initial wetting scheme*/

if (dn[i1]<=-d[i1])

{dn[i1]=-d[i1];

un[i1]=0.0;

wn[i1]=0.0;

nodewet[i1]=0;};

/*2nd wetting scheme*/

/*if (dn[i1]<=-d[i1]+mindepth)

{dn[i1]=-d[i1];

un[i1]=0.0;

wn[i1]=0.0;

nodewet[i1]=0;};*/

/*fprintf(frecttidaltrace,"wcheck t %lf tri %i i1 %i wet %i\n",

t,k,i1,nodewet[i1]);*/

};

};

}

/* void shallow()*/

/*set the total depth and velocity to zero if the water is

calculated to be under the sea bed*/

/* {

for(k=0;k<n;k++){

ds=d[k]+dn[k];

if(ds<=0)

{un[k]=0;

wn[k]=0;

dn[k]=-d[k];

};

if (t==0.5*dt) {fprintf(frecttidaltrace,"%lf %i %lf %lf %lf \n",

0.5,k,dn[k],un[k],wn[k]);};

if (t==1.0*dt) {fprintf(frecttidaltrace,"%lf %i %lf %lf %lf \n",

1.0,k,dn[k],un[k],wn[k]);};

if (t==1.5*dt) {fprintf(frecttidaltrace,"%lf %i %lf %lf %lf \n",

1.5,k,dn[k],un[k],wn[k]);};

if (t==2.0*dt) {fprintf(frecttidaltrace,"%lf %i %lf %lf %lf \n",

2.0,k,dn[k],un[k],wn[k]);};
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if (t==2.5*dt) {fprintf(frecttidaltrace,"%lf %i %lf %lf %lf \n",

2.5,k,dn[k],un[k],wn[k]);};

if (t==10.0*dt) {fprintf(frecttidaltrace,"%lf %lf %lf %lf \n",

10.0,dn[k],un[k],wn[k]);};

if (t==60.0*dt) {fprintf(frecttidaltrace," %lf %.9lf %.9lf %.9lf \n",

60.0,dn[k],un[k],wn[k]);};

if (t==70.0*dt) {fprintf(frecttidaltrace,"%lf %.9lf %.9lf %.9lf \n",

70.0,dn[k],un[k],wn[k]);};

if (t==80.0*dt) {fprintf(frecttidaltrace,"%lf %.9lf %.9lf %.9lf \n",

80.0,dn[k],un[k],wn[k]);};

if (t==90.0*dt) {fprintf(frecttidaltrace,"%lf %.9lf %.9lf %.9lf \n",

90.0,dn[k],un[k],wn[k]);};

if (t==100.0*dt) {fprintf(frecttidaltrace,"%lf %.9lf %.9lf %.9lf \n",

100.0,dn[k],un[k],wn[k]);};

if (t==110.0*dt) {fprintf(frecttidaltrace,"%lf %.9lf %.9lf %.9lf \n",

110.0,dn[k],un[k],wn[k]);};

if (t==120.0*dt) {fprintf(frecttidaltrace,"%lf %.9lf %.9lf %.9lf \n",

120.0,dn[k],un[k],wn[k]);};

};

}*/

void answer()

{for (k=0;k<n;k++)

{u[k]=un[k];

w[k]=wn[k];

zeta[k]=dn[k];

};

}

void disko()

{

if(iq==nstep+1) goto jdi1;

if (iprog!=0) goto jk1;

fprintf(frecttidalcalc,"\nThe Solution");

fprintf(frecttidalcalc," after %lf secs, after time step %i\n",t,iq);

fprintf(frecttidalcalc,"Node Height U vel V vel\n\n");

/*if (t==3.5*12.4*3600.0)

{fprintf(fzuvout,"\nThe Solution for tidal flow in ");
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fprintf(fzuvout,"Port Phillip Bay\n");

fprintf(fzuvout,"using n=0.045\n");

fprintf(fzuvout,"after %lf secs, after time step %i\n\n",t,iq);

fprintf(fzuvout,"Node Height U vel V vel\n\n");};*/

for(k=0;k<n;k++){

fprintf(frecttidalcalc,"%i %lf %lf %lf\n",k,zeta[k],u[k],w[k]);};

/*if (iq==27524)

for(k=0;k<n;k++){

{fprintf(fzuvout,"%i %lf %lf %lf\n",k,zeta[k],u[k],w[k]);};};*/

if (iprog==0) goto jdi1;

jk1:;

if (iprog==2) goto kl0;

if (iprog==3) goto kl1;

if (iprog==4) goto kl2;

if (iprog==5) goto kl3;

if (iprog==6) goto k14;

if (iprog==7) goto k15;

if (iprog==8) goto k16;

if (iprog==9) goto k17;

if (iprog==10) goto k18;

/* calculating u,v or zeta at a single node; this command

needs to be changed depending on whether u, v or

zeta is required and

depending on the node it is required at;

note that u, v or zeta also has to be set for t=0:

this command is in the main function at the bottom of p.10 */

exptlzeta[174]=a6*cos(pai/tt1*t-ph6*pai/360)+a7*cos(pai/tt2*t

-ph7*pai/360)+a8*cos(pai/tt3*t-ph8*pai/360)+a9*cos(pai/tt4*t

-ph9*pai/360)+a10*cos(pai/tt5*t-ph10*pai/360);

modelzeta[174]=a11*cos(pai/tt1*t-ph11*pai/360)+

a12*cos(pai/tt2*t-ph12*pai/360)

+a13*cos(pai/tt3*t-ph13*pai/360)+a14*cos(pai/tt4*t-ph14*pai/360)

+a15*cos(pai/tt5*t-ph15*pai/360);

for(k=2462;k<2463;k++){fprintf(frecttidalcalc,"%lf %lf\n",t,u[k]);};

for(k=2565;k<2566;k++){fprintf(ftidalday,"%lf %lf\n",t/(24*3600),

zeta[k]);};

for(k=174;k<175;k++){fprintf(fexptltidal,"%lf %lf\n",t/(24*3600),
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exptlzeta[k]);};

for(k=174;k<175;k++){fprintf(fmodeltidal,"%lf %lf\n",t/(24*3600),

modelzeta[k]);};

/*for(k=156;k<157;k++)

{fprintf(frecttidalcalc,"%lf %lf\n",t,zeta[k]);};*/

/*for(k=156;k<157;k++){fprintf(frecttidalcalc,"%lf %lf\n",t,u[k]);};*/

/*for(k=156;k<157;k++){fprintf(frecttidalcalc,"%lf %lf\n",t,w[k]);};*/

if (iprog==1) goto jdi1;

/* calculating u,v and zeta at a number of nodes */

kl0:;

for (k=0;k<1;k++) {fprintf(frecttidalcalc,"% lf %lf",t,u[k]);};

for (k=33;k<34;k++) {fprintf(frecttidalcalc," %lf",u[k]);};

for (k=34;k<35;k++) {fprintf(frecttidalcalc," %lf",u[k]);};

for (k=67;k<68;k++) {fprintf(frecttidalcalc," %lf",u[k]);};

for (k=68;k<69;k++) {fprintf(frecttidalcalc," %lf",u[k]);};

for (k=8;k<9;k++) {fprintf(frecttidalcalc," %lf",u[k]);};

for (k=25;k<26;k++) {fprintf(frecttidalcalc," %lf",u[k]);};

for (k=42;k<43;k++) {fprintf(frecttidalcalc," %lf",u[k]);};

for (k=59;k<60;k++) {fprintf(frecttidalcalc," %lf",u[k]);};

for (k=76;k<77;k++) {fprintf(frecttidalcalc," %lf",u[k]);};

for (k=16;k<17;k++) {fprintf(frecttidalcalc," %lf",u[k]);};

for (k=17;k<18;k++) {fprintf(frecttidalcalc," %lf",u[k]);};

for (k=50;k<51;k++) {fprintf(frecttidalcalc," %lf",u[k]);};

for (k=51;k<52;k++) {fprintf(frecttidalcalc," %lf",u[k]);};

for (k=84;k<85;k++) {fprintf(frecttidalcalc," %lf\n",u[k]);};

if (iprog==2) goto jdi1;

kl1:;

for (k=0;k<1;k++) {fprintf(frecttidalcalc,"% lf %lf",t,w[k]);};

for (k=33;k<34;k++) {fprintf(frecttidalcalc," %lf",w[k]);};

for (k=34;k<35;k++) {fprintf(frecttidalcalc," %lf",w[k]);};

for (k=67;k<68;k++) {fprintf(frecttidalcalc," %lf",w[k]);};

for (k=68;k<69;k++) {fprintf(frecttidalcalc," %lf",w[k]);};

for (k=8;k<9;k++) {fprintf(frecttidalcalc," %lf",w[k]);};

for (k=25;k<26;k++) {fprintf(frecttidalcalc," %lf",w[k]);};

for (k=42;k<43;k++) {fprintf(frecttidalcalc," %lf",w[k]);};
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for (k=59;k<60;k++) {fprintf(frecttidalcalc," %lf",w[k]);};

for (k=76;k<77;k++) {fprintf(frecttidalcalc," %lf",w[k]);};

for (k=16;k<17;k++) {fprintf(frecttidalcalc," %lf",w[k]);};

for (k=17;k<18;k++) {fprintf(frecttidalcalc," %lf",w[k]);};

for (k=50;k<51;k++) {fprintf(frecttidalcalc," %lf",w[k]);};

for (k=51;k<52;k++) {fprintf(frecttidalcalc," %lf",w[k]);};

for (k=84;k<85;k++) {fprintf(frecttidalcalc," %lf\n",w[k]);};

if (iprog==3) goto jdi1;

kl2:;

for (k=0;k<1;k++) {fprintf(frecttidalcalc,"% lf %lf",t,zeta[k]);};

for (k=33;k<34;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=34;k<35;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=67;k<68;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=68;k<69;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=8;k<9;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=25;k<26;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=42;k<43;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=59;k<60;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=76;k<77;k++) {fprintf(frecttidalcalc," %lf\n",zeta[k]);};

if (iprog==4) goto jdi1;

kl3:;

for (k=174;k<175;k++) {fprintf(frecttidalcalc,"% lf %lf",t,zeta[k]);};

for (k=331;k<332;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=552;k<553;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=578;k<579;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=637;k<638;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=647;k<648;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=1059;k<1060;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=1166;k<1167;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=1268;k<1269;k++) {fprintf(frecttidalcalc," %lf\n",zeta[k]);};

if (iprog==5) goto jdi1;

k14:;

/*for (k=0;k<1;k++) {fprintf(frecttidalcalc,"% lf %lf",t,zeta[k]);};

for (k=1;k<8;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};
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for (k=8;k<9;k++) {fprintf(frecttidalcalc," %lf\n",zeta[k]);};*/

/* For Port Phillip Bay Version 8:

dt=12.5 secs and istep=288 if print output every hour */

/*for (k=0;k<1;k++) {fprintf(frecttidalcalc,"% lf %lf",t,zeta[k]);};

for (k=1;k<n-1;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=n-1;k<n;k++) {fprintf(frecttidalcalc," %lf\n",zeta[k]);};*/

/* For Quadratic Bed:

istep=1 if print output every time step; print

output for nodes 264 to 296 for 1st mesh;

776 to 872 for 2nd mesh;

2312 to 2600 for 3rd mesh*/

/*for (k=264;k<265;k++) {fprintf(frecttidalcalc,"% lf %lf",t,zeta[k]);};

for (k=265;k<296;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=296;k<297;k++) {fprintf(frecttidalcalc," %lf\n",zeta[k]);};

for (k=264;k<265;k++) {fprintf(frecttidalcalc,"% lf %lf",t,un[k]);};

for (k=265;k<296;k++) {fprintf(frecttidalcalc," %lf",un[k]);};

for (k=296;k<297;k++) {fprintf(frecttidalcalc," %lf\n",un[k]);};

for (k=264;k<265;k++) {fprintf(frecttidalcalc,"% lf %lf",t,wn[k]);};

for (k=265;k<296;k++) {fprintf(frecttidalcalc," %lf",wn[k]);};

for (k=296;k<297;k++) {fprintf(frecttidalcalc," %lf\n",wn[k]);};

for (k=264;k<265;k++) {fprintf(frecttidaltrace,"disko t %lf i %i %i",

t,k,nodewet[k]);};

for (k=265;k<296;k++) {fprintf(frecttidaltrace," %i %i",

k,nodewet[k]);};

for (k=296;k<297;k++) {fprintf(frecttidaltrace," %i %i\n",k,nodewet[k]);};

*/

/*for (k=776;k<777;k++) {fprintf(frecttidalcalc,"% lf %lf",t,zeta[k]);};

for (k=777;k<872;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=872;k<873;k++) {fprintf(frecttidalcalc," %lf\n",zeta[k]);};

for (k=776;k<777;k++) {fprintf(frecttidalcalc,"% lf %lf",t,un[k]);};
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for (k=777;k<872;k++) {fprintf(frecttidalcalc," %lf",un[k]);};

for (k=872;k<873;k++) {fprintf(frecttidalcalc," %lf\n",un[k]);};

for (k=776;k<777;k++) {fprintf(frecttidalcalc,"% lf %lf",t,wn[k]);};

for (k=777;k<872;k++) {fprintf(frecttidalcalc," %lf",wn[k]);};

for (k=872;k<873;k++) {fprintf(frecttidalcalc," %lf\n",wn[k]);};

for (k=776;k<777;k++) {fprintf(frecttidaltrace,"disko t %lf i %i %i",

t,k,nodewet[k]);};

for (k=777;k<872;k++) {fprintf(frecttidaltrace," %i %i",k,

nodewet[k]);};

for (k=872;k<873;k++) {fprintf(frecttidaltrace," %i %i\n",k,

nodewet[k]);};*/

for (k=2312;k<2313;k++) {fprintf(frecttidalcalc,"% lf %lf",t,zeta[k]);};

for (k=2313;k<2600;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=2600;k<2601;k++) {fprintf(frecttidalcalc," %lf\n",zeta[k]);};

for (k=2312;k<2313;k++) {fprintf(frecttidalcalc,"% lf %lf",t,un[k]);};

for (k=2313;k<2600;k++) {fprintf(frecttidalcalc," %lf",un[k]);};

for (k=2600;k<2601;k++) {fprintf(frecttidalcalc," %lf\n",un[k]);};

for (k=2312;k<2313;k++) {fprintf(frecttidalcalc,"% lf %lf",t,wn[k]);};

for (k=2313;k<2600;k++) {fprintf(frecttidalcalc," %lf",wn[k]);};

for (k=2600;k<2601;k++) {fprintf(frecttidalcalc," %lf\n",wn[k]);};

for (k=2312;k<2313;k++) {fprintf(frecttidaltrace,

"disko t %lf i %i %i",t,k,nodewet[k]);};

for (k=2313;k<2600;k++) {fprintf(frecttidaltrace," %i %i",k,

nodewet[k]);};

for (k=2600;k<2601;k++) {fprintf(frecttidaltrace," %i %i\n",k,

nodewet[k]);};

if (iprog==6) goto jdi1;

k15:;

/* istep=288 if print output every hour */

istep=288;

for (k=0;k<1;k++) {fprintf(frecttidalcalc,"% lf %lf",t,u[k]);};

for (k=1;k<n-1;k++) {fprintf(frecttidalcalc," %lf",u[k]);};
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for (k=n-1;k<n;k++) {fprintf(frecttidalcalc," %lf\n",u[k]);};

if (iprog==7) goto jdi1;

k16:;

/* istep=288 if print output every hour */

istep=288;

for (k=0;k<1;k++) {fprintf(frecttidalcalc,"% lf %lf",t,w[k]);};

for (k=1;k<n-1;k++) {fprintf(frecttidalcalc," %lf",w[k]);};

for (k=n-1;k<n;k++) {fprintf(frecttidalcalc," %lf\n",w[k]);};

if (iprog==8) goto jdi1;

k17:;

/*the below command prints tidal level, u-velocity and v-velocity

at a given time at all nodes to the file zuvout;

iq = 26240 for a High Tide at Pt.Lonsdale

iq = 27840 for a Low Tide at Pt.Lonsdale

iq = 27254 for a Zero Tide at Pt.Lonsdale

iq = 27130 for a Zero Velocity at Pt. Lonsdale*/

if (iq==27130)

for(k=0;k<n;k++){

{fprintf(fzuvout,"%i %lf %lf %lf\n",k,zeta[k],u[k],w[k]);};};

if (iprog==9) goto jdi1;

k18:;

for(k=174;k<175;k++){

fprintf(frecttidalcalc,"%lf %lf %lf %lf\n",t/(24*3600),zeta[k],u[k],

w[k]);};

if (iprog==10) goto jdi1;

jdi1: ;

}

void principalloop()
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/*counting the number of iterations (full time step)*/

{iq=iq+1;

/*increasing the time by half a time step*/

t=t+dt/2.0;

/*dtt is set to half a time step*/

dtt=dt/2.0;

printf("time in seconds=%f\n",t);

vector();/*calls the function vector

which does most of the calculations*/

/*printf("time after 1st vector %lf\n",t);*/

for (k=0;k<n;k++)

{

/*if (t==1.5*dt){fprintf(frecttidaltrace," node %i time %lf dn %lf

\n",k,t,dn[k]);};*/

};

boundary();

/*for (k=0;k<n;k++)

{

if (t==1.5*dt){fprintf(frecttidaltrace," node %i time %lf dn %lf \n",

k,t,dn[k]);};

};*/

semidryhalftimestep();

for (k=0;k<n;k++)

{

/*if (t==0.5*dt) {fprintf(frecttidaltrace,"%lf %i %i %lf \n",

0.5,k,nodewet[k],dn[k]);};*/

};

/*shallow();*/

t=t+dt/2.0;/*increase the time by half a time interval*/

285



dtt=dt;

printf("time in seconds=%f\n",t);

/*printf("zeta at node 176 =%f\n",zeta[176]);*/

vector();/*calls the function vector

for the second half of the time interval*/

boundary();

dryfulltimestep();

/*Calculating which triangles are wet and which are dry;

a triangle is wet if all nodes are wet - otherwise it is dry */

for (k=0; k<n1;k++){

i1=ii[k][0];

i2=ii[k][1];

i3=ii[k][2];

nd1=nodewet[i1];

nd2=nodewet[i2];

nd3=nodewet[i3];

trianglewet[k]=nd1*nd2*nd3;};

for (i=0; i<n;i++)

{ (twet[i]=0)

;};

wettingcheck();

/* shallow();*/

for (k=0;k<n;k++)

{

/*if (t==1.0*dt) {fprintf(frecttidaltrace,"%lf %i %i %lf \n",

1.0,k,nodewet[k],dn[k]);};

if (t==1000.0*dt) {fprintf(frecttidaltrace,"%lf %i %i %lf %lf \n",

1000.0,k,nodewet[k],dn[k],zeta[k]);};*/};

/*Any node i that had twet[i] set to 1 in wettingcheck function

has nodewet[i] set to 1;*/

/*for (k=264;k<265;k++) {fprintf(frecttidaltrace,

"beforetemp t %lf i %i %i",t,k,nodewet[k]);};
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for (k=265;k<296;k++) {fprintf(frecttidaltrace," %i %i",k,nodewet[k]);};

for (k=296;k<297;k++) {fprintf(frecttidaltrace," %i %i\n",k,nodewet[k]);};

for (k=264;k<265;k++) {fprintf(frecttidaltrace,

"beforetemp t %lf i %i %i",t,k,twet[k]);};

for (k=265;k<296;k++) {fprintf(frecttidaltrace," %i %i",k,twet[k]);};

for (k=296;k<297;k++) {fprintf(frecttidaltrace," %i %i\n",k,twet[k]);};

*/

/*for (i=0; i<n;i++)

{ fprintf(frecttidaltrace,"beforeiftemp t %lf i %i %i\n",t,i,nodewet[i]);

if (twet[i]==1){nodewet[i]=1;};

fprintf(frecttidaltrace,"afteriftemp t %lf i %i %i\n",t,i,nodewet[i]);

};*/

for (i=0;i<n;i++)

{if (twet[i]==1)

nodewet[i]=1;};

/*for (k=264;k<265;k++) {fprintf(frecttidaltrace,

"aftertwetconversion t %lf i %i %i",t,k,nodewet[k]);};

for (k=265;k<296;k++) {fprintf(frecttidaltrace," %i %i",k,

nodewet[k]);};

for (k=296;k<297;k++) {fprintf(frecttidaltrace," %i %i\n",k,

nodewet[k]);};

*/

/*for (k=264;k<265;k++) {fprintf(frecttidaltrace,

"aftertemp t %lf i %i %i",t,k,nodewet[k]);};

for (k=265;k<296;k++) {fprintf(frecttidaltrace," %i %i",k,nodewet[k]);};

for (k=296;k<297;k++) {fprintf(frecttidaltrace," %i %i\n",k,nodewet[k]);};*/

/*Calculating which triangles are wet and which are dry;

a triangle is wet if all nodes are wet - otherwise it is dry */

for (k=0; k<n1;k++){

i1=ii[k][0];

i2=ii[k][1];

i3=ii[k][2];

nd1=nodewet[i1];

nd2=nodewet[i2];

nd3=nodewet[i3];

trianglewet[k]=nd1*nd2*nd3;};
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answer();

iqfr=iq/istep;

idisk=iq-iqfr*istep;

if (idisk==0)

{disko();};

}

void main()

{/* the data for tidal flow in a sample bay*/

n=4913;/*n is the number of nodes;

401 for Version 1 Port Phillip Bay

and 598 for Version 2 Port Phillip Bay

and 1506 for Versions 3 and 4 Port Phillip Bay

and 1475 for Version 5 Port Phillip Bay

and 1429 for Version 6 Port Phillip Bay

and 1504 for Versions 8 9 and 10 Port Phillip Bay

and 1505 for Version 11 Port Phillip Bay

and 561 for rectangular basin no. 5

and 1649 for rectangular basin nos. 6 and 7

and 4913 for rectangular basin no. 8*/

n1=9216;/*n1 is the number of triangular elements;

672 for version 1 Port Phillip Bay

and 1056 for Version 2 Port Phillip Bay

and 2769 for Versions 3 and 4 Port Phillip Bay

and 2710 for Version 5 Port Phillip Bay

and 2618 for Version 5 Port Phillip Bay

and 2739 for Versions 8 9 and 10 Port Phillip Bay

and 2741 for Version 11 Port Phillip Bay

and 1024 for for rectangular basin no. 5

and 3072 for rectangular basin no.6 and 7

and 9216 for rectangular basin no. 8*/

n4=17;/*n4 is the number of nodes on the open sea boundary

9 for Port Phillip Bay Versions 1 and 2

and 26 for Port Phillip Bay Versions 3 and 4 and 5 and 6 and 8

and 17 for rectangular basins no. 5 6 and 8*/

ml2[1]=81;/*ml2[1] is the number of nodes on the land boundary;

119 for Version 1 Port Phillip Bay

and 129 for Version 2 Port Phillip Bay
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and 210 for Versions 3 and 4 and 5 and 6 Port Phillip Bay

and 225 for Version 8 Port Phillip Bay

and 81 for for rectangular basin no. 5*/

m2=1;/*m2 is the number of boundaries for land*/

m3=2;/*m3 is the number of islands*/

xbai=0.432;/*xbai is the scale factor for the x-axis, equal

to 1000.0 for Port phillip Bay and

12.0 for rectangular basins for period of 12 hours

and 0.432 for forced flow in a quadratic bed*/

ybai=0.432;/*ybai is the scale factor for the y-axis, equal

to 1000.0 for Port Phillip Bay and

12.0 for rectangular basins for period of 12 hours

and 0.432 for forced flow in a quadratic bed*/

dbai=1.0;//*dbai is the scale factor for sea depth*/

ni[1]=5;/*ni[1] is the number of nodes on the island boundary;

4 for Versions 1 and 2 Port Phillip Bay and

5 for Versions 3 and 4 and 5Port Phillip Bay */

frecttidaltrace=fopen("recttidaltrace","w");

a=0.44;/*a is the tidal amplitude in metres */

aq=3000.0;/*aq is the radius in metres of the quadratic bed*/

b=2.0;/*b is related to the amplitude of the forcing

function for a quadratic bed*/

h0=10.0;/*h0 is the maximum depth of the quadratic bed*/

pai=6.283185307;/*pai equals twice pi*/

/*a1=0.467;*/

/*a1 is the tidal amplitude of M2 in metres

at the open sea boundary:

0.467 in WS (Written Submission),

0.7 in Black’s model;

or alternatively the amplitude of the

forcing function for a quadratic bed*/

a1=-(b*b)/(4*9.81);/*a1 is the amplitude of the

forcing function for a quadratic bed*/

a2=0.0;/*a2 is the tidal amplitude of S2 in metres

at the open sea boundary;

0.135 in WS;

0.195 at Lorne;

*/

a3=0.0;/*a3 is the tidal amplitude of K1 in metres

at the open sea boundary;

0.145 in WS;
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0.210 at Lorne*/

a4=0.0;/*a4 is the tidal amplitude of O1 in metres

at the open sea boundary;

0.102 in WS;

0.144 at Lorne*/

a5=0.0;/*a5 is the tidal amplitude of N2 in metres

at the open sea boundary;

0.075 in WS;

0.116 at Lorne*/

a6=0.44;/*a6 is the observed tidal amplitude of M2 in metres

at a selected point*/

a7=0.127;/*a7 is the observed tidal amplitude of S2 in metres

at a selected point*/

a8=0.145;/*a8 is the observed tidal amplitude of K1 in metres

at a selected point*/

a9=0.102;/*a9 is the observed tidal amplitude of O1 in metres

at a selected point*/

a10=0.085;/*a10 is the observed tidal amplitude of N2 in metres

at a selected point*/

a11=0.440;/*a11 is the modelled tidal amplitude of M2 in metres

at a selected point*/

a12=0.124;/*a12 is the modelled tidal amplitude of S2 in metres

at a selected point*/

a13=0.144;/*a13 is the modelled tidal amplitude of K1 in metres

at a selected point*/

a14=0.104;/*a14 is the modelled tidal amplitude of O1 in metres

at a selected point*/

a15=0.088;/*a15 is the modelled tidal amplitude of N2 in metres

at a selected point*

tt=12.42;/*tt is the cycle of the tide (in hours)*/

tt=tt*3600.0;/*tt in seconds*/

/*tt1=12.42;*/

tt1=(pai*aq/7200)/sqrt(2*9.81*h0);

/*fprintf(frecttidaltrace," tt1 %lf \n",

tt1);*/

/*tt1 is the period of M2 in hours

or alternatively the period of the

forcing function in hours (and half the period of the motion)

for a quadratic bed*/

tt1=tt1*3600.0;/*tt1 in seconds*/

/*fprintf(frecttidaltrace," tt1 %lf \n",

tt1);*/
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tt2=12.0;/*tt2 is the tperiod of S2 in hours */

tt2=tt2*3600.0;/*tt2 in seconds*/

tt3=23.93;/*tt3 is the periode of K1 in hours */

tt3=tt3*3600.0;/*tt3 in seconds*/

tt4=25.82;/*tt4 is the period of O1 in hours */

tt4=tt4*3600.0;/*tt4 in seconds*/

tt5=12.66;/*tt5 is the periode of N2 in hours */

tt5=tt5*3600.0;/*tt5 in seconds*/

ph1=0.0;/*ph1 is the tidal phase of M2 in degrees at open sea boundary;

322.0 in WS;

322.6 in Black’s model*/

ph2=0.0;/*ph2 is the tidal phase of S2 in degrees at open sea boundary;

90.0 in WS;

87.6 at Lorne*/

ph3=0.0;/*ph3 is the tidal phase of K1 in degrees at open sea boundary;

85.0 in WS;

56.5 at Lorne*/

ph4=0.0;/*ph4 is the tidal phase of O1 in degrees at open sea boundary;

30.0 in WS;

26.1 at Lorne*/

ph5=0.0;/*ph5 is the tidal phase of N2 in degrees at open sea boundary;

270.0 in WS;

271.3 at Lorne*/

ph6=326.0;/*ph6 is the observed tidal phase of M2 in degrees at

a selected point*/

ph7=97.4;/*ph7 is the observed tidal phase of S2 in degrees at

a selected point*/

ph8=70.8;/*ph8 is the observed tidal phase of K1 in degrees at

a selected point*/

ph9=38.8;/*ph9 is the observed tidal phase of O1 in degrees at

a selected point*/

ph10=280.3;/*ph10 is the observed tidal phase of N2 in degrees at

a selected point*/

ph11=319.9;/*ph11 is the modelled tidal phase of M2 in degrees at

a selected point*/

ph12=98.8;/*ph12 is the modelled tidal phase of S2 in degrees at

a selected point*/

ph13=70.9;/*ph13 is the modelled tidal phase of K1 in degrees at

a selected point*/

ph14=40.8;/*ph14 is the modelled tidal phase of O1 in degrees at

a selected point*/

ph15=281.2;/*ph15 is the modelled tidal phase of N2 in degrees at
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a selected point*/

/*dt=12.5;*//*dt is the time interval (in secs) for calculations*/

dt=tt1/3456.0;/*dt for a quadratic bed*/

/*fprintf(frecttidaltrace," dt %lf\n",dt);*/

/*set the value of tlimit*/

/*tlimit=10.0;*//*tlimit is the no. of days

(u,v,zeta) are calculated for */

/*tlimit=12.4*10.0;*//* tlimit is the no. of hours (u,v,zeta) are

calculated for */

/*tlimit=32*24*3600;*/

tlimit=2*tt1;/*tlimit is the no. of secs. (u,v,zeta) are calculated

for */

fprintf(frecttidaltrace," period %lf\n",tlimit);

/*printf("period %lf\n",tlimit);*/

nstep=floor(tlimit/dt);/* the number of time steps in tlimit */

/*set the value of eps*/

eps=0.95; /* the lumping parameter epsilon*/

ae=2+2*eps;

be=1-eps;

ltau=0.000000;/* the linear friction factor, in units of (sec)^(-1) */

nmann=0.020; /* nmann is the Manning friction factor;

0.02 in Port Phillip Bay for dt=13.5 s or 12.5 s

for version 6 elements for the best results*/

adv=1.0;/*adv is set to 1.0 for advective flow

and 0.0 for nonadvective flow;

0.0 in Port Phillip Bay*/

visc=0.0;/*visc is set to 1.0 for turbulent flow and

0.0 for nonturbulent flow;

1.0 in Port Phillip Bay*/

turb=6.0;/*turb is the turbulent viscosity coefficient in

square metres per second;

6.0 in Port Phillip Bay*/

hmin=0.85;/*hmin is the minimum depth in metres used

in the quadratic friction formula;

0.85 in Port Phillip Bay*/

zdiff=0.1;/*zdiff is the minimum height (in metres)

that a wet node can be above a neighbouring dry node before the dry node

wets*/

mindepth=0.05;/*mindepth is the minimum depth of water(in metres)
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for a wet node*/

for (i=0; i<n;i++)

{ (twet[i]=0)

;};

/*set the value of iprog;

iprog=0 if (u,v,zeta) printed for all

nodes at every istep time intervals to recttidalcalc and

(u,v,zeta) printed to zuvout at one time interval;

iprog=1 if only one of

(u,v,zeta) printed at one node for every time interval;

iprog=2 if only u printed at 15 given nodes for every time interval;

iprog=3 if only v printed at 15 given nodes for every time interval;

iprog=4 if only zeta printed at 15 given nodes for every time interval;

iprog=5 if only zeta printed at 9 given nodes for every istep

time intervals;

iprog=6 if only zeta printed at all given nodes for every istep

time intervals (for Port Phillip Bay) or if zeta, u and v printed

at all given nodes for every istep

time intervals for moving boundary flow above quadratic bed;

iprog=7 if only u printed at all given nodes for every istep

time intervals;

iprog=8 if only v printed at all given nodes for every istep

time intervals;

iprog=9 if zeta, u, and v printed for all nodes at one time step;

iprog=10 if zeta, u, and v printed for one node at all time steps;

*/

/*setting the value of iprog*/

iprog=6;

/*printf("iprog %i\n,iprog);*/

istep=320;/*for iprog =0 : output printed out for every node

every istep time steps*/

if (iprog==0) goto jk1;

istep=1;/* for iprog =1, 2, 3, 4 , 5, 6, 7, 8, 9, 10:

set istep =1 initially in a lot of cases;

for prog =5, 6, 7 or 8 istep reset later*/

jk1:;

/*frecttidaltrace=fopen("recttidaltrace","w");*/
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frecttidalcalc=fopen("recttidalcalc","w");

ftidalday=fopen("tidalday","w");

fexptltidal=fopen("exptltidal","w");

fmodeltidal=fopen("modeltidal","w");

if (iprog!=0) goto jk2;

fprintf(frecttidaltrace,"Checking program is outputting okay\n");

fprintf(frecttidalcalc,"Solution of the 2D shallow water wave equations

\n");

jk2:;

if (iprog!=0) goto jk3;

fprintf(frecttidalcalc,"solved by the finite element method\n\n");

fprintf(frecttidalcalc,"The number of time steps is %i\n",nstep);

fprintf(frecttidalcalc,"Each time step is %lf seconds\n",dt);

fprintf(frecttidalcalc,"Output every %i steps\n",istep);

jk3:;

/*inputting the x,y and d coordinates from a file*/

frectxyddata=fopen("rectxyddata","r");

fxydout=fopen("xydout","w");

fzuvout=fopen("zuvout","w");

if (iprog!=0) goto jk4;

fprintf(frecttidalcalc,"The number of nodes is %i\n",n);

jk4:;

for(i=0;i<n;i++){

fscanf(frectxyddata,"%lf%lf%lf",&x[i],&y[i],&d[i]);

/*adjusting the depths in Port Phillip Bay */

/*original adjustment formula*/

/*adj[i]=(1271.4165+9.39*x[i]-14.355*y[i])/1484.565;*/

/*amended adjustment formula*/

/*adj[i]=(1264.62+5.55*x[i]-12.279*y[i])/1484.565;*/

/* adjustment terms for versions 1 and 2 */

/*if (i<=10) adj[i]=0.9;

if ((114<=i) && (i<=156)) adj[i]=0.9;*/

/* adjustment terms for version 2 only*/

/*if ((401<=i) && (i<=418)) adj[i]=0.9;

if (i==435) adj[i]=0.9;

if (i==587) adj[i]=0.9;
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if (i==590) adj[i]=0.9;*/

/*adjustment formula from 16 June onwards,

with adj, in metres, constant; 0.85 in Port Phillip Bay,

0.0 m for comparison with analytical solutions*/

/*adj=0.85;*/

adj=0.0;

d[i]=d[i]+adj;

x[i]=x[i]*xbai;

y[i]=y[i]*ybai;

d[i]=d[i]*dbai;

/* d[i]=10.0;*/

d[i]=h0*(1-(x[i]*x[i])/(aq*aq));/*d[i] for a quadratic bed*/

/*fprintf(frecttidaltrace," i %i d %lf\n",i,d[i]);*/

if (iprog!=0) goto jk5;

fprintf(frecttidalcalc,"The node %i is at (%.2lf,%.2lf) with

depth %.2lf\n",i,x[i],y[i],d[i]);

jk5:;

fprintf(fxydout,"%i %.6lf %.6lf %.6lf\n",i,x[i],y[i],d[i]);

};

fclose(frectxyddata);

fclose(fxydout);

/*inputting the node numbers for each of the triangular elements*/

frectnodedata=fopen("rectnodedata","r");

if (iprog!=0) goto jk6;

fprintf(frecttidalcalc,"\n");

fprintf(frecttidalcalc,"The number of elements is %i\n",n1);

jk6:;

for(k=0;k<n1;k++){

fscanf(frectnodedata,"%i%i%i",&ii[k][0],&ii[k][1],&ii[k][2]);

/*ii[k][0]=ii[k][0]-1;

ii[k][1]=ii[k][1]-1;

ii[k][2]=ii[k][2]-1;*/

if (iprog!=0) goto jk7;
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fprintf(frecttidalcalc,"The element %i consists of nodes %i, %i and %i\n",

k,ii[k][0],ii[k][1],ii[k][2]);

jk7:;

};

fclose(frectnodedata);

/*"inputting the node numbers for the land boundary*/

flanddata=fopen("landdata","r");

for(l=0;l<ml2[1];l++){

fscanf(flanddata,"%i",&ibu[l]);

/*ibu[l]=ibu[l]-1;*/

};

fclose(flanddata);

/*"inputting the node numbers for the island boundary*/

fislanddata=fopen("islanddata","r");

for(l=0;l<ni[1];l++){

fscanf(fislanddata,"%i",&ilu[l]);

ilu[l]=ilu[l]-1;

};

fclose(fislanddata);

/*"inputting the node numbers for the sea boundary*/

frectseadata=fopen("rectseadata","r");

for(k=0;k<n4;k++){

fscanf(frectseadata,"%i",&ibh[k]);

/*ibh[k]=ibh[k]-1;*/

};

fclose(frectseadata);

/*initialising values*/

for (k=0;k<n;k++){

am[k]=0;/*am[k] is (the total area of the triangles that node

number k belongs to)/3*/

un[k]=0;/*un[k] is u at each half-time step or

time step*/

wn[k]=0;/*vn[k] is v at each half-time step or

time step*/

/* if (d[k]>0)
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dn[k]=0;

else

{dn[k]=-d[k];};*//* setting initial dn[k] for Port Phillip Bay

tidal flow, where dn[k] is zeta at each half-time step or

time step*/

if (x[k]<2023.21)

dn[k]=-(b*b)/(4*9.81)-(0.5*pai/tt1)*(b/9.81)*x[k];

else

{dn[k]=-d[k];};/* setting initial dn[k] for quadratic bed

flow, where dn[k] is zeta at each half-time step or

time step*/

/* fprintf(frecttidaltrace,"k %i x %lf dn %lf\n",k,x[k],dn[k]);*/

u[k]=0;/*u[k] is u at each time step*/

w[k]=0;/*w[k] is v at each time step*/

/*if (d[k]>0)

{zeta[k]=0;

nodewet[k]=1;}

else

{ zeta[k]=-d[k];

nodewet[k]=0;}*//*setting initial zeta[k] for Port Phillip Bay

tidal flow, where zeta[k] is zeta at each time step*/

/* setting initial zeta

(i) for cosine forced quadratic bed for B=5 aq=3000 h0=10,

use if (x[k]<2023.21)

(ii) for cosine forced quadratic bed for B=2 aq=3000 h0=10,

use if x[k]<2586.9*/

if (x[k]<2586.9)

{zeta[k]=-(b*b)/(4*9.81)-0.5*(pai/tt1)*(b/9.81)*x[k];

nodewet[k]=1;}

else

{zeta[k]=-d[k];

nodewet[k]=0;}/* setting initial zeta[k] for quadratic bed

flow, where zeta[k] is zeta at each

time step*/

/* fprintf(frecttidaltrace,"k %i x %lf zeta %lf\n",k,x[k],zeta[k]);*/

/*fprintf(frecttidaltrace," tt1 %lf \n",

tt1);*/};

printf("time in seconds=%f\n",t);

if (iprog!=0) goto jk8;

fprintf(frecttidalcalc,"\n");
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jk8:;

/*Calculating which triangles are wet and which are dry;

a triangle is wet if all nodes are wet - otherwise it is dry */

for (k=0; k<n1;k++){

i1=ii[k][0];

i2=ii[k][1];

i3=ii[k][2];

nd1=nodewet[i1];

nd2=nodewet[i2];

nd3=nodewet[i3];

trianglewet[k]=nd1*nd2*nd3;};

/*setting the initial height on the sea boundary*/

if (iprog!=0) goto jk9;

fprintf(frecttidalcalc,"The number of sea boundary conditions is %i \n",n4);

jk9:;

for(k=0;k<n4;k++){

l=ibh[k];

dn[l]=a1*cos(-ph1*pai/360)+a2*cos(-ph2*pai/360)

+a3*cos(-ph3*pai/360)+a4*cos(-ph4*pai/360)

+a5*cos(-ph5*pai/360);

zeta[l]=a1*cos(-ph1*pai/360)+a2*cos(-ph2*pai/360)

+a3*cos(-ph3*pai/360)+a4*cos(-ph4*pai/360)

+a5*cos(-ph5*pai/360);

if (iprog!=0) goto jk10;

fprintf(frecttidalcalc,"The bc at node %i is z=%lf cos (2*pi)*(%lf^(-1))\n",

l,a,tt);

jk10:;

};

if (iprog!=0) goto jk11;

fprintf(frecttidalcalc,"\n");

fprintf(frecttidalcalc,"\nThe number of element boundary conditions

is %i\n", ml2[1]-1);

jk11:;
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for (k=0;k<ml2[1]-1;k++){

if (iprog!=0) goto jk12;

fprintf(frecttidalcalc,"The boundary condition from");

fprintf(frecttidalcalc," node %i to node %i is nvel=zero\n",ibu[k],

ibu[k+1]);

jk12:;};

if (iprog!=0) goto jk16;

fprintf(frecttidalcalc,"\n");

jk16:;

/*calculating del(k), the area of each triangle, and am(ir), (the sum

of the triangle areas a node forms part of)/3),for each node*/

for(k=0;k<n1;k++){

i1=ii[k][0];

i2=ii[k][1];

i3=ii[k][2];

delk=x[i2]*y[i3]+x[i1]*y[i2]+x[i3]*y[i1];

del[k]=(delk-(x[i3]*y[i2]+x[i1]*y[i3]+x[i2]*y[i1]))*.5;

/* fprintf(frecttidaltrace,"%f \n",

del[k]);*/

/*delt=del[k]/3.0;

for(im=0;im<3;im++){

ir=ii[k][im];

am[ir]=am[ir]+delt;

};*/

};

if (iprog!=0) goto jk13;

fprintf(frecttidalcalc,"\nThe selective lumped mass parameter = %lf\n",

eps);

/*fprintf(frecttidalcalc,"\nThe linear friction factor = %lf\n",ltau);*/

fprintf(frecttidalcalc,"\nThe Manning friction factor = %lf\n",nmann);

jk13:;

/*initialising values*/

iq=0; /*iq is the number of iterations*/

t=0; /*t is the time in seconds*/
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if (iprog!=0) goto jk14;

fprintf(frecttidalcalc,"\nThe Initial Values");

fprintf(frecttidalcalc," after %lf secs, after time step %i\n",t,iq);

fprintf(frecttidalcalc,"Node Height U vel V vel\n");

for(k=0;k<n;k++){

fprintf(frecttidalcalc,"%i %lf %lf %lf \n",k,zeta[k],u[k],w[k]);

/*fprintf(fzuvout,"%i %lf %lf %lf\n",k,zeta[k],u[k],w[k]);*/

};

jk14:;

if (iprog==0) goto jk15;

if (iprog==2) goto mn0;

if (iprog==3) goto mn1;

if (iprog==4) goto mn2;

if (iprog==5) goto mn3;

if (iprog==6) goto mn4;

if (iprog==7) goto mn5;

if (iprog==8) goto mn6;

if (iprog==9) goto mn7;

if (iprog==10) goto mn8;

/* calculating u,v or zeta at a single node; this command

needs to be changed depending on whether u, v or

zeta is required and

depending on the node it is required at

*/

exptlzeta[174]=a6*cos(-ph6*pai/360)+a7*cos(-ph7*pai/360)

+a8*cos(-ph8*pai/360)+a9*cos(-ph9*pai/360)

+a10*cos(-ph10*pai/360);

modelzeta[174]=a11*cos(-ph11*pai/360)+

a12*cos(-ph12*pai/360)

+a13*cos(-ph13*pai/360)+a14*cos(pai/tt4*t-ph14*pai/360)

+a15*cos(-ph15*pai/360);

for(k=2462;k<2463;k++){fprintf(frecttidalcalc,"%lf %lf\n",t,u[k]);};

for(k=2447;k<2448;k++){fprintf(ftidalday,"%lf %lf\n",t/(24*3600),

zeta[k]);};

for(k=174;k<175;k++){fprintf(fexptltidal,"%lf %lf\n",t/(24*3600),

exptlzeta[k]);};

for(k=174;k<175;k++){fprintf(fmodeltidal,"%lf %lf\n",t/(24*3600),
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modelzeta[k]);};

/*for(k=156;k<157;k++)

{fprintf(frecttidalcalc,"%lf %lf\n",t,zeta[k]);};*/

/*for(k=156;k<157;k++){fprintf(frecttidalcalc,"%lf %lf\n",t,u[k]);};*/

/*for(k=156;k<157;k++){fprintf(frecttidalcalc,"%lf %lf\n",t,w[k]);};*/

if (iprog==1) goto jk17;

mn0:;

for (k=0;k<1;k++) {fprintf(frecttidalcalc,"% lf %lf",t,u[k]);};

for (k=33;k<34;k++) {fprintf(frecttidalcalc," %lf",u[k]);};

for (k=34;k<35;k++) {fprintf(frecttidalcalc," %lf",u[k]);};

for (k=67;k<68;k++) {fprintf(frecttidalcalc," %lf",u[k]);};

for (k=68;k<69;k++) {fprintf(frecttidalcalc," %lf",u[k]);};

for (k=8;k<9;k++) {fprintf(frecttidalcalc," %lf",u[k]);};

for (k=25;k<26;k++) {fprintf(frecttidalcalc," %lf",u[k]);};

for (k=42;k<43;k++) {fprintf(frecttidalcalc," %lf",u[k]);};

for (k=59;k<60;k++) {fprintf(frecttidalcalc," %lf",u[k]);};

for (k=76;k<77;k++) {fprintf(frecttidalcalc," %lf",u[k]);};

for (k=16;k<17;k++) {fprintf(frecttidalcalc," %lf",u[k]);};

for (k=17;k<18;k++) {fprintf(frecttidalcalc," %lf",u[k]);};

for (k=50;k<51;k++) {fprintf(frecttidalcalc," %lf",u[k]);};

for (k=51;k<52;k++) {fprintf(frecttidalcalc," %lf",u[k]);};

for (k=84;k<85;k++) {fprintf(frecttidalcalc," %lf\n",u[k]);};

if (iprog==2) goto jk17;

mn1:;

for (k=0;k<1;k++) {fprintf(frecttidalcalc,"% lf %lf",t,w[k]);};

for (k=33;k<34;k++) {fprintf(frecttidalcalc," %lf",w[k]);};

for (k=34;k<35;k++) {fprintf(frecttidalcalc," %lf",w[k]);};

for (k=67;k<68;k++) {fprintf(frecttidalcalc," %lf",w[k]);};

for (k=68;k<69;k++) {fprintf(frecttidalcalc," %lf",w[k]);};

for (k=8;k<9;k++) {fprintf(frecttidalcalc," %lf",w[k]);};

for (k=25;k<26;k++) {fprintf(frecttidalcalc," %lf",w[k]);};

for (k=42;k<43;k++) {fprintf(frecttidalcalc," %lf",w[k]);};

for (k=59;k<60;k++) {fprintf(frecttidalcalc," %lf",w[k]);};

for (k=76;k<77;k++) {fprintf(frecttidalcalc," %lf",w[k]);};

for (k=16;k<17;k++) {fprintf(frecttidalcalc," %lf",w[k]);};

for (k=17;k<18;k++) {fprintf(frecttidalcalc," %lf",w[k]);};
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for (k=50;k<51;k++) {fprintf(frecttidalcalc," %lf",w[k]);};

for (k=51;k<52;k++) {fprintf(frecttidalcalc," %lf",w[k]);};

for (k=84;k<85;k++) {fprintf(frecttidalcalc," %lf\n",w[k]);};

if (iprog==3) goto jk17;

mn2:;

for(k=68;k<69;k++){fprintf(frecttidalcalc,"%lf %lf\n",t,zeta[k]);};

for (k=0;k<1;k++) {fprintf(frecttidalcalc,"% lf %lf",t,zeta[k]);};

for (k=33;k<34;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=34;k<35;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=67;k<68;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=68;k<69;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=8;k<9;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=25;k<26;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=42;k<43;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=59;k<60;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=76;k<77;k++) {fprintf(frecttidalcalc," %lf\n",zeta[k]);};

if (iprog==4) goto jk17;

mn3:;

/* dt=12.5 secs and istep=288 if print output every hour */

istep=288;

for (k=174;k<175;k++) {fprintf(frecttidalcalc,"% lf %lf",t,zeta[k]);};

for (k=331;k<332;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=552;k<553;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=578;k<579;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=637;k<638;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=647;k<648;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=1059;k<1060;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=1166;k<1167;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=1268;k<1269;k++) {fprintf(frecttidalcalc," %lf\n",zeta[k]);};

if (iprog==5) goto jk17;

mn4:;

/* For Port Phillip Bay Version 8:
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dt=12.5 secs and istep=288 if print output every hour */

/*istep=288;

for (k=0;k<1;k++) {fprintf(frecttidalcalc,"% lf %lf",t,zeta[k]);};

for (k=1;k<n-1;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=n-1;k<n;k++) {fprintf(frecttidalcalc," %lf\n",zeta[k]);};*/

/* For Quadratic Bed:

istep=1 if print output every time step; print

output for nodes 264 to 296 for 1st mesh;

776 to 872 for 2nd mesh;

2312 to 2600 for 3rd mesh*/

istep=1;

/*for (k=264;k<265;k++) {fprintf(frecttidalcalc,"% lf %lf",t,zeta[k]);};

for (k=265;k<296;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=296;k<297;k++) {fprintf(frecttidalcalc," %lf\n",zeta[k]);};

for (k=264;k<265;k++) {fprintf(frecttidalcalc,"% lf %lf",t,un[k]);};

for (k=265;k<296;k++) {fprintf(frecttidalcalc," %lf",un[k]);};

for (k=296;k<297;k++) {fprintf(frecttidalcalc," %lf\n",un[k]);};

for (k=264;k<265;k++) {fprintf(frecttidalcalc,"% lf %lf",t,wn[k]);};

for (k=265;k<296;k++) {fprintf(frecttidalcalc," %lf",wn[k]);};

for (k=296;k<297;k++) {fprintf(frecttidalcalc," %lf\n",wn[k]);};

for (k=264;k<265;k++) {fprintf(frecttidaltrace,"init t %lf i %i %i",

t,k,nodewet[k]);};

for (k=265;k<296;k++) {fprintf(frecttidaltrace," %i %i",k,nodewet[k]);};

for (k=296;k<297;k++) {fprintf(frecttidaltrace," %i %i\n",k,

nodewet[k]);};*/

/*for (k=776;k<777;k++) {fprintf(frecttidalcalc,"% lf %lf",t,zeta[k]);};

for (k=777;k<872;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=872;k<873;k++) {fprintf(frecttidalcalc," %lf\n",zeta[k]);};

for (k=776;k<777;k++) {fprintf(frecttidalcalc,"% lf %lf",t,un[k]);};
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for (k=777;k<872;k++) {fprintf(frecttidalcalc," %lf",un[k]);};

for (k=872;k<873;k++) {fprintf(frecttidalcalc," %lf\n",un[k]);};

for (k=776;k<777;k++) {fprintf(frecttidalcalc,"% lf %lf",t,wn[k]);};

for (k=777;k<872;k++) {fprintf(frecttidalcalc," %lf",wn[k]);};

for (k=872;k<873;k++) {fprintf(frecttidalcalc," %lf\n",wn[k]);};

for (k=776;k<777;k++) {fprintf(frecttidaltrace,"disko t %lf i %i %i",t,

k,nodewet[k]);};

for (k=777;k<872;k++) {fprintf(frecttidaltrace," %i %i",k,

nodewet[k]);};

for (k=872;k<873;k++) {fprintf(frecttidaltrace," %i %i\n",k,

nodewet[k]);};

*/

for (k=2312;k<2313;k++) {fprintf(frecttidalcalc,"% lf %lf",t,zeta[k]);};

for (k=2313;k<2600;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=2600;k<2601;k++) {fprintf(frecttidalcalc," %lf\n",zeta[k]);};

for (k=2312;k<2313;k++) {fprintf(frecttidalcalc,"% lf %lf",t,

un[k]);};

for (k=2313;k<2600;k++) {fprintf(frecttidalcalc," %lf",un[k]);};

for (k=2600;k<2601;k++) {fprintf(frecttidalcalc," %lf\n",un[k]);};

for (k=2312;k<2313;k++) {fprintf(frecttidalcalc,"% lf %lf",t,wn[k]);};

for (k=2313;k<2600;k++) {fprintf(frecttidalcalc," %lf",wn[k]);};

for (k=2600;k<2601;k++) {fprintf(frecttidalcalc," %lf\n",wn[k]);};

for (k=2312;k<2313;k++) {fprintf(frecttidaltrace,"disko t %lf i %i %i",

t,k,nodewet[k]);};

for (k=2313;k<2600;k++) {fprintf(frecttidaltrace," %i %i",k,

nodewet[k]);};

for (k=2600;k<2601;k++) {fprintf(frecttidaltrace," %i %i\n",k,

nodewet[k]);

};
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/*for (k=0;k<1;k++) {fprintf(frecttidalcalc,"% lf %lf",t,zeta[k]);};

for (k=1;k<8;k++) {fprintf(frecttidalcalc," %lf",zeta[k]);};

for (k=8;k<9;k++) {fprintf(frecttidalcalc," %lf\n",zeta[k]);};*/

if (iprog==6) goto jk17;

mn5:;

/* dt=12.5 secs and istep=288 if print output every hour */

istep=288;

for (k=0;k<1;k++) {fprintf(frecttidalcalc,"% lf %lf",t,u[k]);};

for (k=1;k<n-1;k++) {fprintf(frecttidalcalc," %lf",u[k]);};

for (k=n-1;k<n;k++) {fprintf(frecttidalcalc," %lf\n",u[k]);};

if (iprog==7) goto jk17;

mn6:;

/* dt=12.5 secs and istep=288 if print output every hour */

istep=288;

for (k=0;k<1;k++) {fprintf(frecttidalcalc,"% lf %lf",t,w[k]);};

for (k=1;k<n-1;k++) {fprintf(frecttidalcalc," %lf",w[k]);};

for (k=n-1;k<n;k++) {fprintf(frecttidalcalc," %lf\n",w[k]);};

if (iprog==8) goto jk17;

mn7:;

if (iq==27130)

for(k=0;k<n;k++){

{fprintf(fzuvout,"%i %lf %lf %lf\n",k,zeta[k],u[k],w[k]);};}

if (iprog==9) goto jk17;

mn8:;

for(k=174;k<175;k++){
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fprintf(frecttidalcalc,"%lf %lf %lf %lf\n",t/(24*3600),zeta[k],

u[k],w[k]);};

if (iprog==10) goto jk17;

jk15:;

for (k=0;k<n;k++){fprintf(frecttidaltrace,"%lf %i %lf %lf %lf \n",

0.0,k,dn[k],un[k],wn[k]);};

jk17:;

for (i4=0;i4<nstep;i4++){

principalloop();

};

printf ("end of computation\n");

printf("press return key");

fclose(frecttidalcalc);

fclose(fzuvout);

fclose(ftidalday);

fclose(frecttidaltrace);

fclose(fexptltidal);

fclose(fmodeltidal);

}
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Appendix B

Visual C++ code for
generating finite elements

/* Finite element mesh.cpp: a program to generate a finite

element mesh of right angled isosceles triangles

for a rectangular region of length lh and width bh.

The rectangle has p+1 nodes on its base ,which is in the x-direction,

and q+1 nodes along its left side,which is in the y-direction.

Note: p and q have to be even. The triangles generated have their

isoceles sides parallel to the x- or y-directions. The program

generates (p+1)(q+1) nodes and 2pq triangles. The depth at the left

hand end is dleft and the depth at the right hand end is dright. The

values of dleft, dright, lh, p and q must be input. The value of bh

is calculated to ensure that the triangles are isosceles.

Joe Sampson */

# include <stdio.h>

# include <math.h>

# include <cstdlib>

double bh,dleft,dright,lh; int j,k,l,n,p,q;

double x[4920],y[4920]; /* x and y coordinates [m] */

double d[4920]; /* water depth [m] */

int nodeno[9220][3]; /* nodenumber(triangleno.,vertex no.) */

FILE *fddata;

FILE *finodedata;

FILE *fixyddata;

FILE *flhdata;
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FILE *fnodedata;

FILE *fpqdata;

FILE *ftrace;

FILE *fxyddata;

void type_alpha()

{for (l=0;l<q/2-1;l++){

nodeno[j+4*p*(l+1)][0]=nodeno[j+4*p*l][0]+2*p+2;

nodeno[j+4*p*(l+1)][1]=nodeno[j+4*p*l][1]+2*p+2;

nodeno[j+4*p*(l+1)][2]=nodeno[j+4*p*l][2]+2*p+2;

}; }

void type_beta()

{for (l=0;l<q/2-1;l++){

nodeno[j+4*(k+1)+4*p*(l+1)][0]=nodeno[j+4*(k+1)+4*p*l][0]+2*p+2;

nodeno[j+4*(k+1)+4*p*(l+1)][1]=nodeno[j+4*(k+1)+4*p*l][1]+2*p+2;

nodeno[j+4*(k+1)+4*p*(l+1)][2]=nodeno[j+4*(k+1)+4*p*l][2]+2*p+2;

};

}

void type_gamma()

{for (l=0;l<q/2-1;l++){

nodeno[j-4*(k+1)+4*p*(l+1)][0]=nodeno[j-4*(k+1)+4*p*l][0]+2*p+2;

nodeno[j-4*(k+1)+4*p*(l+1)][1]=nodeno[j-4*(k+1)+4*p*l][1]+2*p+2;

nodeno[j-4*(k+1)+4*p*(l+1)][2]=nodeno[j-4*(k+1)+4*p*l][2]+2*p+2;

};

}

void type_a()

{type_alpha();

for (k=0;k<p/2-1;k++){

nodeno[j+4*(k+1)][0]=nodeno[j+4*k][0]-2;

nodeno[j+4*(k+1)][1]=nodeno[j+4*k][1]+2;

nodeno[j+4*(k+1)][2]=nodeno[j+4*k][2]-2;

type_beta();

}; }

void type_b()

{type_alpha();
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for (k=0;k<p/2-1;k++){

nodeno[j+4*(k+1)][0]=nodeno[j+4*k][0]+2;

nodeno[j+4*(k+1)][1]=nodeno[j+4*k][1]-2;

nodeno[j+4*(k+1)][2]=nodeno[j+4*k][2]+2;

type_beta();

}; }

void type_c()

{type_alpha();

for (k=0;k<p/2-1;k++){

nodeno[j-4*(k+1)][0]=nodeno[j-4*k][0]-2;

nodeno[j-4*(k+1)][1]=nodeno[j-4*k][1]+2;

nodeno[j-4*(k+1)][2]=nodeno[j-4*k][2]-2;

type_gamma();

}; }

void type_d()

{type_alpha();

for (k=0;k<p/2-1;k++){

nodeno[j-4*(k+1)][0]=nodeno[j-4*k][0]+2;

nodeno[j-4*(k+1)][1]=nodeno[j-4*k][1]-2;

nodeno[j-4*(k+1)][2]=nodeno[j-4*k][2]+2;

type_gamma();

}; }

/* given the x, y and d coordinates of 2 points in the mesh, the x,

y and d coordinates of some of the other points are generated using

the type_e function and for some of the other

points by using the type_f function */

void type_e() /*type_e() generates the x, y and d coordinates on the

bottom row, on the row that is 2 rows above the bottom row, on the

row that is 4 rows above the bottom row, etc.*/ { j=0;

x[j]=0.0;

y[j]=0.0;

d[j]=dleft;

for (n=0;n<q/2+1;n++){

x[j+n*(2*p+2)]=x[j];
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y[j+n*(2*p+2)]=y[j]+n*2*lh/p;

d[j+n*(2*p+2)]=d[j];

for (k=0;k<p+1;k++){

x[j+n*(2*p+2)+k]=x[j]+k*lh/p;

y[j+n*(2*p+2)+k]=y[j+n*(2*p+2)];

d[j+n*(2*p+2)+k]=d[j]+(dright-dleft)*k/p;};

};

}

void type_f() /*type_f() generates the x, y and d coordinates on the

bottom row, on the row that is 1 row above the bottom row, on the

row that is 3 rows above the bottom row, etc.*/ { j=p+1;

x[j]=lh;

y[j]=lh/p;

d[j]=dright;

for (n=0;n<q/2;n++){

x[j+n*(2*p+2)]=x[j];

y[j+n*(2*p+2)]=y[j]+n*2*lh/p;

d[j+n*(2*p+2)]=d[j];

for (k=0;k<p+1;k++){

x[j+n*(2*p+2)+k]=x[j]-k*lh/p;

y[j+n*(2*p+2)+k]=y[j+n*(2*p+2)];

d[j+n*(2*p+2)+k]=d[j]-(dright-dleft)*k/p;};

};

}

void main()

{ ftrace=fopen("trace","w");

fddata=fopen("fddata","r");

flhdata=fopen("flhdata","r");

fpqdata=fopen("pqdata","r");

fscanf(fddata,"%lf %lf",&dleft,&dright);

fscanf(flhdata,"%lf",&lh);

fscanf(fpqdata,"%i %i",&p,&q);

bh=q*lh/p;

j=0;

nodeno[j][0]=2*p+1;
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nodeno[j][1]=0;

nodeno[j][2]=2*p;

/*fprintf(ftrace,"before type a \n");*/

type_a();

j=1;

nodeno[j][0]=1;

nodeno[j][1]=2*p;

nodeno[j][2]=0;

type_b();

j=2;

nodeno[j][0]=2;

nodeno[j][1]=2*p;

nodeno[j][2]=1;

type_b();

j=3;

nodeno[j][0]=2*p;

nodeno[j][1]=2;

nodeno[j][2]=2*p-1;

type_a();

j=4*p-4;

nodeno[j][0]=2*p-1;

nodeno[j][1]=2*p+4;

nodeno[j][2]=2*p;

type_c();

j=4*p-3;

nodeno[j][0]=2*p+3;

nodeno[j][1]=2*p;

nodeno[j][2]=2*p+4;

type_d();

j=4*p-2;

nodeno[j][0]=2*p+2;

nodeno[j][1]=2*p;

nodeno[j][2]=2*p+3;

type_d();

j=4*p-1;
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nodeno[j][0]=2*p;

nodeno[j][1]=2*p+2;

nodeno[j][2]=2*p+1;

type_c();

type_e();

type_f();

/* writing the nodedata and the x, y and d values to files */

fxyddata=fopen("xyddata","w");

fixyddata=fopen("ixyddata","w");

fnodedata=fopen("nodedata","w");

finodedata=fopen("inodedata","w");

for (k=0;k<(p+1)*(q+1);k++){

printf("nodeno=%i\n",k);

fprintf(fxyddata,"%.9lf %.9lf %.9lf\n",x[k],y[k],d[k]);};

for (k=0;k<(p+1)*(q+1);k++){

fprintf(fixyddata,"%i %.9lf %.9lf %.9lf\n",k,x[k],y[k],d[k]);};

for(k=0;k<2*p*q;k++){

fprintf(fnodedata,"%i %i %i\n",nodeno[k][0],nodeno[k][1],

nodeno[k][2]);};

for(k=0;k<2*p*q;k++){

fprintf(finodedata,"%i %i %i %i\n",k,nodeno[k][0],nodeno[k][1],

nodeno[k][2]);};

fclose(fddata);

fclose(finodedata);

fclose(fixyddata);

fclose(flhdata);

fclose(fnodedata);

fclose(fpqdata);

fclose(ftrace);

fclose(fxyddata);

}
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