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A Survey of Techniques for Internet Traffic
Classification using Machine Learning

Thuy T.T. Nguyen and Grenville Armitage

Abstract—The research community has begun looking for IP
traffic classification techniques that do not rely on ‘well known’
TCP or UDP port numbers, or interpreting the contents of packet
payloads. New work is emerging on the use of statistical traffic
characteristics to assist in the identification and classification
process. This survey paper looks at emerging research into the
application of Machine Learning (ML) techniques to IP traffic
classification - an inter-disciplinary blend of IP networking and
data mining techniques. We provide context and motivation for
the application of ML techniques to IP traffic classification,
and review 18 significant works that cover the dominant period
from 2004 to early 2007. These works are categorized and
reviewed according to their choice of ML strategies and primary
contributions to the literature. We also discuss a number of key
requirements for the employment of ML-based traffic classifiers
in operational IP networks, and qualitatively critique the extent
to which the reviewed works meet these requirements. Open
issues and challenges in the field are also discussed.

Index Terms—Traffic classification, Internet Protocol, Machine
Learning, Real Time, Payload inspection, Flow clustering, Sta-
tistical traffic properties.

I. INTRODUCTION

EAL-TIME traffic classification has the potential to
solve difficult network management problems for In-
ternet service providers (ISPs) and their equipment vendors.
Network operators need to know what is flowing over their
networks promptly so they can react quickly in support of
their various business goals. Traffic classification may be a
core part of automated intrusion detection systems [1] [2]
[3], used to detect patterns indicative of denial of service
attacks, trigger automated re-allocation of network resources
for priority customers [4], or identify customer use of network
resources that in some way contravenes the operator’s terms
of service. More recently, governments are also clarifying
ISP obligations with respect to ‘lawful interception’ (LI) of
IP data traffic [S]. Just as telephone companies must support
interception of telephone usage, ISPs are increasingly subject
to government requests for information on network use by
particular individuals at particular points in time. IP traffic
classification is an integral part of ISP-based LI solutions.
Commonly deployed IP traffic classification techniques have
been based around direct inspection of each packet’s contents
at some point on the network. Successive IP packets having
the same 5-tuple of protocol type, source address:port and
destination address:port are considered to belong to a flow

Manuscript received April 23, 2007; revised September 5, 2007.

The authors are with the Centre for Advanced Internet Architec-
tures, Swinburne University of Technology, Melbourne, Australia (e-mail:
tnguyen@swin.edu.au, garmitage@swin.edu.au).

Digital Object Identifier 10.1109/SURV.2008.080406.

whose controlling application we wish to determine. Simple
classification infers the controlling application’s identity by
assuming that most applications consistently use ‘well known’
TCP or UDP port numbers (visible in the TCP or UDP head-
ers). However, many applications are increasingly using unpre-
dictable (or at least obscure) port numbers [6]. Consequently,
more sophisticated classification techniques infer application
type by looking for application-specific data (or well-known
protocol behavior) within the TCP or UDP payloads [7].

Unfortunately, the effectiveness of such ‘deep packet in-
spection’ techniques is diminishing. Such packet inspection
relies on two related assumptions:

o Third parties unaffiliated with either source or recipient
are able to inspect each IP packet’s payload (i.e. is the
payload visible)

o The classifier knows the syntax of each application’s
packet payloads (i.e. can the payload be interpreted)

Two emerging challenges undermine the first assumption -
customers may use encryption to obfuscate packet contents
(including TCP or UDP port numbers), and governments
may impose privacy regulations constraining the ability of
third parties to lawfully inspect payloads at all. The second
assumption imposes a heavy operational load - commercial
devices will need repeated updates to stay ahead of regular
(or simply gratuitous) changes in every application’s packet
payload formats.

The research community has responded by investigating
classification schemes capable of inferring application-level
usage patterns without deep inspection of packet payloads.
Newer approaches classify traffic by recognising statistical
patterns in externally observable attributes of the traffic (such
as typical packet lengths and inter-packet arrival times). Their
ultimate goal is either clustering IP traffic flows into groups
that have similar traffic patterns, or classifying one or more
applications of interest.

A number of researchers are looking particularly closely at
the application of Machine Learning (ML) techniques (a sub-
set of the wider Artificial Intelligence discipline) to IP traffic
classification. The application of ML techniques involves a
number of steps. First, features are defined by which future un-
known IP traffic may be identified and differentiated. Features
are attributes of flows calculated over multiple packets (such
as maximum or minimum packet lengths in each direction,
flow durations or inter-packet arrival times). Then the ML
classifier is trained to associate sets of features with known
traffic classes (creating rules), and apply the ML algorithm
to classify unknown traffic using previously learned rules.
Every ML algorithm has a different approach to sorting and
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prioritising sets of features, which leads to different dynamic
behaviors during training and classification. In this paper we
provide the rationale for IP traffic classification in IP networks,
review the state-of-the-art approaches to traffic classification,
and then review and critique emerging ML-based techniques
for IP traffic classification.

The rest of this paper is organised as follows. Section II
outlines the importance of IP traffic classification in opera-
tional networks, introduces a number of metrics for assess-
ing classification accuracy, and discusses the limitations of
traditional port- and payload-based classification. Section III
provides background information about ML and how it can be
applied in IP traffic classification. The section also discusses a
number of key requirements for the employment of ML-based
classifiers in operational IP networks. Section IV reviews the
significant works in this field (predominantly from 2004 to
early 2007). The section is wrapped up with a qualitative
discussion of the extent to which the reviewed works meet
the requirements specified in section III. Section V concludes
the paper with some final remarks and suggestions of possible
future work.

II. APPLICATION CONTEXT FOR MACHINE LEARNING
BASED IP TRAFFIC CLASSIFICATION

A. The importance of IP traffic classification

The importance of IP traffic classification may be illustrated
by briefly reviewing to important areas - IP quality of service
(QoS) schemes, and lawful interception (LI).

In responding to the network congestion problem, a com-
mon strategy for network providers is under-utilising (over-
provisioning) the link capacity. However, this is not necessar-
ily an economic solution for most ISPs. On the other hand,
the development of other QoS solutions such as IntServ [8]
or DiffServ [9] has been stymied in part due to the lack
of QoS signaling and of an effective service pricing mech-
anism (as suggested in [10] and [11]). Signaling allows the
communication of specific QoS requirements between Internet
applications and the network. A pricing mechanism is needed
to differentiate customers with different needs and charge for
the QoS that they receive. It also acts as a cost recovery
mechanism and provides revenue generation for the ISPs to
compensate for their efforts in providing QoS and managing
resource allocation.

All QoS schemes have some degree of IP traffic classifi-
cation implicit in their design. DiffServ assumes that edge
routers can recognise and differentiate between aggregate
classes of traffic in order to set the DiffServ code point (DSCP)
on packets entering the network core. IntServ presumes that
routers along a path are able to differentiate between finely
grained traffic classes (and historically has presumed the use
of packet header inspection to achieve this goal). Traffic clas-
sification also has the potential to support class-based Internet
QoS charging. Furthermore, real-time traffic classification is
the core component of emerging QoS-enabled products [12]
and automated QoS architectures [4] [13].

Traffic classification is also an important solution for the
emerging requirement that ISP networks have to provide LI
capabilities. Governments typically implement LI at various
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levels of abstraction. In the telephony world a law enforcement
agency may nominate a ‘person of interest’ and issue a warrant
for the collection of intercept information. The intercept may
be high-level call records (who called who and when) or
low-level ‘tapping’ of the audio from actual phone calls in
progress. In the ISP space, traffic classification techniques
offer the possibility of identifying traffic patterns (which
endpoints are exchanging packets and when), and identifying
what classes of applications are being used by a ‘person
of interest’ at any given point in time. Depending on the
particular traffic classification scheme, this information may
potentially be obtained without violating any privacy laws
covering the TCP or UDP payloads of the ISP customer’s
traffic.

B. Traffic classification metrics

A key criterion on which to differentiate between classifi-
cation techniques is predictive accuracy (i.e., how accurately
the technique or model makes decisions when presented with
previously unseen data). A number of metrics exist with which
to express predictive accuracy.

1) Positives, negatives, accuracy, precision and recall:
Assume there is a traffic class X in which we are interested,
mixed in with a broader set of IP traffic. A traffic classifier is
being used to identify (classify) packets (or flows of packets)
belonging to class X when presented with a mixture of
previously unseen traffic. The classifier is presumed to give
one of two outputs - a flow (or packet) is believed to be a
member of class X, or it is not.

A common way to characterize a classifier’s accuracy is
through metrics known as False Positives, False Negatives,
True Positives and True Negatives. These metrics are defined
as follows:

o False Negatives (FN): Percentage of members of class X

incorrectly classified as not belonging to class X.

o False Positives (FP): Percentage of members of other
classes incorrectly classified as belonging to class X.

o True Positives (TP): Percentage of members of class X
correctly classified as belonging to class X (equivalent to
100% - FN ).

o True Negatives (TN): Percentage of members of other
classes correctly classified as not belonging to class X
(equivalent to 100% - FP ).

Figure 1 illustrates the relationships between FN, FP, TP
and TN. A good traffic classifier aims to minimise the False
Negatives and False Positives.

Some works make use of Accuracy as an evaluation metric.
It is generally defined as the percentage of correctly classified
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instances among the total number of instances. This definition
is used throughout the paper unless otherwise stated.

ML literature often utilises two additional metrics known
as Recall and Precision. These metrics are defined as follows:

e Recall: Percentage of members of class X correctly

classified as belonging to class X.
e Precision: Percentage of those instances that truly have
class X, among all those classified as class X.

If all metrics are considered to range from 0 (bad) to 100%
(optimal) it can be seen that Recall is equivalent to TP.

2) Byte and Flow accuracy: When comparing literature on
different classification techniques it is also important to note
the unit of the author’s chosen metric. Recall, Precision, FN
and FP may all be reported as percentages of bytes or flows
relative to the traffic being classified. An author’s choice here
can significantly alter the meaning of their reported accuracy
results.

Most recently published traffic classification studies have
focused on flow accuracy - measuring the accuracy with which
flows are correctly classified, relative to the number of other
flows in the author’s test and/or training dataset(s). However,
some recent work has also chosen to express their accuracy
calculations in terms of byte accuracy - focusing more on how
many bytes are carried by the packets of correctly classified
flows, relative to the total number of bytes in the author’s test
and/or training dataset(s) (e.g. [14] [15]).

Erman et al. in [16] argue that byte accuracy is crucial when
evaluating the accuracy of traffic classification algorithms.
They note that the majority of flows on the Internet are small
and account for only a small portion of total bytes and packets
in the network (mice flows). On the other hand, the majority
of the traffic bytes are generated by a small number of large
flows (elephant flows). They give an example from a 6-month
data trace where the top (largest) 1% of flows account for
over 73% of the traffic in terms of bytes. With a threshold
to differentiate elephant and mice flows of 3.7MB, the top
0.1% of flows would account for 46% of the traffic (in bytes).
Presented with such a dataset, a classifier optimised to identify
all but the top 0.1% of the flows could attain a 99.9% flow
accuracy but still result in 46% of the bytes in the dataset to
be misclassified.

Whether flow accuracy or byte accuracy is more important
will generally depend on the classifier’s intended use. For
example, when classifying traffic for IP QoS purposes it is
plausible that identifying every instance of a short lived flow
needing QoS (such as a 5 minute, 32Kbit/sec phone calls) is as
important as identifying long lived flows needing QoS (such
as a 30 minute, 256Kbit/sec video conference) with both being
far more important to correctly identify than the few flows that
represent multi-hour (and/or hundreds of megabytes) peer to
peer file sharing sessions. Conversely, an ISP doing analysis
of load patterns on their network may well be significantly
interested in correctly classifying the applications driving the
elephant flows that contribute a disproportionate number of
packets across their network.

C. Limitations of packet inspection for traffic classification
Traditional IP traffic classification relies on the inspection
of a packet’s TCP or UDP port numbers (port based clas-

sification), or the reconstruction of protocol signatures in its
payload (payload based classification). Each approach suffers
from a number of limitations.

1) Port based IP traffic classification: TCP and UDP pro-
vide for the multiplexing of multiple flows between common
IP endpoints through the use of port numbers. Historically
many applications utilise a ‘well known’ port on their local
host as a rendezvous point to which other hosts may initiate
communication. A classifier sitting in the middle of a network
need only look for TCP SYN packets (the first step in TCP’s
three-way handshake during session establishment) to know
the server side of a new client-server TCP connection. The
application is then inferred by looking up the TCP SYN
packet’s target port number in the Internet Assigned Numbers
Authority (IANA)’s list of registered ports [17]. UDP uses
ports similarly (though without connection establishment nor
the maintenance of connection state).

However, this approach has limitations. Firstly, some ap-
plications may not have their ports registered with IANA
(for example, peer to peer applications such as Napster and
Kazaa) [18]. An application may use ports other than its
well-known ports to avoid operating system access control
restrictions (for example, non-privileged users on unix-like
systems may be forced to run HTTP servers on ports other
than port 80.) Also, in some cases server ports are dynamically
allocated as needed. For example, the RealVideo streamer
allows the dynamic negotiation of the server port used for
the data transfer. This server port is negotiated on an initial
TCP connection, which is established using the well-known
RealVideo control port [19].

Moore and Papagiannaki [20] observed no better than 70%
byte accuracy for port-based classification using the official
TANA list. Madhukar and Williamson [21] showed that port-
based analysis is unable to identify 30-70% of Internet traffic
flows they investigated. Sen et al. [7] reported that the default
port accounted for only 30% of the total traffic (in bytes) for
the Kazaa P2P protocol.

In some circumstances IP layer encryption may also obfus-
cate the TCP or UDP header, making it impossible to know
the actual port numbers.

2) Payload based IP traffic classification: To avoid total
reliance on the semantics of port numbers, many current
industry products utilise stateful reconstruction of session and
application information from each packet’s content.

Sen et al. [7] showed that payload based classification
of P2P traffic (by examining the signatures of the traffic at
the application level) could reduce false positives and false
negatives to 5% of total bytes for most P2P protocols studied.

Moore and Papagiannaki [20] use a combination of port
and payload based techniques to identify network applications.
The classification procedure starts with the examination of a
flow’s port number. If no well-known port is used, the flow
is passed through to the next stage. In the second stage, the
first packet is examined to see whether it contains a known
signature. If one is not found, then the packet is examined to
see whether it contains a well-known protocol. If these tests
fail, the protocol signatures in the first KByte of the flow
are studied. Flows remaining unclassified after that stage will
require inspection of the entire flow payload. Their results
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show that port information by itself is capable of correctly
classifying 69% of the total bytes. Including the information
observed in the first KByte of each flow increases the accuracy
to almost 79%. Higher accuracy (upto nearly 100%) can only
be achieved by investigating the remaining unclassified flows’
entire payload.

Although payload based inspection avoids reliance on fixed
port numbers, it imposes significant complexity and processing
load on the traffic identification device. It must be kept up-
to-date with extensive knowledge of application protocol se-
mantics, and must be powerful enough to perform concurrent
analysis of a potentially large number of flows. This approach
can be difficult or impossible when dealing with proprietary
protocols or encrypted traffic. Furthermore direct analysis of
session and application layer content may represent a breach of
organisational privacy policies or violation of relevant privacy
legislation.

D. Classification based on statistical traffic properties

The preceding techniques are limited by their dependence
on the inferred semantics of the information gathered through
deep inspection of packet content (payload and port numbers).
Newer approaches rely on traffic’s statistical characteristics
to identify the application. An assumption underlying such
methods is that traffic at the network layer has statistical
properties (such as the distribution of flow duration, flow idle
time, packet inter-arrival time and packet lengths) that are
unique for certain classes of applications and enable different
source applications to be distinguished from each other.

The relationship between the class of traffic and its observed
statistical properties has been noted in [22] (where the authors
analysed and constructed empirical models of connection
characteristics - such as bytes, duration, arrival periodicity
- for a number of specific TCP applications), and in [23]
(where the authors analysed Internet chat systems by focusing
on the characteristics of the traffic in terms of flow duration,
packet inter-arrival time and packet size and byte profile).
Later work (for example [24] [25] and [26]) also observed
distinctive traffic characteristics, such as the distributions of
packet lengths and packet inter-arrival times, for a number
of Internet applications. The results of these works have
stimulated new classification techniques based on traffic flow
statistical properties. The need to deal with traffic patterns,
large datasets and multi-dimensional spaces of flow and packet
attributes is one of the reasons for the introduction of ML
techniques in this field.

III. BACKGROUND ON MACHINE LEARNING AND THE
APPLICATION OF MACHINE LEARNING IN IP TRAFFIC
CLASSIFICATION

This section summaries the basic concepts of Machine
Learning (ML) and outlines how ML can be applied to IP
traffic classification.

A. A review of classification with Machine Learning

ML has historically been known as a collection of powerful
techniques for data mining and knowledge discovery, which

search for and describe useful structural patterns in data.
In 1992 Shi [27] noted ‘One of the defining features of
intelligence is the ability to learn. [...]. Machine learning is
the study of making machines acquire new knowledge, new
skills, and reorganise existing knowledge.! A learning machine
has the ability to learn automatically from experience and
refine and improve its knowledge base. In 1983 Simon noted
‘Learning denotes changes in the system that are adaptive in
the sense that they enable the system to do the same task or
tasks drawn from the same population more efficiently and
more effectively the next time’ [28] and in 2000 Witten and
Frank observed ‘Things learn when they change their behavior
in a way that makes them perform better in the future’ [29].

ML has a wide range of applications, including search
engines, medical diagnosis, text and handwriting recognition,
image screening, load forecasting, marketing and sales di-
agnosis, and so on. A network traffic controller using ML
techniques was proposed in 1990, aiming to maximise call
completion in a circuit-switched telecommunications network
[30]; this was one of the works that marked the point at
which ML techniques expanded their application space into
the telecommunications networking field. In 1994 ML was
first utilised for Internet flow classification in the context of
intrusion detection [31]. It is the starting point for much of
the work using ML techniques in Internet traffic classification
that follows.

1) Input and output of a ML process: Broadly speaking,
ML is the process of finding and describing structural patterns
in a supplied dataset.

ML takes input in the form of a dataset of instances (also
known as examples). An instance refers to an individual, inde-
pendent example of the dataset. Each instance is characterised
by the values of its features (also known as attributes or
discriminators) that measure different aspects of the instance.
(In the networking field consecutive packets from the same
flow might form an instance, while the set of features might
include median inter-packet arrival times or standard deviation
of packet lengths over a number of consecutive packets in
a flow.) The dataset is ultimately presented as a matrix of
instances versus features [29].

The output is the description of the knowledge that has
been learnt. How the specific outcome of the learning process
is represented (the syntax and semantics) depends largely on
the particular ML approach being used.

2) Different types of learning: Witten and Frank [29] define
four basic types of learning:

o Classification (or supervised learning)
o Clustering (or unsupervised learning)
« Association

o Numeric prediction

Classification learning involves a machine learning from a
set of pre-classified (also called pre-labeled) examples, from
which it builds a set of classification rules (a model) to classify
unseen examples. Clustering is the grouping of instances that
have similar characteristics into clusters, without any prior
guidance. In association learning, any association between
features is sought. In numeric prediction, the outcome to be
predicted is not a discrete class but a numeric quantity.
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Most ML techniques used for IP traffic classification focus
on the use of supervised and unsupervised learning.

3) Supervised Learning: Supervised learning creates
knowledge structures that support the task of classifying new
instances into pre-defined classes [32]. The learning machine
is provided with a collection of sample instances, pre-classified
into classes. Output of the learning process is a classification
model that is constructed by examining and generalising from
the provided instances.

In effect, supervised learning focuses on modeling the
input/output relationships. Its goal is to identify a mapping
from input features to an output class. The knowledge learnt
(e.g. commonalities among members of the same class and
differences between competing ones) can be presented as a
flowchart, a decision tree, classification rules, etc., that can be
used later to classify a new unseen instance.

There are two major phases (steps) in supervised learning:

e Training: The learning phase that examines the provided
data (called the training dataset) and constructs (builds)
a classification model.

o Testing (also known as classifying): The model that has
been built in the training phase is used to classify new
unseen instances.

For example, let TS be a training dataset, that is a set of

input/output pairs,

TS = {< z1,y1 >, < T2, 41 >, ..., < TN, YM >}

where x; is the vector of values of the input features
corresponding to the i*" instance, and y; is its output class
value. (The name supervised learning comes from the fact
that the output classes are pre-defined in the training dataset.)
The goal of classification can be formulated as follows: From
a training dataset TS, find a function f(x) of the input features
that best predicts the outcome of the output class y for any
new unseen values of x. The output takes its value in a discrete
set {y1, y2,..., yar} that consists of all the pre-defined class
values. The function f(x) is the core of the classification model.

The model created during training is improved if we si-
multaneously provide examples of instances that belong to
class(es) of interest and instances known to not be members
of the class(es) of interest. This will enhance the model’s later
ability to identify instances belonging to class(es) of interest.

There exist a number of supervised learning classification
algorithms, each differing mainly in the way the classification
model is constructed and what optimization algorithm is used
to search for a good model. (Examples include the supervised
Decision Tree and Naive Bayes classification algorithms [33]
[291.)

4) Clustering: Classification techniques use pre-defined
classes of training instances. In contrast, clustering methods
are not provided with this guidance; instead, they discover nat-
ural clusters (groups) in the data using internalised heuristics
[33].

Clustering focuses on finding patterns in the input data. It
clusters instances with similar properties (defined by a specific
distance measuring approach, such as Euclidean space) into
groups. The groups that are so identified may be exclusive, so
that any instance belongs in only one group; or they may be
overlapping, when one instance may fall into several groups;
they may also be probabilistic, that is an instance belongs to

a group with a certain probability. They may be hierarchical,
where there is a division of instances into groups at the top
level, and then each of these groups is refined further - even
down to the level of individual instances [29].

There are three basic clustering methods: the classic k-
means algorithm, incremental clustering, and the probability-
based clustering method. The classic k-means algorithm forms
clusters in numeric domains, partitioning instances into dis-
joint clusters, while incremental clustering generates a hierar-
chical grouping of instances. The probability-based methods
assign instances to classes probabilistically, not deterministi-
cally [29].

5) Evaluating supervised learning algorithms: A good ML
classifier would optimise Recall and Precision. However, there
may be trade-offs between these metrics. To decide which
one is more important or should be given higher priority one
needs to take into account the cost of making wrong decisions
or wrong classifications. The decision depends on a specific
application context and ones commercial and/or operational
priorities.

Various tools exist to support this trade-off process. The
receiver operating characteristic (ROC) curve provides a way
to visualize the trade-offs between TP and FP by plotting
the number of TP as a function of the number of FP (both
expressed as percentage of the total TP and FP respectively).
It has been found useful in analysing how classifiers perform
over a range of threshold settings [29]. Another is the Neyman-
Pearson criterion [34], which attempts to maximize TP given
a fixed threshold on FP [35].

Most of IP classification work reviewed later in this survey
do not address the costs of trading between Recall and
Precision.

A challenge when using supervised learning algorithms is
that both the training and testing phases must be performed
using datasets that have been previously classified (labeled)
!, Ideally one would have a large training set (for optimal
learning and creation of models) and a large, yet independent,
testing dataset to properly assess the algorithm’s performance.
(Testing on the training dataset is broadly misleading. Such
testing will usually only show that the constructed model
is good at recognising the instances from which it was
constructed.)

In the real world we are often faced with a limited quantity
of pre-labeled datasets. A simple procedure (sometimes known
as holdout [29]) involves setting aside some part (e.g. two
thirds) of the pre-labeled dataset for training and the rest (e.g.
one third) for testing.

In practice when only small or limited datasets are available
a variant of holdout, called N-fold cross-validation, is most
commonly used. The dataset is first split into N approximately
equal partitions (or folds). Each partition (1/N) in turn is then
used for testing, while the remainder (N — 1)/N) are used
for training. The procedure is repeated N times so that in the
end, every instance has been used exactly once for testing. The
overall Recall and Precision are calculated from the average

'In this context ‘labeling’ is the process of classifying the members of a
dataset using manual (human) inspection or an irrefutable automated process.
In contrast to a controlled training and testing environment, operational
classifiers do not have access to previously labeled example flows.

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 4, 2010 at 21:00 from IEEE Xplore. Restrictions apply.



NGUYEN and ARMITAGE: A SURVEY OF TECHNIQUES FOR INTERNET TRAFFIC CLASSIFICATION USING MACHINE LEARNING 61

of the Recalls and Precisions measured from all N tests. It has
been claimed that N = 10 (tenfold cross-validation) provides
a good estimate of classification performance [29].

Simply partitioning the full dataset N ways does not guaran-
tee that the same proportion is used for any given class within
the dataset. A further step, known as stratification, is usually
applied - randomly sampling the dataset in such a way that
each class is properly represented in both training and testing
datasets. When stratification is used in combination with cross-
validation, it is called stratified cross-validation. It is common
to use stratified ten-fold cross-validation when only limited
pre-labeled datasets are available.

6) Evaluating unsupervised learning algorithms: While
Recall and Precision are common metrics to evaluate clas-
sification algorithms, evaluating clustering algorithms is more
complicated. There are intermediate steps in evaluating the
resulting clusters before labeling them or generating rules for
future classification. Given a dataset, a clustering algorithm
can always generate a division, with its own finding of
structure within the data. Different approaches can lead to
different clusters, and even for the same algorithm, different
parameters or different order of input patterns might alter the
final results [36] [37].

Therefore, it is important to have effective evaluation stan-
dards and criteria to provide the users with a certain level of
confidence in results generated by a particular algorithm, or
comparisons of different algorithms [38]. Criteria should help
to answer useful questions such as how many clusters are
hidden in the data, what are the optimal number of clusters
[37], whether the resulted clusters are meaningful or just an
artifact of the algorithms [38], how one algorithm performs
compared to another: how easy they are to use, how fast it
is to be employed [36], what is the intra-cluster quality, how
good is inter-cluster separation, what is the cost of labeling the
clusters and what are the requirements in terms of computer
computation and storage.

Halkidi et al. [37] identify three approaches to investigate
cluster validity: external criteria, internal criteria and relative
criteria. The first two approaches are based on statistical
hypothesis testing. External criteria are based on some pre-
specified structure, which is known as prior information on
the data, and used as a standard to compare and validate
the clustering results [38]. Internal criteria approach evaluates
clustering result of an algorithm based on examining the
internal structure inherited from the dataset. Relative criteria
emphasises finding the best clustering scheme that a clustering
algorithm can define under certain assumptions and parame-
ters. The basic idea is to evaluate a clustering structure by
comparing it to the ones using the same algorithm but with
different parameter values [39]. (More details can be found in
[37] [38] [36] [29].)

7) Feature selection algorithms: Key to building a ML
classifier is identification of the smallest necessary set of
features required to achieve one’s accuracy goals - a process
known as feature selection.

The quality of the feature set is crucial to the performance
of a ML algorithm. Using irrelevant or redundant features
often leads to negative impacts on the accuracy of most ML
algorithms. It can also make the system more computationally

expensive, as the amount of information stored and processed
rises with the dimensionality of a feature set used to describing
the data instances. Consequently it is desirable to select a
subset of features that is small in size yet retains essential
and useful information about the classes of interest.

Feature selection algorithms can be broadly classified into
filter method or wrapper method. Filter method algorithms
make independent assessment based on general characteristics
of the data. They rely on a certain metric to rate and select
the best subset before the learning commences. The results
provided therefore should not be biased toward a particular
ML algorithm. Wrapper method algorithms, on the other hand,
evaluate the performance of different subsets using the ML
algorithm that will ultimately be employed for learning. Its
results are therefore biased toward the ML algorithm used.
A number of subset search techniques can be used, e.g.
Correlation-based Feature Selection (CFS) filter techniques
with Greedy, Best-First or Genetic search. (Additional details
can be found in [29] [40] [41] [42] [43].)

B. The application of ML in IP traffic classification

A number of general ML concepts take a specific meaning
when applied to IP traffic classification. For the purpose of
subsequent discussion we define the following three terms
relating to flows:

o Flow or Uni-directional flow: A series of packets sharing
the same five-tuple: source and destination IP addresses,
source and destination IP ports and protocol number.

e Bi-directional flow: A bi-directional flow is a pair of uni-
directional flows going in the opposite directions between
the same source and destination IP addresses and ports.

o Full-flow: A bi-directional flow captured over its entire
lifetime, from the establishment to the end of the com-
munication connection.

A class usually indicates IP traffic caused by (or belonging
to) an application or group of applications. Instances are usu-
ally multiple packets belonging to the same flow. Features are
typically numerical attributes calculated over multiple packets
belonging to individual flows. Examples include mean packet
lengths, standard deviation of inter-packet arrival times, total
flow lengths (in bytes and/or packets), Fourier transform of
packet inter-arrival time, and so on. As previously noted not all
features are equally useful, so practical ML classifiers choose
the smallest set of features that lead to efficient differentiation
between members of a class and other traffic outside the class.

1) Training and testing a supervised ML traffic classifier:
Figures 2, 3 and 4 illustrate the steps involved in building a
traffic classifier using a supervised learning (or supervised ML)
algorithm. In this example, the traffic classifier is intended to
recognise a particular class of applications (real-time online
game traffic) in amongst the usual mix of traffic seen on an
IP network.

Figure 2 captures the overall training and testing process
that results in a classification model. As noted earlier, the
optimal approach to training a supervised ML algorithm is
to provide previously classified examples of two types of IP
traffic: traffic matching the class of traffic that one wishes later
to identify in the network (in this case online game traffic),
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and representative traffic of entirely different applications one
would expect to see in future (often referred to as interfering
traffic).

Figure 3 expands on the sequence of events involved in
training a supervised ML traffic classifier. First a mix of ‘traffic
traces’ are collected that contain both instances of the applica-
tion of interest (e.g. online game traffic) and instances of other
interfering applications (such as HTTP, DNS, SSH and/or
peer2peer file sharing). The ‘flow statistics processing’ step
involves calculating the statistical properties of these flows
(such as mean packet inter-arrival time, median packet length
and/or flow duration) as a prelude to generating features.

An optional next step is ‘data sampling’, designed to narrow
down the search space for the ML algorithm when faced with
extremely large training datasets (traffic traces). The sampling
step extracts statistics from a subset of instances of various
application classes, and passes these along to the classifier to
be used in the training process.

As noted in section III-A7, a feature filtering/selection step
is desirable to limit the number of features actually used
to train the supervised ML classifier and thus create the
classification model. The output of Figure 3 is a classification
model.

Cross-validation (or stratified cross-validation) may be used
to generate accuracy evaluation results during the training
phase. However, if the source dataset consists of IP packets
collected at the same time and the same network measurement
point, the cross-validation results are likely to over-estimate
the classifier’s accuracy. (Ideally the source dataset would
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Fig. 4. Data flow within an operational supervised ML traffic classifier

contain a mix of traffic collected at different times and
measurement points, or use entirely independently collected
training and testing datasets.)

Figure 4 illustrates data flow within an operational traffic
classifier using the model built in Figure 3. Traffic captured
in real-time is used to construct flow statistics from which
features are determined and then fed into the classification
model. (Here we presume that the set of features calculated
from captured traffic is limited to the optimal feature set
determined during training.) The classifier’s output indicates
which flows are deemed to be members of the class of
interest (as defined by the model). Certain implementations
may optionally allow the model to be updated in real-time
(performing a similar data sampling and training process to
that shown in Figure 3). (For controlled testing and evaluation
purposes offline traffic traces can be used instead of live traffic
capture.)

2) Supervised versus unsupervised learning: As previously
noted, IP traffic classification is usually about identifying traf-
fic belonging to known applications (classes of interest) within
previously unseen streams of IP packets. The key challenge is
to determine the relationship(s) between classes of IP traffic
(as differentiated by ML features) and the applications causing
the IP traffic.

Supervised ML schemes require a training phase to cement
the link between classes and applications. Training requires
a-priori classification (or labeling) of the flows within the
training datasets. For this reason, supervised ML may be
attractive for the identification of a particular (or groups of)
application(s) of interest. However, as noted in section III-A3,
the supervised ML classifier works best when trained on
examples of all the classes it expects to see in practice.
Consequently, its performance may be degraded or skewed
if not trained on a representative mix of traffic or the network
link(s) being monitored start seeing traffic of previously un-
known applications. (For example, Park et al. [44] showed that
accuracy is sensitive to site-dependent training datasets, while
Erman et al. [45] showed different accuracy results between
the two data traces studied for the same ML algorithms.)

When evaluating supervised ML schemes in an operational
context it is worthwhile considering how the classifier will be
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supplied with adequate supervised training examples, when it
will be necessary to re-train, and how the user will detect a
new type of applications.

It might appear that one advantage of unsupervised ML
schemes is the automatic discovery of classes through the
recognition of ‘natural’ patterns (clusters) in the dataset.
However, resulting clusters still need to be labeled (for ex-
ample, through direct inspection by a human expert) in order
that new instances may be properly mapped to applications.
(A related benefit is that traffic from previously unknown
applications may be detected by noting when new clusters
emerge - sometimes the emergence of new application flows
is noteworthy even before the actual identity of the application
has been determined.)

Another issue for unsupervised ML schemes is that clusters
do not necessarily map 1:1 to applications. It would be ideal
if the number of clusters formed is equal to the number
of application classes to be identified, and each application
dominated one cluster group. However, in practice, the number
of clusters is often greater than the number of application
classes [46] [47]. One application might spread over and
dominate a number of clusters, or conversely an application
might also spread over but not dominate any of the clusters.
Mapping back from a cluster to a source application can
become a great challenge.

When evaluating unsupervised ML schemes in an opera-
tional context it is worthwhile considering how clusters will
be labeled (mapped to specific applications), how labels will
be updated as new applications are detected, and the optimal
number of clusters (balancing accuracy, cost of labeling and
label lookup, and computational complexity).

C. Challenges for operational deployment

Section II-A noted some important IP traffic classification
scenarios where classification must normally occur as the traf-
fic is flowing (or within some fairly short period of time after
the traffic occurred). This creates some particular requirements
for timely classification as traffic is in transit across a network.

1) Timely and continuous classification: A timely classifier
should reach its decision using as few packets as possible
from each flow (rather than waiting until each flow completes
before reaching a decision). Reducing the number of packets
required for classification also reduces the memory required to
buffer packets during feature calculations. This is an important
consideration for situations where the classifier is calculating
features for (tens of) thousands of concurrent flows. Depend-
ing on the business reason for performing classification, it
may be unacceptable to sample the available flows in order
to reduce the memory consumption. Instead, one aims to use
less packets from each flow.

However, it is not sufficient to simply classify basing on
the first few packets of a flow. For example, malicious attacks
might disguise themselves with the statistical properties of
a trusted application early in their flow’s lifetime. Or the
classifier itself might have been started (or restarted) whilst
hundreds or thousands of flows were already active through a
network monitoring point (thereby missing the starts of these
active flows). Consequently the classifier should ideally per-

form continuous classification - recomputing its classification
decision throughout the lifetime of every flow.

Timely and continuous ML classification must also address
the fact that many applications change their statistical proper-
ties over time, yet a flow should ideally be correctly classified
as being the same application throughout the flow’s lifetime.

2) Directional neutrality: Application flows are often as-
sumed to be bi-directional, and the application’s statistical
features are calculated separately in the forward and reverse
directions. Many applications (such as multiplayer online
games or streaming media) exhibit different (asymmetric)
statistical properties in the client-to-server and server-to-client
directions. Consequently, the classifier must either ‘know’ the
direction of a previously unseen flow (for example, which
end is the server and which is the client) or be trained to
recognise an application of interest without relying on external
indications of directionality.

Inferring the server and client ends of a flow is fraught
with practical difficulties. As a real-world classifier should
not presume that it has seen the first packet of every flow
currently being evaluated, it cannot be sure whether the first
packet it sees (of any new bi-directional flow of packets) is
heading in the ‘forward’ or ‘reverse’ direction. Furthermore,
the semantics of the TCP or UDP port fields should be
considered unreliable (either due to encryption obscuring the
real value, or the application using unpredictable ports), so
it becomes difficult to justify using ‘well known’ server-side
port numbers to infer a flow’s direction.

3) Efficient use of memory and processors: Another im-
portant criteria for operational deployment is the classification
system’s use of computational resources (such as CPU time
and memory consumption). The classifier’s efficiency impacts
on the financial cost to build, purchase and operate large scale
traffic classification systems. An inefficient classifier may be
inappropriate for operational use regardless of how quickly it
can be trained and how accurately it identifies flows.

Minimising CPU cycles and memory consumption is advan-
tageous whether the classifier is expected to sit in the middle
of an ISP network (where a small number of large, powerful
devices may see hundreds of thousands of concurrent flows at
multi-gigabit rates) or out toward the edges (where the traffic
load is substantially smaller, but the CPU power and memory
resources of individual devices are also diminished).

4) Portability and Robustness: A model may be considered
portable if it can be used in a variety of network locations, and
robust if it provides consistent accuracy in the face of network
layer perturbations such as packet loss, traffic shaping, packet
fragmentation, and jitter. A classifier also is robust if it can
efficiently identify the emergence of new traffic applications.

IV. A REVIEW OF MACHINE LEARNING BASED IP
TRAFFIC CLASSIFICATION TECHNIQUES

In this section we create four broad categories to review sig-
nificant works published on ML-based IP traffic classification
to date in:

o Clustering Approaches: Works whose main approach

centers around unsupervised learning techniques.

o Supervised Learning Approaches: Works whose main

approach centers around supervised learning techniques.
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e Hybrid Approaches: Works whose approach combine
supervised and unsupervised learning techniques.

e Comparisons and Related Work: Works that compare and
contrast different ML algorithms, or consider non-ML
approaches that could be considered in conjunction with
ML approaches.

The key points of each work are discussed in the following
subsections and summarised in Table I, II and III.

A. Clustering Approaches

1) Flow clustering using Expectation Maximization: In
2004 McGregor et al. [48] published one of the earliest
work that applied ML in IP traffic classification using the
Expectation Maximization algorithm [49]. The approach
clusters traffic with similar observable properties into different
application types.

The work studies HTTP, FTP, SMTP, IMAP, NTP and DNS
traffic. Packets in a 6-hour Auckland-VI trace are divided
into bi-directional flows. Flow features (listed in Table I) are
calculated on a full-flow basis. Flows are not timed out, except
when they exceed the length of the traffic trace.

Based on these features, the EM algorithm is used to group
the traffic flows into a small number of clusters and then
create classification rules from the clusters. From these rules,
features that do not have a large impact on the classification are
identified and removed from the input to the learning machine
and the process is repeated. The work’s implementation of
EM has an option to allow the number of clusters to be found
automatically via cross-validation. The resulting estimation of
performance was used to select the best competing model
(hence the number of clusters).

The algorithm was found to separate traffic into a number of
classes based on traffic type (bulk transfer, small transactions,
multiple transactions etc.). However, current results are limited
in identifying individual applications of interest. Nonetheless,
it may be suitable to apply this approach as the first step of
classification where the traffic is completely unknown, and
possibly gives a hint on the group of applications that have
similar traffic characteristics.

2) Automated application identification using AutoClass:
The work of Zander et al. [46], proposed in 2005, uses
AutoClass [50], which is an unsupervised Bayesian classifier,
using the EM algorithm to determine the best clusters set from
the training data. EM is guaranteed to converge to a local
maximum. To find the global maximum, autoclass repeats EM
searches starting from pseudo-random points in the parameter
space. The model with the parameter set having the highest
probability is considered the best.

Autoclass can be preconfigured with the number of classes
(if known) or it can try to estimate the number of classes itself.
Firstly packets are classified into bi-directional flows and flow
characteristics are computed using NetMate [51]. A number of
features are calculated for each flow, in each direction (listed
in Table I). Feature values are calculated on a full-flow basis.
A flow timeout of 60 seconds is used.

Sampling is used to select a subset of the flow data for
the learning process. Once the classes (clusters) have been
learnt, new flows are classified. The results of the learning

and classification are exported for evaluation. The approach
is evaluated based on random samples of flows obtained
from three 24-hour traffic traces (Auckland-VI, NZIX-II and
Leipzig-II traces from NLANR [52]).

Taking a further step from [48], the work proposed a method
for cluster evaluation. A metric called intra-class homogeneity,
H, for assessing the quality of the resulting classes and
classification is introduced. H of a class is defined as the
largest fraction of flows on one application in the class. The
overall homogeneity H of a set of classes is the mean of the
class homogeneities. The goal is to maximise H to achieve a
good separation between different applications.

The results have shown that some separation between the
different applications can be achieved, especially for certain
particular applications (such as Half-Life online game traffic)
in comparison with the others. With different sets of features
used, the authors show that H increases with the increase in
number of features used. H reaches a maximum value of
between 85% and 89%, depending on the trace. However,
the work has not addressed the trade-offs between number
of features used and their consequences of computational
overhead.

To compute the accuracy for each application the authors
map each class to the application that is dominating the class
(by having the largest fraction of flows in that class). The
authors used accuracy (Recall) as an evaluation metric. Median
accuracy is > 80% for all applications across all traces.
However, there are some exceptional cases, for example, for
the Napster application there is one trace where it is not
dominating any of the classes (hence the accuracy is 0%).
The results also show that FTP, Web and Telnet seem to have
the most diverse traffic characteristics and are spread across
many classes.

In general, although the mapping of class to application
shows promising results in separating the different appli-
cations, the number of classes resulted from the clustering
algorithm is high (approximately 50 classes for 8 selected
applications). For class and application mapping, it is a
challenge to identify applications that do not dominate any
of the classes.

3) TCP-based application identification using Simple K-
Means: In 2006 Bernaille et al. [53] proposed a technique
using an unsupervised ML (Simple K-Means) algorithm that
classified different types of TCP-based applications using the
first few packets of the traffic flow.

In contrast to the previously published work, the method
proposed in this paper allowed early detection of traffic flow
by looking at only the first few packets of a TCP flow.
The intuition behind the method is that the first few packets
capture the application’s negotiation phase, which is usually
a pre-defined sequence of messages and is distinct among
applications.

The training phase is performed offline. The input is a one-
hour packet trace of TCP flows from a mix of applications.
Flows are grouped into clusters based on the values of their
first P packets. Flows are represented by points in a P-
dimensional space, where each packet is associated with a
dimension; the coordinate on dimension p is the size of packet
p in the flow. Bi-directional flows are used. Packets sent by the

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 4, 2010 at 21:00 from IEEE Xplore. Restrictions apply.



NGUYEN and ARMITAGE: A SURVEY OF TECHNIQUES FOR INTERNET TRAFFIC CLASSIFICATION USING MACHINE LEARNING 65

TCP-server are distinguished from packets sent by the TCP-
client by having a negative coordinate.

Similarity between flows is measured by the Euclidean
distance between their associated spatial representations. After
natural clusters are formed, the modeling step defines a rule
to assign a new flow to a cluster. (The number of clusters
was chosen by trial with different number of clusters for
the K-means algorithm). The classification rule is simple:
the Euclidean distance between the new flow and the centre
of each pre-defined cluster is computed, and the new flow
belongs to the cluster for which the distance is a minimum.
The training set also consists of payload, so that flows in
each cluster can be labeled with its source application. The
learning output consists of two sets: one with the description
of each cluster (the centre of the cluster) and the other with the
composition of its applications. Both sets are used to classify
flows online.

In the classification phase, packets are formed into a bi-
directional flow. The sizes of the first P packets of the
connection are captured and used to map the new flow to
a spatial representation. After the cluster is defined, the flow
is associated with the application that is the most prevalent in
the cluster.

The results show that more than 80% of total flows are
correctly identified for a number of applications by using the
first five packets of each TCP flow. One exceptional case is
the POP3 application. The classifier labels 86% of POP3 flows
as NNTP and 12.6% as SMTP, because POP3 flows always
belong to clusters where POP3 is not the dominant application.

The results of this work are inspiring for early detection
of the traffic flow. However, it assumes that the classifier can
always capture the start of each flow. The effectiveness of the
approach when the classifier misses the first few packets of the
traffic flow has not been discussed or addressed. Also, with the
use of unsupervised algorithm and its classification technique,
the proposal faces the challenge of classifying an application
when it does not dominate any of the clusters found.

4) Identifying Web and P2P traffic in the network core:
The work of Erman et al. [47] in early 2007 addressed the
challenge of traffic classification at the core of the network,
where the available information about the flows and their
contributors might be limited. The work proposed to classify
a flow using only uni-directional flow information. While
showing that for a TCP connection, server-to-client direction
might provide more useful statistics and better accuracy than
the reverse direction, it may not always be feasible to obtain
traffic in this direction. They also developed and evaluated an
algorithm that could estimate missing statistics from a uni-
directional packet trace.

The approach proposed makes use of clustering machine
learning techniques with a demonstration of using the K-
Means algorithm. Similar to other clustering approaches, Eu-
clidean distance is used to measure the similarity between two
flow vectors.

Uni-directional traffic flows are described by a full-flow
based features set (listed in Table II). Possible traffic classes
include Web, P2P, FTP... For the training phase, it is assumed
that labels for all training flows are available (manually
classified based on payload content and protocol signatures),

and a cluster is mapped back to a traffic class that makes
up the majority of flows in that cluster. An unseen flow will
be mapped to the nearest cluster based on its distance to the
clusters’ centroids.

The approach is evaluated with flow accuracy and byte
accuracy as performance metrics. Three datasets are consid-
ered: data sets containing only client-to-server packets, data
sets containing only server-to-client packet, and data sets
containing a random mixture of each direction. K-Means
algorithm requires the number of clusters as an input, it has
been shown that both flow and byte accuracies improved as k
increased from 25 to 400. Overall, the server-to-client data sets
consistently give the best accuracy (95% and 79% in terms of
flows and bytes respectively). With the random data sets, the
average flow and byte accuracy is 91% and 67% respectively.
For the client-to-server data sets, 94% of the flows and 57%
of the bytes are correctly classified.

The algorithm to estimate the missing flow statistics is based
on the syntax and semantics of the TCP protocol. So it only
works with TCP, not other transport protocol traffic. The flow
statistics are divided into three general categories: duration,
number of bytes, and number of packets. The flow duration in
the missing direction is estimated as the duration calculated
with the first and the last packet seen in the observed direc-
tion. The number of bytes transmitted is estimated according
to information contained in ACKs packets. The number of
packets sent is estimated with the tracking of the last sequence
number and acknowledgement number seen in the flow, with
regards to the MSS. A number of assumptions have been
made. For example, MSS is used as a common value of
1460 bytes, simple acknowledgment strategy of an ACK (40-
byte data header with no payload) for every data packet, and
assuming that no packet loss and retransmission occurred. An
evaluation of the estimation algorithm is reported, the results
were promising for flow duration and bytes estimation, with
relatively larger error range for number of packets estimation.

The work addressed an interesting issue of the possibility
of using uni-directional flow statistics for traffic classification
and proposed a method to estimate the missing statistics. A
related issue of directionality in the use of bi-directional traffic
flows was addressed in the work of [54].

B. Supervised Learning Approaches

1) Statistical signature-based approach using NN, LDA and
ODA algorithms: In 2004 Roughan et al. [18] proposed to
use the nearest neighbours (NN), linear discriminate analysis
(LDA) and Quadratic Discriminant Analysis (QDA) ML algo-
rithms to map different network applications to predetermined
QoS traffic classes.

The authors list a number of possible features, and classify
them into five categories:

o Packet Level: e.g. packet length (mean and variance, root

mean square)

« Flow Level: flow duration, data volume per flow, number
of packets per flow (all with mean and variance values)
etc. Uni-directional flow is used.

o Connection Level: e.g. advertised TCP window sizes,
throughput distribution and the symmetry of the connec-
tion.
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« Intra-flow/connection features: e.g. packet inter-arrival
times between packets in flows.

o Multi-flow: e.g. multiple concurrent connections between
the same set of end-systems.

Of the features considered, the pair of most value were the
average packet length and flow duration. These features are
computed per full-flow, then per aggregate of flows within 24-
hour periods (an aggregate is a collection of statistics indexed
by server port and server IP address).

Three cases of classification are considered. The three-class
classification looks at three types of application: Bulk data
(FTP-data), Interactive (Telnet), and Streaming (RealMedia);
the four-class classification looks at four types of applica-
tions: Interactive (Telnet), Bulk data (FTP-data), Streaming
(RealMedia) and Transactional (DNS); and the seven-class
classification looks at seven applications: DNS, FTP-data,
HTTPS, Kazaa, RealMedia, Telnet and WWW.

The classification process is evaluated using 10-times cross
validation. The classification error rates are shown to vary
based on the number of classes it tried to identify. The three-
class classification has the lowest error rate, varying from
2.5% to 3.4% for different algorithms, while the four-class
classification had the error rate in the range of 5.1% to 7.9%,
and the seven-class one had the highest error rate of 9.4% to
12.6%.

2) Classification using Bayesian analysis techniques: In
2005 Moore and Zuev [14] proposed to apply the supervised
ML Naive Bayes technique to categorise Internet traffic by
application. Traffic flows in the dataset used are manually clas-
sified (based upon flow content) allowing accurate evaluation.

248 full-flow based features were used to train the classifier
(a summary is listed in Table I). Selected traffic for Internet
applications was grouped into different categories for clas-
sification, e.g. bulk data transfer, database, interactive, mail,
services, www, p2p, attack, games and multimedia.

To evaluate the classifier’s performance, the authors used
Accuracy and Trust (equivalent to Recall) as evaluation met-
rics. The results showed that with the simple Naive Bayes
technique, using the whole population of flow features, ap-
proximately 65% flow accuracy could be achieved in classifi-
cation. Two refinements for the classifier were performed, with
the use of Naive Bayes Kernel Estimation (NBKE) and Fast
Correlation-Based Filter (FCBF) methods 2. These refinements
helped to reduce the feature space and improved the classifier
performance to a flow accuracy better than 95% overall. With
the best combination technique, the Trust value for individual
class of application ranged, for instance, from 98% for www,
to 90% for bulk data transfer, to approximately 44% for
services traffic and 55% for P2P.

The work is extended with the application of Bayesian
neural network approach in [55]. It has been demonstrated
that accuracy is further improved compare to Naive Bayes

2The NBKE method is a generalisation of Naive Bayes. It addresses the
problem of approximating every feature by a normal distribution. Instead
of using a normal distribution with parameters estimated from the data, it
uses kernel estimation methods. FCBF is a feature selection and redundancy
reduction technique. In FCBF, goodness of a feature is measured by its
correlation with the class and other good features. That feature becomes good
if it is highly correlated with the class, yet is not correlated with any other
good features [14]

technique. Bayesian trained neural network approach is able
to classify flows with up to 99% accuracy for data trained and
tested on the same day, and 95% accuracy for data trained
and tested eight months apart. The paper also presents a
list of features with their descriptions and ranking in their
importance.

3) Real-time traffic classification using Multiple Sub-Flows
features: As noted in section III-C timely and continuous
classification is an important constraint for the practical em-
ployment of a traffic classifier. In 2006 Nguyen and Armitage
[56] proposed a method to address the issue by proposing
classification based on only the most recent N packets of a
flow - called a classification sliding window. The use of a small
number of packets for classification ensures the timeliness
of classification and reduces the buffer space required to
store packets’ information for the classification process. The
approach does not require the classifier to capture the start of
each traffic flow (as required in [53] and [57]). This approach
allows classification to be initiated at any point in time when
traffic flows are already in progress. It offers a potential of
monitoring traffic flow during its lifetime in a timely manner
with the constraints of physical resources.

The work proposes training ML classifiers on multiple sub-
flows features. First, extract two or more sub-flows (of N
packets) from every flow that represents the class of traffic one
wishes to identify in the future. Each sub-flow should be taken
from places in the original flow having noticeably different
statistical properties (for example, the start and middle of the
flow). Each sub-flow would result in a set of instances with
feature values derived from its N packets. Then train the ML
classifier with the combination of these sub-flows rather than
the original full flows.

This optimisation is demonstrated using the Naive Bayes
algorithm. Bi-directional flows were used. Different training
and testing datasets were constructed from the two separate
month-long traces collected during May and September 2005
at a public online game server in Australia and two 24-hour
periods collected by the University of Twente, Netherland
[58]. With the feature set used (listed in Table I), classifier
built based on full-flow features is demonstrated to perform
poorly when the classifier missed the start of a traffic flow.
However, with the application of the proposed method, results
show the classifier maintains more than 95% Recall and 98%
Precision (flow accuracy) even when classification is initiated
mid-way through a flow using only a total of 25 packets in
both directions.

However, the work has only been demonstrated with an
example of identifying an online game application (UDP-
based First Person Shooter game - Enemy Territory [59]).
Interference traffic included a range of other Internet appli-
cations (Web, DNS, NTP, SMTP, SSH, Telnet, P2P ...). The
authors also suggested the potential benefits of using clustering
algorithms in automating the sub-flows selection process.

4) Real-time traffic classification using Multiple Synthetic
Sub-Flows Pairs: As noted in section III-C directional neu-
trality an important constraint for the practical employment of
a traffic classifier. In 2006 Nguyen and Armitage [54] further
extended their work in [56] to overcome this problem. The
authors propose training the ML classifier using statistical
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features calculated over multiple short sub-flows extracted
from full-flow generated by the target application and their
mirror-imaged replicas as if the flow is in the reverse direction.

The optimisation is demonstrated when applied to the Naive
Bayes and Decision Tree algorithms with an example of iden-
tifying a UDP-based First Person Shooter game - Enemy Ter-
ritory [59] traffic. Using the same datasets as specified in [56]
they demonstrate that both classifiers perform poorly when
the classifiers are trained with bi-directional flow features that
make assumptions about the forward and backward direction.
However, training on Synthetic Sub-Flows Pairs results in
significant improvement to classification performance (with
up to 99% Recall and 98% Precision (flow accuracy) for the
example application) even when classification is initiated mid-
way through a flow, without prior knowledge of the flow’s
direction and using windows as small as 25 packets long.

5) GA-based classification techniques: In 2006 Park et al.
[60] made use of feature selection technique based on Genetic
Algorithm (GA). Using the same feature set specified in [44]
(listed in II), three classifiers were tested and compared: the
Naive Bayesian classifier with Kernel Estimation (NBKE),
Decision Tree J48 and the Reduced Error Pruning Tree
(REPTree) classifier. Their results suggest two decision tree
classifiers provide more accurate classification results than the
NBKE classifier. The work also suggests the impact of using
training and testing data from different measurement points.

Early flow classification is also briefly mentioned. Accuracy
as a function of the number of packets used for classification is
presented for J48 and REPTree classifiers. The first 10 packets
used for classification seems to provide the most accurate
result. However, the accuracy result is provided as overall
result. It is not clear how it would be different for different
types of Internet applications.

6) Simple statistical protocol fingerprint method: Crotti et
al. [61] in early 2007 proposed a flow classification mechanism
based on three properties of the captured IP packets: packet
length, inter-arrival time and packet arrival order. They defined
a structure called protocol fingerprints which express the three
traffic properties in a compact way and used an algorithm
based on normalised thresholds for flow classification.

There are two phases in the classification process: training
and classifying. In the training phase, pre-labeled flows from
the application to be classified (the training dataset) are anal-
ysed to build the protocol fingerprints. A protocol fingerprint
is a PDF vector, estimated from a set of flows of the same
protocol from the training dataset. The PDF; is built on all the
it" pairs of P; (P; = {s;, At;}) where s; represents the size
of packet i and At; represents the inter-arrival time between
packet i and packet (i-1). In order to classify an unknown
traffic flow given a set of different PDFs, the authors check
whether the behaviour of the flow is statistically compatible
with the description given by at least one of the PDFs, and
choose which PDF describes it better. An anomaly score
that gives a value between O and 1 is used to indicate how
‘statistically distant’ an unknown flow is from a given protocol
PDFE. It shows the correlation between the unknown flow’s
it" packet and the application layer protocol described by
the specific PDF used; the higher the value, the higher the
probability that the flow was generated by that protocol.

Their results show flow accuracy of more than 91% for
classifying three applications: HTTP, SMTP and POP3, using
the first few packets of each application’s traffic flow.

In a similar way to the work of Bernaille et al. [53]
reviewed above, this approach demonstrates advanced results
for timeliness of the classification. However, it has the same
limitation in assuming that the classifier can always capture the
start of each flow, and is aware of the locations of client and
server (for constructing the PDF of client-server and server-
client directions). The effectiveness of the approach when
the classifier misses the first few packets of the traffic flow
(assumed to carry the protocol fingerprint), or suffers from
packet loss and packet re-ordering has not been addressed.

C. Hybrid Approaches

Erman et al. in [62] in early 2007 proposed a semi-
supervised traffic classification approach which combines un-
supervised and supervised methods. Motivations to the pro-
posal are due to two main reasons: Firstly labeled examples
are scarce and difficult to obtain, while supervised learning
methods do not generalise well when being trained with
few examples in the dataset. Secondly, new applications may
appear over time, and not all of them are known as a priori,
traditional supervised methods map unseen flow instances into
one of the known classes, without the ability to detect new
types of flows [62].

To overcome the challenges, the proposed classification
method consists of two steps. First, a training dataset consist-
ing of labeled flows combined with unlabeled flows are fed
into a clustering algorithm. Second, the available labeled flows
are used to obtain a mapping from the clusters to the different
known classes. This steps allows some clusters to be remained.
To map a cluster with labeled flows back to an application
type, a probabilistic assignment is used. The probability is
estimated by the maximum likelihood estimate, ~* where
nji is the number of flows that were assigned to cluster k
with label j, and ny is the total number of labeled flows that
were assigned to cluster k. Clusters without any labeled flows
assigned to them are labeled ‘Unknown’ as application type.
Finally a new unseen flow will be assigned to the nearest
cluster with the distance metric chosen in the clustering step.

This new proposed approach has promising results. Prelim-
inary results have been shown in [62] with the employment of
K-Means clustering algorithm. The classifier is provided with
64,000 unlabeled flows. Once the flows are clustered, a fixed
number of random flows in each cluster are labeled. Results
show that with two labeled flows per cluster and K = 400,
the approach results in 94% flow accuracy. The increase in
classification accuracy is marginal when five or more flows
are labeled per cluster. More details results can be found in
[63].

As claimed by the authors [63] the proposal has advantages
in terms of faster training time with small number of labeled
flows mixed with a large number of unlabeled flows, being
able to handle previously unseen applications and the variation
of existing application’s characteristics, and the possibility of
enhancing the classifier’s performance by adding unlabeled
flows for iterative classifier training. However, an evaluation
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of these advantages has not been demonstrated in the current
paper.

D. Comparisons and Related Work

1) Comparison of different clustering algorithms: In 2006
Erman et al. [45] compared three unsupervised clustering algo-
rithms: K-Means, DBSCAN and AutoClass. The comparison
is performed on two empirical data traces: one public trace
from the University of Auckland and one self-collected trace
from the University of Calgary.

The effectiveness of each algorithm is evaluated using over-
all accuracy and the number of clusters it produces. Overall
accuracy measurement determines how well the clustering
algorithm is able to create clusters that contain only a single
traffic category. A cluster is labeled by the traffic class that
makes up the majority of its total connections (bi-directional
traffic flows). Any connection that has not been assigned
to a cluster is labeled as noise. Then overall accuracy is
determined by the portion of the total TP for all clusters out
of total number of connections to be classified. Like any other
clustering algorithms, the number of clusters produced by a
clustering algorithm is an important evaluation factor as it
affects the performance of the algorithm in classification stage.

Their results show that the AutoClass algorithm produces
the best overall accuracy. On average, AutoClass is 92.4%
and 88.7% accurate in the Auckland and Calgary datasets
respectively. It produces on average of 167 clusters for the
Auckland dataset (for less than 10 groups of applications)
and 247 clusters for the Calgary dataset (for 4 groups of
applications). For K-Means, the number of clusters can be
set, the overall accuracy steadily improves as the number of
clusters (K) increases. When K is around 100, overall accuracy
is 79% and 84% on average for the Auckland and Calgary
datasets respectively. Accuracy is improved only slightly with
greater value of K. DBSCAN algorithm produces lower overall
accuracy (upto 75.6% for the Auckland and 72% for the
Calgary data sets ); however, it places the majority of the
connections in a small subset of the clusters. Looking at the
accuracy for particular traffic class categories, the DBSCAN
algorithm has the highest precision value for P2P, POP3 and
SMTP (lower than Autoclass for HTTP traffic).

The work mentions briefly about the comparison of model
build time, and has not looked at other performance evaluation
measurements, such as processing speed, CPU and memory
usage, or the timeliness of classification.

2) Comparison of clustering vs. supervised techniques:
Erman et al. [64] evaluate the effectiveness of supervised
Naive Bayes and clustering AutoClass algorithm. Three ac-
curacy metrics were used for evaluation: recall, precision and
overall accuracy (overall accuracy is defined the same as [45]
reviewed in the previous sections).

Classification method using the supervised Naive Bayes
algorithm is straight forward. For classification using Auto-
Class, once AutoClass comes up with the most probable set
of clusters from the training data, the clustering is transformed
into a classifier. A cluster is labeled with the most common
traffic category of the flows in it. If two or more categories

are tied, then a label is chosen randomly amongst the tied
category labels. A new flow is then classified with the traffic
class label of the cluster it is most similar to [64].

The evaluation was performed on two 72-hour data traces
provided by the University of Auckland (NLANR). A con-
nection is defined as a bi-directional flow. The feature set is
shown in Table III.

The paper shows that with the dataset used and nine
application classes (HTTP, SMTP, DNS, SOCKS, IRC, FTP
control, FTP data, POP3 and LIMEWIRE), AutoClass has an
average overall accuracy of 91.2% whereas the Naive Bayes
classifier has an overal accuracy of 82.5%. AutoClass also
performs better in terms of precision and recall for individual
traffic classes. On average, for Naive Bayes, the precision and
recall for six out of nine classes were above 80%; whereas
for AutoClass, all classes have precision and recall values
above 80%, six out of the nine classes have average precision
values above 90%, and seven have average recall values above
90%. However, in terms of time taken to build classification
model, AutoClass takes much longer time than Naive Bayes
algorithm (2070 seconds vs. 0.06 seconds for the algorithm
implementation, data and equipment used).

The conclusion that the unsupervised AutoClass outper-
forms the supervised Naive Bayes in terms of overall accuracy
might be counterintuitive to some readers on the surface.
While the testing methodology of the paper is sound, the
results might be impacted by the size of the training data
sets (the current work uses 1000 samples per application), the
specific dataset used, how the Naive Bayes classifier is being
trained (single application classification at a time, or multiple
applications classification at a time), and the specific feature
set used.

An issue of clustering approaches is the real-time classifica-
tion speed, as the number of clusters resulted from the training
phase is typically larger than the number of application classes.
However, this has not been evaluated in the paper.

3) Comparison of different supervised ML algorithms:
Williams et al. [65] provides insights into the performance
aspect of ML traffic classification. The works look at a number
of supervised ML algorithms: Naive Bayes with Discretisation
(NBD), Naive Bayes with Kernel Density Estimation (NBK) ,
C4.5 Decision Tree, Bayesian Network, and Naive Bayes Tree.
These algorithms’ computational performance is evaluated in
terms of classification speed (number of classifications per sec-
ond) and the time taken to build the associated classification
model.

Results are collected by experiments on three public
NLANR traces. Features used for analysis include the full
set of 22 features, and two best reduced feature sets selected
by correlation-based feature selection (CFS) and consistency-
based feature selection (CON) algorithms. The features set is
shown in Table III.

The results show that most algorithms achieve high flow
accuracy with the full set of 22 features (only NBK algorithm
achieves > 80% accuracy and the rest of the algorithms
achieve greater than 95% accuracy). With the reduced sets of
8 (CFS) and 9 (CON) features, the results achieved by cross-
validation show only slight changes in the overall accuracy
compared to the use of full feature set. The largest reduction
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in accuracy were 2-2.5% for NBD and NBK with the use of
CON reduced feature set.

Despite the similarity in classification accuracy, the paper
shows significant differences in classification computational
performance. C4.5 algorithm was seen as the fastest algorithm
when using any of the feature set (with maximum of 54,700
classifications per second on a 3.4GHz Pentium 4 workstation
running SUSE Linux 9.3 with WEKA implementation). Al-
gorithms ranked in descending order in terms of classification
speeds are: C4.5, NBD, Bayesian Network, Naive Bayes Tree,
NBK.

In terms of the model build time, Naive Bayes Tree takes
significant longer time than the remaining algorithms. Algo-
rithms ranked in descending order in terms of model build
time are: Naive Bayes Tree, C4.5, Bayesian Network, NBD,
NBK.

Results of the paper also show feature reduction greatly
improves performance of the algorithms in terms of model
build time and classification speeds for most algorithms.

4) ACAS: Classification using machine learning techniques
on application signatures: Haffner et al. [57] in 2005 pro-
posed an approach for automated construction of application
signatures using machine learning techniques. Different from
the other works, this work makes use of the first n-Bytes of
a data stream as features. Though it has the same limitation
with those works that require accessing to packet payload,
we include it in the survey as it is also machine learning
based, and its interesting results may be useful in a composite
machine learning based approach that combines different
information such as statistical characteristics, contents, and
communication patterns.

Three learning algorithms: Naive Bayes, AdaBoost and
Maximum Entropy have been investigated in constructing
application signatures for a various range of network appli-
cations: ftp control, smtp, pop3, imap, https, http and ssh.
A flow instance is characterised with n-Bytes represented in
binary value, and ordered by the position of the Byte in the
flow stream. Collection of flow instances with binary feature
is used as input by the machine learning algorithms.

Using of the first 64 bytes of each TCP unidirectional
flow the overall error rate is below 0.51% for all applications
considered. Adaboost and Maximum Entropy provide best
results with more than 99% of all flows classified correctly.
Precision is above 99% for all applications and Recall rate is
above 94% for all application except ssh (86.6%) (The poor
performance on ssh application was suspected due to the small
amount of sample instances in the training dataset).

5) Unsupervised approach for protocol inference using flow
content: Closely to Haffner et al. [57]’s work, in 2006, Ma
et al. [66] introduced and analysed alternative mechanisms
for automatic identification of traffic, based solely on flow
content. Unsupervised learning was applied in three different
modeling techniques for capturing statistical and structural
aspects of messages exchanged in a protocol, namely product
distribution, Markov processes, and common substring graphs
(CSG).

Different from other work that made use of flow classi-
fication, the work focused on protocol inference, in which a
protocol was defined as ‘a pair of distributions on flows’ - one

was a byte sequence from the initiator to the responder and one
was a byte sequence from the responder to the initiator (which
does not include packet-level information such as inter-arrival
time, frame size or header fields).

Product distribution model treats each n-byte flow distri-
bution as a product of n independent byte distributions. Each
byte offset in a flow is represented by its own byte distribution
that describes the distribution of bytes at that offset in the
flow. The Markov process is described as a random walk
on a weighted directed graph. The nodes of the graphs are
labeled with unique byte values. Each edge is weighted with
a transition probability such that, for any node, the sum of all
its out-edge weights is 1. The next node is chosen according
to weight of the edge from the current node to its neighbors.
And common substring graphs capture the common structural
information about the flows from which it is built.

Detailed model descriptions, how to construct each model,
how to merge, compare and classify new instances are de-
scribed in [66]. Overall, the product distribution resulted in
the lowest total misclassification error (1.68%-4.15%), while
Markov processes had the highest (3.33-9.97%) and CSGs in
the middle (2.08-6.19%).

6) BLINC: Multilevel traffic classification in the dark:
Karagiannis et al. [15] developed an application classification
method based on the behaviours of the source host at the
transport layer, divided into three different levels. The social
level captures and analyses the interactions of the examined
host with other hosts, in terms of the numbers of them it
communicates with. The host’s popularity and that of other
hosts in its community’s circle are considered. The role of the
host, in acting as a provider or the consumer of a service,
is classified at the functional level. Finally, transport layer
information is used, such as the 4-tuple of the traffic (source
and destination IP addresses, and source and destination ports),
flow characteristics such as the transport protocol, and the
average packet size.

A range of application types was studied in this work,
including web, p2p, data transfer, network management traffic,
mail, chat, media streaming, and gaming. By analysing the
social activities of the host, the authors conclude that among
the host’s communities, neighbouring IPs may offer the same
service (a server farm) if they use the same service port, exact
communities might indicate attacks, while partial communities
may signify p2p or gaming applications. In addition, most
IPs acting as clients have a minimum number of destination
IPs. Thus, focusing on the identification of that small number
of servers can help client identification, leading to the clas-
sification of a large amount of traffic. Classification at the
functional level shows that a host is likely to be providing a
service if during a duration of time it uses a small number of
source ports, normally less than or equal to two for all of their
flows. Typical client behaviour is normally represented when
the number of source ports is equal to the number of distinct
flows. The consistency of average packet size per flow across
all flows at the application level is suggested to be a good
property for identifying certain applications, such as gaming
and malware.

Completeness and accuracy are the two metrics used for the
classification approach. Completeness is defined as the ratio
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of the number of flows (bytes) classified by BLINC over the
total number of flows (bytes), indicated by payload analysis.
The results show that BLINC can classify 80% to 90% traffic
flows with more than 95% flow accuracy (70% to 90% for
byte accuracy).

This method has to gather information from several flows
for each host before it can decide on the role of one host. Such
requirements might prevent the employment of this method in
real-time operational networks.

7) Pearson’s Chi-Square test and Naive Bayes classifier:
Bonfiglio et al. [67] recently proposed a framework based on
two techniques to identify Skype traffic in realtime. The first,
based on Pearsons Chi-Square test, detects Skypes fingerprint
through analysis of the message content randomness intro-
duced by the encryption process. The second, based on the
Naive Bayes theorem, detects Skypes traffic from message
size and arrival rate characteristics.

Using two specific test datasets, the authors’ compared
the performance of each technique relative to classification
using deep-packet inspection. They showed their Naive Bayes
technique to be effective in identifying voice traffic over IP
regardless of source application. Their Pearsons Chi-Square
test effectively identified Skype traffic (including Skype
voice/video/chat/data traffic) over UDP and all encrypted or
compressed traffic for TCP flows. When used in combination
the two techniques detected Skype voice traffic (UDP flows)
with 0% false positives and 9.82% false negatives for one test
dataset, and 0.11% false positives and 2.40% false negatives
for the other. These false positives rates are an improvement
compared to each technique being used individually. However,
the false negatives rates are slightly worse. Also it is important
to note the great imbalance between the amount of Skype
traffic compared to other traffic in the test datasets. The results
should also be evaluated in terms of precision and recall, to
reflect the classifiers’ performance per traffic class, instead of
only the overall false positives and false negatives.

Both techniques offer real-time traffic classification. The
Chi-Square technique looks at the first few bytes of the
message. The Naive Bayes technique looks at the statistical
characteristics for each window of 30 consecutive packets.

E. Challenges for operational deployment

We wrap up our survey with a qualitative look at the extent
to which the reviewed works overlap Section III-C’s additional
constraints and requirements for using ML techniques inside
real-time IP traffic classifiers.

1) Timely and continuous classification: Most of the re-
viewed work has evaluated the efficacy of different ML
algorithms when applied to entire datasets of IP traffic, trained
and tested over full-flows consisting of thousands of packets
(such as [14] [18] [46] [48] [64] and [65]).

Some ( [53] and [61]) have explored the performance of ML
classifiers that utilise only the first few packets of a flow, but
they cannot cope with missing the flow’s initial packets. Others
( [56]) have explored techniques for continuous classification
of flows using a small sliding window across time, without
needing to see the initial packets of a flow.

2) Directional neutrality: The assumption that application
flows are bi-directional, and the application’s direction may
be inferred prior to classification, permeates many of the
works published to date ( [14] [48] [53] [46] [68]). Most
work has assumed that they will see the first packet of each
bi-directional flow, that this initial packet is from a client
to a server. The classification model is trained using this
assumption, and subsequent evaluations have presumed the
ML classifier can calculate features with the correct sense of
forward and reverse direction.

As getting the direction wrong will degrade classification
accuracy, [54] explores the creation of classifier models that
do not rely on external indications of directionality.

3) Efficient use of memory and processors: There are
definite trade-offs to be made between the classification per-
formance of a classifier and the resource consumption of the
actual implementation. For example, [14] and [55] reveal ex-
cellent potential for classification accuracy. However, they use
a large number of features, many of which are computationally
challenging. The overhead of computing complex features
(such as effective bandwidth based upon entropy, or Fourier
Transform of the packet inter-arrival time) must be considered
against the potential loss of accuracy if one simply did without
those features.

Williams et al. [65] provide some pertinent warnings about
the trade-off between training time and classification speed.
(For example, among five ML algorithms studied, Naive Bayes
with Kernel Estimation took the shortest time to build classifi-
cation models, yet performed slowest in terms of classification
speed.)

Techniques for timely and continuous classification have
tended to suggest a sliding window over which features are
calculated. Increasing the length of this window ( [56] [54]
and [57]) might increase classification accuracy. However,
depending on the particular implementation (opportunities for
pipelining, step size with which the window slides across
the incoming packet streams, etc.) this may decrease the
timeliness with which classification decisions are made (and
increase the memory required to buffer packets during feature
calculations). Most of the reviewed work has not, to date,
closely investigated this aspect.

4) Portability and Robustness: None of the reviewed works
seriously considered or addressed the issue of classification
model portability mentioned in section III-C.

None of the reviewed works has addressed and evaluate
their model’s robustness in terms of classification performance
with the introduction of packet loss, packet fragmentation,
delay and jitter. Unsupervised approaches have the potential
to detect the emergence of new types of traffic. However, this
issue has not been evaluated in most of the works. It was
briefly mentioned in [62].

5) Qualitative summary: Table IV provides a qualitative
summary of the reviewed works against the following criteria:

« Real-time Classification

— No: The work makes use of features that require flow
completion to compute (e.g. Flow duration, total flow
bytes count)

— Yes: The work requires the capture of a small number
of packets/bytes of a flow to do classification
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TABLE 1

A SUMMARY OF RESEARCH REVIEWED IN SECTION IV

71

cation windows) taken at various points
of the flow lifetime - where the changes
in flow’s characteristics are significant

Work ML Algorithms | Features Data Traces Traffic Consid- | Classification
ered Level
McGregor et al. [48] Expectation NLANR and | A mixture of | Coarse
Maximization o Packet length statistics (min, max, quar- | Waikato trace HTTP, SMTP, | grained (bulk
tiles, ...) FTP (control), | transfer, small
o Inter-arrival statistics NTP, IMAP, | transactions,
e Byte counts DNS ... multiple
e Connection duration transactions
e Number of transitions between transac- )
tion mode and bulk transfer mode
o Idle time
Calculated on full flows
Zander et al. [46] AutoClass Auckland-VI, Half-Life, Fine grained
o Packet length statistics (mean and vari- | NZIX-I and | Napster, AOL, | (8 applications
ance in forward and backward directions) Leipzig-Il from | HTTP, DNS, | studied)
e Inter-arrival time statistics (mean and | NLANR SMTP, Telnet,
variance in forward and backward direc- FTP (data)
tions)
o Flow size (bytes)
o Flow duration
Calculated on full-flows
Roughan et al. [18] Nearest Waikato trace | Telnet, FTP | Fine  grained
Neighbour, o Packet Level and section | (data), Kazaa, | (three, four and
Linear o Flow Level logs from a | Real Media | seven classes
Discriminate o Connection Level commercial Streaming, of  individual
Analysis  and o Intra-flow/Connection features streaming DNS, HTTPS applications)
Quadratic e Muli-flow features services
Discriminant Calculated on full flows
Analysis
Moore and Zuev [14] Baysian Total of 248 features, among them are Proprietary A large range | Coarse grained
Techniques o Flow duration Hand Classified | of  Database,
(Naive  Bayes o TCP port Traces P2P, Buck,
and Naive o Packet inter-arrival time statistics Mail, Services,
Bayes with o Payload size statistics ... traffic
Kernel o Effective bandwidth based upon entropy
Estimation o Fourier transform of packet inter-arrival
and Fast time
ggsr:jlanonl;ilter Calculated on full flows
method)
Barnaille et al. [53] Simple K- | Packet lengths of the first few packets of bi- | Proprietary eDonkey, Fine  grained
Means directional traffic flows traces FTP, HTTP, | (10 applications
Kazaa, NTP, | studied)
POP3, SMTP,
SSH, HTTPS,
POP3S
Park et al. [44] [44] Naive Bayes NLANR, WWW, N/A  (compari-
with Kernel o Flow duration USC/ISI, Telnet, Chat | son work)
Estimation, o Initial Advertised Window bytes CAIDA (Messenger),
Decision o Number of actual data packets FTP, P2P
Tree J48 and e Number of packets with the option of (Kazaa,
Reduced Error PUSH Gnutella),
Prunning Tree o Packet lengths Multimedia,
o Advertised window bytes SMTP, POP,
e Packet inter-arrival time IMAP, NDS,
o Size of total burst packets Oracle, X11
Nguyen and Armitage | Supervised Traces Online  Game | Application
[56] Naive Bayes o Packet lengths (min, max, mean, standard | collected at | (Enemy specific (Online
deviation) an online | Territory) Game, UDP
o Inter-Packet lengths statistics (min, max, game server | traffic, Others | based, First
mean, standard deviation) in Australia | (HTTP, Person Shooter,
o Packet Inter-arrival times statistics (min, | and provided | HTTPS, DNS, | Enemy
max, mean, std dev.) by University | NTP, SMTP, | Territory
o Calculated over a small number (e.g. 25 | of Twente, | Telnet, SSH, | traffic)
packets) of consecutive packets (classifi- | Netherland P2P ..)
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TABLE II

A SUMMARY OF RESEARCH REVIEWED IN SECTION IV(CONTINUED)

‘Work ML Algorithms | Features Data Traces Traffic Consid- | Classification
ered Level
Nguyen and Armitage | Naive  Bayes Traces Online  Game | Application
[54] and  Decision o Packet lengths statistics (min, max, mean, | collected at | (Enemy specific (Online
Tree in std dev.) an online | Territory) Game, UDP
combination o Inter-Packet lengths statistics (min, max, | game  server | traffic, Others | based, First
with Clustering mean, std dev.) in Australia | (HTTP, Person Shooter,
algorithms e Packet Inter-arrival times statistics (min, | and provided | HTTPS, DNS, | Enemy
for automated max, mean, std dev.) by University | NTP, SMTP, | Territory
sub-flows o Calculated over a small number (e.g. 25 | of Twente, | Telnet, SSH, | traffic)
selection packets) of consecutive packets (classifi- | Netherland P2P ..)
cation windows) taken at various points
of the flow lifetime - where the changes
in flow’s characteristics are significant.
o Further extension with synthetic mirror-
ing features.
Erman et al. [47] K-Means Self-collected 8 | Web, P2P, FTP, | Coarse grained
o Total number of packets 1-hour campus | Others (29  different
e Mean packet length traces between protocols
e mean payload length excluding headers April 6-9, 2006 grouped into
o Number of bytes transferred a number of
o Flow duration application
e Mean inter-arrival time categories  for
studies)
Crotti et al. [61] Protocol 6-month  self- | TCP Fine grained
fingerprints o Packet lengths collected traces | applications (four TCP
(Probability o Inter-arrival time at the edge | (HTTP, SMTP, | protocols)
Density o Packet arrival order gateway of the | POP3, SSH)
Function University — of
vectors) and Brescia data
Anomaly centre network
score (from
protocol PDFs
to protocol
fingerprints)
Haffner et al. [57] Naive  Bayes, | Discrete byte encoding of the first n-bytes pay- | Proprietary FTP (control), | Fine grained
AdaBoost, load of a TCP unidirectional flow SMTP, POP3,
Regularized IMAP, HTTPS,
Maximum HTTP, SSH
Entropy
Ma et al. [66] Unsupervised Discrete byte encoding of the first n-bytes pay- | Proprietary FTP (control), | Fine grained
learning load of a TCP unidirectional flow SMTP, POP3,
(product IMAP, HTTPS,
distribution, HTTP, SSH
Markov
processes,
and  common
substring
graphs)
Auld et al. [55] Bayesian Neu- | 246 features in total, including: Proprietary A large range | Coarse grained

ral Network

Flow metrics (duration, packet-count, to-
tal bytes)

Packet inter-arrival time statistics

Size of TCP/IP control fields

Total packets in each direction and total
for bi-directional flow

Payload size

Effective bandwidth based upon entropy
Top-ten Fourier transform components of
packet inter-arrival times for each direc-
tion

Numerous TCP-specific values derived
from tcptrace (e.g. total payload bytes
transmitted, total number of PUSHED
packets, total number of ACK packets
carrying SACK information etc.)

hand classified
traces

of Database,
P2P, Buck,
Mail, Services,
Multimedia,
Web ... traffic
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TABLE III

A SUMMARY OF RESEARCH REVIEWED IN SECTION [V(CONTINUED)

73

Chi-Squate test

encapsulated into the transport layer pro-

tocol segment)

o Average inter packet gap

‘Work ML Algorithms | Features Data Traces Traffic Consid- | Classification
ered Level
Williams et al. [65] Naive NLANR FTP(data), N/A (Compari-
Bayes with o Protocol Telnet, SMTP, | son work)
Discretisation, o Flow duration DNS, HTTP
Naive  Bayes o Flow volume in bytes and packets
with Kernel e Packet length (minimum, mean, maxi-
Estimation, mum and standard deviation)
C4.5 Decision o Inter-arrival time between packets (mini-
Tree, Bayesian mum, mean, maximum and standard de-
Network  and viation)
Naive  Bayes
Tree
Erman et al. [45] NLANR and a | HTTP, P2P, | N/A (Compari-
K-Means, DB- o Total number of packets self-collected SMTP, IMAP, | son work)
SCAN and Au- o Mean packet length l-hour  trace | POP3, MSSQL,
toClass e Mean payload length excluding headers from the | Other
o Number of bytes transfered (in each di- | University
rection and combined) Calgary
e Mean packet inter-arrival time
Erman et al. [64] Naive Bayes NLANR HTTP, SMTP, | N/A (Compari-
and AutoClass o Total number of packets DNS, SOCKS, | son work)
e Mean packet length (in each direction and FTP(control),
combined) FTP (data),
o Flow duration POP3,
e Mean data packet length Limewire
e Mean packet inter-arrival time
Bonfiglio et al. [67] Naive  Bayes Two self col- | Skype traffic Application
and Pearson’s o Message size (the length of the message | lected datasets specific

TABLE IV
REVIEWED WORK IN LIGHT OF CONSIDERATIONS FOR OPERATIONAL TRAFFIC CLASSIFICATION

‘Work Real-time Classification | Feature = Computation | Classify Flows In | Directional neutrality
Overhead Progress
McGregor et al. [48] No Average Not addressed No
Zander et al. [46] No Average Not addressed No
Roughan et al. [18] No Average Not addressed N/A
Moore and Zuev [14] No High Not addressed No
Barnaille et al. [53] Yes Low Not addressed No
Park et al. [44] No Average Not addressed Not clear
Nguyen and Armitage [56] Yes Average Yes Yes
Nguyen and Armitage [54] Yes Average Yes Yes
Erman et al. [47] No Average Not addressed No
Crotti et al. [61] Yes Average Not addressed No
Haffner et al. [57] Yes Average Not addressed N/A
Ma et al. [66] No Average Not addressed No
Auld et al. [55] No High Not addressed No
Williams et al. [65] N/A Average N/A N/A
Erman et al. [45] N/A Average N/A N/A
Erman et al. [64] N/A Average N/A N/A
Bonfiglio et al. [67] Yes Average Not addressed Not clear
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o Feature Computation Overhead
Low: The work makes use of a small number of
features (e.g sizes of the first few packets, binary
encoded of the first few bytes of a unidirectional
flow)

— Average: The work makes use of an average set of
features (such as packet length and inter-arrival times
statistics, flow duration, bytes count)

— High: The work makes use of a large (comparatively
with other work in the area) including computa-
tional complex features (such as Fourier transform
of packet inter-arrival time)

¢ Continuous Classification

— Not addressed: The issue was not considered in the
work
— Yes: The issue was considered and solved in the work

« Directional Neutrality

— No: The work makes use of bi-directinal flow and
features calculations, but did not consider the issue

— Yes: The work makes use of bi-directional flow
and feature calculations, addressed the issues and
proposed solution

— NJ/A: The work makes use of uni-directional flow and
the issue is not applicable

— Not clear: Not clearly stated in the paper

V. CONCLUSION

This paper surveys significant works in the field of machine
learning based IP traffic classification during the peak period
of 2004 to early 2007. Motivated by a desire to move away
from port-based or payload-based traffic classification, it is
clear that ML can be applied well in the task. The use of
a number of different ML algorithms for offline analysis,
such as AutoClass, Expectation Maximisation, Decision Tree,
NaiveBayes etc. has demonstrated high accuracy (up to 99%)
for a various range of Internet applications traffic. Early
ML techniques relied on static, offline analysis of previously
captured traffic. More recent work is beginning to address
the requirements for practical, ML-based real-time IP traffic
classification in operational networks. In this survey paper, we
have outlined a number of critical operational requirements for
real-time classifiers and qualitatively critiqued the reviewed
works against these requirements.

There is still a lot of room for further research in the field.
While most of the approaches build their classification models
based on sample data collected at certain points of the Internet,
those models’ usability needs to be carefully evaluated. The
accuracy evaluated on the test dataset collected at the same
point of measurement might not be true when being applied in
different point of measurement. There are still open questions
as to how well they can maintain their performance in the pres-
ence of packet loss, latency jitter, and packet fragmentation.
Each ML algorithm may perform differently toward different
Internet applications, and may require different parameter
configurations. The use of a combination of classification
models is worth investigating. Parallel processing for real-
time classification at traffic aggregation points in the network
may be useful when the classifiers need to cope with millions

of concurrent flows simultaneously. And the application of
ML algorithms for newer applications (such as Skype, video
streaming, voice over IP and peer to peer file-sharing) is still
an interesting open field.

Nevertheless, the promising results of ML-based IP traffic
classification may open many new avenues for related research
areas, such as the application of ML in intrusion detections,
anomaly detection in user data and control, routing traffic,
and building network profiles for proactive network real-time
monitoring and management. The classification of traffic in
greynet or darknet networks is also an interesting possible
extension of the research field.
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