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Abstract 
High interannual variability of streamflow resulting from the extensive topographic 

variation and climatic inconsistency cause immense difficulties to the water users and 

planners of Australia. New South Wales, which is situated in the south-eastern part of 

Australia, is the most populous state and is one of the major contributors of Australia’s 

agricultural income. The inter-annual variation of streamflow hampers the agricultural 

production and proper allocation of water of the state largely. Therefore, prediction of 

streamflow over a large time period will enable the water allocators and agricultural 

producers to take the low-risk decision at an earlier stage of the crop year which will 

ultimately enhance the economic growth of the country. Since streamflow is largely 

dependent on rainfall, it appears to be a more complex phenomenon compared to 

rainfall. Thereby, long-lead forecasting of streamflow rather than rainfall will be more 

beneficial to the irrigators. To date, many researchers have attempted to predict future 

streamflow and rainfall using oceanic and atmospheric indices with the help of both 

statistical and dynamic approaches. While most of the past studies were concentrated 

on revealing the relationship between streamflow of single concurrent or lagged climate 

indices, this study makes an effort to explore the combined impact of large-scale 

climate drivers to forecast seasonal streamflow of New South Wales (NSW) region. 

To accomplish the aim of this study, several oceanic and atmospheric climate indices 

are selected considering their influence on the streamflow of NSW which includes but 

not limited to four major climate drivers of this region PDO (Pacific Decadal 

Oscillation), IPO (Inter Decadal Pacific Oscillation), IOD (Indian Ocean Dipole) and 

the ENSO (El Nino Southern Oscillation) indices. Many past research works 

demonstrated that different regions of NSW are influenced by different climate modes 

which lead the present study to divide NSW into four regions with a view to identifying 

the regional variation of the impacts of various climate drivers. At first single lagged 

correlation analysis is performed to identify the individual interactions of indices with 

spring streamflow till nine lagged months which is, later on, exploited as the basis for 

selecting input variables for developing Multiple Linear Regression (MLR) models to 

examine the extent of the combined impact of the selected climate drivers on forecasting 

spring streamflow several months ahead. As many researchers have claimed that a non-

linear approach may better capture the relationship between climate variables and 
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seasonal streamflow, Multiple Non-Linear Regression (MNLR) Analysis is conducted 

to explore the underlying non-linear relationship between seasonal streamflow and 

climate indices. Finally, for further improvement, an Artificial Intelligence (AI) based 

method, Gene Expression Programming (GEP) is introduced to evaluate the potential 

of this method for forecasting seasonal streamflow of NSW. Performances of the 

developed models are assessed using standard statistical measures such as RRSE (Root 

Relative Squared Error), RAE (Relative Absolute Error), RMSE (Root Mean Square 

Error), MAE (Mean Absolute Error) and Pearson correlation (r) values. A comparative 

analysis is performed among the applied methods where GEP method has outperformed 

the other two methods.  The highest predictabilities of the GEP based models are 

evident from the Pearson correlation (r) values ranging between 0.57 and 0.97, which 

are mostly about twice the values achieved by MLR and MNLR models. The developed 

GEP models are able to predict spring streamflow up to 5 months in advance with 

significantly high correlation values. The current study showed better performances 

while compared to the previous research studies in this field. This research concludes 

that GEP models can be used to predict seasonal streamflow of NSW incorporating 

large-scale multiple climate indices as predictors. In future, a similar concept will be 

applied to other regions for other seasons to explore the spatial and seasonal variation 

of influences different climate indices on seasonal streamflow. 
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Chapter 1 
Introduction 

1.1 Background 

Australia is considered as the driest inhabited continent of the world with 70% of its 

land arid or semi-arid land. The geographic location and extensive topographic 

variation present high climatic inconsistency in Australia which results in even higher 

inter-annual streamflow variability across the country, which is almost twice of the 

rivers in any other part of the world (McMahon et al. 1992). As a consequence, it 

presents many difficulties to the irrigators, agricultural producers, water managers and 

planners to allocate irrigation water and environmental flows, manage and operate 

reservoir, municipal supply water, estimate future hydroelectricity supply etc. There is 

a significant regional variation of streamflow and run-off throughout Australia, and in 

recent years the streamflow occurrences are more visible in the eastern part compared 

to the rest of the parts of the country. Therefore, prediction of rainfall and streamflow 

over long timescales can help in low-risk decisions making for water resource 

management (White et al. 2004; Abawi et al. 2005). 

Australia is surrounded by Pacific, Indian and Southern Ocean, is greatly influenced by 

the climatic anomalies originated from the ocean. It has been accepted by the 

hydrologists that there exists a strong correlation between the streamflow and the large-

scale atmospheric circulation patterns. The impacts of each climate index, including the 

Sea Level Pressure (SLP) and Sea Surface Temperature (SST) anomalies have spatial 

and seasonal variation. Over the years, researchers have studied the relationship 

between Australian rainfall, streamflow and climate indices. Dutta et al. (2006) 

indicated the necessity for exploring the skills of forecasting streamflow and rainfall 

with different lead times exploiting various climate indicators. It was mentioned by him 

that streamflow forecast is more significant compared to rainfall forecast as it can be 

predicted with longer lead times. Thereby, streamflow forecast enables the water users 

to make the decision earlier in the year, which ultimately increases the potential of 

financial benefits. 

Two main sources of streamflow are initial catchment and future climate (for instance, 

oceanic and atmospheric climate indices) conditions (Robertson et al. 2009). Initial 
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catchment conditions can be indicated by antecedent streamflow, antecedent rainfall, 

soil moisture or groundwater levels. Chiew et al. (1998) stated that serial correlations 

(persistence) is very high in Australia and the reason for this is the delaying responses 

of the rainfall-runoff process which ultimately gives streamflow data memory of several 

months. While comparing to initial catchment condition, remote climate drivers have 

better predictability of streamflow as the climate indices fluctuate at very low 

frequencies which can impact the streamflow easily. Moreover, developing streamflow 

forecasting models incorporating initial catchment condition is more complicated. 

Thereby, this study will aim to focus on the potential of lagged climate modes to explain 

future seasonal streamflow. 

The El Niño Southern Oscillation (ENSO) phenomenon, which results from the large-

scale interactions between the ocean and atmospheric circulation processes in the 

equatorial Pacific Ocean, has direct influences on the climate variability over many 

parts of the world (e.g. Ropelewski and Halpert 1987; Kiladis and Diaz 1989; Nicholls 

et al. 1991). El Nino and La Nina events are responsible for the different climatic 

conditions around the Pacific including eastern Australia (Stone and Auliciems 1992; 

Nazemosadat and Cordery 1997; Hoerling et al. 2001; CPTEC 2006; Chiew 2006). 

Several studies revealed the influences of ENSO on streamflow throughout Australia 

(Piechota et al. 1998; Chiew et al. 1998, 2003; Dettinger and Diaz 2000; Dutta et al. 

2006). Chiew et al. (1998) and Piechota et al. (1998) found that ENSO based (Southern 

Oscillation Index (SOI) and SST) streamflow predictions in northeast Australia are 

better than the forecasts from climatology. 

The El Nin˜o–Southern Oscillation Modoki (EMI) events have significant influences 

on the climate of many parts of the world including Japan, New Zealand, western coast 

of United States (Ashok et al. 2007), Australia (Taschetto and England 2009), South 

China (Feng and Li 2011). According to Taschetto and England (2009), EMI 

significantly decreases northern and north-western rainfall while traditional ENSO 

indices decrease south-eastern and north-eastern rainfall in Australia.  

Though the dominant source of inter-annual variability in Australian rainfall and 

streamflow is believed to be ENSO phenomenon, some recent evidence shows that 

Eastern Australia is also influenced by Indian Ocean Dipole (IOD) as well as 

interdecadal modulation of ENSO as a result of the low-frequency variability in the 
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Pacific Ocean, which is referred as Pacific Decadal Oscillation or PDO (Westra and 

Sharma 2008). Cai et al. (2011) and Risbey et al. (2009) found that IOD has an impact 

on austral winter (June to October) in the southern part of Australia whereas ENSO has 

a strong influence on austral spring rainfall as a result of the strong covariation of ENSO 

and IOD. According to Meyers et al. (2007), IOD and ENSO can sometimes occur 

together in such a way that strengthens each other. Many researchers (e.g., Power et al. 

1999; Kiem et al. 2003; Kiem and Franks 2004) have demonstrated the influence of the 

Interdecadal Pacific Oscillation (IPO) to be significant on rainfall variation on a decadal 

to multi-decadal timescale. King et al. (2013) suggested that the IPO plays a significant 

role in the frequency of major floods during the 1950s, 1970s and 2010–2011. 

The climate of southeast Australia is influenced by four major climate drivers 

originating in the Pacific Ocean, the Indian Ocean and the Southern Ocean ENSO, IPO 

(PDO), Southern Annular Mode (SAM) and IOD (Duc et al. 2017). The correlations 

between ENSO phenomenon and seasonal rainfall in central NSW are found to be the 

strongest during spring (McBride and Nicholls 1983). Robertson and Wang (2009) 

investigated on 12 climatic predictors with a view to selecting the best predictors for 

forecasting seasonal streamflow in Murrumbidgee catchment of NSW and found that 

the greatest predictability occurred between September and December while the best 

indicators were found to be the anomalies of Pacific Ocean that are related to ENSO. 

These findings were similar to the previous findings (McBride and Nicholls 1983) that 

evidenced the strongest correlations between seasonal rainfall of NSW and ENSO 

during spring. 

Whiting et al. (2003) studied the rainfall in Sydney and demonstrated the existence of 

a greater correlation of annual rainfall in Sydney with the PDO index than with SOI. A 

recent attempt (Duc et al. 2017) was made using the Bayesian Model Averaging (BMA) 

method to analyse the impact of the four major climate drivers on the rainfall of NSW 

as well as to compare their relative contributions in the forecast model. 

A combination of correlation and wavelet-based methods was applied to identify the 

principal sources of variation in reservoir inflows of Sydney (Westra and Sharma 2008). 

The study found ENSO, PDO and IOD to be influential and statistically significant 

correlations (±0.4) were obtained which varied seasonally, although correlations were 

comparatively lower for spring (Westra and Sharma 2008).  The best skills for three 
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months’ streamflow forecast were obtained from April to June and October to January 

for the catchments  in Queensland  and  NSW respectively using dynamic models which 

are comparable to the outcomes that were obtained using a statistical BJP approach 

(Robertson and Wang 2009;  Wang et al. 2009). Duc et al. (2017) showed in their study 

that IPO alone does not have any significant impact on the rainfall of NSW, but its 

combination with ENSO can make a significant impact on rainfall. Trends in extreme 

rainfall in NSW was investigated by Evan et al. (2017).  

It is evident from the study of Kirono et al. (2010) that statistically, significant lag 

relationships exist between atmospheric, oceanic variables (thermocline, SOI and 

NINO4) and winter, summer and spring runoff in the northern part of Moree of northern 

NSW, which is better than the relation with antecedent runoff. Here, again the lag 

relationships were assessed by using only simple linear correlation where each predictor 

was considered separately; thus, no combined impact of the predictors was analysed. 

The study of Chiew et al. (2003) explained that spring rainfall and runoff had high 

correlation (0.3 to 0.5) against winter SOI throughout eastern Australia except for NSW 

(east of Great Dividing Range), although this region showed high correlation for 

summer rainfall and runoff against spring SOI. Wang et al. (2011) explained that the 

Predictive Ocean Atmosphere Model for Australia (POAMA) forecast skill shows 

significant improvements only for monthly forecasts (not for three monthly forecasts), 

while compared to the historical ensemble. The extensive literature review reveals that 

climate indices have strong potential as predictors of futuristic streamflow.  

1.2 Statement of Problem 

To date, most of the research works were focused on the identification of suitable 

predictor variables for forecasting rainfall and streamflow on daily or monthly scales 

while very few of those established the seasonal relationship in different parts of 

Australia. However, a strong concurrent relationship between climate indices and 

streamflow does not imply that there is also a lagged relationship existed. Thus,  the 

relationship between lagged climate mode and streamflow needs to be investigated 

individually. Majority of the previous studies investigated the concurrent relation of 

single climatic variable with daily, monthly or seasonal streamflow. Even though some 

studies considered the lagged climate modes, none of those included the combined 
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impact of different climate anomalies on streamflow of eastern Australia. Some recent 

attempts were made by Abbot and Marohasi (2012), Mekanik et al. (2012) and Rasel et 

al. (2016) to forecast seasonal rainfall of Queensland, Victoria and South Australia 

respectively, exploiting linear and non-linear statistical techniques and considering the 

combined influence of different climate modes. Nonetheless, no research work explored 

the impact of multiple large-scale indices on seasonal streamflow of NSW. Therefore, 

further research in this study region is essential to forecast seasonal streamflow of NSW 

using large-scale climate drivers for the following reasons. 

Firstly, it is important to find out the time extent of the multiple climate indices till 

which they are influential on streamflow of different seasons and different regions.    

Secondly, NSW being the highest contributor to Australia’s agricultural production, it 

is of utmost importance to the water stakeholders and irrigators to be served with 

reliable streamflow forecast.  NSW, located in the south-eastern part of Australia, is 

stricken by frequent droughts, especially in the western and north-eastern region of the 

state. Agricultural production is the major part of the economy of NSW contributes 

about AU$15 billion annually. Climate variability has a severe impact on the yield of 

planted crops like wheat, rice etc. Although efforts have been made to forecast 

streamflow and rainfall of this region, none of the current practices provides reliable 

seasonal streamflow forecast, which can enable the water users to take risk-free 

managing decisions at the early stage of the crop period (Khan et al. 2005).  

The study intends to provide deterministic forecast as it can play more important roles 

in solving water management problems by enabling the water stakeholders to take more 

accurate decisions knowing the predicted amount of future streamflow, compared to the 

probabilistic approaches which have been attempted by many researchers till date 

(Piechota et al. 1998; Ruiz et al. 2007; Robertson and Wang 2009; Wang and Robertson 

2011; Duc et al. 2017). Communication of the concept of the probabilistic forecast 

remains a challenge, whereas end-user confidence is essential for the adaptation of a 

forecast model for decision making.  

Furthermore, the performance of existing seasonal streamflow forecast models is not 

very satisfactory while compared to the performances of the daily or monthly 

streamflow forecast models. In addition, though many hydrologists established the 

existence of strong correlations between streamflow and large-scale climate drivers, the 
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nature of the relationship remained a difficult question to deal with. Thus, the 

uncertainty of the underlying relationships between atmospheric variables and 

streamflow and the complexity of the atmospheric processes make it difficult to develop 

a successful streamflow forecast model with reliable accuracy. Hence it is required to 

deploy new data-driven techniques like Gene Expression Programming (GEP ) to 

capture the complex relationships between streamflow and climate variables which may 

result in developing reliable streamflow predictor models with enough accuracy. 

1.3 Aims and Objectives 

The main aim of this research study is to develop a successful seasonal streamflow 

predictor model using large-scale climate drivers. To serve the purpose of the study 

basic linear (MLR) and non-linear(MNLR) techniques have been applied at the first 

stages which were followed by the main method of the study Gene Expression 

Programming (GEP). To the best of author’s knowledge, this is the very first endeavor 

to forecast seasonal streamflow applying GEP in Australia in conjunction with the use 

of lagged climate indices. 

• To investigate the relative relation of concurrent and lagged single climate 

variables with seasonal streamflow of NSW. 

• To identify the combination of influential multiple climate indices that can be 

used for developing MLR models. 

• To compare the influences of single lagged indices with that of the combined 

multiple lagged indices. 

• To identify the best predictor variables for each region and the maximum 

significant lagged months, which can be implemented for reliable seasonal 

streamflow forecast of NSW. 

• To explore the non-linear relationship between seasonal streamflow and climate 

indices by developing Multiple Non-Linear Regression (MNLR) models.  

• To use an advanced Artificial Intelligence (AI) based data-driven technique ( 

(GEP) to capture the underlying sophisticated relationship of climate variables 

and seasonal streamflow. 
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• To compare the outputs of linear models with that of non-linear models and 

suggest the best possible modelling approach that can be exploited to forecast 

seasonal streamflow of NSW. 

• To compare the model outputs with the previous research outcomes to ensure 

the validity of each developed model. 

1.4 Research Scopes 

In the current research study, the whole NSW is divided into four distinct regions, while 

in total, twelve streamflow stations are selected. For each of these twelve stations, 

monthly streamflow and climate indices data are collected which undergo a pre-

processing based on the requirement of the applied techniques. Climate anomalies 

which are influential on the streamflow of selected four regions are identified through 

concurrent and lagged correlation analyses. Thus, the spatial variation of influential 

climate indices on streamflow of different regions is explored.  

Single concurrent and lagged correlation analyses are carried out to select the 

combination sets of multiple climate indices which were later on used as the input data 

sets for the MLR, MNLR and GEP models. For each of these techniques, calibration 

and validation tests are performed. After completing the analysis of each technique, the 

best model for each region is selected. The outcomes of different techniques are 

compared, and the best streamflow forecasting technique is proposed. Performances of 

all the techniques are compared with the outcomes of previous research studies in this 

field. 

1.5 Significance of the Research 

The present research work is expected to have a great extent of the impact on seasonal 

streamflow forecasting by replacing the shortcomings of the previous researches on this 

topic with the successfully developed models. 

• The current work will provide a reliable streamflow forecast model which will 

enable the water users to make low-risk plans for the droughts and high flood 

seasons. 
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• Different models will be developed for different regions of NSW; thereby it will 

provide a forecast model which can be reliable irrespective of spatial variation. 

• A large number of climate variables with different lagged months will be 

investigated to identify the best predictors for each region.  Therefore, the 

developed models will be able to suggest the earliest possible time for successful 

streamflow forecasting, which eventually will help the irrigators and water 

planners to take their timely decisions to ensure proper water allocation. 

1.6 Outline of the Thesis 

The current research has the following outline: 

• A detailed literature review is stated and discussed in Chapter 2.  

• The study area and the details of used data are discussed in Chapter 3, along 

with the model verification processes.  

• Chapter 4 analyzed the relationship between streamflow and climate indices.  

• In Chapter 5, MLR modelling methodology and results are discussed in detail.  

• MNLR and GEP methods and outcomes of the models are discussed in Chapter 

6 and Chapter 7, respectively.  

• Performances of all the applied modelling techniques are compared in Chapter 

8, which includes a comparison with the previous research works in this field as 

well.  

• The report is concluded with Chapter 9, which provides the summary and 

conclusion of the study along with recommendations for future work in this 

research area. 

• The list of references and the appendix are also added at the end of this thesis. 
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Chapter 2 
Literature Review 

2.1 Background 

Australia is believed to receive the lowest precipitation and runoff comparing to all 

other continents. On an average 85 percent of the rainwater that falls in Australia, gets 

evaporated or is directly used by the trees and plants or end up in lakes, wetlands or the 

ocean. Only less than one-fifth of the total rainfall over Australia ends up in its rivers.  

Though Australia is considered as the driest continent, there is no short of water. 

However, the problem lies in the location of available water in connection with the large 

population centres, i.e. where maximum water demand exists. The pressure has been 

highly increased on water resource availability since the recent eastern Australian 

severe drought (2002-2007), (Murphy and Timbal 2008). According to Nicholls (2006) 

over the latter half of the 20th century, a huge decline in rainfall has been observed in 

eastern Australia. This has been a matter of great concern to the scientist and researchers 

considering the large population and economic importance of this region.  

The land in Australia is mostly arid and desert. The climate here varies from the tropical 

climate in the north, arid and dry interior and the southern part has the fringe of the 

Southern Ocean mid-latitude storm track (Risbey 2011). Since, surrounded by three 

oceans Pacific Ocean, Indian Ocean and the Southern Ocean, the climatic phenomenon 

in Australia is dependent on climatic drivers in these oceans. Rainfall variability, either 

inter-seasonal or inter-annual, is influenced by El Nino Southern Oscillation (ENSO) 

phenomenon in the Pacific Ocean, Indian Ocean Dipole (IOD) phenomenon in the 

Indian Ocean, Madden – Julian Oscillation (MJO) in the northern regions and Southern 

Annular Mode (SAM) on the southern regions. SAM has been studied for the variations 

in the storm track, atmospheric blocking and the subtropical ridge. (Risbey et al., 2009). 

The extreme inter-annual variability of rainfall and streamflow make it very hard for 

the water management authorities to manage and ensure an adequate amount of supply 

of water to the water users. Highly inconsistent rainfall pattern results in various 

extreme events such as flash floods, bush fires, droughts etc. (Gallant et al. 2017; 

Steffen 2015). The variability of rainfall and flow in conjunction with climate 

variability may happen on different time scales, from annual to multi-decadal and 
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maybe even longer (Verdon-Kidd and Kiem 2009b). This variation of global climate is 

expected to be related to the variation of Sea Surface Temperatures (SSTs) and Sea 

Level Pressures (SLPs) of the oceans all over the world. Various climate drivers are 

generated from the oceans due to the fluctuation of SST and SLP. Thus, these climate 

drivers play a predominant role in the variation of rainfall and streamflow availability 

across the world. Among the most influential climate indices on Australia's streamflow 

and rainfall ENSO,  IOD, IPO and SAM are included along with some other indices.  

The two main sources of seasonal streamflow forecast are initial catchment and future 

climate conditions (Robertson et al. 2009). Initial catchment conditions can be indicated 

by antecedent streamflow, antecedent rainfall, soil moisture or groundwater levels. 

Chiew et al. (1998) stated that serial correlations (persistence) is very high in Australia 

and the reason for this, is the delaying responses of the rainfall-runoff process which 

ultimately gives streamflow data memory of several months. 

As rainfall is the source of soil moisture and streamflow, there is a strong relation 

between rainfall and streamflow Therefore, it can be hypothesized that the climate 

drivers that have an influence on rainfall, may have impacts on streamflow as well, thus 

can play a vital role for streamflow forecasting. So, previous research studies focused 

on rainfall forecasting must take into account while forecasting streamflow in order to 

find out the most influencing climate variables. Nevertheless, rainfall events end in 

runoff into the rivers only after satisfying the requirements of the hydrological 

processes, e.g. evapotranspiration, infiltration, interception, surface storage etc.  

Dutta et al. (2006) indicated the necessity for exploring the skills of forecasting 

streamflow and rainfall with different lead times exploiting various climate indicators. 

He also mentioned that streamflow forecast is more significant compared to rainfall 

forecast as it can be forecasted with longer lead times. Thereby, streamflow forecast 

enables the water users to make the decision earlier in the year, which ultimately 

increases the potential of financial benefits. 

A successful streamflow predictor model with sufficient accuracy is of great importance 

to the water stakeholders, which will enable them to take low-risk decisions at the early 

stage of the crop periods. Significant concurrent and lagged correlations between large-

scale climate drivers and seasonal rainfall and streamflow have been found in many 

studies (Chiew et al. 1998; Drosdowsky and Chambers 2001). Robertson et al. (2009) 
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explored that climate indices can improve streamflow predictions throughout the year 

with the greatest improvement.  

In the following sections, a brief overview of the past studies on rainfall and streamflow 

have been discussed considering rainfall being the major source of streamflow in 

Australia. Then a review of influential climate indices has been presented. Later on, a 

discussion on the influential climate variables on streamflow of different parts of the 

world and specific dominant climate indices on Australian streamflow have been 

carried out.  Finally, a critical review of the available forecasting technique is discussed 

and also the research gap is explored, which is followed by stating a critical summary 

of this literature review to carry on the detailed analysis. 

2.1.1 Short-term streamflow forecasting 

After experiencing the severe drought in the past decade and the recent extreme climatic 

events in Australia, it is now more important than ever to develop more accurate 

streamflow forecast model. Though long-term streamflow forecasting has got more 

significance to the water-stakeholders compared to short-term forecasting due to its 

long lead time which gives sufficient time to take preparation for the extreme events, 

short-term forecasting is also important, especially in case of the events that have very 

short lead-time available for the warning system. For instance, a flash flood is such an 

event having a very short lead time. The flash flood that occurred in June 1990 at 

Shadyside in Ohio, USA cased huge damages and fatalities which resulted from the 

onset rainfall within 1 hour (Einfalt et al. 1990; Seo and Smith 1992). Therefore, to 

forecast events like a flash flood which has very short lead time, short- term forecasting 

is very important (Seo and Smith 1992; Einfalt et al. 1990; Huff and Vogel 1981; Saffle 

and Greene 1978).  

Researchers have been studying short-term streamflow forecasting (up to 10 days 

ahead) by using many means including rainfall forecasting and many other modern 

methods with a view to improving the forecasting skill by quantifying forecast 

uncertainty. It is the biggest challenge for the hydrologists and water researchers to find 

out a way to meet the ever-increasing water demand. To solve this problem, the Bureau 

of Meteorology (BoM) and Commonwealth Scientific and Industrial Research 

Organization (CSIRO) have come together to develop a new system of Short-term 

Water information Forecasting Tools (SWIFT), (Short-term Water Forecasting and 
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Prediction 2012). Previously the hydrological model used by BoM was proving event-

based forecast whereas the new tool (SWIFT) is capable of providing a continuous 

forecast.  

A new approach, wavelet-genetic programming was attempted by Karimi et al. (2016) 

to forecast short-term and long-term streamflow where this new method outperformed 

all other methods which included autoregressive moving average (ARMA) method, 

neuro-fuzzy system and artificial neural network. Artificial Neural  Network (ANN) 

was applied in the Winnipeg River system in Northwest Ontario, Canada for making 

short-term streamflow prediction using quarter monthly time intervals while ANN 

provided better performance than a conventional model (Zealand et al. 1999). Bureau 

of meteorology provides short-term streamflow forecast with a lead time up to 7 days 

applying a deterministic method which uses the rainfall-runoff model called GR4H as 

the core component of it (BoM 2000). This rainfall-runoff model uses the estimated 

rainfall, model parameters and catchment condition to generate the streamflow forecast 

on a daily basis; however, the model is unable to provide any likelihood of the event to 

occur. 

2.1.2 Long-term streamflow forecasting 

Long-term rainfall and streamflow forecasting have more significance to the water 

stakeholders compared to short-term forecasting as it allows them to take considerable 

time to make proper water management plans and make low-risk decisions. According 

to the Bureau of Meteorology (BoM, 2009), long-term forecasting plays a very 

important role while taking preventive measures or making plans for extreme events 

like droughts, bushfires or high flood events. Thus, over the years, long-term rainfall 

and streamflow forecasting has got more attention to the researchers and hydrologists. 

The forecast period for long term forecasting may vary from one month to several 

months ahead, or even it may become a seasonal forecast if consists of the months of 

the corresponding season.   

So many research studies had been carried out with a view to making successful rainfall 

and streamflow forecasting with longer lead time using either probabilistic or 

categorical forecast method (Duc et al. 2017; Wang and Robertson 2011; Risbey et al. 

2009, Robertson and Wang 2009; Piechota et al. 1998). However, for solving water 

resources management problems, deterministic forecasts are of more importance than 
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probabilistic forecasts which have been attempted by many researchers till date 

(Piechota et al. 1998; Ruiz et al. 2007; Robertson and Wang 2009; Wang and Robertson 

2011; Duc et al. 2017).  

Furthermore, the Bayesian Joint Probability (BJP) method used by the Australian 

Bureau of Meteorology (http://www.bom.gov.au/water/ssf/index.shtml) to provide 

futuristic streamflow is again a probabilistic method. Bureau of Meteorology provides 

seasonal streamflow forecast based on statistical (BJP) and dynamic models. While the 

BJP models use the climate indicators, initial catchment conditions and historical 

streamflow and rainfall data to generate out, the dynamic model uses climate 

predictions from global climate models to hydrological models. Though these forecast 

models developed by BoM play an important role to water allocations, cropping and 

water market strategies, operating a diversified water supply scheme and overall water 

management, the forecast skill contains uncertainties due to a range of factors. In 

addition,  communication of the concept of the probabilistic forecast remains a 

challenge, whereas end-user confidence is very important for the adaptation of a 

forecast model for decision making. 

2.1.3 Climate indices 

2.1.3.1 El Nino Southern Oscillation (ENSO) 

El Nino Southern Oscillation (ENSO)  which develops off the western coast of South 

America is a band of sea surface temperature when unexpectedly warm or cold 

temperature exists for a long period of time. Southern Oscillation refers to the 

fluctuation of the sea surface temperature of the tropical eastern Pacific Ocean and 

fluctuation of air surface pressure in the western Pacific Ocean (Bamston et al. 1997). 

El Nino and La Nina refer to the warm and cool phase of tropical eastern Pacific Ocean, 

respectively. The ocean-atmosphericashok variation is known as the El Nino Southern 

Oscillation. ENSO is considered to be responsible for extreme weather conditions such 

as floods and droughts that are happening in many regions of the world.  

ENSO phenomenon has two components- sea surface temperature and atmospheric 

pressure, which are intensely correlated and can be represented by two types of 

indicators, the SLP indicator and the SST indicator (Duc et al. 2017).  
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SLP indicator refers to the bimodal variation in the sea level barometric pressure, and 

it is referred as the Troup SOI, which measures the difference between sea-level 

atmospheric pressures at Papeete (Tahiti) and Darwin (Troup 1965). SLP consists  

of two phases, the warm SST anomalies, El Nino where the surface pressure is high and 

the cold SST anomalies, La Nina where the surface pressure is low in the equatorial 

Pacific Ocean. BoM provides the following formula to calculate SOI: 

𝑆𝑆𝑆𝑆𝑆𝑆 = 10 × 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑−𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎𝑎𝑎)

𝑆𝑆𝑆𝑆𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
  (2-1) 

Where, 

    𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑=(average Tahiti mean SLP for the month) –(average Darwin mean SLP for 

the month) 

𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = long term average of Pdiff for the month in question 

𝑆𝑆𝑆𝑆𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = long term standard deviation of Pdiff for the studied month 

Various SST anomalies are also available which have been derived using different areas 

of the equatorial Pacific Ocean (Kiem and Franks 2001). Generally, the SST anomalies 

are monitored in 3 geographic regions of the equatorial Pacific and defined as NINO3 

(5°S – 5°N, 150°– 90°W), NINO3.4 (5°S – 5°N, 170° – 120°W) and NINO4 (5°S – 

5°N, 160° – 150°W) (Risbey et al. 2009). Hanley et al. (2003) compared the response 

of pressure based and SST based anomalies to the ENSO extreme event and found that 

NINO3.4 and Niño-4 indices are equally sensitive to El Niño events whereas SOI is 

less sensitive to La Niña events than others are. The reason for originating ENSO warm 

or phase is yet to be discovered. However, it is explored that ENSO events have impacts 

on the climate of the areas outside the tropical Pacific regions. EL Nino phase indicates 

the SST anomalies which are greater than or equal to 0.5⁰C existing in the Nino 3.4 

region and partially in Nino 3 and Nino 4 regions. On the other hand, La Nina Phase 

has anomalies which are less than or equal to -0.5⁰C. 

Thermocline, which is one of the important drivers of ENSO, is defined as the regions 

which separates the warm and well-mixed surface water from cool and deep ocean 

water. Water temperature below thermocline is considered as less than or equal to 15⁰C, 

whereas the temperature above thermocline is 25⁰C. Atmospheric convection is the 

process of rising the warm air generated by the warm sea surface temperature of the 



 22 

western Pacific, causing heat and moisture in the atmosphere. The drier air moves to 

the east before falling over the cooler eastern tropical Pacific. This phenomenon of air 

rising in the west and falling over the east is known as Walker Circulation. 

ENSO phenomenon has got three distinct phases: the two opposite phases, "El Niño" 

and "La Niña," which resulted from certain changes both in the ocean and in the 

atmosphere and thus ENSO is called a coupled phenomenon; and the "Neutral" phase 

which is in the middle of the continuum.  

El Niño phase occurs when ocean surface has a temperature above-average SST, 

specifically in the central and eastern tropical Pacific Ocean which is associated with 

the deepening of thermocline in this region (Figure 1). The trade winds which usually 

blow from east to west ("easterly winds"), weakens or in some cases start to blow 

toward the reverse direction (from west to east) and become "westerly winds". This 

causes reduced rainfall over Indonesia and increased rainfall over the tropical Pacific  

Ocean. During this period sea surface temperature around, northern Australia remains 

cooler than the normal phase, and convection moves away Australia eastward towards 

the central tropical Pacific Ocean resulting in reduced rainfall over Australia. Eastern 

Australia is mostly affected by this event, while the impacts on southwest western 

Australia and coastal  

NSW may vary from event to event, and western Tasmania is less affected. 
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Figure 1. El Niño Phase of ENSO Phenomenon (Source: Record Breaking La 

Niña Events, BoM, 2012) 

On the contrary, La Niña occurs when the ocean surface has below-average 

temperature, especially in the central and eastern tropical ocean, which resulted from 

the movement of thermocline towards the surface (Figure 2). The normal easterly winds 

become even stronger; thus, the warmer water gets confined to the western tropical 

Pacific. This results in increased rainfall tend over Indonesia while regions of the central 

tropical Pacific Ocean experience reduced rainfall. Regions around the north of 

Australia has warmer SST, and the water circulation also intensifies. During this phase, 

northern and eastern Australia experience increased rainfall and increase humidity s 

observed in the inland of Australia. La Niña is more influential than El Niño on some 

parts of northern and central Australia.    

 

 
Figure 2. La Niña Phase of ENSO Phenomenon (Source: Record Breaking La 

Niña Events, BoM, 2012) 

During the Neutral phase, the SST of the tropical Pacific is close to the average (Figure 

3). The trade winds blow from east to west which brings the warm moist air warmer 

surface water towards the western Pacific Ocean. Sometimes the ocean looks like to be 

in El Niño or La Niña state, but the atmosphere does not behave accordingly. 
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Figure 3. Neutral Phase of ENSO Phenomenon (Source: Record Breaking La 

Niña Events, BoM, 2012) 

 

The El Nin˜o Modoki is an ocean-atmosphere coupled process (Figure 4), which results 

in unique tripolar sea level pressure pattern during the evolution, similar to the Southern 

Oscillation phenomenon of El Nino (Ashok et al.  2007). Therefore, this phenomenon 

is named as El Nin˜o–Southern Oscillation (ENSO) Modoki and expressed by the 

following equation 

 

 

EMI= SSTX- (0.5*SSTY) - (0.5*SSTZ)  (2-2) 

Where, X=165°E–140°W, 10°S–10°N, Y= 110°W–70°W, 15°S–5°N, Z=125°E–

145°E, 10°S–20°N (Ashok et al.  2007). 
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Figure 4. (a) Usual El Niño event; (b) Usual El Niño Modoki Event; (c) Opposite 

phase( La Niña) of El Niño; (d) Opposite phase (La Niña Modoki) of El Niño 

Modoki (Source: Ashok and Yamagata 2009) 

The ENSO Modoki events have significant influences on the climate of many parts of 

the world including Japan, New Zealand, western coast of United States (Ashok et al. 

2007), Australia (Taschetto and England 2009), South China (Feng and Li 2011).       

2.1.3.2 Indian Ocean Dipole (IOD) 

The IOD represents the coupled oceanic-atmospheric variability in the tropical Indian 

Ocean which is classified by SST anomalies of reverse sign in the east and west (Saji 

et al. 1999; Webster et al. 1999). It is the difference in SST between two poles where a 

western pole is in the western Indian Ocean (Arabian Sea), and an eastern pole is in the 

eastern Indian Ocean south of Indonesia. The Dipole Mode Index (DMI) which is a 

measure of the IOD is defined as the difference in SST anomaly between the tropical 
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western Indian Ocean (10oS–10oN, 50o–70oE) the tropical south-eastern Indian Ocean 

(10oS–equator, 90o–110oE).  

The IOD is considered to be a similar phenomenon to El Niño but occurs in the 

equatorial Indian Ocean and thus often called "Indian Niño". Some researchers (Saji et 

al. 1999; Ashok et al. 2003; Meyers et al. 2007) have arguments regarding the 

independent extent of IOD from ENSO because of the extension of the Walker 

circulation to the west and associated Indonesian throughflow (the flow of warm 

tropical ocean water from the Pacific into the Indian Ocean).  Meyers et al. (2007) 

developed an index of IOD using a lagged empirical orthogonal function (EOF) 

approach considering the variation in ENSO in defining IOD. 

Like ENSO, IOD has three different phases: positive (Figure 5), "negative" (Figure 6) 

and "neutral" (Figure 7). A positive IOD happens when the waters near the Horn of 

Africa are warmer than average leading to enhanced rainfall there, while cooler waters 

develop off Indonesia resulting in less rainfall and high temperatures in Australia. Thus, 

a positive IOD refers to a wetter west and drier east. On the contrary, negative IOD is a 

phase when sea surface temperatures in the western Indian Ocean is cooler compared 

to the east, and the trade winds become more westerly. It causes more rainfall in 

southern Australia. It is believed that the positive IOD is related to the El Niño phase 

while the negative IOD is associated with the La Niña phase. The impacts of El Niño 

and La Niña are most extreme when IOD and ENSO are in phase, whereas the impacts 

of El Niño and La Niña are weakened when they are out of phase. 
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Figure 5. Positive Phase of IOD (Source: Bureau of Meteorology) 

 

 

Figure 6 Negative Phase of IOD (Source: Bureau of Meteorology) 
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Figure 7. Neutral Phase of IOD (Source: Bureau of Meteorology) 

Yamagata et al. (2004) has summarized the dynamics of IOD, which provides a better 

understanding of the mechanism. According to the researcher, IOD is developed by 

ocean-atmospheric interactions, which includes the influences of the thermocline. 

Though studies on the depth of thermocline are very limited, the existing researches 

suggested that thermocline has huge vertical displacements beneath both poles of the 

dipole which is correlated to the local SST anomalies (Meyers 1996; Rao et al. 2002; 

Feng and Meyers 2003). It was also revealed that the depth of thermocline is driven by 

the remote winds from Indian and Pacific Oceans  (Wijffels and Meyers 2004). 

2.1.3.3 Interdecadal Pacific Oscillation (IPO) 

The term "Interdecadal Pacific Oscillation (IPO)" was first introduced by Power et al. 

(1999) while he was explaining a trans-Pacific Sea Surface Temperature Anomaly 

(SSTA) that signifies a Pacific-wide indication of the phenomenon, referred as PDO by 

Mantua et al. (1997). IPO causes a relatively rapid transformation in the SSTA pattern 



 29 

across the Pacific Ocean, which remains active for two to three decades. Unlike the 

predominant influence of PDO in the northern Pacific region, IPO creates a link to the 

Indian Ocean region and ocean-atmospheric coupling by a Pacific basin-wide, bi-

hemispheric climatic pattern. The spatial pattern of a PDO variability is characterized 

by a 'horseshoe' shape. Determined by positive (warm) and negative (cold) phases, 

during a positive phase higher than average SST is observed from the western coast of 

North America down to the equator, forming a horseshoe shape, surrounding cooler 

water in central and north-western Pacific. Whereas in the negative phase, this pattern 

is reversed (As shown in Figure 8). The warmer water in the horseshoe shape region 

become cooler than average, and the central and the north-western Pacific have higher 

than average SSTs (Zhang and Delworth, 2015). 

 

Figure 8. Typical wintertime sea surface temperature (colors), sea level pressure 

(contours), and surface wind stress (arrows) anomaly patterns during positive 

and negative phases of the Pacific Decadal Oscillation (PDO). Temperature 

anomalies (colors) are in degrees Celsius. 

(Source:  Hare and Mantua, University of Washington) 

 

The IPO is described as the Pacific ENSO-like pattern of SST, which is found in the 

analysis of near-global inter-decadal SST (Folland et al. 1999). IPO has a cycle of 15-

30 years and characterized by two phases, namely positive and negative (Salinger et al. 

2001; Henley et al. 2015). While IPO is defined for the whole Pacific Basin, PDO is 

defined for the North Pacific, poleward of 20°N. IPO and  PDO are found to be highly 

correlated while their phase changes are directly related to the increased and decreased 
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frequency of warm and cool phases of ENSO,  respectively. Negative and positive 

phases of IPO/PDO creates SSTA like La Niña and El Niño phases over the tropical 

Pacific, respectively. During the positive phase of IPO/PDO increased rainfall is 

observed in the northeast of the South Pacific Convergence Zone (SPCZ) while the 

southwest of SPCZ experiences reduced rainfall than normal. Mean Sea Level Pressure 

remains higher than normal to the west of the dateline while it is lower than normal to 

the east of the dateline. Southerly flow anomaly is generated due to these pressure 

difference created during the positive phase of IPO/PDO. 

IPO's influences have been observed from Pacific to the Indian Ocean, southern Asia 

and Madagascar (D'Arrigo et al. 2006; Crueger et al. 2009; D'Arrigo and Ummenhofer 

2015), to Australia (Power et al. 1999; Arblaster et al. 2002), and even Antarctica 

(Palmer et al. 2015; Vance et al. 2015; Meehl et al. 2016b). Mantua et al. (1997) found 

IPO/PDO to be responsible for the multi-decadal step changes in climate.  According 

to Mantua and Hare (2002), the two distinct features that make IPO/PDO different from 

ENSO are the persistence range of IPO/PDO (15-30 years) and dominant climatic 

influence of PDO over the north-Pacific region. 

2.2 Impacts of Large Scale Climate Drivers on Streamflow all over the 
World 

As rainfall is the primary source of streamflow  in Australia, future rainfall and climate 

conditions can be exploited to estimate the magnitude of future streamflows. According 

to Fawcett and Stone (2010), there exists relatively low skill for operational predictions 

of seasonal rainfall in many parts of Australia; thereby, it may give little additional 

information about future streamflows. 

It has been accepted by the hydrologists that there exists a strong correlation between 

the streamflow and the large-scale atmospheric circulation patterns. Again, large-scale 

atmospheric circulation patterns are influenced by an ocean-atmospheric phenomenon, 

mostly ENSO. 

The ENSO phenomenon, which results from the large-scale interactions between the 

ocean and atmospheric circulation processes in the equatorial Pacific Ocean, has direct 

influences on the climate variability over many parts of the world (e.g. Ropelewski and 

Halpert 1987; Kiladis and Diaz 1989). The ENSO phenomenon has three phases- El 
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Nino (warm), La Nina (cold) and Neutral. The warm oceanic phase (El Nino) is 

associated with the high air surface pressure in the western Pacific, and the cold oceanic 

phase (La Nina) is associated with the low air surface pressure in the western Pacific 

(Verdon et al. 2004). ENSO's warm phase (El Nino) conditions refer to SST anomalies 

equal to or greater than 0.5°C in the Nino 3.4 region including portions of Nino 3 and 

Nino  4 regions whereas cool phase (La Nina) conditions are related to anomalies less 

than or equal to –0.5°C. 

The teleconnection between ENSO and climate is used for long lead weather 

forecasting in many countries all over the world  (Chiew et al. 2003). El Nino and La 

Nina events are responsible for the different climatic conditions around the Pacific 

including eastern Australia (Stone and Auliciems 1992; Nazemosadat and Cordery 

1997; CPTEC 2006; Chiew 2006; Hoerling et al. 2001). Fan et al. (2000) found the 

predictability to be related to geographical location. Generally, the regions within 30°S-

30°N band are considered as highly influenced by ENSO and thus can be predicted 

more precisely (Frederiksen et al. 2001). It may cause flooding on the west coast of 

equatorial South America resulting from the heavy precipitation across the ocean 

(NOAA-2014). El Nino conditions are strongly related to the reduction in the pressure 

difference, which causes severe drought in parts of the western Pacific, such as 

Australia. 

The IOD influences the climate of the tropical Indian Ocean such as East Africa, India 

and Indonesia (Webster et al. 1999; Saji and Yamagata, 2003; Yamagata et al. 2004). 

The western and southern part of Australia is influenced by IOD (Ashok et al. 2003). 

IOD events can be predicted several months ahead, and this predictability can be 

exploited to improve water and agricultural decision-making. According to Meyers et 

al. (2007), IOD and ENSO can sometimes occur together in such a way that strengthens 

each other. 

Many researchers (e.g., Power et al., 1999; Kiem et al., 2003; Kiem and Franks, 2004) 

have demonstrated the influence of the IPO to be significant on rainfall variation on a 

decadal to multi-decadal timescale. The IPO is described as the Pacific ENSO-like 

pattern of SST, which is found in the analysis of near-global inter-decadal SST (Folland 

et al. 1999). The IPO has a cycle of 15-30 years and characterized by two phases, 

namely, positive and negative phases (Henley et al. 2015; Salinger et al. 2001). The 
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IPO is defined for the whole Pacific Basin while PDO  is defined for the North Pacific, 

poleward of 20°N. IPO has some independent impacts on the South Pacific 

Convergence Zone compared to ENSO. Climate patterns around the world are also 

influenced by the PDO and IPO (e.g. Kiem et al. 2003; Verdon et al. 2004). From at 

least the 15th century, the IPO/PDO has been known as a dominant climate mode in the 

Pacific sector. Therefore, the climate in the future is likely to continue to be influenced 

by the IPO/PDO (Kiem et al. 2009). IPO/PDO phenomena are linked to the annual 

fluctuations in maximum temperature, reported water volume, wheat production and 

overall climate variability in Australia. According to Mantua and Hare (2002), the two 

features that differentiate PDO/IPO from ENSO are the persistence period (15-30 year) 

and dominant region (north pacific sector) of PDO/IPO. 

2.3 Impacts of Large-Scale Climate Drivers on Streamflow in Australia 

The climate of southeast Australia is influenced by four major climate drivers 

originating in the Pacific Ocean, the Indian Ocean and the Southern Ocean ENSO, IPO 

(PDO), SAM and IOD (Duc et al. 2017). ENSO and IPO (or PDO) are atmospheric-

ocean  phenomena results  from the  SST and  SLP  anomalies in the  Pacific. Similarly, 

IOD is the atmospheric-ocean phenomenon in the Indian Ocean. Southern Annular 

Mode (SAM) which is the change of the anomalies in SST and geopotential height in 

the South Pacific and the Southern Ocean, has an influence on climate processes. ENSO 

has been considered to be the most dominant climate anomalies for forecasting rainfall 

and streamflow time series (Ropelewski and Halpert 1987; Chiew et al. 1998; Piechota 

et al. 1998; Sharma et al. 2000; Sharma 2000; Cai et al. 2001; Drosdowsky and 

Chambers 2001; Piechota et al. 2001;  

Chiew et al. 2003; White et al. 2004; Dutta et al. .2006). Figure 9 shows the influence 

of different climate variables around Australia. 
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Figure 9. Influence of different climate variables around Australia (Source: 

Bureau of Meteorology, 2010) 

Conditional probability forecast was applied by Simpson et al. (1993) and Allan et al. 

(1995) using SST anomalies of ENSO in order to forecast annual streamflow at the 

confluence of River Murray and the Darling Rivers and the natural flows into the Hume 

Reservoir. They found an opposite relationship between SSTs and the annual flows, 

which is associated with Australian droughts. 

It is revealed from the past studies that the two approaches- dynamic and statistical are 

widely used in practice for forecasting rainfall and streamflow (Goddard et al. 2001). 

While predicting ENSO and other climate indices, many researchers have found simple 

statistical models to outperform sophisticated dynamic models (e.g., Halide and Ridd 

2008; Quan et al. 2006). Again, the implementation and operation of dynamic models 

are more expensive than statistical climate forecasting models (Anderson et al. 1999). 

On the other hand, the success of the statistical prediction systems relies on not only the 

availability of long data records but also the stationary relationship between the 

variable. 
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Direct use of climate indices to forecast streamflow gives better results than when they 

are used to forecast rainfall as climate tends to have a stronger relationship with 

streamflow than rainfall (Wooldridge et al. 2001). Several studies revealed the 

influences of ENSO on streamflow throughout Australia (Chiew et al. 1998, 2003; 

Dettinger and Diaz 2000; Dutta et al. 2006; Piechota et al. 1998). Chiew et al. (1998) 

and Piechota et al. (1998) found that ENSO based (SOI and SST) streamflow 

predictions in northeast Australia are better than the forecasts from climatology. 

Piechota et al. (1998) developed a Seasonal Streamflow Forecast Model (SSFM) that 

used an optimal linear combination of four statistical models with linear discriminant 

analysis (LDA). An extension of this research (Piechota et al. 2001) in five Australian 

catchments showed that when the degree of persistence is less noticeable, SST and SOI 

could be more useful for streamflow forecasts with longer lead times. The same 

research also used the ENSO indices (SOI and MEI) and serial correlations of rainfall 

and streamflow, and the result revealed that lag correlation between rainfall and 

streamflow versus ENSO indices is statistically significant at α< 0.01 in spring and 

summer in most parts of Australia. 

In addition to ENSO, Australian rainfall and streamflow are also influenced by low-

frequency variability in the Pacific Ocean, which is referred to as PDO (Mantua et al. 

1997; Zhang et al. 1997; Mantua and Hare, 2002). Besides, the modulation impact of 

IPO, which is a closely related index to PDO, is associated with the Australian rainfall, 

streamflow and flood risk (Kiem et al., 2003 and Verdon et al. 2004). ENSO- 

hydroclimate relationship is found to be stronger during the negative phase of IPO than 

its positive phase ( Chiew and Leahy 2003), and thus this relationship can be used to 

forecast rainfall and streamflow. It was evaluated by using the Linear Error in 

probability score (LEPS) that the combined model of NINO3– thermocline and NINO3-

SST outperformed the skill of the individual models which is more evident in spring 

and summer with 65% of all stations having increased forecast skill (Jose Eric Ruiz et 

al. 2007). Strong relationships between the SOI, IPO indices, seasonal rainfall and total 

streamflow volumes were found in the study of Verdon et al. (2004). Risbey et al. 

(2009) in their  study of the  impacts of remote climate  drivers  on rainfall  variability  

in Australia established the relation between ENSO and rainfall in Australia in weakly 

modulated by IPO. Researchers (Power et al. 1999; Kiem et al. 2003; Verdon et al. 

2004) have found that the decadal and annual-scale fluctuations in maximum 
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temperature, rainfall, water volume transport and wheat crop yield general climate 

variability in Australia are linked to the IPO/PDO phenomenon. Follan et al. (2002) 

found IPO/PDO that IPO/PDO influences eastern Australian climate during the austral 

spring, summer and autumn.  The higher rainfall and streamflow occurred across most 

of eastern Australia during the mid-1940 to mid-1970 was the effect of IPO/PDO (Kiem 

et al. 2003; Verdon et al. 2004). IPO/PDO also has an influence on the transformation 

of the magnitude and frequency of ENSO which impact eastern Australian 

Climate(Power et al. 1999; Kiem et al. 2003; Verdon et al. 2004). The effect of ENSO 

on Australian rainfall is weakened during IPO/PDO warm phase whereas the effect of 

ENSO is enhanced on Australian rainfall when the IPO/PDO is in cool phase(Power et 

al. 1999). It is experienced that the wet events get wetter and more frequent during the 

cool (negative) phase of IPO/PDO compared to the positive phase of IPO/PDO  which 

results in increased rainfall in the Murray Darling Basin (MDB) of southeast Australia 

( Kiem et al. 2003; Verdon et al. 2004) whereas the wet events are not that strong when 

the IPO/PDO is in warm (positive) phase, and this enhances the risk of drought in the 

MDB regions and many other parts of eastern Australia  (Verdon-Kidd and Kiem 

2009a). Studies have explored that there was a consistent relationship between ENSO, 

IPO/PDO and rainfall/streamflow in the northeast Queensland for at least the last 400 

years ( Lough 2007). 

Single site seasonal streamflow forecasting approaches were introduced by Piechota et 

al. (2001), Sharma (2000), and Chiew and Siridardena (2005) while an extension of a 

nonparametric approach to forecasting streamflow at multiple sites was carried out by 

Mehrotra et al. (2006). Westra et al. (2008) proposed an approach for dealing with 

spatially correlated streamflows by independent component analysis. However, none of 

these studies includes non- concurrent data analysis. 

ENSO Modoki Index (EMI) also has a strong influence on the rainfall of northern and 

north-western region of Australia. According to Taschetto and England (2009), EMI 

significantly decreases northern and north-western rainfall while traditional ENSO 

indices decrease south-eastern and north-eastern rainfall in Australia. Moreover, EMI 

anomalies mostly influence March to May rainfall. During this period, EMI contributes 

more to drying the northern Australia region. 

Wang  and  Robertson (2011) applied  Bayesian joint  probability  modelling and 

identified NINO3.4 to have a stronger impact on forecasting eastern Australian rainfall 
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than SOI, which is contradictory to the findings of Chiew et al. (1998) who proved 

significant relationship of eastern and central northern Australian rainfall with SOI but 

could not find any significant correlation with SST anomalies. It is evident from the 

study of Kirono et al. (2010) that the atmospheric variables (NINO4, thermocline and 

SOI) having a significant lag relationship for winter, spring and summer runoff are 

better predictors of runoff than antecedent runoff in the northern parts of southeast 

Australia. Here the lag relationships were assessed by using only simple linear 

correlation where each predictor was considered separately. Thus no combined impact 

of the predictors was analyzed. A Bayesian Joint Probability model was introduced by 

Robertson et al. (2009) to determine the best predictors for seasonal streamflow forecast 

and was applied to two catchments of eastern  Australia.  Assessment with serial 

correlation, Kruskal-Wallis tests and LEPS skill score proved persistence to be a 

stronger predictor of streamflow than average SOI where strongest relationships were 

found in/eastern Australia during late spring and early summer. Cai et al. (2012) 

demonstrated the devastating southeast Queensland (SEQ) flood and the associated 

extreme rainfall in January 2011 to be the effect of the transition to a negative phase of 

the PDO-IPO. King et al. (2013) suggested that the IPO plays a significant role in the 

frequency of major floods during the 1950s, 1970s and 2010–2011. 

An attempt (Wang et al. 2011) was made to explore the skills of two conceptual rainfall- 

runoff models (MWB model and SIMHYD model) to forecast streamflow at monthly 

and three monthly scales for two catchments (North Queensland and Murrumbidgee 

region NSW) in East Australia using simulated catchment initial condition, historical 

rainfall and SOI. The performance of the models demonstrated that in southeast 

Australia, SOI is a better predictor for July-September and October-December 

streamflow while SST is a better predictor of January-March and April-June 

streamflow. 
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Figure 10. Correlation coefficient between antecedent runoff (top panel) and best 

atmospheric- oceanic predictor (bottom panel) and runoff  (Source:  Kirono et al. 

2010) 

Though the dominant source of inter-annual variability in Australian rainfall and 

streamflow is believed to be ENSO phenomenon, some recent evidence shows that 

Eastern Australia is also influenced by IOD as well as interdecadal modulation of ENSO 

as a result of the PDO (Westra and Sharma 2008). Cai et al. (2011) investigated the 

teleconnection between ENSO and IOD and their impact on Australian rainfall. He 

found that IOD has an impact on austral winter in the southern part of Australia, whereas 

ENSO has a strong influence on austral spring rainfall as a result of the strong 

covariation of ENSO and IOD. In the southwest and southeast, Australia, IOD is found 

to be influential on the rainfall from June to October (Risbey et al. 2009). The influence 

of ENSO and IOD cover the whole continent during this period. Australian rainfall 

especially the western, southern and central part of the country largely influenced by 

IOD (Saji et al. 1999; Saji and Yamgata 2003; Ashok et al. 2003; Nicholls 1989; Verdon 

and Franks 2005). 

Nicholls (2010) analyzed the rainfall trends with the high-quality dataset and identified 

enhanced rainfall pattern over most of the east Australian regions (from 1950 to 1990), 

which is similar to the findings of Suppiah (2004) who found increasing rain in most 

parts of south-eastern Australia from 1910. On the contrary, Gallant et al. (2007), in 
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their study of trends in rainfall for the six Australian regions explored that there has 

been a significant decrease in annual total rainfall in the coastal-east (55 mm per decade) 

and southeast regions (20 mm per decade. Nicholls (2010) mentioned the recent decline 

to be the influence of SAM trend from 1958 to 2007. 

Wang et al. (2011) took a dynamic forecasting approach based on conceptual rainfall-

runoff modelling for analyzing monthly and three-monthly streamflow in east 

Australia. It was explained in the study that the POAMA forecast skills show significant 

improvements only for monthly forecasts (not for three monthly forecasts), while 

compared to the historical ensemble. Gudmundsson et al. (2015) showed a comparative 

analysis of runoff and streamflow all over the world where it is clearly evident that there 

is a significant regional variation of streamflow and runoff throughout Australia and in 

the recent years the streamflow occurrences are more visible in the eastern part 

compared to the rest of the parts of the country (Figure 11). 

 

Figure 11. An In-Situ observation of runoff and streamflow (Gudmundsson et al. 

2015) 
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2.4 Streamflow Forecasting in NSW Using Climate Drivers 

NSW, located in the south-eastern part of Australia, is stricken by frequent droughts, 

especially in the western and north-eastern region of the state. Agricultural production 

is the major part of the economy of NSW contributes about $15 billion annually. Inter-

annual variability of rainfall and streamflow impose a threat to the agricultural 

productivity and production of the state. Climate variability has a serious impact on the 

yield of planted crops like wheat, rice etc. Advanced skilful knowledge of climate 

variability can be utilized by farmers to have good production during high rainfall and 

avoid losses during drought. 

Over the years researchers have been trying to determine a systematic trend of rainfall 

as well as streamflow, which may arise from climate change or global warming. 

Whiting et al. (2003) studied the rainfall in Sydney and found that there exists a greater 

correlation of annual rainfall in Sydney with the PDO index than with SOI. A recent 

attempt (Duc et al. 2017) was made using the Bayesian Model Averaging (BMA) 

method to analyze the combined impact of the four major climate drivers on the rainfall 

of NSW as well as to compare their relative contributions in the model. The correlations 

between ENSO phenomenon and seasonal rainfall in central NSW are found to be the 

strongest during spring (McBride and Nicholls 1983). Another study found a strong 

correlation between PDO and the Australian summer monsoon as positive PDO is 

responsible for below-normal monsoon rainfall (Latif et al. 1997). Robertson and Wang 

(2009) investigated on 12 climatic predictors with a view to selecting the best predictors 

for forecasting seasonal streamflow in Murrumbidgee catchment of NSW and found 

that the greatest prediction accuracy occurred between September and December with 

only a small increment for the remainder of the year while the best indicators were 

found to be the anomalies of Pacific Ocean that are related to ENSO. These findings 

were similar to the previous findings (McBride and Nicholls 1983) that found the 

strongest correlations between seasonal rainfall of NSW and ENSO during spring. 

A combination of correlation and wavelet-based methods was applied to identify the 

principal sources of variation in reservoir inflows of Sydney (Westra and Sharma, 

2009). The study found ENSO, PDO and IOD to be influential and obtained statistically 

significant correlations (±.4) which varied depending on the seasons, although 

correlations were lower for spring. (Westra and Sharma, 2009).  One of the previous 
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studies by the same authors showed that rainfall in the eastern coastal fringe (east of 

Great Dividing Range) varied with a period of 13 years, which is longer than the period 

of 2-8 years associated with ENSO and shorter than the period of 24 years associated 

with PDO. 

The best skills for 3 months' streamflow forecast were obtained from April to June and 

October to  January for  the catchments  in Queensland and  NSW, respectively, which 

are comparable to the outcomes that were obtained using a statistical BJP approach 

(Robertson and Wang, 2008; Wang et al. 2009). IPO has a direct influence on the 

changes in the correlation coefficients between the  rainfall patterns  of NSW and SOI  

as  it changes from positive correlation to none or negative over time. In accordance 

with this, Powel et al. (1999) stated that the correlation between SOI and rainfall is 

weak when IPO is in a positive phase and vice versa. Duc et al. (2017) showed in their 

study that IPO alone does not have any significant impact on the rainfall of NSW, but 

its combination with ENSO can make a significant impact on rainfall. 

Duc et al. (2017) observed the different rainfall trends from 2000 to present at sites such 

as Coonabarabran and  Yamba from those at sites such as Sydney and  Wagga  Wagga 

and suggested that additional climate drivers besides PDO and ENSO could be 

influencing the rainfall across Australia. He also mentioned that the interaction between 

ENSO and PDO could be more complicated than it had been considered in the previous 

studies. 

The eastern Australian seaboard has different climate patterns compared to the interior 

part of the country where climatic influences on each side of the Great Dividing Range 

are also different. The study of Chiew and McMahon (2003) indicates that there exists 

a clear El Nino-streamflow teleconnections across most of Australia except in NSW 

catchments east of Great Dividing Range, which is stronger than the El Nino- Rainfall 

teleconnection. 

Another climate driver that has an influence on the climate of Australia is MJO 

(Madden-Julian Oscillation), which is an eastward –propagating wavelike atmospheric 

disturbance in equatorial latitudes between the Indian and Pacific Oceans. Risbey et al. 

(2009) found it to operate on a shorter time scale with phase changes influential over 

days or weeks rather than seasons or years. However, the influence of MJO is limited 

to monsoonal tropical north and to a lesser extent in localized central and southern 
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Australia (Duc et al. 2017; Wheeler et al. 2009). As it has limited impact on southeast 

Australia, it is not included in the current study for forecasting streamflow. 

The study of Owens et al. (2013) compared the predictability of persistence and average 

SOI to forecast streamflow and found that NSW including ACT to show the largest 

percentage of forecasting skill as this region had streamflow records from large 

catchments and rivers. The study of Chiew et al. (2003) explained that spring rainfall 

and runoff had a high correlation (0.3 to 0.5) against winter SOI throughout eastern 

Australia except for NSW east of Great Dividing Range, although this region showed 

high correlation for summer rainfall and runoff against winter SOI while the correlation 

was even higher against MEI for northern NSW. 

The analysis (Kiem and franks 2001) on several method-index combinations to 

determine the best method that had the strongest relation with rainfall and runoff in the 

Williams River catchment of NSW explored Multivariate Index of ENSO (MEI) to 

provide the best classification. The same study applied "rise rule" and found strong 

relationships with runoff (rainfall) up to nine months in advance of the summer and 

autumn period. Wang et al. (2011) found lower rainfall variability in the catchment of 

NSW than the catchment of Queensland and obtained the best skills after the wetter 

winter period (October onward) when the catchment was wet, and the influence of 

initial catchment states was increased on subsequent streamflow. Wang and Robertson 

(2011) explained that they could not find any evidence of impacts of lagged Tasman 

Sea Index (TSI)  to forecast seasonal rainfall in south-eastern Australia in any season. 

2.5 Summary from the Extensive Literature Review 

South East Australia contributes to more than half of Australia's agricultural income. 

Therefore, forecasting streamflow with a long lead time will be useful to the agricultural 

producers, irrigators and other water users which are even more important than rainfall 

forecasting as streamflow is the ultimate outcome of rainfall. Although efforts have 

been made to forecast streamflow and rainfall, none of the current practices provides 

reliable seasonal streamflow forecast, which can enable the water users to take risk-free 

managing decisions at the early stage of the crop period (Khan et al. 2005).  

To date, most of the studies on streamflow forecasting are focused on selective parts of 

the country and predictor variables due to unavailability of reliable long data records of 
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streamflow measurements (e.g. Piechota et al. 1998; Kiem and Franks 2004; Ruiz et al., 

2007). None of the studies considered the combined impact of the climate indices to 

predict seasonal streamflow of NSW. A summary of the previous research works on 

streamflow forecasting of Australia is briefly presented in Table 1. 

Table 1. Summary of methods used for forecasting streamflow of NSW 

Reference 

Study 
 

Study Region 
Forecast 

period 
Method Applied Predictor used 

Results for NSW 

        region 

Wang et 
al.(2011) 

East Australia 
(Goodradigb
ee River at 

Wee Jasper) 

3 monthly 
streamflow 

Dynamic models 
(SIMHYD and 

MWB) 

Initial catchment 
condition, historical 

rainfall, SOI 

Best skills during 
OCT-JAN 

Roertsonand 
Wang 

(2008); 

Wang et al. 

(2009) 

South-Eastern 
Australia 

(Murrumbidgee) 
Seasonal 

streamflow 
Statistical BJP 

approach 

IODMI,ENSO,SAM, 
EMI, Thermocline, 
Catchment rainfall 

etc. 

Best predictability 
during Spring; Best 

predictors 
Pacific Ocean 

anomalies 

Piechota et 
al. (2001) 

5 Australian 
Catchments (1 

station in 
NSW) 

Seasonal 
streamflow 

Linear 
Discriminant 

Analysis (LDA) 

Persistence, SOI, 
SST 

Persistence best but 
SOI and SST 

effective in absence 
of persistence 

Piechota et 
al. (1998) 

10 Eastern 
Australian 

catchment(5 
stations in 

NSW) 

Seasonal 
streamflow 

Linear Discriminant 
Analysis (LDA) SOI, SST 

SOI better for July-
Dec;SST better for 

(Jan-June) 

Ruiz et al. 
(2007) 

48 stations in 
Northern and 

Eastern Australia 

6 months, 
12 months 
streamflow 

Linear Error in 
Probability 

Space(LEPS) 
Nino, SST, 
thermocline 

(Nino + 
Thermocline) 

model superior 

Owen et al. 
(2013) 

320 Australian 
Stations 

Upto 4 months 
lagged 

streamflow 

Australian Rainman 
streamflow software Persistence, SOI 

Persistence better 
than SOI;Strongest 

relation during 
spring 

Kirono et al. 
(2010) 

Southeast 
Australia 
(Moree) 

Seasonal 
streamflow 

(upto 12 
months 
lagged) 

Single Lagged 
Correlation 

Analysis 

12 atmospheric-
oceanic predictors, 
antecedent runoff , 
Serial correlation 

Atmospheric-
oceanic 

predictors for 
spring, summer, 

winter 

Chiew and 
McMahon 

(2007) 

284 catchments 
of 

Australia 

Several 
months 
lagged 

Teleconnection 
(Harmonic 
Analysis) 

ENSO,SOI, Serial 
correlation 

Spring streamflow 
form winter SOI 
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Chiew et al. 
(2009) 

45 statios in 
Australia 

(Coastal and 
Murray 

Darling Region of 
NSW) 

Seasonal 
stremaflow 

Single Lag 
correlation analysis 

Persistence, SOI, 
SST 

Spring runoff 
against 

1 and 3 months 
lagged SOI and SST 

It is expected that the different regions of NSW will have variations in the streamflow 

patterns due to the different influence of various climate drivers and their interactions 

with each other.  Therefore,  the  aim  of this  study is  to  develop a  seasonal streamflow 

forecasting method considering the combined impacts of ENSO based SST anomalies 

Nino3.4, EMI, IPO, PDO, and DMI (IOD) that have a major influence on spring 

streamflow in New South Wales. 

To accomplish this objective NSW has been divided into four different regions, and for 

each region, various streamflow stations are chosen to identify the best predictor models 

for forecasting spring streamflow several months ahead in these regions. The locations 

are chosen considering the consumptive water use, where streamflow predictions were 

potential of some value and the longer availability of streamflow data. 

In the present study, both linear (MLR) and non-linear (MNLR and GEP) models are 

developed to capture all possible relations between seasonal streamflow and large-scale 

climate variables. As the linear regression serves as a more simple, direct and consistent 

method than the other statistical methods, in the present study, this method is applied 

as the benchmark method. Later, the MNLR technique was used to explore the non-

linear relationship between climate indices and seasonal streamflow. Finally, advanced 

GEP technique is applied with a view to getting better predictor models. This study is 

conducted with a view to filling up the existing hydrological research gap that prevails 

in Australia.  
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Chapter 3 
Study Area and Data Collection 

3.1 Background of the Study Area 

Australia, the smallest continent in the map, has a huge contribution to agricultural 

production. Approximately there is 85,681 farm business which produces almost 93% 

of Australia's daily domestic food supply (National Farmer Federation  2017). Farmers 

are more dependable on water from streamflow for the agricultural purpose. Australia 

has extensive topographic variations due to which there are high climatic variabilities 

consigning hard to predict the streamflow in Australia. So, the farmers had to go under 

many problems in managing the water supply for agriculture. During 2002-2003, 

drought in Australia brought a reduction in Gross Domestic Production (GDP) 

reduction by 1.6% (Horridge et al. 2005). However, for the management of proactive 

risk management like drought management, the seasonal forecasts play a vital role. 

NSW, which is situated in the east coast of Australia covering a land area of 880,0642 

km2 is the most populous state of Australia with a population of 7.5 million two-third 

of which live in Greater Sydney Area. The state is bordered on the north by Queensland, 

on the west by South Australia, on the south by Victoria and on the east by the Tasman 

Sea. The two most important features of NSW are the Great Dividing Range (GDB) 

and Murray Darling Basin (MDB) which accounts for nearly 40% of the value of 

agricultural production in Australia and 65% of the irrigated land (Abbot et al. 2015). 

NSW possesses almost 61% of the water resources plan area of MDB (Department of 

Industry, NSW Government) while all of Australia's irrigated rice is produced by 

Murrumbidgee and NSW Murray irrigation regions (Murray-Darling Basin Authority). 

According to ABARE, 80.92% parts of the state is agricultural land which contributed 

23 per cent of the total gross value of agricultural production in Australia in the year 

2015-16. 

Geographically NSW can be categorized into four different regions. The coastal 

regions, which are in the east of the state adjacent to the Tasman Sea, have a rainfall 

variation of around 800 millimetres to 3000 millimetres. Rainfall is moderate (600mm-

1500 mm) and evenly distributed throughout the year in the highlands which is a part 

of the Great Dividing Range. The main agricultural region of NSW is the western inland 
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slopes, which have a less dense population than coastal areas. This area receives high 

rainfall (600 mm) throughout the year. The western arid or semi-arid plains, which 

cover almost two-thirds of the state, experience an average rainfall of 150 mm to 500 

mm in almost all the time of the year across the whole region. 

3.2 Data Used in this Study 

3.2.1 Streamflow Data 

 

Figure 12. Locations of the discharge stations in the four study regions of NSW 

Economically NSW is the most important state of Australia as it contributes most of 

Australia’s agricultural production. Agriculture is spread throughout the eastern two-

thirds of the state. Considering the geographical location, regional climatic variation 

and the agricultural importance, NSW is further divided into four regions for the current 

study- Northern NSW (NNSW), Southern NSW (SNSW), Central West NSW 

(CWNSW) and Western NSW (WNSW)  (Figure 12). To  explore the spatial variation 

of influences of different climatic variables for each region three, four, three and two 

stations are selected respectively based on their long data records and fewer missing 

values (Table 2). 
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Table 2. Overview of the Selected Discharge Stations 

Streamflow stations are chosen with data records considered to be of appropriate length 

for the statistical analysis carried out in this study. It can be seen from Figure 12 that 

the locations of the streamflow stations provide good spatial coverage of NSW. 

However, most of the stations selected in this study are concentrated in the eastern part 

of NSW due to predominance of coastal rivers as well as the agricultural importance of 

this region. 

The starting point for any statistical analysis should be the data collection; useful quality 

data are required for the development, calibration and validation of any model. In this 

study, historical streamflow data is collected from the Australian Bureau of 

Meteorology (BoM, 2000).  

Observed monthly streamflow in the unit of cumec (cubic meter per second) is collected 

for 102 years, ranging from 1914 to 2015 for nine stations while 99, 101 and 88 years 

of data are collected for North Cuerindi, Wee Jasper and Mittangang Crossing stations 

respectively. These stations have less than 0.5% missing values, which are filled by the 

series mean of the streamflow data. Using this data, seasonal mean discharge data is 

derived for spring (September-October-November) season. 

Study 

Region 

Station 

Number 
Latitude Longitude River Name Station Name 

Northern 

210001 -32.56⁰S 151.17⁰E HUNTER  SINGLETON 

210006 -32.34⁰S 150.10⁰E GOULBURN   COGGAN 

419005 -30.68⁰S 150.78⁰E NAMOI NORTH CUERINDI 

Southern 

410004 -35.07⁰S 148.11⁰E MURRUMBIDGEE GUNDAGAI 

410024 -35.17⁰S 148.69⁰E GOODRADIGBEE  WEE JASPER (KASHMIR) 

410033 -36.16⁰S 149.09⁰E MURRUMBIDGEE  MITTAGANG CROSSING 

410700 -35.32⁰S 148.94⁰E COTTER KIOSK 

Central 

409002 -36.01⁰S 146.40⁰E MURRAY COROWA 

410001 -35.10⁰S 147.37⁰E MURRUMBIDGEE  WAGGA WAGGA 

412002 -33.83⁰S 148.68⁰E LANCHAN COWRA 

Western 
409005 -35.63⁰S 144.12⁰E MURRAY BARHAM 

422002 -29.95⁰S 146.86⁰E BARWON  BREWARRINA 
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3.2.2 Climate Indices Data 

Five climate drivers: ENSO based SST anomalies NINO3.4, EMI, IPO, PDO, and 

DMI(IOD) are selected for MLR analysis, considering the previous research works on 

rainfall and streamflow in this region as well as the concurrent and lagged correlation 

analysis in the preliminary stage of the current research. 

ENSO phenomenon has two components- sea surface temperature and atmospheric 

pressure which are intensely correlated and can be represented by two types of 

indicators, the SLP indicator and the SST indicator (Duc et al. 2017). The most common 

of those is the Troup Southern Oscillation Index (SOI) which measures the difference 

between sea-level atmospheric pressures at Papeete (Tahiti) and Darwin (Troup 1965). 

Various SST anomalies are also available which have been derived using different areas 

of the equatorial Pacific Ocean (Kiem & Franks 2001). Generally, the SST anomalies 

are monitored in 3 geographic regions (Figure 13) of the equatorial Pacific and defined 

as NINO3 (5°S – 5°N, 150°– 90°W), NINO3.4 (5°S – 5°N, 170° – 120°W) and NINO4 

(5°S – 5°N, 160° – 150°W) (Risbey et al. 2009). Hanley et al. (2003) compared the 

response of pressure based and SST based anomalies to the ENSO extreme event and 

found that Niño-3.4 and Niño-4 indices are equally sensitive to El Niño events whereas 

SOI is less sensitive to La Niña events than others. 

 

Figure 13. Map showing ENSO region (source: NOAA) 

 

The El Nin˜o Modoki is an ocean-atmosphere coupled process, which results in unique 

tripolar sea level pressure pattern during the evolution, similar to the Southern 
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Oscillation phenomenon of El Nino (Ashok et al.  2007). Therefore, this phenomenon 

is named as El Nin˜o–Southern Oscillation (ENSO) Modoki and expressed by the 

following equation (Ashok et al.  2007) 

𝐸𝐸𝐸𝐸𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − (0.5 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) − (0.5 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)  (3-1) 

Where,  

X=165°E–140°W, 10°S–10°N, Y= 110°W–70°W, 15°S–5°N, Z=125°E–145°E, 

10°S–20°N 

The IOD represents the couples oceanic-atmospheric variability in the tropical Indian 

Ocean which is classified by SST anomalies of reverse sign in the east and west (Saji 

et al. 1999; Webster et al. 1999). The Dipole Mode Index (DMI) which is a measure of 

the IOD is defined as the difference in SST anomaly between the tropical western Indian 

Ocean (10⁰S–10⁰N, 50⁰–70⁰E) the tropical south-eastern Indian Ocean (10⁰S–equator, 

90⁰–110⁰E). 

The IPO is described as the Pacific ENSO-like pattern of SST, which is found in the 

analysis of near-global inter-decadal SST (Folland et al. 1999). IPO has a cycle of 15-

30 years and characterized with two phases namely, positive and negative phases 

(Henley et al. 2015; Salinger et al. 2001). While IPO is defined for the whole Pacific 

Basin, PDO  is defined for the North Pacific, poleward of 20°N (Figure 14). 

 

Figure 14. Map showing IPO and PDO region 

(Source: Timmermann and Trenberth, 2014) 
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The oceanic and atmospheric climate indices data are obtained from the Climate 

Explorer website (http://climexp.knmi.nl)  while the EMI data is collected  from the 

website of JAMSTEC (http://www.jamstec.go.jp/frcgc/research/dl/iod/modoki)  for the 

duration  of  102  years  (1914-2015). An overview of the used climatic variables is 

presented in Table 3. 

Table 3. Overview of the Used Climate Indices and Data Source 

Predictors Predictor definition Origin Data period Data Source 

PDO 
SSTA anomaly in 

North Pacific Ocean, 

(north of 20°N 

 

Pacific 

Ocean 

1914-2015 

 
ERSST(http://climexp.knmi.nl/) 

IPO 

SST anomaly in North 

and South Pacific 

Ocean (includes South 

of  20°N Latitude) 

Pacific 

Ocean 

1914-2015 

 
HadISST1 ( http://climexp.knmi.nl/) 

Nino3.4 

Average SST anomaly 

over central Pacific 

ocean(5°S-5°N,120°-

 

Pacific 

Ocean 

1914-2015 

 
HadISST1(http://climexp.knmi.nl/) 

IOD 

West Pole Index(10°S-

10°N,50°-70°E) -East 

Pole Index(10°S-0°, 

90° 110°E) 

Indian  

Ocean 

1914-2015 

 
HadISST (http://climexp.knmi.nl/) 

EMI 

Coupled ocean-

atmosphere 

phenomenon in the 

  

Pacific 

Ocean 

1914-2015 

 

HadISST 

(http://www.jamstec.go.jp/frcgc/researc

h/d1/iod/modoki) 

 

3.3 Data Preprocessing 

Data preprocessing has got significant influences on model outputs, especially when 

the input variables have got different ranges of data. It is important to normalize the 

data to ensure that every input variable gets equal attention during the calibration of the 

model, which will result in significant improvement in the accuracy of the developed 

models. For Multiple Regression (MR) analysis, the basic statistical assumptions are 

very important. According to Osborne & Elaine (2002), MR modelling was established 

based on a number of assumptions; thus, if all these assumptions are not satisfied, the 

http://climexp.knmi.nl/
http://climexp.knmi.nl/
http://climexp.knmi.nl/
http://climexp.knmi.nl/
http://www.jamstec.go.jp/frcgc/research/d1/iod/modoki
http://www.jamstec.go.jp/frcgc/research/d1/iod/modoki
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results may become highly erroneous. These assumptions include but not limited to the 

type of variables, no multicollinearity among the variables, additivity of the 

independent variables. Again, for GEP analysis, there are several assumptions that need 

to be maintained to get more accurate outcomes. One of the basic conditions of GEP 

modelling is that the input variables should be of equal length. Therefore, while setting 

the initial environment, this condition was kept in mind, and any missing value for any 

variable was replaced by the mean value of the corresponding data series.  

Another problem of dealing with the long dataset is the presence of extreme or 

influential data points. These data points which are far outside the norm for a variable 

or population, are referred to as outliers (Jarrell, 1994; Rasmussen, 1988; Stevens, 

1984). Outliers can have adverse effects on statistical analyses by increasing error 

variance and reducing the power of statistical tests. Outliers can be generated by 

different reasons, among which two main reasons are errors in the data and inherent 

variability of the data. There are arguments on whether to remove the outliers or not. In 

the study by Osborne and Amy (2004), the effect of outliers on correlation analysis was 

found to be very significant. It was revealed in their study that removal of the outliers 

had a very significant impact on the magnitude of the correlation and the cleaned 

correlations were more accurate. Although there are arguments among the researchers 

(Orr et al. 1991) for removal or modifying the outliers, this research (Osborne & Amy, 

2004) suggested that removal of outliers enhanced the accuracy of the results in both 

correlation and t-tests conducted by the authors and in most cases the error was 

significantly reduced.  

Considering the aforementioned research outcomes, in the current study,  the outliers 

were determined through boxplot method (Figure 15) and then those data points were 

removed with a view to getting more accurate results from the developed models. 
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Figure 15. Boxplots to find out outliers for all 12 stations 

A boxplot or a box-and-whisker diagram is a graphical representation of groups of 

numerical data through their quartiles (Figure 16) which extends from the 25th 

percentile to the 75th percentile including a line at 50th percentile (median). This box is 

referred to Interquartile Range (IQR).  The outliers are plotted as the individual points.  
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Figure 16. Different parts of Boxplot (Source: Galarnyk 2018) 

3.4 Model Verification 

3.4.1 Statistical Performance Analysis 

Statistical performances of the models were evaluated using different functions which 

include Root Mean Square Error (RMSE), Root Relative Squared Error (RRSE), 

Relative Absolute Error (RAE), Mean Absolute Error (MAE), Nash-Sutcliffe 

Efficiency (NSE), Willmott index of agreement (d) and Pearson correlation (r).  The 

closer the ‘d’ value to 1, the better the model fits the observations. The best models for 

each station was chosen considering its higher correlation value and lower errors which 

ensure the best fitness of the developed model. 

Pearson Correlation Coefficient (r)  

Correlation coefficients are used in statistics to measure how strong a relationship is 

between two variables. One of the most commonly used correlation coefficients is 

Pearson's correlation (also called Pearson's r). The equation which is used to calculate 

the coefficient is as follows: 

𝒓𝒓 = ∑ (𝒙𝒙𝒊𝒊−𝒙𝒙 �  )(𝒚𝒚𝒊𝒊−𝒚𝒚 �  )𝒏𝒏
𝒊𝒊=𝟏𝟏

�∑ (𝒙𝒙𝒊𝒊𝒏𝒏
𝒊𝒊=𝟏𝟏 −𝒙𝒙 �)×�∑ (𝒚𝒚𝒊𝒊− 𝒚𝒚 � )𝟐𝟐𝒏𝒏

𝒊𝒊=𝟏𝟏

   (3-2) 
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where, r is the correlation coefficient between variables �̅�𝑥 and 𝑦𝑦�; and are the average 

values of x and y, respectively and n is the number of data points. r ranges within the 

domain [-1, 1] where the values of 1 and -1 indicate positive and negative perfect linear 

correlation respectively, while r = 0 is an indication that there is no correlation between 

the two data series. 

Mean Absolute Error (MAE) 

The mean absolute error (MAE),  Ei of an individual model i is evaluated by the 

equation: 

 

  (3-3) 

where P(ij) is the value predicted by the individual model i for record j (out 

of n records); and Tj is the target value for record j. For a perfect fit, P(ij) = Tj and Ei = 

0. So, the Ei index ranges from 0 to infinity, with 0 corresponding to the ideal. 

Root Mean Squared Error (RMSE) 

The root mean squared error (RMSE) Ei of an individual model i is evaluated by the 

equation: 

 (3-4) 

where P(ij) is the value predicted by the individual model i for record j (out 

of n records); and Tj is the target value for record j. For a perfect fit, P(ij) = Tj and Ei = 

0. So, the Ei index ranges from 0 to infinity, with 0 corresponding to the ideal. 

Root Relative Squared Error(RRSE) 

The RRSE fitness function of GeneXpro Tools is, as expected, based on the 

standard root relative squared error, which, on its turn, is based on the absolute error. 

The relative squared error is relative to what it would have been if a simple predictor 

had been used. More specifically, this simple predictor is just the average of the actual 

values. Thus, the relative squared error takes the total squared error and normalizes it 

by dividing by the total squared error of the simple predictor. By taking the square root 

https://www.gepsoft.com/gxpt4kb/Chapter10/Section1/SS07.htm
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of the relative squared error one reduces the error to the same dimensions as the quantity 

being predicted. Mathematically, the root relative squared error Ei of an individual 

program i is evaluated by the equation: 

 

𝑬𝑬i= √
∑ (𝑷𝑷𝒊𝒊𝒊𝒊−𝑻𝑻𝒊𝒊)𝟐𝟐𝒏𝒏
𝒊𝒊=𝟏𝟏

∑ (𝑻𝑻𝒊𝒊−𝑻𝑻�)𝟐𝟐𝒏𝒏
𝒊𝒊=𝟏𝟏

   (3-5) 

 
where P(ij) is the value predicted by the individual program i for fitness case j (out 

of n fitness cases or sample cases); Tj is the target value for fitness case j; and 𝑆𝑆� is given 

by the formula: 

𝑆𝑆� = 1
𝑛𝑛
∑ 𝑆𝑆𝑗𝑗𝑛𝑛
𝑗𝑗=1   (3-6) 

For a perfect fit, the numerator is equal to 0 and Ei = 0. So, the RRSE index ranges from 

0 to infinity, with 0 corresponding to the ideal. As it stands, Ei cannot be used directly 

as fitness since, for fitness proportionate selection, the value of fitness must increase 

with efficiency. Thus, for evaluating the fitness fi of an individual program i, the 

following equation is used: 

𝑓𝑓𝑑𝑑 = 1000. 1
(1+𝐸𝐸𝑑𝑑)

  (3-7) 

which obviously ranges from 0 to 1000, with 1000 corresponding to the ideal (Ferreira 

2006). 

Relative Absolute Error (RAE) 

The relative absolute error (RAE) is very similar to the relative squared error in the 

sense that it is also relative to a simple predictor, which is just the average of the actual 

values. In this case, though, the error is just the total absolute error instead of the total 

squared error. Thus, the relative absolute error takes the total absolute error and 

normalizes it by dividing by the total absolute error of the simple predictor. 

Mathematically, the relative absolute error Ei of an individual model i is evaluated by 

the equation: 

𝐸𝐸𝑑𝑑 =
∑ �𝑷𝑷𝒊𝒊𝒊𝒊−𝑻𝑻𝒊𝒊�𝑛𝑛
𝑗𝑗=1

∑ �𝑻𝑻𝒊𝒊−𝑻𝑻��𝑛𝑛
𝑗𝑗=1

  (3-8) 

https://www.gepsoft.com/gxpt4kb/Chapter10/Section1/SS06.htm
https://www.gepsoft.com/GeneXproTools/AnalysesAndComputations/MeasuresOfFit/RelativeSquaredError.htm
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where P(ij) is the value predicted by the individual model i for record j (out 

of n records); Tj is the target value for record j; and 𝑆𝑆� is given by the formula: 

 
𝑆𝑆� = 1

𝑛𝑛
∑ 𝑆𝑆𝑗𝑗𝑛𝑛
𝑗𝑗=1   (3-9) 

For a perfect fit, the numerator is equal to 0 and Ei = 0. So, the Ei index ranges from 0 

to infinity, with 0 corresponding to the ideal. 

Nash–Sutcliffe model efficiency coefficient (NSE) 

The Nash-Sutcliffe efficiency (NSE) is a normalized statistic that determines the 

relative magnitude of the residual variance ("noise") compared to the measured data 

variance ("information") (Nash and Sutcliffe, 1970). The  is used to assess the 

predictive power of hydrological models. It is defined as: 

𝑁𝑁𝑆𝑆𝐸𝐸 = 1 −  ∑ (𝑄𝑄𝑚𝑚𝑡𝑡 −𝑄𝑄𝑜𝑜𝑡𝑡)2𝑇𝑇
𝑡𝑡−1
∑ (𝑄𝑄𝑜𝑜𝑡𝑡−𝑄𝑄�𝑜𝑜)2𝑇𝑇
𝑡𝑡=1

  (3-10) 

where 𝑄𝑄�𝑜𝑜 is the mean of observed discharges, and 𝑄𝑄𝑚𝑚 is modelled discharge. 𝑄𝑄𝑜𝑜𝑡𝑡   is 

observed discharge at time t. 

NSE indicates how well the plot of observed versus simulated data fits the 1:1 line. 

Nash-Sutcliffe efficiencies range from -Inf to 1. Essentially, the closer to 1, the more 

accurate the model is. 

• NSE = 1, corresponds to a perfect match of modelled to the observed data. 

• NSE = 0, indicates that the model predictions are as accurate as the mean of the 

observed data, 

• -Inf < NSE < 0, indicates that the observed mean is better predictor than the 

model. 

3.4.2 Calibration and Validation of the Developed Models 

MLR analysis served as the basis for the current study, which was followed by MNLR 

analysis and GEP analysis, respectively. Since there are no hard and fast rules to divide 

the entire data series into calibration and validation datasets, at the beginning for MLR 

and MNLR analysis, this study took 85 years of data for calibration dataset (1914-1998) 

and the rest of 17 years (1999-2015)  of data was used to validate the models. Later on, 

https://en.wikipedia.org/wiki/Hydrology
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for GEP analysis to improve the model performances, the whole data set was divided 

into two segments where the first 96 years (1914-2009) of data were used for calibrating 

the models and rest of 6 years (2010-2015) of data were used to assess the validity of 

the models. Considering the effect of the "millennium drought" period (which was 1994 

to 2010 according to Bond et al. 2008) in Australia, longer data range was used for 

calibration period to prepare the models for any unusual phenomenon like droughts or 

flood. Finally, to compare the MLR models with GEP models, MLR analysis was 

redone considering the same calibration and validation datasets as GEP. 
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Chapter 4 
Analysis of the Relationship between Streamflow and Climate 

Indices 

4.1 Pearson Correlation Analysis 

A detailed study of past research works revealed that different climate anomalies have 

impacts on the seasonal streamflow of NSW, which varies seasonally as well as 

spatially. Pearson correlation analysis is done for identifying the strength of the relation 

between the seasonal climate anomalies. To analyze the extent of the influences of 

different climatic variables on seasonal streamflow of NSW, Pearson correlation 

analysis is applied in two different phases. The first phase takes into account the 

concurrent relationship of climate indices and seasonal streamflow while the second 

phase is conducted in order to investigate the lagged relationship of the climate models 

and seasonal streamflow. Later on, the outcomes of the second phase are served as the 

basis for selecting the suitable lagged climate indices to use as inputs while developing 

MLR, MNLR and GEP forecasting models. 

4.1.1 Concurrent Relationship 

4.1.1.1 Seasonal Relationship between Climate Indices 

To check the multicollinearity is a very important step of MLR modelling. 

Multicollinearity is observed when there is a significant correlation among the 

predictors. Therefore, it is essential to check if the predictors are highly correlated to 

avoid getting biased results from the developed models. If the multicollinearity is not 

verified at the beginning, the modelling will result in an abrupt change in parameter 

estimates in response to small changes in the input data. In this study, to avoid highly 

correlated predictors, concurrent correlation analysis was conducted for the seasonal 

indices (Table 4-7). Usually, climate indices which are originated from the same 

climatic phenomenon, are highly correlated and cannot be used in the same MLR model 

as the predictors. For instance, NINO3 and SOI are originated from the ENSO 

phenomenon; thus, while developing the MLR models, these two indices cannot be used 

in the same model as predictors. 
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Table 4. Concurrent correlations between Summer climate indices 
 

* Correlation is significant at 5% level ** Correlation is significant at 1% level 

Table 5. Concurrent correlations between Winter climate indices 
 

* Correlation is significant at 5% level ** Correlation is significant at 1% level 

Table 6. Concurrent correlations between Autumn climate indices 

INDEX Nino4 SOI IPO PDO EMI IOD SAM NINO3.4 
NINO3 0.72** -0.66** 0.33** 0.54** .08 -0.08 0 -0.1 
NINO4  -0.7** 0.35** 0.57** 0.69** -0.07 -0.16 0.02 

SOI   -0.37** -0.53** -0.32** -0.06 0.18 0.1 
IPO    0.56** 0.2* -0.19 0.06 -0.19 
PDO     0.19* -0.21* -0.01 0.01 
EMI      -0.11 -0.24 0.1 
IOD       0.15 -0.07 
SAM        -0.13 

* Correlation is significant at 5% level ** Correlation is significant at 1% level 
 

 
 
 

Indices NINO4 SOI IPO PDO EMI IOD SAM NINO3.4 
NINO3 0.85** -0.82** 0.25** 0.57** 0.48** 0.06 -0.21 -0.1 
NINO4  -0.83** 0.28** 0.56** 0.81** 0.01 -0.2 0 

SOI   -0.26** -0.55** -0.57** 0.11 0.30* -0.06 
IPO    0.39** 0.15 -0.17 0.05 -0.23 
PDO     0.31** -0.03 -0.08 0.03 
EMI      -0.16 -0.29* 0.11 
IOD       0.41** 0.06 
SAM        -0.26* 

Indices NINO4 SOI IPO PDO EMI IOD SAM NINO3.4 
NINO3 0.69** -0.63** 0.12 0.39** -0.1 0.47** 0.29* -0.11 
NINO4  -0.7** 0.32** 0.52** 0.54** 0.31** 0.18 -0.08 

SOI   -0.22* -0.42** -0.33** -0.45** -0.19 0.13 
IPO    0.48** 0.2* -0.02 0.14 -0.26* 
PDO     0.13 0.01 0.11 -0.04 
EMI      -0.1 -0.12 0.03 
IOD       0.27* -0.13 
SAM        0.22 
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Table 7. Concurrent correlations between Spring climate indices 

* Correlation is significant at 5% level ** Correlation is significant at 1% level 

4.1.1.2 Seasonal  Relationship between Streamflow and Climate Indices 

The linear relationships between spring, summer, autumn and winter streamflow and 

spring, summer, autumn and spring climate anomalies respectively have been explored 

by directing the Pearson correlation analysis for each station of the four study regions 

of NSW. The purpose of this analysis is to identify the season that shows significant 

correlations with the highest number of climate indices compared to all other seasons 

(Table 8-11). Furthermore, this analysis plays an important role to select the most 

influential climate indices on the particular seasonal streamflow. 

Table 8. Pearson correlations between Summer streamflow and Summer climate 

indices 

Region Station NINO3 NINO4 SOI IPO PDO EMI IOD NINO3.4 SAM 

 
NNSW  

210001 -0.31** -0.35** 0.31** -0.27** -0.26**   -0.30**  
419005 -0.38** -0.42** 0.38** -0.20* -0.25** -0.28**  -0.39**  
210006 -0.33** -0.38** 0.28** -0.28** -0.22* -0.27**  -0.34**  

 
 

SNSW  

410024 -0.36** -0.43** 0.33**  -0.20* -0.36**  -0.39**  
410700 -0.32** -0.37** 0.34**  -0.22* -0.27**  -0.34**  
410033  -0.25*        
410004      -

0.31** 
  

 

 
CWNSW  

409002      -0.20* 0.25**   
410001      -

0.32** 0.28**  
 

412002       0.27**   
 

WNSW 
409005 -0.32** -0.31** 0.30** -0.33** -0.31**   -0.31**  
422002 -0.39** -0.51** 0.48** -0.35** -0.33** -0.44** 0.21* -0.45**  

* Correlation is significant at 5% level ** Correlation is significant at 1% level

INDEX Nino4 SOI IPO PDO EMI IOD SAM NINO3.4 
NINO3 0.86** -0.74** 0.11 0.59** 0.41** 0.60** -0.06 -0.12 
NINO4  -0.81** 0.18 0.57** 0.74** 0.59** -0.03 -0.1 

SOI   -0.24** -0.54** -0.63** -0.53** -0.01 0.07 
IPO    0.25** 0.09 0.01 0.08 -0.2 
PDO     0.23* 0.25** 0.02 0.08 
EMI      0.31** 0 -0.01 
IOD       -0.13 -0.08 
SAM        -0.06 
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Table 9. Pearson correlations between Autumn streamflow and Autumn climate 

indices 

* Correlation is significant at 5% level ** Correlation is significant at 1% level 

Table 10. Pearson correlations between Winter streamflow and Winter climate 

indices 

* Correlation is significant at 5% level ** Correlation is significant at 1% level

Region Station NINO3 NINO4 SOI IPO PDO EMI IOD NINO3.4 SAM 
  

NNSW 
  

210001   -0.26** 0.23* -0.3** -0.2*     -0.22*   
419005       -0.27**           
210006   -0.19* 0.21* -0.26** -0.24*         

  
  

SNSW 
  

410024   -0.29** 0.31** -0.25** -0.28** -0.23* -0.20* -0.24**   
410700   -0.31** 0.33** -0.25** -0.31** -0.23* -0.19* -0.26**   
410033   -0.26** 0.31**   -0.33**   -0.24* -0.25*   
410004   -0.3** 0.27**   -0.28** -0.23*   -0.27**   

  
CWNSW 

  

409002                   
410001   -0.3** 0.28** -0.25** -0.27** -0.23*   -0.27**   
412002     0.28**       -0.24*     

  
WNSW 

409005   -0.24* 0.36** -0.2*       -0.20*   
422002 -0.23* -0.31** 0.32** -0.38** -0.31**     -0.28**   

Region Station NINO3 NINO4 SOI IPO PDO EMI IOD NINO3.4 SAM 

 
NNSW  

210001 -0.19* -0.27** 0.3**   -0.32**     -0.24*   
419005       -0.27**     -0.21* -0.24*   
210006 -0.2* -0.27** 0.34**   -0.24** -0.21* -0.18 -0.26**   

 
 

SNSW  

410024 -0.22* -0.3** 0.39**       -0.32** -0.28** -0.43** 
410700 -0.2* -0.34** 0.41**       -0.32** -0.25** -0.46** 
410033   -0.26** 0.31** -0.22* -0.33**   -0.32** -0.23* -0.30* 
410004   -0.32** 0.35** -0.19*     -0.25** -0.23* -0.34** 

 
CWNSW  

409002   -0.22* 0.34**       -0.28**     
410001   -0.3** 0.34**       -0.26** -0.21* -0.33** 
412002   -0.23* 0.34**       -0.14 -0.26** -0.35** 

 
WNSW 

409005   -0.27** 0.37**       -0.32**     
422002   -0.26** 0.33**   -0.2* -0.21* -0.20* -0.41**   
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Table 11. Pearson correlations between Spring streamflow and Spring climate 

indices 

* Correlation is significant at 5% level ** Correlation is significant at 1% level 

Comparing the results of the concurrent analyses between seasonal streamflow and 

seasonal climate indices, it can be said that spring streamflow (Table 11) showed strong 

correlations for the greatest number of the indices compared to all other seasons. It is 

evident from Table 11 that all the climate indices (except IPO) have significant 

correlations with spring streamflow for all the regions. IPO shows significant 

correlations only for CWNSW and for two stations of SNSW regions which are 

geographically located close to each other. Therefore, it can be anticipated that in the 

central-west and southern parts of NSW, IPO has a strong influence on streamflow 

during spring. Again, among all climate indices, SAM showed the least number of 

significant correlations with the corresponding seasonal flow.  

It was mentioned earlier, based on this concurrent correlation analyses between the 

seasonal streamflow and seasonal indices, the most significant season to forecast and 

the most influential climate indices will be selected. Following the outcome of this 

analysis, this study will consider only Spring season for further analyses and NINO3, 

NINO4, NINO3.4, EMI, IOD, PDO and IPO were found to be the most influential 

indices. 

Region Station NINO3 NINO4 SOI IPO PDO EMI IOD NINO3.4 SAM 

  
NNSW 

  

210001 -0.35** -0.42** 0.38**   -0.34** -0.25** -0.19* -0.38**   
419005 -0.43** -0.54** 0.52**   -0.44** -0.44** -0.33** -0.47**   
210006 -0.27** -0.36** 0.33**   -0.28** -0.3**   -0.32**   

  
  

SNSW 
  

410024 -0.39** -0.49** 0.46** -0.23* -0.26** -0.36** -0.50** -0.43**   
410700 -0.33** -0.43** 0.42**   -0.37** -0.22* -0.46** -0.34**   
410033 -0.28** -0.37**     -0.26**   -0.46** -0.29**   
410004 -0.26** -0.36** 0.32** -0.25** -0.26** -0.19* -0.34** -0.28**   

  
CWNSW 

  

409002 -0.28** -0.36** 0.31** -0.21* -0.3**   -0.43** -0.29**   
410001 -0.27** -0.37** 0.33** -0.24* -0.26** -0.21* -0.36** -0.28**   
412002 -0.19* -0.32** 0.26** -0.23*   -0.21* -0.24* -0.22*   

  
WNSW 

409005 -0.43** -0.54** 0.52**   -0.44** -0.44** -0.33** -0.47**   
422002 -0.36** -0.47** 0.38**   -0.35** -0.42** -0.35** -0.42**   
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4.1.2 Single Lagged Relationships 

For each selected station of four study regions of NSW, single lag correlation analysis 

is performed between spring streamflow at year ‘n’ and monthly (Decembern-1 to 

Augustn) values of the climate indices. The outcomes are presented in Table 12-15. 

It is observed from the single lagged analysis that different region is influenced by 

different climatic variables. Lagged NINO3.4 and PDO have significant impacts on the 

spring streamflow of all four selected regions. CWNSW, including the two stations of 

Southern NSW (Gundagai and Wee Jasper Stations) which are nearly located to 

CWNSW stations, are also influenced by lagged IPO. Almost all the stations have 

signification correlations with lagged IOD indices whereas lagged EMI has impacts on 

a very limited number of stations.  

NINO3.4 shows statistically significant correlations up to a lagged period of four 

months (April to August) with the correlations ranging from -0.19 to -0.46. These 

findings align with the study of Wang et al. (2009), who found a strong impact of 

NINO3.4 on spring rainfall in the same study region up to a lag of 2 months. Duc et al. 

(2017) explained that ENSO indices have a strong impact on rainfall during Austral 

spring. The lagged periods of IOD that have significant correlations are not consistent 

for all the stations while most of the stations have significant correlation up to 4 months’ 

lag.  It is observed that EMI has significant correlation only up to 3 months’ lag for five 

stations with a maximum significant correlation of -0.41. The lagged relationship of 

PDO is quite different as for some stations it presents more significant correlations with 

longer lead times. The maximum lead times (up to 9 months) with significant 

correlations for spring streamflow are also obtained for this climate variable of the 

Pacific Ocean. This is similar to the assessment of Whiting et al. (2003) that discovered 

that PDO has a greater correlation with an annual rainfall of Sydney than that of SOI. 

Latif et al. (1997) also showed a strong relationship between PDO and Australian 

summer monsoon. Westra et al. (2008) evaluated correlation coefficients between 

seasonal inflows of a reservoir in Sydney and climate indices where spring inflow 

correlations for NINO3.4 and PDO were found to be -0.17 and -0.19 respectively. 
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Table 12. Pearson correlations (r) of single lagged climate indices and spring 

streamflow NNSW 

* Correlation is significant at 5% level ** Correlation is significant at 1% level 

  

  Lagged Months 
Stations Indices Decn-1 Jann Febn Marn Aprn Mayn Junen Julyn Augn 

  
  
  

 210001 
  
  
  
  

NINO3 -0.07 -0.16 -0.18 -0.17 -0.21* -0.30** -0.36** -0.35** -0.27** 
NINO4 -0.16 -0.13 -0.17 -0.25** -0.28** -0.37** -0.42** -0.42** -0.39** 

SOI 0.08 0.02 0.15 0.20* 0.20* 0.23* 0.29** 0.30** 0.29** 
PDO -0.17 -0.26** -0.33** -0.29** -0.30** -0.35** -0.30** -0.37** -0.34** 
EMI -0.13 -0.01 -0.03 -0.14 -0.08 -0.1 -0.14 -0.07 -0.16 
IPO 0.11 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 

NINO3.4 -0.08 -0.13 -0.15 -0.19 -0.22* -0.35** -0.43** -0.39** -0.31** 
IOD -0.05 -0.05 -0.1 -0.08 0.03 -0.15 -0.22* -0.12 -0.15 

  
  
  

 210006 
  
  
  
  

NINO3 0.01 -0.02 -0.1 -0.06 -0.17 -0.23* -0.25** -0.27** -0.19* 
NINO4 -0.05 0.01 -0.08 -0.09 -0.17 -0.22* -0.27** -0.35** -0.35** 

SOI 0.02 -0.05 0.04 0.12 0.15 0.20* 0.38** 0.33** 0.29** 
PDO -0.11 -0.19* -0.22* -0.21* -0.24** -0.30** -0.23* -0.32** -0.31** 
EMI -0.07 0.06 0 -0.06 -0.06 -0.09 -0.14 -0.18 -0.26** 
IPO -0.01 -0.17 -0.17 -0.17 -0.17 -0.17 -0.17 -0.17 -0.17 

NINO3.4 0 0 -0.07 -0.06 -0.17 -0.28** -0.31** -0.35** -0.26** 
IOD 0.11 0.06 -0.11 -0.11 -0.06 -0.06 -0.21* -0.13 -0.12 

  
 419005 

  
  
  
  
  
  

NINO3 -0.01 -0.07 -0.11 -0.11 -0.12 -0.25** -0.36** -0.35** -0.29** 
NINO4 -0.14 -0.1 -0.15 -0.23* -0.29** -0.39** -0.44** -0.51** -0.50** 

SOI 0.08 -0.15 0.06 0.11 0.19 0.33** 0.43** 0.51** 0.43** 
PDO -0.21* -0.27** -0.26** -0.22* -0.29** -0.33** -0.31** -0.41** -0.36** 
EMI -0.18 -0.07 -0.07 -0.19 -0.20* -0.23* -0.25** -0.27** -0.39** 
IPO 0.12 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 

NINO3.4 -0.05 -0.07 -0.1 -0.14 -0.18 -0.34** -0.45** -0.46** -0.39** 
IOD 0.05 0.08 0.01 -0.05 0.13 -0.11 -0.11 -0.14 -0.14 



 64 

Table 13. Pearson correlations (r) of single lagged climate indices and spring 

streamflow SNSW 

* Correlation is significant at 5% level ** Correlation is significant at 1% level 

  

  Lagged Months 
Stations Indices Decn-

 
Jann Febn Marn Aprn Mayn Junen Julyn Augn 

  
  
  
  
  

 410024 
  
  

NINO3 0 -0.02 -0.11 -0.1 -0.1 -0.23* -0.32** -0.31** -0.31** 
NINO4 -0.09 -0.07 -0.08 -0.15 -0.19 -0.29** -0.38** -0.47** -0.49** 

SOI 0.02 -0.14 -0.11 0.11 0.17 0.36** 0.43** 0.48** 0.41** 
PDO -0.21* -0.23* -0.18 -0.19* -0.21* -0.16 -0.18 -0.19* -0.21* 
EMI -0.05 -0.03 0.04 -0.06 -0.07 -0.08 -0.14 -0.26** -0.32** 
IPO -0.14 -0.23* -0.23* -0.23* -0.23* -0.23* -0.23* -0.23* -0.23* 

NINO3.4 -0.02 -0.03 -0.06 -0.09 -0.11 -0.27** -0.40** -0.42** -0.40** 
IOD 0.03 -0.06 0.01 -0.09 0.03 -0.14 -0.32** -0.27** -0.32** 

  
  
  

 410700 
  
  
  
  

NINO3 -0.03 -0.04 -0.13 -0.14 -0.12 -0.18 -0.20* -0.41** -0.28** 
NINO4 -0.08 -0.06 -0.05 -0.11 -0.15 -0.22* -0.30** 0.53** -0.42** 

SOI 0.11 -0.11 -0.06 0.11 0.20* 0.37** 0.43** -0.18 0.51** 
PDO -0.29** -0.31** -0.30** -0.32** -0.26** -0.19 -0.16 -0.17 -0.24* 
EMI 0.04 0.05 0.14 0.09 0.02 0.01 -0.07 -0.15 -0.19 
IPO -0.06 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.35** -0.15 

NINO3.4 -0.03 -0.02 -0.06 -0.08 -0.1 -0.19* -0.25** -0.34** -0.33** 
IOD -0.13 -0.11 -0.08 -0.09 -0.03 -0.21* -0.22* -0.29** -0.31** 

  
  

 410033 
  
  
  
  
  

NINO3 -0.13 -0.1 -0.13 -0.14 -0.12 -0.18 -0.20* -0.27** -0.22* 
NINO4 -0.15 -0.15 -0.05 -0.11 -0.15 -0.22* -0.30** -0.41** -0.33** 

SOI 0.15 0 -0.06 0.11 0.20* 0.37** 0.43** 0.53** 0.2 
PDO -0.23* -0.26** -0.30** -0.32** -0.26** -0.19 -0.16 -0.18 -0.24* 
EMI 0.07 0.03 0.14 0.09 0.02 0.01 -0.07 -0.17 -0.05 
IPO -0.14 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 

NINO3.4 -0.16 -0.07 -0.06 -0.08 -0.1 -0.19* -0.25** -0.35** -0.26** 
IOD -0.33** -0.2 -0.08 -0.09 -0.03 -0.21* -0.22* -0.34** -0.36** 

  
  

 410004 
  
  
  
  
  

NINO3 -0.22* -0.20* -0.29** -0.25** -0.23* -0.23* -0.32** -0.26** -0.24** 
NINO4 -0.25** -0.22* -0.22* -0.26** -0.26** -0.27** -0.38** -0.41** -0.40** 

SOI 0.18 0.05 0.04 0.17 0.19* 0.31** 0.43** 0.43** 0.32** 
PDO -0.26** -0.26** -0.28** -0.31** -0.27** -0.22* -0.18 -0.22* -0.21* 
EMI -0.09 -0.09 -0.02 -0.1 -0.06 -0.03 -0.14 -0.20* -0.19 
IPO -0.13 -0.25** -0.25** -0.25** -0.25** -0.25** -0.23* -0.25** -0.25** 

NINO3.4 -0.23* -0.20* -0.24* -0.24** -0.24** -0.26** -0.40** -0.34** -0.29** 
IOD -0.07 -0.02 0 -0.06 0 -0.19* -0.21* -0.25** -0.25** 
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Table 14. Pearson correlations (r) of single lagged climate indices and spring 

streamflow WNSW 

  Lagged Months 
Stations Indices Decn-

 
Jann Febn Marn Aprn Mayn Junen Julyn Augn 

  
  
  
  

 409005 
  
  
  

NINO3 -0.03 -0.01 -0.11 -0.1 -0.1 -0.19 -0.22* -0.28** -0.30** 
NINO4 -0.08 -0.04 -0.07 -0.13 -0.17 -0.23* -0.27** -0.41** -0.38** 

SOI 0.08 -0.09 -0.08 0.13 0.22* 0.30** 0.44** 0.46** 0.36** 
PDO -0.24** -0.25** -0.26** -0.28** -0.20* -0.08 -0.06 -0.08 -0.18 
EMI 0.05 0.06 0.08 0.02 -0.03 -0.02 -0.02 -0.14 -0.13 
IPO -0.05 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 

NINO3.4 -0.03 0.01 -0.06 -0.09 -0.11 -0.20* -0.26** -0.35** -0.33** 
IOD -0.15 -0.14 -0.07 -0.09 -0.11 -0.18 -0.30** -0.44** -0.46** 

  
  
  

 422002 
  
  
  
  

NINO3 0.17 0.15 0.08 0.06 -0.05 -0.15 -0.29** -0.32** -0.28** 
NINO4 0.02 0.06 -0.02 -0.1 -0.16 -0.21* -0.32** -0.43** -0.46** 

SOI -0.05 -0.19 -0.15 -0.09 0.01 0.34** 0.44** 0.48** 0.37** 
PDO -0.08 -0.16 -0.14 -0.13 -0.20* -0.26** -0.26** -0.32** -0.28** 
EMI -0.12 0.01 -0.02 -0.15 -0.15 -0.17 -0.24* -0.31** -0.41** 
IPO 0.06 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 

NINO3.4 0.12 0.13 0.06 0.01 -0.09 -0.21* -0.37** -0.43** -0.39** 
IOD 0.25** 0.13 0.03 -0.08 0.07 -0.05 -0.11 -0.19* -0.23* 

* Correlation is significant at 5% level ** Correlation is significant at 1% level 
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Table 15. Pearson correlations (r) of single lagged climate indices and spring 

streamflow CWNSW 
 

* Correlation is significant at 5% level ** Correlation is significant at 1% level 

  Lagged Months 
Stations Indices Decn-

 
Jann Febn Marn Aprn Mayn Junen Julyn Augn 

  
  

 409002 
  
  
  
  
  

NINO3 -0.15 -0.12 -0.20* -0.18 -0.15 -0.21* -0.22* -0.27** -0.26** 
NINO4 -0.17 -0.13 -0.15 -0.18 -0.18 -0.21* -0.23* -0.38** -0.35** 

SOI 0.12 -0.02 0.05 0.20* 0.18 0.23* 0.38** 0.44** 0.33** 
PDO -0.24** -0.24* -0.27** -0.31** -0.25** -0.13 -0.15 -0.14 -0.18 
EMI -0.01 0 0.02 -0.04 -0.01 0.02 0.03 -0.13 -0.12 
IPO -0.12 -0.21* -0.21* -0.21* -0.21* -0.21* -0.21* -0.21* -0.21* 

NINO3.4 -0.16 -0.1 -0.16 -0.18 -0.16 -0.22* -0.25** -0.33** -0.29** 
IOD -0.08 -0.09 -0.02 -0.02 0.01 -0.1 -0.22* -0.35** -0.40** 

  
  

 410001 
  
  
  
  
  

NINO3 -0.20* -0.19 -0.29** -0.25** -0.21* -0.21* -0.23* -0.26** -0.23* 
NINO4 -0.24* -0.20* -0.21* -0.25** -0.25** -0.27** -0.33** -0.42** -0.40** 

SOI 0.17 0.04 0.02 0.16 0.20* 0.32** 0.38** 0.45** 0.35** 
PDO -0.25** -0.25** -0.27** -0.29** -0.25** -0.20* -0.22* -0.20* -0.19* 
EMI -0.1 -0.09 -0.01 -0.09 -0.07 -0.05 -0.1 -0.21* -0.21* 
IPO -0.12 -0.24* -0.24* -0.24* -0.24* -0.24* -0.24* -0.24* -0.24* 

NINO3.4 -0.22* -0.19 -0.23* -0.23* -0.22* -0.25** -0.30** -0.35** -0.29** 
IOD -0.05 0 0.01 -0.05 0.02 -0.17 -0.21* -0.25** -0.25** 

  
 412002 

  
  
  
  
  
  

NINO3 -0.20* -0.21* -0.25** -0.19 -0.19 -0.19 -0.23* -0.18 -0.29** 
NINO4 -0.24** -0.21* -0.20* -0.25** -0.27** -0.28** -0.33** -0.36** -0.50** 

SOI 0.15 0.04 0.09 0.17 0.21* 0.27** 0.29** 0.32** 0.43** 
PDO -0.12 -0.16 -0.18 -0.20* -0.21* -0.22* -0.21* -0.20* -0.36** 
EMI -0.12 -0.11 -0.04 -0.14 -0.12 -0.09 -0.11 -0.22* -0.39** 
IPO -0.12 -0.23* -0.23* -0.23* -0.23* -0.23* -0.23* -0.23* -0.06 

NINO3.4 -0.22* -0.20* -0.22* -0.21* -0.22* -0.24** -0.31** -0.27** -0.39** 
IOD -0.04 0.02 -0.02 -0.17 -0.08 -0.20* -0.17 -0.11 -0.14 
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Chapter 5 
Multiple Linear Regression Analysis 

5.1 Introduction 

Multiple Linear Regression (MLR) modelling is one of the simplest and most 

commonly used techniques in forecasting hydrological and atmospheric variables. 

MLR technique was used by many studies for predicting flood and rainfall in different 

parts of the world (He et al. 2014; Nicholson 2014; Mekanik et al. 2013; Latt et al. 

2014; Chavoshi et al. 2013). In the study of Rossel and Cadier (2009) MLR modelling 

was applied to predict monthly rainfall in Ecuador. They were succeeded to explain 60-

82% of the monthly precipitation variance with their developed MLR models. MLR 

models were effectively used to forecast Indian summer monsoon rainfall using SST 

anomalies in the Indian Ocean as predictors (Sadhuram and Murthy, 2008). Ihara et al. 

(2007)  found the combination of NINO3 and the zonal wind anomalies over the 

equatorial Indian Ocean are good predictors of rainfall while they were trying to explore 

the relationship between ENSO and Indian Ocean indices with Indian summer monsoon 

rainfall with the help of MLR method. In the current study, MLR modelling will be 

used as the benchmark analysis for the GEP analysis, which is the major focus of the 

study as a forecasting tool to predict long-term streamflow. 

5.2 Methodology 

There are several engineering applications for exploring relationships between two or 

more parameters. The regression analysis model is one of the popular statistical 

approaches and is highly recommended for this kind of analysis. The most commonly 

used form of linear regression is MLR analysis. MLR models establish a statistical 

relationship between two or more explanatory variables and a response variable and 

provide linear equation as output which represents the significant correlation among the 

variables. In every equation, the value of every independent variable (X) is associated 

with the value of the dependent (Y) variable. In many studies, climate forecasting has 

been undertaken using the MLR model, due to the fact that this model comprises many 

regressors to deal with the time series database. 

Multiple regression models can be presented by the following equation: 
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𝑆𝑆 = 𝑎𝑎 + 𝑏𝑏1𝑆𝑆1 + 𝑏𝑏2𝑆𝑆2 + 𝑐𝑐  (5-1) 

where, Y refers to the dependent variable (i.e., spring streamflow for this study), X1 and 

X2 are two selected independent variables (e.g. NINO3.4, EMI, IOD, PDO or IPO for 

this study), b1 and b2 are the coefficients of two independent variables, a is constant and 

c is intercept or the error.  

In the present study, to evaluate the goodness-of-fit of the models, F-test was used to 

verify the statistical significance of the overall fit. The next statistical criterion that 

needs to be satisfied while developing an MLR model is the evaluation of the statistical 

significance of the individual parameters of the model. 

To check the existence of multicollinearity among the predictors is the key stage of 

MLR modelling. It occurs when predictors are highly correlated, a small change in the 

data or the model results in the remarkable change in parameter estimation. The 

Variance Inflation Factor (VIF) is used to ascertain the multicollinearity among the 

predictors. In order to verify multicollinearity among the predictors, tolerance (T) and 

VIF are used, 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑎𝑎𝑎𝑎𝑐𝑐𝑡𝑡 = 1 − 𝑅𝑅2  (5-2) 

𝑉𝑉𝑆𝑆𝑉𝑉 = 1
𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡

  (5-3) 

Where, R2 is the coefficient of multiple determinations: 

𝑅𝑅2 = 𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆

= 1 − 𝑆𝑆𝑆𝑆𝐸𝐸
𝑆𝑆𝑆𝑆𝑆𝑆

  (5-4) 

Where SST is the total sum of squares, SSR is the regression sum of squares, and SSE 

is the error sum of squares. According to Quan et al. (2006), a tolerance of less than 

0.20–0.10 or a VIF greater than 5–10 indicates a multicollinearity problem. 

In order to ensure the independence of residuals error of the model Durbin-Watson 

(DW) test is performed, which assesses the serial correlation between errors. DW 

parameter has a range of 0 to 4; a value of less than 1 or greater than 3 is certainly a 

matter of concern (Field 2009).  

The performance of the developed MLR models has been assessed by several statistical 

performance measures which are widely used for the evaluation of regression models. 

Statistical measures namely mean square error (RMSE), mean absolute error (MAE), 



 69 

Pearson correlation coefficient (r) and Willmott index of agreement (d) are exclusively 

chosen for this study. ‘d’ is defined as follows: 

( ) ]ˆ[
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1 2

11

2

∑
∑

−+−

−
−=

xxxy

xy
d

ii

ii   (5-5) 

Where, 𝑦𝑦�𝑑𝑑 refers to the predicted value corresponding to ith observation and 𝑥𝑥𝑑𝑑  refers to 

ith value of observation. The closer the ‘d’ value to 1, the better the model fits the 

observations. The development of Multiple Linear Regression models and all the 

relevant statistical calculations are performed using the “R Studio 3.3.1” software.  

5.3 Results and Discussion of MLR Analysis 

Various models with different lagged months’ indices are analyzed for all twelve 

stations in order to find out the best forecasting model for each of the four study 

regions. Multiple Regression Set for all the stations can be found in Table 16, 17, 18 

and 19.  For all the stations, the best models with lower errors while satisfying the 

statistical limits are selected. F-test is performed to evaluate the best model that fits 

the population of the sample data while the t-test is conducted to identify the 

significance of the individual parameters. The best model for each station with their 

regression coefficients, variance inflation factor (VIF), Durbin-Watson statistics 

(DW) and the Pearson correlation (r) are presented in Table 20. 

 

Table 16. Multiple Regression Set for each station of NNSW 
 

Region 
(Northern) 

 
SINGLETON 

 
COGGAN 

 
NORTH CUERINDI 

 
 
 

PDO- NINO3.4 

 
Aug-Aug, Jul-Jul, Jun-Jun, 
May-May, Apr-Jun, Apr- 

May, Mar- May, Mar- Jun, 
Feb- May, Jan- May, Dec*- 

May, 

 
Aug-Aug, Jul-Jul, Jun-Jun, 
May-May, Apr-Jun, Apr- 

May, Mar- May, Mar- Jun, 
Feb- May, Jan- May, Dec*- 

May, 

 
Aug-Aug, Jul-Jul, Jun-Jun, May- 
May, Apr-Jun, Apr- May, Mar- 
May, Mar- Jun, Feb- May, Jan- 

May, Dec*-May, 

IOD- NINO3.4 Jun-Jun Jun-Jun -------- 

 
EMI- NINO3.4 

 
--------- 

 
-------- 

 
Aug- Aug, Jul- Jul, Jun-Jun, May- 

May, Apr- May 

“*” denotes the month of the previous year. 
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Table 17. Multiple Regression Set for each station of SNSW 
 

Region 
(Southern) 

 
GUNDAGAI 

 
WEE JASPER 

(KASHMIR) 

 
MITTAGANG 

CROSSING 
 

 

 

 

 
KIOSK 

 
 

PDO- 
NINO3.4 

 

Aug-Aug, Jul-Jul, Jun- 
Jun, May-May, Apr- 
Apr, May-May, Mar- 
Mar, Jan-Feb, Dec*- 

Feb 

 
Aug-Aug, Jul-Jul, Apr- 
Jun, Apr- May, Mar- 
May, Feb- May, Jan- 

May, Dec*-May, 

 
Aug-Aug, Aug-Jul, Aug- 

Jun, Apr- May, Mar- 
May, Feb- May, Jan- 

May, Dec*-May 

 

Aug-Aug, Aug-Jul, 
Apr-Jun, Apr- May, 

Mar- May, Feb- 
May, Jan- May, 

Dec*-May 

 
IOD- 

NINO3.4 

Aug-Aug, Jul-Jul, Jun- 
Jun, May-May, May- 
Apr, May-Mar, May- 

Feb, May-Jan 

 
Aug-Aug, Jul-Jul, Jun- 

Jun, Jun-May 

 
Aug-Aug, Jul-Jul, Jun- 
Jun, May-May, Apr- 

May, Mar- May 

 
Aug-Aug, Jul-Jul, 

Jun-Jun, May-May 

 
IPO- 

NINO3.4 

Aug-Aug, Jul-Jul, Jun- 
Jun, May-May, Apr- 
Apr, May-May, Mar- 

Mar 

Aug-Aug, Jul-Jul, Jun- 
Jun, May-May, Apr- 

May, Mar- May, Feb- 
May, Jan- May 

 
 

-------- 

 
 

-------- 

 
 

IOD- IPO 

Aug-Aug, Jul-Jul, Jun- 
Jun, May-May, May- 
Apr, May-Mar, May- 

Feb, May-Jan 

Aug-Aug, Jul-Jul, Jun- 
Jun, Jun-May, Jun-Apr, 
Jun-Mar, Jun-Feb, Jun- 

Jan 

 
 

-------- 

 
 

-------- 

 
EMI- 

NINO3.4 

 
 

------- 

 
Aug-Aug, Jul-Jul, Jul- 

Jun, Jul-May 

 
 

-------- 

 
 

-------- 
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Table 18.  Multiple Regression Set for each station of CWNSW 
 

Region (Central) 
 

COROWA 
 

WAGGA WAGGA 
 

COWRA 

 
 
 

PDO- NINO3.4 

 
 

Apr-Aug, Apr-Jul, Apr-Jun, 
Apr-May, Mar- May, Feb- 
May, Jan- May, Dec*-May 

 
Aug-Aug, Jul-Jul, Jun-Jun, 
May-May, Apr-Apr, May- 
May, Mar-Mar, Jan-Feb, 

Dec*-Feb 

 
 

Aug-Jul, , Jul-Jul, Jun-Jun, 
May-May, Apr-Apr, May- 
May, Mar-Mar, Mar-Feb 

 
 

IOD- NINO3.4 

 
Aug-Aug, Jul-Jul, Jun- Jun, 

Jun-May 

 
Aug-Aug, Jul-Jul, Jun-Jun, 

Jun-May, Jun-Apr, Jun-Mar, 
Jun-Feb 

 
 

--------- 

 
 

IPO- NINO3.4 

 
Aug-Aug, Jul-Jul, Jun-Jun, 
May-May, Apr-May, Mar- 
May, Feb- May, Jan- May 

Aug-Aug, Jul-Jul, Jun-Jun, 
May-May, Apr-Apr, May- 

May, Mar-Mar, Feb-Feb, Jan- 
Feb 

 
 

--------- 

 
 

IOD- IPO 

 
Aug-Aug, Jul-Jul, Jun-Jun, 

Jun-May, Jun-Apr, Jun-Mar, 
Jun-Feb, Jun-Jan 

 
Aug-Aug, Jul-Jul, Jun-Jun, 

Jun-May, Jun-Apr, Jun-Mar, 
Jun-Feb, Jun-Jan 

 
 

--------- 

 
 

EMI- NINO3.4 

 
 

--------- 

 
Aug-Aug, Jul-Jul, Jul- Jun, 
Jul-May, Jul-Apr, Jul-Mar, 

Jul-Feb 

 
Aug-Aug, Jul-Jul, Jul- Jun, Jul- 

May, Jul-Apr, Jul-Mar, Jul- 
Feb, 

 
 

EMI- IPO 

 
 

-------- 

 
Aug-Aug, Jul-Jul, Jul- Jun, 
Jul-May, Jul-Apr, Jul-Mar, 

Jul-Feb, Jul-Jan 

 
 

--------- 

 

Table 19. Multiple Regression Set for each station of WNSW 

 
Region (Western) 

 
BARHAM 

 
BREWARRINA 

 
 

PDO- NINO3.4 

 
 

Apr-Aug, Apr-Jul, Apr-Jun, Apr-May, 
Mar- May, Feb- May, Jan- May, Dec*-May 

 
 

Aug-Aug, Jul-Jul, Jun-Jun, May-May, 
Apr-May 

 
IOD- NINO3.4 

 
Aug-Aug, Jul-Jul, Jun- Jun, Jun-May Aug-Aug, Jul-Jul, Jul- Jun, Jul-May, 

Dec*-May 
 

EMI- NINO3.4 
 

--------- 
 

Aug-Aug, Jul-Jul, Jun-Jun, Jun-May 
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It is seen from Table 20 that VIF values for the selected models are close to 1, which 

refers that there is no multi-collinearity problem between the predictors. According to 

Field (2009), values less than 1 or greater than 3 for the DW test will indicate the 

presence of serial correlations between the model errors. So, it can be concluded from 

the results of Table 20 that the DW test of each selected model satisfies the statistical 

limits, which also establishes the goodness of fit of the models  

Table 20. Equations of the best developed MLR models  

 

 

  

 
Region 

 

Station 
Name 

 
Model 

 
Constant 

 
Coefficient 

 
R 

Durbin 
- 

Watson 

 
VIF 

 
 
 
 

NNSW 

Singleton PDOMARCH 
NINO3.4JUNE 

 
18.81 

-1.81 
-13.64 0.41 2.13 1.12 

North Cuerindi PDOJUL 
NINO3.4JUL 

 
9.58 

-1.67 
-5.77 0.46 1.47 1.16 

Coggan PDOJULY 

NINO3.4JULY 

 
1.72 

-0.15 
-1.11 

 
0.33 

 
1.99 

 
1.17 

 
 
 
 
 
 

SNSW 

Wee 
Jasper(Kashmir) IODJULY- 

NINO3.4JULY 

 
14.70 

-3.15 
-4.80 

 
0.42 

 
1.76 

 
1.17 

Kiosk PDOAUG 
NINO3.4JULY 

 
5.91 -0.54 

-2.68 

 
0.45 

 
1.73 

 
1.30 

Mittagang 
Crossing 

 
PDOAUG 

NINO3.4JULY 

 

 
13.16 

 
-1.90 
-2.54 

 

 
0.35 

 

 
1.16 

 

 
1.30 

Gundagai IPOJULY 

NINO3.4JULY 

 
158.12 

-18.76 
-42.94 

 
0.43 

 
1.83 

 
1.05 

 
 
 
 

CNSW 

Corowa IPOJUNE 

IODJUNE 
262.05 -37.29 

-85.21 0.30 1.71 1 

Wagga 
Wagga IPOJULY 

NINO3.4JULY 

 
176.47 

-20.15 
-54.26 

 
0.43 

 
1.91 

 
1.05 

Cowra PDOMAR 

NINO3.4FEB 

 
39.32 

-1.42 
-11.11 

 
0.27 

 
1.62 

 
1.44 

 
 
 

WNSW 

Barham IODJUNE 
NINO3.4JUNE 

 
215.13 

-67.47 
-39.48 

 
0.31 

 
1.80 

 
1.10 

 

Brewarrina IODJUL 

NINO3.4JUL 

 
50.27 

-2.74 
-32.84 

 
0.40 

 
1.74 

 
1.17 
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It is evident from the current analysis that the selected models are not only statistically 

significant but also have the potential to predict the spring streamflow of north-east 

New South Wales with the highest correlation 0.46 for the North Cuerindi station (Table 

20). The model outcomes are really effective as best prediction skills are obtained from 

models having a lead time of four months, where the contribution of PDO is effective 

even 9 months before. 85 years’ (from 1914 to 1998) of streamflow data was selected 

for the calibration of the models, while the remaining 17 years’ (from 1998 to 2015) 

data were selected for validation in order to assess the future streamflow predictability 

of the developed MLR models.  

 

 
Figure 17. Comparative analysis of the influences of various MLR models on 

different study regions 
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The results of the MLR analysis depicts a clear view of the regional variation of 

influence of combined multiple indices throughout the study area (Figure 18). A good 

number of models combining PDO and NINO3.4 show statistically significant 

correlations with spring streamflow for the Northern NSW region, which implies the 

strong impact of these two indices in the northern part of the state. Thereby, for this 

region, the best model for forecasting spring streamflow is obtained with the 

combination of 3 Months lagged NINO3.4 and six months lagged PDO (at Singleton) 

with a good correlation of 0.41. In the Southern part of the state, significant correlations 

are obtained for PDO-NINO3.4 and IOD-NINO3.4 combinations, though two stations 

(at Wee Jasper and Gundagai) of this region are found to have significant correlations 

for IPO-NINO3.4 and IPO-IOD combinations, which are more similar to the findings 

of Wagga Wagga station at CNSW. One possible reason for this similarity can be the 

close geographical locations of these stations. IPO consisting models have significant 

contribution to forecast streamflow in the southern part of CWNSW. The central part 

of CWNSW has good correlations for only PDO-NINO3.4 combination. It is evident 

from the results that the IOD containing combined models show good performance with 

significant correlation for the southern part of the state. But in the coastal eastern part 

of the state IOD-NINO3.4 combinations are observed to be less effective, which align 

with the findings of Pepler et al. (2014), who stated that eastern seaboard rainfall is less 

influenced by tropical sea surface temperature variability such as the ENSO and IOD 

than inland because the effect of the IOD opposes ENSO during the cool season. In the 

western part of the country, IOD-NINO3.4 and PDO-NINO3.4 combined models can 

be used to forecast spring streamflow. 

85 years’ (from 1914 to 1998) of streamflow data is selected for the calibration of the 

models, while the remaining 17 years’ (from 1999 to 2015) data were selected for 

validation in order to assess the future streamflow predictability of the developed MLR 

models. In order to determine the accuracy of the developed MLR models, validation 

test is performed. Table 21 shows the performance statistics of RMSE, MAE, index of 

agreement (d) and Pearson correlation (r) of the best-developed models for the 

calibration and validation periods. It is clearly evident from Table 21 that there is 

significant increment (except Kiosk station) of the correlation values from calibration 

to validation stage, as for example correlation value increased from 0.41 in calibration 
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stage to 0.65 in validation stage for Singleton station in NNSW. This station also 

provides the highest correlation in the validation period which is obtained for PDOJAN-

NINO3.4MAY combination (r=0.71) showing great improvement as the value was only 

0.27 in the calibration period (not shown in Table 21). 

 

Table 21. Performance test of the best MLR models for calibration and 

validation periods 
 

Region Station 
Name 

 

Model Calibration Period Validation Period 
R RMSE MAE d R RMSE MAE d 

 
 
 
 

NNSW 

Singleton PDOMARCH 
NINO3.4JUNE 

 

0.41 
 

19.23 
 

13.81 
 

0.51 
 

0.65 
 

12.09 
 

10.98 
 

0.70 

North 
Cuerindi 

 
PDOJUL 

NINO3.4JUL 

 
0.46 

 
8.92 

 
5.98 

 
0.55 

 
0.62 

 
6.92 

 
6.12 

 
0.70 

Coggan  

PDOJULY 
NINO3.4JULY 

 

0.33 
 

2.15 
 

1.26 
 

0.38 
 

0.61 
 

1.25 
 

1.16 
 

0.67 

 
 
 
 
 
 
 

SNSW 

Wee 
Jasper(Kashm 

ir) 

 
IODJULY- 

NINO3.4JULY 

 
 

0.45 

 
 
7.51 

 
 

6.04 

 
 

0.53 

 
 

0.57 

 
 

5.47 

 
 

4.39 

 
 

0.63 

 

Kiosk PDOAUG 
NINO3.4JUL 

 
0.45 

 
3.98 

 
3.04 

 
0.57 

 
0.41 

 
4.24 

 
3.74 

 
0.52 

Mittagang 
Crossing 

 
PDOAUG 

NINO3.4JUL 

 

 
0.35 

 

 
8.91 

 

 
7.41 

 

 
0.44 

 

 
0.49 

 

 
9.73 

 

 
9.30 

 

 
0.38 

Gundagai  

IPOJUL 
NINO3.4JUL 

 
0.43 

 
71.40 

 
58.00 

 
0.55 

 
0.51 

 
72.37 

 
66.03 

 
0.40 

 
 
 
 

CWNSW 

Corowa IPOJUN 

IODJUN 

 

0.30 
 

139.33 
 

114.87 
 

0.40 
 

0.48 
 

131.01 
 

126.17 
 

0.30 

Wagga Wagga  

IPOJUL 
NINO3.4JUL 

 
0.43 

 
85.84 

 
69.26 

 
0.55 

 
0.55 

 
80.53 

 
71.44 

 
0.44 

Cowra PDOMAAR 
NINO3.4FEB 

 

0.35 
 

35.01 
 

28.91 
 

0.37 
 

0.44 
 

28.04 
 

24.75 
 

0.44 
 
 

WNSW 

Barham IODJUN 
NINO3.4JUN 

 

0.31 
 

106.05 
 

90.67 
 

0.43 
 

0.44 
 

95.51 
 

82.49 
 

0.37 

Brewarrina IODJUL 
NINO3.4JUL 

 

0.40 
 

44.47 
 

34.59 
 

0.49 
 

0.56 
 

38.55 
 

36.04 
 

0.57 

The equations of the best developed models for each of the twelve stations are presented 

in Table 22. 
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Table 22. Best Developed  MLR Models for 12 Stations 

Region Station Name Best Developed Model 

NNSW Singleton 𝑄𝑄 = 18.81 − 1.81𝑃𝑃𝑆𝑆𝑆𝑆𝑀𝑀𝑡𝑡𝑡𝑡 − 13.64𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝐽𝐽𝐽𝐽𝑛𝑛 

North Cuerindi 𝑄𝑄 = 9.58− 1.67𝑃𝑃𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽𝑡𝑡 − 5.77𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝐽𝐽𝐽𝐽𝑡𝑡 

Coggan 𝑄𝑄 = 1.72− 0.15𝑃𝑃𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽𝑡𝑡 − 1.11𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝐽𝐽𝐽𝐽𝑡𝑡 

SNSW Wee Jasper(Kashmir) 𝑄𝑄 = 14.70 − 3.15𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽𝑡𝑡 − 4.80𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝐽𝐽𝐽𝐽𝑡𝑡 

Kiosk  

𝑄𝑄 = 5.91 − 0.54𝑃𝑃𝑆𝑆𝑆𝑆𝐴𝐴𝐽𝐽𝐴𝐴 − 2.58𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝐽𝐽𝐽𝐽𝑡𝑡 

Mittagang Crossing 𝑄𝑄 = 13.16− 1.90𝑃𝑃𝑆𝑆𝑆𝑆𝐴𝐴𝐽𝐽𝐴𝐴 − 2.54𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝐽𝐽𝐽𝐽𝑡𝑡 

Gundagai 𝑄𝑄 = 158.12− 18.76𝑆𝑆𝑃𝑃𝑆𝑆𝐽𝐽𝐽𝐽𝑡𝑡 − 42.94𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝐽𝐽𝐽𝐽𝑡𝑡 

CWNSW Corowa 𝑄𝑄 = 262.05− 37.29𝑆𝑆𝑃𝑃𝑆𝑆𝐽𝐽𝐽𝐽𝑛𝑛 − 85.21𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽𝑛𝑛 

Wagga Wagga 𝑄𝑄 = 176.47− 20.15𝑆𝑆𝑃𝑃𝑆𝑆𝐽𝐽𝐽𝐽𝑡𝑡 − 54.26𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝐽𝐽𝐽𝐽𝑡𝑡 

Cowra 𝑄𝑄 = 39.32− 1.42𝑃𝑃𝑆𝑆𝑆𝑆𝑀𝑀𝑡𝑡𝑡𝑡 − 11.11𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝐹𝐹𝑡𝑡𝐹𝐹 

WNSW Barham 𝑄𝑄 = 215.13− 67.47𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽𝑛𝑛 − 39.48𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝐽𝐽𝐽𝐽𝑛𝑛 

Brewarrina 𝑄𝑄 = 50.27− 2.74𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽𝑡𝑡 − 32.84𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝐽𝐽𝐽𝐽𝑡𝑡 
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The best predictor models for each of the four study regions are given below: 

JulJulBrewarrina

JulJulWaggaWagga

JulJulWeeJasper

JunMarSingleton

NINOIODQ
NINOIPOQ

NINOIODQ
NINOPDOQ

4.384.3274.227.50

4.326.5415.2047.176

4.380.415.370.14

4.364.1381.181.18

−−=

−−=

−−=

−−=

 

The ability of these four best MLR models to predict future streamflow has been 

explained through the time series plots of observed and simulated flow in Figure 18. 

 

 

i(a) 

 

 

i(b) 
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ii(a) 

 

 

ii(b) 

 

 

iii(a) 
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iii(b) 

 

iv(a) 

 

iv(b) 

Figure 18. Comparison between the observed and simulated streamflow during 

the (a)calibration (1914-1998) and (b)validation (1999-2015) periods for (i) 

Singleton (NNSW), (ii) Wee Jasper (SNSW), (iii) Wagga Wagga (CWNSW), (iv) 

Brewarrina (WNSW) stations 
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In Figure 18 some over-estimation of the models can be observed during the validation 

stage which may be resulted from the “millennium drought” (Bond et al. 2008) periods 

that occurred from 1994 to 2010 over the continent. It was explored by (Kiem et al. 

2009) that a combination of climate drivers in the Pacific Ocean (ENSO, PDO), IOD 

and SAM were responsible for the past three droughts in south-east Australia; the 

‘Federation’ drought (1895-1902), the ‘World War II’ drought (1937-1945) and the 

‘Big Dry’ (1994-2010). A model based on only two climate indices (NINO3.4 and 

PDO) is not likely to replicate an unusual phenomenon like “millennium drought”. This 

can also be the reason for not reflecting the unusually high rainfall in some years of 

NSW in the time series plots, where the difference between the simulated and observed 

flow is found to be high. Another reason is that some other climate indices might have 

been more influential at that time rather than the selected indices in this study. However, 

to get the best predictor model a few unusual events which seem to be outliers in a box-

plot analysis, are removed from the calibration and validation periods. 

The capability of the developed models for forecasting spring streamflow with higher 

accuracy has been ensured as the values of RMSE, MAE and d in the validation period 

show good agreement with the calibration period. The index of agreement (d) for both 

calibration and validation period is close to 0.5, which ensures the better forecasting 

ability of the models. Significant increment of the Pearson correlation values has 

explained that the combined models have greater skills for predicting streamflow than 

the single lagged indices. For instance, in case of Singleton station (Table 12), while 

the single NINO3.4 model with three months’ lead time has a correlation r= -0.43, the 

predictability is significantly enhanced by the contribution of six months’ lagged PDO 

to a correlation rvalidation= 0.65 (Table 21). 

5.4 Performance based comparative analysis of MLR models  

A comparison of present study with the previous studies on forecasting streamflow is 

shown in Table 23. It is evident from the comparison that the combined MLR models 

of this study showed better agreement with streamflow compared to the single lagged 

climate index models of the current study and the previous research studies as well. 

However, the single lagged climate index models of current study outperformed the 

models developed by past research studies using single climate mode to forecast 

streamflow of Australia. 
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Table 23. Comparison with the previous studies based on the highest correlations 

between indices and spring streamflow for South-East Australia 

INDICES Kirono et 
al. 

(2010) 
 

Chiew et 
al. 

(2003) 
 

CURRENT STUDY 
Single lagged 
correlation 

MLR 
correlation 

Nino3.4 - - -0.43iv 0.65viii 
PDO - - -0.41v 
Nino3 0.35i - 0.36vi  
SOI 0.36ii 0.51iii 0.51vii  

 
  

 

 

Figure 19. Influence of climate drivers on spring rainfall of NSW by Duc et al 

(2017) including the discharge stations of the current study 

The variation of influences of different climate indices on different study regions of 

NSW is comparable to the recent study outcomes of Duc et al. (2017) who has done 

research on the association of climate indices with NSW rainfall using Bayesian Model 

Averaging (Figure 19). In his study, he has selected 15 sites across NSW, of which the 

i) 8 months lagged Nino3 ii) 12 months lagged SOI           iii) Winter SOI 
       iv) 3 months lagged Nino3.4    v) 2 months lagged PDO              vi) 3 months lagged Nino3.4 

      vii) 2 months lagged SOI    viii) PDOMAR& Nino3.4JUN  
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results of the nearby stations which are within 161 kilometers of the current study’s 

streamflow stations have been chosen for the current comparison. In the present study, 

PDO-NINO3.4 interactions influence spring streamflow almost across the whole state, 

which align with the findings of Duc et al. (2017) who explored that single IPO (PDO) 

cannot impact NSW rainfall significantly, but its association with ENSO is significantly 

influential on the rainfall of almost whole NSW.  

In Wagga Wagga, evidence of strong IOD influence has been found in the study of Duc 

et al. (2017) which is consistent with current study as IOD combined models performed 

significantly near this area. Similar outcomes have been obtained for Mittagang 

Crossing station, where Duc et al. (2017) found ENSO_IOD combined impact on spring 

rainfall to be very strong (Posterior probability= 1) and the current study has significant 

correlation (r=0.42) with the same combination of indices. As a whole, Duc et al. (2017) 

found ENSO, SAM and IOD to be influential on spring rainfall of NSW whereas current 

study includes the influence of IPO and PDO with significant correlation values for 

many locations. 

The only difference between Duc et al. (2017) and the present study is that SAM 

(Southern Annular Mode) has not been included in the current analysis, whereas Duc 

et al. (2017) found a strong influence of SAM on spring rainfall of almost all parts of 

NSW. At the preliminary stage of the present research, single concurrent correlation 

analysis was performed between SAM and seasonal streamflow of NSW, but no 

significant outcome was obtained for any season. Based on these results, SAM was not 

considered for further analysis in the present study. One reason for the poor results of 

SAM could be a shorter length of data availability (1957-present). 

Duc et al. (2017) revealed that the greatest number of indices and their combined 

models have strong influences on the winter rainfall of NSW, whereas the current study 

found the greatest number of influential indices for spring streamflow. This satisfies the 

fact that winter is the main season for rainfall in Australia and streamflow is resulted 

from rainfall. So, the indices that impact winter rainfall have the potential for 

influencing spring streamflow. 
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5.5 Summary of MLR Analysis 

In the current research, the MLR method was applied with a view to exploring the 

potential skills of combined multiple climate indicators to forecast the spring 

streamflow of NSW regions with a longer lead time than the usual practice. Before 

performing MLR analysis, first single correlation analyses were performed to identify 

potential climate predictors for the region. Through a single correlation analysis, several 

indices 

(NINO3.4, IOD, EMI, PDO, and IPO) were found to have strong effects on spring 

streamflow of NSW with a lagged time of a maximum of three months. Some indices 

were found to give significant correlations with a lagged time of more than two months; 

however, in general, the correlation values decrease with the increase of lagged months. 

This study, through findings of five effective climate indices for the region, opened an 

opportunity to study with more than two indices which no one has ever done for this 

region. For the current study, to achieve better correlations (prediction capability) 

different combinations of two (out of the five significant) indices were tested in the 

MLR analysis. It was found that the same combination of indices did not turn out to be 

best for all the stations/regions, which is reasonable as the current study was dealing 

with a large region and the further the distance from a particular station the greater the 

likelihood of being influenced by other indexes. Also, the combined best models’ 

lagged indices are not necessarily from the same month. In general, among the best 

combined dual indices, NINO3.4 is found to be significant for all the stations except 

one (Corowa), PDO is more significant towards the north-eastern and south-eastern 

coastal region, IPO is more significant towards the central-south, whereas IOD is more 

significant towards the west of NSW. The best correlation is obtained for Singleton 

station in NNSW for the PDO–NINO3.4 combined model with a correlation of 0.65 (in 

the validation period) for the prediction of spring streamflow with two months’ lagged 

period. It is noteworthy that every time the combined model outperformed the models 

considering a single climate variable in terms of Pearson correlation (r), it was evidence 

of better predictive skills of the MLR models.  

For this study, selections of the best models were based on the significant correlation 

values in both calibration and validation stages. However, while looking at the time 

series comparisons between the observed and simulated streamflow values, it is found 
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that the developed models are unable to capture some unusual events like severe 

droughts or high floods. A simple MLR model consisting of only two climate indices 

is not expected to capture the complex relationships between streamflow and climate 

drivers very well and thus is not anticipated to provide a very good match with observed 

values. Moreover, in fact, rainfall and streamflow are also influenced by some other 

local and/or regional factors (i.e., temperature, humidity, wind speed, soil moisture, 

etc.), which are not possible to consider in such regression models. Thus, the next stage 

of the current study will include other non-linear techniques (i.e., MNLR and GEP) as 

some researchers (Mekanik et al. 2013; Abbot and Marohasy 2015; Rasel et al. 2016) 

successfully explained the non-linear relationship between rainfall and climate drivers 

using this technique, although they could not provide any output model which could be 

useful to stakeholders. Since the relationship between streamflow and remote climate 

drivers is likely to be non-linear (Piechota et al. 1998), a non-linear model is expected 

to give better results than a linear model. Also, an extension of the current research can 

be to explore the effectiveness of incorporating more than two indices in a MLR model.  

Nevertheless, the developed MLR models have the potential to provide indications on 

the possibility of getting increased or decreased amounts of streamflow and expected 

magnitude in the future season. Currently, water users in Australia get the seasonal 

predictions of streamflow just at the beginning of the season, which does not give them 

enough time for prudent decision making. Moreover, those predictions are stochastic, 

i.e., the users do not get any estimation of expected magnitude. As a result, the farmers 

get inadequate information at the start of the cropping year. The pressure has been 

highly increased on water resource availability since the recent eastern Australian 

severe drought (2002-2007), (Murphy and Timbal 2008). According to Nicholls (2006) 

over the latter half of the 20th century, a huge decline in rainfall has been observed in 

eastern Australia which has been a matter of great concern to the scientist and 

researchers considering the large population and economic importance of this region. 

Therefore, Streamflow forecast several months ahead will be invaluable to the people 

associated with water management, allocation, irrigation, agricultural production etc. 

The developed MLR models in this study are expected to provide water users and 

planners with some insight which will enable them to take tactical cropping decisions 

three months in advance, and that will help them to avoid huge economic loss during 

severe droughts in the dry season and massive floods in wet seasons.  
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Chapter 6 
Multiple Non-Linear Regression Analysis 

6.1 Introduction 

The primary source of water is mainly water available in the catchment in the form of 

groundwater and the rainfall obtained in the catchment. The limit of extraction of 

groundwater makes it an unreliable source making rainfall the best suitable source of 

water. So, predicting the amount of water usually depends upon predicting the rainfall 

associated in that region. Likewise, the issues of water resources in Australia is also 

closely related to the distribution of rainfall, and this governs the pattern of 

development, habitation and agriculture for the country (Risbey, 2011). As discussed 

in Chapter 3, water allocation is one of the biggest problems in Australia, resulted from 

mostly the unpredictable weather pattern of the country. 

Rainfall is one of the most important factors in the hydrological cycle. It has a 

considerable effect on nature as well as human lives. The availability of the water on 

the earth surface depends on the spatial and temporal distribution of rainfall. Since 

water is required for the human being for their daily activities, it has become the most 

imperial thing for the human being. Along with daily activities, water is also required 

for agricultural activities. Since agricultural production is directly dependent on the 

availability of the water. The main source of the water for agriculture is underground 

water and rainfall. Since the underground water extraction is also dependable of the 

rainfall, it is essential to predict the rainfall for the planning of agriculture and flood 

mitigation. But it is hard to predict the exact amount of rainfall to the researchers. So, 

the prediction of the seasonal rainfall has become plausible to the researcher. 

Australia is the smallest continent in the world and the sixth-largest country. In 2017, 

Agriculture contributed to 3% of the total Gross Domestic Production (GDP), 

producing 93% of the food consumed in Australia (National Farmers Federation, 2017). 

During 2002-2003, drought in Australia brought a reduction in Gross Domestic 

Production (GDP) reduction by 1.6% (Horridge et al., 2005). The main source of water 

for farming is streamflow which is directly associated with the amount of rainfall in the 

region. Farmers are more dependable on water from streamflow for the agricultural 

purpose. Australia has extensive topographic variations due to which there are high 
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climatic variabilities making it hard to predict the streamflow in Australia. So, the 

farmers had to go through many problems in managing the water supply for agriculture. 

However, for the management of proactive risk management like drought management, 

the seasonal streamflow forecasts play a vital role. Government agencies, researchers, 

concerned parties have been trying hard to predict the amount of discharge in the 

streams using various methods in order to be prepared and plan for the effective 

utilisation of the water that the country might receive in any particular season. The 

prediction of rainfall, either monthly or seasonal, is essential for agricultural planning 

and flood mitigation strategies. However, accurate prediction of seasonal rainfall 

remains elusive to the scientists. Therefore, seasonal rainfall forecasting becomes 

plausible amongst the hydrologic researchers around the globe (Tennant and Hewitson 

2002 and Frias et al. 2018). 

Seasonal forecasting can be classified into two broad categories: the statistical approach 

and the dynamic approach. In the statistical approach, the statistical relationships 

between the predictors and the predictands are investigated (Jenicek et al. 2016). In the 

dynamic approach, seasonal meteorological estimates are used to build a hydrological 

model. However, there are methodological implications in using meteorological inputs 

in the current hydrological models (Crochemore et al. 2016). The climate model 

produces the outputs based on coarse grid scales, which has the potential to capture 

forecasting uncertainties and hence lead to bias. Furthermore, the data requirements of 

the dynamic models hinder the application of the modelling type. As a result, the 

statistical approach drew considerable attention to the practical users of the prediction 

models. 

Streamflow is mainly dependable of catchment condition and climatic variables. Since 

the catchment condition is more complicated for the forecasting models, climatic 

variables are used for the prediction of the streamflow. With the advancement of 

technology, various weather prediction models are being developed for the prediction 

of rainfall. However, the skill for prediction of rainfall is more reliable for short-term 

prediction than seasonal rainfall prediction due to the complexity of rainfall 

phenomenon. The short-range forecasting like for a day or week can be predicted by 

atmospheric motion which is dependable of the initial condition but relatively intensive 

to the boundary. In case of the seasonal rainfall forecasting scenario is just reversed, 

atmospheric motion is observed by a lower boundary condition. 
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Long-term prediction of seasonal rainfall has the potential to help in the decision-

making process for planning appropriate watershed management strategies 

(Crochemore et al. 2016). Moreover, the advanced prediction of rainfall can provide 

information to adopt the consequences of climate change (Winsemius et al. 2014). As 

a result, the urge for the application of seasonal rainfall forecasting is increasing day by 

day. Therefore, seasonal forecasting is routinely performed by different research 

institutes, to have a better understanding of climate change throughout the world. 

However, there exist limiting factors which act as the barriers for the wider application 

of the seasonal prediction models (Goddard 2010). For example, the seasonal 

predictions are affected by the predictors, predictands, region and season (Barnston et 

al. 2010). Nevertheless, the chaotic dynamics of the atmosphere may lead to the 

erroneous prediction of seasonal rainfall (Wang 2009). The uncertainties in the model 

parameterisation further hinder the prediction of seasonal rainfall. Australia’s 

topography can be categorised by its arid and desert landscape. Various studies have 

been carried out to predict the rainfall distribution pattern in Australian. Rainfall, either 

intraseasonal or interseasonal, is linked to the climatic process, which is mostly 

originating in the tropical region. It is well established that large-scale atmospheric 

circulation patterns significantly affect the annual precipitation around the globe, 

including Australia. The atmospheric circulation configuration is dominated by the 

patterns of the sea surface temperature. Many researchers accept the capability of the 

El Nino Southern Oscillation (ENSO) in predicting time-series events. After analysing 

the role of ENSO on seasonal precipitation, Manzanas et al (2014). Manzanas et al 

(2014).   found that September to October is the most skilful season to predict rainfall 

around eastern Australia. Hossain et al. (2015 and 2018) also identified the effects of 

ENSO and Indian Ocean Dipole (IOD) on west Australian rainfall. Therefore, the 

evaluation of the ENSO capability in time-series prediction is the fundamental 

requirement. Other climatic variables, such as sea surface temperature over the Atlantic 

and the Indian Ocean, have considerable impacts on the climate variability near the 

surrounding regions (Goddard et al. 2001). Recent studies also suggested that Indian 

Ocean Dipole (IOD) has considerable effects on the climate variability in the 

continental regions, including Australia Saji et al. (2003) and Ashok et al. (2003). Rasel 

et al. (2015) revealed the effects of SAM as a potential contributor of South Australian 

rainfall variability. The interaction of the ENSO phenomenon and IPO in the Pacific 

Ocean contribute to wetter or dryer seasons in Australia. 
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Till today, precipitation is the most challenging climatic phenomena, which can be 

predicted with least accuracy (Barnston 2010). On the other hand, most of the research 

studies on precipitation prediction have been conducted over a regional area of the 

world and in a particular season (Hossain et al. 2018; Mekanik et al. 2013; Kim et al. 

2012; Lim et al. 2011). There exist only a few studies that concentrate on the 

precipitation analysis of the whole world (Branston et al. 2010; Wang et al. 2009; 

Manzanas 2014). Most of the studies conducted used number of various scores to 

evaluate predicted rainfall with the observed rainfall, such as correlations, ranked 

probability score and Brier skill score. However, there is still doubt regarding the 

accuracy of the predictions of the seasonal models, which has immense implications in 

the decision-making process (Rayner et al. 2005). Nevertheless, there exists 

overconfidence and lack of reliability in the prediction of seasonal rainfall using the 

currently available models (Langford et al. 2011). Therefore, it is necessary to assess 

the comprehensive performance of different models and their uncertainties in predicting 

seasonal rainfall.  

A number of studies have been examined to identify appropriate modelling technique 

for the prediction of seasonal rainfall. However, only a single climate driver is not 

capable of replicating the accurate precipitation characteristics. Multi-predictors 

models have a higher prediction skill than single predictor models (Liu and Fan 2014). 

Nevertheless, there may exist dissimilar characteristics of seasonal rainfall patterns with 

the same rainfall totals (Tennant et al. 2002). On the other hand, there exist non-linear 

characteristics of the seasonal climate (Wang et al. 2009). Therefore, a closer look at 

the appropriate mechanism of seasonal rainfall formation becomes essentially 

important. Many researchers have tried to explore the underlying relationship between 

the large-scale climatic indices and rainfall.  

Hossain et al. (2018) performed MNLR analysis to predict rainfall of Australian Capital 

Territory (ACT) using climate indices as predictors and compared the result with MLR 

analysis. The study found the cubic function to produce a maximum correlation 

between the dependent and independent variables while the correlation values ranged 

between 0.71 and 0.91. A similar approach will be applied in this section to develop 

seasonal streamflow forecast model using large scale climate indices as predictors. 

Later on, the results of this analysis will be compared with the results obtained from 

MLR analysis with a view to exploring the better predictor modelling technique. 
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6.2 Development of MNLR Models 

There are several engineering applications for exploring relationships between two or 

more parameters. The regression analysis model is one of the popular statistical 

approaches and is highly recommended for this kind of analysis (Mekanik et al., 2013). 

In the previous stage (Chapter 5), the MLR technique was applied for forecasting 

seasonal streamflow prediction for the same region as the current study. In this chapter, 

to make the regressions more flexible, NMLR models were applied with a view to 

comparing the predictability of both these techniques. 

Regression methods can explain the relationships between a response (dependent) 

variable and several regressor (independent) variables (Tabari et al., 2010). In MLR, 

the function is linear which can be explained by the following equation 

𝑆𝑆 = 𝛼𝛼 + 𝛽𝛽1𝑆𝑆1 + 𝛽𝛽2𝑆𝑆2 + ⋯ . +𝛽𝛽𝑛𝑛𝑆𝑆𝑛𝑛  (6-1) 

Where Y is the dependent variable (e.g. streamflow for the current study) and 

𝑆𝑆1,𝑆𝑆2, …𝑆𝑆𝑛𝑛 are the independent variables (climate indices e.g. ENSO, PDO, IPO etc.). 

𝛽𝛽1 ,𝛽𝛽2  … . .𝛽𝛽𝑛𝑛  are the coefficients of the independent variables while α is the intercept 

or error and n is the number of observations. 

Unlike traditional MLR methods, MNLR models are able to capture the arbitrary 

relationships between dependent and independent variables. The MNLR function is the 

non-linear combination of model parameters and depends on one or more independent 

variables (Bilgili 2010). The general form of a MNLR function can be represent by the 

following equation (Ivakhnenko, 1970): 

𝑆𝑆 = 𝛼𝛼 + 𝛽𝛽1𝑆𝑆𝑑𝑑 + 𝛽𝛽2𝑆𝑆𝑗𝑗 + 𝛽𝛽3𝑆𝑆𝑑𝑑2 + 𝛽𝛽4𝑆𝑆𝑗𝑗2 … . +𝛽𝛽𝑛𝑛𝑆𝑆𝑑𝑑𝑆𝑆𝑗𝑗   (6-2) 

Where α is the intercept and 𝛽𝛽1 ,𝛽𝛽2  … . .𝛽𝛽𝑛𝑛 are the coefficients of the independent 

variables while n is the number of observations. 

One of the major problems of statistical analysis was to establish the appropriate 

relationship between the dependent variable and a set of independent variables. In order 

to find out the suitable relationship of each independent variable (climate indices), a 

series of simple regression analysis between the streamflow and climate variables were 

performed (Haque et al. 2013). Based on the correlation values (Pearson correlation, r) 

of this analysis, the appropriate non-linear relationship for each variable is selected to 

develop the multiple non-linear equations for predicting streamflow. Different 
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functions including the exponential, power, cubic, logarithmic, quadratic and linear 

functions are used to identify the best relation (Table 24). 

Table 24. List of Non-Linear equations used in this study 

Function General Equation 

Cubic 𝑦𝑦 = 𝑎𝑎𝑥𝑥3 + 𝑏𝑏𝑥𝑥2 + 𝑐𝑐𝑥𝑥 + 𝑑𝑑 

Quadratic 𝑦𝑦 = 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 

Logarithmic 𝑦𝑦 = 𝑎𝑎 log𝑏𝑏𝑥𝑥 

Power 𝑦𝑦 = 𝑎𝑎𝑥𝑥𝐹𝐹 

Exponential 𝑦𝑦 = 𝑎𝑎𝑡𝑡𝐹𝐹𝑏𝑏 

Where a, b, c and d are constants, and y and x are observed values. 

The MNLR analysis in the present study was performed using Minitab software. 

Different combinations of input variables were used to calibrate and validate the MNLR 

models. At first, every MNLR model was calibrated using 85 years of data (1914-1998) 

which was followed by the validation of the models with the rest of 17 years (1999-

2015) of data. 

The performance of the developed MNLR models were assessed by two statistical 

performance measures, Pearson correlation value (r) and RMSE. A similar approach 

for validating the results was applied by Mekanik et al. (2013) while predicting rainfall 

using climate indices. The ideal value for the Pearson correlation is 1, which will refer 

to the best association between two variables, whereas a value of 0 will indicate there 

is no association. The lower value of the RMSE will indicate the better performance of 

the model. 
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6.3 Results  of MNLR Analysis 

6.3.1 Single Non-Linear Regression Analysis 

Northern New South Wales (NNSW) 

Singleton Station 

Table 25. Single Non-Linear Regression analysis for Singleton station 

Indices Linear Cubic Power Logarithmic Quadratic Exponential 

PDOAug 0.294 0.301 * * 0.300 0.300 

PDOJuly 0.303 0.305 * * 0.303 0.290 

PDOJune 0.247 0.252 * * 0.252 0.236 

PDOMay 0.257 0.268 * * 0.267 0.245 

PDOApril 0.299 0.246 * * 0.230 0.232 

PDOMar 0.230 0.243 * * 0.238 0.238 

PDOFeb 0.207 0.364 * * 0.327 0.318 

PDOJan 0.203 0.318 * * 0.300 0.245 

PDODec 0.131 0.176 * * 0.155 0.141 

NINO3.4Aug 0.305 0.321 * * 0.319 0.316 

NINO3.4July 0.359 0.386 * * 0.359 0.347 

NINO3.4June 0.418 0.458 * * 0.419 0.391 

NINO3.4May 0.278 0.279 * * 0.279 0.268 

NINO3.4Feb 0.418 0.458 * * 0.419 0.391 

IODJun 0.190 0.202 * * 0.194 0.193 

*Due to the Mathematical error, the logarithmic and power model cannot be generated. 
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Coggan station 

Table 26. Single Non-Linear Regression analysis for Coggan station 

Indices Linear Cubic Power Logarithmic Quadratic Exponential 

PDOAug 0.240 0.300 * * 0.279 0.278 

PDOJuly 0.193 0.218 * * 0.206 0.206 

PDOJune 0.143 0.235 * * 0.175 0.158 

PDOMay 0.179 0.199 * * 0.198 0.188 

PDOApril 0.168 0.219 * * 0.198 0.168 

PDOMar 0.134 0.165 * * 0.161 0.145 

PDOFeb 0.122 0.144 * * 0.143 0.130 

PDOJan 0.095 0.103 * * 0.097 0.096 

PDODec 0.044 0.117 * * 0.096 0.041 

NINO3.4Aug 0.289 0.364 * * 0.357 0.345 

NINO3.4July 0.339 0.381 * * 0.381 0.375 

NINO3.4June 0.306 0.235 * * 0.319 0.315 

NINO3.4May 0.172 0.206 * * 0.193 0.186 

IODJun 0.212 0.243 * * 0.225 0.220 

*Due to the Mathematical error, the logarithmic and power model cannot be generated. 
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North Cuerindi 

Table 27. Single Non-Linear Regression analysis for North Cuerindi station 

Indices Linear Cubic Power Logarithmic Quadratic Exponential 

PDOAug 0.311 0.467 * * 0.390 0.395 

PDOJuly 0.340 0.424 * * 0.394 0.394 

PDOJune 0.239 0.267 * * 0.241 0.243 

PDOMay 0.200 0.237 * * 0.200 0.201 

PDOApril 0.173 0.292 * * 0.222 0.191 

PDOMar 0.081 0.229 * * 0.229 0.095 

PDOFeb 0.136 0.397 * * 0.379 0.196 

PDOJan 0.146 0.327 * * 0.265 0.173 

PDODec 0.070 0.089 * * 0.089 0.073 

NINO3.4Aug 0.430 0.465 * * 0.444 0.435 

NINO3.4July 0.482 0.520 * * 0.488 0.472 

NINO3.4June 0.483 0.510 * * 0.485 0.471 

NINO3.4May 0.264 0.334 * * 0.299 0.299 

EMIAug 0.337 0.379 * * 0.351 0.357 

EMIJuly 0.241 0.258 * * 0.253 0.252 

EMIJun 0.267 0.279 * * 0.268 0.267 

EMIMay 0.209 0.271 * * 0.255 0.233 

EMIApr 0.189 0.261 * * 0.216 0.215 

*Due to the Mathematical error, the logarithmic and power model cannot be generated. 
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Southern New South Wales (SNSW) 

Gundagai Station 

Table 28. Single Non-Linear Regression analysis for Gundagai station 

Indices Linear Cubic Power Logarithmic Quadratic Exponential 

PDOAug 0.242 0.351 * * 0.304 0.263 
PDOJuly 0.238 0.283 * * 0.251 0.246 
PDOJune 0.229 0.326 * * 0.259 0.239 

PDOMay 0.168 0.329 * * 0.255 0.179 

PDOApril 0.21 0.442 * * 0.257 0.221 

PDOMar 0.246 0.451 * * 0.326 0.268 

PDOFeb 0.193 0.264 * * 0.212 0.199 

PDOJan 0.174 0.254 * * 0.186 0.178 

PDODec 0.177 0.222 * * 0.177 0.176 

NINO3.4Aug 0.349 0.363 * * 0.356 0.355 

NINO3.4Jul 0.375 0.399 * * 0.393 0.387 

NINO3.4Jun 0.312 0.334 * * 0.323 0.318 

NINO3.4May 0.239 0.322 * * 0.321 0.259 

NINO3.4Apr 0.203 0.27 * * 0.244 0.212 

NINO3.4Mar 0.199 0.225 * * 0.203 0.201 

NINO3.4Feb 0.174 0.193 * * 0.174 0.174 

IODAug 0.215 0.241 * * 0.23 0.221 

IODJuly 0.236 0.304 * * 0.293 0.253 

IODJune 0.253 0.283 * * 0.258 0.258 

IODMay 0.162 0.215 * * 0.188 0.167 

IODApril 0.028 0.165 * * 0.12 0.029 

IODMar 0.128 0.186 * * 0.176 0.133 

IPO 0.224 0.297 * * 0.297 0.24 

EMIAug 0.125 0.166 * * 0.144 0.121 

EMIJuly 0.119 0.191 * * 0.164 0.114 

*Due to the Mathematical error, the logarithmic and power model cannot be generated. 
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Wee Jasper Station 

Table 29. Single Non-Linear Regression analysis for Wee Jasper station 

Indices Linear Cubic Power Logarithmic Quadratic Exponential 

PDOAug 0.211 0.257 * * 0.228 0.219 
PDOJuly 0.177 0.201 * * 0.186 0.181 
PDOJune 0.181 0.255 * * 0.189 0.185 
PDOMay 0.155 0.263 * * 0.226 0.164 
PDOApril 0.206 0.415 * * 0.267 0.219 
PDOMar 0.207 0.406 * * 0.329 0.23 
PDOFeb 0.191 0.264 * * 0.222 0.199 
PDOJan 0.238 0.306 * * 0.266 0.248 
PDODec 0.234 0.281 * * 0.235 0.236 

NINO3.4Aug 0.388 0.408 * * 0.394 0.373 
NINO3.4Jul 0.411 0.417 * * 0.411 0.406 
NINO3.4Jun 0.385 0.387 * * 0.385 0.381 
NINO3.4May 0.273 0.400 * * 0.377 0.302 
NINO3.4Apr 0.134 0.286 * * 0.278 0.148 
NINO3.4Mar 0.148 0.268 * * 0.268 0.162 
NINO3.4Feb 0.121 0.262 * * 0.261 0.134 

IODAug 0.298 0.308 * * 0.303 0.289 
IODJuly 0.278 0.296 * * 0.284 0.284 
IODJune 0.188 0.257 * * 0.191 0.191 
IODMay 0.128 0.204 * * 0.132 0.127 
IODApril 0.029 0.159 * * 0.084 0.03 
IODMar 0.138 0.234 * * 0.21 0.146 

IPO 0.252 0.293 * * 0.293 0.266 
EMIAug 0.295 0.307 * * 0.307 0.283 
EMIJuly 0.267 0.275 * * 0.271 0.26 

*Due to the Mathematical error, the logarithmic and power model cannot be generated. 
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Mittagang Crossing Station 

Table 30. Single Non-Linear Regression analysis for Mittagang Crossing station 

Indices Linear Cubic Power Logarithmic Quadratic Exponential 

PDOAug 0.279 0.365 * * 0.345 0.317 
PDOJuly 0.219 0.269 * * 0.253 0.237 
PDOJune 0.143 0.248 * * 0.186 0.152 
PDOMay 0.162 0.260 * * 0.173 0.167 
PDOApril 0.265 0.380 * * 0.323 0.292 
PDOMar 0.379 0.462 * * 0.44 0.424 
PDOFeb 0.309 0.360 * * 0.346 0.334 
PDOJan 0.266 0.339 * * 0.338 0.293 
PDODec 0.255 0.308 * * 0.307 0.275 

NINO3.4Aug 0.272 0.331 * * 0.302 0.252 
NINO3.4Jul 0.288 0.306 * * 0.301 0.273 
NINO3.4Jun 0.303 0.342 * * 0.336 0.283 
NINO3.4May 0.242 0.252 * * 0.252 0.25 
NINO3.4Apr 0.071 0.103 * * 0.102 0.073 
NINO3.4Mar 0.156 0.172 * * 0.172 0.161 
NINO3.4Feb 0.116 0.117 * * 0.117 0.117 

IODAug 0.324 0.334 * * 0.327 0.328 
IODJuly 0.36 0.375 * * 0.366 0.369 
IODJune 0.31 0.34 * * 0.31 0.312 
IODMay 0.314 0.342 * * 0.32 0.322 
IODApril 0.309 0.31 * * 0.309 0.308 
IODMar 0.2 0.218 * * 0.208 0.204 

IPO 0.193 0.194 * * 0.193 0.192 
EMIAug 0.046 0.227 * * 0.22 0.041 
EMIJuly 0.039 0.158 * * 0.157 0.036 

*Due to the Mathematical error, the logarithmic and power model cannot be generated. 
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Kiosk Station 

Table 31. Single Non-Linear Regression analysis for Kiosk station 

Indices Linear Cubic Power Logarithmic Quadratic Exponential 
PDOAug 0.288 0.357 * * 0.332 0.318 
PDOJuly 0.187 0.213 * * 0.212 0.197 
PDOJune 0.151 0.218 * * 0.188 0.16 
PDOMay 0.131 0.179 * * 0.178 0.139 
PDOApril 0.187 0.27 * * 0.227 0.199 
PDOMar 0.271 0.358 * * 0.338 0.302 
PDOFeb 0.254 0.285 * * 0.273 0.267 
PDOJan 0.257 0.272 * * 0.269 0.265 
PDODec 0.187 0.195 * * 0.193 0.182 

NINO3.4Aug 0.425 0.428 * * 0.425 0.42 
NINO3.4Jul 0.428 0.43 * * 0.428 0.418 
NINO3.4Jun 0.293 0.34 * * 0.299 0.296 
NINO3.4May 0.218 0.274 * * 0.251 0.23 
NINO3.4Apr 0.116 0.182 * * 0.167 0.123 
NINO3.4Mar 0.087 0.144 * * 0.129 0.092 
NINO3.4Feb 0.017 0.065 * * 0.064 0.017 

IODAug 0.321 0.329 * * 0.322 0.318 
IODJuly 0.342 0.365 * * 0.365 0.362 
IODJune 0.217 0.246 * * 0.229 0.208 
IODMay 0.206 0.235 * * 0.211 0.202 
IODApril 0.021 0.117 * * 0.112 0.023 
IODMar 0.149 0.182 * * 0.182 0.156 

IPO 0.198 0.227 * * 0.219 0.207 
EMIAug 0.141 0.202 * * 0.186 0.131 
EMIJuly 0.125 0.133 * * 0.133 0.121 
*Due to the Mathematical error, the logarithmic and power model cannot be generated. 
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Central West New South Wales (CWNSW) 

Corowa Station 

Table 32. Single Non-Linear Regression analysis for Corowa station 

Indices Linear Cubic Power Logarithmic Quadratic Exponential 

PDOApril 0.232 0.456 * * 0.305 0.251 

PDOMar 0.295 0.419 * * 0.321 -0.237 

PDOFeb 0.241 0.263 * * 0.241 0.242 

PDOJan 0.218 0.263 * * 0.22 0.22 

PDODec 0.245 0.322 * * 0.245 0.246 

NINO3.4Aug 0.317 0.318 * * 0.317 0.312 

NINO3.4Jul 0.336 0.34 * * 0.34 0.34 

NINO3.4Jun 0.23 0.248 * * 0.248 0.238 

NINO3.4May 0.192 0.264 * * 0.26 0.208 

IODAug 0.391 0.414 * * 0.401 0.398 

IODJul 0.353 0.374 * * 0.368 0.367 

IODJun 0.231 0.244 * * 0.231 0.23 

IPO 0.182 0.267 * * 0.238 0.193 

* Due to the Mathematical error, the logarithmic and power model cannot be generated. 
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Wagga Wagga Station 

Table 33. Single Non-Linear Regression analysis for Wagga Wagga station 

Indices Linear Cubic Power Logarithmic Quadratic Exponential 
PDOAug 0.18 0.297 * * 0.219 0.191 

PDOJuly 0.058 0.153 * * 0.108 0.061 

PDOJune 0.052 0.185 * * 0.069 0.053 

PDOMay 0.057 0.15 * * 0.146 0.06 

PDOApril 0.183 0.314 * * 0.221 0.191 

PDOMar 0.279 0.331 * * 0.312 0.293 

PDOFeb 0.255 0.266 * * 0.258 0.258 

PDOJan 0.242 0.242 * * 0.242 0.241 

PDODec 0.25 0.281 * * 0.26 0.244 

NINO3.4Aug 0.339 0.361 * * 0.361 0.322 

NINO3.4July 0.35 0.361 * * 0.359 0.338 

NINO3.4June 0.241 0.246 * * 0.243 0.238 

NINO3.4May 0.199 0.259 * * 0.253 0.211 

NINO3.4April 0.12 0.204 * * 0.197 0.127 

NINO3.4Mar 0.112 0.231 * * 0.193 0.12 

NINO3.4Feb 0.088 0.125 * * 0.125 0.091 

IODAug 0.451 0.453 * * 0.451 0.442 

IODJuly 0.428 0.431 * * 0.428 0.42 

IODJune 0.279 0.328 * * 0.301 0.267 

IODMay 0.158 0.166 * * 0.161 0.156 

IODApril 0.086 0.102 * * 0.102 0.087 

IODMar 0.093 0.115 * * 0.093 0.093 
IPO 0.097 0.121 * * 0.098 0.098 

EMIAug 0.118 0.233 * * 0.23 0.11 

EMIJuly 0.147 0.198 * * 0.197 0.139 

*Due to the Mathematical error, the logarithmic and power model cannot be generated. 
  



 100 

Cowra Station 

Table 34. Single Non-Linear Regression analysis for Cowra station 

Indices Linear Cubic Power Logarithmic Quadratic Exponential 
PDOAug 0.22 0.244 * * 0.24 0.234 
PDOJuly 0.222 0.243 * * 0.226 0.228 
PDOJune 0.214 0.259 * * 0.23 0.225 
PDOMay 0.209 0.383 * * 0.323 0.251 
PDOApril 0.192 0.379 * * 0.254 0.216 
PDOMar 0.194 0.427 * * 0.335 0.247 
PDOFeb 0.176 0.343 * * 0.284 0.212 
PDOJan 0.158 0.303 * * 0.208 0.174 
PDODec 0.133 0.239 * * 0.153 0.141 

NINO3.4Aug 0.211 0.219 * * 0.211 0.209 
NINO3.4July 0.287 0.305 * * 0.305 0.301 
NINO3.4June 0.318 0.337 * * 0.336 0.334 
NINO3.4May 0.251 0.362 * * 0.348 0.303 
NINO3.4April 0.228 0.294 * * 0.293 0.255 
NINO3.4Mar 0.227 0.271 * * 0.27 0.248 
NINO3.4Feb 0.236 0.325 * * 0.314 0.273 

IODAug 0.06 0.113 * * 0.075 0.062 
IODJuly 0.072 0.2 * * 0.168 0.082 
IODJune 0.159 0.182 * * 0.165 0.164 
IODMay 0.186 0.362 * * 0.19 0.189 
IODApril 0.05 0.294 * * 0.107 0.053 
IODMar 0.143 0.218 * * 0.215 0.157 

IPO 0.272 0.396 * * 0.381 0.327 
EMIAug 0.208 0.227 * * 0.208 0.205 
EMIJuly 0.248 0.344 * * 0.253 0.233 

*Due to the Mathematical error, the logarithmic and power model cannot be generated. 
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Western New South Wales (WNSW) 

Barham Station 

Table 35. Single Non-Linear Regression analysis for Barham station 

Indices Linear Cubic Power Logarithmic Quadratic Exponential 

PDOAug 0.228 0.351 * * 0.296 0.25 

PDOJuly 0.212 0.259 * * 0.229 0.22 

PDOJune 0.202 0.298 * * 0.23 0.21 

PDOMay 0.139 0.303 * * 0.221 0.148 

PDOApril 0.181 0.4 * * 0.223 0.19 

PDOMar 0.219 0.41 * * 0.304 0.239 

PDOFeb 0.175 0.255 * * 0.197 0.182 

PDOJan 0.161 0.249 * * 0.174 0.165 

PDODec 0.156 0.197 * * 0.158 0.155 

NINO3.4Aug 0.36 0.369 * * 0.368 0.367 

NINO3.4July 0.39 0.41 * * 0.407 0.402 

NINO3.4June 0.311 0.33 * * 0.321 0.317 

NINO3.4May 0.229 0.317 * * 0.317 0.251 

NINO3.4April 0.181 0.257 * * 0.233 0.19 

NINO3.4Mar 0.187 0.219 * * 0.198 0.191 

NINO3.4Feb 0.16 0.183 * * 0.163 0.161 

IODAug 0.227 0.242 * * 0.235 0.231 

IODJuly 0.242 0.292 * * 0.283 0.258 

IODJune 0.247 0.27 * * 0.25 0.25 

IODMay 0.134 0.194 * * 0.153 0.137 

IODApril 0.045 0.196 * * 0.119 0.046 

IODMar 0.143 0.201 * * 0.183 0.148 
IPO 0.206 0.265 * * 0.265 0.219 

EMIAug 0.147 0.178 * * 0.169 0.142 

EMIJuly 0.131 0.182 * * 0.168 0.125 

*Due to the Mathematical error, the logarithmic and power model cannot be generated. 
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Brewarrina Station 

Table 36. Single Non-Linear Regression analysis for Brewarrina station 

Indices Linear Cubic Power Logarithmic Quadratic Exponential 

PDOAug 0.311 0.377 * * 0.365 0.359 

PDOJuly 0.321 0.412 * * 0.407 0.378 

PDOJune 0.276 0.320 * * 0.305 0.299 

PDOMay 0.275 0.304 * * 0.297 0.291 

PDOApril 0.277 0.418 * * 0.335 0.335 

NINO3.4Aug 0.364 0.371 * * 0.368 0.362 

NINO3.4July 0.408 0.419 * * 0.411 0.401 

NINO3.4June 0.427 0.441 * * 0.433 0.426 

NINO3.4May 0.305 0.352 * * 0.346 0.333 

IODAug 0.229 0.237 * * 0.229 0.225 

IODJuly 0.197 0.216 * * 0.215 0.209 

IODDec 0.107 0.142 * * 0.107 0.352 

EMIAug 0.256 0.275 * * 0.256 0.255 

EMIJuly 0.241 0.266 * * 0.254 0.256 

EMIJun 0.229 0.273 * * 0.229 0.230 

*Due to the Mathematical error, the logarithmic and power model cannot be 

generated. 
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Multiple Non-Linear Regression Analysis 

Northern New South Wales (NNSW) 

Singleton Station 

Table 37. Multiple Non-Linear Regression Analysis for Singleton Station 

Indices Combination Correlations 

Calibration Validation 

PDOAug -NINO3.4Aug 0.372 0.646 

PDOJul-NINO3.4Jul 0.438 0.537 

PDOJun-NINO3.4Jun 0.471 0.568 

PDOMay-NINO3.4May 0.311 0.620 

PDOApr-NINO3.4Jun 0.466 0.581 

PDOMar-NINO3.4May 0.322 0.562 

PDOMar-NINO3.4Feb 0.473 0.588 

PDOFeb-NINO3.4May 0.413 0.551 

PDOJan-NINO3.4May 0.404 0.584 

PDOJan-NINO3.4May 0.314 0.565 

IODJun-NINO3.4Jun 0.478 0.437 

Coggan Station 

Table 38. Multiple Non-Linear Regression Analysis for Coggan Station 

 

Indices Combination 

Correlations 

Calibration Validation 

PDOAug -NINO3.4Aug 0.400 0.953 

PDOJul-NINO3.4Jul 0.391 0.821 

PDOJun-NINO3.4Jun 0.352 0.745 

PDOMay-NINO3.4May 0.253 0.325 

PDOApr-NINO3.4Jun 0.343 0.755 

PDOApr-NINO3.4May 0.255 0.733 

PDOMar-NINO3.4Jun 0.335 0.738 

PDOMar-NINO3.4May 0.246 0.796 

PDOFeb-NINO3.4May 0.244 0.456 

PDOJan-NINO3.4May 0.223 0.476 

PDOFeb-NINO3.4May 0.227 0.496 

IODJune-NINO3.4June 0.380 0.372 
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North Cuerindi 

Table 39. Multiple Non-Linear Regression Analysis for North Cuerindi Station 

Indices Combination Correlations 

Calibration Validation 

PDOAug -NINO3.4Aug 0.576 0.99 

PDOJul-NINO3.4Jul 0.582 0.771 

PDOJun-NINO3.4Jun 0.514 0.642 

PDOMay-NINO3.4May 0.359 0.400 

PDOApr-NINO3.4Jun 0.534 0.623 

PDOApr-NINO3.4May 0.382 0.948 

PDOMar-NINO3.4Jun 0.619 0.544 

PDOMar-NINO3.4May 0.410 0.383 

PDOFeb-NINO3.4May 0.546 0.324 

PDOJan-NINO3.4May 0.479 0.324 

PDOFeb-NINO3.4May -0.016 0.289 

EMIAug-NINO3.4Aug 0.496 0.496 

EMIJuly-NINO3.4July 0.547 0.580 

EMIJun-NINO3.4June 0.566 0.606 

EMIMay-NINO3.4May 0.435 0.435 

EMIApr-NINO3.4May 0.391 0.682 
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Central West New South Wales (CWNSW) 

Corowa Station 

Table 40. Multiple Non-Linear Regression Analysis for Corowa Station 

Indices Combination Correlations 

Calibration Validation 

PDOApril -NINO3.4Aug 0.504 0.078 

PDOApril-NINO3.4July 0.499 0.036 

PDOApril-NINO3.4June 0.464 -0.481 

PDOApril-NINO3.4May 0.484 -0.497 

PDOMar-NINO3.4May 0.494 0.117 

PDOFeb-NINO3.4May 0.368 0.402 

PDOJan-NINO3.4May 0.363 0.307 

PDODec-NINO3.4May 0.434 0.388 

IODAug-NINO3.4Aug 0.439 0.164 

IODJuly NINO3.4July 0.443 0.101 

IODJuneNINO3.4June 0.319 0.634 

IODJuneNINO3.4May 0.342 0.737 

IPO-NINO3.4Aug 0.403 0.521 

IPO-NINO3.4July 0.409 0.561 

IPO-NINO3.4June 0.341 0.694 

IPO-NINO3.4May 0.345 0.686 

IODAug -IPO 0.525 0.639 

IODJuly-IPO 0.482 0.631 
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Wagga Wagga Station 

Table 41. Multiple Non-Linear Regression Analysis for Wagga Wagga Station 

Indices Combination Correlations 

Calibration Validation 

PDOAug -NINO3.4Aug 0.441 0.362 

PDOJuly-NINO3.4July 0.423 0.481 

PDOJune-NINO3.4June 0.376 0.279 

PDOMay-NINO3.4May 0.373 -0.194 

PDOApril-NINO3.4Apr 0.469 -0.019 

PDOMar-NINO3.4Mar 0.43 0.35 

PDOFeb-NINO3.4Feb 0.294 -0.134 

IODAug -NINO3.4Aug 0.382 0.52 

IODJuly-NINO3.4July 0.451 0.541 

IODJune-NINO3.4June 0.39 0.382 

IODJune-NINO3.4May 0.399 -0.218 

IODJune-NINO3.4Apr 0.354 -0.224 

IODJune-NINO3.4Mar 0.36 -0.301 

IODJune-NINO3.4Feb 0.344 -0.393 

IPO -NINO3.4Aug 0.44 0.345 

IPO -NINO3.4July 0.467 0.363 

IPO -NINO3.4June 0.401 0.175 

IPO -NINO3.4May 0.379 0.274 

IPO -NINO3.4Apr 0.346 -0.046 

IPO -NINO3.4Mar 0.319 -0.062 

IPO -NINO3.4Feb 0.298 -0.061 

EMIAug -NINO3.4Aug 0.376 -0.127 

EMIJuly-NINO3.4July 0.418 0.506 

EMIJuly-NINO3.4June 0.334 0.577 

EMIJuly-NINO3.4May 0.325 0.586 

EMIJuly-NINO3.4Apr 0.288 -0.153 

EMIJuly-NINO3.4Mar 0.253 -0.052 

EMIJuly-NINO3.4Feb 0.231 -0.448 

IODAug -IPO 0.376 0.093 
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IODJulyIPO 0.394 -0.031 

EMIAug -IPO 0.307 0.201 

EMIJuly -IPO 0.294 0.175 

 
 
 
 

Cowra Station 

Table 42. Multiple Non-Linear Regression Analysis for Cowra Station 

Indices Combination Correlations 

Calibration Validation 

PDOJuly-NINO3.4July 0.332 -0.909 

PDOJune-NINO3.4June 0.358 -0.782 

PDOMay-NINO3.4May 0.427 -0.023 

PDOApril-NINO3.4Apr 0.436 0.105 

PDOMar-NINO3.4Mar 0.464 -0.316 

PDOMar-NINO3.4Feb 0.485 -0.372 

EMIAug -NINO3.4Aug 0.278 -0.859 

EMIJuly-NINO3.4July 0.406 -0.739 

EMIJuly-NINO3.4June 0.414 -0.732 

EMIJuly-NINO3.4May 0.427 -0.411 

EMIJuly-NINO3.4Apr 0.381 -0.321 

EMIJuly-NINO3.4Mar 0.366 -0.386 

EMIJuly-NINO3.4Feb 0.385 -0.443 
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Southern New South Wales (SNSW) 

Table 43. Multiple Non-Linear Regression Analysis for Gundagai Station 

Indices Combination Correlations 

Calibration Validation 

PDOAug -NINO3.4Aug 0.434 0.192 

PDOJuly-NINO3.4July 0.421 0.264 

PDOJune-NINO3.4June 0.394 -0.019 

PDOMay-NINO3.4May 0.388 -0.363 

PDOApril-NINO3.4Apr 0.508 0.167 

PDOMar-NINO3.4Mar 0.468 0.535 

PDOFeb-NINO3.4Feb 0.3 0.029 

PDOJan-NINO3.4Feb 0.289 0.09 

PDODec-NINO3.4Feb 0.259 0.324 

IODAug-NINOAug 0.379 0.316 

IODJuly-NINOJuly 0.45 0.362 

IODJune-NINOJune 0.402 0.168 

IODMay-NINOMay 0.366 -0.381 

IODMay-NINOApril 0.338 -0.193 

IODMay-NINOMar 0.314 -0.212 

IODMay-NINOFeb 0.296 -0.282 

IPO-NINOAug 0.458 0.144 

IPO -NINOJuly 0.477 0.2 

IPO -NINOJune 0.426 0.154 

IPO -NINOMay  - - 

IPO -NINOApril 0.376 0.01 

IPO -NINOMar 0.346 0.017 

IPO -NINOFeb 0.329 -0.016 

IODAug- IPO 0.401 0.188 

IODJuly- IPO 0.42 0.024 

IODJune- IPO 0.422 0.156 

IODMay- IPO 0.379 0.115 

 

 



109 

 

Table 44. Multiple Non-Linear Regression Analysis for Wee Jasper Station 

Indices Combination Correlations 

Calibration Validation 

PDOAug -NINO3.4Aug 0.434 0.192 

PDOJuly-NINO3.4July 0.421 0.264 

PDOApril-NINO3.4June 0.394 -0.019 

PDOApril-NINO3.4May 0.388 -0.363 

PDOMarch-NINO3.4May 0.508 0.167 

PDOJan-NINO3.4May 0.468 0.535 

PDODec-NINO3.4May 0.3 0.029 

IODAug-NINOAug 0.379 0.316 

IODJuly-NINOJuly 0.45 0.362 

IODJune-NINOJune 0.402 0.168 

IPO-NINOAug 0.458 0.144 

IPO -NINOJuly 0.477 0.2 

IPO -NINOJune 0.426 0.154 

IPO -NINOMay  - - 

IODAug- IPO 0.401 0.188 

IODJuly- IPO 0.42 0.024 

IODJune- IPO 0.422 0.156 

IODMay- IPO 0.379 0.115 

EMIAug -NINO3.4Aug 0.46 0.462 

EMIJuly-NINO3.4July 0.448 0.667 

EMIApril-NINO3.4June 0.425 0.668 

EMIApril-NINO3.4May 0.43 0.285 
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Table 45. Multiple Non-Linear Regression Analysis for Mittagang Crossing 

Station 

Indices Combination Correlations 

Calibration Validation 

PDOAug -NINO3.4Aug 0.456 0.272 

PDOAug-NINO3.4July 0.434 0.506 

PDOAug-NINO3.4June 0.463 0.591 

PDOApril-NINO3.4May 0.407 0.772 

PDOMarch-NINO3.4May 0.478 0.505 

PDOFeb-NINO3.4May 0.406 0.461 

PDOJan-NINO3.4May 0.387 0.326 

PDODec-NINO3.4May 0.383 0.294 

IODAug-NINOAug 0.408 -0.218 

IODJuly-NINOJuly 0.421 0.139 

IODJune-NINOJune 0.433 0.628 

IODMay-NINO3.4May 0.395 0.505 

IODApril-NINO3.4May 0.422 0.277 

IODMarch-NINO3.4May 0.353 0.633 
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Table 46. Multiple Non-Linear Regression Analysis for Kiosk Station 

 

Indices Combination Correlations 

Calibration Validation 

PDOAug -NINO3.4Aug 0.482 0.473 

PDOAug-NINO3.4July 0.477 0.425 

PDOAug-NINO3.4June 0.378 0.574 

PDOApril-NINO3.4May 0.359 0.231 

PDOMarch-NINO3.4May 0.425 -0.009 

PDOFeb-NINO3.4May 0.39 -0.049 

PDOJan-NINO3.4May 0.366 -0.045 

PDODec-NINO3.4May 0.336 0.15 

IODAug-NINOAug 0.453 0.58 

IODJuly-NINOJuly 0.491 0.506 

IODJune-NINOJune 0.379 0.559 

IODMay-NINO3.4May 0.332 0.033 
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Western New South Wales (WNSW) 

Barham Station 
 

Table 47. Multiple Non-Linear Regression Analysis for Barham Station 

Indices Combination Correlations 

Calibration Validation 

PDODec-NINO3.4May 0.396 0.51 

PDOJan-NINO3.4May 0.339 0.221 

PDOFeb-NINO3.4May 0.369 0.212 

PDOMar-NINO3.4May 0.405 0.252 

PDOApr-NINO3.4May 0.383 0.048 

PDOMay-NINO3.4June 0.354 0.846 

PDOMay-NINO3.4 July 0.427 0.648 

PDOMay-NINO3.4Aug 0.437 0.586 

IODAug-NINO3.4Aug 0.482 0.35 

IODJuly NINO3.4July 0.484 0.391 

IODJuneNINO3.4June 0.369 0.771 

IODJuneNINO3.4May 0.389 0.642 

 

  



113 

 

Table 48. Multiple Non-Linear Regression Analysis for Brewarrina Station 

Indices Combination 
Correlations 

Calibration Validation 
PDOAug-NINO3.4Aug 0.454 

 

0.473 

PDOJul-NINO3.4Jul 0.523 0.534 
PDOJun-NINO3.4Jun 0.472 0.545 

PDOMay-NINO3.4May 0.407 0.016 
PDOApr-NINO3.4May 0.492 

 

0.404 

IODAug-NINO3.4Aug 0.381 0.701 
IODJul- NINO3.4Jul 0.429 0.760 
IODJul-NINO3.4Jun 0.462 0.704 

IODJul-NINO3.4May 0.400 0.001 

IODDec-NINO3.4May 0.361 0.179 

EMIAug -NINO3.4Aug 0.414 0.720 

EMIJuly-NINO3.4July 0.465 0.767 

EMIJun-NINO3.4Jun 0.516 0.634 

EMIJun-NINO3.4May 0.446 0.145 
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6.3.2 Statistical Error Analysis of the Best Models 

Northern New South Wales (NNSW) 

Table 49. Statistical performance analysis of MNLR models for NNSW 

Station Model 
Calibration Period Validation Period 

r MAE RMSE d r MAE RMSE d 
 

Singleton 
PDOJune 

NINO3.4June 

0.47 12.67 17.96 0.58 0.56 12.92 13.71 0.83 

Coggan IODJune 

NINO3.4June 

0.38 1.14 2.04 0.43 0.37 1.35 1.73 0.52 

North 
Cuerindi 

PDOApril 

NINO3.4June 

0.53 5.18 7.83 0.64 0.62 7.63 8.98 0.57 

Southern New South Wales (SNSW) 

Table 50. Statistical performance analysis of MNLR models for SNSW 

Station 
Model 

Calibration Period Validation Period 

r MAE RMSE VIF d r MAE RMSE d 

Gundagai 
PDOMar 

NINO3.4Mar 
0.468 53.906 68.982 1.280 0.567 0.535 27.965 31.226 0.655 

Wee 

Jasper 

IPO 

NINO3.4Jun 
0.451 5.777 10.184 1.254 0.579 0.484 8.241 8.553 0.532 

Mittagang 

Crossing 

PDOMar 

NINO3.4May 
0.478 6.767 8.342 1.295 0.599 0.505 5.094 5.488 0.312 

Kiosk 
IODJun 

NINO3.4Jun 
0.379 3.188 4.105 1.166 0.48 0.559 3.835 4.126 0.569 
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Central West New South Wales (CWNSW) 

Table 51. Statistical performance analysis of MNLR models for CWNSW 

 
 

Station 

 
 

Model 

 
Calibration Period 

 
Validation Period 

r MAE RMS
E 

NS
E 

VI
F 

d r MAE RMS
E 

d 

 
Corowa 

 
PDODec 

NINO3.4May 

 
0.43

4 

 
109.7

52 

 
131.3 

 
0.1
9 

 
1.2 

 
0.5
5 

 
0.38

8 

 
57.6 

 
26.17 

 
0.45

3 
 

Wagga 
Wagga 

 
PDOMar 

NINO3.4Mar 

 
0.43 

 
65.73

5 

 
84.42 

 
0.1
9 

 
1.2 

 
0.5
2 

 
0.35 

 
36.93

9 

 
5.035 

 
0.55

7 
 

Cowra 
 

PDOApr 
NINO3.4Apr 

 
0.43

6 

 
23.58

3 

 
31.05 

 
0.2
4 

 
1.3 

 
0.6 

 
0.10

5 

 
18.14

2 

 
17.66 

 
0.17

7 

Western New South Wales (WNSW) 

Table 52. Statistical performance analysis of MNLR models for WNSW 

 
 

Station 

 
 

Model 

 
Calibration Period 

 
Validation Period 

r MAE RMSE NSE VI
F 

d r MAE RMS
E 

d 

 
Barham 

 
PDODec 

NINO3.4May 

 
0.396 

 
88.487 

 
104.1 

 
0.16 

 
1.2 

 
0.5
2 

 
0.51 

 
51.75

3 

 
57.86 

 
0.65

3 
Brewarrina EMIJun 

NINO3.4Jun 

0.51 30.73 41.00 0.63  0.6
3 

0.61  
35.02 

40.99 0.64 
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6.3.3 Equations of the Best Developed Models 

Table 53. Equations of the best-developed MNLR models for all twelve stations 

Region Station Best Developed Model 

NNSW Singleton 𝑄𝑄 = 19.9093 + 0.405381 ∗ 𝑃𝑃𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽𝐽𝐽𝐸𝐸3 − 0.781302 ∗ 𝑃𝑃𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽𝐽𝐽𝐸𝐸2

− 2.70294 ∗ 𝑃𝑃𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽𝐽𝐽𝐸𝐸 + 12.3403 ∗ 𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝐽𝐽𝐽𝐽𝐽𝐽𝐸𝐸3

− 1.24083 ∗ 𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝐽𝐽𝐽𝐽𝐽𝐽𝐸𝐸2 − 24.9111 ∗ 𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝐽𝐽𝐽𝐽𝐽𝐽𝐸𝐸 

 

Coggan 𝑄𝑄 = 1.47979 + 3.04563 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽𝐽𝐽𝐸𝐸3 + 0.875505 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽𝐽𝐽𝐸𝐸2 − 0.443079

∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽𝐽𝐽𝐸𝐸 + 0.443079 ∗ 𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝐽𝐽𝐽𝐽𝐽𝐽𝐸𝐸3 − 0.48093

∗ 𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝐽𝐽𝐽𝐽𝐽𝐽𝐸𝐸2 − 1.48439 ∗ 𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝐽𝐽𝐽𝐽𝐽𝐽𝐸𝐸  

North 

Cuerindi 

 

𝑄𝑄 = 8.11847 − 0.298752 ∗ 𝑃𝑃𝑆𝑆𝑆𝑆𝐴𝐴𝑃𝑃𝑆𝑆𝐴𝐴𝐴𝐴3 + 0.813401 ∗ 𝑃𝑃𝑆𝑆𝑆𝑆𝐴𝐴𝑃𝑃𝑆𝑆𝐴𝐴𝐴𝐴2

+ 1.09289 ∗ 𝑃𝑃𝑆𝑆𝑆𝑆𝐴𝐴𝐽𝐽𝐴𝐴 + 4.37942 ∗ 𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝐽𝐽𝐽𝐽𝐽𝐽𝐸𝐸3

− 0.118078 ∗ 𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝐽𝐽𝐽𝐽𝐽𝐽𝐸𝐸2 − 11.1756

∗ 𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝐽𝐽𝐽𝐽𝐽𝐽𝐸𝐸  

SNSW Gundagai 𝑄𝑄 =  −8.403 ∗  𝑃𝑃𝑆𝑆𝑆𝑆 𝑀𝑀𝑡𝑡𝑡𝑡3 +  9.54 ∗  𝑃𝑃𝑆𝑆𝑆𝑆 𝑀𝑀𝑡𝑡𝑡𝑡2 +  13.462 ∗ 𝑃𝑃𝑆𝑆𝑆𝑆𝑀𝑀𝑡𝑡𝑡𝑡  

+  18.246 ∗  𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝑀𝑀𝑡𝑡𝑡𝑡3  − 1.842 ∗  𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝑀𝑀𝑡𝑡𝑡𝑡2  

− 29.314 ∗ 𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝑀𝑀𝑡𝑡𝑡𝑡  +  136.08 

Wee Jasper 𝑄𝑄 =  −0.1546 ∗  𝑆𝑆𝑃𝑃𝑆𝑆3  +  1.4408 ∗  𝑆𝑆𝑃𝑃𝑆𝑆2  −  1.0806 ∗  𝑆𝑆𝑃𝑃𝑆𝑆 

+  1.4964 ∗   𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝐽𝐽𝐽𝐽𝑛𝑛3  − 0.6662 ∗   𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝐽𝐽𝐽𝐽𝑛𝑛2  

−  6.3021 ∗  𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝐽𝐽𝐽𝐽𝑛𝑛  +  13.5436 

 

Mittagang 

Crossing 

𝑄𝑄 =  −0.4587 ∗  𝑃𝑃𝑆𝑆𝑆𝑆 𝑀𝑀𝑡𝑡𝑡𝑡3 +  1.1277 ∗   𝑃𝑃𝑆𝑆𝑆𝑆 𝑀𝑀𝑡𝑡𝑡𝑡2  − 1.337 ∗  𝑃𝑃𝑆𝑆𝑆𝑆𝑀𝑀𝑡𝑡𝑡𝑡  

+  2.1657 ∗  𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝑀𝑀𝑡𝑡𝑀𝑀3  +  0.8696 ∗  𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝑀𝑀𝑡𝑡𝑀𝑀2  

−  3.5271 ∗ 𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝑀𝑀𝑡𝑡𝑀𝑀  +  10.7027 

 

Kiosk 𝑄𝑄 =  −4.838 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆 𝐽𝐽𝐽𝐽𝑛𝑛3   −  0.413 ∗  𝑆𝑆𝑆𝑆𝑆𝑆 𝐽𝐽𝐽𝐽𝑛𝑛2  −  0.521 ∗  𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽𝑛𝑛  

+  2.05461 ∗  𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝐽𝐽𝐽𝐽𝑛𝑛3 +  0.53274 

∗   𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝐽𝐽𝐽𝐽𝑛𝑛2 −  3.70504 ∗  𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4 𝐽𝐽𝐽𝐽𝑛𝑛

+  5.65868 

 

CNSW Corowa 𝑄𝑄 =  −9.37485 ∗ 𝑃𝑃𝑆𝑆𝑆𝑆 𝑆𝑆𝑡𝑡𝑡𝑡3   −  0.838266 ∗  𝑃𝑃𝑆𝑆𝑆𝑆 𝑆𝑆𝑡𝑡𝑡𝑡2 + 9.52596 ∗  𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡
−  0.824081 ∗  𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝑀𝑀𝑡𝑡𝑀𝑀3 +  97.4374 ∗   𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝑀𝑀𝑡𝑡𝑀𝑀2

−  44.5191 ∗  𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4 𝐽𝐽𝐽𝐽𝑛𝑛 +  217.189 
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Wagga Wagga 

𝑄𝑄 =  −9.02781 ∗ 𝑃𝑃𝑆𝑆𝑆𝑆 𝑀𝑀𝑡𝑡𝑡𝑡3  +  10.7172 ∗  𝑃𝑃𝑆𝑆𝑆𝑆 𝑀𝑀𝑡𝑡𝑡𝑡2 + 14.8737

∗  𝑃𝑃𝑆𝑆𝑆𝑆𝑀𝑀𝑡𝑡𝑡𝑡 +  20.3952 ∗  𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝑀𝑀𝑡𝑡𝑡𝑡3 +  1.35147

∗   𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝑀𝑀𝑡𝑡𝑡𝑡2 −  34.972 ∗  𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4 𝑀𝑀𝑡𝑡𝑡𝑡 + 150.128 

Cowra 𝑄𝑄 =  −3.8423 ∗ 𝑃𝑃𝑆𝑆𝑆𝑆 𝐴𝐴𝐴𝐴𝑡𝑡3   −  2.25516 ∗  𝑃𝑃𝑆𝑆𝑆𝑆 𝐴𝐴𝐴𝐴𝑡𝑡2 + 9.06112

∗  𝑃𝑃𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝑡𝑡 −  11.2937 ∗  𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝐴𝐴𝐴𝐴𝑡𝑡3 +  9.92076

∗   𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝐴𝐴𝐴𝐴𝑡𝑡2 −  19.7842 ∗  𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4 𝐴𝐴𝐴𝐴𝑡𝑡 +  29.56 

WNSW Barham 𝑄𝑄 =  −4.71687 ∗ 𝑃𝑃𝑆𝑆𝑆𝑆 𝑆𝑆𝑡𝑡𝑡𝑡3   − 5.78292 ∗  𝑃𝑃𝑆𝑆𝑆𝑆 𝑆𝑆𝑡𝑡𝑡𝑡2 − 3.54451 

∗  𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 −  56.668 ∗   𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝑀𝑀𝑡𝑡𝑀𝑀2 −  65.8202 

∗  𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4 𝑀𝑀𝑡𝑡𝑀𝑀 +  192.641 

Brewarrina  

𝑄𝑄 = 44.6711 − 50.112 ∗ 𝐸𝐸𝐸𝐸𝑆𝑆𝐽𝐽𝐽𝐽𝐽𝐽𝐸𝐸3 − 6.60371 ∗ 𝐸𝐸𝐸𝐸𝑆𝑆𝐽𝐽𝐽𝐽𝐽𝐽𝐸𝐸2 + 17.5917

∗ 𝐸𝐸𝐸𝐸𝑆𝑆𝐽𝐽𝐽𝐽𝐽𝐽𝐸𝐸 + 14.0838 ∗ 𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝐽𝐽𝐽𝐽𝐽𝐽𝐸𝐸3 + 5.33871

∗ 𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝐽𝐽𝐽𝐽𝐽𝐽𝐸𝐸2 − 51.1802 ∗ 𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆3.4𝐽𝐽𝐽𝐽𝐽𝐽𝐸𝐸  

 

6.4 Detailed Discussion on the Result of MNLR Analysis 

North New South Wales (NNSW) 

Singleton Station 

From the result shown in Table 25, it can be seen that the maximum value for the single 

correlation value was obtained for cubic function for all indices. NINO3.4Feb with a 

correlation value of 0.458 is the highest correlation value for single non-linear 

regression analysis. It was observed that for the single linear correlation analysis, the 

maximum value was 0.418.  

From Table 37, the maximum value of correlation coefficient in  the calibration stage 

was found to be 0.478 for IODJune- NINO 3.4June, whereas in the validation stage, was 

0.646 for PDOAug- NINO 3.4Aug. Since the difference between correlation values of 

calibration and validation period was high for both of these two combinations along 

with the low lag period months, these models were not considered as the best models. 

Hence the combination PDOJune-NINO3.4June with correlation coefficient 0.471 in 

calibration and 0.568 in validation period was selected as the best model, and further 

statistical performance analysis (Table 49) showed lower statistical errors for this 

model. This model was developed using cubic function for both indices, which was 
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based on the outcomes of single non-linear regression analysis (Table 49). This model 

can predict future streamflow for three months in advance. 

The time series plots (Figure 20) of observed and simulated flow for calibration and 

validation periods show that the model follows the trend of observed flow mostly, 

though they fail to predict extreme points, i.e. very high or low values. 

 
(a) 

 
 

(b) 

Figure 20. Comparison between the observed and simulated streamflow during 

the (a) calibration and (b) validation periods for Singleton Station 
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Coggan Station 

From the result shown in Table 26, it can be seen that the maximum value for the single 

non-linear regression analysis was obtained with quadratic function for NINO3.4July 

and the value was 0.381 while for all other indices maximum correlations were provided 

by cubic function. It was observed that for the single linear correlation analysis the 

maximum value was 0.339.  

From Table 38, the maximum correlation coefficient  was found for PDOAug- NINO 

3.4Aug combination while the correlation values in calibration and validation periods 

were 0.40 and 0.953 respectively. But for this model, there is huge difference between 

the correlation values of calibration and validation periods and also the model could 

predict streamflow only one month in advance. Thus, this model was not considered as 

the best model. The combination of IODJune- NINO 3.4June was chosen as the best 

model for this station with correlation values 0.380 and 0.372 for calibration and 

validation periods respectively. This model was developed using the cubic function for 

both indices which was based on the outcomes of single non-linear regression analysis 

(Table 26). Further statistical performance analysis (Table 49) showed lower statistical 

errors for this model. This model can predict future streamflow for three months in 

advance. 

The time series plots (Figure 21) of observed and simulated flow for calibration and 

validation periods show that the model follows the trend of observed flow mostly, 

though they fail to predict extreme points, i.e. very high or low values. 
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(a) 

 
(b) 

Figure 21. Comparison between the observed and simulated streamflow during 

the (a) calibration and (b) validation periods for Coggan Station 
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North Cuerindi Station 

From single non-linear regression analysis (Table 27 ), it can be seen that the maximum 

value for the single correlation value was obtained for cubic function for all indices. 

NINO3.4July provided the highest correlation value for single non-linear regression 

analysis, which is 0.520. It was observed that for the single linear correlation analysis 

the maximum value was 0.483. 

For MNLR analysis, the maximum value of correlation coefficient in the calibration 

stage was found to be 0.619 for PDOApril- NINO 3.4June,  whereas in the validation stage, 

correlation was 0.930 for PDOAug- NINO 3.4Aug (Table 39). Since the difference 

between correlation values of calibration and validation period was high for both of 

these two combinations along with the low lag period months, these models were not 

considered as the best models. Hence the combination PDOApril-NINO3.4June with 

correlation coefficient 0.534  and 0.623 in calibration and validation periods 

respectively was selected as the best model and further statistical performance analysis 

(Table 49) showed lower statistical errors for this model. This model was developed 

using cubic function for both indices which was based on the outcomes of single non-

linear regression analysis (Table 27).  This model can predict future streamflow for 

three months in advance 

The time series plots (Figure 22) of observed and simulated flow for calibration and 

validation periods show that the model follows the trend of observed flow mostly, 

though they fail to predict extreme points, i.e. very high or low values. 
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(b) 

Figure 22. Comparison between the observed and simulated streamflow during 

the (a) calibration and (b) validation periods for North Cuerindi Station 
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Southern New South Wales (SNSW) 

Gundagai Station 

For single Non-Linear Regression analysis (Table 28), all indices showed the highest 

correlation for cubic function. The highest correlation value was obtained as 0.451 for 

PDOMarch. In comparison, the linear regression could only yield the maximum 

correlation of 0.375.  

Upon further proceeding, to MNLR the highest correlation value was obtained for 

PDOMarch-NINO3.4March combination (Table 43) where correlation values for 

calibration and validation periods were 0.468 and 0.535 respectively which are very 

close to each other while the statistical performance was also satisfied by lower errors 

(Table 50). This model was developed using the cubic function for both indices, which 

was based on the outcomes of single non-linear regression analysis (Table 28). This 

model enables the prediction of streamflow five months in advance.  

The time series plots (Figure 23) of observed and simulated flow for calibration and 

validation periods show that the model follows the trend of observed flow mostly, 

though they fail to predict extreme points, i.e., very high or low values. 
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(b) 

Figure 23. Comparison between the observed and simulated streamflow during 

the (a) calibration and (b) validation periods for Gundagai Station 

Wee Jasper Station 

For single Non-Linear Regression analysis (Table 29 ), all indices showed the highest 

correlation for cubic function. The highest correlation value was obtained as 0.471 for 

NINO3.4July. In comparison, the linear regression could only yield the maximum 

correlation of 0.411.  

For MNLR analysis, the highest correlation value was obtained for IPOJuly-NINO3.4July 

combination where the correlation values for the calibration period was 0.487  and for 

validation was 0.518 (Table 44).  But since the lag period was only one month, the 

second-highest correlation was selected. The model was derived using IPOJune-

NINO3.4June combination which resulted in correlation values 0.451 for calibration and 

0.484 for validation which is very close to each other while the statistical performance 

was also satisfied by lower errors (Table 50). This model was developed using the cubic 

function for both indices, which was based on the outcomes of single non-linear 

regression analysis (Table 29). This model predicts streamflow a month in advance.  
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The time series plots (Figure 24) of observed and simulated flow for calibration and 

validation periods show that the model follows the trend of observed flow mostly, 

though they fail to predict extreme points, i.e., very high or low values. 

 

 
(a) 

 
(b) 

Figure 24. Comparison between the observed and simulated streamflow during 

the (a) calibration and (b) validation periods for Wee Jasper Station 
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Mittagang Crossing 

For this Station, upon performing the single non-linear regression, the highest 

correlations were obtained for cubic function for all indices while the maximum 

correlation was 0.462 for PDOMarch. The single linear regression gave the highest 

correlation value of 0.379 for PDOMarch (Table 30). 

For Multiple Non-Linear Regression analysis, in Table 45, the highest correlation was 

obtained for  PDOMarch-NINO3.4May combination.  The value of correlations for 

calibration was 0.478 and for validation was 0.505 along with lower statistical errors 

(Table 50). This model was developed using the cubic function for both indices, which 

was based on the outcomes of single non-linear regression analysis (Table 30).  With 

this model, the prediction of streamflow could be made four months ahead.  

The time series plots (Figure 25) of observed and simulated flow for calibration and 

validation periods show that the model follows the trend of observed flow mostly, 

though they fail to predict extreme points, i.e., very high or low values. 
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(b) 

Figure 25. Comparison between the observed and simulated streamflow during 

the (a) calibration and (b) validation periods for Mittagang Crossing Station 

Kiosk Station 
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was selected which was the combination of IODJune and NINO3.4June. This model was 

developed using the cubic function for both indices, which was based on the outcomes 

of single non-linear regression analysis (Table 31). This model could predict 
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The time series plots (Figure 26) of observed and simulated flow for calibration and 

validation periods show that the model follows the trend of observed flow mostly, 

though they fail to predict extreme points, i.e., very high or low values. 

 
(a) 

 
(b) 

Figure 26. Comparison between the observed and simulated streamflow during 

the (a) calibration and (b) validation periods for Kiosk Station 
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Central New South Wales (CNSW) 

Corowa station 

For single Non-Linear Regression analysis (Table 32 ), all indices showed the highest 

correlation for cubic function. The highest correlation value was obtained as 0.414 for 

IODAug. It was observed, for single linear correlation analysis, the maximum value was 

0.391.  

Since cubic function produced the highest correlations for all indices, this function was 

chosen to form the combined non-linear models with the combination of two indices. 

The highest correlation for the combined model (Table 40) in the calibration stage was 

found for IODJune- NINO3.4May model (0.525) and in the validation stage for IODJune- 

NINO 3.4May model (0.737). Since the difference of correlation values between 

calibration and validation periods are significant along with lower lagged months for 

both of these models, the best model was chosen as PDODec – NINO 3.4May with a better 

set of correlation values (0.434 in calibration period and 0.388 in validation period) and 

lower statistical errors (Table 51). The best model is able to predict streamflow for four 

months in advance. 

The time series plots (Figure 27) of observed and simulated flow for calibration and 

validation periods show that the model follows the trend of observed flow mostly, 

though they fail to predict extreme points, i.e., very high or low values. 
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(b) 

Figure 27. Comparison between the observed and simulated streamflow during 

the (a) calibration and (b) validation periods for Corowa Station 
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Wagga Wagga station 

For single Non-Linear Regression analysis (Table 33), all indices showed the highest 

correlation for cubic function. The highest correlation value was obtained as 0.453 for 

IODAug. It was observed, for single linear correlation analysis, the maximum value was 

0.451.  

Since cubic function produced the highest correlations for all indices, this function was 

chosen to form the combined non-linear models with the combination of two indices. 

The highest correlation for the combined model (Table 41) in the calibration stage was 

found for PDOApril-NINO3.4April model (0.469) and in validation stage for IODJune- 

NINO 3.4May model (0.541). Since the difference of correlation values between 

calibration and validation periods are significant along with lower lagged months for 

both of these models, the best model was chosen as PDOMar – NINO 3.4Mar with a better 

set of correlation values (0.430 in calibration period and 0.350 in validation period) and 

lower statistical errors (Table 51). The best model is able to predict streamflow for six 

months in advance. 

The time series plots (Figure 28) of observed and simulated flow for calibration and 

validation periods show that the model follows the trend of observed flow mostly, 

though they fail to predict extreme points, i.e., very high or low values. 
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(b) 

Figure 28. Comparison between the observed and simulated streamflow during 

the (a) calibration and (b) validation periods for WaggaWagga Station 

Cowra Station 
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The time series plots (Figure 29) of observed and simulated flow for calibration and 

validation periods show that the model follows the trend of observed flow mostly, 

though they fail to predict extreme points, i.e., very high or low values. 
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(b) 

Figure 29. Comparison between the observed and simulated streamflow during 

the (a) calibration and (b) validation periods for Cowra Station 
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Western New South Wales (WNSW) 

Barham station 

From the result shown in Table 35, it can be seen that the maximum correlation for 

single non-linear regression analysis was obtained for the quadratic function, which is 

0.407 for NINO3.4July. For all other indices, the highest correlation values were 

obtained for cubic function. It was observed that for the single linear correlation 

analysis, the maximum value was 0.39.  

For MNLR analysis (Table 47), the highest correlation values in the calibration stage 

was found to be 0.484 for IODJuly- NINO 3.4May whereas in validation stage, was 0.846 

for IODJune- NINO 3.4May.  But since the lag period was only one month, the second-

highest correlation was selected. The model was derived using IPOJune-NINO3.4June 

combination which resulted in correlation values 0.451 for calibration and 0.484 for 

validation which are very close to each other while the statistical performance was also 

satisfied by lower errors (Table 52). This model was developed using the cubic function 

for both indices, which was based on the outcomes of single non-linear regression 

analysis (Table 35). This model predicts streamflow three months in advance.  

The time series plots (Figure 30) of observed and simulated flow for calibration and 

validation periods show that the model follows the trend of observed flow mostly, 

though they fail to predict extreme points, i.e., very high or low values. 
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(b) 

Figure 30. Comparison between the observed and simulated streamflow during 

the (a) calibration and (b) validation periods for Barham Station 

Brewarrina Station 
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For MNLR analysis(Table 48) the highest correlation value was obtained for EMIJuly-

NINO3.4July combination where the correlation values for calibration and validation 
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0.767 respectively which are close to each other while the statistical performance was 

also satisfied by lower errors (Table 52). This model was developed using the cubic 

function for both indices, which was based on the outcomes of single non-linear 

regression analysis (Table 36). This model predicts streamflow two months in advance.  

The time series plots (Figure 31) of observed and simulated flow for calibration and 

validation periods show that the model follows the trend of observed flow mostly, 

though they fail to predict extreme points i.e., very high or low values. 
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(a) 

 

 
(b) 

Figure 31. Comparison between the observed and simulated streamflow during 

the (a) calibration and (b) validation periods for Brewarrina Station
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6.5 Summary of MNLR Analysis 

The MNLR analysis was carried out to explore the non-linear relationship between 

streamflow and climate indices. Five different non-linear functions along with the linear 

function were used to perform a single correlation analysis between spring streamflow 

and single lagged climate indices which was followed by Multiple Non-Linear 

Regression (MNLR) analysis. The function which provided the highest correlation 

among the used six functions (linear and five non-linear) were chosen to develop the 

MNLR equations. Finally, the best model for each station was selected based on its 

higher correlation values and better statistical performance.  

From the single linear regression analysis, it is observed that all the indices for almost 

all stations (except Barham and Coggan stations which showed the highest correlation 

for quadratic function) showed highest correlations for the cubic function which implies 

that cubic function has comparatively more potential to explain the relationship 

between spring streamflow and lagged climate indices. For every station, the non-linear 

function had higher correlation values than the linear function, which referred to the 

underlying relationship between spring streamflow and lagged climate indices is more 

likely to be non-linear. 

Based on the outcomes of single linear regression analysis, combined MNLR models 

were developed with the combination of two different climate indices. The non-linear 

function that showed the highest correlation in single non-linear regression analysis was 

used for the corresponding index in order to form the combined model. Out of the 

twelve stations, eight stations had the best models combined of PDO and NINO3.4 

indices implying the stronger influence of these two indices on spring streamflow of 

NSW. Among the other four stations, Coggan and Kiosk had the best model consisting 

of IOD and NINO3.4 indices while Wee Jasper had the best model with IPO and 

NINO3.4 and Brewarrina had the best model with EMI and NINO3.4 indices. Hence, 

it was evident that PDO and ENSO indices have the strongest impact on spring 

streamflow of NSW.  

Statistical performances of the developed models were analysed to ensure the reliability 

of the models. Different statistical measures, including MAE, RMSE, d and VIF, were 

used to check the reliability of the models. The models with higher correlation values 



 

138 

 

and lower errors were selected as the best models. The Pearson correlation values in 

calibration and validation stages were quite similar, which implies the good 

performance of the models. The best-developed models were able to predict streamflow 

from three to six months in advance.  

The ability of the best MNLR model from each station to predict future streamflow has 

been explained through the time series plots of observed and simulated flows in Figure 

20-31. In the time series plot, some differences can be identified between the observed 

and simulated flow for a few years. The reason can be that a regression model based on 

only two climate indices (e.g. PDO and NINO3.4) are not expected to capture the 

unusual phenomenon like severe droughts (e.g. millennium drought from 1994-2010) 

and floods. Another reason is that some other climate indices might have been more 

influential at that time rather than the selected indices in this study. 
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Chapter 7  
Gene Expression Programming  

7.1 Introduction 

High interannual variability of streamflow in Australia presents the challenge to the 

hydrologists and researchers to develop reliable streamflow forecast models that can 

help the water stakeholders in making low-risk decisions at the earlier stage of the crop 

period which may enhance the potential of economic benefit as well (White et al. 2004; 

Abawi et al. 2005).  

Streamflow is largely dependent on the initial catchment and future climatic conditions 

(Robertson and Wang, 2009). As the remote climate drivers fluctuate at very low 

frequencies, they have better predictability of streamflow while comparing to initial 

catchment condition. Even though developing sophisticated models incorporating 

different hydrological and hydro-meteorological variables such as antecedent moisture 

content of soil, evapotranspiration, precipitation and temperature is possible, it will be 

economically preferable if a simple mathematical model using climate indices can 

simulate the streamflow with enough reliability. Many hydrologists established the 

existence of strong correlations between streamflow and large-scale climate drivers, 

though the nature of the relationship remained a difficult question to deal with. 

According to Piechota et al. (1998), the relationship between streamflow and remote 

climate drivers is more likely to be non-linear; thus a non-linear model is expected to 

give better solutions than a linear model. 

There are five different forecasting methods in practice (Qi and Chang, 2011) which 

are time series analysis, regression analysis, artificial intelligence method (e.g. ANN, 

fuzzy logic etc.), the hybrid and Monte Carlo simulation methods. Currently, data-

driven (DD) models have attained much popularity compared to the physical-based 

models due to their unique qualities such as minimum data requirement, the ability of 

fast application and time-saving. Some of the existing data-driven techniques include 

statistical methods like Simple Regression (SR), Multi-Linear Regression (MLR) and 
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Auto-Regressive Moving Average (ARMA) in addition to Artificial Intelligence (AI) 

methods like Artificial Neural Networks (ANNs), Adaptive Network-Base Fuzzy 

Inference System (ANFIS), Genetic Programming (GP) and Genetic Expression 

Programming (GEP) (Savic et al. 1999; Sajikumar and Thandaveswara 1999; Maier 

and Dandy 2000; Khu et al. 2001; Nourani et al. 2011; Traore and Guven 2012; Kişi et 

al. 2012; Kiafar et al. 2017; Sattar et al. 2016). 

Though the difficulties in dealing with artificial intelligence models encourage the users 

to attempt comparatively simple statistical models (Adamowski 2012), the limitations 

of statistical models are evident when data become complex. Chiew et al. (2003) 

proposed non-linear regression-based models to attain higher correlation values 

between streamflow and climate indices as it enables to capture the underlying non-

linear relationship between two variables. Again, one of the major advantages of 

artificial intelligence-based models like GEP and ANN over regression-based models 

is, they do not impose any fixed model structure on the data, rather they allow the data 

itself to identify the model structure by using artificial intelligence (Aziz et al. 2013). 

Recently, artificial intelligence (AI) has got immense attention for its wide range of 

successful applications in the field of water resources engineering, agro-hydrology and 

agro-meteorology (Tayfur 2002, Coulibaly et al. 2001, Kişi 2006a, b; Kişi 2007b; Maier 

and Dandy 2000; Shiri and Kişi 2010, 2011; Supharatid 2003; Shiri et al. 2012). ANN 

and hybrid ANN techniques were employed Wang et al. (2006) for forecasting 

streamflow. Linear genetic programming and ANN models were applied to estimate 

daily pan evaporation by Guven and Kişi (2011). Short-term and long-term river flows 

were predicted by applying GEP and ANFIS in the study of Kişi and Shiri (2010). They 

also conducted a comparative analysis between GEP and ANFIS to predict groundwater 

table depth fluctuations (Shiri and Kişi 2011a). Again, they attempted to compare GEP, 

ANFIS and ANN models for predicting daily pan evaporation values (Shiri and Kişi 

2011b). GP and ANN were exploited for predicting and modelling rainfall-runoff 

transformation by Dorado et al. (2003). GP and ANN were applied in the study of 

Rabunal et al. (2007) in order to determine the unit hydrograph of an urban basin. 
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Guven and Gunal (2008) used GEP to explore the maximum scour depth and location 

in downstream of grade control structures. 

Throughout the years, researchers have been trying to develop the data-driven 

techniques from black-box to semi-explicit to transparent form. One of the main 

advantages of GEP models over some other data-driven models (for example ANN) is 

that the resultant model is not a complete “black-box”, rather the relationship between 

input (climate indices) and output (streamflow) variables can be explained with a 

mathematical expression (the combination of basic operators and functions). Being a 

transparent model GEP may help the users to understand the underlying hydrological 

process between the climate mode and streamflow without having much knowledge 

about the used software such as ANN, Genexpro tools etc. 

GEP was found to give better performance than other data-driven methods such as ANN 

and ANFIS (Aytek and Alp, 2008, Azamathullah et al., 2011; Guven and Aytek, 2009; 

Kişi et al., 2012, Kişi et al., 2013; Shiri et al., 2012). Kişi et al. (2012) investigated the 

comparative performance of ANN, ANFIS, GEP and ARMA models to forecast lake 

levels in Turkey and concluded that GEP was the better performer among all other data-

driven models. GEP along with ANFIS, Priestley-Taylor and Hargreaves-Samani 

models was employed to estimate daily evapotranspiration in Northern Spain where the 

results revealed the best performance of GEP model followed by ANFIS model (Shiri 

et al. 2012). GEP model was suggested as a feasible alternative to ANN, ANFIS and 

MLR time series when these models were applied to simulate the rainfall-runoff 

transformation process (Kişi et al. 2013). A wavelet-GEP model was applied by Kişi 

and Shiri (2011) to forecast precipitation. 

GEP has been applied to various fields including artificial intelligence, artificial life, 

engineering, science, industrial, biological chemical processes, and financial markets 

to solve problems like symbolic regression, time series prediction, evolutionary neural 

networks and so on (Samadianfard, 2012).  

GEP was deployed to solve a number of hydrological and hydraulic modelling 

problems, for instance, the stage-discharge relationship models were developed and 

compared with traditional methods by Guven and Aytek (2009) while he found the best 
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outputs from GEP models. Many other investigations were carried out with GEP to 

establish functional relationships of sediment transport in sewer pipe systems (Ghani 

and Azamathulla, 2012), estimate the flow discharge in compound channels (Zahiri and 

Eghbali, 2012), measure evapotranspiration using daily climate variables (Aytek and 

Kişi, 2008) etc.  Kişi and Shiri (2012) investigated the implementation of GEP models 

in many studies which include but not limited to modelling river suspended sediment 

load by using climate indices.GP was applied by Kişi et al. (2013) for rainfall-runoff 

modelling.  Azamathulla and Ghani (2011) predicted longitudinal dispersion 

coefficients in streams using GP. GP and GEP were attempted by Zakaria et al. (2010), 

and Azamathulla et al. (2010) for their studies on sediment transport and bridge pier 

scour respectively. Several studies applied GP for rainfall-runoff modelling (Savic et 

al. 1999; Whigham and Crapper 1999; Babovic and Keijzer 2002). GP was also applied 

to develop sedimentary particle settling velocity equations (Babovic and Keijzer 2002). 

A study was carried out to predict velocity in compound channels using GP (Harris et 

al. 2003). Chezy resistance co-efficient in corrugated channels was determined by using 

GP (Giustolisi 2004). 

Till to date, many researchers have studied the relationship between Australian rainfall, 

streamflow and climate indices. Dutta et al. (2006) indicated the necessity for exploring 

the skills of forecasting streamflow and rainfall with different lead time exploiting 

various climate indicators. According to him, streamflow forecast is more significant 

compared to rainfall forecast as it can be predicted with longer lead times. Thereby, 

streamflow forecast enables the water users to make the decision at the earlier stage of 

the year, which ultimately increase the potential of financial benefits. Again, it is 

evident from the study of Kirono et al. (2010) that statistically, significant lag 

relationships exist between atmospheric, oceanic variables (thermocline, SOI and 

NINO4) and winter, summer and spring runoff in the northern part of Moree of northern 

NSW, which is better than the relation with antecedent runoff.  

Thus, considering the significant role of reliable streamflow predictor models in the 

field of agriculture as well as the economy of Australia, the current research study aims 

to explore the potential of GEP for developing reliable streamflow forecast models 
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incorporating a combination of multiple large-scale climate drivers as predictor 

variables. NSW has been selected as the case study region considering the agricultural 

importance of this state in contributing most of Australia’s agricultural production. 

After a careful study of the previous research works, the authors confirm that no such 

study on long-term streamflow prediction of NSW region by applying GEP has been 

approached by any researcher till date.   

The study intends to provide deterministic forecast as it can play more important roles 

in solving water management problems by enabling the water stakeholders to take more 

accurate decisions knowing the predicted amount of future streamflow, compared to 

the probabilistic approaches which have been attempted by many researchers till date 

(Piechota et al. 1998; Ruiz et al., 2007; Robertson & Wang 2009; Wang & Robertson 

2011; Duc et al. 2017). Furthermore, the Bayesian joint probability (BJP) method used 

by Australian Bureau of Meteorology (BoM, 2000) to provide futuristic streamflow is 

again a probabilistic method. Communication of the concept of the probabilistic 

forecast remains a challenge, whereas end-user confidence is very important for the 

adaptation of a forecast model for decision making. Therefore, the interactions of 

multiple climate indices with seasonal streamflow have been explored in this study in 

order to obtain deterministic output models.  

This particular study has focused on the prediction of spring streamflow only 

considering the outcomes of the past research studies in this field (McBride & Nicholls, 

1983; Robertson & Wang, 2009) as well as the outcomes of the MLR and MNLR 

analyses which was conducted at the preliminary stage of this study. Thus, the 

predictability of the linear and non-linear techniques will be compared at the end of the 

study. 

 

 



 

144 

 

7.2 Details Methodology Involved in GEP analysis 

7.2.1 GEP evolution 

Evolutionary programming, which is a kind of machine learning-artificial intelligence, 

was developed to perform symbolic regression. There are three different variants of 

evolutionary programming- “Genetic Algorithms (GA)”, “genetic programming (GP)” 

and “gene expression programming (GEP)” (Ferreira 2006). Holland (1975) developed 

Genetic Algorithms (GAs) by coding those as symbolic strings of fixed length which 

work as ribonucleic acid (RNA) replicators in nature.  Genetic programming (GP) was 

formulated by Cramer (1985) at first, and later on, it was promoted by Koza (1992, 

1994) and Koza et al. (1999, 2003). GP was designed to use nonlinear parse trees of 

various size and shapes that act as protein replicators in nature. The disadvantage of 

this method was that many computations got wasted due to the non-functional 

algorithms generated from many of the mutations.  The latest evolutionary 

programming method which is considered as the best method of this genre till date was 

developed by Ferreira (2001, 2006) who was inspired by Darwin’s theory of evolution. 

GEP programmed individuals as linear strings of fixed length which is afterwards 

represented by expression trees (simple diagram representation). One of the advantages 

of GEP over GA and GP is that genetic operators work at the chromosome level, which 

makes genetic diversity creation extremely simplified. Furthermore, the multigenic 

nature of GEP makes the evolution of complex programs composed of numerous sub-

programs. GEP comprises the advantages of both GA and GP while overcoming some 

of their individual limitations which makes GEP 100 to 60000 times better performer 

than the old GP methods (Ferreira 2001, 2002, 2006). The most important advantages 

of GEP are (Ferreira 2001): (i) the chromosomes are small entities: linear, compact, 

relatively, small, easy to manipulate genetically (replicate, mutate, recombine, etc.); ii) 

the expression trees are exclusively the expression of their respective chromosomes; 

they are entities upon which selection acts, and according to fitness, they are selected 

to reproduce with modification. 
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7.2.2 GEP structure 

GEP is a search technique which involves individuals of non-linear structures with 

different size and shape encoded in linear chromosomes of fixed lengths. The genotype, 

i.e., chromosomes (which are generally consisted of more than one gene of equal 

length) and the phenotype, i.e., expression trees or ETs (expression of the genetic 

information encoded in chromosomes) are the two important entities of GEP which are 

different both structurally and functionally. The Chromosomes of GEP are usually 

composed of multiple genes where each gene codes for a sub-ET and several sub-ETs 

connect with each other through linking function to form a more complex ET. The GEP 

genes consist of a head and a tail. The head contains both functions(nodes) and terminal 

symbols(leaves) while the tail contains only the terminal symbols. In each problem, the 

head length (h) is decided by the user, and tail length (t) is formulated by the equation: 

t= (n-1) h+1, where n is the number of arguments of the functions. 

In GEP during the reproduction process only the linear chromosomes are transmitted, 

as all the genetic modifications take place in the linear chromosomes. Furthermore, the 

unconstrained applications of important genetic operators such as mutation, 

transposition and recombination are allowed by the structural and functional 

organization of the linear chromosomes. In GEP chromosomes are selected based on 

their fitness values using the roulette wheel selection process where the fitter 

chromosomes have more chances to get passage to the next generation. Then these 

selected chromosomes are modified by using the genetic operators such as mutation, 

transposition, inversion, recombination etc. among which mutation is considered as the 

most efficient operator that can sometimes be used as the only genetic operation for 

modification purposes. This modification process continues with the new individuals 

until the required accuracy is achieved or a predefined number of generations is created 

(Ferreira 2001). The process of information decoding is termed as translation which 

involves a genetic code and a set of rules which are very simple in GEP. The genetic 

code in GEP determines one-to-one relationship between the symbols of the genes and 

the nodes in the ETs while the rules denote the spatial organization of nodes in the ETs 

and type of the links between sub-ETs.   



 

146 

 

The steps to predict streamflow are as follows: 

• Initially random population is generated which is consisted of individual 

chromosomes of fixed length. 

• Each chromosome in the initial population is expressed by the expression trees 

and evaluated using the predicted-observed data pairs of the training period as 

well as an appropriate fitness function (AE, RE and correlation coefficient (r) 

etc.  In the current study RMSE was utilized as a fitness function to fit a curve 

to the target values following the steps of Shiri et al. (2012).  

• The next step is to determine the set of terminals T and the set of functions F to 

create the chromosomes. The selection of appropriate functions which is not so 

obvious depends on the user’s understanding and viewpoint. The functions used 

in this study which was selected based on a trial and error process have been 

explained in Table 54 However, a detailed study on the appropriate function 

selection process is beyond the scope of this study.   

• The next major step is to select the chromosomal architecture which is 

composed of length of head (h), the number of genes per chromosome and 

genetic operators. The relevant values used in this study are stated in Table 54.  

• The proper linking function (addition, multiplication, subtraction or division) 

needs to be chosen to connect the algebraic sub-trees which is suggested by 

Ferreira (2001a) to be “addition” or “multiplication”, though it is evident from 

the recent studies that the “addition” linking function gives optimal outputs in 

case of linking parse trees (Shiri et al. 2012, Kişi and Shiri, 2011).       

• Finally, the default values of the genetic operators need to be selected for the 

Genexpro program (Shiri and Kişi, 2011a).  An overview of the used parameters 

is described in Table 54.   

An outline of the construction of GEP models has been explained through Figure 32. 

The development of GEP models and all the relevant statistical calculations are 

performed using the“GeneXpro tools 5.0” software. 
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Table 54. List of Parameters Used in the Study 

Parameter Value 

Function set +, -, *, /, Pow (x, y), exp(x), ln(x), x2, x3, x4, 
x5 

Genetic operator Optimal evolution 

Chromosomes 30 

Head size 7-10 

Number of genes 3-9 

Linking Function Addition, Multiplication 

Fitness Function error type R-square, R, RMSE, RRSE, RAE 

Mutation rate 0.00138 

Inversion rate 0.00546 

One-point recombination rate 0.00277 

Two-point recombination rate 0.00277 

Gene recombination rate 0.00277 

Gene transposition rate 0.00277 

Numerical constants ±10 

 

  



 

148 

 

 

Figure 32. A flow diagram for construction of GEP Models 
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Figure 33. Example of Open Reading Format (ORF) to obtain the output 

equation 

7.3 Results 

7.3.1 Selection of Input variables 

In the preliminary stage of this study, a detailed research was conducted to explore the 

relationship between climate indices and seasonal streamflow of NSW which revealed 

the comparatively more influential indices on streamflow of the study region and served 

the basis for identifying the different combination sets of multiple indices. Thus, for 

each of the 12 stations, a number of models were run with different input sets combining 

two different indices (this study was intended to use two indices in the combination set, 

though the future study will include more than two indices in the input set) with 

different lagged months in order to find out the best output models based on their higher 

Pearson correlation (r) values and lower errors.  
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7.3.2 Selection of best models 

The best GEP model was selected through a trial and error process where initially a 

number of GEP models were developed with random parameters (head size, number of 

genes, linking function, genetic operators etc.) which went through continuous 

modification by changing the parameter values (for current study only head size, 

number of genes, linking function were modified) in order to obtain the best output 

model. Most of the stations showed better performances while the head size and number 

of genes were kept 10 and 9 respectively with some exceptions for some stations where 

better forecast models were obtained by keeping the head size and gene number 7 and 

3 respectively. For all developed models the linking function was used as either addition 

or multiplication. Once the best models were found, the output equation was obtained 

from the Expression Trees (ETs) by using Open Reading Format (ORF) which is 

explained through an example in Figure 33. Equations for one best model from each of 

the four regions are presented in Table 55. It is noteworthy that the equations get more 

complicated with the increment of head size and number of genes. The author’s 

endeavor was to keep the models simple for the easy understanding of the end users, 

thereby the head size and number of genes were kept up to 10 and 9, respectively. 
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Table 55. Equations of the Best-Developed Models for Four Regions 

Region Best developed models 

NNSW 
𝑄𝑄 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝒏𝒏 =

𝑑𝑑0 ∗ 𝑑𝑑12

1.55(0.88 + 2 ∗ 𝑑𝑑0) +
(4.07 + 𝑑𝑑1) ∗ 𝑑𝑑02

3.30 + 𝑑𝑑1+13.029𝑑𝑑1 +
0.065

𝑑𝑑05 − 0.86
 

Here, d0=PDOMar and d1=NINO3.4Jun 

SNSW 
𝑄𝑄 𝑮𝑮𝑮𝑮𝒏𝒏𝑮𝑮𝑪𝑪𝑪𝑪𝑪𝑪𝒊𝒊 =

6.44 ∗  (𝑑𝑑13 − 𝑑𝑑0 − 6.64) ∗ (𝑑𝑑02 + 𝑑𝑑0)
4.87  

+(𝑑𝑑1 − 8.9)2 + 𝑑𝑑1 − 𝑑𝑑0 − 𝑑𝑑03 −
𝑑𝑑1 ∗ (3.62 + 𝑑𝑑1)

𝑑𝑑0

+ �6.46 +
𝑑𝑑03 − 34.57

exp(5.53 − 𝑑𝑑0)�  2 +
0.35 ∗  𝑑𝑑1 ∗ {(𝑑𝑑0 + 𝑑𝑑1)} 2

exp(𝑑𝑑04)  
+

𝑑𝑑1
40.64 + 𝑑𝑑14

+ (𝑑𝑑12 − 𝑑𝑑13) 3

+
6.11

𝑑𝑑03 + 𝑑𝑑0 + 𝑑𝑑1 ∗ (𝑑𝑑0 − 8.94)
− 11.22𝑑𝑑1 ∗ (𝑑𝑑02 − 𝑑𝑑0 + 𝑑𝑑1) − (𝑑𝑑0 ∗ 𝑑𝑑1 − 2.3)

+ {exp(5.45) + (8.76 + 𝑑𝑑0)} −6.16 +
𝑑𝑑15 ∗ (0.42𝑑𝑑04) ∗ exp(−1.05− 𝑑𝑑1)

𝑡𝑡𝑥𝑥𝑒𝑒(𝑑𝑑0) + 0.54 ∗ 𝑑𝑑0
 

Here, d0=PDOMar and d1=NINO3.4Jun 

 

CWNSW 
𝑄𝑄 𝑪𝑪𝑪𝑪𝒓𝒓𝑪𝑪𝑪𝑪𝑪𝑪 = {(3.38 − 𝑑𝑑0)2 + 𝑑𝑑1 + 10.85 + 6.50𝑑𝑑1}

𝑑𝑑03

𝑑𝑑0 − 𝑑𝑑1
+ (68.21 − 2𝑑𝑑0)𝑑𝑑0 + 29.7𝑑𝑑1 + 44.70𝑑𝑑0𝑑𝑑1

+
𝑑𝑑0

𝑑𝑑0 + 2.38 − 1.85𝑑𝑑1𝑑𝑑04 + (𝑑𝑑0 − 𝑑𝑑1)4 +
13.83𝑑𝑑1𝑑𝑑02

8.47 ∗ 10−2 − 𝑑𝑑1
+ 𝑑𝑑02(𝑑𝑑0 − 11.34))

+
1.19𝑑𝑑03

97.61𝑑𝑑1  
2 (𝑑𝑑1 + 9.59) + ln�3𝑑𝑑0 − 𝑑𝑑1−𝑑𝑑02�

20
− 5.67 ln{4.49(𝑑𝑑0 + 𝑑𝑑1 + 1.04)10} + 2𝑑𝑑03

− (𝑑𝑑0 − 0.62)2 + 226.01 
  

  Here, d0=PDOJun and d1=NINO3.4Jun 

 

WWNSW 𝑄𝑄 𝑩𝑩𝒓𝒓𝑩𝑩𝑪𝑪𝑪𝑪𝒓𝒓𝒓𝒓𝒊𝒊𝒏𝒏𝑪𝑪 = 𝑑𝑑0 − (𝑑𝑑0 − 𝑑𝑑1)3 + exp(𝑑𝑑03)9.53 +
𝑑𝑑0

0.44 + �𝑑𝑑1 + 0.44
𝑑𝑑0

�
10
−  𝑑𝑑0

 

+(2𝑑𝑑1 − 𝑑𝑑0 − 6.04)2 − 47.54𝑑𝑑02

+ �𝑑𝑑05 −
0.25𝑑𝑑1

1.35 + 𝑑𝑑1
� �
𝑑𝑑1
𝑑𝑑0

− 16.35� +
𝑑𝑑0

16𝑑𝑑04 + 2.38𝑑𝑑1 + 2.38𝑑𝑑1 − 2.6
− 10.62𝑑𝑑0 ∗ (𝑑𝑑1−5.94)

− (𝑑𝑑1 − 2.5)(4.53 − 𝑑𝑑1) +
𝑑𝑑1

(𝑑𝑑0 − 0.38) + 2.70 ∗ 108 ∗ 𝑑𝑑120
−

1.11

2𝑑𝑑1 + 𝑑𝑑0 + 0.75 + 𝑑𝑑15
𝑑𝑑0𝑑𝑑1

+ ln 𝑑𝑑14

+ 𝑑𝑑1 +
2.43𝑑𝑑1−𝑑𝑑0 − 0.41

𝑑𝑑0
 

Here, d0=EMIJuL and d1=NINO3.4JuL 
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7.3.3 Statistical Performances 

Statistical performances of the models were evaluated using different functions which 

include RMSE, RRSE, RAE, MAE, NSE and Willmott index of agreement (d).  The 

closer the ‘d’ value to 1, the better the model fits the observations. The best models for 

each station was chosen considering its higher correlation value and lower errors which 

ensure the best fitness of the developed model. The Pearson correlation (r) values and 

the statistical errors of the best models for all 12 stations have been documented in 

Table 56.  

Table 56. Performance Test of the Best GEP Models for Calibration and 

Validation Periods 

R
eg

io
n 

St
at

io
n 

N
am

e 

M
od

el
 Calibration Validation 

r 

R
R

SE
 

R
A

E
 

R
M

SE
 

M
A

E
 

N
SE

 

d r 

R
R

SE
 

R
A

E
 

R
M

SE
 

M
A

E
 

N
SE

 

d 

N
N

SW
 

Si
ng

le
to

n 

PDOApr 

NINO3.4May 
0.74 0.67 0.67 13.85 10.62 0.55 0.83 0.79 0.78 0.70 10.60 7.47 0.39 0.63 

C
og

ga
n PDOMar 

NINO3.4Jun 
0.87 0.24 0.65 1.07 0.82 0.76 0.82 0.91 0.92 0.69 1.68 1.18 0.15 0.93 

N
or

th
 

C
ue

ri
nd

i 

PDOMay 

NINO3.4May 
0.76 0.64 0.72 5.82 4.86 0.58 0.86 0.82 0.90 0.80 9.68 7.99 0.19 0.39 

SN
SW

 

G
un

da
ga

i 

PDOMar 

NINO3.4Mar 
0.72 0.69 0.70 53.82 42.80 0.52 0.82 0.93 0.94 0.92 28.69 25.70 0.12 0.83 

W
ee

 J
as

pe
r PDOJul 

NINO3.4Jul 

 

0.71 0.70 0.70 5.69 4.47 0.50 0.50 0.87 0.50 0.56 4.03 3.30 0.75 0.92 

K
io

sk
 PDOApr 

NINO3.4May 
0.72 0.70 0.70 3.08 2.42 0.52 0.57 0.86 0.90 1.02 3.61 2.96 0.18 0.78 

M
itt

ag
an

g 

C
ro

ss
in

g 

IODMar 

NINO3.4May 
0.74 0.67 0.62 6.40 4.88 0.45 0.83 0.78 7.58 5.94 10.74 7.27 -10.51 0.56 
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C
W

N
SW

 

C
or

ow
a PDOJun 

NINO3.4Jun 
0.70 0.72 0.69 104.02 82.02 0.49 0.79 0.83 2.09 2.17 53.67 43.91 -3.37 0.68 

W
ag

ga
 

W
ag

ga
 

EMIJuL 

IPOJuL 
0.74 0.64 0.62 59.38 45.20 0.60 0.86 0.72 0.91 0.94 37.47 34.38 0.17 0.75 

C
ow

ra
 

PDOMar 

NINO3.4Feb 
0.89 0.46 0.44 16.50 12.35 0.78 0.94 0.57 4.88 5.81 17.00 15.36 -22.78 0.48 

W
N

SW
 B

ar
ha

m
 

PDOApr 

NINO3.4May 
0.67 0.75 0.69 84.22 69.24 0.42 0.77 0.84 0.99 1.00 47.87 39.95 0.02 0.51 

B
re

w
ar

ri
na

 

EMIJul 

NINO3.4Jul 
0.84 0.54 0.51 25.92 18.72 0.71 0.91 0.97 0.67 0.80 32.33 28.82 0.56 0.77 

7.3.4 Validating the models 

For the validation of the developed models, the whole data set was divided into two 

segments where the first 96 years of data were used for calibrating the models and rest 

of 6 years of data were used to assess the validity of the models. Considering the effect 

of the “millennium drought” period (which was 1994 to 2010 according to Bond et al. 

2008) in Australia, longer data range was used for calibration period to prepare the 

models for any unusual phenomenon like droughts or flood. And the achievements 

because of such selection criteria have clearly been reflected on the results presented in 

Table 56 where it is evident that the Pearson correlation (r) values for calibration and 

validation stages are quite close and the errors are very low in both stages which ensure 

the acceptability of the developed models.  

7.3.5 A brief comparison of GEP models with MLR models 

As mentioned earlier, a preliminary study was carried out to explore the linear 

relationships between climate indices and seasonal streamflow of the same study region 

where MLR technique was used to develop the linear regression models (In Table 57), 

the outputs of the current study have been compared with the outcomes of the MLR 

analyses with a view to exploring the better technique to forecast seasonal streamflow 
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of NSW. For every single station, the non-linear GEP models has shown better 

performance than the linear MLR models in terms of both Pearson correlation (r) values 

and statistical errors. The time series plot in Figure 34 explains the much better 

performance of the developed GEP models compared to the MLR models.  The GEP 

models were able to follow the trend of the actual observed data. Furthermore, while 

the MLR models failed to capture the high values, GEP models successfully captured 

almost all the high points. It is noteworthy that MLR models were developed for 

different calibration (1914-1998) and validation periods (1999-2015). Later on, the 

GEP models were developed with different data ranges in order to obtain better 

performances from the developed models.  
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Table 57. A brief comparison of MLR and GEP Models in Terms of Pearson 

correlation (r) Values 

 

 

R
eg

io
n 

St
at

io
n 

N
am

e 

GEP MLR 

Best Models 
Pearson Correlation (r) 

Best Models 
Pearson Correlation (r) 

Calibration Validation Calibration Validation 

N
N

SW
 

Singleton 
PDOApr 

NINO3.4May 
0.74 

0.79 PDOMar 

NINO3.4Jun 

0.43 

 

0.51 

Coggan 
PDOMar 

NINO3.4Jun 

0.87 0.91 PDOJul 

NINO3.4Jul 

0.35 

 

0.60 

North 

Cuerindi 

 

PDOMay 

NINO3.4May 

0.76 0.82 
PDOJul 

NINO3.4Jul 

0.51 

 

0.56 

SN
SW

 

Gundagai 
PDOMar 

NINO3.4Mar 

0.72 0.93 IPOJul 

NINO3.4Jul 

0.40 0.43 

 Wee 

Jasper 

PDOJul 

NINO3.4Jul 

 

0.71 0.87 
IODJul 

NINO3.4Jul 

0.44 0.58 

Kiosk 
PDOApr 

NINO3.4May 

0.72 0.86 PDOAug 

NINO3.4Jul 

 

0.44 0.53 

Mittagang 

Crossing 
IODMar 

NINO3.4May 

0.74 0.78 PDOAug 

NINO3.4Jul 

0.33 0.64 

C
W

N
SW

 

Corowa 
PDOJun 

NINO3.4Jun 

0.70 0.83 IPOJun 

IODJun 

0.29 0.87 

Wagga 

Wagga 

IPOJul 

EMIJuL 

0.74 0.72 IPOJul 

NINO3.4JuL 

0.41 0.20 

Cowra 
PDOMar 

NINO3.4Feb 

0.89 0.57 PDOMar 

NINO3.4Feb 

0.25 0.32 

W
N

SW
  Barham 

PDOApr 

NINO3.4May 

0.67 0.84 IODJun 

NINO3.4Jun 

0.33 0.78 

Brewarrina 
EMIJul 

NINO3.4Jul 

0.84 0.97 IODJul 

NINO3.4Jul 

0.41 0.59 
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Figure 34. Comparison between observed streamflow and simulated streamflow 

by MLR and GEP (i) Coggan (NNSW), (ii) Corowa (CWNSW), (iii) Gundagai 

(SWNSW), (iv) Brewarrina (WNSW) stations 

 
(i) 

 

 
(ii) 

 

R² = 0.7394

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18

O
bs

er
ve

d 
st

re
am

flo
w

 (c
um

ec
)

Simulated streamflow (cumec)

Goulburn river at Coggan

R² = 0.4844

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700

O
bs

er
ve

d 
st

re
am

flo
w

 (c
um

ec
)

Simulated streamflow(cumec)

Murray river at Corowa



 

159 

 

 
(iii) 

 

 
(iv) 

Figure 35. Scatter plots of observed and simulated streamflow by GEP (i) 

Coggan (NNSW), (ii) Corowa (CWNSW), (iii) Gundagai (SWNSW), (iv) 

Brewarrina (WNSW) stations 
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7.4 Discussion 

It is evident from the overall outcomes of the analyses that there is a distinct spatial 

variation of the most influential indices on seasonal streamflow across NSW. Different 

combination sets of indices were found to develop the best forecasting model for 

different regions.  Though most of the stations showed the best performances with the 

input combination of PDO and NINO3.4, however, the best performances were 

achieved with the selected indices from different months. Significant performances of 

the developed models were also observed for many other different combination sets 

containing different indices verifying the influences of other indices on streamflow of 

NSW.  

Analyzing the performances of the best-developed models presented in Table 56, it is 

observed that all the best models for NNSW were obtained with PDO_NINO3.4 

combined models while the highest correlation was found to be 0.87 and 0.91 in 

calibration and validation stages respectively for the Goulburn river at Coggan station. 

For the other two stations of NNSW, the results are very satisfactory with significantly 

high correlation values (0.74~0.82) and lower errors. Again, SSNW was observed to be 

influenced by the same combination set comprising PDO and NINO3.4 indices with 

different lagged months except for Murrumbidgee river at Mittagong Crossing where 

the best-developed model was found with a different combination set comprising IOD 

and NINO3.4 which has comparatively lower correlation values, i.e.,0.74 and 0.67 in 

calibration and validation periods respectively. IN SNSW, the highest correlation was 

achieved for the Murrumbidgee river at Gundagai station, which is 0.72 and 0.93 in 

calibration and validation stages respectively. The other two stations of this region also 

showed significantly higher correlations which ranges between 0.71 and 0.87. PDO and 

NINO3.4 were found to be dominant on the streamflow of CWNSW as well, where two 

of the three stations provided best models with these indices showing significant 

correlations that range between 0.57 and 0.89. The other station in CWNSW, 

Murrumbidgee river at Wagga Wagga was found to be influenced by a different 

combination set consisting of EMI and IPO indices, though the correlation was 

relatively lower, i.e., 0.77 and 0.57 for calibration and validation periods respectively.  
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PDO and ENSO indices were predominant in WNSW where the Barwon River at 

Brewarrina station provided the highest correlation, i.e.,0.84 and 0.97 in calibration and 

validation periods respectively for EMI and NINO3.4 combination set. Barham river at 

Brewarrina station was influenced by PDO_NINO3.4 combined model with 

correlations 0.67 and 0.84 in calibration and validation stages respectively. 

While considering the lagged months of different models, it is observed that the best 

models are able to predict the spring streamflow up to 5 months ahead.  For instance, 

at Gundagai station in SNSW, the best-developed model consisted of 5 months lagged 

PDO and NINO3.4 indices which implies that this model can predict futuristic spring 

(September-November) streamflow at the end of March in the corresponding year.  It 

is noteworthy that despite predicting the streamflow at such advanced stage of the year, 

the correlation values for this model was significantly high, i.e., 0.72 and 0.93 in 

calibration and validation periods respectively ensuring the very satisfactory statistical 

performance of the model.  

Nevertheless, few of the best-developed models do not have the ability to predict spring 

streamflow with longer lead time (Table 56). For these stations, many other models 

were found which had longer lead time but relatively lower correlation values or higher 

errors, thus not chosen as the best model.  Only one best model from each of the 12 

stations, considering the higher correlation values and lower errors have been presented 

in Table 55. The scatter plots of these models are presented in Figure 35, which shows 

satisfactory performances of the models over 102 years as the values of the coefficient 

of determination (R2) were significant. It has been noticed, in general, the correlation 

values decrease with the increase of lead time of selected indices.  

The statistical performances of the best predictor models ensured the predictability of 

the developed models with high accuracy as all the values of RRSE, RAE, RMSE, MAE 

and d shows good agreement in both calibration and validation periods apart from a few 

exceptions. The index of agreement (d) for both the calibration and validation periods 

were close to 0.5, which ensured good forecasting ability of the models.  

It has been observed during the evaluation process that if the number of generations 

increases the correlation values also increase. But after reaching an optimum level, the 
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correlation value does not increase anymore. For a few stations, the number of 

generations became too large to find an optimum solution and apparently, the statistical 

performances of those models were not good. For instance, the RMSE values of these 

three stations are relatively higher than those of other stations, for instance, Murray 

river at Corowa stations has a very high RMSE value 104.02, thus, even though the 

Pearson correlation is significantly high, the overall performance of the model is not 

satisfactory. For Mittagong crossing and Cowra stations, the correlation values in 

validation stages are lower than those of the calibration stages, which is showing 

different behaviour from the rest of the stations. However, in most of the cases, the 

correlation values for calibration and validations periods are quite similar.  

Based on the Pearson correlation values (r), the comparison of the results of GEP 

models with MLR models, presented in Table 57 shows that GEP models have better 

predictability. The highest correlations were 0.89 and 0.97 for GEP models, whereas, 

for MLR models, the highest correlations were 0.51 and 0.87 in calibration and 

validation periods, respectively (Table 57). For all the stations, GEP models 

outperformed MLR models in terms of Pearson correlation (r) values ensuring the better 

predictability of the GEP models. The greater skills of the combined models have been 

proved as the correlation values were higher for the combined models with multiple 

indices than that could be obtained from the single correlation analysis.  

7.5 Summary of GEP Analysis 

In this chapter, an endeavor has been made to explore the potential skills of GEP for 

developing streamflow predictor models with longer lead time than usual practice 

incorporating lagged climate indices. Twelve stations from NSW were chosen 

considering their agricultural importance and longer data records. Some preceding 

analyses of this study revealed the most influential indices in the study region, which 

included PDO(IPO), IOD, EMI and NINO3.4. These indices were exploited as the 

indicators for streamflow forecasting using GEP. A comparative analysis will be carried 

out in the following chapter between the outcomes of linear and non-linear techniques 
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with a view to exploring the better predictor modelling technique for streamflow of 

NSW.  

 

To develop the GEP models, different combinations of two (out of four significant) 

indices were selected as the input sets. It is observed that not the same combination set 

gave the best predictor model for all stations/regions which is quite reasonable as NSW 

is a large region to deal with and distance from a particular location may increase the 

likeliness of being influenced by other index. Again, the best combinations did not 

consist of the same lagged months indices. In general, most of the stations were evident 

to be influenced by PDO and NINO3.4 indices, though the lagged months of the indices 

were different.  IOD was found to be dominant at Corowa station in SNSW with the 

combination of NINO3.4 whereas EMI strongly influenced Wagga Wagga (in 

CWNSW) and Brewarrina (in WNSW) stations. The highest correlation was obtained 

from Brewarrina station, which was 0.84 and 0.97 for calibration and validation stages 

respectively with one month lagged EMI and NINO3.4 indices. Though considering the 

longer lagged months, higher correlation values and lower statistical errors, the best 

performance was provided by Gundagai station in SNSW for PDO_NINO3.4 combined 

model, despite having significantly high correlation values (0.72 and 0.93 calibration 

and validation periods respectively), the model was able to predict spring streamflow 

five months in advance. It is remarkable that all the GEP models outperformed MLR 

models in terms of Pearson correlation (r) values which was almost twice of the MLR 

models. Thus, the better predictability of the non-linear GEP models over linear MLR 

models has been ensured. Nevertheless, for three (Mittagang Crossing, Corowa and 

Cowra) out of twelve stations, NSE values were negative along with other higher errors 

implying poor performances of the developed models. Further research will be carried 

out to explore the weakness of these models, and new models will be developed, 

incorporating new indices to obtain better models for these three stations. Future work 

will also include more than three variables (the current study was limited to only two 

variables) in one model to see the variation of influences on streamflow. The current 

practice of streamflow forecasting in Australia does not enable the water-stakeholders 
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to take low-risk decisions as they do not get the streamflow forecast at the earlier stage 

of the crop period. Furthermore, those predictions are stochastic, i.e. the users do not 

get any in-depth information like the magnitude of the predicted amount of flood. The 

developed GEP models are able to provide the expected amount of futuristic spring 

streamflow up to 5 months in advance. This will surely help the water stakeholders to 

take tactical cropping decisions, thereby, will increase the potential of financial 

benefits. Further research work may be carried out to explore the influential indices on 

any particular region and their predictability to forecast seasonal streamflow. 
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Chapter 8 
Model Comparisons 

8.1 Introduction 

The main objective of this study was to develop a streamflow forecast model using 

lagged climate indices. To accomplish this objective different modelling approaches 

had been attempted and compared at the end of this research, with a view to exploring 

the best modelling technique amongst the used ones in this study for predicting seasonal 

streamflow.  

At the first stage, MLR technique was used as the basic modelling method. It is worth 

to mention that the whole input data set was divided into two parts in order to calibrate 

and validate the developed models. The division of the data set was a major challenge 

for this study since there are no hard and fast rules to divide such modelling data sets 

into calibration and validation periods. Therefore, in the beginning, random data range 

was chosen to develop the MLR models which had been changed until satisfactory 

results could be obtained from the developed models using the corresponding 

calibration and validation data sets. This trial and error method finally led to the 

selection of the calibration and validation data set that gave satisfactory results while 

applied for MLR models. This final data set had 85 years (1914-1998) of data in the 

calibration period while the rest of 17 years (1999-2015) of data was used for the 

validation period.  

The same data set was used for the next stage of the study where the Multiple Non-

Linear Regression (MNLR) method was exploited with a view to getting better 

streamflow forecast models compared to the MLR models which were developed at the 

first stage of this study. 

 In the final stage of this study, for further improvement of the streamflow forecast 

models, a much more advanced modelling technique, Gene Expression Programming 

(GEP) was applied. But when the same calibration and validation data set was used for 

GEP modelling, the models failed to produce satisfactory results. Thus, new data sets 
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were tried to get the desired satisfactory outcomes from the GEP models. Finally, the 

combination of 96 years data in the calibration stage and the rest of 6 years data 

invalidation stage, gave the best results for the GEP models.  

Since, one of the main aims of this research was to compare the different forecast 

modelling methods and identify the best one amongst the used methods, for a fair 

comparison, MLR and MNLR analysis was redone with the same data set that was 

applied for GEP modelling. Eventually, this data set also was able to produce 

satisfactory results for MLR and MNLR models. The reason for the best performance 

of this combination of data might be the inclusion of the unusual drought periods (2000-

2009) in the calibration dataset which ultimately prepared the models for any unusual 

phenomenon, such as droughts, floods etc., and thus the model could perform equally 

good in the validation stage as well.  

The results obtained at different stages of this study will be compared in this chapter. 

The first comparison will be between the results obtained from applying two different 

data sets for MLR modelling. This will be followed by the comparison of MNLR 

models using these two different data sets. Finally, GEP models developed using the 

second data set will be compared with the linear (MLR) and non-linear (MNLR) 

techniques. 

At the end of this chapter, to verify the results derived from this research study, a 

comparative analysis will be carried out between the current study and the previous 

studies which were done on a similar topic. 

8.2 Comparison of MLR Models for Different Datasets 

As mentioned earlier, MLR analysis was done with two different sets of data i.e., the 

original data set was divided into calibration and validation groups following two 

different time ranges. At first, the whole data set was segmented into 85 years for 

calibration and 17 years for validation. Later on, the division was first 96 years for 

calibration and last 6 years for validation. For convenience, in this study, the first set 

and second set will be considered as “Dataset-1” and “Dataset-2” respectively. 
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The comparison between the MLR models developed with “Dataset-1” and “Dataset-

2” is showed in Table 58. In general, most of the stations showed similar correlation 

values for both datasets. Nevertheless, there was significant increment in correlation 

values (in validation period) for “Dataset-2” in case of Maittagang Crossing, Corowa 

and Barham station whereas some stations also produced reduced correlation values 

with “Dataset-2”, for instance, Wagga Wagga station in validation period. 

For both datasets, the greatest number of best models were found with PDO and 

NINO3.4 combined indices. However, strong influence of IPO and IOD combined 

models were also observed six out of twelve station had best models consisted of IPO 

or IOD along with NINO3.4. 

Hence the strong influence of all these four indices on spring streamflow of NSW were 

clearly evident in this analysis. 
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Table 58. Comparison of MLR models develpoed with the different Datasets 

Region Station Name 

Best Models MLR models for Dataset-1 MLR models for Dataset-2 

Pearson Correlation (r) Pearson Correlation (r) 

Calibration Validation Calibration Validation 

NNSW 

Singleton 
PDOMar 

NINO3.4Jun 
0.41 

0.65 0.43 

 

0.51 

Coggan 
PDOJul 

NINO3.4Jul 

0.33 0.61 0.35 

 

0.60 

North 

Cuerindi 

 

PDOJul 

NINO3.4Jul 

0.46 0.62 0.51 

 

0.56 

SNSW 

Gundagai 
IPOJul 

NINO3.4Jul 

0.43 0.51 0.40 0.43 

Wee Jasper 
IODJul 

NINO3.4Jul 

0.45 0.57 0.44 0.58 

Kiosk 

PDOAug 

NINO3.4Jul 

 

0.45 0.41 0.44 0.53 

Mittagang 

Crossing 

PDOAug 

NINO3.4Jul 

0.35 0.49 0.33 0.64 

CWNSW 

Corowa 
IPOJun 

IODJun 

0.30 0.48 0.29 0.87 

Wagga 

Wagga 

IPOJul 

NINO3.4JuL 

0.43 0.55 0.41 0.20 

Cowra 
PDOMar 

NINO3.4Feb 

0.35 0.44 0.25 0.32 

WNSW 

Barham 
IODJun 

NINO3.4Jun 

0.31 0.44 0.33 0.78 

Brewarrina 
IODJul 

NINO3.4Jul 

0.40 0.56 0.41 0.59 
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8.3 Comparison of MNLR Models for Different Datasets 

NNSW 

MNLR analysis was also done for two datasets to explore which dataset gives better 

results. Since most of the stations gave higher correlations with “Dataset-2”, this dataset 

seemed promising to give a better result. Therefore, the trial with both datasets was 

applied only for the three stations of NNSW. For the rest of the stations, MNLR models 

were developed with “Dataset-2” only. Thus, the comparative analysis between 

developed MNLR models was carried out only for NNSW, which is shown in Table 

59. 

It is evident from Table 59 that all three stations are showing higher correlation values 

with “Dataset -2”, except Singleton station which had a higher correlation with 

“Dataset-1” in the validation period. 

It is noteworthy that, even though only the best models are presented in Table 59, all 

other combinations were also explored to identify which of the two datasets produce 

higher correlations. For most of the combinations, the higher correlations were obtained 

using “Dataset-2” apart from Singleton station where correlation value in the validation 

stage is higher with dataset-1 than dataset-2.  For both datasets, the best MNLR models 

were developed with PDO and NINO3.4 combination, implying the strong influence of 

these two indices on spring streamflow of NNSW region. 
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Table 59. Comparison of MNLR models develpoed with the different Datasets 

for NNSW 

Station 

Name 

Model MNLR models for 

Dataset-1 
MNLR models for Dataset-

2 

Calibration Validation Calibration Validation 

Singleton PDOJun-

NINO3.4Jun 

0.46 0.71 0.47 0.57 

Coggan PDOJul-

NINO3.4Jul 

0.38 0.76 0.40 0.82 

North 

Cuerindi 

PDOJul-

NINO3.4Jul 

0.52 0.72 0.58 0.77 

8.4 Comparison of MLR and MNLR models for Dataset-1 

In the Table 60, a comparison between MLR and MNLR models developed using 

“Dataset-1” has been presented. As abovementioned, MNLR analysis using “Dataset-

1” was developed for the NNSW region only. Hence, the comparison shown in the 

Table 60 is only for the three stations of NNSW region. It is clearly evident that for all 

three stations, MNLR models outperformed MLR models in terms of Pearson 

correlation (r) values. The highest correlation obtained from the MLR model was 0.65, 

whereas it was 0.76 for the MNLR model. It is noteworthy that both methods developed 

best models (based on correlation values) for the same combination of indices for each 

of the three stations of NNSW region.  For both methods, the best models have been 

developed with PDO and NINO3.4 combination, which indicates the strong impact of 

these two indices on spring streamflow of NNSW region. 
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Table 60. Comparison of MLR and MNLR models developed with the Dataset-1 

Station 

Name 
Model 

Calibration Period Validation Period 

MLR MNLR MLR MNLR 

r r r r 

Singleton PDOMARCH_NINO3.4JUNE 0.41 0.45 0.65 0.70 

Coggan PDOJUly_NINO3.4JUly 0.33 0.38 0.61 0.76 

North 

Cuerindi 
PDOJUly_NINO3.4JUly 0.46 0.52 0.62 0.72 

8.5 Comparison of MLR and MNLR models for Dataset-2 

“Dataset-2” was used for developing MLR and MNLR based forecast models for all 12 

stations. The comparison of the performances of these models based on their correlation 

values has been presented in the Table 61.  The result shows that in the calibration stage, 

the MNLR models outperformed MLR models almost all stations apart from Kiosk 

station where the correlation of MLR (0.44) model was slightly higher than MNLR 

model (0.38). In the validation stage, both methods showed similar performances based 

on their correlation values. Out of twelve stations, six stations showed higher 

correlations for MLR models while the other six stations showed higher correlations 

for MNLR models. However, for each of the twelve stations, correlation values were 

quite similar.  

For both techniques, the greatest number of best models were found with PDO and 

NINO3.4 combined indices which indicates the strongest influence of these indices on 

spring streamflow of NSW. However, the strong influence of IPO and IOD along with 

EMI was also observed as some best models were also developed with either of these 

indices along with NINO3.4. Hence the strong influence of all these five indices on 

spring streamflow of NSW was clearly evident in this analysis. 
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Table 61. Comparison of MLR and MNLR models developed with the Dataset-2 

Region Station Name 

MLR models for Dataset-2 MNLR models for Dataset-2 

Best Models Pearson Correlation (r) Best Models Pearson Correlation (r) 

Calibration Validation Calibration Validation 

NNSW 

Singleton 
PDOMar 

NINO3.4Jun 

0.43 

 

0.51 PDOJune 

NINO3.4June 

0.47 0.56 

Coggan 
PDOJul 

NINO3.4Jul 

0.35 

 

0.60 IODJune 

NINO3.4June 

0.38 0.37 

North 

Cuerindi 

 

PDOJul 

NINO3.4Jul 

0.51 

 

0.56 PDOApr 

NINO3.4June 

0.53 0.62 

SNSW 

Gundagai 
IPOJul 

NINO3.4Jul 

0.40 0.43 PDOMar 

NINO3.4Mar 
0.47 0.54 

Wee Jasper 
IODJul 

NINO3.4Jul 

0.44 0.58 IPO 

NINO3.4Jun 
0.45 0.48 

Kiosk 

PDOAug 

NINO3.4Jul 

 

0.44 0.53 IODJun 

NINO3.4Jun 

0.38 

0.56 

Mittagang 

Crossing 

PDOAug 

NINO3.4Jul 

0.33 0.64 PDOMar 

NINO3.4May 

0.48 0.51 

CWNSW 

Corowa 
IPOJun 

IODJun 

0.29 0.87  

PDODec-

NINO3.4May 

0.43 0.39 

Wagga 

Wagga 

IPOJul 

NINO3.4JuL 

0.41 0.20  

PDOMar-

NINO3.4Mar 

 

0.43 

 

0.35 

Cowra 
PDOMar 

NINO3.4Feb 

0.25 0.32  

PDOApril-

NINO3.4Apr 

 

0.44 

 

0.11 

WNSW 

Barham 
IODJun 

NINO3.4Jun 

0.33 0.78  

PDODec-

NINO3.4May 

0.40 0.51 

Brewarrina 
IODJul 

NINO3.4Jul 

0.41 0.59 EMIJune_ 

NINO3.4June 

0.51 0.61 
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8.6 Comparison of MLR, MNLR and GEP models for Same Dataset 

As mentioned earlier, a preliminary study was carried out to explore the linear 

relationships between climate indices and seasonal streamflow of NSW region where 

MLR technique was used to develop the linear regression models which were followed 

by the application of Multiple Non-Linear Regression (MNLR) technique to develop 

the forecast models with a view to comparing the potential of both linear and non-linear 

techniques. In the final stage of this study, an advanced technique, Gene Expression 

Programming (GEP) was exploited to develop the forecast models with a view to 

further improvement of the performances of output models. 

Here, performances of all three methods, i.e., MLR, MNLR and GEP, have been 

compared and analyzed to explore the best streamflow forecasting technique among the 

used three techniques for NSW region. The Pearson correlation value (r) based 

comparative analysis has been presented in the Table 62. It is noteworthy that in this 

comparative analysis, “Dataset-2” was used to develop all the models for all three 

methods. 

 For every single station, the non-linear GEP models have shown better performance 

than the linear MLR and non-linear MNLR models in terms of both Pearson correlation 

(r) values and statistical errors. The time series plot in Figure 36 explains the much 

better performance of the developed GEP models compared to the MLR and MNLR 

models.  

The GEP models were able to follow the trend of the actual observed data. Furthermore, 

while the MLR and MNLR models failed to capture the high values, GEP models 

successfully captured almost all the high points. 

  

Based on the Pearson correlation values (r), the comparison of the results of GEP 

models with MLR and MNLR models, presented in Table 62 shows that GEP models 

have the best predictability. The highest correlations were 0.89 and 0.97 for GEP 

models, whereas for MLR models the highest correlations were 0.51 and 0.87 and for 

MNLR models the values were 0.53 and 0.62  in calibration and validation periods 
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respectively. For all the stations, GEP models outperformed MLR and MNLR models 

in terms of Pearson correlation (r) values ensuring the better predictability of the GEP 

models. 
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Table 62. Performance comparison of the developed MLR, MNLR and GEP 

models 

 

 

 

R
eg

io
n 

St
at

io
n 

N
am

e 

GEP MLR MNLR 

Best 

Models 

Pearson Correlation (r) 
Best Models 

Pearson Correlation (r) Best 

Models 

Pearson Correlation (r) 

Calibration Validation Calibration Validation Calibration Validation 

N
N

SW
 

Singleton 
PDOApr 

NINO3.4May 
0.74 0.79 

PDOMar 

NINO3.4Jun 
0.43 0.51 

PDOJun 

NINO3.4Jun 
0.47 0.56 

Coggan 
PDOMar 

NINO3.4Jun 
0.87 0.91 

PDOJul 

NINO3.4Jul 
0.35 0.60 

IODJun 

NINO3.4Jun 
0.38 0.37 

North Cuerindi 

 
PDOMay 

NINO3.4May 
0.76 0.82 

PDOJul 

NINO3.4Jul 
0.51 0.56 

PDOApr 

NINO3.4jun 

 

0.53 
0.62 

SN
SW

 

Gundagai 
PDOMar 

NINO3.4Mar 
0.72 0.93 

IPOJul 

NINO3.4Jul 
0.40 0.43 

PDOMar 

NINO3.4Mar 
0.47 0.54 

Wee Jasper 

PDOJul 

NINO3.4Jul 

 

0.71 0.87 
IODJul 

NINO3.4Jul 
0.44 0.58 

IPO 

NINO3.4Jun 

 

0.45 
0.48 

Kiosk 
PDOApr 

NINO3.4May 
0.72 0.86 

PDOAug 

NINO3.4Jul 

 

0.44 0.53 
IODJun 

NINO3.4Jun 
0.38 0.56 

Mittagang 

Crossing 

IODMar 

NINO3.4May 
0.74 0.78 

PDOAug 

NINO3.4Jul 
0.33 0.64

PDOMar 

NINO3.4May 
0.48 0.51 

C
W

N
SW

 

Corowa 
PDOJun 

NINO3.4Jun 
0.70 0.83 

IPOJun 

IODJun 
0.29 0.87 

PDODec 

NINO3.4May 
0.43 0.39 

Wagga 

Wagga 

IPOJul 

EMIJuL 
0.74 0.72 

IPOJul 

NINO3.4JuL 
0.41 0.20 

PDOMar 

NINO3.4Mar 

 

0.43 

 

0.35 

Cowra 
PDOMar 

NINO3.4Feb 
0.89 0.57 

PDOMar 

NINO3.4Feb 
0.25 0.32 

PDOApr 

NINO3.4Apr 
0.44 0.11 

W
N

SW
 Barham 

PDOApr 

NINO3.4May 
0.67 0.84 

IODJun 

NINO3.4Jun 
0.33 0.78 

PDODec 

NINO3.4May 
0.40 0.51 

Brewarrina 
EMIJul 

NINO3.4Jul 
0.84 0.97 

IODJul 

NINO3.4Jul 
0.41 0.59 

EMIJun 

NINO3.4Jun 
0.51 0.61 
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Figure 36. Comparison of the performances of  developed MLR, MNLR and 

GEP models through time series plot 
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8.7 Comparison of Current Study with Previous Studies 

In Table 63, the performances of developed MLR, MNLR and GEP models were 

compared with the works of many researchers who attempted similar analyses to 

forecast seasonal streamflow using climate indices in different regions of south-east 

Australia. The developed combined models in the current study outperformed the 

previously developed models in terms of Pearson correlation (r) values. 

The comparison between the outcomes obtained from this study ( MLR, MNLR and 

GEP models) and past research studies based upon highest correlation values presented 

in Table 63 depicts that the current study (all MLR, MNLR and GEP models) 

outperformed any of the past research works explaining the significant combined 

impact of multiple indices on spring streamflow of the study region. Pearson correlation 

(r) values are much higher for the multiple indices’ models than that of the single-index 

model.  For instance, at Singleton station during single correlation analyses, 

NINO3.4June and PDOMarch showed correlations −0.43 and −0.29, respectively (Esha 

and Imteaz, 2018), whereas, for MLR, MNLR and GEP analyses the correlation values 

for PDO_NINO3.4 combined models increased to 0.56, 0.62 and 0.93 

respectively(Table 63). The variation of influences of different climate indices on 

different study regions of NSW is comparable with the recent study outcomes of Duc 

et al. (2017). They have reported association of climate indices with NSW rainfall using 

Bayesian model averaging. Among their studied sites, outcomes of the sites which are 

within 160 km of the current study’s selected streamflow stations are similar to the 

findings of current study. They have reported that a single IPO cannot impact NSW 

rainfall significantly; however, its association with ENSO is significantly influential on 

the rainfall of almost the whole of NSW. The current study evidenced the strong 

influence of PDO–NINO3.4 on spring streamflow almost across the whole state (it is 

to be noted that IPO and PDO are similar as IPO acts on the whole Pacific basin and 

PDO is active in the North Pacific, poleward of 20°N). This finding is strongly 

supported by the findings of many past studies that suggested IPO or PDO phases 

modulate the frequency and magnitude of ENSO events (Power et al. 1999; Folland et 

al. 2002; Franks 2004; Verdon et al. 2004) which is influential on the streamflow 
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volumes of many parts of the world (Kahya & Dracup 1993; Moss et al. 1994; Piechota 

& Dracup 1996; Piechota et al. 1998; Chiew et al. 1998; Dettinger & Diaz 2000; Kiem 

& Franks 2001; Wooldridge et al. 2001). 

Table 63. Comparison of the present study with the previous studies based on the 

highest correlations between indices and spring streamflow for South-East 

Australia 

INDICES Kirono et al. 
(2010) 

 

Chiew et al. 
(2003) 

 

CURRENT STUDY 
Single lagged 
correlation 

MLR 
correlation 

MNLR 
correlation 

GEP 
correlation 

Nino3.4 - - -0.43iv 0.56viii 0.62ix 0.93ix 

PDO - - -0.41v 
Nino3 0.35i - 0.36vi    
SOI 0.36ii 0.51iii 0.51vii    

 
i) 8 months lagged Nino3             ii) 12 months lagged SOI           iii) Winter SOI  

                      iv) 3 months lagged Nino3.4          v) 2 months lagged PDO            vi) 3 months lagged Nino3.4    
                   vii) 2 months lagged SOI               viii) PDOJuly & Nino3.4July               ix) PDOApril & Nino3.4June         

                           x)   PDOMarch & Nino3.4March         

8.8 Conclusion 

In this chapter, a comparative analysis of the performances of developed MLR, MNLR 

and GEP models has been carried out. The throughout analysis revealed that GEP is the 

best performing model while predicting spring streamflow of NSW region. However, 

the non-linear technique (MNLR) was a better performer than the linear technique 

(MLR) while comparing the predictability of these two techniques. As mentioned 

earlier, two different datasets were used in this analysis between which “Dataset-2” 

produced better results while used as input dataset for the streamflow forecast models. 

Among the five used climate indices, PDO and NINO3.4 combined models provided 

the maximum number of best models implying the strongest impact of these two indices 

on spring streamflow on NSW region. All techniques (MLR, MNLR and GEP) applied 

in this study outperformed the results of any of the previous studies carried out for 

forecasting streamflow in this region. 
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Chapter 9 
Conclusion 

9.1 Summary of the research study 

The main objective of this study was to develop a seasonal streamflow forecast model 

for NSW incorporating multiple large-scale climate indices as predictors with the 

application of different linear, non-linear and Artificial Intelligence (AI) based 

methods. NSW was chosen as the study area considering the agricultural importance of 

this region and its major contribution to Australia’s economy. A reliable forecast model 

will enable the water stakeholders of this region to take low-risk decisions at the earlier 

stage of the crop period and thus will enhance agricultural production and mitigate the 

losses due to unusual extreme climatic phenomena like droughts and high floods.  

 Three different modelling techniques were applied to accomplish the aim of this study 

which included Linear MLR (Multiple Linear Regression), Non-linear MNLR 

(Multiple Non-Linear Regression) and Artificial Intelligence (AI)-based GEP (Gene 

Expression Programing) methods. Though MLR and MNLR are commonly used 

statistical techniques for forecasting different hydrological parameters such as rainfall, 

streamflow, etc., application of GEP is quite rare in this field. The novelty of this study 

is that this is the first time long-term seasonal streamflow prediction for Australian 

rivers is attempted using GEP. Among the modelling techniques, Artificial Intelligence 

(AI) based models are preferred over regression-based models, as they allow the data 

itself to identify the model structure rather than imposing any predefined structure on 

the data. Therefore, GEP was considered as the primary modelling technique in this 

study. GEP is chosen over ANN (Artificial Neural Networks) model, as ANN is a 

black-box model, whereas GEP is able to explain the developed forecast models with 

mathematical expressions.   

Initial catchment conditions and climate indices are considered as the two main sources 

of predictability of Australian rainfall and streamflow. Since the incorporation of initial 

catchment condition is complex, this study exploited indices of large-scale climate 
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anomalies as the predictor of seasonal streamflow as they showed significant concurrent 

and lagged correlations with seasonal streamflow of NSW. A number of climate indices 

were selected which included Interdecadal Pacific Oscillation (IPO)/ PDO (Pacific 

Decadal Oscillation), ENSO (El Nino Southern Oscillation), EMI (ENSO Modoki 

Index) originated from the Pacific Ocean, and IOD (Indian Ocean Dipole) originated 

from the Indian Ocean. This selection was based on the concurrent and single lagged 

concurrent analyses between streamflow and climate indices as well as on the outcomes 

of the previous research studies in the related field. 

As a case study, twelve streamflow measuring stations were selected from four different 

regions of NSW in order to explore the spatial variation of influences of different 

climate indices on seasonal streamflow of this state. Monthly streamflow data for 102 

years (1914-2016) were collected from the Bureau of Meteorology’s (BoM) website. 

Monthly oceanic and atmospheric climate indices, i.e., IPO, PDO, ENSO (NINO3.4) 

and IOD data were obtained from Climate Explorer website (http://climexp.knmi.nl) 

while the EMI data was collected from the website of JAMSTEC 

(http://www.jamstec.go.jp/frcgc/research/dl/iod/modoki) for 102 years. This whole 

dataset was divided into two categories- calibration and validation periods. Since the 

aim was to explore the best predictor model, the range of calibration and validation 

periods was selected through a trial and error process which revealed two datasets 

(Dataset-1 and Dataset-2) to produce promising results for MLR and MNLR methods 

whereas GEP technique showed good results with Dataset-2 only. Therefore, the final 

comparison among the applied techniques was carried out with Dataset-2 only. 

The research began with the investigation of the concurrent relationship between 

seasonal streamflow and seasonal climate drivers. It was revealed from the concurrent 

correlation analysis spring and summer seasons showed a statistically significant 

relation with climate indices. Based on the outcome of this analysis, since spring season 

seemed to have the strongest correlations with climate modes, it was chosen to carry on 

the analysis to develop spring streamflow forecast models using climate indices. Next 

single lagged correlation analysis was done between the single lagged climate index for 

nine antecedent months from December in the previous year until August of the current 

http://climexp.knmi.nl/
http://www.jamstec.go.jp/frcgc/research/dl/iod/modoki
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year and spring streamflow in order to gain an understanding of the extent of influence 

of climate indices on spring flow. This analysis helped to identify the comparatively 

more influential climate indices on spring streamflow with their corresponding lagged 

months.  

Based on the outputs of single lagged correlation analysis, the combinations of multiple 

climate indices were selected, which served as the input data for developing the MLR 

models. To check the multicollinearity existed among the climate indices, concurrent 

correlation analysis between seasonal climate indices was carried out. While selecting 

the multiple indices for developing MLR models, indices originating from the same 

source were not used in the same model to avoid multicollinearity. Thus, multiple 

indices (two indices for this study) having statistically significant relationships with 

spring flow (obtained from single lagged correlation analysis) and originating from a 

different source to avoid multicollinearity, were selected for developing any MLR 

model. As mentioned earlier, the MLR analysis was done with both Datasets (Dataset-

1 and Dataset-2). It paved a way to make a comparison between the MLR models 

developed with two different datasets as well. The MLR analysis depicts a clear view 

of regional variation in the influence of combined multiple models throughout the study 

area. Most numbers of models from all four regions showed statistically significant 

correlations for PDO and NINO3.4 combinations, implying the strong influence of 

these two indices on spring streamflow of NSW. Nevertheless, IPO and IOD combined 

models were also able to produce statistically significant outcomes for a few stations. 

After calibrating the models, the models were validated using the validation dataset. 

The correlation values in both calibration and validation periods were quite similar. To 

assess the reliability of the developed models, statistical performance test was 

conducted based on RMSE and MAE values. The best models were based on higher 

correlation values and lower statistical errors. It was evident that every time the 

combined models outperformed the models developed considering a single climate 

index in terms of Pearson correlation values. The correlation values obtained from the 

best models ranged between 0.51 and 0.65. The best models could provide a prediction 

of streamflow up to six months in advance, though the correlation values decrease with 

an increase in lagged months. 
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For this study, selections of the best models were based on the significant correlation 

values in both calibration and validation stages. However, while looking at the time 

series comparisons between the observed and simulated streamflow values, it is found 

that the developed models are unable to capture some unusual events like severe 

droughts or high floods. A simple multiple linear regression model consisting of only 

two climate indices is not expected to capture the complex relationships between 

streamflow and climate drivers very well and thus is not anticipated to provide a very 

good match with observed values. Moreover, in fact, rainfall and streamflow are also 

influenced by some other local and/or regional factors (i.e., temperature, humidity, 

wind speed, soil moisture, etc.), which are not possible to consider in such regression 

models. 

Since the linear models could not produce very satisfactory results and it is assumed 

that the relationship between streamflow and climate indices is more inclined to non-

linearity than linearity, a Multiple Non-Linear Regression Modelling (MNLR) 

approach was taken to capture the existing non-linear relationships between seasonal 

flow and climate modes. The same combination set of multiple indices were chosen for 

MNLR analysis. Again, for MNLR analysis, most of the stations showed statistically 

significant correlations with PDO and NINO3.4 combinations while influence IPO, 

IOD and EMI was also evident for few stations. Even though, in general, most stations 

have higher correlations for MNLR models than MLR models, the improvement was 

not very significant. Furthermore, the poor performance of MNLR models was 

observed in time series analysis while it failed to capture the extreme points, which is 

no better than MLR models.   

The weak prediction skills of the developed MNLR models led to the application of a 

much more advanced technology which was Artificial Intelligence (AI) based Gene 

Expression Programming (GEP). The same combined sets of multiple indies as MLR 

and MNLR were used as input data for developing GEP models. The outcomes obtained 

from GEP models were very promising with their superior performances while 

compared to MLR or MNLR. Higher predictabilities of the developed models were 

ensured by higher correlation values which ranged between 0.57 and 0.97, which are 
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mostly about twice the values achieved by MLR or MNLR. The reliability of the GEP 

models was even more enhanced while the simulated models were able to successfully 

capture the extreme points (i.e., very high and low) of the observed flow data and 

following the trend very well during the time series analysis of observed models versus 

simulated models. The developed GEP models are able to predict spring streamflow up 

to 5 months in advance with significantly high correlation values. 

The comparative analysis between the outcomes obtained from this study ( MLR, 

MNLR and GEP models) and past research studies based upon highest correlation 

values demonstrated that the current study (all MLR, MNLR and GEP models) 

outperformed any of the past research works confirming the significant combined 

impact of multiple indices on spring streamflow of the study region. 

9.2 Conclusions 

Large scale climate drivers have a strong relationship with seasonal streamflow of NSW 

while spring season appeared to have the strongest relationship with the lagged indices. 

The relationship is more inclined to non-linearity than linearity. Hence, the non-linear 

modelling technique is more reliable than linear modelling technique to develop 

streamflow forecast models incorporating lagged climate indices as predictors. In 

general,  the Pacific Ocean climate drivers develop more accurate streamflow forecast 

models compared to Indian Ocean climate drivers.  PDO and NINO3.4 have the 

strongest influence on spring streamflow across the whole of NSW. The Artificial 

Intelligence (AI) based Gene Expression Programming (GEP) has great potential to 

forecast seasonal streamflow of NSW using large-scale climate variables as the 

predictor. The accuracy and reliability of GEP are much higher than simple linear and 

non-linear regression modelling techniques (such as Multiple Linear Regression(MLR) 

and Multiple Non-Linear Regression (MNLR)) while predicting the seasonal flow of 

NSW. Along with its high prediction skill, GEP is able to generate output models as 

mathematical expressions which can be very useful to the water stakeholders even to 

someone without having much knowledge of the used software. This unique transparent 

quality of GEP makes it more suitable than other black-box modelling techniques such 
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as ANN for developing streamflow forecast models. The research study reveals strong 

predictability of GEP models to forecast seasonal streamflow of NSW exploiting 

antecedent large-scale climate indices as predictors. 

9.3 Future Recommendation 

For further improvement of the predictability of GEP models, more than two climate 

indices can be incorporated into the model as the predictors of seasonal streamflow. 

This sort of study is mainly based on regional climate index/indices applicable for a 

region. However, a similar concept can be applied to other regions if any such 

index/indices are found to be effective for other regions. GEP modelling technique 

should be applied for other regions of Australia to explore the spatial variation of 

influence of climate modes on seasonal streamflow of this country. Again, this method 

can be used for other seasons as it will help to compare the seasonal variations of 

influence of different climate indices and thus will enable to identify the most 

influential indices for each season to predict streamflow. Hybrid models like Wavelet-

GEP and Wavelet-ANN should be attempted to explore and compare their potential to 

forecast seasonal streamflow using lagged climate indices as the predictors. These areas 

of research will be taken into account for future research works as an extension of the 

current study.  
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A1 Best GEP Model Output for Singleton Station (NNSW) 
 

A1.1 Output results for Calibration period 
 

A1.1.1 Curve Fitting 
 

 

 

 

 

A1.1.2 Target sorted fitting 
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A1.1.3  Model sorted fitting 
 

 

 

 

 

 

A1.1.4 Stacked distribution 
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A1.1.5 Scatter plot 
 

 

 

 

A1.1.6  Residuals plot 
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A1.1.7 Model performance 
Fitness 67.3200044241749 

MSE 191.945109895219 

RMSE 13.8544256429207 

MAE 10.6225830678003 

RSE 0.449692111361631 

RRSE 0.670590867341355 

RAE 0.669938026087153 

Correlation Coefficient 0.741829439115973 

R-square 0.550310916739119 

Calculation Errors 0 
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A1.2  Output results for Validation period 
 

 

 

 

A1.2.1 Curve fitting 

 

 

A1.2.2 Target sorted fitting 
 

 

 

 

 

 



vi 
 

 

A1.2.3 Model sorted fitting 
 

 

 

 

A1.2.4 Stacked distribution 
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A1.2.5 Scatter plot 
 

 

 

 

 

 

 

A1.2.6 Residuals plot 
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A1.2.7 Model performance 
 

Fitness 86.1715174775266 

MSE 112.460989012659 

RMSE 10.6047625627667 

MAE 7.46667904254414 

RSE 0.607936373345048 

RRSE 0.779702746785624 

RAE 0.695177253859006 

Correlation Coefficient 0.786918588245728 

R-square 0.61924086452665 

Calculation Errors 0 
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A1.3  Output model explained by Expression Tree 
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A1.4 Output model explained by MATLAB 
 

%------------------------------------------------------------------------ 

% Regression model generated by GeneXproTools 5.0 on 23/09/2020 10:49:55 PM 

% GEP File: C:\Users\resha\Google Drive\Final GeneXPro\FINAL\st01_5P_4N.gep 

% Training Records:  93 

% Validation Records:   6 

% Fitness Function:  RMSE 

% Training Fitness:  67.3200044241749 

% Training R-square: 0.550310916739119 

% Validation Fitness:   86.1715174775266 

% Validation R-square:  0.61924086452665 

%------------------------------------------------------------------------ 

 

function result = gepModelQ1C(d) 

 

G1C2 = -4.76412091433454; 

G1C0 = -6.76543473616749; 

G1C3 = -7.8735236671041; 

G2C0 = -0.208719013227574; 

G2C3 = -7.24332728049562; 

G2C2 = -7.240425122837; 

G2C4 = -0.212381382647828; 

G3C6 = 0.784930507005318; 

G3C1 = -10.9276076134536; 

G3C9 = 0.975943839991455; 

G3C3 = -0.991148106326487; 

 

Five_PC = 1; 

Four_NC = 2; 

 



xi 
 

y = 0.0; 

 

y = ((((d(Five_PC)/d(Four_NC))/(G1C0^4))*((d(Five_PC)-G1C3)*G1C2))^5); 

y = y + (((d(Four_NC)^2)/(d(Four_NC)-G2C0))-((G2C3+G2C2)-(G2C4/d(Five_PC)))); 

y = y + ((realpow(G3C6,d(Four_NC))*(d(Four_NC)*G3C1))-((d(Four_NC)/G3C9)/(G3C3-d(Five_PC)))); 

 

result = y; 
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A2 Best GEP Model Output for Coggan Station (NNSW) 
 

A2.1 Output results for Calibration period 
 

A2.1.1 Curve Fitting 
 

 

 

 

 

A2.1.2 Target sorted fitting 
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A2.1.3 Model sorted fitting 
 

 

 

 

 

 

A2.1.4 Stacked distribution 
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A2.1.5  Scatter plot 
 

 

 

 

A2.1.6  Residuals plot 
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A2.1.7 Model performance 
 

 

Fitness 482.635336522645 

MSE 1.14909330259268 

RMSE 1.07195769627009 

MAE 0.816872739554996 

RSE 0.235264338660963 

RRSE 0.48504055362512 

RAE 0.646793329952511 

Correlation Coefficient 0.874509472062198 

R-square 0.764766816726504 

Calculation Errors 0 
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A2.2  Output results for Validation period 
 

 

 

A2.2.1 Curve fitting 

 

 

A2.2.2 Target sorted fitting 
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A2.2.3 Model sorted fitting 
 

 

 

 

A2.2.4 Stacked distribution 
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A2.2.5 Scatter plot 
 

 

 

 

 

 

 

A2.2.6 Residuals plot 
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A2.2.7 Model performance 
 

 

 

Fitness 372.519939413869 

MSE 2.8372709555991 

RMSE 1.68442006506664 

MAE 1.17910277178139 

RSE 0.847677685775737 

RRSE 0.920694132584615 

RAE 0.686438051907575 

Correlation Coefficient 0.908649951813583 

R-square 0.825644734930827 

Calculation Errors 0 
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A2.3 Output model explained by Expression Tree 
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A2.4  Output model explained by MATLAB 
 

%------------------------------------------------------------------------ 

% Regression model generated by GeneXproTools 5.0 on 24/09/2020 12:21:46 AM 

% GEP File: C:\Users\resha\Google Drive\Final GeneXPro\FINAL\st2_6P_3N.gep 

% Training Records:  93 

% Validation Records:   6 

% Fitness Function:  RMSE 

% Training Fitness:  482.635336522645 

% Training R-square: 0.764766816726504 

% Validation Fitness:   372.519939413869 

% Validation R-square:  0.825644734930827 

%------------------------------------------------------------------------ 

 

function result = gepModelQ2C(d) 

 

G1C6 = -1.54510758084076; 

G1C4 = -0.875769132040791; 

G2C9 = -4.06526212069903; 

G2C0 = -3.29559717102429; 

G2C6 = 13.0293357653121; 

G3C4 = -0.954386689813802; 

G3C6 = -4.17687380978386; 

 

Six_PC = 1; 

Three_NC = 2; 

 

y = 0.0; 

 

y = (((d(Six_PC)/G1C6)*(d(Three_NC)*d(Three_NC)))/((G1C4-d(Six_PC))-d(Six_PC))); 

y = y + (((G2C9-d(Three_NC))-(d(Six_PC)*d(Six_PC)))/((G2C0-d(Three_NC))-realpow(G2C6,d(Three_NC)))); 
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y = y + (realpow((G3C6^2),G3C4)/((d(Six_PC)^5)-(G3C4^3))); 

 

result = y; 
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A3 Best GEP Model Output for North Cuerindi Station (NNSW) 
 

A3.1 Output results for Calibration period 
 

A3.1.1 Curve Fitting 
 

 

 

 

 

A3.1.2 Target sorted fitting 
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A3.1.3 Model sorted fitting 
 

 

 

 

 

 

A3.1.4 Stacked distribution 
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A3.1.5 Scatter plot 
 

 

 

 

A3.1.6 Residuals plot 
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A3.1.7  Model performance 
 

Fitness 146.64905979453 

MSE 33.8607658616522 

RMSE 5.81900041773948 

MAE 4.48574348227719 

RSE 0.415658893841058 

RRSE 0.644716134311108 

RAE 0.724014609908479 

Correlation Coefficient 0.764476982722173 

R-square 0.584425057111998 

Calculation Errors 0 
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A3.2  Output results for Validation period 
 

 

 

A3.2.1 Curve fitting 

 

 

A3.2.2 Target sorted fitting 
 

 

 

 

 

 

 



xxviii 
 

 

A3.2.3 Model sorted fitting 
 

 

 

 

A3.2.4 Stacked distribution 
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A3.2.5 Scatter plot 
 

 

 

 

 

 

 

A3.2.6 Residuals plot 
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A3.2.7 Model performance 
 

 

Fitness 93.6447217390319 

MSE 93.6764295785372 

RMSE 9.67865845964911 

MAE 7.99365719948064 

RSE 0.808642855997251 

RRSE 0.899245715028574 

RAE 0.7988395002443 

Correlation Coefficient 0.815222775750089 

R-square 0.664588174101679 

Calculation Errors 0 
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A3.3 Output model explained by Expression Tree 
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A3.4 Output model explained by Matab 
 

%------------------------------------------------------------------------ 

% Regression model generated by GeneXproTools 5.0 on 24/09/2020 12:48:20 AM 

% GEP File: C:\Users\resha\Google Drive\Final GeneXPro\FINAL\st11_4P_4N.gep 

% Training Records:  89 

% Validation Records:   6 

% Fitness Function:  RMSE 

% Training Fitness:  146.64905979453 

% Training R-square: 0.584425057111998 

% Validation Fitness:   93.6447217390319 

% Validation R-square:  0.664588174101679 

%------------------------------------------------------------------------ 

 

function result = gepModelQ11C(d) 

 

G1C6 = -6.46088332570378; 

G1C5 = 4.74514669421048; 

G2C1 = 0.907925656910916; 

G2C3 = -0.442555087360802; 

G2C4 = 1.59096311813514; 

G3C1 = 0.934738896839175; 

G3C9 = 0.903937118263785; 

 

Four_PC = 1; 

Four_NC = 2; 

 

y = 0.0; 

 

y = ((d(Four_NC)*((d(Four_PC)-G1C5)+(d(Four_NC)^3)))-G1C6); 
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y = y + (((G2C1-d(Four_NC))/(G2C3+d(Four_PC)))*((d(Four_PC)^3)/(d(Four_NC)+G2C4))); 

y = y + ((reallog(G3C1)/d(Four_NC))*((d(Four_PC)*d(Four_PC))*(d(Four_PC)-G3C9))); 

 

result = y; 
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A4 Best GEP Model Output for Gundagai Station (SNSW) 
 

A4.1 Output results for Calibration period 
 

A4.1.1 Curve Fitting 
 

 

 

 

 

A4.1.2 Target sorted fitting 
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A4.1.3 Model sorted fitting 
 

 

 

 

 

 

A4.1.4 Stacked distribution 
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A4.1.5 Scatter plot 
 

 

 

 

A4.1.6 Residuals plot 
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A4.1.7  Model performance 
 

 

Fitness 18.2402230232923 

MSE 2897.01124919828 

RMSE 53.8238910633399 

MAE 42.8029875773736 

RSE 0.475592330687834 

RRSE 0.689632025567138 

RAE 0.701349310432205 

Correlation Coefficient 0.724358842514304 

R-square 0.524695732728662 

Calculation Errors 0 
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A4.2  Output results for Validation period 
 

 

 

A4.2.1 Curve fitting 

 

 

A4.2.2 Target sorted fitting 
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A4.2.3 Model sorted fitting 
 

 

 

 

A4.2.4 Stacked distribution 
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A4.2.5 Scatter plot 
 

 

 

 

 

 

 

A4.2.6 Residuals plot 
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A4.2.7 Model performance 
 

 

Fitness 33.6795201821979 

MSE 823.209884513885 

RMSE 28.691634399488 

MAE 25.7019897351135 

RSE 0.881653548098189 

RRSE 0.938964082432437 

RAE 0.920896421434122 

Correlation Coefficient 0.928147193711262 

R-square 0.861457213194092 

Calculation Errors 0 
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A4.3 Output model explained by Expression Tree 
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A4.4 Output model explained by Matab 
 

%------------------------------------------------------------------------ 

% Regression model generated by GeneXproTools 5.0 on 24/09/2020 1:30:11 AM 

% GEP File: C:\Users\resha\Google Drive\Final GeneXPro\FINAL\st06_6P_6N.gep 

% Training Records:  92 

% Validation Records:   6 

% Fitness Function:  RMSE 

% Training Fitness:  18.2402230232923 

% Training R-square: 0.524695732728662 

% Validation Fitness:   33.6795201821979 

% Validation R-square:  0.861457213194092 

%------------------------------------------------------------------------ 

 

function result = gepModelQ6C(d) 

 

G1C6 = -6.43852994018372; 

G1C3 = -4.86755451027764; 

G1C9 = 6.64409480835102; 

G2C7 = -3.62437751945682; 

G2C2 = 8.90140544873327; 

G3C0 = 6.36768063447981; 

G3C3 = -4.09708795588808; 

G3C6 = 5.52622580339976; 

G4C2 = 7.50121639519798; 

G4C0 = 0.348274972022856; 

G5C0 = -7.76722585678972e-04; 

G5C8 = -5.23215556729666; 

G6C5 = 6.11360511564837; 

G6C1 = -8.94424402133345; 
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G7C9 = -11.2215366496599; 

G7C6 = 2.30066567096449; 

G8C7 = -3.0777589973697; 

G8C8 = -2.19896653927834; 

G8C6 = -3.30889278847621; 

G9C7 = 0.542709547006177; 

G9C1 = 6.53924680318613; 

G9C8 = 6.11506263102109; 

G9C2 = -1.04723253973531; 

 

Six_PC = 1; 

Six_NC = 2; 

 

y = 0.0; 

 

y = ((G1C6*((d(Six_NC)^3)-(d(Six_PC)-G1C9)))*(((d(Six_PC)*d(Six_PC))+d(Six_PC))/G1C3)); 

y = y + ((((d(Six_NC)-G2C2)^2)+((d(Six_NC)-d(Six_PC))-(d(Six_PC)^3)))+((G2C7-
d(Six_NC))*(d(Six_NC)/d(Six_PC)))); 

y = y + ((G3C0+((((d(Six_PC)^2)*d(Six_PC))-(G3C3^2))/exp((G3C6-d(Six_PC)))))^2); 

y = y + ((((d(Six_PC)^4)+(G4C0*d(Six_NC)))/exp((d(Six_PC)^4)))*(((d(Six_PC)+d(Six_NC))*G4C2)^2)); 

y = y + ((d(Six_NC)/((G5C0*G5C8)+(d(Six_NC)^4)))-(((d(Six_NC)*d(Six_NC))-(d(Six_NC)^3))^3)); 

y = y + (G6C5/((((d(Six_PC)^3)+d(Six_PC))+(d(Six_PC)*d(Six_PC)))+((d(Six_PC)+G6C1)*d(Six_NC)))); 

y = y + ((G7C9*d(Six_NC))*(((d(Six_PC)*d(Six_PC))-(d(Six_NC)-d(Six_PC)))-((d(Six_PC)*d(Six_NC))-G7C6))); 

y = y + (realpow(((exp((G8C6-G8C8))-(G8C8-d(Six_PC)))^2),G8C7)+(d(Six_NC)^5)); 

y = y + (realpow(((G9C1-G9C8)*(d(Six_PC)^4)),exp((G9C2-d(Six_NC))))/(exp(d(Six_PC))+(G9C7*d(Six_NC)))); 

 

result = y; 
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A5 Best GEP Model Output for Wee Jasper Station (SNSW) 
 

A5.1 Output results for Calibration period 
 

A5.1.1 Curve Fitting 
 

 

 

 

 

A5.1.2 Target sorted fitting 
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A5.1.3 Model sorted fitting 
 

 

 

 

 

 

A5.1.4 Stacked distribution 
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A5.1.5 Scatter plot 
 

 

 

 

A5.1.6 Residuals plot 
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A5.1.7  Model performance 
 

 

 

 

Fitness 149.559173836105 

MSE 32.3341974865807 

RMSE 5.68631668891038 

MAE 4.47078781123361 

RSE 0.496004011341018 

RRSE 0.704275522321356 

RAE 0.701064487688217 

Correlation Coefficient 0.709929131358016 

R-square 0.503999371550747 

Calculation Errors 0 
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A5.2  Output results for Validation period 
 

 

 

A5.2.1 Curve fitting 

 

 

A5.2.2 Target sorted fitting 
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A5.2.3 Model sorted fitting 
 

 

 

 

A5.2.4 Stacked distribution 
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A5.2.5 Scatter plot 
 

 

 

 

 

 

 

A5.2.6 Residuals plot 
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A5.2.7 Model performance 
 

Fitness 198.65228394696 

MSE 16.2725225388221 

RMSE 4.03392148396843 

MAE 3.30059627687152 

RSE 0.247710274566484 

RRSE 0.497705007576259 

RAE 0.562047287951631 

Correlation Coefficient 0.872281424377413 

R-square 0.760874883313888 

Calculation Errors 0 
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A5.3 Output model explained by Expression Tree 
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A5.4 Output model explained by MATLAB 
%------------------------------------------------------------------------ 
% Regression model generated by GeneXproTools 5.0 on 24/09/2020 1:51:54 AM 
% GEP File: C:\Users\resha\Google Drive\Final GeneXPro\SOUTH\station 
7\h10g9\st07_2P_2N.gep 
% Training Records:  93 
% Validation Records:   6 
% Fitness Function:  RMSE 
% Training Fitness:  149.559173836105 
% Training R-square: 0.503999371550747 
% Validation Fitness:   198.65228394696 
% Validation R-square:  0.760874883313888 
%------------------------------------------------------------------------ 
 
function result = gepModel(d) 
 
G1C1 = 2.02919395943907; 
G1C9 = -0.395060156970892; 
G2C9 = 1.04482345042268; 
G2C4 = -1.03061006500443; 
G2C6 = 8.10788201666699; 
G2C8 = -5.81945921572754; 
G3C1 = -69.2504444698088; 
G3C5 = -1.5164121860644; 
G3C7 = 389.098281285211; 
G4C6 = -0.97334433035802; 
G4C4 = -1.7999427288833; 
G4C1 = -1.2880786371039; 
G4C5 = -0.219702230850183; 
G5C9 = 8.21667394968258; 
G5C7 = 2.50386650251438; 
G5C3 = 5.68711004901465; 
G5C5 = -1.72012253274151; 
G5C1 = -3.90518042417561; 
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G6C0 = 8.46833477059208; 
G6C9 = -0.729920407768304; 
G7C0 = -84.2178973157296; 
G7C1 = -0.265850915033099; 
G7C2 = -3.98068900741016; 
G7C3 = -7.98585653706473; 
G8C9 = 2.28689086800411; 
 
y = 0.0; 
 
y = ((d(2)+((d(1)+d(1))^5))/(((d(1)*G1C1)^4)+((d(2)-G1C9)+d(1)))); 
y = y + (d(2)-((((d(1)+d(2))*(G2C9+G2C4))*((G2C6*d(1))+(d(2)+G2C8)))^5)); 
y = y + (exp(exp((((G3C1^4)*(G3C5-d(1)))*realpow((G3C7^4),d(1)))))+d(1)); 
y = y + ((((G4C1+G4C6)*(d(2)+G4C6))-((d(2)-d(1))^2))*((G4C6-G4C4)-(G4C1*G4C5))); 
y = y + ((((G5C5+d(2))*(G5C1+d(1)))-((d(1)-d(2))^2))+((G5C9/G5C7)-(G5C3-d(2)))); 
y = y + (G6C0+((G6C9*(reallog(G6C0)^2))-((d(2)^2)*d(1)))); 
y = y + (exp((G7C0*(((d(2)^4)*(G7C2-G7C3))-(G7C1+d(2)))))-d(1)); 
y = y + (exp(((d(2)*(d(1)-G8C9))-((d(2)^2)+(d(2)^4))))+d(2)); 
y = y + ((d(1)+((d(2)-d(1))*(d(2)^2)))-(((d(2)^2)*d(1))-(d(1)*d(1)))); 
 
result = y; 
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A6 Best GEP Model Output for Mittagang Crossing (SNSW) 
 

A6.1 Output results for Calibration period 
 

A6.1.1 Curve Fitting 
 

 

 

 

 

A6.1.2 Target sorted fitting 
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A6.1.3 Model sorted fitting 
 

 

 

 

 

 

A6.1.4 Stacked distribution 
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A6.1.5 Scatter plot 
 

 

 

 

 

A6.1.6 Residuals plot 
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A6.1.7  Model performance 
 

 

Fitness 135.074266362845 

MSE 41.0026949729297 

RMSE 6.40333467600513 

MAE 4.88039565961857 

RSE 0.454534464561648 

RRSE 0.674191712023849 

RAE 0.620088399188388 

Correlation Coefficient 0.738724252724388 

R-square 0.545713521563205 

Calculation Errors 0 
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A6.2  Output results for Validation period 
 

 

 

A6.2.1 Curve fitting 

 

 

A6.2.2 Target sorted fitting 
 

 

 

 

 

 

 



lxi 
 

 

 

 

A6.2.3 Model sorted fitting 
 

 

 

 

A6.2.4 Stacked distribution 
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A6.2.5 Scatter plot 
 

 

 

 

 

 

 

A6.2.6 Residuals plot 
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A6.2.7 Model performance 
 

 

Fitness 8.52070227534629E-03 

MSE 115.264311997435 

RMSE 10.7361218322742 

MAE 7.266676347355 

RSE 57.4543303087053 

RRSE 7.57986347559804 

RAE 5.93869318612283 

Correlation Coefficient 0.784566045134735 

R-square 0.61554387917836 

Calculation Errors 0 
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A6.3 Output model explained by Expression Tree 
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A6.4 Output model explained by MATLAB 
%------------------------------------------------------------------------ 

% Regression model generated by GeneXproTools 5.0 on 24/09/2020 4:01:48 AM 

% GEP File: C:\Users\resha\Google Drive\Final GeneXPro\SOUTH\station 8\st08_6I_4N.gep 

% Training Records:  81 

% Validation Records:   6 

% Fitness Function:  RMSE 

% Training Fitness:  135.074266362845 

% Training R-square: 0.545713521563205 

% Validation Fitness:   8.52070227534629E-03 

% Validation R-square:  0.61554387917836 

%------------------------------------------------------------------------ 

 

function result = gepModelQ8C(d) 

 

G1C6 = 0.352038906223837; 

G1C4 = 0.274187613279256; 

G2C9 = -1.6555446648697; 

G2C5 = 28.6909954434334; 

G2C4 = -9.89075983912494; 

G3C3 = 6.31739576544455; 

G3C0 = 4.28876759598874; 

G3C7 = 13.050408090317; 

G4C7 = 0.546463076497621; 

G4C4 = -5.74836421579443; 

G4C9 = 3.75538966743452; 

G5C0 = -3.92330611422773; 

G5C3 = 7.23974306492235; 

G5C1 = 11.6994096468387; 

G5C9 = 4.4911718312656; 
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G5C5 = 11.8207427971022; 

G5C6 = -7.7680436005704; 

G6C3 = 1.31890315116497; 

G6C5 = 0.905661284145816; 

G6C8 = -11.570741760496; 

G6C4 = 6.45639209732433; 

G7C8 = 1.89602343821528; 

G7C1 = 2.11735101232002; 

G8C4 = -4.69954527420881; 

G8C5 = 8.07280208385146; 

G8C2 = -2.39515470752768; 

G8C7 = 2.07495345927305; 

G9C0 = -4.1300698873867; 

G9C9 = -7.46202851756751; 

 

Four_NC = 1; 

Six_IC = 2; 

 

y = 0.0; 

 

y = (G1C6+((((d(Six_IC)+d(Four_NC))-(d(Six_IC)*G1C4))^3)*((d(Four_NC)-d(Six_IC))^5))); 

y = y + ((((d(Six_IC)*G2C5)+(G2C4+d(Six_IC)))*((d(Four_NC)+d(Six_IC))*d(Four_NC)))-
((d(Four_NC)+d(Six_IC))*(G2C9^4))); 

y = y + ((((G3C0-d(Four_NC))+(d(Four_NC)*d(Six_IC)))+((d(Six_IC)*G3C7)*d(Six_IC)))+((d(Four_NC)-
G3C3)*(d(Six_IC)+d(Six_IC)))); 

y = y + ((((d(Four_NC)/d(Six_IC))+(G4C7/d(Four_NC)))-((d(Four_NC)*G4C4)^3))/reallog(((G4C9^4)^5))); 

y = y + reallog(((((G5C9*G5C5)^2)/((d(Four_NC)*G5C6)+G5C0))+((G5C3^5)-(G5C1*G5C1)))); 

y = y + (exp(((G6C5+d(Four_NC))*(d(Four_NC)+G6C8)))+(((G6C4*G6C3)*(d(Four_NC)*d(Six_IC)))-
(d(Four_NC)*G6C3))); 

y = y + (G7C8-((((G7C1+d(Six_IC))-
d(Four_NC))*(d(Four_NC)+d(Six_IC)))/((G7C8*d(Four_NC))+(d(Six_IC)+d(Six_IC))))); 

y = y + (((G8C4*(G8C7^5))+((G8C4^3)-G8C5))+(exp(G8C2)/(d(Six_IC)+d(Four_NC)))); 
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y = y + ((G9C0-(((d(Four_NC)+d(Six_IC))*(d(Six_IC)^4))/((d(Four_NC)*G9C9)*exp(d(Six_IC)))))^4); 

 

result = y; 
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A7 Best GEP Model Output for Kiosk Station (SNSW) 
 

A7.1 Output results for Calibration period 
 

A7.1.1 Curve Fitting 
 

 

 

 

 

A7.1.2 Target sorted fitting 
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A7.1.3 Model sorted fitting 
 

 

 

 

 

 

A7.1.4 Stacked distribution 
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A7.1.5 Scatter plot 
 

 

 

 

A7.1.6 Residuals plot 
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A7.1.7  Model performance 
 

 

Fitness 245.121703630077 

MSE 9.4839737972001 

RMSE 3.07960611072262 

MAE 2.4185239801213 

RSE 0.481946765262886 

RRSE 0.694223858177524 

RAE 0.69913727832635 

Correlation Coefficient 0.720225854722973 

R-square 0.518725281811437 

Calculation Errors 0 
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A7.2  Output results for Validation period 
 

 

 

A7.2.1 Curve fitting 

 

 

A7.2.2 Target sorted fitting 
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A7.2.3 Model sorted fitting 
 

 

 

 

A7.2.4 Stacked distribution 
 

 

 

 

 

 

 

A7.2.5 Scatter plot 
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A7.2.6 Residuals plot 
 

 

 

 

 

A7.2.7 Data table 
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A7.2.8 Model performance 
 

Fitness 216.750765540748 

MSE 13.0580605500495 

RMSE 3.61359385515991 

MAE 2.95830392472734 

RSE 0.818295208701081 

RRSE 0.90459671052966 

RAE 1.02078622876778 

Correlation Coefficient 0.855144868746066 

R-square 0.731272746542727 

Calculation Errors 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



lxxvi 
 

A7.3 Output model explained by Expression Tree 
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A7.4 Output model explained by Matab 
 

 

%------------------------------------------------------------------------ 

% Regression model generated by GeneXproTools 5.0 on 24/09/2020 2:21:35 AM 

% GEP File: C:\Users\resha\Google Drive\Final GeneXPro\SOUTH\station 9\final\st09_5P_4N.gep 

% Training Records:  93 

% Validation Records:   6 

% Fitness Function:  RMSE 

% Training Fitness:  245.121703630077 

% Training R-square: 0.518725281811437 

% Validation Fitness:   216.750765540748 

% Validation R-square:  0.731272746542727 

%------------------------------------------------------------------------ 

 

function result = gepModel(d) 

 

G1C3 = 1.20723919864344; 

G1C4 = 0.791977515434463; 

G2C5 = -6.26738181707205; 

G2C6 = -6.87411275140917; 

G2C3 = -8.66015096855453; 

G2C9 = 5.53147984252449; 

G3C6 = -9.74981514662645; 

G3C4 = -5.43102850589641; 

G3C0 = -5.18518381325724; 

G3C3 = 0.771707784650686; 

G4C8 = -5.71486425016022; 

G4C1 = 3.08725400809015; 

G4C0 = 6.65089877010407; 

G5C8 = 0.614269386833822; 



lxxviii 
 

G5C3 = -2.62750350443245; 

G5C4 = 8.19768777161619; 

G5C7 = 7.47040886116749; 

G5C9 = -5.00732147808073; 

G5C5 = 7.86187322611164; 

G6C6 = -3.89216430524613; 

G6C3 = 0.669786237116415; 

G6C8 = -0.86779060187744; 

G7C1 = 1.04153176136133; 

G7C3 = -7.4759170525861; 

G7C9 = 4.58120204987008; 

G8C3 = -1.28845608354311; 

G8C9 = 2.40129516566367; 

G9C6 = 1.21847203541812; 

G9C4 = -3.14614135075788; 

 

y = 0.0; 

 

y = ((((d(2)^3)-(d(2)^4))/(d(1)-d(2)))-((G1C4^2)/G1C3)); 

y = y + ((d(2)*((G2C6-((G2C3-d(1))*(d(2)/G2C9)))/G2C5))^3); 

y = y + (G3C6+((((G3C0*d(2))-(d(1)-G3C3))/G3C4)*reallog((d(2)*d(2))))); 

y = y + ((d(1)*((d(2)/d(2))+(G4C1/G4C0)))/(((G4C1-d(1))^2)-(G4C8/d(1)))); 

y = y + ((((d(1)+G5C4)*(G5C7-G5C9))-((G5C5-d(2))+(G5C7-d(2))))*exp((G5C8+G5C3))); 

y = y + (((((d(2)+d(2))-d(1))/((G6C6*G6C3)/(G6C8-d(2))))+d(1))^2); 

y = y + (((exp(d(2))/(d(2)-G7C3))/(realpow(G7C9,d(1))+d(1)))/((d(1)-G7C1)*(d(2)*G7C3))); 

y = y + (exp(d(2))/(((G8C3+d(1))/(d(2)*d(2)))-((G8C9+d(1))/(G8C9/d(2))))); 

y = y + ((realpow(G9C6,(d(1)*d(1)))-exp(d(1)))-((G9C4+d(2))+d(2))); 

 

result = y; 
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A8 Best GEP Model Output for Corowa  (CWNSW) 
 

A8.1 Output results for Calibration period 
 

A8.1.1 Curve Fitting 

 

 

 

 

 

A8.1.2 Target sorted fitting 
 

 

 

 



lxxx 
 

 

A8.1.3 Model sorted fitting 
 

 

 

 

 

 

A8.1.4 Stacked distribution 
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A8.1.5 Scatter plot 
 

 

 

 

A8.1.6 Residuals plot 
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A8.1.7  Model performance 
 

 

 

Fitness 9.52180910046823 

MSE 10820.5888211732 

RMSE 104.022059300771 

MAE 82.018262730314 

RSE 0.514913761593019 

RRSE 0.717574917059549 

RAE 0.687624460698335 

Correlation Coefficient 0.697261754763912 

R-square 0.486173954656449 

Calculation Errors 0 
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A8.2  Output results for Validation period 
 

 

A8.2.1 Curve fitting 
 

 

A8.2.2 Target sorted fitting 
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A8.2.3 Model sorted fitting 
 

 

 

 

A8.2.4 Stacked distribution 
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A8.2.5 Scatter plot 
 

 

 

 

 

 

 

A8.2.6 Residuals plot 
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A8.2.7 Model performance 
 

Fitness 18.2920856569624 

MSE 2880.30270065817 

RMSE 53.6684516327625 

MAE 43.9136605379604 

RSE 4.36909613978975 

RRSE 2.0902382973694 

RAE 2.16698698823021 

Correlation Coefficient 0.828795964705327 

R-square 0.686902751111833 

Calculation Errors 0 
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A8.3 Output model explained by Expression Tree 
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A8.4 Output model explained by Matab 
 

%------------------------------------------------------------------------ 

% Regression model generated by GeneXproTools 5.0 on 24/09/2020 2:30:44 AM 

% GEP File: C:\Users\resha\Google Drive\Final GeneXPro\Central west\station 3\final\st03_3P_3N.gep 

% Training Records:  93 

% Validation Records:   6 

% Fitness Function:  RMSE 

% Training Fitness:  9.52180910046823 

% Training R-square: 0.486173954656449 

% Validation Fitness:   18.2920856569624 

% Validation R-square:  0.686902751111833 

%------------------------------------------------------------------------ 

 

function result = gepModel(d) 

 

G1C6 = 3.37896986487187; 

G1C1 = 10.847095819483; 

G1C0 = 6.49540459303568; 

G2C2 = -9.90341770840747; 

G2C4 = -6.89046153447066; 

G3C4 = 4.75857139805292; 

G3C3 = 9.38901944029054; 

G3C2 = 2.38013617389447; 

G4C9 = 9.03866695150609; 

G4C2 = 6.36856604969415; 

G5C9 = -11.3406222017771; 

G5C4 = 8.47246768082645e-02; 

G5C1 = 12.8328771735375; 

G6C5 = 1.19494078087582; 
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G6C1 = -9.59303262428663; 

G6C8 = 9.8839888337962; 

G8C0 = -5.68942911482263; 

G8C4 = -2.11672314649688; 

G8C7 = 0.518762779625843; 

G9C7 = 5.81167897692779; 

G9C5 = -9.54465429395428; 

G9C1 = -5.19015516575132; 

 

y = 0.0; 

 

y = ((((G1C6-d(1))^2)-((d(2)-G1C1)+(d(2)*G1C0)))*((d(1)^3)/(d(1)-d(2)))); 

y = y + ((((G2C2*G2C4)-(d(1)+d(1)))*d(1))-(((G2C2+G2C2)*d(2))+(G2C2*d(2)))); 

y = y + (((d(1)*d(2))*(G3C4*G3C3))+(d(1)/(d(1)+G3C2))); 

y = y + (G4C9-((((d(1)*d(1))^2)*(reallog(G4C2)*d(2)))+((d(1)-d(2))^4))); 

y = y + ((((d(1)^2)/(G5C4-d(2)))*((G5C1*d(2))+d(2)))+((d(1)^2)*(G5C9+d(1)))); 

y = y + ((G6C5/(((d(2)^2)*(G6C8+G6C8))+(G6C1-d(2))))*(d(1)^3)); 

y = y + reallog(((((d(1)-(d(1)*d(1)))+(d(1)+(d(2)+d(1))))^4)^5)); 

y = y + (G8C0*reallog(((G8C4*(((d(1)+G8C7)+(G8C7+d(2)))^5))^2))); 

y = y + ((((d(1)^3)+(d(1)^3))+((G9C5+G9C1)^2))-(((d(1)-G9C1)-G9C7)^2)); 

 

result = y; 
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A9 Best GEP Model Output for Wagga Wagga (CWNSW) 
 

A9.1 Output results for Calibration period 
 

A9.1.1 Curve Fitting 
 

 

 

 

 

A9.1.2 Target sorted fitting 
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A9.1.3 Model sorted fitting 
 

 

 

 

 

 

A9.1.4 Stacked distribution 
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A9.1.5 Scatter plot 
 

 

 

 

A9.1.6 Residuals plot 
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A9.1.7  Model performance 
 

 

 

Fitness 15.6363904460653 

MSE 3963.12789217514 

RMSE 62.9533787192962 

MAE 47.2664003345872 

RSE 0.453502135819371 

RRSE 0.673425672082206 

RAE 0.644426774687492 

Correlation Coefficient 0.739607680577755 

R-square 0.547019521169606 

Calculation Errors 0 
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A9.2  Output results for Validation period 
 

 

 

A9.2.1 Curve fitting 
 

 

A9.2.2 Target sorted fitting 
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A9.2.3 Model sorted fitting 
 

 

 

 

A9.2.4 Stacked distribution 
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A9.2.5 Scatter plot 
 

 

 

 

 

 

 

A9.2.6 Residuals plot 
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A9.2.7 Model performance 
Fitness 15.2892709736612 

MSE 4148.04810372354 

RMSE 64.405342198637 

MAE 56.5522967267102 

RSE 2.45933621905974 

RRSE 1.56822709422447 

RAE 1.54422414841299 

Correlation Coefficient 0.715993428236189 

R-square 0.51264658927741 

Calculation Errors 0 
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A9.3 Output model explained by Expression Tree 
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A9.4 Output model explained by MATLAB 
 

%------------------------------------------------------------------------ 

% Regression model generated by GeneXproTools 5.0 on 24/09/2020 2:56:16 AM 

% GEP File: C:\Users\resha\Google Drive\Final GeneXPro\Central west\station 5\st05_2E_IPO.gep 

% Training Records:  92 

% Validation Records:   6 

% Fitness Function:  RMSE 

% Training Fitness:  15.6363904460653 

% Training R-square: 0.547019521169606 

% Validation Fitness:   15.2892709736612 

% Validation R-square:  0.51264658927741 

%------------------------------------------------------------------------ 

 

function result = gepModelQ5C(d_string) 

 

G1C2 = -0.298172411175445; 

G1C5 = 0.613361938676702; 

G2C4 = -1.90283104948013; 

G2C7 = -1.13646370064301; 

G2C9 = -1.6009898925557; 

G3C2 = 9.70066394064929; 

G3C7 = 0.380586425608606; 

G3C1 = 3.03491513537159; 

G4C9 = 15.5187510405182; 

G4C5 = -0.352933693749839; 

G5C2 = 1.53348984827905; 

G5C6 = 1.28141315990846; 

G5C4 = -0.538233887894743; 
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G6C8 = -1.66908470096463; 

G6C7 = -7.91313823709688e-02; 

G7C7 = 7.68558178745121; 

G7C8 = -7.37819598637263; 

G7C5 = 7.82870724703059; 

G8C1 = -5.60473798058316; 

G8C2 = -17.1379609355451; 

G8C5 = -4.9572811128059; 

G9C2 = 0.159740954202802; 

G9C9 = -6.93649408443321; 

G9C1 = 35.4234934384307; 

G9C6 = 0.826136051515244; 

 

Two_EC = 1; 

All_IPOC = 2; 

 

d = TransformCategoricalInputs(d_string); 

 

y = 0.0; 

 

y = ((((G1C2^2)*(G1C5*G1C2))+((d(Two_EC)^2)^2))/(((d(All_IPOC)+d(Two_EC))+d(All_IPOC))^2)); 

y = y + ((((d(All_IPOC)+d(All_IPOC))*(G2C7+d(All_IPOC)))+((d(Two_EC)^2)/(G2C9-d(All_IPOC))))*(G2C4^4)); 

y = y + ((((G3C7/d(All_IPOC))+(G3C1^4))-
((d(All_IPOC)^2)^3))+((d(Two_EC)/d(All_IPOC))*(G3C2+d(Two_EC)))); 

y = y + (d(All_IPOC)-((((d(All_IPOC)/d(Two_EC))-(d(All_IPOC)^3))-(d(All_IPOC)*G4C9))-
((G4C5/d(All_IPOC))^2))); 

y = y + ((((G5C6+d(Two_EC))^4)/(d(All_IPOC)+(d(Two_EC)+G5C4)))*((d(All_IPOC)+d(All_IPOC))-
(G5C2*d(Two_EC)))); 

y = y + ((G6C8*((d(Two_EC)+d(All_IPOC))^2))/(((d(All_IPOC)^3)^3)-(G6C7-d(Two_EC)))); 

y = y + ((((G7C8*d(Two_EC))*(d(Two_EC)*G7C5))+((d(Two_EC)*G7C7)*G7C7))+(d(All_IPOC)^5)); 

y = y + ((((d(Two_EC)*d(All_IPOC))*(G8C2+d(All_IPOC)))*d(All_IPOC))+(((G8C5-d(Two_EC))^3)-(G8C1^3))); 



ci 
 

y = y + 
((((d(Two_EC)*G9C1)/(G9C6+d(All_IPOC)))+((d(All_IPOC)^4)+G9C9))*(G9C2+(d(All_IPOC)*d(Two_EC)))); 

 

result = y; 

 

function outputData = TransformCategoricalInputs(inputData) 

outputData(1) = str2double(inputData(1)); 

switch char(inputData(2)) 

    case ''  

        outputData(2) = 0.110986439891304; 

    otherwise 

        outputData(2) = str2double(inputData(2)); 

end 
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A10 Best GEP Model Output for Cowra Station (CWNSW) 
 

A10.1 Output results for Calibration period 
 

A10.1.1 Curve Fitting 
 

 

 

 

 

A10.1.2 Target sorted fitting 
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A10.1.3 Model sorted fitting 
 

 

 

 

 

 

A10.1.4 Stacked distribution 
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A10.1.5 Scatter plot 
 

 

 

 

A10.1.6 Residuals plot 
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A10.1.7 Model performance 
 

Fitness 57.1283554543532 

MSE 272.396614625986 

RMSE 16.5044422694615 

MAE 12.3510036917747 

RSE 0.215994105020991 

RRSE 0.464751659513972 

RAE 0.440590662415926 

Correlation Coefficient 0.885449241961496 

R-square 0.784020360090188 

Calculation Errors 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



cvi 
 

A10.2  Output results for Validation period 
 

 

 

A10.2.1 Curve fitting 
 

 

 

 

 

 

A10.2.2 Target sorted fitting 
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A10.2.3 Model sorted fitting 

 

 

 

 

A10.2.4 Stacked distribution 
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A10.2.5 Scatter plot 
 

 

 

 

 

 

 

A10.2.6 Residuals plot 
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A10.2.7 Model performance 
Fitness 55.5367317011037 

MSE 289.207471087483 

RMSE 17.0061009960391 

MAE 15.364756188316 

RSE 23.796934649864 

RRSE 4.87821018918456 

RAE 5.8143792123248 

Correlation Coefficient 0.574181055221706 

R-square 0.329683884175512 

Calculation Errors 0 
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A10.3 Output model explained by Expression Tree 
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A10.4 Output model explained by MATLAB 
 

%------------------------------------------------------------------------ 

% Regression model generated by GeneXproTools 5.0 on 24/09/2020 3:11:28 AM 

% GEP File: C:\Users\resha\Google Drive\Final GeneXPro\Central west\station 10\st10_6P_7N.gep 

% Training Records:  94 

% Validation Records:   6 

% Fitness Function:  RMSE 

% Training Fitness:  57.1283554543532 

% Training R-square: 0.784020360090188 

% Validation Fitness:   55.5367317011037 

% Validation R-square:  0.329683884175512 

%------------------------------------------------------------------------ 

 

function result = gepModelQ10C(d) 

 

G1C1 = 2.15388204838582; 

G2C3 = 8.98645030704631; 

G2C8 = -0.495551920592748; 

G3C7 = 9.94201483199561; 

G3C2 = -4.82976470229194; 

G4C8 = -8.26949088861504; 

G4C4 = 3.71557145908994; 

G4C5 = 16.8624098801291; 

G5C5 = 1.31175263209875; 

G5C1 = 7.00207871854284; 

G7C5 = 2.51961229325873; 

G7C4 = -0.757262858782164; 

G8C2 = -1.18172183595872; 

G8C8 = 7.83596301156651; 

G8C4 = 7.74590289010285; 
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G9C0 = 4.1417502215211; 

G9C6 = 5.82200421719728; 

G9C5 = -4.35257579709894; 

 

Six_PC = 1; 

Seven_NC = 2; 

 

y = 0.0; 

 

y = ((((G1C1*d(Six_PC))^2)/((d(Seven_NC)^4)+(d(Seven_NC)+d(Six_PC))))-(d(Seven_NC)/d(Six_PC))); 

y = y + (G2C3+((((d(Six_PC)+d(Six_PC))+d(Six_PC))*(d(Six_PC)+d(Six_PC)))-((G2C8-
d(Six_PC))/(d(Seven_NC)/d(Six_PC))))); 

y = y + (d(Six_PC)*(d(Six_PC)+(d(Seven_NC)/(((G3C7-G3C2)*d(Seven_NC))+(G3C7-d(Six_PC)))))); 

y = y + (((((d(Seven_NC)*G4C5)+d(Six_PC))/(G4C8+d(Six_PC)))*(d(Six_PC)*(G4C4-d(Seven_NC))))*d(Six_PC)); 

y = y + ((((d(Seven_NC)^5)/(G5C5+d(Six_PC)))-((d(Seven_NC)-G5C1)-d(Six_PC)))+((d(Seven_NC)^4)-
d(Seven_NC))); 

y = y + (d(Seven_NC)*((((d(Six_PC)+d(Seven_NC))+(d(Six_PC)/d(Seven_NC)))/(exp(d(Seven_NC))-d(Six_PC)))-
d(Six_PC))); 

y = y + ((d(Seven_NC)/(d(Seven_NC)+(d(Seven_NC)-G7C5)))+exp(((d(Seven_NC)-d(Six_PC))+(d(Seven_NC)-
G7C4)))); 

y = y + (((d(Six_PC)-(G8C2*d(Six_PC)))^4)/(((d(Six_PC)^5)^3)+exp((G8C8/G8C4)))); 

y = y + (((G9C6/(d(Six_PC)-((d(Seven_NC)-G9C5)/d(Six_PC))))/G9C0)+d(Six_PC)); 

 

result = y; 
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A11 Best GEP Model Output for Barham Station (WNSW) 
 

A11.1 Output results for Calibration period 
 

A11.1.1 Curve Fitting 
 

 

 

 

 

A11.1.2 Target sorted fitting 
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A11.1.3 Model sorted fitting 
 

 

 

 

 

 

A11.1.4 Stacked distribution 
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A11.1.5 Scatter plot 
 

 

 

 

A11.1.6 Residuals plot 
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A11.1.7  Model performance 
 

 

Fitness 11.734880586043 

MSE 7092.34062660336 

RMSE 84.2160354481458 

MAE 69.2387897292566 

RSE 0.557500503325499 

RRSE 0.746659563205012 

RAE 0.689892705049765 

Correlation Coefficient 0.665480384478872 

R-square 0.442864142126147 

Calculation Errors 0 
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A11.2  Output results for Validation period 
 

 

 

A11.2.1 Curve fitting 

 

 

A11.2.2 Target sorted fitting 
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A11.2.3 Model sorted fitting 
 

 

 

 

A11.2.4 Stacked distribution 
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A11.2.5 Scatter plot 
 

 

 

 

 

 

 

A11.2.6 Residuals plot 
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A11.2.7 Model performance 
 

Fitness 20.4630195443411 

MSE 2291.40699756531 

RMSE 47.8686431556745 

MAE 39.9455806317913 

RSE 0.978701174197059 

RRSE 0.989293270065585 

RAE 1.00120730997167 

Correlation Coefficient 0.838685272214799 

R-square 0.703392985830012 

Calculation Errors 0 
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A11.3 Output model explained by Expression Tree 
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A11.4 Output model explained by MATLAB 
%------------------------------------------------------------------------ 

% Regression model generated by GeneXproTools 5.0 on 24/09/2020 3:20:09 AM 

% GEP File: C:\Users\resha\Google Drive\Final GeneXPro\FINAL\st04_5P_4N.gep 

% Training Records:  94 

% Validation Records:   6 

% Fitness Function:  RMSE 

% Training Fitness:  11.734880586043 

% Training R-square: 0.442864142126147 

% Validation Fitness:   20.4630195443411 

% Validation R-square:  0.703392985830012 

%------------------------------------------------------------------------ 

 

function result = gepModelQ4C(d) 

 

G1C6 = 7.01772617781985; 

G1C4 = 16.2172564245718; 

G1C8 = -8.19462899143966; 

G2C4 = 10.842200475842; 

G2C9 = 15.5303723879489; 

G3C5 = 0.57007369242754; 

G3C7 = -3.24746809839492; 

G3C2 = 0.255708115503022; 

G4C2 = 0.836263830088121; 

G4C6 = 8.06398965177774; 

G4C8 = 1.70072443834357; 

G4C0 = 7.02838115874663; 

G5C1 = 5.59413760495826; 

G5C6 = 7.49776330437287; 

G6C9 = -2.32088666808305; 

G7C0 = 2.59376527435523; 



cxxiii 
 

G7C7 = 4.04541267117665; 

G7C9 = 1.25068146290835; 

G7C5 = -12.0351034426597; 

G8C5 = 4.00789880865042; 

G8C3 = 0.836112013123552; 

G8C7 = -7.49038933103061; 

G8C6 = 9.04324673183392; 

G8C1 = -4.5302373635532; 

G9C0 = -1.05650234325856; 

G9C9 = 2.0863778778507; 

G9C5 = -0.82002053193762; 

 

Five_PC = 1; 

Four_NC = 2; 

y = 0.0; 

y = ((((((d(Five_PC)*d(Five_PC))*d(Five_PC))*G1C4)/((G1C8/d(Five_PC))^5))+G1C6)^3); 

y = y + ((((G2C9/d(Four_NC))*(d(Four_NC)^4))*((d(Four_NC)^5)*d(Four_NC)))+((d(Five_PC)-
G2C4)+(G2C9*d(Five_PC)))); 

y = y + (exp(G3C5)/(((d(Five_PC)*d(Five_PC))+(d(Five_PC)-d(Five_PC)))+((G3C7*G3C2)+d(Four_NC)))); 

y = y + ((((d(Five_PC)*G4C8)*(G4C0*d(Five_PC)))*(G4C2-d(Four_NC)))+((G4C6-
d(Four_NC))*(d(Four_NC)^5))); 

y = y + ((((d(Four_NC)^5)-(d(Four_NC)/d(Five_PC)))*((d(Five_PC)-G5C6)*d(Four_NC)))-
((G5C1^3)+(d(Five_PC)^5))); 

y = y + ((((G6C9+d(Four_NC))*(d(Four_NC)*d(Five_PC)))/((d(Five_PC)-d(Four_NC))-
(d(Four_NC)+d(Four_NC))))-reallog((d(Four_NC)^4))); 

y = y + (((G7C0*(d(Five_PC)+d(Four_NC)))-((d(Four_NC)*G7C5)-d(Four_NC)))*((d(Five_PC)-
G7C7)+(d(Five_PC)/G7C9))); 

y = y + ((((G8C3*d(Five_PC))+(G8C7+G8C6))^2)/(((d(Four_NC)*G8C1)+(d(Four_NC)-
d(Five_PC)))+(G8C5+d(Four_NC)))); 

y = y + (((reallog((d(Four_NC)*d(Four_NC)))/(G9C0-d(Five_PC)))+((d(Four_NC)/G9C9)/(G9C5-
d(Five_PC))))*d(Five_PC)); 

 

result = y; 
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A12 Best GEP Model Output for Brewarrina Station (WNSW) 
 

A12.1 Output results for Calibration period 
 

A12.1.1 Curve Fitting 
 

 

 

 

 

A12.1.2 Target sorted fitting 
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A12.1.3 Model sorted fitting 
 

 

 

 

 

 

A12.1.4 Stacked distribution 
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A12.1.5 Scatter plot 
 

 

 

 

A12.1.6 Residuals plot 
 

 

 

 

 

 

 
28 52.86348352 13.1319960036702 39.7314875163298 
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A12.1.7  Model performance 
 

 

Fitness 37.1535071969118 

MSE 671.605853981566 

RMSE 25.9153594221953 

MAE 18.7171276967771 

RSE 0.293164243397578 

RRSE 0.541446436314414 

RAE 0.509720019066482 

Correlation Coefficient 0.840741395477453 

R-square 0.706846094069376 

Calculation Errors 0 
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A12.2  Output results for Validation period 
 
 

 

A12.2.1 Curve fitting 

 

 

A12.2.2 Target sorted fitting 
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A12.2.3 Model sorted fitting 
 

 

 

 

A12.2.4 Stacked distribution 
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A12.2.5 Scatter plot 
 

 

 

 

 

 

 

A12.2.6 Residuals plot 
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A12.2.7 Model performance 
 

 

Fitness 30.0046321680741 

MSE 1045.11169245501 

RMSE 32.328187274498 

MAE 28.8195955917715 

RSE 0.444697906621199 

RRSE 0.666856736204411 

RAE 0.804458211614985 

Correlation Coefficient 0.970728543084829 

R-square 0.942313904359594 

Calculation Errors 0 
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A12.3 Output model explained by Expression Tree 
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A12.4 Output model explained by MATLAB 
 

%------------------------------------------------------------------------ 

% Regression model generated by GeneXproTools 5.0 on 24/09/2020 3:28:21 AM 

% GEP File: C:\Users\resha\Google Drive\Final GeneXPro\FINAL\st12_2E_2N.gep 

% Training Records:  91 

% Validation Records:   6 

% Fitness Function:  RMSE 

% Training Fitness:  37.1535071969118 

% Training R-square: 0.706846094069376 

% Validation Fitness:   30.0046321680741 

% Validation R-square:  0.942313904359594 

%------------------------------------------------------------------------ 

 

function result = gepModelQ12C(d) 

 

G1C0 = 9.53449809062603; 

G2C8 = 0.442547075687291; 

G3C8 = 15.2988165846216; 

G3C1 = -6.03820420271073; 

G3C7 = -16.9383642438457; 

G4C1 = -4.02629069231777; 

G4C9 = -12.3236688828126; 

G4C3 = -0.250886438635503; 

G4C5 = 1.34861745461221; 

G5C4 = 2.60186071352275; 

G5C7 = -2.3820267342143; 

G6C7 = 2.2537874172208; 

G6C8 = 4.52776848963897; 

G6C2 = -9.38459425641652; 

G6C9 = -5.94369033317057; 
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G6C3 = 7.81753113860919; 

G6C6 = 2.79611056495504; 

G7C0 = -0.376852666967208; 

G7C5 = -1.31964774620808; 

G8C0 = -1.10925336768749; 

G8C6 = -0.747868174799753; 

G9C8 = -0.406758446555927; 

G9C7 = 2.43077901369159; 

 

Two_EC = 1; 

Two_NC = 2; 

 

y = 0.0; 

 

y = ((((d(Two_EC)*d(Two_EC))^5)-((d(Two_EC)-d(Two_NC))^3))+realpow(exp((d(Two_EC)^3)),G1C0)); 

y = y + (d(Two_EC)/(G2C8+(((((d(Two_NC)+G2C8)/d(Two_EC))^2)^5)-d(Two_EC)))); 

y = y + ((((d(Two_NC)-d(Two_EC))+(G3C1+d(Two_NC)))^2)-(((G3C8-G3C7)+G3C8)*(d(Two_EC)^2))); 

y = y + (((d(Two_EC)^5)-
((d(Two_NC)*G4C3)/(G4C5+d(Two_NC))))*((G4C1+G4C9)+(d(Two_NC)/d(Two_EC)))); 

y = y + (d(Two_EC)/((((d(Two_EC)+d(Two_EC))^4)+((G5C7*d(Two_EC))-(d(Two_NC)+G5C7)))-G5C4)); 

y = y + ((((G6C2-G6C2)-(d(Two_NC)-G6C9))*((G6C3-G6C6)*d(Two_EC)))-((d(Two_NC)-G6C7)*(G6C8-
d(Two_NC)))); 

y = y + (d(Two_NC)/((d(Two_EC)+G7C0)+((((d(Two_NC)+d(Two_NC))*G7C5)^5)^4))); 

y = y + (G8C0/((((d(Two_NC)+d(Two_EC))+d(Two_NC))-G8C6)+((d(Two_NC)^5)/(d(Two_NC)*d(Two_EC))))); 

y = y + ((reallog((d(Two_NC)^4))+d(Two_NC))+(((G9C8-d(Two_EC))+(d(Two_NC)*G9C7))/d(Two_EC))); 

 

result = y; 
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