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Range Image Segmentation Using
Surface Selection Criterion

Alireza Bab-Hadiashar, Senior Member, IEEE, and Niloofar Gheissari

Abstract—In this paper, we address the problem of recovering
the true underlying model of a surface while performing the
segmentation. First, and in order to solve the model selection
problem, we introduce a novel criterion, which is based on min-
imising strain energy of fitted surfaces. We then evaluate its
performance and compare it with many other existing model
selection techniques. Using this criterion, we then present a ro-
bust range data segmentation algorithm capable of segmenting
complex objects with planar and curved surfaces. The presented
algorithm simultaneously identifies the type (order and geometric
shape) of each surface and separates all the points that are part
of that surface. This paper includes the segmentation results of
a large collection of range images obtained from objects with
planar and curved surfaces. The resulting segmentation algorithm
successfully segments various possible types of curved objects.
More importantly, the new technique is capable of detecting the
association between separated parts of a surface, which has the
same Cartesian equation while segmenting a scene. This aspect is
very useful in some industrial applications of range data analysis.

Index Terms—Model selection, range data, robust range data
segmentation, scale estimation.

1. INTRODUCTION

ANY computer vision algorithms rely on using a para-

metric model, which is usually determined by examining
the underlying physical phenomenon. Such physical constraints
are often represented by a family of parametric models that can
be applicable to a task performed in various situations [3], [18],
[26], [41]-[44]. Hence, a complete solution to most vision tasks
is likely to depend on how well the true underlying model is
chosen.

On the other hand, the model selection problem, which refers
to choosing the most appropriate and concise model to express
given data in an abstract fashion, has been studied by statisti-
cians for many decades. Since the introduction of Akaike’s In-
formation Criterion (AIC) [1], which had a fundamental effect
on model selection research, many model selection criteria have
been introduced (i.e., [9] and [25]) and many of those model se-
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lection techniques have been employed in many computer vi-
sion algorithms for various applications (i.e., [8] and [10]).

A range image contains three-dimensional (3-D) information
about a scene including the depth of each pixel. Segmenting a
range image is the task of dividing the image into regions so
that all the points of the same surface belong to the same region,
there is no overlap between different regions and the union of
these regions generate the entire image.

There have been two main approaches to the range seg-
mentation problem: region-based and edge-based approaches.
Region-based range segmentation algorithms can be cate-
gorised into two major groups: parametric model-based range
segmentation algorithms and region-growing algorithms.

Algorithms of the first group, such as the algorithm proposed
here, are based on assuming a parametric surface model and
grouping data points so that all of them can be considered as
points of a surface from the assumed parametric model (an in-
stance of that model). While region-growing algorithms start by
segmenting an image into initial regions. These regions are then
merged or extended by employing a region growing strategy
[14], [33]. These initial regions can be obtained using different
methods including iterative or random methods. A drawback of
algorithms of this group is that in general they produce distorted
boundaries because the segmentation usually is carried out at re-
gion level instead of pixel level.

Edge-based range segmentation algorithms are based on
edge detection and labelling edges using the jump boundaries
(discontinuities). They apply an edge detector to extract edges
from a range image. Once boundaries are extracted, edges with
common properties are clustered together. A typical example
of edge-based range segmentation algorithms is presented by
Fan et al. [13]. The segmentation procedure starts by detecting
discontinuities using zero-crossing and curvature values. The
image is segmented at discontinuities to obtain an initial seg-
mentation. At the next step, the initial segmentation is refined
by fitting quadratics whose coefficients are calculated based on
the least squares method.

In general, a drawback of edge-based range segmentation al-
gorithms is that although they produce clean and well-defined
boundaries between different regions, they tend to produce gaps
between boundaries. In addition, for curved surfaces, disconti-
nuities are smooth and hard to locate, and, therefore, these al-
gorithms tend to under-segment the range image.

Although the range image segmentation problem has been
studied for a number of years, the task of segmenting range im-
ages of curved surfaces is yet to be satisfactorily resolved. The
comparative survey of Powell et al. [34] reveals the challenges
that need to be addressed.
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A. Range Segmentation of Curved Surfaces

There have been various studies of fitting higher order sur-
faces to, and also range segmentation of, curved surfaces. Most
of those techniques are limited due to the fact that they have
assumed the underlying model for every surface is an a priori
known proposition. For example, Marshall ef al. [32] presented
a linear method for fitting cylindrical, conical, spherical and tori
surfaces (for each surface separately).

Werghi et al. [49] presented a method for surface fitting which
has the advantage of considering maximum information in the
scene including the relationship between different surfaces. Al-
though this approach appears to be reliable for reverse engi-
neering purposes, this method has a drawback. That is, the cor-
rect underlying model for each surface in the scene is assumed to
be known. Therefore, such approaches are not suitable for com-
puterised range segmentation applications. Gaussian and Mean
Curvature signs also have been widely used in identifying sur-
face types in various range segmentation schemes [5], [12]. The
biggest drawback of this method is that the signs of Gaussian
and Mean Curvatures are very sensitive to noise and quantisa-
tion error. Thus, usually one needs to set some heuristic thresh-
olds that have little theoretical justifications. Another disadvan-
tage of using curvature signs is that the higher order surfaces are
only limited to the eight different possible cases that are deter-
mined by Gaussian and Mean curvature signs. Therefore, this
method is not applicable to identify more realistic surfaces like
conical, spherical, etc.

Using a model selection criterion for detecting the correct
underlying surface for range segmentation application was pio-
neered by Boyer et al. [8]. They presented a robust range seg-
mentation algorithm capable of segmenting higher order sur-
faces using a Modified CAIC as a surface model selection crite-
rion. This technique has only been tested on synthetic range data
with limited success. It appears that except for the above work,
there has not been any other work on choosing the underlying
model from a library of models prior to segmenting the data.

B. Evaluating Range Segmentation Algorithms

Evaluation of the quality of range segmentation techniques
has also received some attention during the last decade. An
early work, which aimed at evaluating range segmentation al-
gorithms, was published by Trucco and Fisher [47]. They in-
vestigated the effect of changing algorithms’ input parameters
(thresholds, etc.) on the estimated curvature of the segmented
regions.

Hoover et al. [21] were perhaps the first to present a compre-
hensive method for evaluating range segmentation algorithms.
They classified different possible results of a range segmenta-
tion algorithm into: correct detection, over segmentation, under
segmentation, missed classification and noise classification.
Then, they evaluated some well-known range segmentation
algorithms including USF [17], WSU [19], UB [23], and UE
[15] using this classification. They concluded that among the
evaluated algorithms, UE has a higher percentage of success in
detecting the correct segments. Another attempt in this direc-
tion was reported by Jiang et al. [22] in which they evaluated
three more range segmentation algorithms including OU [22],
PPU [6], [7], and UA. [30].
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Although the work of Hoover et al. was limited to evaluating
segmentation algorithms of planar surfaces only, their evalu-
ating method can be easily extended to curved objects segmen-
tation. Using their method Powell ef al. [34] evaluated the per-
formance of two range segmentation algorithms (UB [23] and
BJ [5]) capable of segmenting curved objects. As they reported,
the results indicated that the range segmentation of curved ob-
jects is much more involved and none of the existing techniques
appears to be satisfactory. Although they recommended the UB
over BJ technique due to its higher average of correct detec-
tions, they concluded that UB tends to highly under-segment an
image.

In this paper, we propose a new approach to the model selec-
tion problem based on physical constraints rather than statistical
characteristics. Our approach is motivated by our observations
that none of the existing model selection criteria is capable of re-
covering the underlying model of range data of curved objects
[4]. In addition and in order to demonstrate the effectiveness
of our proposed model selection criterion, we have devised and
fully tested a robust model-based range segmentation algorithm
for curved objects (not limited to planar surfaces). Our range
segmentation algorithm is capable of detecting the association
between separated parts of a surface, all of which has the same
Cartesian equation.

To choose the appropriate surface model from a library of
models, we propose a new model selection technique called Sur-
face Selection Criterion (SSC), which is based on the minimi-
sation of the bending and twisting energy of a thin surface. The
proposed model selection techniques and its implementation for
range segmentation are explained in detail in Sections II and II1.
Recovering the underlying model is a crucial aspect of segmen-
tation when the objects are not limited to having planar surfaces
only (so more than one possible candidate model exists). An im-
portant aspect of having a correct model is that it makes it pos-
sible to recover the true surface parameters while segmenting
the data.

For comparison, we first use the method of Hoover et al. to
evaluate the performance of our segmentation algorithm on the
ABW range database. This allows us to compare and bench-
mark the performance of our technique on planar objects with
the previously published results ([21], [29], and [34]) before we
proceed to the main task of segmenting curved objects.

For evaluating the performance and benchmarking the
proposed technique for segmenting curved objects, we have
gathered a large collection of range images containing both
planar and quadratic surfaces (our range image database will
be made publicity available upon the acceptance of this paper).
For benchmarking, however, we have applied the method
of Hoover et al. to evaluate our algorithm (using the above
database) and compare with UB [28] technique (as the most
promising technique). The results of our experiments are pre-
sented in Section I'V. Section V concludes the paper.

II. MODEL SELECTION

The main contribution of this paper is the introduction of
a new model selection technique to identify the appropriate
model from a family of models representing possible surfaces
of curved objects. During the last three decades, due to its
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various applications in statistics, engineering and science,
many model selection criteria [1], [9], [27], [37], [42] have
been proposed which almost all have their roots in statistical
analysis of the measured data. The proposed Surface Selection
Criterion (SSC) is based on the minimizing of the strain energy
of a thin plate rather than statistical assumptions.

To illustrate the efficiency of the proposed criterion, we eval-
uate and compare the SSC with some existing (presented previ-
ously in the literature) model selection criteria. A brief overview
of the considered model selection criteria is shown in Table 1.
In this table, Zr? is the sum of squared residuals and § is the
scale of noise. IV is the number of points, P is the number of
parameters and d is the dimension of the surfaces (here 2). J is
the fisher matrix of the estimated parameters. L, the reference
length, is set to be N, m is the dimension of the data (here 3) and
f,, is the estimated parameters of each model. f is the number
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Fig. 1. Representation of a malleable surface supported by hypothetical
springs. The range measurements are shown by black circles.

of degrees of freedom of the assumed ¢ distribution for MCAIC
(here 1.5). Finally, W7 is the associated weight for each point
in MCAIC (see [8] for more details) and V' is the covariance
matrix of parameters [10].

A. Surface Selection Criterion

Our proposed criterion is based on minimising the sum of
bending and twisting energy of all possible surfaces in a model
library. Although the bending energy of a surface has been used
in the literature for motion tracking and finding parameters of
deformable objects [48], it appears that the bending energy of a
surface has not been previously used for model selection pur-
poses. An approximation to the energy of a surface has also
been utilised in spline fitting using a thin plate analogy. We, too,
follow this type of analogy.

To formulate our model selection criterion, we view the range
data of different points of an object as hypothetical springs con-
straining the surface as shown in Fig. 1. If the surface has little
stiffness, then the surface passes close to measurements (fits it-
self to the noise) and the sum of squared residuals between the
range measurements and their associated points on the surface
will be small (the sum of squared residuals in this analogy, re-
lates to the energy of the deformed springs).

However, to attain such proximity, the surface has to bend and
twist in order to be close to the measured data. This in turn in-
creases the amount of strain energy accumulated by the surface.

For model selection, we propose to view the sum of bending
and twisting energies of the surface as a measure of surface
roughness and the sum of squared residuals as a measure of fi-
delity to the true data. A good model selection criterion should,
therefore, represent an acceptable compromise between these
two factors. As one may expect, increasing the number of pa-
rameters of a surface leads to a larger bending and twisting
energies as the surface has more degrees of freedom and con-
sequently the surface can be fitted to the data by bending and
twisting itself so that a closer fit to measured data results [this
can be inferred from the bending energy formula (1)]. How-
ever, the higher the number of parameters for a surface model
assumed, the less the sum of squared residuals is going to be.
For instance, in the extreme case, if the number of parameters is
equal to the number of data points (which are used in the fitting
process), then the sum of squared residuals will be zero whereas
its sum of energies will be maximised.

As shown in [40], if a plate is bent by a uniformly distributed
bending moment so that the zy and yz planes are the prin-
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cipal planes of the deflected surface, then the strain energy (for
bending and twisting) of the plate can be expressed as

1 Pw  Pw\’
EBcnding-l—Twist = //51) { (@ + a_y2>

0%w 0*w 9w\’
where D is the flexural rigidity of the surface and v is Poisson’s
ratio (v should be very small because in real world-objects
the twisting energy in comparison with the bending energy is
small). In our experiments we assume v = 0.01. We found
in our experiments that the performance of SSC is not overly
sensitive to the small variation of this value. In order to scale
the strain energy, we divide its value by the strain energy of
the model with the highest number of parameters (Epax).
Therefore, D will be eliminated from our computation.

To ca}gture the trade-off between the sum of squared resid-

uals Y =1 r,? and the strain energy F'Bending+Twist» W€ define
a function SSC such that

SSC = al 'r,? P EBending-‘,—Twist
B Z N2 +

i=1 Emax

where § is the scale of noise for the highest surface (the sur-
face with the highest number of parameters). The reason that
we use the scale of noise for the highest surface (as explained
by Kanatani [28]) is that the scale of noise for the correct model
and the scale of noise of the higher order models (higher than
the correct model) must be close for the fitting to be meaningful.
Therefore, it is the best estimation of the true scale of noise that
is available at this stage.

An accurate estimate of the scale of noise 6 can be computed
by 62 = Zf\;l r2/(N — P) where N is the number of data
points and P is the number of parameters of the highest surface
(6 for our model library). Use of this formula for the scale of
noise can be justified by the fact that if the model that we as-
sume is correct, then > ;| r#/6? is subjected to a x? distribu-

tion with N — P degrees of freedom [28]. The energy term has

Success rate (percentage of success) of various model selection criteria on real range data.

been multiplied by the number of parameters P in order to dis-
courage choosing a higher order (than necessary) model. Such
a simple measure produces good discrimination and improves
the accuracy of the model selection criterion.

Having devised a reasonable compromise between fidelity to
data and the complexity of the model, our model selection task
is then reduced to choosing the surface that has the minimum
value of SSC.

B. Evaluating and Comparing SSC With Other Model
Selection Criterion

To evaluate our proposed Surface Selection Criterion and
compare it with other well known model selection criteria
(summarised in Table I), we implemented all of the criteria by
simply calculating the values in Table I in the same program.
Therefore, the residuals applicable to all of criteria were the
same and were calculated as the algebraic distance between
the predicted point and observed point on the surface. We
used the same scale of noise for all the criteria according to
§2 = "N r2/(N — P) where N is the number of data points
(size of the surface in terms of pixels) and P is the number
of parameters of the highest model in the library (here 6). All
the investigated criteria choose the most appropriate model
from the given library by minimising their corresponding
mathematical expressions (shown in Table I). To examine the
success rate of the SSC and compare it with other selection
techniques on real range images, we randomly hand picked
points of 50 different real quadratic and planar surfaces and
applied different model selection criteria to them. As can be
seen from Fig. 2, the proposed criterion (SSC) is considerably
better in choosing the right model when it is applied to a variety
of real range data.

To fully evaluate MCAIC, we have considered two distinct
cases based on the values chosen for W;s. In the first set of
experiments, W; is calculated using the formula proposed by
Boyer et al. [8] as W; = ((1+ f)/f + (r:/s)?). We then ex-
amined the performance of MCAIC where the effect of these
weights (W;) is removed by setting all to one. The latter is
shown by MCAIC-1 in our figures.
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TABLE 1I
LIBRARY OF MODELS USED FROM THE MOST GENERAL TO
THE SIMPLEST MODEL USED IN OUR EXPERIMENTS

Model 1 Partial Quadratic ax? +by? +cz” +dx +ey +fz =1
Surface
5™ order conic for
example cylinder in z
direction
5™ order conic for
example cylinder in y
direction
5™ order conic for
example cylinder in x
direction
4" order conic for
example cylinder in z
direction
4™ order conic for
example cylinder in y
direction
4™ order conic for
example cylinder in x
direction
Plane

Model 2 ax? +by? +cx +dy +eyx =1

Model 3 ax’ +bz” +cx +dz +exz =1

Model 4 az’ +by2 +cz +dy+yz =1

Model 5 ax® +by? +cx +dy =1

Model 6 ax’ +bz? +cx +dz =1

Model 7 ay’ +bz’ +cy +dz =1

Model 8

ax +by +cz =1

We have a conjecture as to why using the SSC should be
advantageous. As previously described, to choose the correct
model, one needs to establish a trade off between “fidelity” (how
well a model fits the data, which is often measured by the sum
of squared residuals) and the “complexity” of that model. In all
the model selection criteria that have been introduced so far, the
number of parameters of a model is the only measure of com-
plexity of that model. Thus, the existing model selection criteria
work well, only if the candidate models in the model library
are nested. It means that there are not models which have the
same number of parameters (complexity). In fact, if one applies
the existing model selection criteria to some models having the
same number of parameters, the choice of “the most appropriate
model” will only be based on the goodness of the fit (residuals).
The model library shown in Table II includes some example of
such models.

The reason that most of the model selection criteria perform
the same is that as previously described where there are modes
of the same number of parameters; many of the model selection
criteria have similar penalty terms. Hence, the selection is only
based on the sum of squared residuals, which is identical for
almost all criteria.

III. SEGMENTATION ALGORITHM

Having described our method for recovering the underlying
model of a higher order surface, we then proceed to use our
method to perform the range segmentation of curved objects.

A. Model-Based Range Segmentation Algorithm

The details of the proposed range segmentation algorithm are
described below. The proposed algorithm incorporates some el-
ements which have been introduced by Bab-Hadiashar and Suter
[2]. In particular, it relies on the Modified Selective Statistical
Estimator (MSSE) by which the scale of noise is estimated. The
main difference of this algorithm with the algorithm of Bab-
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Hadiashar and Suter is that it expands a homogenous region it-
eratively and applies a model selection criterion to this region. It,
therefore, enables the new algorithm to segment range images of
objects having various types of surfaces including planar, cylin-
drical, spherical, etc. The new proposed algorithm employs a
threshold K, which corresponds to the size of the smallest re-
gion that can be regarded as a separate region. This means those
structures which contain less than K percent of the whole data
are ignored. The other threshold required for this algorithm is
T, which corresponds to the desired significance level and can
be looked up from the normal distribution table. For example, if
99% significance level is required, 7' is set to be 2.5.

B. Preprocessing Step

Before applying the segmentation algorithm, pixels whose as-
sociated depths are not valid need to be eliminated. The invalid
points could appear because of the limitation of the range finder
used for measuring the depth (mainly due specularities, poor
texture, etc.). The range scanner usually marks these points with
an out-of-range number. If there are no such points, this stage is
skipped. Then, a random sampling (RANSAC type) method is
applied to find an initial homogenous local region, which will
be used to recover the true underlying surface model. Detail of
the sampling method is described in the next section.

After eliminating invalid pixels, the following tasks are itera-
tively performed until the number of remaining data points be-
comes less than K percent of the total number of data points.

Finding an Initial Estimate of the Surface Parameters.

To obtain an initial estimate of the surface parameters, a lo-
calised homogenous region inside the data space in which all
the pixels lie on a flat plane needs to be found. Even if the cur-
rent surface is not planar, a very small local area (for example,
a square of size 15 x 15) can be regarded as a planar surface.
Since this region is likely to contain some outliers, if a higher
order model (than the planar model) is used, some outliers might
be classified as inliers.

To find such a region, p random points, which all belong to
the same square of size 15 x 15 -located in an arbitrary place,
for local sampling purpose are chosen where p is larger than 3
(number of parameters of a plane). Then, an over-determined
system of equations is created according to the 3-D plane equa-
tion, i.e., ax + by + cz = 1.

In fact, each random point generates a constraint in this
equation system. Then, the system of linear equations is solved
(using the least square method) and the residuals are calculated
according to 2 = (ax + by + cz — 1)2.

The above steps are repeated a number of times (here, 30
times) and a solution that generates the least median of squared
residuals [38] is chosen. Then, the outliers are rejected based
on a preliminary estimate of the scale of noise. At this stage,
we only need a very conservative estimate of the scale and the
following robust estimate is used not since it would provide the
best estimate, but because it is a computationally cheap and rel-
atively robust estimate of the noise. One can also use the MSSE
at this stage, but that would unnecessarily increase the compu-
tation burden. This preliminary estimate is computed according
to [38]: s¥ = 1.4826(1 + (5/P — 2))y/med;r? where P is
the number of data points inside the square and r; corresponds
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to the algebraic residual of ith point. Now, every constraint in
the equations system (which corresponds to a separate sample
point) is to be classified. To achieve this, every constraint whose
residual (r;) is such that |r; /s°| is greater than a threshold (7') is
weighted by zero. It means that the corresponding random point
is assumed to be an outlier. Otherwise, the weight is set to 1.

C. Finding a Number of Acceptable Region

If the number of inliers (resulting from the previous step) is
more than half the size of the square, this square is marked as
an acceptable region. The size of the square used is not critical;
however, it needs to be large enough to contain adequate sample
points and also to contain more than K percent of the image
points that is size of the smallest possible separate region. The
square size is set to 15 x 15 pixels in our experiments.

When an acceptable region is found, the corresponding pa-
rameters of the region are fitted to the image points (which are
not yet classified) and the residual for each point is calculated.

The above two steps (0 and C) are repeated a number of times
so that a number of regions, which are marked as accepted, have
been found. Each region corresponds to an acceptable fit. The
more these two steps are repeated, the more accurate the re-
sults are likely to be. Around 1000 iterations are used in our
experiments.

D. Choosing the Most Reliable Data Group Based on the Kth
Order Residual

Up to this point, a number of regions (or fits) that are marked
as accepted have been found. Among them, the most reliable
one is chosen using the modified selective statistical estimator
(MSSE) [2]. It means that the fit that generates the least K'th
order residual is chosen as the most reliable one. The choice of
K depends on the application [2] and is set to 10% in our ex-
periments. This algorithm is not overly sensitive to the value of
K. However, if K is set to a very large number, small structures
will be ignored.

E. Expanding the Region

As described in [16], the performance of all the model selec-
tion criteria is greatly affected by the size of data. If the accept-
able region (found in the previous section) is smaller than the
minimum required size (for optimal performance of the crite-
rion), to increase the degree of confidence, the chosen localised
region can be extended. To achieve this, the following three
steps are performed iteratively a few times until the region is
large enough so that the model selection criterion can be reli-
ably applied.

The scale of noise is calculated according to the formula

N

62:Z(NiP)

i=1

where N is the number of data points and P is the number of
parameters of the highest model.

Points whose residual is greater than the scale of noise
multiple of T are rejected as outliers and a region of inliers is
created.
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The surface parameters are then refined by fitting the highest
model in the model library.

It should be noted that since the underlying true surface model
is yet to be detected, in this step the underlying surface model is
assumed to be the most general model. This is because to apply
a model selection criterion the scale of noise for the highest
model is the most accurate scale of noise available at this stage.
In fact, (as explained by Kanatani [28]) the scale of noise for the
correct model and the scale of noise of the higher order models
(higher than the correct model) must be close for the fitting to
be meaningful. In addition, since the outliers are rejected in the
previous step, it is safe to use a higher order model.

F. Selecting the Appropriate Surface Model

Having found this local region, any model selection criterion
can be applied to identify the true underlying surface model.
However, as previously described SSC has shown to be superior
in correctly detecting the true model.

To apply the chosen model selection criterion (here SSC) to
the extended region, all models in the model library (shown in
Table II) are fitted to the extended region and then the values
of the criterion for all models are compared and the model that
minimises this value is chosen as the appropriate model.

G. Removing Outliers

Before establishing a new segment, all the remaining outliers
should be rejected by performing the following tasks.

1) Fitting the Chosen Model to the Data: The chosen model
is now fitted to whole data (not segmented parts) and the resid-
uals are computed. Then, the scale of noise is estimated using
the technique explained below. The points whose absolute resid-
uals is larger than 7" multiple of the scale of noise are rejected as
outliers. As aresult a new coherent segment (containing inliers)
is generated.

It is important to note that performing the above step has the
advantage of merging the occluded parts of a surface (if there
are any). This is due to the fact that every point of this new seg-
ment is picked up regardless of its geometrical location. Finally,
the points, which are grouped at this stage, are marked as seg-
mented so that they do not participate in the next iterations of
the segmentation process.

2) Estimating the Scale of Noise: To estimate the scale of
noise for every segment, we use the method presented by Bab-
Hadiashar and Suter [2]. This method is based on the idea that
when the squared residuals are sorted (and after finding the right
model for a segment of any given image) a large jump in the
values of sorted residuals will be observed due to the existence
of outliers or data of other segments. Location of this jump helps
to simultaneously estimate the scale of noise and find the data
members of each segment.

H. Hole Filling

Because of invalid and noisy points (where the range finder
has not been able to correctly measure the depth mainly due to
the surface texture or specularity), there will be some holes in
the segmented image. Applying a hole-filling algorithm (here, a
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TABLE III
AVERAGE RESULTS OF DIFFERENT SEGMENTATION SCHEMES AND OUR
PROPOSED ALGORITHM (80% TOLERANCE—SEE [21] AND [34] FOR
DETAILS) FOR 100 SURFACES OF THE ABW DATABASE

Technique [ GT |Corre | Angle diff. | Over |Under|Mis|Noi
regions | ct (std dev.) |Segm [Segm |sed| se

Detect entati |entati

ion on on
ou 15.2 9.8 [Not Available| 0.2 | 0.4 |4.4|32
PPU 15.2 6.8 [Not Available| 0.1 | 2.1 |3.4|2.0
UA 15.2 4.9 |[Not Available| 0.3 | 2.2 |3.6(3.2
USF[17] 15.2 12.7 | 1.6°(0.8) 02 | 0.1 |2.1]1.2
WSU[19] 15.2 9.7 1.6° (0.7) 05 | 02 |45|22
UBJ[23] 15.2 12.8 1.3° (0.8) 05 | 0.1 [1.7]2.1
UE[15,47] 152 | 134 | 1.6°(0.9) 04 | 02 |1.1]/08
Ubham 152 | 134 | 1.6°(0.8) 04 | 03 |0.8]1.1

[29]

EG[24] 15.2 13.5 [Not Available] 0.2 | 0.0 |1.5/0.8
Proposed 152 |12.81| 1.4°(0.9) | 0.04 | 1.55 | 0.8 |No
algorithm min
al

median filter of 10 x 10 pixels) to all inliers and removing those
holes can improve the appearance of segmentation results.

This stage is only for the sake of the appearance of the results
and has no effect on the segmented surface’s parameters because
the fitting has already been performed. However, some of the
missed invalid and noisy points can be grouped in this step. This
hole filling stage is purely cosmetic and can be skipped if it is
not needed.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed algorithm, we
have conducted an extensive set of experiments using real range
images of various objects. The first set of experiments is solely
for comparison purposes and is performed on the existing ABW
range image database that only includes objects with planar sur-
faces. It is shown in Section 5.1 that the proposed technique can
accurately segment the above database and its performance is
similar to the best techniques presented in the literature [21].

We, however, go further and show that our algorithm not only
can segment planar surfaces as well as the most efficient algo-
rithms presented in the literature, but also that it is capable of
reliably segmenting parametric curved objects. To do so, we
have applied our technique to a set of real range images with
objects having a combination of planar and curved surfaces. In
Sections IV-B and IV-C, it is shown that the present technique
is capable of correctly segmenting those objects and identifying
the underlying model of each surface, simultaneously.

A. ABW Image Database

In the first set of our experiments, we tested the proposed al-
gorithm on the ABW [20] range image database and compared
our results with the ones reported in the literature. As it is shown
in the following figures, the proposed technique is able to seg-
ment all of the images correctly. A summary of segmentation re-
sults (statistical measures) for the entire ABW database (30 im-
ages) is shown and compared with other techniques in Table III.
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Moreover, We measured the performance of our algorithm in
estimating angles and comparing it with the results obtained by
Hoover et al. [21]. To achieve this, we calculated the absolute
difference between the real angle (calculated using the IDEAS
CAD package) and the computed angle using the parameters
of the segmented surface. However, since computing the real
angle using the IDEAS CAD package was a time consuming
task, we randomly hand picked up 100 surfaces and the angle
difference was calculated only for those surfaces. The average
and the standard deviation of the error for our technique and
others reported in the literature are shown in Table III. Some
segmented samples on the ABW images are shown in Fig. 3.
This figure shows that the propose algorithm has generated clean
and accurate segmentation results.

B. K2T Database

As we mentioned before, the proposed algorithm is based on
using parametric models to describe curved surfaces. The K2T
range image database is the only existing database that has been
used in literature to evaluate two range segmentation algorithms
in segmenting curved objects (by Powel et al. [34]).

To demonstrate that the proposed technique can successfully
segment objects of the K2T database (ones with parametric sur-
faces), an example containing a curved object (a donut shape
object represented by a torus surface) is chosen and the pro-
posed algorithm is applied to segment the object from its back-
grounds. The following Figs. 4 and 5 show the result of segmen-
tation and its comparison with UB algorithm. The rational be-
hind selecting UB as a benchmark is that according to [21] and
[34], UB has the most promising performance amongst other
evaluated range segmentation algorithms capable of segmenting
curved surfaces.

As can be seen from these figures, while the UB algorithm
generates a large number of noisy and misclassified points, the
proposed algorithm has generated good segmentation with clean
regions. It is also important to note that the proposed.

Surface selection criterion (SSC) has been successful in re-
covering the true underlying models for both planar and curved
surfaces.

C. Curved Objects Database

To evaluate the performance of our algorithm in segmenting
range images of curved objects, we created a range image data-
base of a number of objects possessing both planar and curved
surfaces from different materials. The actual data and their seg-
mented results are shown in the following figures (Figs. 6—15).
The statistics of the results, based on the method of Hoover et
al., are also shown in Table IV.

To compare and benchmark the performance of our algorithm
with other well-known range segmentation algorithms we have
applied the publicly available implementation of the UB algo-
rithm to our range database. For the sake of comparison, we
have generated their results in terms of the same metrics used
by Hoover ef al. The results of this comparison are shown in
Table IV which demonstrates that the proposed algorithm per-
forms considerably better than UB.

Due to the fact that for the 3 images shown in Figs. 6-8 we
only have the (z,y, z) data and not the full set (range data of a
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Fig. 3. (Left) Samples of intensity and (right) segmentation result of ABW
range image database. The figure shows that the proposed algorithm, although
intended for segmenting curved objects, can segment planar objects of the ABW
database cleanly and accurately. The complete statistics for the ABW database
are given in the above table.

regular grid) required by UB, it is not possible to apply the UB
algorithm to the range images shown in Figs. 6-8. However, we
have applied UB algorithm to the rest of our database as shown
in Figs. 8-14. Consequently, we have not included Figs. 6-8
in the results shown in Table IV. To tune the thresholds for
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Fig. 4. Sample from the K2T range image database: (top left) intensity image,
plotted (top right) range data, (bottom left) segmentation results using the
proposed algorithm, and (bottom right) the UB algorithm SSC, as a part of
the proposed algorithm, has correctly identified model 3 for the torus part and
model 8 for the planar background surfaces.

the UB algorithm, we have changed the parameters of the
UB algorithm many times (more than 20) to generate the best
performance and the values that generated the best results are
shown in Table V.

In our experiments with UB algorithm, we have observed that
although the outcome of this algorithm is not much affected
by the changes in the value of its threshold named “min re-
gion area”, it is highly sensitive to the values chosen for the
“region acceptance average error’” (see [23] for details) thresh-
olds (one for planer and one for curved surfaces). Even changing
any of these two thresholds by 10% can significantly change the
results.

To incorporate SSC as a model selection criterion in our range
segmentation algorithm, we use a surface library (as shown in
Table II, which consists of a plane (as the simplest) and a par-
tial-quadratic (as the most general) and six other models with
complexities in between. These models are chosen based on the
different number of parameters required to express a given data
set. For example, because we have cylinders, cones or parab-
oloids (or parts of them) perpendicular to the zy plane in our
objects, then the model az? + by? + cx + dy = 1 is included
in the model library. This model has four parameters whilst the
most general model has six parameters. The perpendicular and
parallel objects to the zy, xz or yz plane have one or two param-
eters less than the general model. Therefore, we include them
in our library separately (models 2-4). Adding such models to
the model library allows our segmentation algorithm to detect
such degeneracy (surfaces with axes perpendicular or parallel
to range finder coordinate system). It should be noted here that
the quadratic models shown in Table II could present different
types of conical surfaces based on the signs and values of the
parameters.

For all flat surfaces SSC selects model 8 (which represents
a flat plane) all the times and also for the curved surfaces the
true underlying model is always detected (100% success). For
example, surfaces 4 and 2 in Figs. 7 and 8, which are cylinders

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on October 26, 2009 at 21:38 from |IEEE Xplore. Restrictions apply.



2014

Fig. 5.
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Edge-detected presentations of the segmentation results shown in Fig. 3—(left) the proposed algorithm and (right) the UB algorithm. The above figures

show that the proposed technique produces a cleaner segmentation with sharp edges that are visually in agreement with the available data.

Fig. 6. (Left) Samples of intensity, (middle) plotted range data, and (right)
segmentation result of the proposed algorithm. SSC selected Model 8 (plane
model) for all of the visible sides of the icosahedron.

Fig. 7. (Left) Samples of intensity, (middle) plotted range data, and (right)
segmentation result of the proposed algorithm. SSC selected model 5 for the
cylinder perpendicular to the 2y plane (surface 4) and model 3 for the cylinder
parallel to the 2y plane (surface 5). For surface 6, which is a simple plan, model
8 is chosen by SSC.

Fig. 8. (Left) Samples of intensity, (middle) plotted range data, and (right)
segmentation result of the proposed algorithm. SSC selected model 5 for the
cylinder perpendicular to the zy plane (surface 2) and model 3 for the cylinder
parallel to the 2y plane (surface 3).

perpendicular to the zy plane are identified to have the under-
lying Model 5. The underlying model for surface 5 and surface
25 in Figs. 7 and 9 was chosen to be Model 3, which is a cylinder
parallel to the zy plane. Therefore, our method not only can de-
tect the cylindrical shape of the surface but also it is able to de-
tecting the degeneracy (as explained above) in the data.

Fig. 9. (Top left) Samples of intensity, (top right) plotted range data, (bottom
left) segmentation result of the proposed algorithm, and (bottom right) of UB
algorithm. This result illustrates that the proposed algorithm can detect the
similarity between two similar cylinders correctly. SSC selected model 3 for
the cylinders parallel to the xy plane. The underlying surface models of all
planar surfaces are chosen to be model 8 (plane).

One of the important aspects of the proposed algorithm is the
way by which it estimates the scale of the noise. Since we obtain
the scale of the noise from the data itself, our algorithm is not
overly sensitive to the level of noise (and quantisation error) in
the range image. Thus, the segmentation algorithm can tolerate
a substantial amount of noise. The curved object database that
is used in this section consists of many objects made of different
materials (metal, wood, cardboard), having different colours and
captured in different illumination conditions. As a result, the
level of noise is different in the experiments shown here.

One of the advantages of the model-based segmentation over
the region-based segmentation algorithms is the way that the
model-based algorithms can join the separated objects’ parts
(for example, segmentation results shown in Figs. 9 and 12—-14).
As shown in theses figures, the region-growing algorithms (like
UB) detect such parts as separate sections while model-based
techniques can flag the existing similarities.

The results of our experiments (following figures) show that
the proposed technique has been able to correctly segment the
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Fig. 10.
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Over-Segmentation

(Top left) Samples of intensity, (top right) plotted range data, (bottom left) segmentation result of the proposed algorithm, and (bottom right) of UB

algorithm. Although the range data contains substantial noise and invalid data, as shown in the plotted range image, the proposed algorithm has accurately segmented
the scene. For surface 13, which is a cylinder perpendicular to the 2y plane, the model selected is model 5. For all of the planar surfaces, SSC has correctly selected

model 8 as the underlying model.

Fig. 11.

(Top left) Samples of intensity, (top right) plotted range data, (bottom left) segmentation result of the proposed algorithm, and (bottom right) of UB

algorithm. The perpendicular cylinders to the xy plane are detected correctly (model 5) by the SSC.

objects as well as identifying the true type of each surface. In all
these figures, the labels show the underlying detected models,
which in all cases are in line with our expectations (100% suc-
cess rate for detecting the underlying model).

In relation to the time complexity of the proposed algorithm,
we should note that the time complexity of this method is highly
dependent on the number of samples used. In our experiments,
which are conducted on a PC with 1.3 Ghz Pentium 4 CPU and
512 MB of RAM running Windows 2000 operating system, the
ABW range images (like ABW.10) would take around 65 s to
be segmented if we use 500 random samples (times quoted here
are from a simple—not optimised—implementation of the al-

gorithm in C and includes time spent on I/O operations). This
time reaches 275 s if we use 2500 random samples. The execu-
tion time for our own database also takes around 36 to 164 s (on
the same machine) depending on the number of samples used.
Therefore, a disadvantage of the proposed algorithm in compar-
ison with the UB algorithm is its time complexity.

In our first and second sets of experiments, the objects were
made of cardboard or wood (painted white) which are ideal
for the rangefinder operation and the results are clean and re-
liable range images (Figs. 6—12). In the third set of experiments
(Figs. 13—15), the objects were made of steel and were sprayed
with white powder (to eliminate the specularities of the sur-
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Fig. 12.  (Top left) Samples of intensity, (top right) plotted range data, (bottom
left) segmentation result of the proposed algorithm, and (bottom right) of UB
algorithm. The SSC has selected the correct underlying models for different
parts as indicated by the labels.

Fig. 13. (Top left) Samples of intensity, (top right) plotted range data, (bottom
left) segmentation result of the proposed algorithm, and (bottom right) of UB
algorithm. The SSC has selects model 5 for the perpendicular cylinders to the
xy plane (surface 16 and surface 15) model 8 for all the planar sections. Surface
17 has two separated planar parts and they are correctly joined together by the
proposed technique.

faces). As a result, the range images in this database have a
number of missing points and are a bit noisier than the above
set (hence, they pose a greater challenge to the segmentation al-
gorithms). The lack of data in some regions is clearly shown in
the range data plots of Figs. 13-15.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 7, JULY 2006

Fig. 14. (Top left) Samples of intensity, (top right) plotted range data, (bottom
left) segmentation result of the proposed algorithm, and (bottom right) of
UB algorithm. The underlying model for surface 21, which is a cylinder
perpendicular to the 2y plane, is model 5 and for the flat surface 20 is chosen
to be model 8 (plane). Our result correctly indicates that the Surface 20 has two
parts separated by Surface 21.

&

Fig. 15. (Top left) Samples of intensity, (top right) plotted range data, (bottom
left) segmentation result of the proposed algorithm, and (bottom right) of UB
algorithm. As can be seen from the plotted range data, this range image involves
a high number of missed and invalid data. However, SSC can identify the correct
underlying model for the cylinder perpendicular to the xy plane (model 5) and
also for the flat surfaces (model 8).

TABLE IV
COMPARATIVE RESULTS FOR UB AND THE PROPOSED ALGORITHM
ON THE PARAMETRIC RANGE IMAGE DATABASE

Correct Over Under . .
Method Detection | Segmentation | Segmentation Missed | Noise
UB[23] | 54.5% 27.3% 18.2% <0.1% [< 0.1%
Our | g4.8% 8% 2% 3% | 2%
technique]
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TABLE V
CHOSEN THRESHOLDS FOR EVALUATING THE
UB ALGORITHM (SEE [23] FOR DETAILS)

Segment Segment Jump Crease Region
Tolerance Length Area
0.45 3 1 3 50
PRMSE PAVGERR | CRMS | CAVGE | Postproc
E RR ess
Factor
0.005 0.0007 0.011 0.0004 0.2

V. CONCLUSION

In this paper, we have proposed and evaluated a new sur-
face model selection technique called Surface Selection Crite-
rion. Using this criterion, we have been able to develop a robust
model-based range segmentation algorithm, which is capable
of distinguishing between different types of surfaces while seg-
menting the objects. The proposed techniques both for model se-
lection and for range segmentation have been extensively tested
and have been compared with the state of the art techniques.
The proposed criterion for model selection and the resulting
segmentation algorithm clearly outperform previously reported
techniques.
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