

 Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au

Swinburne Research Bank
http://researchbank.swinburne.edu.au

Chhetri, M. B., Vo, Q. B., & Kowalczyk, R. (2012). AutoSLAM: a policy-driven
middleware for automated SLA establishment in SOA environments.

Originally published in Proceedings of the 9th IEEE International Conference on
Services Computing (SCC 2012), Honolulu, Hawaii, United States, 24–29 June

2012 (pp. 9–16). Piscataway, NJ: IEEE.

Available from: http://dx.doi.org/10.1109/scc.2012.79.

Copyright © 2012 IEEE.

This is the author’s version of the work, posted here with the permission of the
publisher for your personal use. No further distribution is permitted. You may also be
able to access the published version from your library. The definitive version is
available at http://ieeexplore.ieee.org/.

AutoSLAM - A Policy-driven Middleware for Automated SLA Establishment in SOA
Environments

Mohan Baruwal Chhetri, Quoc Bao Vo and Ryszard Kowalczyk
Faculty of Information & Communication Technologies

Swinburne University of Technology
Ha.wthorn, Australia

{mchherri, bvo, rkowalczyk} @swin.edu.au

Abstract-We propose a policy-based framework for the
automated establishment of Service Level Agreements (SLAs)
in Service Oriented Architecture (SOA) environments such
as the cloud. The novelty of our proposed framework is the
support for multiple SLA interaction models, giving entities
the flexibility to choose the one that is most appropriate in
a given context, while simultaneously participating in multiple
concurrent SLA interactions using different interaction models.
As part of the framework, we present AutoSLAM, a policy
based middleware that uses policies described with the use
of WS-SLAM, our new WS-Policy extension, that provides a
domain-independent policy specification language for specify
ing conditional assertions over the supported SLA interaction
models. We have implemented an AutoSLAM proof-of-concept
prototype and evaluated it for purchasing computing resources
on Amazon Ee2 under different contexts.

Keywords-SLA interaction models, policies, strategy asser
tions, context assertions, interaction protocol, policy-based
middleware

I. INTRODUCTION

When consuming or providing services in dynamic SOA
environments such as the cloud, entities have to first reach
agreements over the service usage tenns and conditions.
Given the diversity and dynamism of the cloud environment,
using just a single interaction model for SLA establishment
may not be appropriate in all scenarios and contexts, and
service consumers and providers can benefit from supporting
multiple interaction models. Some of the popular SLA inter
action models include fixed-price selling, auctions, corrunod
ity markets (spot trading, forward contract, futures contract),
and one-to-one and one-to-many negotiations. Support for
multiple interaction models gives them the flexibility to
choose the one that is roost appropriate in a given context,
while simultaneously participating in multiple concurrent
SLA interactions using different interaction models.

In each SLA interaction model the interactions between
the participating entities are governed by an interaction
protocol whicn defines the "rules of procedure" for the
conversation. Depending upon the interaction protocol used,
the entities can use different decision-making strategies to
try and reach an agreement. For example, if the interaction
model is an auction based on the first-price sealed-bid

auction protocol, then all the bidders submit a single sealed
bid. For them, the decision-making strategy has to detennine
the best bidding price, while for the service provider, it has to
detennine the acceptable bid price. Similarly, if the entities
are involved in bilateral negotiation using the alternating
offers protocol, the decision-making strategy has to deter
mine what initial offer to make, what counter-offer to make,
when to accept an offer and when to terminate negotiation.
Thus each SLA interaction model uses a specific interaction
protocol and one or more decision-making strategies.

We propose a policy-based approach for supporting mul
tiple SLA interaction models. Our policies are based on
the popular condition-action rules paradigm, and allow the
specification of conditional assertions over the supported
SLA interaction models. The condition part captures the
context surrounding the SLA interaction, while the action
part specifies the executable SLA interaction model. A
central part of our approach is our light-weight AutoSLAM
(Automated SLA Management) middleware. In AutoSLAM,
we fonnally specify SLA interaction policies in WS-SLAM,
our novel extension of the WS-Policy framework [5]. In our
proof-of-concept prototype, we make use of the Drools Rule
Engine [6] for the evaluation of the WS-SLAM policies. We
do this by first parsing the WS-SLAM policies into Drools
rules which are then fed to the Drools Rule Engine. The
AutoSLAM middleware intercepts each incoming request
and determines which SLA interaction model to use for SLA
establishment

The rest of this paper is organized as follows. Section II
discusses the Amazon EC2 service which we use to motivate
our research. Section III elaborates on the AutoSLAM
middleware architecture. Section IV gives an overview of the
WS-SLAM policy language used to specify SLA interaction
rules. Section V discusses the implementation of the proof
of-concept prototype of the AutoSLAM middleware using
the Drools Rule Engine. Section VI presents an evaluation of
the AutoSLAM middleware using the scenario of purchasing
computing resources from Amazon EC2 under different
contextual conditions. Finally Section VIII concludes the
paper with an outlook of future work.

Private Public

On-Demand Pricing

Strategy
Fixed Price Protocol

On-Demand

Purchasi ng Strategy

Amazon (EC2

Service Provider)
Reserved Instance

Discounted Fixed Price Protocol
Reserved Instance EC2 Service

Consumer

Figure 1. Amazon EC2 supports multiple SLA interaction models

II. MOTIVATING SCENARIO - AMAZON EC2

We consider the case of Amazon Elastic Cloud Compute
(EC2) as a motivating scenario for our research work.

A. Amazon Ee2 - Service Provider

The Amazon EC2 service offers cloud computing re
sources to its customers on-demand. At any given time, it
provisions computing resources to thousands of customers
across 190 countries simultaneously - a clear indication
of its diverse customer ba~e. These customers range from
individual developers and startups to government agencies
and large enterprises such as Amazon.coml , the NY Times2

and ESPN3 . Some of these customers require dedicated
resources with strict QoS requirements for their miSSiDO
critical applications, while others seek cheap computing op
tions. Amazon offers its customers three different purchasing
models (which we refer to as SLA interaction models) that
they can choose from to purchase computing resources.

• On-Demand Instances - this model lets customers pay
for compute capacity by the hour with no long-term
commitments or upfront costs. Consumers can increase
or decrease compute capacity on demand and pay the
fixed hourly rate for the instances used.

• Reserved Instances - this model lets customers pay
a small one-time, upfront payment for an instance,
reserve it for a fixed period of time (one year or three
years), and then pay a significantly lower fixed rate for
each hour that the instance is used.

• Spot Instances - this model allows customers to bid for
unused Amazon EC2 capacity. Amazon determines the
Spot Price based on the bids received and the quantity
of unused/idle resources. Customers have access to the
requested resource as long as their bid price is above
the spot price, which idirectly depends upon supply and
demand.

Each of these three models has a specific interaction
protocol. The on -demand instance model uses the fixed-

I http://www.amazon.com
2http://www.nytimes.com
3http://espn.go.com

price protocol, while the reserved instance model uses the
discounted fixed-price protocol. With both these models, the
customers have 00 flexibility in tenns of the price they pay
for the resources even though they can choose the instance
type that meets their specific configuration requirements.
However, they do have guaranteed and uninteI11lpted access
to the computing resources. The spot instance model uses the
spot instance protocol, which is based on a uniform price,
sealed-bid, market-driven auction_ Uniform price implies
that all bidders pay the same price for the resource if they
are successful in their bid. Sealed bid means that the bids are
unknown to other participants and market-driven means that
the spot price is set according to the client's bids. Using this
model, consumers bid the maximum price they are willing
to pay for the resource. If they are successful, they have
access to the resource and are able to use it until either
they choose to terminate it or the new Spot Price becomes
higher than their bid. As the service provider, Amazon
publicly advertises these three SLA interaction models. The
corresponding interaction protocols are public knowledge
and every participant has to abide by these rules. It has its
own internal strategies to determine the fixed prices of the
on-demand and reserved instances, and the dynamic prices
of the spot instances.

B. Amazon EC2 Consumer

Consumers can choose anyone of the three purchasing
models to purchase computing resources on Amazon EC2.
The chosen purchasing model depends upon their specific
situation. AB a simple illustrative example, let us consider
the scenario where an entity executes jobs on behalf of its
customers on the Amazon EC2 infrastructure. In order to to
do so, it rents the computing resources as and when required.
Each time the entity receives a request, it has to decide
how many instances to rent and whether to purchase an on
demand instance or to go for a spot-instance. [f purchasing
spot instances, it also has to detenrune the best bid value
to use. Depending upon the context, the entity can use a
number of different strategies to rent the resources.

Let us look at four possible interaction contexts and the
corresponding strategies that could be used to purchase

computing resources from Amazon. The rules for strategy
selection based on context take the form 'if condition then
action and can be described as follows - under a certain
context (as specified by the condition part), use a specific
strategy (as specified by the action part). Strategies 2, 3
and 4 are currently being used. by Amazon EC2 customers
as explained in the video Deciding on Your Spot Bidding
Strategy4.

• Scenario 1 - Context: Client wants immediate access
to the resource. Strategy: Use on-demand purchasing
model to purchase instance.

(1)

where i denotes instance-type, P~d denotes on-demand
price.

• Scenario 2 - Context: Client wants to minimize the
computing cost and job completion time is not a con
straint. Strategy: Use spot-instance purchasing model
and bid around the reserved instance usage price.

. pi
S2 : Prnax = K' P;, where 1 ::; K:$ p/ (2)

where K is a constant, i denotes instance type, P;
denotes reserved instance price and P~d denotes on
demand price.

• Scenario 3 - Context: Client wants to complete the job
as quickly as possible and minimize the cost. Strategy:
Use spot-instance purchasing model with price history
momentum strategy which takes into account the pre
vious trends in the pricing history.

83 : Pmax = K, . P~tlgn' where K ::; 1 (3)

where K is a constant and P~V9n is the average spot
instance price for the last n hours.

• Scenario 4 - Context: Client wants uninterrupted ac
cess to the resource for a long duration, but at a price
lower than the on-demand price. Strategy: Use spot
instance purchasing model and bid a maximum price
which is significantly higher than the on-demand price.

S4 : Pmax = K' P~d' where K > 1 (4)

where K. is a constant and P~d is the on-demand price
for the instance type i.

The above four simple scenarios show how consumers
of the Amazon EC2 service can use different purchasing
models and different decision-making strategies to purchase
the same resources.

III. AUTOSLAM REFERENCE ARCHITECTURE

In this section we present the AutoSLAM reference archi
tecture that provides the foundation to build policy-driven
automated SLA management systems such as the one we

4http://www.yourube.comlembedJWD9N73F3Fao

have implemented to purchase computing resources from
Amazon EC2. The main benefit of our model is two-fold.
On the one hand, it allows the reuse of existing elements
of automated SLA establishment so that they can be freely
integrated into the system. On the other hand, the model is
flexible enough to adapt to the SLA interaction model that
is best suited for each SLA interaction scenario.

A. Reference Architecture

We base our reference architecture on the XACML (eX
tensible Access Control Markup Language) architecture [7].
The XACML framework is an authorization and access
control framework that defines a declarative access control
policy language and a processing model to evaluate autho
rization requests according to the rules defined in XACML
policies. An XACML request is usually made by a subject
to perform a certain action on a given resource. The output
of the XACML policy processing model is a permit or
deny decision based on which the authorization or access
is approved or disapproved.

The AutoSLAM framework is a framework for the au
tomated establishment and management of SLAs in SOA
environments such as the cloud. The framework defines a
declarative policy language WS-SLAM for specifying the
supported SLA interaction models. It also defines a policy
processing model which can evaluate incoming service re
quests (and the relevant context) against the SLA interaction
policies to determine the most appropriate interaction model
to instantiate. The main components of AutoSLAM are
shown in Figure 2. The greyed box shows the AutoSLAM
extension to the XACML architecture.

• Policy Enforcement Point (PEP). PEP is the entry
point to the AutoSLAM policy processing rniddleware.
Initially it receives the service request and forwards it
to the Policy Decision Point (PDP). It then interprets
the decision of the PDP and instantiates the appropriate
SLA interaction model as shown in Figure 2.

• Policy Decision Point (PDP). PDP evaluates the in
coming request and the relevant context against all the
policies that are applicable in the current context. The
outcome of the evaluation is the selected interaction
model which is sent back to the PEP.

• Policy Access Point (PAP). PAP makes available to
the PDP all the policies and rules that are in the policy
database.

• Policy Information Point (PIP). PIP retrieves all the
infonnation about the relevant context surrounding the
current service request.

• Policy Administration Point (pAdP). Policy authors
manage the policies in the policy database through the
PAdP. They can add new policies, and remove or edit
existing policies to update the knowledge base of the
AutoSLAM decision model.

Add/
update
Policies

Inter<ilct with
'Eu~t~~rt __ _

resources

Figure 2. AutoSLAM Reference Architecture

I
I
I
I
I
I
J

As shown in Figure 2, when an entity initiates the SLA in
teraction process or responds to a request, the PEP forwards
the request it receives to the PDP, which in tum retrieves
all the current policies from the PAP, evaluates them against
the contextual information retrieved from the PIP, and based
on the evaluation, selects the appropriate SLA interaction
model with the corresponding decision making strategy and
interaction protocoL It then forwards this decision to the
PEP which instantiates the selected SLA interaction model.
Depending upon whether it is a one-round interaction or
multi-round interaction, the interaction module exchanges
messages with the SLA counterpart to try and obtain an
outcome. If a common agreement is reached during the
interaction, then the policy engine returns a decision to
form a SLA and the service entity is provided access to
the service. If an acceptable outcome is not achieved, then
the PEP returns a failure decision.

IV. WS-SLAM POLICY LANGUAGE

In this section, we discuss the various aspects of the WS
SLAM policy language. We first provide a theoretical foun
dation for the proposed language followed by a discussion of
the core elements of the language using a simple example.
We refer readers to [1] and [2] for a more formal description
of Ollr policy model.

A. Theoretical foundation of WS-SLAM

We base the SLA interaction policies on the well-founded
AI technique of reactive planning [4], which denotes a

group of techniques for action selection by autonomous
agents. A key feature of reactive planning is that they are
highly suited for dynamic and unpredictable environments
such as the cloud. One of the ways to represent reactive
plans is the Condition-Action (CA) rules paradigm. A con
dition action rule (or if-then rule) is a rule of the form:

if condition then action
Such rules are also referred to as productions or pro

duction rules. The meaning of the rule is obvious - if
the condition holds, perform the action. In the context of
SLA interactions, the conditions refer to the contextual
conditions and the actions refer to the executable SLA
interaction models. The WS-SLAM policy language makes
use of these concepts as follows. The Condition: captures
the context surrounding the SLA interaction in the fonn
of context assertions which are combined using the logical
connectives and, or and not. The Action: refers to the
executable SLA interaction model that is to be used to reach
an agreement. It could refer to the executable strategy to be
used in the interaction (strategy assertion), or the applicable
interaction protocol (IF assertion) that has to be followed.

B. Core elements of WS-SLAM

Nonna! form of WS·Policy expression
"",:wsp: Policy>

<wsp: ExactlyOne>
«wsp: All > «Assert ion. .. > ••• <Assertion/ >) ...

</wsp:All> l*
</wsp:ExactlyOne>

</wsp :Policy>

Table I
NORMAL FORM OF WS-POLlCY EXPRESSION

WS-SLAM is designed as an extension to the WS-Policy
language [5] which allows Web Services to advertise their
capabilities, requirements and general characteristics in a
flexible and extensible grammer using XML fonnat. In
WS-Policy, a policy is essentially a collection of policy
alternatives. Each policy alternative is in tum a collection
of policy assertions. The policy assertion represents a spe
cific requirement, capability, constraint or behaviour of the
service. The policy assertions are not provided by the WS
Policy specification but instead can be provided for specific
domains. WS-Policy operators (wsp:Policy, wsp:All,

wsp: Exact lyOne) are used to group policy assertions into
policy alternatives.

WS-SLAM provides a domain independent assertion
model which combines the context assertions and strategy
assertions in condition-action rules. The core element of
WS-SLAM is the Rule element. Each rule has an If part
which captures the contextual conditions specified in the
form of Context Assertions which can be combined using
the and, or and not logical operators. The Then part
specifies the executable strategy that is to be invoked when
the conditional part is satisfied. Each rule is identified by a

unjque name and can have a number of optional attributes to
provide additional information. The XML infoset represen
tation of a WS-SLAM Rule is Table II. A number of WS
SLAM rules can be combined into a single policy alternative
using the All policy operator.

WS-SLAM Rule
~slam : Rule nam~~ "xs : strinJ· t ~pe=·x~ : string" ~

. :s 1 a.n; Ru le~.t t r ibut e nar: ,e~" Xc> : at ring U

value="xs:string"/: -I.
<slam: If>

t<slam:ConLext/> I

. ;s1. m: AndConditl.onaIElemer .t,':
<sl i m:OrCon : i~ionaIElement/»

<jslam:If>
': slam:Th>'n:

<slam:f-crattgy ... /~
</slam:Then>

< /slam:Rule>
WS-SLAM policy expression
<w .p: Polic} >

<wsp:All >
«slam: Rul~ ... 1» '"

. :flo.·sp: ; .11:-
<j~lsp: Poli - ~.>
WS-SLAM Context Assertion
<slam : Conc~xt identifier- ox ' :strin;"

object!. p=="xs: stc ing">
("-:sl".m:FieldC lnst:.raint/: I

<slam:AniC>nscraintConnective/ :
<slam:O~C. nstraintConn~ctive/»

</slam ; context>
WS-SLAM Strategy AssertioD
<slam:5trategy name="x · : ·tring"

« lam: StrategyAtt.ril" ute name~" x s : string"
lue-"xs:string" />1*

</ slam: St 1: at egy:-

Table H
WS-SLAM SYNTAX (NORMAL FORM)

A WS-SLAM rule makes lise of wee key assertions to
declaratively specify the supported SLA interact jon models.
They are:

• Context Assertion: A context assertion captures the
specific conditionls that determine the SLA interaction
model to use in response to a service request.

• Strategy Assertion: A strategy assertion is a declara
tive specification of an executable strategy. There are
two ways in which a strategy assertion can be made
over the parametric strategy function:

By reference - in this case the WS-SLAM merely
refers to an externally defined SLA interaction
model that is to be invoked if the context holds
true.

By reference with values - in this case, the strategy
assertion not only refers to the externally defined
strategy but also specifies the specific values for
the strategy parameters.

Interaction Protocol Assertion: An interaction policy
assertion specifies the list of interaction protocols sup
ported for SLA establishment.

]n WS-SLAM, the context is represented by the Context

element which can have an unrestricted number of fields

(or context attributes). Constraints can be specified on the
values these fields can take by using the FieldConstr·_iint

element. Multiple FieldConstraint elements can be com
bined using the logical and and or connectives. Atomic con
text assertions can be combined to compose complex context
assertions using the <5 lam: AndCondi t ionalElement I::
and the <slam:OrConditionalElement/>. The XML
infoset representation of the strategy assertions and the
Interaction Protocol assertions are shown in Table II.

C. A basic example of WS-SLAM

Figure 3 shows a simple example of a policy document,
which is compliant with the WS-SLAM policy language
specification, In order to improve readibility, we have re
moved the namesspace declarations of both WS-Policy and
WS-SLAM. The example policy shows three rules, where
each rule specifies the SLA interaction model and decision
making strategy to use in a given context. This example pol
icy defines rules to make decisions for purchasing instances
on Amazon EC2.

(}xml version="l.i3" encoding="UTF-8"?>
<tns: Policy>
<tns :Alb

<slam:Ru)e name="RuLe 1")
(slam : If>

(S 1 am: Cont ext i dent if ier" "contex," Obj ectType~ "Context ..
< slaM: AndConst ra i ntC onnee ti ve)

< slam: Fie Ideon s t ra i nt fi e 1 d - name= "uni nterruptedAcce55 ")
<slam: li teralRestriction value~ "yes" evaluator: "== "I>

<Islam ; F ieldCons trainD
<slam: F ieldCon straint field - name- "minCos t ")

<slam: LiterillRestrictio~ value= "yes" evaluator"= "== "I>
< Islam: F ieldConstraint>
< slam: F ieldCon straint field- name= "occesslnf'uture">

<sl<lru: LitE'ralRestrictio~ value= "true" E'valuator: "0:*"1>
<Islam : Fi~ldConstraint)

</ slam: AndConstraintConnecti v€)
</slam:Context>

</slao: If>
<5 lam: Then>

<slarr: Strategy name" "BLockPurchosi.ng5trategy" I>
</sl(lrr. : Tnen>

</slam :Rule)
(slam: Rule name: "RuLe 2">

<slam : If>
<5 larr.: Co~text identi Her: "context ,. objectType= "Context" >

< slam: OrConst rai ntConnecti ve >
<slam :AndConstra intConnective>

<slam : F ieldConstraint fi ~ - :J-name~ "mi.nCost")
<s1ern : LitenlRestriction value= "yes" evaluatL '" "==" I)

< I 51 am: F 1 e 1 dCon 5t ra i nt)
< slam: Fie IdCon st rai nt field - name: "minCompLet"ion Time" >

<slalll: LiteralRestriction value" "yes" evaluator=""","!>
< I slam; Fie ldCon straint>

< / slam :AndConstraintConnective)
<I slam :OrConstraintConnective>

<Islam : Context>
<Isla", : If)
<s lam : Then)

< slam: St rate gy name= "PriceMomentumStrategy" I>
</slam :Then>

<Is lam: Rule)
<jtns:Al1>

<I tns : Policy>

Figure 3. Example WS-SLAM Policy

V. AUTOSLAM PROTOTYPE IMPLEMENTATION

In order to validate our policy-based approach, we have
implemented a proof-of-concept prototype of the policy
middleware for automated SLA establishment. It has been
implemented as an Automated Purchasing Agent for pur
chasing instances on Amazon EC2. It comprises of three
key components

• WS-SLAM2DrlParser - A parser which parses WS
SLAM policies into Drools5 rules.

• An embeddable Drools Rule Engine - which evaluates
the incoming requests and the relevant context against
the predefined WS-SLAM policies.

• A library of executable SLA interaction models that
are used to purchase instances from Amazon EC2,
including the decision-making strategies given in the
motivating scenario in Section II.

A. WS-SLAM2Drl Parser

In the current version of the AutoSLAM middleware, we
have implemented a WS-SLAM2Drl Parser, which parses
WS-SLAM policies and rules into Drools rules as shown in
Figure 4. The parser makes use of mapping rules to map
from WS-SLAM constructs to the Drools constructs. As
illustrated in the figure, a parser may be implemented to
parse the WS-SLAM rules into Jess format in which case
the JESS Rule Engine could be used to evaluate the request
and relevant context against the rules.

Figure 4. WS-SLAM2Drl Parser

Table III shows the correspondence between the main
constructs in WS-SLAM and Drools. The WS-SLAM policy
specification is a light-weight language which is intended to
be used by non-technical policy authors and hence does not
support low-level executable code expressions. On the other
hand, in Drools the action part refers to executable actions
and supports the insertion of executable Java code. Hence,
there has to be a mapping file (wsslam2dr1.111apping) which
can map the abstract rules and constructs in WS-SLAM
to more concrete executable classes and objects in Drools.
A technical expen has to define the mapping between the
abstract Context and Strategy names in WS-SLAM to the

5 http://www.jboss.org/drools

Construct Description
Rule if

()I'DITION
then

FOnlmla Con di t i 'n a I pa rt
Of the rule

Atomic Atc; 1; ~ mell'''' r
.f formula

Action Act i. I refers
'Co ~ Kturna 1 y
def!.ned
:ur~ !f ion_,
meth' 1·.

WS·SLAM
IF'
CON::E ,.T

</rF>
· ~THEN.·
, ~1:0N
, '/n.Eli,
8:.",icl r,d
lor In t

· ,CONTEXT~'
· '., INn-XT:·
• ,S:-R'cTE.:Y:'·
'-/STRATE.GL·

Table III

Drool<
rule oa •
"hen

CONT-:'X::
t h"n

ACT!ON
end
.tf.tcrr_l tand
I (~I.~ot
r H~ern

t.L'je' ts imr 'Jrte...!
int:C> rul~ !-,ackac~

and in' ::ed f"o~
wi t ~ll n n'l~'

CORRESPONDENCE BETWEEN LANGUAGE CONSTRUCTS

corresponding executable Java implementations which are
inserted into the Drools file. Figure 5 shows a snippet of the
mapping from WS-SLAM to Drools. Figure 6 shows the
output of the WS-SLAM2Drl Parser when the input is the
file shown in Figure 3.

.:, ndille of tt, e pr'o~ert i es fi 1 ~
droo15-flle~ ./conf/OLltput .drl

Ii pac~aBe - naD'e . (an b~ af1yt~ ng
package ·f1ame~au. edu. swin. cb

~ Drool $ Ru 1 e E "l ',ne Imp le",cntatio~ c 1 a s ~
DroolsRu)eEngine au. edu. swi n. cb.DI'oolsRuJeEngine;

Co~ti'xt A~ serr ion l"UPPlng
Reques"=au. edu. swin. c b. context. Request;
Conte~t· BU. edu. swin. c b. context. Context;

Stra~,~gy Ass"rtion Mapping
OnDemand=au .edu. swin. cb. strategies. OnDemandStrdtegy;
P:i :eMomentum~au. edu. 5W in. (b. strategies. PriceMoment UPlSt rategy;
"hnJmi 7€'Jnterrupt ion"

au .edu. 5win. cb. 5trategie".Minlnt-e~~uption5tratecy;

tJ E){ecuu.!Jle code for th~ 5trat~gy Assertions
OnDemaod_Constru,torr OnD1?InandStrategy odS ~ new OnOemandStrategyO;
OnDema~d_EntryPoint~DroolsRuleEngine. get I ns tance(). addSt rategy(odS);

Pr1ceMomentum Construe tor~
PriceMo;::~ntumStrategy ~mS - new PriceMomentumStrategyO;

P riceMomentum _Entr-yPoi nt~

DI'oolsRuleEngine. getlrstance() • ~ddStrategy(pmS);

Figure 5. WS-SLAM to Drl Mapping

VI. VALIDATION

We have used the Amazon EC2 scenario described in
Section II to validate our AutoSLAM policy-driven middle
ware for automated SLA establishment. In this scenario end
consumers submit their requests to the Smart Cloud Agent
whenever they have a job to process on EC2. They know
which instance type they want and how many instances
of it. They have preferences and constraints over the task
completion time and the total cost payable, which they
specify when they submit their request. The cloud agent
(policy engine) evaluates each incoming request against its
policy base and determines the most appropriate purchasing
model as well as the best bidding strategy. It then initiates the
interaction with Amazon EC2 and if purchasing on-demand

: package au . edu, swin . cb. core

itnport au. edu. swin.' b. co'!t!!xt . Context;
import au. ed\!. swin . cb. strategies. BlockPurchasingStrategy;
import au. edu. swi n . c b . strategi es . Pri ceMom~ntufl'Strategy;
~mpDrt au, edJ. swin . cb . s trategi es. OnDemandSt rategy;
Import au. edu. swin . c b. ~ trategi es . Cos tOpt imizat.ionS t rategy'
import au .edu. swin. cb. OroolsRuleEngine; ,

rule "Rule 1"
when

context: Context((uninterruptedAccess == "ye~") &&
(lIlinCost == "yes') && (accesslnFuture == "true"))

then

end

BlockPurchasingStrategy tpmS " new BlockPurchas1ngStrategyO j
OroolsRuleEngine. getlnstilnce() . addStriitegy{ tpmS);

rule "Rule {"
when

context: Contexte «minCost ~= "yes") &&
(roinCompletionTime := "yes"»)

then

end

PriceMomentumStrategy proS" new Pri~eMomentumStrategy();
DroolsRuleEngine . getInstance() . addStrategy(prnS) j

rule "Rule 3"
when

context : Conte)(t((immediateAccess ,,~ 'yes") &&
(duriltion ~~ 'snort"))

then
OnDemandStrategy odS - new OnDemandStrategyO;
DroolsRuleEngi ne. getInstancl'() . addStrlltegy(odS);

end

Figure 6. AUlO generated Drools Rule File

instances, initiates the process and starts up the instance. If
going for spot-instances, it starts bidding for resources using
the selected bidding strategy. If the bid is successful, it starts
up the specific instance.

For the input request shown in Figure 7(a), the policy
engine chooses the spot instance purchasing model and
chooses the price momentum strategy. The policy engine
computes the maximum bidding price as $0.678 based on
the past 12 hours spot pricing history which is obtained by
querying the Amazon Ee2 web service. With the bid price
of $0.678, the user is able to start and use the resource
when the bid price is above the spot price as shown in
the graph in Figure 7(b), The Smart Cloud Agent is able
to make purchasing decisions on behalf of the end-users
based on the domain knowledge captured in the form of
strategy policies. Different mechanisms can be used to
resolve deadlocks that result when more than one rule (and
hence SLA interaction model) is applicable. The simplest
solution is to choose the first applicable rule or a randomly
selected rule. Alternatively, rules can be assigned individual
scores and then the rule with the highest score is executed.
Alternatively. we can choose the rule that satisfies the highest
number of context attributes.

VII. RELATED WORK

There are several research proposals on policy-based
specification of decision-making strategies for automated
negotiation. [13J[14J, [15], [16] and [17] propose the use

b:1 Smart Ooud A90'"

r~ .. k H'IP'--~-"""'-"'~'-=

~on. us \\Ht (N Cblfoma)

O\>et"bbnQ SyStem; WonOows

"".o{ns~

~ID:

Coitt""t

~"~""A=
ShortOo.;rabo<;

~ ; 1.)r\o,b:r7wted Ace='

:,/ M.-!mill' Ccwr(lIebOn T,..,e

~{, """"',. Cost

t ~
I;;
I
I

i

!,
:y~,equ~tI .. sb=>".,g,..tte.i... . • , i)

I
I' 11'",,-"'9 I'IS-sv.M po!ceootoOrools'*s... . .'
11rn,~OroolsrtJee'l9'''''''' I
I jR~nki... 1~

~
jBb-'..c-d "" tN:wrr""l<""It.od.ond ~ SQ«lf-.:-d. til .. , ~c l.trb~~ ~ .. .: J .

, >AQpIicob'< .trat.Qy 1. da .. au «lu .SW"I.cb e<:2 .• II'. t<9' ••. PrIotMo<I><ntuonStra~v . . ' .,
','U""'9 odu •• """ cb.<c2..nl<-9",.PnC~IUn~b.t.Qv@323b7dd> lb~UlSta ~,J ---II

-, .---J'I . --'

(a) Client Ul

I. ~:.~~ I ~ - I ./ \ I
0,069 "'\. j \ r \ f '

tI 0.068 . '-jt- -t 'r- j- -\- +
-::: 0 .OG7 f--- P -O .678 \T I \. / \ I
': 0 .066 I 3 4 \
~0065t----------f-7----~--~~~-----

0.064 7 , 5 T 6

0.061 t------- :~menc'd _____ ~~_ h,~
0,062 Comple-ted

0.061 +-'~..,......,.....,.....,......,.....,....~r--r-""-'r-r-r-or-T"""-'-'--'-'-'--'

1 2 3 ~ 5 6 7 B 9 10111213141516)718192021222324

24 Hour nme Period

(b) Spot Price History

Figure 7. Smart Cloud Agent - Automated Selection of Ee2 Purchasing
Model

of declarative rules to capture the decision-making strate
gies. [16J and [17] do not provide any fonnal models or
concrete examples to illustrate how this can be done. The
main limitation of defining strategies declaratively via rules
is that while it is sufficient for simple strategies, it is
not straightforward for complex strategies which could be
based on a number of different approaches such as game
theoretic approaches [8][3], heuristic approaches (9][lOJ and
evolutionary approaches r 11]. There has to be a tradeoff
between the expressive power of the policy language and
the ease of usage. In [18], the authors have proposed the
declarative specification of decision-making strategies using
an extension of the WS-Policy specification language where
the decision-making strategies are defined as parametric
functions where the parameter values are specified via the
strategy policy. While [19) has proposed the support for
mUltiple negotiation models for a resources market, to the
best of our knowledge, our paper is the first to support
multiple interaction models through the use of a policy-based

approach. We allow the policy authors to specify which
strategy to use under different contexts, so that the policy
engine can autonomously make decisions that confonn to
these policies at run~time. Our approach also enables reuse
of existing research results since we allow externally defined
strategies to be referred to within our policies and separate
the strategy reference from the actual implementation.

VIII. CONCLUSION

In this paper, we have presented AutoSLAM - our novel
policy-based framework for the automated establishment
of SLAs in open, diverse and dynamic environments such
as the cloud. We have used the Amazon EC2 example
to illustrate why service entities may require flexibility
to choose the most appropriate SLA interaction model in
a given context while at the same time participating in
multiple concurrent interactions using different SLA inter
action models. We have implemented a proof-of-concept
prototype of our AutoSLAM middleware which makes use
of WS-SLAM, our extension of the WS-Policy framework,
to specify the SLA interaction policies. In our prototype,
we have used the standard Drools Rule Engine to evaluate
incoming requests against the WS-SLAM policies.We have
validated our framework by implementing the Smart Cloud
Agent, which evaluates incoming requests for computing
resources on Amazon EC2 and the context surrounding the
request against the SLA interaction policies to determine the
best purchasing option.

While we have developed policy models for capturing
preferences over the service usage terms and conditions [1],
and for supporting multiple SLA interaction models [2], the
two models are currently independent of each other. As
future work the AutoSLAM middleware will be extended
to combine the different types of policies i.e. preference
policies, strategy policies and interaction protocol policies
can be combined to provide a unified policy framework for
automated SLA establishment in dynamic and diverse SOA
environments such as the cloud.

ACKNOWLEDGMENT

This work was partially funded by the Service Delivery &
Aggregation Project within the Smart Services CRC which is
proudly supported by the Australian Federal Government's
CRC Grant Program.

REFERENCES

[1] M. Baruwal Chheui, Q. B. Vo, R. Kowalczyk A Flexible
Policy Framework for the QoS Differentiated Provisioning of
SenJices, The 11th lEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRJD-ll), Newport,
California, USA, May 23-26, 2011

[2] M. Baruwal Chhetri, Q. B. Vo, R. Kowalczyk Policy
Based Automation of SLA Establishment for Cloud Computing
SenJices, In Proceedings of the 11th lEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRJD-
12), Ottawa (Canada), 13-16 May 2012

[3] N. R. Jennings, P. Faratin, A. R. Lomuscio, S. Parsons,
C. Sierra, and M. Wooldridge. Automated Negotiation:
Prospects, Methods and Challenges, International Journal of
Group Decision and Negotiation, 10 (2). pp-199-2l5, (2001)

[4] R. J. Firby An Investigation into Reactive Planning in
Complex Domains, In Proceedings of the Association for the
Advancement of Artificial Intelligence (AAAI) Conference,
1987

[5] Web SenJice Policy 1.5 Framework. http://www.w3.orgfIR/
ws-policyl

[6] Drools Rule Engine, http://www.jboss.orgldrools
[7] M. Venna. XML Security: Control lnfonnation Ac-

cess with XACML. available online at http://www.ibm.coml
developerworks/xmlJlibrary Ix-xacmU

[8] K. Binmore, and V. Nir, Applying game theory to automated
negotiation, NETNOMICS, VaLl, No.1 (1999)

[9] P. Faratin, C. Sieera, and N. R. Jennings: Using similarity
criteria to make trade-offs in automated negotiations, Artificial
Intelligence, VoL 142, No. 2, pp-205~237 (2002)

[10] R. Kowalczyk, Fuzzy e-negoziation agents, Soft Computing,
Vol 6. No.5, pp-337-347 (2002)

[11] S. S. Fatima, M. Wooldridge, and N. R. Jennings, A com
parative study of game theoretic and evolutionary models of
bargaining for software agents, Artificial Intelligence Review,
Vol. 23, No.2. pp-187-208 (2005)

[12] N. Jain, 1. Menache, O. Shamir, On~demand or Spot?
Learning-based Resource Allocation for Delay-Tolerant Barch
Computing, available online at http://research.microsoft.com/
en- uS/umlpeople/navenduipapersllbr infocom. pdf, accessed on
25 November 2011

[13] H. Gimpel. H. Ludwig. A. Dan and B. Kearney, PANDA:
Specifying Policies for Automated Negotiations of Service
Contracts, In Proceedings of ICSOC 2003, pp. 287-302 (2003)

[14] T. Skylogiannis, G. Antoniou and N. Bassiliades, DR
NEGOTIATE - A System for Automated Negotiation With
Defeasible Logic-Based Strategies in Proceedings of IEEE
International Conference on e-Teclmology, e-Commerce and
c-Service, pp. 44-49 (2005)

[151 H. Li, S. Y. W. Su, and H. Lam, On Automated e-Business
Negotiations: Goal, Policy, Straregy, and Plans of Decision and
Action, Journal of Organizational Computing and Electronic
Commerce, Vol. 13, No.1, pp-1-29 (2006)

[16J F. Zulkemine, P. Martin, C. Craddock, eLal., A Policy
Based Middleware for Web Services SLA Negotiation, In Pro
ceedings of IEEE International Conference on Web Services
(ICWS2009), pp. 1043-1050, (2008)

[17] Z. Xiao, D. Cao, C. You and H. Mei, A Policy-based
Framework for Automated Service Level Agreement Negotia
tion, In Proceedings of IEEE International Conference on Web
Services. pp. 682-689 (2011)

[18] M. Comuzzi and B. Pernici, An Architecture for Flexible
Web SenJice QoS Negoliation, In Proceedings of Ninth IEEE
International EDOC Enterprise Computing Conferences, pp.
70-79 (2005)

[19] S. K. Garg S.K, C. Vecchiola, and R Buyya, Mandi:
a market exchange for trading utility and cloud computing
senJices In Journal of Supercomputing (JOC) (acceted 2011,
in press)

