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Abstract. Query relaxation is an important problem for querying RDF
data flexibly. The previous work mainly uses ontology information for
relaxing user queries. The ranking models proposed, however, are either
non-quantifiable or imprecise. Furthermore, the recommended relaxed
queries may return no results. In this paper, we aim to solve these prob-
lems by proposing a new ranking model. The model ranks the relaxed
queries according to their similarities to the original user query. The
similarity of a relaxed query to the original query is measured based on
the difference of their estimated results. To compute similarity values
for star queries efficiently and precisely, Bayesian networks are employed
to estimate the result numbers of relaxed queries. An algorithm is also
proposed for answering top-k queries. At last experiments validate the
effectiveness of our method.
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1 Introduction

The Resource description Framework (RDF) is a data model used on the Se-
mantic Web. Recently, more and more data is represented and stored in RDF
format. RDF data is a set of triples and each triple called statement is of the
form (subject, property, object). This data representation is general and flexible.
Almost any kind of data can be represented in this format. To query RDF data,
many query languages on RDF data have been proposed and implemented such
as SPARQL. SPARQL is an RDF query language, which has a SQL-like style.
A SPARQL query usually consists of several triple patterns.

With RDF data growing in size and complexity, several RDF repositories
have also been developed in recent years such as Jena, Sesame. Generally, users
do not know the whole RDF database and often post the failure queries, which
do not return any answers. In this case, it is desirable to relax the original user
query to obtain some approximate answers. Given the RDFs ontology, a failure
query can be relaxed to more general queries.

For example, Fig.1 shows an RDFs ontology and a SPARQL query Q, which
retrieves the academic staff members who are lecturers and also the reviewers of
conference ”WWW”. Suppose Q returns no answers (or not enough answers) and
we try to relax this query to achieve some approximate answers. Using the on-
tology information in Fig.1, query Q can be generalized to capture approximate



PREFIX  rdf:< http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX  abc: < http://www.w3.org/abc.owl#>
SELECT ?X
  WHERE {
  ?X  rdf:Type Lecturer
  ?X  abc:ReviewerOf  "WWW".
   }
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Fig. 1. The Example of RDFs Ontology and a SPARQL Query Q

answers in many ways. Queries Q′(?X, type, AcademicStaff)(?X, ReviewerOf,
”WWW”) and Q′′(?X, Type, Lecturer)(?X, ReviewerOf, ?Y) are both the re-
laxed queries of Q. The answers of each relaxed query are approximate answers
of Q. Since the number of possible relaxations is huge, we hope to rank them.

To rank these relaxations, the authors in [1] introduced the ranking model
on the relaxed queries that have the subsume relationship among them. Given
two relaxations Qi and Qj of the original query Q, if Qi is subsumed by Qj ,
then Qi is better. However, this ranking model is non-quantifiable; moreover, it
fails to rank Q′ and Q′′ in the above example because they have no subsume
relationship between them.

In [5], Huang and Liu proposed a method to rank the relaxed queries depend-
ing on the extent to which the concepts and properties in the relaxed queries
are similar to the user query. First, this ranking model is a little coarse-grained
because it is only based on the ontology information. Furthermore, the rank-
ing model does not consider the real data distribution in the database, so it is
possible that relaxed queries may still have no answers in the database, which
would lead to unnecessary execution cost. To solve this problem, we propose a
fine-grained ranking model and consider the selectivity of relaxed queries in our
ranking model.

In this paper, we propose new methods to rank the relaxed queries and
compute the top-k approximate answers. The contributions of this paper can be
summarized as follows:

– We construct a ranking model which ranks the relaxed queries according to
their similarities to the original user query. The similarity of a relaxed query
to the original query is measured based on the difference of their estimated
results.

– We propose a method to compute the similarity values of relaxed star queries
efficiently using Bayesian networks.



– We develop an algorithm to compute the top-k approximate answers accord-
ing to our ranking model based on best-first search.

The remainder of this paper is organized as follows. Section 2 introduces some
preliminary knowledge. In Section 3, we construct the ranking model. Section 4
presents the method to compute the similarity value of relaxed queries efficiently
using Bayesian Networks. In Section 5 we present the algorithm to compute
the top-k approximate answers for queries. Section 6 describes an experimental
evaluation of our approach. Some related work is discussed in Section 7. At last,
in Section 8, we conclude our work in this paper and discuss the future work.

2 Preliminary

2.1 Basic concepts and problem definition

A triple (s, p, o) ∈ (I∪B)×(I∪B)×(I∪B∪L) is called an RDF triple, where I is a
set of IRIs (Internationalized URIs), B a set of blank nodes and L a set of literals.
In the triple, s is called subject, p the property (or predicate), and o the object
or property value. An RDF triple pattern (s, p, o) ∈ (I∪V )×(I∪V )×(I∪V ∪L),
where V is a set of variables disjoint from the sets I, B and L. An RDF graph
pattern G = (q1, q2, ..., qn), qi ∈ T , where T is a set of triple patterns.

In this paper, we focus on star SPARQL query patterns, which are common
in SPARQL query patterns. The star query pattern retrieves instances of a class
with some conditions. Fig.1 shows an example of star SPARQL query pattern.

Definition 1 (Star Query patterns): The star query pattern has the form
of a number of triple patterns with different properties sharing the same subject.

2.2 Query Relaxation Model

Hurtado et al. in [1] propose two kinds of relaxation for triple pattern which
exploit RDF entailment to relax the queries.

Simple relaxation on triple pattern: Given RDF graphs G1,G2, a map
from G1 to G2 is a function u from the terms (IRIs ,blank nodes and literals)
in G1 to the terms in G2, preserving IRIs and literals, such that for each triple
(s1, p1, o1) ∈ G1, we have (u(s1), u(p1), u(o1)) ∈ G2. This simple relaxation ex-
ploits the RDF simple entailment. An RDF graph G1 simply entails G2, denoted
by G1

=⇒
simple G2, if and only if there is a map u from G2 to G1: G2

u
→ G1 : G1

G2
.

We call triple pattern t2 the simple relaxation of t1, denoted by t1
≺

simple t2, if
t1

=⇒
simple t2 via a map u that preserves variables in t1.
For example, there is a map u from the terms of triple pattern (?X, type,

?Y) to (?X, type, Lecturer) that makes u(”?X”)= ”?X”, u(”type”)= ”type” and
u(”?Y”)= ”Lecturer”. So (?X, type, Lecturer) can be relaxed to (?X, type, ?Y)
by replacing ”Lecturer” with the variable ”?Y”. We have (?X, type, Lecturer)
≺

simple (?X, type, ?Y).



Ontology relaxation on triple pattern: This type of relaxation exploits
RDFS entailment in the context of an ontology (denoted by onto). We call
G1

=⇒
RDFs G2, if G2 can be derived from G1 by iteratively applying rules in groups

(A), (B) (C)(sc, sp are rdfs:subclassOf and rdfs:subpropertyOf for short):

– Group A (Subproperty) (1) (a sp b)(b sp c)
(a sp c) ; (2) (a sp b)(x a y)

(x b y)

– Group B (Subclass) (3) (a sc b)(b sc c)
(a sc c) ; (4) (a sc b)(x type a)

(x type b)

– Group C (Typing) (5) (a dom c)(x a y)
(x type c) ; (6) (a range d)(x a y)

(y type d)

Let t, t′ be triple patterns, where t /∈ closure(onto), t′ /∈ closure(onto). We call

t′ an ontology relaxation of t, denoted by t
≺

onto t′ , if t ∪ onto
=⇒
RDFs t′. It includes

relaxing type conditions and properties such as: (1) replacing a triple pattern (a,
type, b) with (a, type, c), where (b, sc, c) ∈ closure(onto). For example, given
the ontology in Fig.1, the triple pattern (?X, type, Lecturer) can be relaxed
to (?X, type, AcademicStaff). (2) replacing a triple pattern (a, p1, b) with (a,
p, b), where (p1, sp, p) ∈ closure(onto). For example, the triple pattern (?X,
ReviewerOf, ”WWW”) can be relaxed to (?X, ContributerOf, ”WWW”). (3)
replacing a triple pattern (x, p, y) with (x, type, c), where (p, domain, c) ∈
closure(onto). For example, the triple pattern (?X, ReviewerOf, ”WWW”) can
be relaxed to (?X, Type, Person).

Definition 2 (Relaxed Triple Pattern): Given a triple pattern t, t′ is a
relaxed pattern obtained from t, denoted by t ≺ t′, through applying a sequence
of zero or more of the two types of relaxations: simple relaxation and ontology
relaxation.

Definition 3 (Relaxed Query Pattern): Given a user query Q(q1, q2,
· · · , qn), Q

′(q′1, q
′
2, · · · , q

′
n) is a relaxed query of Q, denoted by Q ≺ Q′, if there

exists qi = q′i or qi ≺ q′i for each pair (qi, q
′
i).

Definition 4 (Approximate Answers): An approximate answer to query
Q is defined as a match of a relaxed query of Q.

  (?X  Type Lecturer)
  (?X  ReviewerOf  "WWW")

 ( ?X  Type  AcademicStaff)
 (?X  ReviewerOf  "WWW")

  (?X  Type Lecturer)
  (?X  ContributerOf  "WWW")

Q

Q1   (?X  Type Lecturer)
  (?X  ReviewerOf  ?Y)

(?X  Type  Person)
(?X  ReviewerOf  "WWW")

(?X  Type  AcademicStaff)
(?X  ReviewerOf  ?Y)

( ?X  Type  AcademicStaff)
(?X  ContributerOf  "WWW")

Q2 Q3

...
...

...

Q11 Q21 Q31

Fig. 2. Query Q and its relaxation graph.



3 Ranking Model for Relaxations

User queries can be relaxed in many ways by ontology relaxation and simple
relaxation. For instance, in Fig.2, query Q has relaxed queries Q1=(?X, Type,
AcademicStaff)(?X, ReviewerOf, ”WWW”), Q2=(?X, Type, Lecturer)(?X, Re-
viewerOf, ?Y) and so on. Since the number of relaxations could be large, return-
ing all answers of these relaxed queries is not desirable. So we need to rank the
relaxed queries and execute the better one first. Given the user query Q and its
relaxed queries Q1, Q2, if Q1 is ranked prior to Q2, then we return the results
Q1 prior to the results of Q2. In this section, we discuss the ranking model for
relaxed queries.

Intuitively, for a relaxation Q′ of user query Q, the more similar Q′ is to Q,
the better Q′ is. Thus, we hope to rank the relaxed queries based on their simi-
larities to the original query. Several similarity measures for concepts have been
proposed such as information content measure [4], distance based measure [6].
Each method assumes a particular domain. For example, distance based measure
is used in a concept network and Dice coefficient measure is applicable when the
concepts can be represented as numerical feature vectors. To our problem, the
goal is to measure similarity between Q and its relaxations Qi and our objects
are queries not concepts. Thus, these similarity measures can not be directly
applied in our problem. We need to find an appropriate method to measure
the similarity between the relaxed queries and original query. Before giving the
method to quantify the similarity value, we first clarify some helpful intuitions
as follows:

Intuition 1: The similarity between Q and its relaxation Qi is proportional
to their commonality. From Fig. 3, we can see that the more answers Q and Qi

share in common, the more similar they are.

Intuition 2: The similarity between Q and its relaxation Qi ranges from
0 to 1 and if Q and Qi are identical (i.e., they have the same result set), the
similarity value should be 1.

Intuition 3: Given Q and its relaxation Qi and Qj , if Qi ≺ Qj , then Qi

should be more similar to Q. It indicates that the ranking model should be
consistent. ����Q

Q''
Q'

Fig. 3. Query Q and its relaxations Q′ and Q′′. The shaded area shows the answers
they share in common.



We know that the information contained by a query Q is its answers in
the database. We define p(Q) to be the probability of encountering an answer
of query Q in the database. According to information theory, the information
content of query Q, I(Q) can be quantified as the negative log likelihood, I(Q) =
−log p(Q). For query Q and its relaxation Qi, the information shared by two
queries is indicated by the information content of the query that subsume them.
Here, since Q ≺ Qi, we have:

Common(Q,Qi) = I(Qi) = −logPr(Qi)

Where Pr(Q) stands for the probability of encountering an answer of query Q
in the database. And we have:

Pr(Q) =
|Ans(Q)|

|Res|

where Ans(Q) denotes the answer set of query Q and Res denotes the resource
set of the database.

Given a queryQ and its relaxationQi, we use the ratio between Common(Q,Qi)
and the information content of Q to define the similarity value Sim(Q,Qi) as
follows:

Sim(Q,Qi) =
Common(Q,Qi)

I(Q)

=
I(Qi)

I(Q)
=

logPr(Qi)

logPr(Q)
(1)

Since for Q, Pr(Q) is fixed, we also have:

Sim(Q,Qi) ∝ −logPr(Qi)

∝
1

Pr(Qi)

=
1

|Ans(Qi)|
|Res|

(2)

Given two relaxations Qi and Qj of query Q if Sim(Q,Qi) > Sim(Q,Qj),
results of Qi are returned prior to Qj . Note that if query Q has no answers, then
Pr(Q) = 0 and formula (1) would make no sense. In this case, for computing
Sim(Q,Qi), we can use a constant Pr(Q) = 1

|Res| to replace 0 in formula (1).

When relaxed query Qi has no answers in the database,i.e. Pr(Qi) = 0, we
have Sim(Q,Qi) = 0 according to formula (1). This agrees with the fact that a
relaxed query with no answers in the database is not what we want.

We also have propositions as follows:
Proposition 1.(Consistency) Given Q and its relaxation Qi and Qj , if

Qi ≺ Qj , then Sim(Q,Qi) > Sim(Q,Qj).
Proof. According to formula (2), Sim(Q,Qi) and Sim(Q,Qj) are propor-

tional to 1
Pr(Qi)

and 1
Pr(Qj)

. Obviously, if Qi ≺ Qj , Pr(Qi) 6 Pr(Qj). Thus, we

have Sim(Q,Qi) > Sim(Q,Qj). �



Proposition 2. Given Q and its relaxation Qi, if Q and Qi are identical,
then Sim(Q,Qi) = 1.

From formula (2), we can see that the similarity between query Q and its re-
laxation Qi is proportional to

1
Pr(Qi)

. However, computing Pr(Qi) is not straight-

forward, we will discuss it in the next section.

4 Computing the Similarity efficiently

In this section, we will present the method for computing the similarities between
the original query and its relaxations efficiently.

We have given the formula to compute the similarity value of relaxed queries.
From formula (1), we can observe that for computing Sim(Q,Qi), we have to

know Pr(Qi), which is equal to |Ans(Qi)|
|Res| . In the RDF database, |Res| is the

number of resources, which is a constant and easy to obtain. |Ans(Qi)| is the
number of answers of Qi. The naive way to compute |Ans(Qi)| is executing query
Qi in the database. However, it would not be time efficient because the number of
possible relaxed queries is usually huge. Thus, we resort to approximate methods
to compute |Ans(Qi)| efficiently without executing Qi.

4.1 Selectivity estimation for star patterns using Bayesian networks

Selectivity estimation technology can be employed to estimate |Ans(Qi)|. We
use sel(Qi) to denote an estimation of |Ans(Qi)|. Some work has been done
on estimating the selectivity of RDF triple patterns. In [2, 11] the join unifor-
mity assumption is made when estimating the joined triple patterns with bound
subjects or objects (i.e., the subjects or objects are concrete values). It assumes
that each triple satisfying a triple pattern is equally likely to join with the triples
satisfying the other triple pattern. But this assumption does not fit the reality
and would lead to great errors because it never considers the correlations among
properties in a star query pattern. Thus we propose a method to estimate the
selectivity more precisely with considering the correlations among properties.

For a group of subjects, choose a set of single-valued properties that often
occur together. And we can construct a table R called cluster-property table
for these properties. For example, Fig.4 shows a cluster-property table with
three attributes ResearchTopic, TeacherOf, ReviewerOf. Each row of the table
corresponds to a subject with values for the three properties.

Given a star pattern Q with predicates prop1, prop2, · · · , propn, the results of
query Q should fall in the corresponding cluster-property table R. We denote the
joint probability distribution over values of properties prop1, prop2, · · · , propn
as Pr(prop1 = o1, prop2 = o2, · · · , propn = on), where oi is the value of property
propi. We have:

sel(Q) = Pr(prop1 = o1, prop2 = o2, ..., propn = on) · |TR| (3)

where sel(Q) is the number of results of query Q and |TR| is the number of rows
in the cluster-property table R.



Subject ResearchTopic ReviewerOf TeacherOf

S1 Web WWW course1

S2 Web WISE course1

S3 Web WISE course2

S4 Web WWW course1

S5 Software ICSE course2

S6 Machine Learning ICML course3

... .... .... ....

Fig. 4. Cluster property table.

RT TOf Pr( TOf| RT)

'Web' 'course1' 0.89

'Web' 'course2' 0.11

'ML' 'course1' 0.75

'ML' 'course2' 0.25

'SE' 'course1' 0.9

'SE' 'course2' 0.1

RT ROf Pr( TOf |RT)

'Web' 'WWW' 0.7

'Web' 'WISE' 0.3

'Web' 'ICSE' 0.6

'Web' 'ICML' 0.4

'ML' 'ICML' 0.7

'ML' 'WWW' 0.2

'ML' 'ICSE' 0.09

'ML' 'WISE' 0.01

'SE' 'ICML' 0.1

'SE' 'WWW' 0.2

'SE' 'ICSE' 0.69

'SE' 'WISE' 0.01

RT Pr(RT)

'Web' 0.5

'ML' 0.2

'SE' 0.3

RsearchTopic

TeacherOf
Reviewer

Of

Fig. 5. Bayesian Networks.

Notice that the possible combinations of values of properties would be expo-
nential and it is impossible to explicitly store Pr(prop1 = o1, prop2 = o2, · · · ,
propn = on). Thus, we need an appropriate structure to approximately store
the joint probability distribution information. The Bayesian network [12] can
approximately represent the probability distribution over a set of variables us-
ing a little space. Bayesian networks make use of Bayes’ Rule and conditional
independence assumption to compactly represent the full joint probability dis-
tribution. Let X, Y , Z be three discrete valued random variables. We say that
X is conditionally independent of Y given Z if the probability distribution of X
is independent of the value of Y given a value for Z; that is:

Pr(X = xi|Y = yj , Z = zk) = Pr(X = xi|Z = zk)

where xi, yj , zk are values of variables X, Y , Z. The conditional independence
assumptions associated with a Bayesian network and conditional probability
tables (CPTs), determine a joint probability distribution. For example, in Fig.5,
a Bayesian network is constructed on cluster property table in Fig.4. We can see
that properties TeacherOf and ReviewerOf are conditional independent given
condition ResearchTopic, which means if we already know the research topic of
some person, knowing his teaching information does not make any difference to
our beliefs about his review information.



For a star query Q with properties prop1 = o1, prop2 = o2, · · · , propn = on
and a Bayesian network β, we have:

Prβ(prop1 = o1, prop2 = o2, ..., propn = on)

=
n∏

i=1

Pr(propi = oi | Parents(propi) = ok)

where Parents(propi) denotes the set of immediate predecessors of propi in the
network β and ok denotes the set of values of Parents(propi). Note that for
computing Pr(propi | parents(propi) = ok), we only need to know the values of
propi’s parent properties, which would save a lot of space in practice. So given
the Bayesian network β, we can use Prβ(prop1 = o1, prop2 = o2, ..., propn = on)
to approximately represent Pr(prop1 = o1, prop2 = o2, ..., propn = on). We have:

sel(Q) = Pr(prop1 = o1, prop2 = o2, ..., propn = on) · |TR|

≈ Prβ(prop1 = o1, prop2 = o2, ..., propn = on) · |TR|

=

n∏

i=1

Pr(propi = oi | Parents(propi) = ok) · |TR| (4)

For example, given the star patternQ(?x, ResearchTopic, ’Web’)(?x, TeacherOf,
’course1’) (?x, ReviewerOf, ’WWW’) Bayesian network described in Fig.5, we
compute the selectivity of Q as follows:

sel(Q) = Pr(ResearchTopic = ’Web’, T eacherOf = ’course1’,

ReviewerOf = ’WWW’) · |TR|

= Pr(TeacherOf = ’course1’ | ResearchTopic = ’Web’)

·Pr(ReviewerOf = ’WWW’ | ResearchTopic = ’Web’)

·Pr(ResearchTopic = ’Web’) · |TR|

= 0.89 · 0.7 · 0.5 · |TR| = 0.3115 · |TR|

It should be noted that relaxed queries may contain some properties which
subsume properties in a property cluster table. Suppose that we have a property
table R containing properties p1,p2,· · · pn and we construct a Bayesian network
on this table. Given a relaxed query Q (?x p o1)(?x p3 o3)· · · (?x pn on), if
property p subsumes p1 and p2, we estimate the selectivity of Q as follows:

sel(Q) = Pr(p = o1, p3 = o3, ..., pn = on) · |TR|

≈ Prβ(p1 = o1, p3 = o3, ..., pn = on) · |TR|

+Prβ(p2 = o1, p3 = o3, ..., pn = on) · |TR|

=
∑

pi≺p

(
n∏

j 6=2,if i=1;j 6=1,if i=2

Pr(pj = oj | Parents(pj) = ok)) · |TR|



4.2 Learning Bayesian networks

To approximately represent the joint probability distribution of property val-
ues for selectivity estimation, we need to construct Bayesian networks for each
cluster-property table. Before building Bayesian networks, the domain values are
first discretized and clustered into equi-width subsets.

Bayesian network learning includes learning the structure of the DAG in a
Bayesian network and parameters (i.e., conditional probability tables). A score
criterion scoreβ is a function that assigns a score to each possible DAG G′ of
the Bayesian network β under consideration based on the data.

scoreβ(d,G
′) =

n∏

i=1

Pr(d,Xi, Parents(Xi)
(G′))

where d is the data in the the cluster-property table and Parents(Xi)
(G′) is

the set of parents of variable Xi in DAG G′. Bayesian network learning is to
find a DAG that best fits the data (with the highest scoreβ ), which is also
called model selection. Much research has been conducted in Bayesian network
learning [13, 14]. We use K2 [15] algorithm to learn the structure of Bayesian net-
works. It adopts a greedy search that maximizes scoreβ(d,G

′) approximately.
For each variable Xi, it locally finds a value of Parents(Xi) that maximizes
scoreβ(d,Xi, Parents(Xi)). This method needs to provide the temporal order-
ing of variables, which can significantly reduce the search space. In our imple-
mentation, we input the temporal ordering of variables by hand.

5 Top-K query processing

In this section, we discuss how to acquire top-k approximate answers through
query relaxation. Fig.6 shows a relaxation graph of query Q. From the relaxation
graph of query Q, we can see that there are 9 relaxed queries of Q and Q1 ≺ Q11,
Q1 ≺ Q12 ≺ Q121, Q2 ≺ Q21, Q3 ≺ Q31, Q3 ≺ Q32. In the relaxation graph,
there exists an edge from relaxed queries Qi to Qj if Qi is directly subsumed by
Qj(i.e., Qi ≺ Qj and ∄Qm s.t. Qi ≺ Qm ≺ Qj). We also call Qj is a child of Qi

in the relaxation graph.

Suppose query Q has no answers returned and we want to acquire top-k ap-
proximate answers of Q. The relaxation process for obtaining top-k approximate
answers is implemented by the best-first search. We first add the children of Q
to the Candidates set, which are promising to be the best relaxation of query
Q. Then select the best candidate Q′ (with the highest similarity value) in the
Candidates set to execute and add the children of Q′ to the Candidates set.
Repeat this process until we get enough answers. This process is described in
Algorithm 1-topkAlgorithm.

.



Q

Q1 Q2
Q3

Q11 Q12 Q21
Q32Q31

Q121

Fig. 6. The Relaxation Graph of Query Q

Algorithm 1 topkAlgorithm

Input: Query Q; k(the number of answers required);
Output: top-k approximate answers of query Q;

1: Answers = Ω; Candidates = Ω;
2: Add Q’s child nodes into Candidates;
3: while |Answers| < k and |Candidates| <> Ω do

4: Select the Q′ with the best similarity value from Candidates;
5: Add child nodes of Q′ to Candidates

6: Add answers of Q′ to Answers

7: Candidates = Candidates \Q′

8: return Answers;

6 Experiments

In this section, we conduct experiments to verify our methods.

Experiment setup. The data is stored in and managed by Mysql 5.0. All
algorithms are implemented using Jena (http://jena.sourceforge.net/). We run
all algorithms on a windows XP professional system with P4 3G CPU and 2 GB
RAM.

Data sets. We construct the dataset using the Lehigh University Bench-
mark LUBM [3]. LUBM consists of a university domain ontology containing 32
properties and 43 classes. The dataset used in the experiments contains 600k
triples.

Query Load. We develop 5 star queries shown in Fig.7.

Bayesian Networks.We first construct Bayesian Networks from the dataset
for estimating the selectivity of relaxed queries. Fig.8 shows one of Bayesian Net-
works Learned from the dataset for “Professor” entity. We can see that “Pro-
fessor” entity has 6 properties. Properties “MastersDegreeFrom”and “Doctor-
alDegreeFrom”are independent with other properties. The values of property
“ResearchInterest”depends on the values of properties “type” and “worksFor”.
According to this Bayesian Network, we can easily estimate the selectivity of
star queries on “Professor” entity.



Queries

Q1
Select ?y Where { ?y researchInterest 'Research17'.  ?y worksFor Deaprt0.Univ0.

?y type VisitingProfessor ?y. ?y DoctoralDegreeFrom University503. }

Q2
Select ?y Where { ?y worksFor Deaprt0.Univ0. ?y doctoralDegreeFrom Univ476. ?y type

Lecturer.}

Q3
Select ?y Where { ?y undergraduateDegreeFrom Univ476. ?y type GraduateStudent. ?y

takesCourse GraduateCourse65}

Q4
select ?x where { ?x type TeachingAssitant. ?x teachingAssistantOf

Department0.University0/Course2. ?x  mastersDegreeFrom Department0.University0}

Q5
select ?x where { ?x worksFor Department0.University0. ?x  takesCourse

Department0.University0/GraduateCourse16. ?x advisor  AssistantProfessor3}

Fig. 7. Queries Used In the Experiments

type

ResearchInterest

worksFor MastersDegreeFrom

DoctoralDegreeFrom

TeacherOf

Fig. 8. One of Bayesian Networks learned from the dataset for “Professor”entity

Performance. We conduct experiments to evaluate the performance of our
relaxation algorithm. We first fix the number of approximate answers K=50.
Fig.9 (a) and (b) show the running time and the number of relaxed queries ex-
ecuted for the relaxation algorithm. The similarity values of the approximate
answers of Q1 to Q5 are ≥0.61, ≥0.67, ≥0.79, ≥0.71, ≥0.69, respectively. Our
approach can avoid some unnecessary relaxations. For example, query Q1 has
four triple patterns. There are many ways to relax Q1, but some of them have no
answers. From the Bayesian network constructed (shown in Fig.8), we know the
data distribution in the database, which indicates that there is no visiting pro-
fessor who works for “Department0.University0”and is interested in “Research
17”. Thus, there will be no answers by relaxing triple pattern(?x DoctoralDe-
greeFrom University503) to (?x DoctoralDegreeFrom ?w). We relax Q1 through
replacing “VisitingProfessor” to “Professor”(super class of“VisitingProfessor” ),
which is close to the original query and avoids the empty answer set.

When K =150, from Fig.9 (c) and (d), we can see that the running time and
the number of relaxed queries executed increase. On the contrary, the similarity
values of the approximate answers of Q1 to Q5 are ≥0.57, ≥0.64, ≥0.69, ≥0.66,
≥0.63, respectively. Our relaxation algorithm returns approximate answers in-
crementally and users can stop the relaxation process at any time when they are
satisfied with the answers generated.
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Fig. 9. The performance of our relaxation algorithm

7 Related Work

Hurtado et al. [1] proposed the RDF query relaxation method through RDF(s)
entailment and relax the original user query using the ontology information.
They also proposed the ranking model to rank the relaxed queries according
to the subsume relationship among them. However, for some relaxed queries, if
there does not exit subsume relationship among them, it fails to rank them.

Similarity measures for concepts have been developed in the previous decades.
Generally, these methods can be categorized into three groups: edge counting-
based methods [6], information theory-based methods [4]. For evaluating the
similarity of queries, in [5], the authors proposed the ranking model using dis-
tance based measure on RDFs ontology. However, this measure is only based
on ontology information without considering the real data distribution in the
database, it is possible that relaxed queries ranked high still have no answers.

Some related work has been done, such as query relaxation on XML data
[9, 8, 7]. Amer-Yahia et al. [10] presented a method for computing approximate
answers for weighted patterns by encoding the relaxations in join evaluation
plans. The techniques of approximate XML query matching are mainly based
on structure relaxation and can not be applied to query relaxation on RDF data.
Cooperative query answering [16] is designed to automatically relax user queries
when the selection criteria is too restrictive to retrieve enough answers. Such
relaxation is usually based on user preferences and values.



8 Conclusion

Query relaxation is important for querying RDF data flexibly. In this paper,
we presented a ranking model which considers the real data distribution in the
RDF database to rank the relaxed queries. The relaxations are ranked based on
their similarity values to the original query. The similarity values of relaxed star
queries are computed efficiently using Bayesian networks. We also presented the
algorithm to answer top-k queries according to our ranking model.
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