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Abstract

Encryption alone secures communication by preventing adversaries from easily decod-
ing one’s transmissions. Covert channels go one step further by attempting to hide the
very existence of communication. They hide inside legitimate overt network traffic. Huge
amounts of traffic make the Internet an ideal vehicle for covert communications.

Most existing covert channels are simple and in principle easy to detect or eliminate.
The more complex channels are usually harder to detect and eliminate, but typically suf-
fer from channel noise. Previous work has only partly analysed the performance of noisy
channels and their countermeasures and has not compared different types of channels.

We characterise the trade-offs between channel simplicity, capacity and ease of detec-
tion and elimination by investigating the performance of selected noisy covert channels
and their countermeasures. Not all chosen channels are entirely new, but we propose novel
improved encoding schemes. We also develop techniques for reliable data transmission.
We analyse the theoretical channel capacities as well as empirically measure achievable
throughputs. We show that the Internet’s potential to support more sophisticated covert
channels is considerably greater than suggested by most existing simple channels.

First, we analyse a channel in the IP Time-to-live (TTL) header field. We develop new
stealthier encoding schemes that also provide a slightly increased capacity. The channel
has a comparatively high capacity of up to a few hundred bits per second depending on
the overt traffic, but is easy to detect and eliminate. Next, we analyse an inter-packet gap
timing channel. We develop novel stealthy encoding schemes because previous schemes
are easy to detect. The channel only has up to 70–80% of the TTL channel’s capacity, but
is harder to detect. However, it can still be eliminated.

Then we propose and analyse a novel indirect channel in multiplayer game traffic.
The channel is impractical to eliminate, but is still detectable. The capacity is up to 10–20
bits per second – lower than that of direct channels. Next, we analyse an indirect timing
channel that transmits bits via temperature changes. We develop an improved version of
the channel that has increased capacity. Still the capacity is only 10–20 bits per hour, but
the channel is potentially hard to detect and eliminate.

Finally, we develop techniques to detect and eliminate the covert channels and evalu-
ate their effectiveness. While the proposed elimination methods are effective but channel-
specific, we demonstrate that machine-learning techniques detect different covert chan-
nels with over 95% accuracy.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Often it is thought that encryption is sufficient to secure communication. However, en-
cryption only prevents unauthorised parties from decoding the communication. In many
cases the mere existence of communication or changes in communication patterns, such
as an increased message frequency, are enough to raise suspicion and reveal the onset of
events. Covert channels attempt to hide the very existence of communication. Typically,
they use means of communication not normally intended to be used.

Lampson introduced covert channels in 1973 in the context of monolithic Multi Level
Secure (MLS) systems running on mainframes as a mechanism enabling a process at a
high security level to leak information to a process at a low security level by exploiting
shared resources, such as CPU, memory, or mass storage [13]. For example, a file’s lock
status in the file descriptor table can be used as a covert channel [14].

Traditionally, mainframes ran multiple processes with different security levels, but
today these processes typically run on different hosts connected by computer networks.
Firewalls control the security policies, but covert channels in network protocols can be
used to leak information from a high security host to a low security host. Overt channels,
such as legitimate network protocols, are used as carriers for covert channels [15, 16].

These days the applications for covert channels have extended far beyond MLS sys-
tems. A diverse range of individuals and groups has found reason to utilise covert chan-
nels for communication, and there are also a few specific applications. The huge amount
of data and large number of protocols make the Internet an ideal vehicle for covert com-
munication. The capacity of covert channels has greatly increased in recent years because
of new high-speed network technologies, and this trend is likely to continue.

Covert channels in network protocols are similar to steganography [17], the hiding
of information in audio, visual or textual content and therefore sometimes also referred
to as “network steganography”. While steganography requires some form of content as
cover, covert channels require some network protocol as carrier. The ubiquitous presence
of network protocols suitable as carriers (e.g. the Internet Protocol) make covert channels
widely available, even in situations where steganography cannot be used.

It is important to note that covert channels are covert by definition, because they use
unintended means of communication. They are ‘invisible’ for an unknowing adversary
but not necessarily undetectable. In fact many existing covert channels can actually be
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detected if they are known to the adversary. Even if particular channels are hard to detect
often they can still be eliminated.

We do not assume covert channels to be ‘good’ or ‘bad’, since this mainly depends
on one’s particular viewpoint. Nevertheless, many applications of covert channels are
serious threats to network security. Security incidents are usually kept secret, but evidence
suggests that covert channels have been used successfully [18]. While covert channels
may not have been widely used yet, it is likely that they will become more popular because
of increased security measures against ‘open channels’, such as the transfer of memory
sticks in and out of organisations and more sophisticated censorship of network traffic.

Early network covert channels are typically simple to implement, but on the other
hand are also easy to detect or eliminate. As security systems are becoming capable of
detecting and eliminating simple channels, more complex and harder to counter channels
are emerging, which typically suffer from channel noise. This makes them more difficult
to analyse and is probably the reason why their performance has not been well studied
until now. We aim to gain a better understanding of these important channels. The goal
is not to analyse every possible channel, but by choosing several representative channels,
better understand their capacity, and techniques for their detection and elimination.

We analyse the performance of selected noisy covert channels and their countermea-
sures. We focus on channels that potentially can be used for general-purpose communica-
tion. Not all of the channels are novel, but we develop new improved encoding schemes
for known channels. We analyse the theoretical channel capacities as well as empiri-
cally measure the achievable throughput based on channel noise. We consider not only
channel-specific noise but also noise caused by packet loss and reordering of the overt
traffic. Furthermore, we propose and evaluate techniques for reliable data transmission.

Our results show that most channel’s capacities are in the order of at least a few tens of
bits per second up to a few hundreds of bits per second depending on the overt traffic, even
for complex channels with non-ideal encoding schemes. The achievable throughputs are
sufficient for transmitting text messages or smaller documents. Based on the traditional
classification these are high-rate covert channels, as their rates are significantly above the
often accepted maximum rate of one bit per second [19].

On the other hand the most complex channel we analyse has a capacity of signifi-
cantly less than one bit per second. The channel seems less relevant for general-purpose
communication, but it is very useful for specific applications. Our work characterises the
trade-offs between simpler channels with higher capacity that are easier to counter and
more complex channels with lower capacity that are harder to counter.

Understanding covert channels is crucial for developing countermeasures. After im-
plementing and analysing the covert channels we then develop techniques to detect and
eliminate the channels and evaluate their effectiveness. The proposed elimination methods

2



CHAPTER 1. INTRODUCTION

are effective but channel-specific. On the other hand we demonstrate that more general
machine-learning techniques are successful in detecting different covert channels.

1.1 Research objectives and contributions

This thesis analyses and compares the performance of selected noisy covert channels
and their countermeasures. We compare the covert channels using theoretical models
and practical experiments in real networks with different conditions. To the best of our
knowledge such a comparison of different types of channels has not been done previously.

Most existing covert channels are simple and in principle easy to detect or eliminate.
These channels are well understood and their capacities can be determined easily, but
they are likely to be managed by upcoming security systems (see Section 2.4). Hence
we focus on more complex channels that are harder to detect and eliminate, but typically
experience channel noise. This makes them more difficult to analyse and is probably the
reason why their performance has not been well studied in existing literature.

Covert channels either manipulate data fields or the timing of packets or messages
(storage vs. timing), and covert data is either exchanged directly between covert sender
and receiver or via an intermediate node (direct vs. indirect). Indirect channels have the
benefit that an adversary does not see a direct flow of information between covert sender
and receiver. For our analysis we select four channels that represent all combinations of
these two characteristics.

Most of our selected channels are passive channels that can be embedded in existing
overt traffic exchanged by unwitting senders and receivers. Passive channels relieve the
covert sender of the difficult task of mimicking legitimate traffic properly, which is nec-
essary to prevent detection due to suspiciously looking overt traffic. However, the covert
sender can always generate traffic to create active channels. We chose an active indirect
timing covert channel, because it is hard to construct passive indirect timing channels.

Furthermore, we only consider channels on or above the network layer, as they usually
have a wider range and higher coverage than channels in specific link-layer protocols.
Finally, we limit our choice to covert channels that impose no obvious adverse effects on
the overt traffic (for example, we ignore channels that encode information by dropping or
reordering overt packets). In particular we choose the following channels:

• a direct noisy storage channel in the IP Time-To-Live (TTL) header field,

• a direct noisy timing channel in IP inter-packet times,

• an indirect noisy storage channel in multiplayer game traffic, and

• an indirect noisy timing channel based on temperature changes.
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The idea for three of the channels was previously published (see Section 2.2). However,
flaws in existing encoding schemes led us to develop new improved encoding schemes in
all cases. The covert channel in multiplayer game traffic is a novel type of covert channel.

Noisy covert channels usually not only experience bit errors but also synchronisation
errors. Achieving rates near full capacity over such channels is challenging. Despite
knowledge of the existence of such channels, they have not been well studied over the last
decades [20]. Some coding schemes exist but often the error characteristics assumed in
the literature do not match those of covert channels and the resulting performance remains
unclear. Previous work usually focused only on the basic modulation mechanisms, but we
also develop and evaluate techniques for reliable data transmission.

Developing and analysing the covert channels in the first step allows us to then develop
detection and elimination techniques and evaluate their effectiveness in the following step.
We explore the use of Machine Learning (ML) techniques for detecting the covert chan-
nels. The use of ML to detect network covert channels was proposed previously by a few
researchers, but it remains a largely unexplored area.

Our approach to analysing and comparing the covert channels and countermeasures
is based on empirical experiments across real networks and on experiments using traffic
from trace files captured previously in real networks. However, we also use the concepts
of information theory [21, 22] to estimate the capacity of the channels and then compare
actual throughputs with estimated capacities. We choose to pursue a more experimen-
tal approach, since with pure theoretical analysis there remains a risk that research will
ultimately be inapplicable to real systems.

This thesis contributes the following work, filling several gaps in existing literature:

1. We explore the trade-offs between channel simplicity, capacity and ease of detection
and elimination by investigating the performance of selected noisy covert channels
and their countermeasures. We propose a novel taxonomy that assisted us in our se-
lection of the channels to investigate and helps to understand general characteristics
of channels in each classification.

2. We explore direct noisy storage channels using the IP TTL field as a covert channel.
We develop new encoding schemes that are both stealthier and have slightly larger
capacity. We characterise the channel noise based on traffic traces. We propose a
channel model that covers the effects of TTL noise, overt packet loss and reordering,
and estimate the capacity. The channel has a comparatively high capacity of up to
a few hundred bits per second, depending on the overt traffic’s packet rate.

3. We investigate direct noisy timing channels based on covert channels in inter-packet
times. We develop a novel variant of the channel and show that it is much harder
to detect than previous versions. We propose a channel model and evaluate the
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capacity. The channel has only 70–80% of the TTL channel’s capacity. We also
show that artificial network jitter almost completely eliminates the channel with
only minor impact on the overt traffic’s performance.

4. We develop a novel mechanism for reliable data transport over direct noisy covert
channels. We demonstrate that it can be applied to TTL channels and inter-packet
timing channels. The theoretical capacity is not reached, but our technique provides
reasonable performance with throughputs of at least 30–40% of the capacity.

5. We explore indirect noisy storage channels based on a novel covert channel in First
Person Shooter (FPS) multiplayer game traffic. Key advantages of the channel for
users are that it is an indirect channel that cannot be eliminated without eliminating
the game traffic. However, the capacity is only up to 10–20 bits per second. We
develop a tailored scheme for reliable transport, measure the throughput depending
on network conditions, and compare it with the theoretical capacity.

6. We analyse an indirect noisy timing covert channel that transmits information via
changes of temperature. We first develop an improved version of the channel that
increases the capacity, and evaluate its effectiveness. Then we develop a method to
estimate the capacity depending on the characteristics of the intermediate host. For
two example intermediate hosts the capacity is only 10–20 bits per hour.

7. We develop measures to detect and eliminate different noisy covert channels. The
proposed elimination methods are effective but are usually channel-specific. We
show that ML techniques are successful in detecting different covert channels with
over 95% accuracy.

8. We develop an extensible software framework for creating and evaluating the dif-
ferent channels called Covert Channels Evaluation Framework (CCHEF). It can be
used to create covert channels across real networks as well as emulate covert chan-
nels using overt traffic from trace files.

1.2 Significance of work

The handling of covert channels, such as their elimination and detection, is of particular
importance for MLS systems. It is required for higher assurance levels in the US Depart-
ment of Defense Trusted Computer System Evaluation Criteria (TCSEC) [19], the Euro-
pean Information Technology Security Evaluation Criteria (ITSEC) [23] and the Common
Criteria (CC) [24]. The Evaluated Products List (EPL) [25] provides the Australian gov-
ernment with information about the compliance of products to the ITSEC and CC criteria.
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Besides the area of MLS systems a wide field of possible applications for covert chan-
nels has opened with the rapid growth of the Internet (see Section 2.1.4). For example,
it has been hypothesised that terrorists use covert channels for communication and coor-
dination [26]. On the other hand they can be used by people to disseminate information
secretly if there are serious repercussions against the “freedom of speech” [27].

In most cases the sensitivity of the subject prevents incidents from becoming publicly
known. Because of this it was unclear for some time if covert channels actually had
been exploited in the real world at all, but “at a workshop [in 1999], Bob Morris gave
this question its final and complete answer: Yes.” [18]. Network covert channels may not
have been widely used yet, but it is likely that they will become more popular in the future
because of increased security measures against ‘open’ channels.

Many existing covert channels are simple to detect and eliminate and thus will likely
be handled by current or next-generation security systems. We analyse the next generation
of more sophisticated covert channels under realistic network conditions. Our results
show that even while these channels are noisy many of them still have sufficient capacity
to be useful. Furthermore, we demonstrate that reasonably efficient techniques for reliable
communication across such channels can be developed.

Our results highlight the trade-off between different covert channels. Channels with
higher capacity are generally easier to counter whereas stealthier and more robust chan-
nels provide less capacity. While some covert channels can be eliminated but are hard to
detect, others can be detected but are hard to eliminate. This means a holistic approach
for covert channel handling is required to secure future networks. Our results suggest that
ML techniques are a very promising approach to detect a wider range of covert channels.

The covert channel hidden inside multiplayer game traffic is an entirely new class
of channels, usable for collusion as well as exchanging game-unrelated information un-
beknownst to adversaries. Many companies are exploring the use of immersive virtual
worlds similar to games, such as Second Life [28], for distributed training, collaboration
and general business – this opens up the potential for covert ex-filtration of commercially
sensitive information via such channels.

1.3 Thesis outline

We begin with an overview of existing covert channel techniques and countermeasures in
Chapter 2. Next, Chapter 3 proposes new encoding schemes and analyses the performance
of covert channels in the IP TTL header field. In Chapter 4 we develop new stealthier
covert channels in the inter-packet times of IP packets and analyse their performance.
In Chapter 5 we present a novel covert channel in FPS multiplayer game protocols and
analyse its performance. In Chapter 6 we develop a technique to improve the capacity
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of temperature-based covert channels and estimate the capacity in example scenarios. In
Chapter 7 we develop and analyse mechanisms to eliminate and detect the different covert
channels. In Chapter 8 we present our conclusions and outline future work.
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Chapter 2

Covert Channels

We begin the chapter with an overview of covert channels, and then discuss previous
work on covert channels and countermeasures. We group existing covert channels ac-
cording to a taxonomy we have developed. We conclude the chapter by identifying gaps
in the literature that are addressed in this thesis.

2.1 Background

We first define important terminology and then explain the basic model for covert channels
as well as possible communication scenarios. We also discuss various applications of
covert channels and explain the generally available countermeasures. Finally, we discuss
criteria for evaluating covert channels.

2.1.1 Terminology

Researchers have used a range of terms – such as covert channels, network steganography
or information hiding – to describe the process of hiding information in network protocols.
Partly this has been caused by differences between Lampson’s original covert channel
definition and a later definition by the US Department of Defense (DoD). Another reason
is that terminology evolved: the term “information hiding” simply had not been coined
when the first covert channels in network protocols were proposed [18].

Lampson defined covert channels as “channels, [...] not intended for information
transfer at all” [13] whereas the US DoD TCSEC, commonly known as “Orange Book”,
defined covert channels as “[...] any communication channel that can be exploited by
a process to transfer information in a manner that violates the system’s security policy”
[19]. Newer definitions are broadly consistent with the Orange Book.

The Common Criteria defined a covert channel as “an enforced, illicit signalling chan-
nel that allows a user to surreptitiously contravene the multi-level separation policy and
unobservability requirements of the [target of evaluation]” [24]. The “Light-Pink Book”
used a more formal definition based on Tsai et al. [29]: “Given a non-discretionary (e.g.,
mandatory) security policy model M and its interpretation I (M) in an operating system,
any potential communication between two subjects I (S i) and I (S k) of I (M) is covert
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if and only if any communication between the corresponding subjects S i and S k of the
model M is illegal in M.” [14].

We use the term covert channel when we refer to the hiding of information in network
protocols and refer to the information transmitted across the channel as hidden or covert

information. Consistently with Petitcolas et al. we use the term steganography (literally
meaning covered writing) when we refer to the hiding of information in content, and the
term information hiding as a generic term for both [17]. Transmission of information
through legitimate network traffic is an overt channel [30]. Also, we refer to overt traffic
containing an embedded covert channel as cover traffic.

The definition of a covert channel implies that both the sender and receiver collude
to exchange information. A side channel is a covert channel where the sender uninten-
tionally leaks information and only the receiver wants a successful communication. A
subliminal channel is a covert channel inside a crypto system [31].

2.1.2 Prisoner problem

The prisoner problem is the de-facto model for covert channel communication [31]. Two
people, Alice and Bob1, are thrown into prison and intend to escape. To agree on an
escape plan they need to communicate but Wendy the warden monitors all their messages.
If Wendy finds any signs of suspicious messages she will place Alice and Bob into solitary
confinement – making it impossible for them to escape. Alice and Bob must exchange
innocuous messages containing hidden information that hopefully Wendy will not notice.
Craver describes the different types of wardens [32]:

• A passive warden can only spy on the channel but cannot alter any messages.

• An active warden can modify messages slightly, but without altering the semantics.

• A malicious warden may alter the messages with impunity, but in reality malicious
wardens are rare [32].

Handel et al. extended this scenario towards computer networks, where Alice and Bob use
two networked computers for communication [16]. They run an innocuous looking overt
communication channel between their computers, containing a hidden covert channel.
Alice and Bob share a secret, used for determining covert channel encoding parameters
and encrypting/authenticating the hidden messages. For practical purposes Alice and Bob
may well be the same person, for example a hacker ex-filtrating restricted information.
Wendy manages the network and monitors the passing traffic for covert channels or alters

1Cryptographic protocols are usually illustrated using participants named alphabetically (Alice, Bob) or
with names where the first letter matches their role (Wendy the warden).
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Figure 2.1: The prisoner problem – de-facto model for covert channel communication

the passing traffic to eliminate or disrupt covert channels. Figure 2.1 depicts the model
with Alice sending to Bob.

In the prisoner model Alice communicates with Bob, but in general covert channels
are not restricted to unicast channels. Alice could send hidden information to Bob, Carol
and Dave at the same time if the channel allows multicast communication.

2.1.3 Communication scenarios

There are a number of different scenarios for covert communication depending on whether
Alice and Bob are the sender and receiver of the overt channel, or if they act as middlemen

and manipulate an overt channel between innocent users [33].

If Alice is also the sender of the overt channel, she can manipulate the overt channel
as desired (e.g. to maximise capacity or stealth). However, sometimes Alice may not be
able to create overt channels or may choose not to do so for increased stealth. In this case
Alice can act as middleman embedding a covert channel into an existing overt channel.
Obviously, then the capacity of the covert channel depends on the existing overt channel.

Bob can be the receiver of the overt channel, but to increase stealth he can also be a
middleman extracting the hidden information from an overt communication destined for
an innocent receiver. Then Bob should (if possible) remove the covert channel preventing
possible detection by the receiver or any other upstream intermediate nodes.

Being a middleman does not necessarily mean Alice or Bob have to be physically
separated from the overt sender and receiver. They could be located on routers or gateways
between the overt sender and receiver, but they could also be on the same physical device
located in lower levels of the network protocol stack.

Figure 2.2 illustrates the possible combinations of covert sender and receiver loca-
tions. The actual communication scenario also depends on the application of the covert
channel. For example, if the channel is used to circumvent censorship covert and overt
sender/receiver would likely be identical, whereas if it is used by a hacker for ex-filtrating
data the covert sender and receiver would likely be middlemen (e.g. Alice could be inside
the network protocol stack of the compromised host and Bob could be on a router close
to the edge of the compromised network).
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Figure 2.2: Possible combinations of different covert sender/receiver locations

2.1.4 Applications

A diverse range of individuals and groups has found reason to utilise covert channels
for communication and coordination. Typically this is motivated by the existence of an
adversarial relationship between two parties, such as government agencies versus criminal
or terrorist organisations, hackers or corporate spies versus company IT departments or
dissenting citizens versus their governments.

Clearly, government agencies, criminals, or terrorist organisations have an interest in
keeping their communication secret. However, simply using encryption does not prevent
adversaries from detecting communication patterns. Often only the evidence that commu-
nication takes place is sufficient to detect the onset of activities, discover organisational
structures or justify police warrants.

For example, it has been hypothesised that terrorists use covert channels to coordi-
nate their actions [26]. Recent evidence now confirms that they use information hiding.
Published extracts of emails exchanged between terrorists in the UK and Pakistan show
that the organisation of planned attacks was disguised as seemingly harmless conversa-
tion about ordering goods for a future shop opening [34]. However, this is still simple
steganography and not a covert channel in network protocols.

Once spies or hackers have compromised computer systems they usually ex-filtrate
data or instrument the systems for malicious purposes, including communication with
installed Trojan horses (malicious programs disguised as legitimate software) or tools
for launching Denial of Service (DoS) attacks. Such activities generate network traffic
that, if not covert, would immediately alert system administrators, who would then also
discover the compromised systems. Ex-filtrating sensitive data over covert channels does
not even require compromised computers. It is sufficient if the attacker compromises an
input device such as a keyboard [35].
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Often even ‘ordinary’ users may want to use covert channels to bypass their company
or Internet Service Provider (ISP) firewalls in order to access Internet resources. Further-
more, recent attempts by some governments to limit the freedom of speech in the Internet
have led to proposals for using covert channels to circumvent these measures [27, 36]. In
countries that forbid strong encryption of data, covert channels can be used to ‘secure’ the
information transport, although this is not strong security in the cryptographic sense.

Network administrators can use covert channels to ‘secure’ network management re-
lated communication by hiding it from hackers [37]. Again this is not strong security in
the cryptographic sense. Honeypots, computer systems set up as trap for hackers, can also
use covert channels to export logged data in real-time hidden from attackers [38].

Computer viruses or worms can use covert channels to spread themselves undetected
or for covertly exchanging information necessary for distributed processing (e.g. execute
brute-force attacks on cryptosystems [39]).

Moskowitz et al. showed that imperfections in anonymous communications are effec-
tively covert channels usable to thwart anonymisation [40]. Covert channels have been
used for breaking anonymisation in multiple scenarios. Xu et al. described an attack on
traffic trace file anonymisation through covert channels [41] and Bethencourt et al. devel-
oped a technique to identify the locations of sensors used for detecting malicious network
traffic [42]. Murdoch et al. developed covert-channel based techniques to reveal servers
hidden inside anonymisation networks [43, 44].

Covert channels can also be used for transmitting authentication data. A number of
techniques were developed for allowing authorised users to access open firewall ports
while presenting these ports as closed to all other users. One particular technique, called
“port knocking”, uses covert channels for sending the authentication data [45]. Mazur-
czyk et al. proposed using covert channels and steganography to link control information,
including authentication data, to the actual data flows [46, 47].

A number of researchers developed packet traceback techniques using covert channels
[48, 49, 50, 51]. Traceback techniques provide downstream nodes with information about
the path of incoming packets. This is important in case of DoS attacks, because it allows
filtering the attack traffic at upstream nodes and tracing back attackers across intermediate
hosts (stepping-stones).

2.1.5 Countermeasures

Before any action can be taken against a covert channel it first needs to be identified. A
number of formal methods were developed for identifying covert channels in specifica-
tions or implementations of single host systems during the design phase or in an already
deployed system (see Section 2.4). Only a few works exist on formal techniques for
identifying covert channels in network protocols (see Section 2.4).
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Once a covert channel has been identified it can be handled. The generally available
countermeasures are:

• Eliminate the channel.

• Limit the bandwidth of the channel.

• Detect and audit the channel.

• Document the channel.

If a covert channel was not removed in the design phase the next best option is to elimi-
nate its possible use, because even low-capacity channels could be successfully exploited.
However, the removal of all covert channels leads to very inefficient systems, since they
can often only be removed completely by replacing automated procedures with manual
procedures [52]. Furthermore, covert channels based on the modulation of visible mes-
sage parameters are inherent in distributed systems, such as computer networks.

Therefore, we and many other researchers believe that covert channels cannot all be
completely eliminated [53, 54]. This is also acknowledged by the security standards. For
example, the Orange Book treats covert channels with capacities of less than one bit per
second as acceptable in many scenarios [19].

If a channel cannot be eliminated its capacity should be reduced. What is an accept-
able capacity depends on the amount of information leakage that is critical. For example,
if the capacity is so small that classified information cannot be leaked before it is outdated,
then the channel is tolerable. Limiting the channel capacity is often problematic, because
it means slowing down system mechanisms or introducing noise, which both limit the
performance of the system.

Covert channels that are not eliminated or limited should be audited, which requires
their reliable detection. Auditing acts as deterrence to possible users and also allows tak-
ing actions against actual users. Covert channels with capacities too low to be significant,
or which cannot be audited, should at least be documented (e.g. in the protocol specifica-
tion), so that everybody is aware of their existence and potential threat.

2.1.6 Evaluation criteria

We use three main criteria for evaluating covert channels in network protocols that are
similar to those used for evaluating steganographic systems [33]:

• Capacity determines the maximum error-free transmission rate of a covert channel
[22]. Capacity is typically measured in bits per second, but for network covert
channels it can also be expressed in bits per overt packet.
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• Robustness determines how easily a covert channel is eliminated or its capacity is
limited by channel noise, possibly artificially noise introduced by a warden.

• Stealth determines how easily a covert channel can be detected by comparing the
characteristics of traffic with covert channel and unmodified legitimate traffic.

Our research confirms that capacity, robustness and stealth are conflicting goals. Usually,
it is impossible to simultaneously maximise all of them and users have to choose a trade-
off that is best for a particular situation. For example, we demonstrate that sending less
data improves the stealth and increasing the redundancy of data improves the robustness,
but both reduce the capacity. We also show that robustness can be easily improved by
increasing the amplitude of the signal, but this reduces the stealth.

2.2 Covert channel techniques

We now give an overview of existing covert channels focusing on channels that are po-
tentially usable for general-purpose communication. We group the existing channels ac-
cording to a novel taxonomy. We ignore channels in protocols or protocol options that are
basically extinct unless their mechanism illustrates a unique or important approach [6].

2.2.1 Taxonomy

We developed a novel taxonomy for classifying covert channels, because existing tax-
onomies only provided a very coarse classification. Our taxonomy extends previous
work, such as the distinction between storage and timing channels [19] or the distinc-
tion between noisy and noise-free channels [22]. We classify covert channels based on
the following criteria:

• Storage vs. timing channels: Traditionally covert channels were classified into stor-
age and timing channels [19]. Storage channels involve the writing of object values
by the sender and the reading of them by the receiver. Timing channels involve the
sender signalling information by modulating the use of resources over time such
that the receiver can observe it and decode the information.

• Predictable vs. variable vs. random cover: The cover is the characteristic of the
overt traffic into which the covert data is encoded. A predictable cover means there
is basically no variation, whereas a variable cover means there is limited variation.
A random cover means the cover data is pseudo-random.

• Noisy vs. noise-free channel: A channel is the communication channel between
Alice and Bob. On a noisy channel there are channel errors: substitutions (bits
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changed with unknown position), erasures (bits changed with known position),
deletions (bits completely lost) and insertions (bits inserted) [22]. On a noise-free
channel there are no channel errors.

• Passive vs. semi-passive vs. active: In passive channels Alice acts as middleman
and uses the existing traffic of unwitting users as cover. In semi-passive channels
Alice generates the overt traffic instrumenting real applications, meaning she has
only partial control over the overt traffic. In active channels Alice is also the sender
of the overt traffic (fake application traffic) and thus has full control of it.

• Direct vs. indirect: In direct channels the overt traffic that contains the covert data
flows directly from Alice to Bob (who both can be middlemen). In indirect channels
there are two flows of overt traffic conveying the covert data. The first is between
Alice and an unwitting intermediate host and the second is between the intermediate
host and Bob.

2.2.2 Direct noise-free storage channels

Most existing covert channels fall into this category, because there are a huge number of
possibilities for these channels. Covert data is encoded in underspecified protocol fields
and operations or by exploiting semantic ambiguities. While these channel are easy to
implement and efficient because there is no channel noise2, they can be easily detected by
their abnormal behaviour and eliminated by protocol normalisation (see Section 2.4).

Unused header fields

Covert channels can be encoded in unused or reserved bits of frame or packet headers.
There is great potential for channels if protocol standards do not mandate specific values
or receivers do not check for the standard values. Handel et al. proposed a covert channel
using the unused bits of the IP header’s Type of Service (TOS) field (see Figure 2.3) or of
the TCP header’s flags field (see Figure 2.4) [16].

Kundur et al. suggested using the IP header’s Don’t Fragment (DF) bit as a covert
channel [55]. The DF bit can be set to arbitrary values if the sender knows the Maximum
Transfer Unit (MTU) size of the path to the receiver and only sends packets of less than
MTU size. Hintz proposed transmitting covert data in the TCP Urgent Pointer that is
unused if the URG bit is not set [56]. Since the checksum in UDP packets is optional
[57], Fisk et al. proposed using the presence or absence of it to signal one bit of covert
information per packet [58].

2Some channels use header fields that are not immutable in the network, but often they are not modified
and the channels are effectively noise-free.
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Figure 2.4: TCP header structure

Mazurczyk et al. proposed using covert channels to embed control information in
Voice over IP (VoIP) flows [46, 47]. VoIP data transmission is usually based on the Real-
time Transport Protocol (RTP), and control information is exchanged separately over the
Real-time Control Protocol (RTCP) [59]. Instead of using separate RTCP flows Mazur-
czyk et al. proposed embedding the control information into RTP flows. Unused bits in
the IP, UDP, and RTP headers signal the type of parameters, and the parameter values are
embedded as watermark in the voice data.

Header extensions and padding

Usually there are pre-defined header extensions that allow transporting non-mandatory
information on demand, but many protocols also allow header extensions to carry data
not foreseen in the original specification, extending the capabilities of the protocol.

Graf proposed transmitting covert data in IPv6 destination options headers that carry
optional data for a packet’s destination [60]. Covert bits are encoded as option data,
and the option type is set so that the overt receiver ignores the option. Lucena et al.
identified covert channels in the IPv6 hop-by-hop, routing, fragment, authentication and
encapsulating security payload extension headers [61]. Trabelsi et al. proposed to hide
covert data masked as IP addresses in IP route record option headers [62].

Covert information can be encoded in frame or packet padding. For example, Ethernet
frames must be padded to a minimum length of 60 bytes. If the protocol standard does
not mandate specific values for the padding bytes, any data can be used [63, 16]. Padding
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Figure 2.5: Modulating the least significant bit of the TCP timestamp field

of the IP and TCP header to four-byte boundaries (in case header options are present) and
padding in IPv6 can also be used to transmit covert data [58, 61].

Modulating timestamp fields

Handel et al. noted that covert data can be encoded in IP timestamp header extensions
[16]. Giffin et al. developed a method for covert messaging through TCP timestamp
header options, which are widely used to improve TCP performance [64]. Covert in-
formation is inserted in the low order bits of the sender timestamps, because these are
assumed to be random for slow TCP connections.

Instead of directly modifying timestamps the algorithm slows the TCP stream so that
the timestamps on packets are valid when they are sent. The algorithm compares the
least significant bit (LSB) of the timestamp of every TCP segment generated with the
current covert bit to be sent. If the LSB matches the covert bit the TCP segment is sent
immediately otherwise it is delayed for one timestamp tick (see Figure 2.5).

Modulating address fields and packet lengths

All communication protocols use address fields to identify senders and receivers. The
most prominent today are arguably the IP source and destination address fields.

Padlipsky et al. and Girling proposed either encoding information in destination ad-
dress fields directly or by modulating the order of valid destination addresses in subse-
quent transmissions [65, 15]. The capacity depends on the number of different addresses
a covert sender can use. The initial proposals were targeted at link layer frames but the
technique could be used to modulate IP addresses or port numbers. Covert information
can also be transmitted in source addresses, if they can be modulated [61]. This is the
case for IP addresses (if spoofing is possible) or port numbers.

Galatenko et al. proposed to send covert information by reordering packets so that
destination addresses in a series of subsequent packets are ordered [66]. The covert sender
encodes a logical one as a sequence of packets with increasing addresses and a logical zero
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as a sequence of packets with decreasing addresses. The sequence length used depends
on the desired error rate of the channel.

Feamster et al. proposed Infranet – a framework to use covert channels in HTTP to
circumvent censorship [27]. Web servers participating in Infranet receive covert requests
for web pages encoded as a sequence of HTTP requests to harmless web pages and return
the content hidden inside harmless images (steganography). Bowyer proposed a very sim-
ilar mechanism to communicate with Trojans behind firewalls [67]. A Trojan sends HTTP
requests to a web server with covert data encoded as URL parameters. The web server
returns innocent looking web pages with images containing hidden data (steganography).

Most protocols use length fields to indicate the length of headers, header extensions
or messages (frames, packets). Padlipsky et al. and Girling proposed to modulate the
lengths of link-layer frames to transmit covert information [65, 15]. The same technique
can be used to modulate the size of IP packets [61, 68, 69].

Perkins developed a covert channel that encodes the information in the sum of all bits
of a message [70]. Covert sender and receiver agree on the maximum possible sum S (all
bits set in a message of maximum length) and a division of [0,S ] into n intervals. The
covert sender encodes covert bits by constructing or re-ordering messages so that the bit
sum is in the desired interval. The channel capacity is log2 n bits per message.

Various header fields

Marone discovered several covert channels in the Dynamic Source Routing (DSR) pro-
tocol used in ad-hoc networks [71]. Covert information can be encoded in header fields
present in DSR routing requests, for example the request identification number, hop limit,
clock time, or address fields. Covert data can also be piggybacked on regular routing
requests in the options header. Another, more sophisticated method presupposes that the
covert sender and receiver have a prearranged list of routes, where each route is a symbol.
Sending a combination of routes transmits the covert information.

Li et al. described a number of covert channels in the Ad-hoc On-Demand Distance
Vector (AODV) protocol [72]. Covert information can be transmitted by manipulating the
source sequence number field or the destination ID in route requests, or by manipulating
the lifetime field in route replies sent by an intermediate node.

Qu et al. developed a covert channel based traceback mechanism for IEEE 802.11
Wireless LANs (WLANs) to improve resistance against DoS attacks [49]. In their ap-
proach access points encode the path of frames in the More Fragments bit of the Frame
Control field, and the Duration/ID field. Krätzer et al. proposed to embed covert infor-
mation in various IEEE 802.11 header fields, such as the Retry bit and More Data bit of
the Frame Control field, and the Duration/ID field [73].
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Dyatlov et al., Kwecka and Van Horenbeeck proposed various methods for embed-
ding covert channels into HTTP protocol headers [74, 75, 76]. These encompass encod-
ing covert data into header field values, the order of header fields, the use of lower or
upper case, the presence or non-presence of optional header fields, the use of multiple
white spaces, and new non-standard header fields. Castro et al. developed a method for
transmitting covert information through HTTP cookies [77].

Bai et al. proposed a covert channel in the jitter field of the RTCP protocol [78]. The
covert sender replaces the least significant bits of actual jitter values with covert bits.

Corrupted frames/packets

Since IEEE 802.11 wireless networks have variable bit error rates, they provide an op-
portunity for injecting synthetic ‘corrupt’ frames. Szczypiorski et al. proposed a covert
channel where all stations that are part of the channel communicate via sending some
percentage of their frames with covert data and intentionally created bad checksums [79].
Other stations discard the ‘corrupted’ frames.

Butti et al. proposed sending covert information across IEEE 802.11 networks in
unsolicited ACK frames or invalid frames with deliberately incorrect checksums [80].
The sender encodes covert data in the payload and a magic number inside the receiver
address. The receiver decodes the data from frames containing the magic number.

Krätzer et al. proposed another covert channel in IEEE 802.11 using corrupted frames
[73]. The covert sender encodes bits by duplicating frames of specific connections (frames
going from a particular sender to a particular receiver) and the covert receiver decodes the
bits by detecting the duplications.

Payload tunnelling

Payload tunnels are covert channels that tunnel one protocol (usually the IP protocol) in
the payload of another protocol to circumvent firewalls. Most of these channels do not aim
for stealth but rather for maximising the capacity. A variety of tools exist for tunnelling
over protocols that are usually not blocked such as ICMP or HTTP [81].

One of the first approaches for tunnelling over ICMP was Loki, which tunnels pro-
tocols in the payload of ICMP echo messages [82]. Today many other IP over ICMP
tunnels exist (e.g. [83]). Ray et al. proposed a covert channel in ICMP echo messages
encoded in the ID field and the payload [84]. Another popular method is to tunnel over
HTTP. Padgett developed a tool that tunnels SSH over HTTP proxies [85]. Dyatlov and
LeBoutillier implemented tools for tunnelling UDP or TCP over HTTP [86, 87].

Several tools exist for tunnelling IP across the DNS protocol [88]. Communication
takes place between a client and a fake DNS server. The client sends covert data encoded
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in the hostnames in DNS requests (hostname lookups). The server returns data in the
DNS responses. However, most of the existing tools use DNS records rarely used for
legitimate reasons [88]. Nussbaum et al. evaluated the throughput of different DNS-
tunnel implementations, but did not analyse how difficult it is to detect the channel [88].

Pseudo-random fields

Some covert channels are embedded in cover data that is pseudo-random (including en-
crypted data). These channels are similar to Simmons’ subliminal channels [31].

The IP Identification (ID) header field is used for reassembling fragmented IP packets.
The IP standard requires that each IP ID uniquely identifies an IP packet for a certain time
period [89]. The IP ID is set to pseudo-random values on newer operating systems if
fragmentation is permitted. The Fragment Offset is used to determine in which order
fragments need to be reassembled.

Rowland and Ahsan proposed different ways of encoding covert data in IP ID fields
[36, 90]. Cauich et al. described how to use this channel between middlemen [91]. If an
existing packet is not fragmented Alice inserts covert data into the IP ID and Fragment
Offset fields and sets a reserved bit in the flags field. This bit marks packets with covert
information so that Bob can distinguish between real final fragments, which have the
More Fragments bit set to zero, and the covert channel.

TCP sequence numbers are used to coordinate which data has been transmitted and
received. The first sequence number selected by a client is called the Initial Sequence
Number (ISN). The ISN must be chosen so that the sequence numbers of new incarnations
of TCP connections do not overlap with the sequence numbers of earlier incarnations [92].

Rowland and Rutkowska proposed different techniques to encode covert data into the
TCP ISN [36, 93]. However, as Murdoch et al. pointed out all the ISN channels proposed
previously produce a distribution that differs from those of real operating systems [94].
They developed ISN covert channels tailored to Linux and OpenBSD, where the ISN
distribution of the covert channel looks normal [94].

Lucena et al. developed two covert channels for the Secure Shell (SSH) protocol [33].
The first active channel hides information in the Message Authentication Code (MAC)
header present in each packet. The sender either completely replaces the MAC with
encrypted covert data, or uses a short MAC padded with encrypted covert data resembling
a long MAC. The second channel is passive. The covert sender intercepts SSH traffic and
adds an additional fixed-size encrypted message at the beginning of the already encrypted
payload. A magic number marks the presence of the covert data. The covert receiver
decodes the covert data and removes it, restoring the original packet.

Szczypiorski et al. proposed to embed covert data in the RC4 initialisation vector,
which is part of the IEEE 802.11 Wired Equivalent Privacy (WEP) mechanism [79].
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Figure 2.6: The TCP Initial Sequence Number (ISN) bounce channel

2.2.3 Direct noisy storage channels

Noisy storage channels make use of underspecified fields or semantic ambiguities in the
same way as noise-free channels, but the data fields used as cover are subject to modifi-
cations on the path between Alice and Bob. These modifications can cause errors on the
channel, which we also refer to as noise. The noise lowers the capacity, but potentially
improves the stealth. Compared to direct noise-free storage channels, there are only very
few noisy storage channels and they are much less well understood.

Jones et al. proposed using the IP header’s TTL field to trace back IP flows without
using the source address [48]. Routers change the TTL field of packets so that downstream
receivers can unambiguously identify their upstream router. Qu et al. and Lucena et al.
proposed basic schemes for embedding covert information into the TTL [95] and the IPv6
Hop Limit field, which is the IPv6 equivalent of the IP TTL [61].

Since the TTL and Hop Limit fields are modified by network nodes on the path be-
tween Alice and Bob and packets can take different paths through the network this channel
is noisy. Furthermore, there are other, previously not well documented sources of TTL
noise (see Section 3.1).

2.2.4 Indirect storage channels

Indirect storage channels enable Alice and Bob to exchange covert data encoded in proto-
col fields via an unwitting intermediate node. This increases the stealth because a warden
does not see a direct flow of information from Alice to Bob. However, we show that indi-
rect channels are harder to implement and have a smaller capacity than direct channels.

Rowland outlined an indirect channel, called the bounce channel, which is illustrated
in Figure 2.6 [36]. Instead of sending a TCP SYN packet with an ISN containing covert
data to the receiver directly, the sender sends the TCP SYN packet to a bounce host with
a spoofed IP source address set to the intended destination. The bounce host then sends a
SYN/ACK or SYN/RST to the receiver with the acknowledged sequence number equal to
the ISN+1. The receiver decrements the ACK number to decode the hidden information.

Zelenchuk implemented an indirect IP over ICMP tunnel [96]. The covert sender
sends echo requests to a bounce host with spoofed source address set to the address of the
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covert receiver and the covert data encoded in the payload. The bounce host then sends
echo replies to the covert receiver with the same payload.

Danezis proposed an indirect channel using the IP ID field [97]. This channel requires
an intermediate host with globally incrementing IP ID counter for outgoing packets, and
Alice and Bob must be able to force the intermediary to send packets. In each time interval
Alice sends n packets to the intermediary, where n is the encoded covert data, forcing it
to return n packets. In each time interval Bob forces the intermediary to send one packet.
Bob recovers n by computing the IP ID difference of two consecutive packets.

Bounce channels only work if source IP addresses can be spoofed, which more and
more networks prevent through ingress filtering. The IP ID channel does not work with
recent operating systems, since IP IDs are not sequentially increased anymore.

An anonymous author proposed an indirect covert channel over the DNS protocol that
exploits negative caching of domain names [98]. Alice and Bob agree on a series of non-
existent domains. Alice recursively queries for all domain names for which she wants to
transmit a logical one and does nothing otherwise. Bob non-recursively queries for all
domain names interpreting a cached response as one and an uncached response as zero.

Bauer proposed using covert channels in web traffic to enable anonymous communi-
cations [99]. The information is hidden in JavaScript/HTML and transported through the
use of JavaScript redirects. An observer who cannot look into the content transported by
HTTP cannot distinguish between harmless web surfers and covert senders/receivers.

2.2.5 Direct timing channels

Here we discuss channels that encode covert data in the timing of frames, packets or mes-
sages exchanged by Alice and Bob directly. Timing channels are always noisy because
of timing inaccuracies at the sender/receiver and network jitter mainly caused by varying
queuing delays. The capacity of timing channels is often lower than that of noise-free
storage channels, but they are potentially harder to detect and eliminate.

Packet rate

Covert information can be encoded by varying packet rates. Alice varies her packet rate
between two (binary channel) or multiple packet rates each time interval. Bob measures
the rate in each time interval and decodes the covert information. Alice and Bob need a
mechanism for synchronisation of the time intervals.

Padlipsky et al. outlined a timing channel where the sender either transmits or stays
silent in each time interval [65]. This on/off timing channel is a special case of the binary
channel where one rate is zero and the other some chosen rate. Girling also identified
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rate-based timing channels and suggested mitigating the noise problem by adjusting the
packet rates [15].

Cabuk et al. implemented the on/off timing channel [100]. In their scheme the covert
data is divided into small fixed-size frames and synchronisation is achieved through a
special start sequence at the beginning of each frame. Cabuk et al. noted that their scheme
does not entirely solve the synchronisation problem and mentioned better techniques as
future work. Recently, Yao et al. studied the capacity of such channels based on packet-
rate distributions measured in real networks [101].

Luo et al. proposed to encode covert data into the length of TCP data bursts, where
a data burst is a number of TCP segments sent between two TCP ACK arrivals [102].
The channel is more robust against packet jitter, loss and reordering, but has very low
capacity. Furthermore, compared to other timing channels its stealth is low, as covert
channels behave very different from normal flows [102].

Inter-packet times

Berk et al. introduced a packet-timing channel that does not require synchronisation
of time intervals because the covert information is encoded in inter-packet times (inter-
packet gaps) of consecutive packets [103]. They compared channels with two gap values
(binary channels) and multiple gap vales, and demonstrated a mechanism by which the
sender can pick the optimal symbol distribution in multi-symbol channels given the chan-
nel characteristics.

Sha et al. developed a device that hooks into the connection between keyboard and
computer and ex-filtrates all keystrokes by modulating the inter-packet times of network
traffic send by the victim [35]. The attack requires physically compromising the victim’s
keyboard connection.

Gianvecchio et al. [104] developed an improved variant of the inter-packet gap tim-
ing channel and evaluated its performance. They proposed to fit a model to the inter-
packet gap distribution of real traffic and then use the model to generate covert channels
with identical distribution. If the inter-packet times of normal traffic are independent and
identically-distributed (iid) this channel is very hard to detect. However, as we show in
Section 4.1 not all application traffic has iid inter-packet times. In fact a large portion of
the traffic we analysed has correlated inter-packet times.

Sellke et al. proposed another scheme for encoding covert data in inter-packet times
and evaluated the achievable bit rate and error rate based on experiments across the Inter-
net [105]. Similar to [104] they also showed that in theory timing channels can be made
indistinguishable from normal traffic by mimicking normal iid inter-packet times.

Liu et al. introduced a covert timing channel that encodes the covert data such that
the normal distribution of inter-packet times is closely approximated and spreading tech-
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niques are used to provide robustness [106]. Their channel is hard to detect with simple
shape and regularity tests, however these are known to be insufficient [107].

A number of researchers proposed schemes for embedding watermarks into packet
flows by modulating inter-packet times [108, 109, 51]. The main purpose of these tech-
niques is to trace back traffic across proxies, anonymisation networks or stepping stones.
We do not discuss the schemes in detail here because they prioritise robustness over stealth
and channel capacities are generally very low.

Message sequence timing

Wolf mentioned the possibility of constructing covert channels by modulating the use of
protocol operations [63]. For example, a covert receiver can acknowledge each frame
separately or wait until two frames have arrived before acknowledging the first. Handel
et al. proposed a covert channel based on modulating the clear to send/ready to send
(CTS/RTS) signals of serial port communication [16]. This technique could be applied to
other protocols utilising CTS/RTS, such as WLANs.

Eßer et al. implemented a web-based timing channel and analysed its capacity [110].
In their scheme a web server sends covert data to a client by delaying a response (logical
one) or responding immediately (logical zero). Li et al. described timing channels in
the AODV protocol [72]. Alice modulates the times between successive AODV route
requests, and Bob decodes the information from the message timing.

Zou et al. proposed a technique for embedding covert channels into the File Transfer
Protocol (FTP) [111]. Covert data is transmitted through varying the number of FTP
NOOP commands [112] send during idle periods; the number of NOOPs sent is equal to
the integer value of the covert data.

Packet loss and reordering

Servetto et al. demonstrated that channel erasures intentionally introduced at the sender
can be used as covert channel [113]. In practice, the technique requires per packet se-
quence numbers, so the receiver can detect the loss. Erasures are realised by artificially
losing packets at the sender.

Mazurczyk et al. developed a covert channel utilising packet loss and retransmis-
sions [114]. In their scheme Bob does not acknowledge a successfully received packet.
Alice then retransmits the packet, but the payload of the retransmitted data contains a
steganogram instead of user data.

Kundur et al. described a covert channel implemented through packet reordering [55].
Because a set of n packets can be arranged in any n! ways a maximum of log2 n! bits can
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be transmitted. This approach requires per packet sequence numbers to determine the
original packet order.

Chakinala et al. proposed a formal model for transmitting information via packet-
reordering [115]. They developed several channel and jamming models. Using a game-
theoretic approach they modelled the channel as game between covert sender/receiver and
jammer, and proved the existence of a Nash equilibrium for the mutual information rate.

Luo et al. developed a method that encodes covert information in the order of N

packets across X flows [116]. Depending on whether single packets or flows can be
distinguished from each other there are various ways of encoding the covert data. If one
thinks of flows as urns and packets as balls then these encodings are directly related to the
counting problem of drawing N balls from X urns. Luo et al. also designed and evaluated
a detection algorithm. Recently, Khan et al. proposed a similar channel [117].

Atawy et al. developed another covert channel based on packet reordering [118]. They
used fake IP traffic with sequence numbers embedded in the payload. Since the payload
does not look like normal traffic any closer inspection would reveal the covert channel.

Frame collisions

Handel et al. proposed exploiting the Ethernet Carrier Sense Multiple Access Collision
Detection (CSMA/CD) mechanism [16]. If frames collide in CSMA/CD, a jamming sig-
nal is issued and the senders back off a random amount of time. The covert sender jams
packets of another user. Then it uses a back-off delay of either zero or the maximum value.
Therefore, all frames sent will either lead or lag packets sent by the other user, essentially
creating a one bit per frame covert channel. The receiver can recover the information by
detecting the collisions and analysing the order of frame arrivals. Bhadra et al. proposed
a similar jamming channel in the slotted ALOHA protocol [119].

To improve performance of shared medium access, splitting algorithms are used to
divide the set of collided senders into smaller subsets and then these subsets retransmit
in order. Dogu et al. designed a covert channel using the First Come First Serve (FCFS)
splitting algorithm [120]. The covert information is conveyed in the number of collisions
observed in a collision resolution period. The covert sender controls this number by gen-
erating dummy packets and causing additional collisions. The covert receiver passively
monitors the channel and keeps track of the collision resolution procedure to extract the
covert information. A similar covert channel was studied by Wang et al. [50].

Li and Ephremides’ transmission scheme uses the covert sender’s splitting decisions
(which subsets it joins) as carrier of covert data [121]. The covert receiver passively
tracks the collision resolution procedure. When it detects a successful transmission from
the covert sender it can retrieve past splitting decisions, which is the encoded covert data.
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2.2.6 Indirect timing channels

Indirect timing channels also use the timing of packets or messages to transmit covert
data. However, unlike direct timing channels there is no direct exchange of timing infor-
mation between Alice and Bob, which improves the stealth. However, these channels are
harder to construct, and only very few proposals exist. Furthermore, we demonstrate that
capacity is typically lower than that of direct timing channels.

Hintz described an indirect timing channel using a public server as intermediate host
[56]. The covert sender sends a large number of requests to the server or stays silent in
each time interval, equivalent to one bit per time interval. The covert receiver periodically
probes the server and measures the response time to recover the covert information.

Murdoch developed a channel that is a combination of packet rate and timestamp
modulation channels [44]. The channel requires an intermediary that receives and sends
packets to both covert sender and receiver. The channel exploits the fact that a host’s
CPU temperature depends on the number of service requests per time unit it processes
and the skew of a host’s system clock depends on the temperature. The covert sender
either sends requests to the intermediary (logical one) or stays silent (logical zero), thus
changing the temperature and indirectly the clock skew. The covert receiver estimates the
intermediary’s clock skew based on timestamps in packets sent by the intermediary (e.g.
TCP timestamps) and decodes the covert bits.

2.3 Covert channels in multiplayer games

Here we discuss covert channels in games with multiple players, related to the work in
Chapter 5. Since the existing channels are encoded in moves or strategies played in card
or board games or their electronic versions [122, 123, 124, 125], but not embedded inside
network protocols, we discuss them in this separate section. We do not cover steganogra-
phy in single-player games, such as mazes, jigsaw puzzles or Sudoku.

Murdoch et al. investigated covert channels for collusion in an online connect-4 con-
test where one human contestant could enter multiple programs as players [122]. Mur-
doch et al. won the contest by deploying two types of colluding players: foxes and chick-
ens. Foxes would play their best against other competitors. Chickens would deliberately
lose against foxes and play their best against other competitors. Chickens used a covert
channel based on redundancy in the moves of the game to detect a fox. Murdoch et al.
also outlined how the timing of moves could be used to encode covert information [122].

Hernandez-Castro et al. proposed a framework for hiding data in games based on
game theory [123]. They described how covert information should be hidden in game
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strategies and explore possible countermeasures. They integrated the proposed covert
channel into a Go program and analysed the effectiveness of several detection strategies.

Diehl derived a notion of security for game-based covert channels depending on strat-
egy imitation and performed an information-theoretic analysis to calculate the total amount
of information sent during games and the share usable for secure covert channels [124].
They developed and analysed a proof-of-concept channel for a simplified version of poker.

Desoky et al. proposed novel methods for concealing messages in chess-related cov-
ers, such as training documents, game analysis, and news articles [125]. They developed
a proof-of-concept implementation and validated it through steganalysis.

The existing channels have only small capacities. They are useful for collusion, which
usually was the main objective, but are not well suited for general-purpose communica-
tion. Furthermore, they were all developed for turn-based games and cannot be readily
applied to modern real-time network games.

2.4 Countermeasures

Section 2.1.5 summarised the available countermeasures against covert channels. In this
section we discuss previous work grouped according to the different countermeasures:
identification, elimination, capacity limitation and detection of covert channels.

2.4.1 Identification

Several formal methods were developed for identifying covert channels in specifications
or implementations of single host systems. They can identify channels during the design
phase, or in an already deployed system. The existing techniques can be grouped into
the following categories: information flow analysis [126, 127], non-interference analysis
[128], Shared Resource Matrix (SRM) method [129, 130] and Covert Flow Tree (CFT)
method [131]. Gligor provides a good introduction to the different methods, except CFT
[14]. There are only a few works on formal techniques for identifying covert channels in
network protocols.

Donaldson et al. discussed how analysis techniques, SRM in particular, could be ap-
plied to network protocol covert channels [132]. They proposed analysing network covert
channels by separately inspecting host-to-host channels on the lower network layers and
intra-host channels between processes on a single host.

Hélouët et al. proposed to perform covert channel analysis for distributed systems at
the requirement level, when design decisions can still be made to eliminate or limit covert
channels [133]. Covert channels detected during the design phase are not implementation-
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specific, and thus are likely to be present in any implementation. Their approach is based
on a representation of requirements by scenarios.

Aldini and Bernardo proposed a method for combining covert channel identification
and performance evaluation [134]. The advantage of this integrated approach is that it
provides insights into how to trade off quality of service with channel capacity. They
applied their methodology to the PUMP model (see Section 2.4.3), obtaining the relation
between channel capacity and rate of served connection requests.

2.4.2 Elimination

Host security

Host security cannot remove covert channels, but it can prevent their exploitation in some
application scenarios. If hosts were secured from being hacked, the installation of Trojans,
and modifications of software or the network stack would be impossible, thus hackers
could not exploit covert channels. However, detecting that a host was hacked is difficult
if the attacker is skilled. Therefore, relying on host security could be dangerous and it
would be better to eliminate covert channels in the first place. Furthermore, this approach
does not solve the problem in other application scenarios (e.g. censorship circumvention).

Network security

One approach to counter tunnelling channels is to block protocols or ports that are sus-
ceptible to covert channels. For example, ICMP is blocked by many firewalls these days
preventing channels such as Loki [82]. Obviously, in the Internet some protocols cannot
be blocked because they are vital (e.g. DNS), or because their services are too important
(e.g. HTTP). However, in a closed network protocols prone to covert channels could be
blocked, or replaced by versions with fewer or limited covert channels.

The leakage of classified information from a high security system to a low security
system is prevented by a network design where only hosts on the same security level are
allowed to communicate. Such an approach may be practical for highly secure networks,
but not for diverse large open networks such as the Internet.

Bouncing covert channels [36] only work if IP address spoofing is possible. Besides
solving a number of other security issues, preventing IP spoofing closes such channels
(e.g. ingress/egress filtering). Furthermore, securing networks against wiretapping, and
securing routers against compromise prevents some covert channels [65].
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Traffic normalisation

Many of the channels described in Section 2.2.2 can be eliminated by normalising pro-
tocol headers, padding and extensions as described by Malan et al. [135], Handley et al.
[136] and Fisk et al. [58] in general, or more specifically for the IPv6 protocol by Lucena
et al. [61] and ICMP tunnelling by Singh [137]. Traffic normalisation can be performed
by end hosts or by network devices, such as firewalls or proxies.

Unused or reserved bits and padding can be dealt with easily by setting them to zero
and unknown header extensions can be removed. Some covert channels exploit the fact
that certain header fields are not always used and their use is indicated by other header
fields. This property can be used for normalisation as well. For example, set the IP ID
and Fragment Offset to zero if the DF bit is set, and set the Urgent Pointer to zero if the
URG bit is not set. Furthermore, it should be ensured that checksums are always used.

A number of other header fields can be rewritten under certain assumptions. For
example, set the DF bit and set IP ID and Fragment Offset to zero if the packet is below
the MTU size (assuming the normaliser knows the MTU), rewrite the IP ID (assuming
the normaliser can manipulate all fragments), rewrite the TCP ISN, source IP address
and source port (assuming the normaliser can keep a mapping between original and new
values and modify packets going in the opposite direction accordingly). Some firewalls
and Network Address Translators (NATs) already do this. TCP timestamps can also be
rewritten (assuming the normaliser is located very close to the source) or the low order
bits can be randomised.

The same concepts can be used for eliminating covert channels in application pro-
tocols. Schear et al. proposed eliminating covert channels in HTTP responses by en-
forcing protocol-compliant behaviour, restricting usable response headers to a fixed set in
a particular order, and verifying response header fields against the corresponding object
meta-data and the client’s request [138].

2.4.3 Capacity limitation

A prerequisite of determining the efficiency of capacity limitation is that the capacity
of the covert channel can be estimated. The capacity depends on the size of the object
values (storage channels) or the amount of information encodable in the resources (timing
channels) and the speed with which the objects or resources can be modulated.

For noise-free channels it is easy to estimate the capacity. For example, Rowland’s
channels [36] have a capacity of one byte per overt packet. However, the capacity in bits
per second depends on the packet rate of the overt traffic. For noisy covert channels the
capacity analysis is more difficult. Usually the capacity is derived based on information-
theoretic concepts introduced by Shannon [21].
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Millen estimated the capacity of covert timing channels with noise and/or memory
[139], while Moskowitz analysed the capacity of discrete, noiseless, and memoryless
timing channels [140]. Gray developed an upper bound for the capacity of timing channels
when Wei-Mings’ fuzzy time [141] is used [142]. Bhadra et al. derived the capacity of
the frame collision channel for slotted ALOHA [119]. Berk et al. studied the capacity of
binary and multi-symbol inter-packet gap timing channels [103]. More recently several
researchers analysed the capacity of different packet-timing channels [104, 102, 101].

Limit address and length field channels

To limit the capacity of the address field channel described in section 2.2.2 previous re-
search suggested limiting the number of possible addresses [65, 15, 132], which means
limiting the allowed host-to-host connections. This may be possible in closed networks,
but not in open networks, such as the Internet. For a particular host the sender address
should always be fixed (preventing IP spoofing), but the number of destination addresses
or source/destination ports can hardly be limited to a small number. Instead of limiting the
interactions between hosts, sending dummy packets between random hosts inserts noise
into the traffic patterns. Indirect routing achieves the same effect more efficiently [143],
but still has significant overhead.

Padding all packets to a common size eliminates the packet length modulation chan-
nel discussed in section 2.2.2 [65], but this adds significant overhead, especially for small
packets. To increase the efficiency Girling proposed to have a small number of available
packet sizes, small enough to limit the capacity appropriately [15]. Anonymisation net-
works use a fixed packet size to prevent traffic analysis [143], but it is unlikely that the
modulation of packet size could be effectively limited in current IP networks.

Limit timing channels

Multiple solutions were proposed to eliminate or at least limit the capacity of the direct
timing channels described in Section 2.2.5. Either random noise is introduced to mask
the covert channel or the overt channel is forced to use fixed packet or message rates and
dummy packets or messages are inserted when useful information is not sent [53]. Wei-
Ming’s et al. fuzzy-time proposal makes all clocks in the system noisy [141]. A sender
cannot exactly time outgoing packets and a receiver cannot accurately measure the timing.

Link padding forces a packet flow to adhere to a specific traffic pattern (e.g. packet
rate) by delaying packets and injecting dummy packets if necessary and should eliminate
packet timing channels [144]. However, Graham et al. showed that even if link padding
is used information about the source’s traffic rate is still leaked because of the inability
of the padding gateway to completely isolate the processing of outgoing packets from the
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interrupt processing necessary to handle incoming packets [145]. These imperfections
can still be used as a covert channel.

Because padding links to a single packet rate creates significant overhead, Girling
proposed that senders could emit a small number of different packet rates [15]. This
increases efficiency and limits covert channels to acceptable capacities.

Message sequence timing channels can be eliminated by buffering and delaying con-
nection attempts or service requests. Spurious data can be inserted into the network
against wiretapping receivers, but this does not help against end-host receivers. Schear
et al. proposed delaying HTTP responses to limit the capacity of HTTP-based timing
channels [138].

Giles et al. studied the problem of limiting the capacity of timing channels as a game
between the covert sender-receiver pair and a jammer [146]. The jammer attempts to re-
time the packets from the covert sender. The channel capacity is the objective of the game:
the jammer wants to reduce it, while covert sender and receiver want it to be high. Giles
et al. proved the value for certain games and provided corresponding coding schemes.

Liu et al. studied how the capacity of their channel can be limited by artificial network
jitter [106], but they did not investigate the effects on the application performance. Wang
et al. proposed to eliminate inter-packet gap timing channels by randomising inter-packet
times [147]. The impact of the proposed scheme on UDP or TCP throughput was briefly
investigated, but the impact on certain applications remains unclear.

Split connections

One of the simplest common security policies is the Bell-La Padula model [148]. It can be
summarised as “no read up and no write down”, which means a low-security entity (low)
must not read from a high-security entity (high) and high must not write data to low. A
problem arises when low wants to reliably send data to high. Reliable communication
requires high to return acknowledgements (ACKs) for the data received and the timing
of the ACKs can be manipulated to transmit covert data. A number of methods were
proposed for minimising the capacity of this covert timing channel [149].

In the store and forward protocol (SAFP) a gateway sits between low and high (see
Figure 2.7). When the gateway receives a packet from low it stores it in a buffer and sends
an ACK to low. Then it transmits the packet to high and waits for an ACK. When the ACK
is received the gateway removes the packet from the buffer. However, when the buffer is
full the gateway must wait for high to acknowledge a received packet until another packet
from low can be acknowledged and stored in the buffer; the time it takes the gateway to
send an ACK to low is directly related to the time of receiving an ACK from high. High
can ensure the buffer is always filled and still exploit the covert channel.
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Figure 2.7: The Store and Forward Protocol (SAFP) gateway – a simple approach for limiting
the covert timing channel in the flow of ACKs from high to low
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Figure 2.8: The PUMP significantly reduces covert channel capacity of the SAFP because it
‘decouples’ high’s ACKs from ACKs sent to low

The PUMP model substantially reduces the channel capacity of the SAFP [150, 151].
The PUMP uses an historic average of high’s ACK-rate as the rate of sending ACKs to
low (see Figure 2.8). For every packet from high received by the trusted high process a
moving average of high’s ACK rate is updated. When the trusted low process receives
a message from low it inserts the message into a buffer, and then sends an ACK to low
after a delay. The delay is a random variable chosen from an exponential distribution with
the mean equal to the current average of high’s ACKs rate. Although the PUMP does not
completely eliminate the covert channel it significantly decreases its capacity.

2.4.4 Detection and auditing

Auditing requires a reliable detection of covert channels. Many of the covert channels
described in Section 2.2 only provide ‘security by obscurity’ and are easy to detect. All
proposed detection methods are based on the detection of non-standard or abnormal be-
haviour. The assumption is that the warden knows the normal behaviour of protocols and
hosts and can detect deviating ‘abnormal’ behaviour caused by covert channels.

For example, unusually high rates of packet loss or packet reordering (see Section
2.2.5) or frame collisions (see Section 2.2.5) could indicate potential covert channels.
Similarly, the SSH middleman covert channel (see Section 2.2.2) could possibly be de-
tected because it changes the packet length distributions of regular SSH connections.

Smith et al. derived a general method for detecting storage or timing covert channels
based on statistical inference techniques [152]. The probability of traffic being a covert
channel is estimated based on deviations between the value distributions of characteris-
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tics of the traffic under investigation and regular traffic. More effective techniques for
particular channels are described in the following subsections.

However, covert channels that look identical to normal use of protocols are hard to
detect. For example, Murdoch’s TCP ISN channel has a value distribution matching the
distribution of real operating systems [94], and Lucena’s SSH MAC channel has statistical
characteristics identical to real MACs [33]. The only way a warden could reliably detect
these covert channels is to somehow detect the embedding process at the covert sender.

Furthermore, it is difficult to detect covert channels if there is a lot of variation in the
usual behaviour. For example, Krätzer’s frame duplication channel is potentially hard to
detect because usually frame retransmission rates vary significantly [73].

Header field channels

Most protocol standards mandate that unused or reserved bits and padding must be filled
with specific values (e.g. zeros). Even if this is not the case the behaviour of actual
implementations can be viewed as de-facto standards [94]. All covert channels based
on non-standard use of protocols are easy to detect. Furthermore, some proposed covert
channels are obsolete because previously unused bits are now used (for example, some
bits in the IP header are now widely used for explicit congestion notification), or defined
messages or extension headers are de-facto not used anymore and their presence would
be suspicious (for example, IP timestamp header extensions).

Other covert channels exploit the fact that some header fields have ‘arbitrary’ values
within the requirements of the standard. However, if the fields are naïvely used and the
resulting value distributions are different from the normal distributions generated by op-
erating systems, the covert channels are easy to detect [94]. The usual approach is either
to train a classifier on the normal and abnormal behaviour, or to train a classifier on the
normal behaviour and detect anomalies. The behaviour is analysed from a set of traffic
flows, where each flow is described by a number of characteristics (features).

Sohn et al. demonstrated that covert channels with a simple encoding in the IP ID
or TCP ISN field [36] are discovered with high accuracy by Support Vector Machines
(SVMs) [153]. They evaluated different feature sets and achieved classification accura-
cies of up to 99%. Tumoian et al. analysed the accuracy of a neural network to detect
Rutkowska’s [93] TCP ISN covert channel [154]. First, the neural network was trained
to predict successive ISNs for different operating systems. Then ISNs used by hosts were
monitored and compared to the prediction models. An actual ISN sequence not match-
ing any model indicates a covert channel. Tumoian et al. found that for more than 100
consecutive ISNs observed the detection accuracy reaches 99%.

Application protocol covert channels can be detected in a similar way as discussed for
HTTP in [138, 75].
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Timestamp channels

Hintz proposed a detection method for the TCP timestamp channel described in section
2.2.2 [56]. In low-speed networks a randomness test can be applied to the LSB of the
timestamps. Too much randomness would reveal the covert channel. In high-speed net-
works the segment rate is usually larger than the TCP clock’s tick rate, which is only
between 1 Hz and 1 kHz [155]. A warden can detect the channel by computing the ratio
of different timestamps used and the total number of possible timestamps (depending on
the duration of the connection). For a normal connection the ratio should be close to one
(at least one segment sent every clock tick), but for the covert channel it is close to 0.5 (if
a timestamp’s LSB is not equal to the covert bit to be sent one clock tick is skipped).

Packet timing channels

Venkatraman et al. proposed to audit the change of traffic rates over time to detect packet
rate channels [156]. If the traffic rate of one host changes by more than a certain threshold
this could indicate a covert channel. They proposed setting the threshold to the standard
deviation of the regular rate change observed in the past for a large set of hosts.

Cabuk et al. proposed a detection method for on/off packet rate timing channels [100].
They defined a regularity metric that measures whether the cumulative inter-packet time
distribution of a traffic flow has only a small number of large jumps (indicating a covert
channel) or is more evenly spread (indicating a normal flow). Cabuk et al. showed that
their technique detects covert channels even if the sender changes the packet rates or there
is random noise [100].

Berk et al. proposed methods for detecting simple binary or multi-symbol inter-packet
gap timing channels [103]. For binary channels the inter-packet times histogram has two
distinct spikes, and the mean is between the spikes and has a very low frequency. For
normal flows the histogram has a higher frequency at the mean. For multi-symbol chan-
nels Berk et al. argued that a skilled covert sender would pick a symbol distribution that
maximizes the capacity. The warden can also estimate the optimal symbol distribution,
compare it to the distribution of the traffic under observation using a similarity test, and
detect the presence of the covert channel if both distributions are similar.

A fundamental flaw with this approach is that a covert sender would not choose to
maximise the capacity if this compromises the channel. A practical problem is that the
warden would have to build the channel matrix for each suspect traffic flow or have a very
large number of pre-built channel matrices [103].

Gianvecchio et al. proposed new entropy-based metrics to identify different inter-
packet gap timing channels [107]. They showed that previous metrics (regularity test
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and Kolmogorov-Smirnov test) are unable to identify all channels, but a combination of
entropy and estimated entropy rate detects all channels.

Stillman proposed to detect timing channels by computing plausible covert bit strings
from the inter-packet gaps and scanning for these bit strings in the sender’s random access
memory [157]. The approach requires that the warden has access to the memory of the
covert sender. Also, in practice it is very difficult to compute the bit strings without
knowledge of the secret shared by covert sender and receiver and to identify the bit strings
in memory if the covert sender uses memory-obfuscation techniques.

Payload tunnelling

Sohn et al. used the SVM-based technique described in section 2.4.4 to evaluate the
accuracy of detecting covert channels embedded in ICMP echo packets. They achieved
classification accuracies of up to 99% when training a classifier on normal packets and
abnormal packets generated by Loki [158].

Pack et al. proposed detecting HTTP tunnels by using behaviour profiles of traffic
flows [159]. The profiles are based on a number of metrics such as the average packet
size, number of packets, ratio of small and large packets, change of packet size patterns,
total number of packets sent/received, and connection duration. If the behaviour of a flow
deviates from normal behaviour it is likely to be an HTTP tunnel.

Borders et al. developed a tool for detecting covert channels over outbound HTTP
tunnels based on a similar approach [160]. Their tool analyses HTTP traffic over a training
period, and is then able to detect abnormal HTTP flows using metrics such as request size,
request regularity, time between requests, time of the day, and bandwidth.

2.5 Conclusions

Previous research proposed many different covert channels. But most of the existing
channels are simple direct noise-free storage channels that are easy to detect and elimi-
nate in principle, even though in reality appropriate countermeasures may not have been
deployed widely yet.

Most covert channels described in Section 2.2.2 use a predictable cover (e.g. unused
header fields). While effective against unknowing adversaries they are easy to detect or
eliminate. Other channels use pseudo-random data as cover (e.g. the TCP ISN). While
such channels are hard to detect, if properly encoded, they are still easy to eliminate.
Also, it can be counter-productive to hide covert bits in overt data that potentially looks
suspicious to Wendy, such as encrypted data.

More complex channels are harder to detect and eliminate, but usually experience
channel noise. For users of communication channels noise is usually ‘bad’, because it
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reduces the channel capacity. But for covert channels it also has the benefit of increasing
the variability of the cover data. It makes the channel less obvious, if the variability at the
source is very small.

The limited work on noisy covert channels has only partially investigated their poten-
tial capacity, robustness and stealth. Furthermore, to the best of our knowledge previous
work never compared the performance of different types of channels. In this thesis we
investigate selected noisy covert channels. We show that often their capacity is high and
that they can be made very reliable. Our work also characterises the trade-offs between
channel simplicity, capacity and ease of detection and elimination.

We analyse the performance of a noisy covert channel in the TTL field. This channel
was identified before [95, 61], but previous research has not analysed its capacity. The
encoding schemes proposed in [95, 61] are not all stealthy and cannot be used for pas-
sive channels, which is why we develop new improved encoding schemes. Furthermore,
previous work has not developed and analysed countermeasures.

Recently several researchers studied timing channels in inter-packet gaps, as they are
potentially much harder to detect than simple storage channels and less difficult to im-
plement than other timing channels [103, 104, 102, 105, 106]. The currently stealthiest
encoding scheme [104, 105] is only hard to detect if normal inter-packet times are not
auto-correlated. However, our analysis shows that in real traffic there often is signifi-
cant correlation. We propose novel improved encoding schemes that are harder to detect.
Furthermore, [104, 105] only investigated active channels, whereas we also develop and
analyse passive channels.

Very few works analysed the effectiveness of methods for eliminating covert channels
in inter-packet gaps, but they did not study the impact on application performance [147,
106]. Since the warden usually applies the elimination technique to all traffic, most of
which does not contain covert channels, it should not have a significant negative impact
on the performance of legitimate traffic. We demonstrate that artificial network jitter
eliminates the improved channels without reducing application performance significantly.

Indirect covert channels provide additional security since the warden has to track them
across intermediate hosts. Unless the warden is located on the intermediate host itself,
this is often not trivial. It is hard to find such channels on the network or transport layer.
The existing bounce channel and IP ID channel [36, 97] have severe limitations and are
unlikely to work in the future. This led to a few proposals of indirect storage or timing
channels in the widely used DNS and HTTP protocols [99, 98, 56, 44]. But previous work
did not analyse the capacity, robustness or stealth of these channels.

Although a few researchers investigated the use of covert channels in board and card
games [122, 123, 124, 125], no previous work exists on covert channels hidden inside
network protocols of FPS multiplayer network games. We propose a novel indirect stor-
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age channel in multiplayer game traffic that is impractical to eliminate. We develop the
basic encoding scheme as well as a tailored mechanism for reliable data transport. We
then analyse the throughput of the channel and compare it with an estimate of the channel
capacity. We also analyse how difficult it is to detect the channel.

We also investigate Murdoch’s indirect temperature-based timing channel [44]. We
first develop an improved version of the channel with increased capacity, based on a novel
technique that minimises one key source of noise. The channel capacity largely depends
on the intermediate host and we estimate the capacity for two example intermediate hosts.
We also discuss techniques to eliminate or detect the channel.

Some work exists on estimating the capacity of noisy network covert channels, but it
is almost entirely focused on direct packet timing channels [140, 156, 103, 104, 102]. We
analyse the capacity of all selected channels. We also consider the effects of packet loss
and reordering of the overt traffic on the channel capacity, which were largely ignored in
previous research, with the exception of recent work in [102].

Until now only a few researchers have studied the use of ML techniques to detect
covert channels [153, 158, 154], and their studies do not cover our selected channels.
Furthermore, the ML algorithm we use has not been used before to detect covert chan-
nels. A key for the successful use of ML techniques are the features that describe the
characteristics of normal traffic and covert channel. While some of the features we use
were used previously, others are novel to the best of our knowledge.
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Chapter 3

Time-to-live Covert Channels

In this chapter we analyse direct noisy storage channels in the IP Time-to-live (TTL)
header field. The TTL field limits the lifetime of IP packets, preventing packets from
living forever during routing loops [89]. A packet’s TTL is set by the sender and decre-
mented by each network node along the path processing the packet’s IP header (e.g.
routers). Packets are discarded if their TTL reaches zero while still in transit.

Covert bits are encoded into a TTL value, or a succession of TTL values. Although
assumed to be reasonably stable between two end-points, the TTL value is nonetheless
subject so some variation, as routers and middleboxes modify the TTL of packets and
packets can take different paths through the network. This ‘normal’ variation causes bit
substitutions on the channel; we also refer to this as TTL noise. Furthermore, reordered
and lost packets may cause further bit substitutions and bit deletions.

The idea of using the TTL field as covert channel is not new. However, the previously
proposed modulation schemes [95, 61], ways of encoding data into the TTL field, are
not all stealthy and cannot be used for passive channels. Furthermore, previous work
has not analysed the capacity of the TTL channel and has not addressed the problem
of transmitting information across the channel reliably. Unlike previous work we also
consider the use of the TTL channel as passive channel.

First, we analyse the normal TTL variation based on several traffic traces. The re-
sults provide insights into how much the covert channel can modify TTL values without
revealing itself and give an indication how large the error rate is expected to be. Then
we describe the previous modulation schemes and propose new improved modulation
schemes. Next, we propose an information-theoretic model for the channel and derive
the channel capacity. Then we develop a protocol for reliable data transport. Finally, we
evaluate the performance of the channel.

We emulate the use of different modulation schemes using overt traffic from traffic
traces and measure the resulting error rates. Based on the channel model and the measured
error rates we compute the capacity of the channel depending on the modulation schemes
and network conditions. Depending on the available overt traffic the capacity is at least
several tens, but up to over one kilobit per second even with modest packet loss and
reordering. Despite the noise the capacity is substantial. Furthermore, the noise masks
the covert channel, which would otherwise be trivial to detect.
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Table 3.1: Packet traces used in the analysis
Trace Capture location Date Public

CAIA Public game server at Swinburne University,
Melbourne, Australia

05/2005 – 06/2006 no

Grangenet Public game server connected to Grangenet,
Canberra, Australia

05/2005 – 06/2006 no

Twente Uplink of ADSL access network [165] 07/02/2004 – 12/02/2004 yes
Leipzig Access router at Leipzig University [166] 21/02/2003 yes
Bell Firewall at Bell Labs [166] 19/05/2002 – 20/05/2002 yes
Waikato Access router at University of Waikato, New

Zealand
04/05/2005 no

We evaluate the throughput of the developed reliable transport technique for aggregate
overt traffic taken from traces under different simulated network conditions. We also
analyse the throughput across a real network with different rates of TTL errors, overt
packet loss and reordering, using single overt traffic flows as carrier. Comparison of the
results with the channel capacity shows that our technique is not optimal, but it provides
throughputs of at least 50% of the capacity, except in the case of high reordering. The
throughput is up to over hundred bits per second.

3.1 Normal TTL variation

First we analyse ‘normal’ TTL variation (TTL noise). We analyse how TTL varies at
small time scales of subsequent packets of traffic flows (series of packets with the same
IP addresses, ports, and protocol) and not only focus on variation caused by path changes
as previous work [161, 162, 163, 164]. An extended version of this study is in [9].

3.1.1 Datasets and methodology

We use packet traces of different size, origin and date for our analysis (see Table 3.1). The
CAIA trace contains only game traffic arriving at a public game server, the Grangenet
trace contains game and web traffic arriving at a specific server, and the other traces
contain a mix of bidirectional traffic.

Usually analysis of network traffic is based on packet flows. Because we found the
number of TTL changes is correlated with the number of packets and the duration of
flows, we analyse many characteristics of TTL changes based on packet pairs, defined
as two subsequent packets of a flow. This isolates the characteristic under study (e.g.
estimated hop count) from correlated flow properties (e.g. size and duration). However,
for analysis requiring a sequence of packets we still use flows (e.g. in Section 3.1.4).
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Table 3.2: Flows and packet pairs with/without TTL changes and percentage of changes
Flows Packet pairs

No change
(kilo)

Change
(kilo)

Change
(%)

No change
(Mega)

Change
(kilo)

Change
(%)

CAIA 128.6 2.8 2.1 1 456.3 340.0 0.02
Grangenet 283.0 8.6 2.9 215.7 62.1 0.03

Twente 1 354.6 24.7 1.8 95.5 74.8 0.08
Waikato 1 255.9 57.8 4.4 21.2 86.4 0.4

Bell 899.8 52.9 5.6 36.4 87.1 0.2
Leipzig 7 155.1 429.1 5.7 365.5 1 822.7 0.5

First, packets were grouped into unidirectional flows according to IP addresses, port
numbers and protocol (each being a series of packet pairs). We only considered flows
with at least four packets (‘minimum’ TCP flow) and an average packet rate of at least
one packet per second. We extracted the series of TTL values from the IP headers. If
different TTL values occur in a flow or between packet pairs this is referred to as TTL
change. Otherwise we refer to the TTL being constant.

3.1.2 Amount of TTL variation

Table 3.2 shows the number and the percentage of flows and packet pairs with and without
TTL changes (numbers are rounded). Overall, the TTL is constant for the majority of
flows, but 2–6% of flows do experience TTL changes. The percentage of packet pairs
with TTL changes is between 0.02–0.5%. This shows that if there is TTL variation in
flows, changes occur only for a very small number of the flows’ packet pairs.

3.1.3 Distinct values and change amplitudes

Figure 3.1 shows the cumulative density functions (CDFs) of the number of distinct TTL
values per flow. Most flows with TTL variation have only two distinct TTL values. Only
less than 10% of the flows have more than two values and flows with more than five
different TTLs are very rare, except in the CAIA trace.

We examined CDFs of the amplitude of TTL changes of packet pairs, where the am-
plitude is defined as the difference between the maximum and the minimum TTL value.
The amplitude is one for many packet pairs, but in some traces large numbers of packet
pairs have amplitudes around 64, 127, or 191 [9]. The reason for these high amplitudes is
middleboxes, such as firewalls or proxies, (re)sending packets part of the TCP handshake
or teardown on behalf of end hosts (e.g. for SYN flood attack protection).

The TTLs in these packets are set to the initial TTL of the middlebox, which can
differ from the initial TTL used by the host. Different operating systems use different
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Figure 3.1: Distribution of the number of distinct TTL values per flow
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Figure 3.2: Distribution of the estimated hop count amplitude of packet pairs

initial TTLs, the most common being: 64 (Linux, FreeBSD), 128 (Windows), 255 (Cisco)
[167, 168]. Therefore, the difference of two TTLs is 64, 127, or 191 plus/minus the
number of hops between middlebox and host. Because of this effect TTL changes are
more likely at the start or end of TCP flows.

Figure 3.2 shows the CDFs of the amplitude of the estimated hop counts of packet
pairs, defined as the difference between estimated maximum and minimum hop counts.
The hop count is estimated by subtracting a packet’s TTL value from the closest initial
TTL. For most packet pairs with TTL changes the hop count changes only by one.

3.1.4 Frequency of changes

Figure 3.3 shows CDFs of the number of TTL changes per flow. For most datasets the
majority of flows only have very few TTL changes. But a large percentage of flows in
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Figure 3.3: Distribution of number of TTL changes per flow (x-axis limited to 20 changes)
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Figure 3.4: Distribution of frequency of TTL changes for flows with at least six TTL changes

the CAIA trace have a large number of changes, because the trace contains many long
flows that have roughly periodic TTL changes of unknown origin. Shorter flows are
predominant in all other traces.

Figure 3.4 depicts the CDFs of the change frequency for flows with at least six TTL
changes. The TTL change frequency of a flow is defined as the number of TTL changes
divided by the number of packet pairs. CAIA and Grangenet traces have very low fre-
quencies. Twente, Leipzig, Waikato and Bell have higher frequencies, with roughly half
of the flows changing TTL on average every third to second packet pair.

3.1.5 Error probability distribution

We define a TTL error as deviation of the TTL value of a packet from the most common
value of the TTL during the life of a flow. Let the most common TTL value be TTLnorm.
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Figure 3.5: TTL error distribution for the CAIA trace (left) and Leipzig trace (right)

Then for a packet i of a flow a TTL error occurs if TTLi , TTLnorm. We computed the
error probability distribution based on the trace files.

Figure 3.5 shows the TTL error distributions for the CAIA and Leipzig traces (other
graphs are in Appendix B.1). The average error probability for CAIA is only 0.02%
compared to 0.5% for Leipzig (see Table 3.2). Note that the y-axis is logarithmic and we
only show error rates above 1−7.

Error values are largely confined between −200 and 200, and the error probability
does not monotonically decrease with increasing TTL error. For datasets containing TCP
traffic there are the characteristic peaks around ±64, ±128 and ±191 described earlier.
The error probability distributions vary significantly between traces and the empirical
distributions cannot be easily modelled with standard statistical distributions.

3.1.6 Conclusions

Overall the amount of TTL variation is relatively small. Less than 1% of the packet pairs
and less than 6% of the flows experience TTL changes. This provides a good opportunity
for TTL covert channels. Normal TTL variation is common enough to not raise suspicion,
but not frequent enough to cause high error rates on the channel.

Most normal flows with TTL changes have only two distinct TTL values with a hop
count difference of one and there are only a few transitions between different TTLs. This
means to avoid detection the covert channel should generally only use two different TTL
values that differ by one and avoid very frequent changes.

Most TTL changes are of deterministic nature, meaning the changes occur in specific
packet pairs of a flow. For example, in many TCP flows packets part of the TCP handshake
or teardown have TTL values that differ from the other TTLs in the flow (see Section
3.1.3). However, there are also flows with approximately periodic changes, flows with
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infrequent random changes (possibly route changes or anomalies) and flows with frequent
random TTL changes (possibly load balancing or route flaps). A more detailed discussion
is in [9].

This variety makes it more difficult for covert channels to mimic normal change pat-
terns well. On the other hand it also makes it potentially more difficult for the warden to
detect abnormal flows caused by the covert channel.

3.2 Modulation schemes

At the heart of the covert channel is the modulation scheme that defines how covert bits
are encoded in TTL values. We first present previously proposed modulation schemes
and discuss their shortfalls. Then we present our novel improved modulation schemes.
Finally, we discuss implementation issues.

3.2.1 Existing techniques

We group the existing modulation techniques into three classes:

• Direct encoding encodes bits directly into bits of the TTL field.

• Mapped encoding encodes bits by mapping bit values to TTL values.

• Differential encoding encodes bits as changes between subsequent TTL values.

Qu et al. described two techniques [95]. The first technique encodes one covert bit
directly into the least significant bit of TTL values. Because this potentially increases the
original TTL values we refer to the scheme as Direct Encoding Increasing (DEI). The
second method encodes bits into TTLs using mapped encoding. The original TTL value
represents a logical zero and a TTL value increased by an integer ∆ represents a logical
one (see Figure 3.6). We refer to this technique as Mapped Encoding Increasing (MEI).

Lucena et al. proposed modulating the IPv6 Hop Limit field (TTL equivalent in IPv6)
using differential encoding [61]. A logical one is encoded as TTL increase by ∆ and a
logical zero is encoded as TTL decrease by ∆ (see Figure 3.7). Because there is no limit
on how much the original TTL value can change we refer to this scheme as Differential
Unbounded (DUB).

Qu and Lucena both proposed encoding information by increasing the original TTL
value. This is problematic for passive senders because it violates the IP standard [89] and
would cause problems if routing loops occur. It also means these techniques cannot be
used if the original TTL value already is the maximum value (some operating systems use
an initial TTL of 255 [167, 168]). Increasing an already high TTL value would cause the

45



CHAPTER 3. TIME-TO-LIVE COVERT CHANNELS

TTL to ‘wrap-around’ to a very low value in the 8-bit number space. It is then very likely
that packets will be discarded before they reach their intended destination.

DUB is problematic because there is no limit on how much TTL values are changed.
Long series of zeros or ones lead to large decreases or increases including wrap-arounds.
Regardless of the initial TTL value it is likely that some packets are discarded or packets
could stay forever in the network during routing loops. The problem can be prevented by
limiting the series length using run length encoding or scrambling. Still a warden could
easily detect the channel because the modified flows likely have more than two distinct
TTL values, which is uncommon for normal flows as discussed in Section 3.1.

3.2.2 New techniques

We propose several new improved modulation schemes. Direct Encoding Decreasing
(DED) directly encodes covert bits into TTLs, but the TTL values are always decreased.
More than one bit can be encoded per packet, making the scheme tuneable towards ca-
pacity or stealth. The maximum number of bits that can be encoded per packet is:

nmax =
⌊︀
log 2 (I−hmax)

⌋︀
, (3.1)

where I is the original TTL at the covert sender, hmax is the upper bound on the number
of hops between covert sender and overt receiver and ⌊.⌋ denotes the floor operation. The
sender encodes covert information by setting the TTL to:

TTLS = TTL−
(︀
(LSB(TTL,nmax)−b) mod 2nmax

)︀
, (3.2)

where LSB(TTL,nmax) is the integer value of the least significant nmax bits of the original
TTL and b is the integer value of nmax bits of covert data. Assuming a packet traverses h

hops the TTL at the receiver is TTLR = TTLS−h. The covert data is decoded as:

b = LSB(TTLR+hR,nmax) , (3.3)

where hR is the hop count known by the receiver and without channel errors hR = h.

Mapped Encoding Decreasing (MED) encodes the covert information using two sym-
bols: low-TTL signals a logical zero whereas high-TTL signals a logical one. Low- and
high-TTL are two particular TTL values. The covert sender uses either the default initial
TTL (if also the overt sender) or the lowest TTL of the intercepted packets (if a middle-
man) as high-TTL, and high-TTL minus one as low-TTL. The receiver decodes packets
with the higher TTL as logical one and packets with the lower TTL as logical zero. Figure
3.6 compares the MED and MEI schemes.
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Figure 3.6: Comparison of mapped encoding schemes for an example series of covert bits

Table 3.3: AMI encoding: current TTL based on covert bit and previous TTL
Covert bit Previous TTL Current TTL

0 TTL TTL
0 TTL−∆ TTL−∆
1 TTL TTL−∆
1 TTL−∆ TTL

Our last scheme is a differential encoding scheme similar to Alternate Mark Inversion
(AMI) coding. Hence we refer to it as AMI scheme. It can be tuned towards stealth
or capacity by increasing/decreasing the amplitude of the signal, but it can encode only
one bit per overt packet pair. It has the following advantages over DUB: TTL values are
always decreased and the TTL values never change by more than one if ∆ = 1.

The covert sender encodes a logical zero by repeating the last TTL value. A logical
one is encoded by a TTL change, alternating between the two possible values (see Table
3.3). The receiver decodes a constant TTL as logical zero and a TTL change as logical
one. Figure 3.7 compares the DUB and AMI schemes.

Decrementing the original TTL eliminates the wrap-arounds and the risk of packets
stuck in routing loops. It is still very likely that packets reach their final destination
since modern operating systems use initial TTL values of at least 64 [167, 168] and the
maximum number of hops between two hosts in the Internet is typically less than 32
[167]. Even with the maximum number of hops increasing in the future there is clearly
enough headroom.

Bit error probabilities can be computed for all schemes based on the distribution of
TTL changes (see Appendix B.2). However, as we showed in Section 3.1 the TTL error
distribution varies significantly between traces and cannot be easily modelled. Therefore,
we use emulation to compute the actual error probabilities for each trace (see Section 3.5).

3.2.3 Implementation considerations

If the covert sender is a middleman and encodes covert data into multiple overt traffic
flows, for mapped and differential encoding it must encode into each flow separately
considering the original TTL values of each flow. Otherwise drastic changes of TTL
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Figure 3.7: Comparison of differential encoding schemes for an example series of covert bits

values would reveal the covert channel. This also means covert sender and receiver need
to maintain per-flow state.

Mapped encoding schemes are problematic in this scenario, because usually the re-
ceiver does not know the per-flow mapping of bits to TTL values a-priori. However, the
receiver must know the mapping prior to decoding. For short flows the receiver may not
be able to learn the mapping before a flow ends. If the overt traffic consists of many short
flows, which is typical for aggregate Internet traffic, a high error rate is likely.

For binary channels it is sufficient to learn the TTL value for either bit. Therefore
the problem is mitigated by sending one special logical zero at the start of each flow.
The receiver uses this bit to learn the mapping and then silently drops it. We refer to the
modified mapped encoding schemes as MEI0 and MED0.

No flow state is necessary for direct encoding schemes. However, they require that the
receiver knows or periodically measures the number of hops between covert sender and
receiver. Alternatively, the receiver could guess the hop count assuming it can determine
whether the decoded information is valid (e.g. using checksums).

3.3 Channel capacity

We now propose an information-theoretic model for the TTL channel and derive the chan-
nel capacity. The capacity is the maximum rate at which communication with arbitrary
small error is possible [22]. Our model is not limited to the TTL channel, but could be
used for other storage channels in the IP protocol.

We model the TTL covert channel as discrete memoryless channel assuming the cur-
rent output of the channel only depends on the current input and the error, but not on
previous input. We assume a binary channel with one bit of covert data encoded per
packet (direct, mapped) or packet pair (differential). We assume the covert data is uniform
random (same probability for zeros and ones), which is the case if Alice uses encryption.

The capacity of a channel is affected by channel errors. There are three possible
sources of errors for the TTL covert channel:

• bit substitution errors caused by normal TTL variation,
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Figure 3.8: Capacity of BSC and BAC with varying degree of asymmetry for the MED and
AMI modulation schemes (average error rate across all traces)

• deletions of bits caused by loss of overt packets and

• bit substitution errors caused by reordering of overt packets.

The noise caused by modification of the TTL field on the path between covert sender
and receiver and path changes (see Section 3.1) causes bit substitutions on the channel.
Whether the TTL noise is symmetric or asymmetric depends on the modulation technique
and the error probability distribution.

We model the channel with only TTL noise either as binary symmetric channel (BSC)
[22] or binary asymmetric channel (BAC) [169]. The BSC is a channel with two in-
put/output symbols where each input symbol is changed to the other with error probabil-
ity p. The BAC has two input/output symbols where the first symbol is changed to the
second with probability a and the second symbol is changed to the first with probability b.
However, the capacity difference of BSC and BAC is small even for larger asymmetries
given the typically relatively small TTL error rates.

The overall error rate of BAC and BSC is identical when p = a+b
2 . If x defines the

degree of asymmetry then a = 2p · x and b = 2p (1− x). Figure 3.8 shows an example of
the capacity of BSC and BAC with varying x for the MED and AMI modulation schemes
averaged across all traces (see Section 3.5.2). The capacity difference between BSC and
BAC is less than 0.03 bits per overt packet or packet pair, even for higher asymmetries
than observed across all experiments. Also, the capacity of the BSC is always a lower
bound for the capacity of the BAC. Therefore, we use the simpler BSC.

How to model the impact of packet loss and reordering on the channel depends on
whether the overt traffic supports the detection and/or correction of packet loss and re-
ordering (e.g. retransmissions), assuming the related protocol information (e.g. sequence
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Figure 3.9: Packet reordering model parameters for an example series of packets

numbers) is accessible for covert sender and receiver. It also depends on whether the
channel is encoded into one or multiple overt flows.

If the protocol has no sequence numbers (e.g. UDP), the covert receiver does not
know which bits were lost on the channel. Hence we model packet loss as a binary
deletion channel [22]. If the protocol has sequence numbers (e.g. RTP or TCP) the covert
receiver knows which packets were lost, and we model this case as binary erasure channel
[22]. If the protocol uses retransmissions, such as TCP, for a single overt flow all packets
are eventually (re)transmitted and consequently there are no erasures. However, if covert
data is encoded into multiple flows deletions may still occur. There is no guarantee that a
TCP flow ends with a proper teardown sequence and there may be packets at the end of
flows seen only by the covert sender but not the receiver.

Packet reordering results in substitution errors if the overt traffic has no sequence
numbers allowing the covert receiver to process the received packets in the correct order
or if the covert channel is encoded in multiple simultaneous flows. We model packet
reordering as BSC. For the BSC we need to express packet reordering as error probability.
However, this does not preclude the use of a more elaborate model for packet reordering.
We use the model proposed by Feng et al. that characterises reordering based on [170]:

• average number of packets between reordering events r,

• average reordering delay in packets d and

• average reordering block size in packets b.

Figure 3.9 shows an example sequence of reordered packets and the corresponding
model parameters. For mapped and direct encoding schemes only bits in packets that
are reordered are affected. However, for differential schemes any packet pair is affected
where at least one packet is reordered, meaning there are two more potential bit errors per
reordering event. Assuming uniform covert data on average every second reordered bit is
wrong. Then the average error probability is:

pR =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2

d+b
d+b+r , mapped,direct

1
2

d+b+2
d+b+r , differential

. (3.4)
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Figure 3.10: TTL channel model

We model the overall channel as a cascade of the three separate channels where the
leftmost channel is either a deletion channel with a symbol lost indicated by a “_” or an
erasure channel with an unknown symbol value indicated by a “?” (see Figure 3.10).

In the remainder of the section we derive the capacity of the overall channel. The
capacity of the BSC is [22]:

C = 1−H (p) = 1+ p · log 2 (p)+ (1− p) · log 2 (1− p) , (3.5)

where H(.) is the binary entropy. The two cascaded BSCs with error probabilities pR

and pN can be replaced by a single BSC with error probability:

pRN = pR (1− pN)+ pN (1− pR) . (3.6)

The exact capacity of (cascaded) deletion channels is not known, but various lower
and upper bounds exist [171, 172, 173, 20, 174]. Diggavi and Grossglauser proved a
lower bound of the capacity of a combined deletion/substitution channel depending on
the probabilities for deletions pd and substitutions pe [175]:

C ≥max
{︀
0,1−

[︀
H (pd)+ (1− pd) H (pe)

]︀}︀
. (3.7)

This bound is tighter than the more general lower bounds for the capacity of dele-
tion/insertion/substitution channels given by Gallager and Zigangirov [171, 172, 173].
This means in any case the lower bound of the capacity of the TTL covert channel is:

C ≥max
{︀
0,1−

[︀
H (pL)+ (1− pL) H (pR (1− pN)+ pN (1− pR))

]︀}︀
. (3.8)

If the overt traffic has sequence numbers we model packet loss as erasures. Depending
on the probability of erasures ε and substitutions pe the cascade of erasure and BSC
channel has a channel capacity of [176]:

C = (1−ε) (1−H (pe)) . (3.9)

51



CHAPTER 3. TIME-TO-LIVE COVERT CHANNELS

Table 3.4: Channel capacity based on overt traffic
UDP w/o seq numbers UDP with seq numbers TCP

Single flow Equation 3.8 Equation 3.10 Equation 3.12
Multiple flow Equation 3.8 Equation 3.11 Equation 3.13

When encoding into single flows with available sequence numbers packet reordering
does not cause errors (pR = 0) and the capacity of the TTL covert channel is:

C = (1− pL) (1−H (pN)) . (3.10)

However, if covert data is encoded in multiple simultaneous flows there may be re-
ordering of packets between flows that cannot be detected, since sequence numbers work
only on a per-flow basis. Assuming no abrupt flow ends the capacity is:

C = (1− pL) (1−H (pR (1− pN)+ pN (1− pR))) . (3.11)

If the overt traffic has sequence numbers and is based on a reliable transport protocol
(pR = 0, pL = 0) we model the channel as BSC and the capacity is:

C = 1−H (pN) . (3.12)

Again, when encoding in multiple flows and assuming no deletions caused by abrupt
ends of TCP flows, the capacity reduces to:

C = 1−H (pR (1− pN)+ pN (1− pR)) . (3.13)

Table 3.4 summarises the channel capacity based on single vs. multiple flow encoding
for the unreliable UDP and reliable TCP transport protocols.

The capacity C is always in bits per overt packet or packet pair (bits per symbol). If
fS is the average frequency of packets or pairs per second the maximum transmission rate
R in bits per second is:

R =C ·
1
fS
. (3.14)

For differential schemes packet loss does not only cause deletions or erasures but
also substitution errors in each bit following a deletion/erasure. For example, if the AMI
scheme is used to send the bit sequence “1111” in five overt packets and the third packet
is lost the received bit sequence is “101”. The probability of the additional substitution
errors depends on the modulation scheme. Considering all sequences of three bits it is
easy to show that for AMI the probability is 1

2 pL for uniform covert data. We model this
error as another BSC and replace pR above with the error rate p̃R of the combined BSC:
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p̃R = pR

(︂
1−

pL

2

)︂
+

pL

2
(1− pR) . (3.15)

3.4 Reliable data transport

The maximum transmission rates based on the channel capacity can only be achieved with
optimal encoding schemes. Here we first discuss encoding strategies and then present two
schemes for reliable data transmission. Our motivation is to demonstrate and evaluate a
reliable data transport over the TTL channel, which has a complex non-stationary bit error
distribution (see Section 3.5). Many previous results for error correction schemes capable
of handling deletions assumed a simple stationary uniform random error distribution.

We develop two different schemes: one for channels with deletions due to overt packet
loss and one for channels without deletions. No deletions occur if there is no packet loss
or if packet loss can be detected by the receiver, for example by using TCP sequence
numbers. Our schemes are not limited to the TTL channel. As we show in Chapter 4,
they can be used for other noisy covert channels as well.

3.4.1 Channel coding techniques

In general there are two types of techniques available for providing reliable data transport.
In Forward Error Correction (FEC) schemes the sender adds redundancy that is used by
the receiver to detect and correct errors. In Automatic Repeat Request (ARQ) schemes
the sender retransmits data that the receiver has not received correctly previously. ARQ
schemes require bidirectional communication since the receiver has to inform the sender
about the corrupted or lost data. Hybrid approaches are also possible.

ARQ schemes require a sequence number and a checksum for each data block, so that
the receiver can detect corrupted or lost blocks and inform the sender. FEC schemes add
error correction information to each block. If the FEC decoder can determine reliably if
a block has been decoded correctly an additional checksum is not needed, but sequence
numbers are still required to identify undecodable blocks.

The efficiency of different techniques can be compared based on the code rate, which
states the fraction of the transmitted payload data that is non-redundant. The code rate of
a selective repeat ARQ scheme is:

(N −H)
N

1

T
(︀
pE, p̂B,N

)︀ , (3.16)
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Figure 3.11: Code rates for ARQ schemes for different data block sizes and bit error rates

where N is the block size in bits, H is the number of header bits and T
(︀
pE, p̂B,N

)︀
is the

average number of (re)transmissions depending on N, the overall bit error rate pE and a
target block corruption rate p̂B (see Appendix B.6).

Figure 3.11 depicts the code rates for a very low bit error rate (e.g. wired commu-
nications) and typical bit error rates of the TTL covert channel without overt packet loss
and reordering, depending on the data size (N −H) for a target block corruption rate of
1% and H = 56 (sequence number, checksum and corrupted block indicator). The dashed
lines show the theoretical channel capacities for the same bit error rates.

For very low bit error rates and larger block sizes ARQ code rates are close to the
channel capacity. However, for higher error rates the code rates are significantly reduced.
For example, for typical error rates on the TTL channel between 1−4 and 1−3 the code rate
reduces to between 0.6 and 0.3 although the channel capacity is close to 0.99. Therefore,
FEC needs to be employed as it reduces the block corruption rate to acceptable levels with
higher code rates.

However, since the channel errors are bursty (see Section 3.5.4), it is not very efficient
to reduce the block error rate to zero with FEC alone. We construct FEC-based schemes
on top of which standard ARQ mechanisms can be used.

3.4.2 Non-deletion channels

For non-deletion channels we use an existing error correcting code. Similar to the Cyclic
Redundancy Check (CRC) based framing of Asynchronous Transfer Mode (ATM), we
also use the code for identifying blocks in the received data.

We decided to use Reed-Solomon (RS) codes because they are well understood and
fast implementations are readily available. RS codes are widely used, for example by
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Digital Subscriber Line (DSL) and WiMax as well as on CDs, DVDs, and blue-ray discs.
Furthermore, RS codes are suitable for channels with bursty errors.

RS codes are block codes. A (N,K) RS code has blocks of N symbols, with N−K RS
symbols appended to every K payload symbols. The maximum N depends on the size of
the symbols in bits M (N ≤ 2M − 1). An RS decoder can correct 2E + S ≤ N −K errors
where E are erasures (symbols with bit errors of known position) and S are substitutions
(symbols with bit errors of unknown position).

The sender divides the covert data into blocks. Each block has a header with an 8-bit
sequence number, which enables the receiver to identify blocks lost due to corruption.
The header also contains a 32-bit CRC (CRC32) checksum computed over the header
fields and data, because the RS decoder we use [177] is not able to reliably indicate if all
errors were corrected in a received block. The RS encoder computes the error correction
data over the sequence number, checksum and covert data, and appends it to the block.

The receiver decodes blocks from the received bit stream as follows. For every new
bit received it checks if N symbols are in the buffer already. If that is the case it attempts
to decode a block using the RS decoder, and computes the CRC32 checksum over the
corrected header and covert data. If the checksum matches the sender’s checksum the
received block is valid. Otherwise the receiver removes the oldest bit from the buffer and
waits for the next bit.

Our protocol does not require synchronisation at the start. Any blocks sent by Alice
before Bob started receiving are obviously lost, but Bob will start receiving data once the
first complete block has been received.

We chose CRC32 as checksum because it provides better or equal error detection than
other existing 32-bit checksums [178]. At very high error rates CRC32 may be too weak,
but we assume that typically our scheme is used with lower error rates. Otherwise better
checksums could be used at the expense of more computational or header overhead.

3.4.3 Deletion channels

A simple error-correction code is insufficient for channels with deletions because every
deletion causes possible substitution errors in all following bits. Thus a decoder first has
to identify where the deletions occurred and insert dummy bits. Then an existing error
correcting code can be used to correct the errors caused by substitutions and dummy bits.

Ratzer developed an encoding scheme based on marker codes and Low Density Parity
Check (LDPC) codes [179]. Marker codes insert sequences of known bits, so-called
markers, at regular positions into the stream of payload bits. In Ratzer’s scheme the inner
marker code is used for re-synchronisation and the remaining substitution errors are then
corrected by the outer LDPC code. He proposed probabilistic re-synchronisation (also
referred to as sum-product algorithm).
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Algorithm 3.1 Outer marker code receiver algorithm

function receive(bits)
foreach bit in bits do
recv_buffer = append(recv_buffer, bit)
if sizeof(recv_buffer) ≥ sizeof(PREAMBLE) + MAX_OFFSET then
foreach offset in 1...MAX_OFFSET do
diff[offset] = difference(recv_block[offset], PREAMBLE)

min_diff = min(diff)
min_off = minarg(diff)
if min_off = 0 and min_diff ≤ MAX_ERRORS and

sizeof(recv_buffer) ≥ (EXPECTED_BLOCK_SIZE − ∆) then
// return data block before preamble (if any)

// remove bits from recv_buffer and continue

Ratzer’s approach assumes that sender and receiver are synchronised at the beginning
and approximate bit error rates are known to carry out the probabilistic re-synchronisation.
The complexity of the algorithm is N2 in time and space where N is the number of bits
per block, although in practice one can often further limit the search space.

Because of these limitations we developed a scheme that follows a slightly different
approach. Our scheme does not necessitate an initial synchronisation of sender and re-
ceiver (not always practical) or the prior knowledge of bit error rates (generally unknown).
Furthermore, the complexity of our algorithm is only M2 in time and M in space where
M is the number of markers per block (usually M≪ N).

Our novel scheme is a hierarchical marker scheme that uses two layers of markers.
The sender divides the covert data into blocks. An outer marker, which acts as preamble,
is sent prior to each block. The receiver detects the start of a block if the bit sequence
received is similar to the preamble. The preamble must be long enough to differentiate
between preambles with bit errors and block data. The sender algorithm is trivial and
consists only of putting the preamble at the start of each block. Algorithm 3.1 shows the
receiver algorithm for the outer marker code.

The receiver appends every received bit to a temporary buffer. When there are enough
bits in the buffer it computes the number of bits that differ between the received bit se-
quence and the pre-defined preamble for a number of offsets. If a bit sequence is detected
with a difference smaller than a pre-defined threshold, differences for larger offsets are
higher and the total number of bits received so far is over a minimum expected size the
receiver assumes a preamble has been found.

The outer marker code enables the receiver to synchronise the start of blocks. The re-
ceiver then also knows approximately how many deletions occurred in a block including
the preamble. To detect the locations of the deletions inside the block an inner marker
code is used. If very few preamble bits are incorrectly identified as data bits the receiver
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underestimates the true number of deletions. Hence the inner marker code receiver algo-
rithm is executed multiple times with increasing number of assumed deletions1.

Ratzer showed that deterministic markers perform equal or better than random mark-
ers for channels with insertion/deletion rates of less than 1% [180]. We use deterministic
markers as in his work. A marker is a number of zeros followed by a one, for example
“001”. The sender algorithm uses an RS encoder to compute error correction data over
header and payload, and then inserts an m bit marker after each n bits.

The receiver first tries to identify the positions of the deletions. The algorithm per-
forms a search for a plausible marker sequence with the known number of deletions in the
block as constraint (see Algorithm 3.2). The bits at every assumed marker position are
checked and the number of missing bits is computed. For example, if the used marker is
“001” and the bits checked are “010” then one bit has been deleted between the last and
the current marker. Since marker bits can be corrupted themselves the number of deleted
bits computed is possibly incorrect. Hence for each marker the algorithm also computes
the number of possible bit errors. For example, if the assumed marker is “010” the bit
preceding this sequence must be a zero otherwise a marker bit was deleted or substituted.

The variable offset keeps track of the total number of deletions identified so far. As
long as the number of errors (total_errors) is below a threshold (error_threshold)
the number of deletions for the current marker (deletions) is set as indicated by the
assumed marker. However, since there cannot be more deletions than indicated by the
outer marker code, deletions and the error are adjusted if the maximum is exceeded.
If the error exceeds the threshold the algorithm backtracks assuming that mistakes were
made. It backtracks to the previous marker with at least one assumed deletion, subtracts
one and then resumes the forward search.

How aggressively the algorithm backtracks depends on error_threshold. The
search is executed multiple times with error_threshold varying from zero to the max-
imum value MAX_ERROR_THRESHOLD. We found the choice of MAX_ERROR_THRESHOLD
is not very critical for deletion rates of 1% or less, as long as it is not chosen too small2.
After each search the receiver attempts to decode the block, unless the search produced
the same solution as before or the algorithm failed to converge.

Dummy bits are inserted at the identified positions of deletions and the RS code is
used to correct the dummy bits and other substitution errors (see Algorithm 3.3). RS
codes correct errors on a per-symbol basis. This means when inserting dummy bits it
does not matter where inside a symbol they are inserted. If the space between markers
is only one symbol the RS decoder can correct the maximum N −K symbols. However,
if the space between markers is multiple symbols it is unknown in which symbol(s) the

1In the experiments we assumed a maximum of two such bit insertions.
2We set MAX_ERROR_THRESHOLD=5 in all experiments.

57



CHAPTER 3. TIME-TO-LIVE COVERT CHANNELS

Algorithm 3.2 Inner marker code receiver algorithm

function receive(block)
offset = 0
deletion_list[1...markers] = 0
last_deletion_list[1...markers] = 0
error_list[1...markers] = 0
assumed_deletions = EXPECTED_BLOCK_SIZE − sizeof(block)

foreach error_threshold in 0...MAX_ERROR_THRESHOLD do

foreach pos in 1...markers do
index = (MARKER_SPACE + sizeof(MARKER))·pos + MARKER_SPACE − offset
deletions = check_marker(index)
if deletions > assumed_deletions − offset then
deletions = 0

error_list[pos] = compute_errors(index)

foreach i in 1...pos do
total_errors = total_errors + error_list[i]

if total_errors < error_threshold then
deletion_list[pos] = deletions
offset = offset + deletions

else
pos = max(0, pos − 1)
while pos > 0 and deletion_list[pos] = 0 do
pos = pos − 1

if deletion_list[pos] > 0 then
deletion_list[pos] = deletion_list[pos] − 1
offset = offset − 1

index = (MARKER_SPACE + sizeof(MARKER))·pos + MARKER_SPACE − offset
error_list[pos] = compute_errors(index)

if assumed_deletions > offset then
deletion_list[markers] = assumed_deletions − offset

has_converged = check_convergence(deletion_list)
if has_converged and deletion_list , last_deletion_list then
decode_block(block, deletion_list)

last_deletion_list = deletion_list

deletion(s) occurred and the RS decoder can only correct N−K
2 errors. There is a trade-off

between the overhead of the inner marker code and the RS code.

Since covert channels have a low bit rate we also explore another trade-off between
code rate and decoding time. If the number of possible combinations of symbols with
deletions is reasonably small the decoder can attempt to decode the received block for
each possible combination. For example, if the symbol size is 8 bits and markers are
spaced 16 bits apart the receiver needs to search through 2MD combinations where MD is
the number of markers with deletions. For each combination the receiver executes the RS
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Algorithm 3.3 Block decoding algorithm

function decode_block(block, deletion_list)
foreach pos in 1...markers do
if deletion_list[pos] > 0 then
block = insert(block, pos, deletion_list[pos])

corrected = rs_decode(block, deletion_list)
send_crc = get_sender_crc(block)
recv_crc = compute_crc(block)
if corrected ≥ assumed_deletions and recv_crc = send_crc then

// return valid block

decoder3. A valid block is found if the RS decoder is able to correct all errors and the
block checksum is valid.

This ‘brute-force’ decoding increases the code rate and is feasible for a small number
of symbols between markers and small deletion rates. Also, if the redundancy of the RS
code is much higher than needed on average a solution is found well before all combina-
tions have been tried. Our later analysis shows that the average number of bits decoded
per second is still much higher than the maximum transmission rate.

3.5 Empirical evaluation

First we analyse the error rate of the different modulation schemes without reliable trans-
port. We emulate the covert channel using overt traffic from different trace files and
measure the resulting bit error rates. Based on the channel model presented in Section 3.3
we then compute the channel capacities and transmission rates, and compare the different
modulation schemes. We also investigate the burstiness of the errors.

Later we evaluate the throughput of the channel using the techniques for reliable trans-
port described in the previous section. We analyse the throughput achieved for large ag-
gregates of overt traffic taken from traces as well as for single overt flows generated by
specific applications in a testbed. We compare the throughput with the channel capacity.

3.5.1 Datasets and methodology

The Covert Channels Evaluation Framework (CCHEF), described in Appendix A, can
emulate the use of covert channels based on overt traffic from traces. This makes it pos-
sible to evaluate the TTL covert channel with large realistic traffic aggregates that are
impossible to create in a testbed. The overt traffic was taken from the traces described in

3The maximum number of tried combinations is limited to a configurable value.
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Section 3.1. For performance reasons we did not use the full traces, but selected repre-
sentative pieces. We used 24 hours of the CAIA, Grangenet, Bell, Twente and Waikato
traces, and six hours of the Leipzig trace (each containing between 20 and 261 million
packets). We used traffic in both directions.

In a first pass we computed the TTL error for each packet in each trace as described
in Section 3.1.5. Then during the actual covert channel emulation the TTL field was
modified according to the pre-computed TTL error after the covert channel modulation.
Alice and Bob used all overt packets available for the covert channel. Alice sent uniform
random covert data, as if the data had been encrypted. Because of the random input
data we repeated each experiment three times and report the mean error rate. Since the
standard deviations are very small we do not include errors bars in the graphs.

Let A be the amplitude of the modulation schemes (difference between the signal
level of logical zero and one). For direct schemes A = 1, for DUB A = 2∆ and for all
other techniques A = ∆. From Section 3.1 it is clear that only one bit per packet (direct,
mapped schemes) or packet pair (differential schemes) can be encoded and A must be
minimal, as otherwise the channel would not look like normal TTL variation4. Hence in
our experiments we used binary channels and the TTL amplitude was only varied within
a narrow range (1 ≤ A ≤ 6) to investigate its influence on the error rate.

For direct encoding schemes we assumed knowledge of the true hop count at the
receiver. For mapped schemes we considered the cases where the receiver 1) knows the
mapping and 2) learns the mapping from the extra zero bit (see Section 3.2).

Alice can only modify the TTL field to values between a minimum value and the
maximum value of 255. She must avoid setting small TTL values that could result in
packets being discarded on the way to the receiver. This limitation inevitably causes
bit errors for schemes that increase TTL and tend to wrap-around (MEI and DUB). For
schemes that decrease TTL bit errors are unlikely for small A as initial TTL values are
usually at least 64 (see Section 3.2.2).

In our experiments we leveraged the fact that the trace files were captured on end
hosts or access routers to select the minimum TTL value. If a packet traversed ≤ 4 hops
the minimum TTL was set to 31 minus the hops already traversed (outgoing packet). If
a packet traversed > 4 hops the minimum TTL value was set to 4 (incoming packet). In
practice other strategies could be used, for example Alice could select the minimum TTL
for each packet based on its destination address.

4If used as side channel, encoding multiple bits with larger amplitudes is perfectly reasonable.
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Figure 3.12: Error rate for different modulation schemes and amplitudes for the CAIA trace
(left) and the Leipzig trace (right) (y-axis is logarithmic)

3.5.2 Error rate

Figure 3.12 shows the error rate for the CAIA and Leipzig datasets depending on the
different modulation schemes and A (results for other traces are in Appendix B.3). Overall
the error rates for A ≤ 2 are similar to the average rate of TTL changes (see Section 3.1).
A notable exception is DUB for the CAIA trace. Since this trace contains a large number
of very long flows the probability for TTL wrap-arounds is much higher than for the other
traces. The error rate for MEI and DUB actually increases for increasing A because the
probability of wrap-arounds increases.

MEI0 and MED0 have higher error rates than MEI and MED. This is because often
the probability that the first special zero bit is wrong is higher than the average error
rate, since TTL changes occur more frequently at the start of flows (see Section 3.1).
Both direct schemes and mapped schemes perform equally well for A = 1 as predicted
by the error probabilities (see Appendix B.2). In general the error rate does not decrease
proportionally with increasing A because the empirical error distributions have long tails
as shown in Section 3.1.5.

Figure 3.13 compares the performance of the different modulation schemes averaged
across all traces. For A= 1 the error rate varies between 0.1% and 1%, and MED performs
best, followed by MEI, AMI and the direct schemes. For larger amplitudes MED and AMI
outperform all other schemes. MEI and MED clearly outperform MEI0 and MED0.

We investigated if the error rate for mapped and differential schemes can be reduced
by using hop count differences instead of TTL differences. The receiver converts all TTL
values to hop counts. This eliminates errors when the TTL was changed by middleboxes
but the hop count is the same (see Section 3.1.3). For example, the TTLs 56 and 120 are
different but the hop count is 8 in both cases assuming the usual initial TTL values. Our
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Figure 3.13: Average error rate of different modulation schemes across all traces
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Figure 3.14: Capacity in bits per overt packet or packet pair for all modulation schemes based
on the average error rate (without packet loss or reordering)

results indicate that there is little benefit for small amplitudes, but for larger amplitudes
there is some improvement (see Appendix B.4).

3.5.3 Capacity and transmission rate

Knowing the different error rates we now estimate the channel capacities and maximum
transmission rates. First we analyse the case without packet loss or reordering and com-
pute the capacity using Equation 3.12. Figure 3.14 shows the capacity in bits per overt
packet (direct, mapped) or packet pair (differential) for the different modulation schemes
based on the average error rates over all traces.
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Table 3.5: Average transmission rates in (kilo) bits/second
Dataset Direct MEI MEI0 MED MED0 DUB AMI
CAIA 71(.99) 71(.99) 65(.99) 71(.99) 65(.99) 64(.98) 65(.99)

Grangenet 68(.99) 68(.99) 59(.94) 68(.99) 59(.94) 61(.98) 62(.99)
Twente 482(.97) 483(.99) 438(.98) 483(.99) 438(.98) 444(.99) 445(.99)

Waikato 1397(.92) 1399(.97) 1096(.89) 1423(.99) 1102(.89) 1200(.97) 1204(.98)
Bell 220(.89) 219(.91) 204(.89) 229(.95) 213(.94) 210(.92) 207(.91)

Leipzig 11.6k(.96) 10.7k(.97) 10.2k(.92) 11.7k(.97) 10.2k(.92) 10.6k(.96) 10.5k(.95)

The transmission rates depend on the capacity in bits per overt packet and the average
packet rates (Equation 3.14). Table 3.5 shows the average transmission rates in bits per
second for all modulation schemes and traces assuming ∆ = 1, no packet loss/reordering
and hop count differences are used for MED, MED0 and AMI schemes5. The numbers in
parenthesis denote the capacity in bits per overt packet.

Overall the transmission rates depend on the available overt traffic, varying from tens
of bits per second (CAIA, Grangenet), over hundreds of bits per second (Bell, Twente),
to up to several kilobit per second (Leipzig, Waikato). Besides being standards-compliant
and stealthier our novel schemes (MED, AMI) also have equal or higher transmission
rates than the previous schemes (MEI, DUB). Overall we rank the new schemes as follows
(from best to worst): MED, DED, AMI, MED0.

With increasing packet loss and reordering rate the channel capacity reduces quickly.
Figure 3.15 shows a contour plot of the capacity depending on the loss and reordering
rate if packet loss can be detected (Equation 4.10). Figure 3.16 shows the capacity when
packet loss cannot be detected (Equation 4.9). In both figures pN is the average error rate
for MED with A = 1. For reordering we set b = 1, d = 1, and r = 1/rate− 2 (see Section
3.3), where rate is the reordering rate shown on the x-axis.

3.5.4 Burstiness of errors

The burstiness of errors does not affect the channel capacity, but it affects the performance
of techniques for reliable data transport. On the TTL channel bit errors often occur in
bursts. How bursty the errors are depends on the trace and the modulation scheme.

We illustrate this using results for the MED and AMI modulation schemes and the
CAIA and Leipzig traces. Figure 3.17 shows CDFs of the distance between errors in bits
for the measured errors and simulated uniformly distributed errors with the same probabil-
ities. The empirical error distributions are clearly burstier than the uniform distributions.

5The transmission rates can be increased by encoding multiple bits per packet or packet pair. However,
as explained earlier this would likely reveal the covert channel.
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Figure 3.15: Capacity depending on packet loss and reordering if loss can be detected
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Figure 3.16: Capacity depending on packet loss and reordering if loss cannot be detected

Figure 3.18 plots the error rate for the MED scheme for consecutive non-overlapping
windows of 100 000 bits (equivalent to 100 000 overt packets) for the two largest traces
(Waikato, Leipzig). There is high short-term variation for the Leipzig trace. The Waikato
trace shows smaller short-term variation combined with small long-term changes. For the
other traces the error rate is also changing, although usually not as dramatically as in the
Leipzig trace (see Appendix B.5).

Larger changes of the error rate mean a non-adaptive error correction code would
either have too much overhead most of the time or the remaining error rate is higher than
in the case of uniformly distributed errors. Optimally, the sender should adapt the error
correction code over time based on the estimated error rate. For bidirectional channels the
error rate estimate could be based on feedback from the receiver.
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Figure 3.17: Distance between bit errors in bits for the CAIA trace (left) and the Leipzig
trace (right)
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Figure 3.18: Error rate for the MED modulation scheme over consecutive windows of
100 000 bits for the Waikato trace (left) and the Leipzig trace (right)

3.5.5 Throughput – trace file analysis

We measured the throughput of the channel using the proposed techniques for reliable
transport and large traffic aggregates with real TTL noise as overt traffic. We simulated
packet loss and reordering since it cannot be deduced from the trace files. We only used
the DED, MED, MED0 and AMI encoding schemes because they perform equal or better
than the other schemes.

Previous studies showed that although some paths experience high loss rates, packet
loss in the Internet is typically ≤ 1% over wired paths [181, 182, 183, 184]. Previous
studies on packet reordering found that it is largely flow and path dependent [182, 185,
186]. For example, Iannacone et al. found that while 1–2% of all packets in the Sprint
backbone were reordered, only 5% of the flows experienced reordering [185].
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Figure 3.19: Block corruption rate depending on code rate for CAIA (left) and Leipzig (right)
for 0% packet loss and reordering

We used packet loss rates of 0%, 0.1%, 0.5% and 1% with uniform distribution. For
packet reordering we used rates of 0%, 0.1% and 0.5% using a uniform distribution, and
each reordered packet was swapped with the previous packet (d = 1 and b = 1, see Section
3.3). We limited our analysis to a small set of loss and reordering rates to keep the effort
reasonable. Also, for high rates the capacity is expected to be low.

For the RS code we always used one-byte symbols, limiting the maximum block size
to 255 bytes. We used the largest possible block size for the non-deletion technique and
varied sizes for the marker-based technique depending on the packet loss and reordering
rate (see Appendix B.11). Longer RS codes could be used with larger symbols, but then
the decoding time and the time for transmitting blocks increase. Since the rate of the
covert channel is low it takes a while to transmit a data block. For example, for the CAIA
trace on average it takes around 30 seconds to transmit one 255 byte block.

The following graphs show the average rate of corrupted blocks over increasing code
rate. We only show some of the graphs for the CAIA and Leipzig traces (graphs for other
traces are in Appendix B.7). Figures 3.19 and 3.20 show the block corruption rates for
0% and 0.5% packet loss with 0% packet reordering.

Figure 3.19 shows that for the CAIA trace AMI and DED outperform both MED
schemes, but for Leipzig the performance of most schemes is similar. MED0 performs by
far the worst across all traces because of the higher bit error rates, as discussed in Section
3.5.2. In the rest of the experiments we omitted MED0 since the high error rates result in
extremely long analysis times.

Figure 3.20 shows that AMI performs clearly worse than MED and DED. Packet loss
causes additional substitution errors for differential schemes, such as AMI, as discussed
in Section 3.3. MED and DED perform equally good, with MED being better at high code
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Figure 3.20: Block corruption rate depending on code rate for CAIA (left) and Leipzig (right)
for 0.5% packet loss and 0% packet reordering
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Figure 3.21: Block corruption rate depending on code rate for CAIA (left) and Leipzig (right)
for 0.1% packet loss and 0.5% packet reordering

rates for Leipzig. In the experiments with 1% packet loss we omitted AMI because of the
long analysis times.

Figure 3.21 shows the block corruption rate for 0.1% packet loss and 0.5% packet re-
ordering. The block corruption rate is worse than for 0.5% packet loss without reordering.
In general reordering is worse than loss for our reliable transport technique. For each re-
ordering there is a 50% chance of two wrong consecutive bits. Even if these fall into one
data symbol two RS symbols are needed for correction compared to only one RS symbol
needed per erasure. In the worst case the bits are in two different symbols and four RS
symbols are required for correction.

In all the figures we see that at some point the block corruption rate does not decrease
quickly anymore with increasing amount of redundancy. This is because of the burstiness
of the errors. Few large bursts require a much larger amount of redundancy than needed
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Figure 3.22: Throughput depending on packet loss for CAIA (left) and Leipzig (right) for
0% packet reordering

on average. However, a reasonably large amount is able to reduce block corruption rates
to levels where ARQ is effective.

Based on the block size N and the remaining block corruption probability after FEC
p̃B achieved with code rate RFEC we computed the average number of retransmissions
T needed to reliably transmit all remaining corrupted blocks (see Appendix B.6). We
assumed selective repeat ARQ is used with HARQ bits informing the sender which blocks
need to be retransmitted. Then the resulting code rate of a hybrid FEC+ARQ scheme is:

RFEC_ARQ =

[︃
(1− p̃B)+

p̃B

T ( p̃B, p̂B)

]︃
RFEC

N −HARQ

N
. (3.17)

Assuming a target block corruption rate p̂B = 1−9 and HARQ = 16 bits (each block
contains two additional 8-bit numbers indicating the start and end sequence numbers of
bursts of corrupted blocks) we computed the best code rates as the maximum code rate
from Equation 3.17 over all empirically measured rates RFEC.

Figure 3.22 shows the throughput for the CAIA and Leipzig traces depending on
packet loss without packet reordering. Figure 3.23 shows the throughput for the same
traces depending on packet reordering for a packet loss rate of 0.1% (results for other
traces are in Appendix B.8). The hybrid scheme works well as the decrease in throughput
is only moderate for increasing packet loss and reordering. The best performing schemes
are MED and DED.

Figure 3.24 shows the percentage of the channel capacity reached for the different
modulation schemes averaged across all traces. Overall MED performs best. DED also
performs well, especially for traces that contain a large percentage of long UDP flows.
AMI performs well if there is no packet loss. Overall, the FEC+ARQ transport protocol
achieves at least 60% of the capacity.
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Figure 3.23: Throughput depending on packet reordering for CAIA (left) and Leipzig (right)
for 0.1% packet loss
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Figure 3.24: Percentage of capacity reached for the different modulation schemes and the
different packet loss and reordering settings averaged across all traces

We also measured the average block decoding speed of the receiver, which is defined
as the length of a data block in bytes divided by the average decoding time of blocks. The
differences between different modulation schemes are negligible, but there are significant
differences between the different traces. The results show that even for the experiments
with the highest error rate the decoder is still much faster than the actual throughput of
the channel (see Appendix B.9).

3.5.6 Throughput – testbed experiments

In the testbed experiments we measured the throughput of the covert channel across a
real network for different types of overt traffic. The covert channel was encoded in a
single overt traffic flow. This setup is representative for a scenario where the overt traffic
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is limited to single flows. Our testbed consisted of two computers6 connected via a Fast
Ethernet switch. Alice and Bob were co-located with the actual sender and receiver, but
they could have been middlemen.

We used different applications with different packet rates as overt traffic. We used
scp to perform file transfers capped at 2 Mbit/s, and SSH to perform remote interactive
shell sessions (recorded and repeatedly played back with XMacro [187]). We generated
game traffic using Quake III Arena (Q3) [188], with bots as players. These applications
represent bulk transfer, interactive and real-time traffic classes.

Each experiment lasting 20 minutes was repeated three times and we report the aver-
age throughput. We emulated packet loss and reordering rates of 0%, 0.1%, 0.5% and 1%
using Linux Netem [189]. For both we configured a correlation of 25% [189], because
in the Internet packet loss and reordering are typically bursty. The delay was set to fixed
25 ms in each direction, except for the experiments with reordering.

With Netem’s packet reordering the resulting bit error rate depends not only on the
configured reordering rate, but also on the configured delay and the traffic’s inter-packet
times [189]. We used different delays for the different applications to achieve similar error
rates, but scp still experienced slightly higher error rates than Q3 and SSH. We verified
the accuracy of Netem prior to performing the experiments (see Appendix F).

As we showed in Section 3.1 TTL noise basically falls into two categories: deter-
ministic and random. Since deterministic noise generally only occurs at the start and
end of flows it would not have much impact here given the long duration of the flows.
Hence we used CCHEF to emulate uniformly random TTL noise with Normal-distributed
amplitudes using error rates of 0%, 0.001%, 0.1% and 1%.

We only used the MED modulation scheme but limited tests indicated a similar perfor-
mance of the DED scheme. Without packet loss and reordering the non-deletion technique
was used to provide reliable transport. Otherwise the marker-based technique was used.
For simplicity we used the same codes for the different applications. In the experiments
with packet reordering the codes were dimensioned for scp, and hence they were slightly
less efficient for Q3 and SSH. The code parameters are given in Appendix B.11.

The encoding parameters were manually tuned according to the error rates in the dif-
ferent scenarios with the goal of achieving a very low block corruption rate with FEC
alone. As before we computed the actual throughput assuming a FEC+ARQ scheme
with a target block corruption rate of 1−9. Because we used relatively high redundancies,
in all experiments the block corruption rate was below 0.5% with FEC alone. In most
experiments it was actually zero.

6An Intel Celeron 2.4 GHz with 256MB RAM and an Intel Celeron 3.0 GHz with 1GB RAM, both
running Linux 2.6.18.
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Figure 3.25: Throughput depending on the TTL error rate for 0% packet loss and reordering
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Figure 3.26: Throughput depending on the packet loss rate with 0.1% TTL error rate and 0%
packet reordering

We used smaller code lengths for the testbed experiments to increase the total number
of blocks, given that the packet rates were much smaller than the rates in the traces.
Because of the smaller block sizes and the higher redundancies the code rates are smaller
than in the trace-file analysis.

Figure 3.25, 3.26 and 3.27 show the throughput for the different applications and
error rates. For scp the data was transferred from Alice to Bob and hence the rate of
overt packets in that direction is higher. For Q3 the throughput from Alice to Bob is
much larger, as Alice’s host running the Q3 client sent one packet every 10–20 ms, but
Bob’s host running the server only sent one packet every 50 ms [190]. SSH throughput is
roughly symmetric with the used shell commands.

Figure 3.28 shows the percentage of the channel capacity reached for the different
applications averaged over both directions. The percentage should be roughly equal for all
applications. However, SSH performs worse since the number of data blocks transmitted
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Figure 3.27: Throughput depending on the packet reordering rate with 0.1% TTL error rate
and 0.1% packet loss rate
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Figure 3.28: Percentage of capacity reached for the different applications and the different
TTL error, packet loss and reordering rates averaged over both directions

is very small and incomplete blocks at the end of experiments do not count (rounding
errors). Overall, the reliable transport protocol achieves at least 50% of the capacity,
except in the case of high packet reordering.

Again, the results show that our reliable transport technique is more efficient for loss
than reordering. The percentage of the capacity reached is 10–14% lower than in the trace
file experiments due to the smaller code sizes and the higher redundancy. The smaller
code size alone reduces the code rate by 5–6% given the overhead of the fixed header.
The throughput is still in the order of tens of bits per second for applications with higher
packet rates, such as scp or Q3 client-to-server traffic.

We also investigated the variability of the covert bit rate over time (see Appendix
B.10). For Q3 and SSH it is almost constant, even with packet loss and reordering. For
scp the rate is relatively constant without packet loss, but with packet loss it fluctuates.
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If the overt traffic is TCP Alice and Bob could use TCP sequence numbers to mitigate
the effects of packet loss and reordering. Alice has to store tuples of bits sent and TCP
sequence numbers in a buffer. When she detects a TCP retransmission she must re-encode
the bits sent previously. Bob needs to buffer received packets and put them in the right
order, according to the TCP sequence numbers before decoding.

3.6 Conclusions

We analysed the characteristics of normal TTL variation from several traffic traces. We
showed that normal TTL changes only occurred in less than 1% of packet pairs, but in
2–6% of the flows. The large majority of flows with changes had only two different TTL
values differing by one. This noise reduces the channel capacity, but on the other hand
it improves the stealth of the channel. Without normal TTL variation the covert channel
would be trivial to detect.

We presented several novel improved modulation schemes. Our new schemes are
stealthier and can be used with passive channels. Furthermore, they provide up to 5%
higher capacities than previous schemes. However, even with the improved schemes the
channel is still detectable, as we will show in Chapter 7.

We then proposed an information-theoretic model for the channel that can be used to
determine the channel capacity based on errors caused by normal TTL variation, packet
loss and packet reordering. The model is not limited to the TTL channel; it could be
applied to direct storage channels in other IP header fields. We also developed techniques
for reliable data transmission over the covert channel.

Since the TTL noise distributions are complex and cannot be modelled easily we anal-
ysed the error rates of the different modulation schemes by emulating the covert channel
using overt traffic from traces. For a minimum TTL amplitude the average error rates
across all traces vary between 1−3 and 1−2. Larger amplitudes reduce the error rates but
also reveal the covert channel, given the characteristics of normal TTL variation.

Based on the channel model and the measured error rates we estimated the capacities
and transmission rates. Without packet loss and reordering the capacity is over 0.9 bits
per overt packet or packet pair. But it reduces quickly with increasing packet loss and
reordering. The transmission rates range from tens of bits per second up to a few kilobits
per second.

We carried out several experiments to evaluate the throughput of the reliable transport
technique. We emulated covert channels using overt traffic from traces and simulated
packet loss and reordering. With a hybrid FEC+ARQ scheme we achieved throughputs
of 60% or more of the capacity, with rates of up to several hundreds of bits per second.
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We also conducted experiments over a real network using three different applications
as overt traffic. For a hybrid FEC+ARQ scheme we achieved throughputs of 50% or more
of the capacity, except in the case of high packet reordering. The throughput is up to over
hundred bits per second, much higher than the commonly accepted covert channel limit
of one bit per second [19].

3.6.1 Future work

The study of the channel characteristics could be extended towards further trace files.
The capacity and throughput analysis could also be extended to cover a wider range of
packet loss and reordering settings. Furthermore, experiments could be carried out across
different Internet paths, for example using the PlanetLab overlay network.

Improved modulation schemes should be developed to make the TTL channel stealth-
ier. Optimally covert sender and receiver would select the overt packets such that the
distribution of the induced TTL changes looks exactly like normal TTL noise. The TTL
noise distributions cannot be modelled easily with standard statistical distributions, but
covert sender and receiver could use more complex models calibrated on observed traffic.

The performance of the technique for reliable data transport could be further im-
proved. Longer RS codes would be more effective as header overhead is reduced, but
then data is received in a less timely fashion. Although RS codes perform well, there are
better error correcting codes, for example LDPC codes [179]. Furthermore, there may be
other approaches that are more efficient than a hierarchical marker scheme.

Since the error rate of the TTL channel varies significantly over time depending on
the overt traffic, it is questionable if a single error-correcting code could perform well in
different circumstances. Developing and evaluating an adaptive scheme is left for further
study. Another avenue left to explore is how much performance could be improved by
reducing the burstiness of errors through interleaving of the data prior to encoding.

When encoding the covert channel into TCP flows, the effects of packet loss and
reordering can be mitigated by utilising TCP sequence numbers. We outlined the design
of such a scheme, but an implementation and evaluation are still missing.
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Chapter 4

Packet-timing Covert Channels

In this chapter we analyse direct timing covert channels encoded in inter-packet times,
also referred to as Inter Packets Gaps (IPGs). We chose channels in IPGs, because unlike
packet rate channels they do not require synchronisation of time intervals [100] and they
can be encoded into arbitrary IP traffic. Packet rate channels likely raise suspicion since
many applications do not ‘randomly’ change packet rate over time.

Several encoding schemes were developed for IPG channels (see Section 2.2.5), but
all the schemes prior to [104, 105] are easy to detect [107]. Gianvecchio et al. [104]
and Sellke et al. [105] proposed channels in IPGs that are hard to detect because they
perfectly mimic the shape of the IPG distributions of real applications. However, they
destroy existing auto-correlations of IPGs. Thus they are hard to detect only if the IPGs
of real applications are independent identically-distributed (iid) and hence uncorrelated.

Paxson et al. showed that Telnet traffic exhibits this behaviour [182]. Presumably
IPGs of other human-driven application traffic, such as interactive SSH, are also iid. How-
ever, we show that IPGs of UDP-based game and VoIP traffic often exhibit moderate to
strong correlation. Even TCP traffic has moderate correlation.

Previous work focused on TCP traffic, because it currently dominates the Internet
[104, 105]. However, the percentage of UDP traffic is expected to become much larger in
the future [191]. The channel proposed in [104, 105] requires accessible sequence num-
bers in the overt traffic; otherwise lost packets desynchronise covert sender and receiver.
TCP provides sequence numbers, but not all UDP-based traffic has sequence numbers, or
they may not be accessible if the protocol is encrypted.

Furthermore, previous research assumed that the overt traffic is generated by the covert
sender [104, 105]. This means the channel cannot be used in scenarios where Alice is a
middleman, and it leaves her with the burden of mimicking real traffic properly. If some
characteristics of the ‘fake’ traffic are abnormal, the channel could be easily detected.

We propose new improved encoding techniques. Our improved channel maintains ex-
isting auto-correlations and thus is harder to detect even when IPGs are not iid (see Chap-
ter 7). It can be used as active or as (semi-)passive channel. Our techniques generate the
random numbers needed for encoding and decoding [104] from the packets themselves,
which makes the channel robust enough for use with all UDP-based protocols.
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First, we analyse IPGs in the traffic of different applications and show that often there
is auto-correlation. We then present the improved covert channel. We develop one modu-
lation technique that improves the stealth by reducing the capacity, and another technique
that increases the stealth but has reduced robustness. We propose an information-theoretic
channel model and derive the channel capacity.

We describe a proof-of-concept implementation and analyse its performance in a
testbed, depending on network jitter, packet reordering and loss. We compute the capacity
and maximum transmission rate based on the channel model and empirically measured
error rates. The capacity is only 70–80% of the capacity of the TTL channel, but transmis-
sion rates are still up to over hundred bits per second. Finally, we measure the throughput
across the channel using the reliable transport technique developed in Section 3.4 and find
that the achieved throughput is at least 30–40% of the channel’s capacity.

4.1 Inter-packet time analysis

We analyse two UDP-based applications, the First Person Shooter (FPS) game Quake III
Arena (Q3) and the VoIP application Skype. We also analyse the IPGs of UDP and TCP
flows taken from a traffic trace. We analyse the correlation of the series of IPGs as well
as the series of least significant parts of IPGs. We define the least significant part as:

dlsp = d mod l = d−
⌊︃
d
l

⌋︃
l , (4.1)

where d is the IPG and l is the size of the least significant part. For example, if the
IPG is 21.75 ms and l = 1 ms then dlsp = 0.75 ms (sub-millisecond part).

Auto-correlation of IPGs tends to exist because of large-time-scale behaviours, such
as the congestion window growth and collapse for TCP or the codec’s encoding rates for
VoIP over UDP, but the small time-scale behaviour exposed by looking only at the least
significant part is jittered by largely uncorrelated noise, for example queuing delays at
each hop. We demonstrate that the amount of auto-correlation reduces with decreasing
size of the least significant part. One of the new encoding techniques exploits this effect.

4.1.1 Game traffic

Q3 is based on a client-server architecture, and messages are asynchronously exchanged
over UDP [190]. Hence we analyse client-to-server and server-to-client traffic separately.
The client-to-server traffic was taken from trace files collected at CAIA’s public game
server (see Section 3.1). It contains traffic from 106 clients – some local (same IP subnet)
and some remote (non-local). The server-to-client traffic analysis is based on trace files
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Figure 4.1: Auto-correlation of inter-packet gaps for Q3 client-to-server traffic for local
clients (left) and remote clients (right)

captured at a client that connected to 224 different game servers. We limit our analysis to
the first 5 000 IPGs of each packet flow.

Figure 4.1 shows the auto-correlation functions (ACFs) for all five local clients and
five selected remote clients (histograms are in Appendix C.1). The left graph shows
that there is high auto-correlation in a timescale of up to one second, given the average
IPG of approximately 10 ms. The two clients with the highest correlation ran Q3 under
FreeBSD/Linux, whereas the other three clients ran Q3 under Windows XP. We presume
Windows XP introduces more noise and thus the correlation is lower.

Network jitter acts as random noise reducing the auto-correlations introduced at the
source. Pearson’s correlation of the number of hops between client and measurement
point and the sum of the absolute values of the first 100 ACF coefficients is approximately
−0.21. However, Figure 4.1(right) shows that even if the traffic is observed many hops
away from the source often there is still correlation much higher than the zero correlation
of iid IPGs (the top four lines are clients that were 19–21 hops away). For about 10% of
the clients the IPGs are uncorrelated, even when the number of hops is relatively small
(the bottom line shows a client that was only eight hops away).

Figure 4.2 shows the ACF of server-to-client traffic for a server with very little cor-
relation and the ACF for a server with moderate correlation (histograms are in Appendix
C.1). Typically Q3 servers send one packet every 50 ms. However, for about 40% of the
servers we observed other patterns, such as a fraction of the IPGs being 100 ms (packet
loss or data aggregation by the server) or two peaks around the nominal 50 ms. Often the
latter patterns have periodic structures and the auto-correlation is stronger than that shown
in Figure 4.2(right). Overall, for approximately 90% of the servers there is at least small
auto-correlation of IPGs.
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Figure 4.2: Auto-correlation of Q3 server-to-client traffic for a server with little inter-packet

gap correlation (left) and a server with moderate correlation (right)

Interestingly, the server with little correlation was located much closer to the measure-
ment point (one hop) than the other server (14 hops). Pearson’s correlation of the number
of hops traversed and the sum of the absolute values of the first ACF 100 coefficients is
close to zero. This suggests that whether there is auto-correlation or not mostly depends
on the server and not on the network jitter.

We now analyse how the auto-correlation depends on the size of the least significant
part. We computed the ensemble average over the ACFs of all flows for varying least
significant parts. The ensemble average at some lag is defined as the mean of the absolute
ACF values of each flow at that lag, and referred to as average ACF. As before, we only
consider lags up to 100.

Figure 4.3 shows the average ACF of client-to-server and server-to-client traffic both
for the full IPGs and decreasing least significant parts. The average auto-correlation of the
full IPGs decays more rapidly than individual ACFs, as individual ACFs have lows and
highs at different places. Still it is significantly larger than the average auto-correlation
for small least significant parts.

4.1.2 Skype

We also analyse the IPGs of Skype based on traffic data collected by Branch et al. [192].
The dataset consists of Skype one-to-one calls with varying distance between the peers
(6–19 hops). In total the dataset contains 44 traffic flows. As before we only use the first
5 000 IPGs of each flow for the analysis. We do not differentiate between directions as
both sides are equal peers.

Figure 4.4(left) shows the ACF of a Skype flow measured at the source. The ACF
shows that IPGs are highly correlated and there are periodic structures. The histogram

78



CHAPTER 4. PACKET-TIMING COVERT CHANNELS

0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

0.5

Lag

A
C

F

  Full

  1 ms

  5 ms

10 ms

20 ms

30 ms

0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

0.5

Lag

A
C

F

  Full

  1 ms

  5 ms

10 ms

20 ms

30 ms

Figure 4.3: Average auto-correlation for Q3 client-to-server traffic (left) and server-to-client
traffic (right) (zoomed y-axis)
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Figure 4.4: Auto-correlation of Skype inter-packet gaps measured at the source (left) and 11
hops away from another peer (right)

has multiple spikes at characteristics times (see Appendix C.1). Figure 4.4(right) shows
the ACF of a flow measured for a different peer that was 11 hops away. Despite the higher
network jitter, the ACF still shows moderate correlation. However, some traffic from
peers further away shows little auto-correlation. Pearson’s correlation of the number of
hops traversed and the amount of auto-correlation is close to zero.

Figure 4.5 shows the average ACF of the traffic for the full IPGs and different least
significant parts. There is high correlation of the full IPGs, but significantly reduced
correlation for smaller least significant parts.

4.1.3 UDP and TCP mix

Finally, we analyse a mix of UDP and TCP traffic from the Twente trace (see Section 3.1).
Since the trace does not contain payload data we do not know the applications. Based on
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Figure 4.5: Average auto-correlation for Skype depending on the size of the least significant
part of the inter-packet gaps (zoomed y-axis)
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Figure 4.6: Auto-correlation of the inter-packet gaps of data traffic (left) and ACK traffic
(right) of a TCP flow (presumably FTP)

an examination of the port numbers it appears that most of the TCP flows were bulk-
transfers: HTTP, FTP, NNTP or peer-to-peer file sharing applications, such as Kazaa or
BitTorrent. Many UDP flows were game traffic, for example Half-Life/Counterstrike and
Quake, but for a significant number of flows we could not identify the applications.

The dataset has 111 UDP and 220 TCP unidirectional traffic flows from different
sources. We do not differentiate between different directions of flows because the datasets
contain different application types. We analyse the first 5 000 IPGs of longer flows.

Figure 4.6 shows the ACF in the data and ACK direction for a TCP flow observed
eight hops away from the originator and three hops away from the other end. This flow
has strong auto-correlations. Many other TCP flows have less correlation, but still often
it is larger than for iid IPGs. We think for TCP flows the correlations are caused by the
cyclical growth and collapse of the congestion window and delayed ACKs. The ACFs of
individual UDP flows look similar to the examples shown for Q3.
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Figure 4.7: Average auto-correlation of inter-packet gaps for TCP traffic (left) and UDP traf-
fic (right) taken from the Twente trace (zoomed y-axis)

Figure 4.7 shows the average ACF of the TCP and UDP traffic for the full IPGs and
different least significant parts. On average TCP flows have small to moderate auto-
correlation and there is still very small correlation even when the least significant part is
small. On average UDP flows have stronger auto-correlation than TCP flows and unlike
TCP flows there is no auto-correlation for small least significant parts.

Again, there are only very small negative Pearson’s correlations between the number
of traversed hops and the amount of auto-correlation. The correlation coefficients are
approximately −0.05 for the TCP traffic and −0.1 for the UDP traffic.

4.1.4 Conclusions

Auto-correlation of IPGs is caused by the applications and/or the operating systems. Net-
work jitter introduces random noise and reduces the correlations, but even after many
hops there often is moderate correlation. Also, if the warden is close to Alice the IPGs
are largely unaffected by network jitter.

For the UDP-based applications analysed the IPGs are often moderately to strongly
correlated. However, smaller least significant parts of the IPGs are largely uncorrelated.
The size of the least significant part where correlation diminishes depends on the applica-
tion. The TCP flows analysed, which are mostly bulk-transfers, show less correlation, but
many flows still have low to moderate correlation.

Note, that our datasets contain no flows where packet transmission times directly de-
pend on users’ actions, such as Telnet or interactive SSH, that presumably have iid IPGs.
However, in reality these flows are also likely a minority. Furthermore, their packet rate,
and hence the maximum transmission rate of covert channels, is much lower than that of
other applications, such as bulk-transfer.
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4.2 Covert channel

We first review the previous encoding scheme [104, 105] on which our improved schemes
are based. We demonstrate that the covert channel is easy to detect when IPGs in normal
traffic are correlated. We then propose new improved modulation techniques that keep
existing IPG correlations. Finally, we propose a technique for creating passive channels.

4.2.1 Basic encoding scheme

The encoding scheme proposed in [104, 105] enables Alice to produce a covert channel
that has exactly the same IPG distribution as normal traffic. Alice and Bob share a model
of the IPGs Fmodel, which has been previously generated based on an analysis of real
traffic. The model can be a histogram of previously measured IPGs or a standard statistical
distribution fitted to the observed IPGs. For example, Gianvecchio et al. found that a
Weibull distribution fits HTTP IPGs well [104].

Alice and Bob also need synchronised random number generators. They have to agree
on a random number generator and a seed value. The seed value can be derived from
Alice’s and Bob’s shared secret. To maximise security a Cryptographically Secure Pseudo
Random Number Generator (CSPRNG) should be used [105].

Let R = r1,r2, . . . ,rn be the sequence of Uniform(0,1) random numbers generated and
s be a symbol out of the set of possible symbols S . For example, a binary channel has two
symbols: S = {s1, s2} = {0,1}. Alice encodes covert bits as follows. Each discrete symbol
is transformed into a continuous symbol:

Fcont (s,r) =
(︃

s
|S |
+ r

)︃
mod 1 = rs . (4.2)

The actual IPGs d1,d2, . . . ,dn are produced by the encoding function:

Fenc = F−1
model (rs) = d , (4.3)

where F−1
model is the inverse distribution function of the model. Bob decodes the bits

from the observed IPGs d̃1, d̃2, . . . , d̃n, which is Alice’s generated series modified by timing
noise, such as timing inaccuracies at the sender, network jitter and measuring inaccuracies
at the receiver. Bob first decodes the continuous symbol by applying:

Fdec = Fmodel
(︁
d̃
)︁
= r̃s , (4.4)

where Fmodel is the distribution function of the model. Then the discrete symbol
received is:
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Figure 4.8: Auto-correlation of inter-packet gaps of normal Q3 client-to-server traffic (left)
and covert channel with perfect model of the normal traffic (right)

Fdisc (r̃s,r) = |S | · ((r̃s− r) mod 1) = s̃ , (4.5)

and in the ideal case the received symbol is identical to the sent symbol (s̃ = s).

This encoding scheme generates an IPG distribution that is indistinguishable from
the distribution of normal traffic [104, 105]. However, it does not maintain any auto-
correlations in the sequence of normal IPGs. This makes the channel detectable because
real traffic often has correlated IPGs, as we showed in Section 4.1.

Figure 4.8 illustrates how different the covert channel is from normal auto-correlated
traffic. The figure shows the ACF of the IPGs of normal Q3 client-to-server traffic on the
left and the ACF of the IPGs of the covert channel on the right. We simulated a binary
covert channel using a histogram of IPGs with a bin size of 10 µs as Fmodel.

The IPG histograms of normal traffic and covert channel (not shown) look alike, but
the difference of the ACFs is striking. In Section 7.4 we present the results of a more
comprehensive analysis of the stealth. We show that the detection accuracy for the covert
channel proposed in [104, 105] is very high for all datasets introduced in Section 4.1.

4.2.2 Sparse encoding

We can improve the stealth of the channel by sacrificing capacity. Instead of using all
IPGs for encoding, Alice and Bob use only a fraction. Our scheme is also designed so
that it is more robust against packet loss than the scheme in [104, 105].

Let f be the fraction of overt packets that carry covert information (called encoding

fraction). The size of f determines the trade-off between stealth and capacity. Both Alice
and Bob generate a sequence of random numbers T = t1, . . . , tn using a CSPRNG and part
of the shared secret as seed. All packets where ti ≤ f are selected for the covert channel.
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Alice and Bob encode and decode covert bits from the IPGs between selected packets and
immediately preceding packets.

This scheme works well if the overt traffic has accessible sequence numbers, but oth-
erwise any packet loss permanently desynchronises Alice and Bob. Furthermore, if Bob
is not able to observe the start of the transmission he could never synchronise with Alice.
The same problem arises with the encoding scheme in [104, 105]. Any undetected lost
packet desynchronises the random numbers between sender and receiver.

The synchronisation problem is solved with the following approach where T and R

are computed from the packets themselves. Assume H is a good hash function that maps
the inputs as evenly as possible over the output range. Every value in the output range is
generated with approximately the same probability (uniform distribution). Let B denote
some part of an overt packet that is immutable on the path from Alice to Bob and let bi be
the value of B for the i-th packet. The i-th overt packet is selected if:

H (bi) ≤ f . (4.6)

We assume that the inputs bi vary sufficiently so that the output of H is approxi-
mately uniformly distributed. For active channels Alice can ensure this is the case. For
(semi-)passive channels previous work on packet sampling and one-way delay measure-
ment showed that generally this is the case if B is chosen properly, and suggested several
suitable choices for H and B [193, 194].

Alice and Bob need to agree on H, B and f . It is possible for Wendy to guess H, B

and f and therefore to detect the covert channel, especially as the choices for H and B are
limited. To increase security Alice and Bob can use shared key material k1 and select the
packets as follows (⊕ operator denotes the XOR function):

H (bi⊕ k1) ≤ f . (4.7)

For each packet selected, the sender and receiver compute ri based on a good hash
function H, data from the packet bi and shared key material k2:

ri = H (bi⊕ k2) . (4.8)

The outputs of the two hash functions for T and R should be independent, achievable
by using different inputs BT and BR, or different hash functions HT and HR

1.

Algorithm 4.1 shows the encoding algorithm. The inputs of the encode function are
the packet itself, the time the previous packet was received, and the time the current packet
was received. If the packet is selected for the covert channel the sender computes the IPG

1Our proof-of-concept implementation uses two hash functions.
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Algorithm 4.1 Sender algorithm for sparse encoding

function encode(packet, prev_pkt_time, pkt_time)
b = hash_input(packet)
orig_ipg = pkt_time − prev_pkt_time

if HT (b) ≤ f then
bits = get_bits()
r = HR (b)
delay = Fenc (Fcont (bits,r))

else
ipg = orig_ipg

return ipg

Algorithm 4.2 Receiver algorithm for sparse encoding

function decode(packet, prev_pkt_time, pkt_time)
b = hash_input(packet)
ipg = pkt_time − prev_pkt_time

if HT (b) ≤ f then
r = HR (b)
bits = Fdisc (Fdec (ipg) ,r)

else
bits = NA

return bits

based on the covert bits as described in Section 4.2.1. Otherwise, no bits are sent and the
IPG is not modified.

The decoding algorithm is simple (see Algorithm 4.2). The receiver checks if the
current packet is selected for the covert channel. If yes, the covert bits are decoded as
explained in Section 4.2.1. Otherwise, no bits are received.

Figure 4.9 illustrates the effectiveness of sparse encoding based on the same data as
Figure 4.8. The covert channel maintains some auto-correlation, but it is reduced com-
pared to the normal traffic. In Section 7.4 we show that sparse encoding is much harder to
detect than Section 4.2.1’s channel for f ≤ 0.3. Using only a fraction of IPGs also allows
management of the sender’s buffering delay for passive channels (see Section 4.2.4).

For active channels sparse encoding requires replacing Fmodel with a more complex
model that models a time series’ distribution and auto-correlations. For example, autore-
gressive integrated moving average (ARIMA) models were used to model time series of
packet sizes of game traffic more accurately [195]. The sender first uses the model to
create a series of IPGs, and then uses the encode() function to encode the covert data.
For passive channels the correlations are already present in the intercepted traffic.
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Figure 4.9: Auto-correlation of inter-packet gaps of normal Q3 client-to-server traffic (left)

and covert channel using sparse encoding with f = 0.3 (right)

4.2.3 Sub-band encoding

Sparse encoding improves the stealth of the channel, but the capacity is severely reduced.
Now we present a different modulation scheme that provides a higher capacity and is also
better in maintaining auto-correlation of IPGs. However, it is less robust. The scheme
encodes covert bits into the least significant part of IPGs as defined in Section 4.1.

Let l be the size of the least significant part of the IPGs in micro- or milliseconds. The
parameter l determines the trade-off between stealth and robustness. Let D be the range
of IPGs (maximum minus the minimum). Then an IPG distribution typically spans many
sub-bands of size l, precisely m = ⌈D/l⌉ bands, although in the extreme case it may fit in
only a single sub-band. The location of the sub-bands, the IPG value marking the start
of each band, depends on the start value of the first band. The location must be selected
carefully to minimise the error rate for a given IPG distribution.

For each of the sub-bands the basic encoding scheme described in Section 4.2.1 is
used. However, now we have one probability distribution of the least significant part of
the IPGs for each sub-band j, resulting in F( j)

enc (.) = F−1( j)
model (.) and F( j)

dec (.) = F( j)
model (.).

Since the scheme encodes bits using sub-bands we named it sub-band encoding.

When building the model from the example traffic a distribution of the least significant
part of the IPGs must be estimated for each sub-band. If the example traffic is only a small
sample and the number of bands is large it may happen that there are only a few or even
zero values for some bands. Our algorithm augments the data for these sub-bands with
uniformly distributed random values so that a minimum number of samples is reached2.

Algorithm 4.3 shows the encoding algorithm. Let BL be a set of tuples
(︁
d( j)

start, x j
)︁

that
associate each sub-band index x j with an absolute IPG value d( j)

start marking the start of the

2For sub-bands outside the range covered by the example traffic we also assume uniform distributions.
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band (base IPG). We assume that BL has a uniform band model for all bands not covered
by the example traffic. First, the algorithm determines the actual sub-band based on the
original unmodified IPG. Then the modified IPG is the sum of the least significant part as
given by the sub-band model and the base IPG of the sub-band.

Algorithm 4.3 Sender algorithm for sub-band encoding

function encode(packet, prev_pkt_time, pkt_time)
b = hash_input(packet)
orig_ipg = pkt_time − prev_pkt_time

base_ipg = ⌊orig_ipg/l⌋ · l
band = BL[dstart = base_ipg] .x
bits = get_bits()
r = HR (b)
ipg = F(band)

enc (Fcont (bits,r))+base_ipg

return ipg

Algorithm 4.4 shows the decoding algorithm. The receiver selects the sub-band based
on the observed IPG. Then it computes the least significant part of the IPG and decodes
the bits as before.

Algorithm 4.4 Receiver algorithm for sub-band encoding

function decode(packet, prev_pkt_time, pkt_time)
b = hash_input(packet)
ipg = pkt_time − prev_pkt_time

base_ipg = ⌊ipg/l⌋ · l
lsp = ipg − base_ipg
band = BL[dstart = base_ipg] .x
r = HR (b)
bits = Fdisc

(︁
F(band)

dec (lsp) ,r
)︁

return bits

Figure 4.10 illustrates the effectiveness of sub-band encoding based on the same data
as Figure 4.8. The covert channel only very slightly decreases the auto-correlations. Our
results in Section 7.4 show that sub-band encoding is harder to detect than sparse encoding
while providing a significantly higher capacity.

The drawback of sub-band encoding is that it is less robust against network jitter,
but network jitter is often relatively small even on paths with many hops if there is no
congestion. However, the scheme is less robust against an active warden that introduces
artificial jitter by re-timing the overt packets.

For active channels sub-band encoding requires replacing Fmodel with a model that
also captures the auto-correlations, as discussed in Section 4.2.2. The sender uses the
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Figure 4.10: Auto-correlation of inter-packet gaps of normal Q3 client-to-server traffic (left)

and covert channel using sub-band encoding with l = 5 ms (right)

model to create a series of IPGs, and then uses the encode() function to encode the data.
For passive channels the correlations are already present in the intercepted traffic.

4.2.4 Passive channel

The covert channel in [104, 105] was developed as active channel, where the covert sender
generates ‘fake’ application traffic with the appropriate timing. Creating fake UDP traffic
is simple, especially if both directions of a flow are ‘independent’. However, creating
fake TCP connections is more complicated, and presumably that is the reason why the
previous proof-of-concept implementation used UDP [196].

Active channels are simpler to implement than passive channels, but they require the
covert sender to imitate normal traffic very well. The sender must emulate the application
protocols to create realistic looking messages, or the covert channel could be easily de-
tected by packet inspection. It is possible to imitate real protocols, but an implementation
is cumbersome and the support of a larger number of protocols is difficult.

Also, the covert sender must ensure that traffic patterns, such as message sizes and
timing, look realistic. For example, if the covert channel hides in HTTP, as suggested in
[104], simple patterns such as repeatedly transferring the same object(s) would be suspi-
cious. Instead a realistic looking pattern of HTTP requests must be generated. Previous
work [104, 105] did not address how to introduce variance into the model to prevent all
covert channels from looking identically.

To avoid these issues we propose to use passive or semi-passive channels, where the
traffic of real applications is used as cover. The covert sender either uses existing traffic
of unwitting users or generates the overt traffic using real applications. This guarantees
that real application protocols are used and the traffic patterns are realistic.
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Figure 4.11: Insufficient buffering causes a wrong bit to be sent (left), but with more initial
buffer delay both bits are sent correctly (right)

The disadvantage of passive channels is the delay added to the overt traffic due to
the buffering necessary for changing the timing of packets, as illustrated in Figure 4.11.
The figure shows three example packets, whose timing is changed by the covert sender to
encode the bits “10” (logical zero/one encoded as small/large IPG). In Figure 4.11(left)
the initial buffering delay is insufficient to encode the zero and instead a one is sent. Figure
4.11(right) shows that with more initial delay the bits are sent correctly.

Algorithm 4.5 shows the passive sending technique. The first packet is delayed for
a pre-defined time (INITIAL_DELAY). For each following packet the algorithm checks if
the IPG between the current and previous packet is used for encoding bits or for buffer
management purposes. This packet selection is identical to the selection used by sparse
encoding, except that the threshold is f̂ is usually much larger than f 3.

If bits are encoded the sparse encoding or sub-band encoding encode() function is
called. If the computed IPG is smaller than the time already elapsed between the reception
of the current packet and the sending of the previous packet, it is not possible to produce
the desired IPG due to insufficient buffering. Otherwise the computed IPG is adjusted
according to the time the last packet was or will be sent.

If an IPG is not used to encode bits, it is not modified if the current buffering delay is
within a target range (MIN_DELAY, MAX_DELAY). If the current buffering delay is outside
the target range the original IPG is adjusted to get into the target range. The algorithm
aims to keep the buffering delay under a specified maximum to reduce latency and over a
specified minimum to avoid bit errors caused by insufficient buffering.

We assume that extreme IPG values are removed from Fmodel, i.e. the lower and upper
x-percentiles are removed. Then a simple way of adjusting the delays is to randomly
choose IPGs from the small and large end of Fmodel. The frequency of adjustments is at
most 1− f̂ and with a larger target delay range it is usually significantly smaller. This
means the impact on the shape of the IPG distribution is usually very small; however it
may be detectable, for example revealed by the first-order entropy.

A stealthier but more complicated technique works as follows. Let U be a list of
n IPG values randomly selected from Fmodel. Each time an adjustment is required, the

3In our experiments we set f̂ = 0.95.
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Algorithm 4.5 Passive covert sender algorithm

function send(packet, prev_pkt_time, prev_pkt_send_time, pkt_time)
if prev_pkt_time , NA then

b = hash_input(packet)
orig_ipg = pkt_time − prev_pkt_time
offset = pkt_time − prev_pkt_send_time

if HT (b) ≤ f̂ then
ipg = encode(packet, prev_pkt_time, pkt_time)
if ipg ≥ offset then
ipg = ipg − offset

else
// insufficient buffering!
ipg = 0

else
ipg = orig_ipg
if offset < −MAX_DELAY then
// decrease buffering delay

if offset > −MIN_DELAY then
// increase buffering delay

else
ipg = INITIAL_DELAY

prev_pkt_time = pkt_time
prev_pkt_send_time = pkt_time + ipg

return ipg

value in U closest to the required IPG, based on the current buffering delay and the target
range, is selected. This value is then removed from U. Once U is empty it is refilled with
another n values randomly chosen from Fmodel. Since U is a random sample of Fmodel,
the adjustments do not change the shape of the IPG distribution. However, the buffer
management becomes more difficult. We leave this approach as future work.

The buffering delay introduced potentially reduces the performance of the applica-
tions generating the overt traffic. However, for UDP-based flows or low-rate TCP flows
a performance reduction may not be noticeable. In Section 4.5 we analyse the delay and
show that it can be reduced by allowing a higher bit error rate. Furthermore, for semi-
passive channels there is no issue as the covert sender is also the ‘user’ of the applications
and hence unconcerned about additional delay.

4.3 Implementation considerations

First we discuss issues arising when using the improved passive timing channel with cer-
tain applications and propose solutions. Next, we discuss measures to reduce timing noise
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introduced at the sender and receiver. Finally, we describe the choice of hash functions
and their input, and verify that the output is indeed uniformly distributed.

4.3.1 Overt traffic dependencies

A number of issues arise with the improved passive timing channel and Section 4.2.1’s
active timing channel that were not identified in [104, 105], because the proof-of-concept
implementation [196] or simulation [105] was based on IP packets and did not consider
the effects of transport protocols or applications.

Section 4.2.1’s encoding scheme [104, 105] randomises the IPGs completely. This
is problematic if an IPG distribution contains very large values, which can be the case
for human-driven traffic, such as interactive SSH. For example, if a covert sender assigns
a very long IPG to an ‘unsuitable’ packet pair, such as the SYN and ACK of a TCP
session’s initial handshake, this would be suspicious for an active channel and even worse
could entirely disrupt the overt traffic for a passive channel (TCP session setup timeouts).

For passive channels very long IPGs cause bit errors unless the buffering delay is very
large. But very large buffering delays are impractical, and hence if very long IPGs are
common, such as for interactive SSH, the overall bit error rate will significantly increase.
Therefore, our passive channel does not use very large IPGs for encoding.

IPGs over a threshold are removed from Fmodel. Covert sender and receiver ignore all
IPGs over the threshold, i.e. they do not encode or decode. To avoid further synchroni-
sation problems the sender and receiver make the decision based on IPGs computed from
TCP timestamps, which are widely used these days and immutable in the network.

Covert sender and receiver must process the packets in the correct order, based on the
TCP timestamps, before computing the IPGs. We assume that any reordering between
actual sender and covert sender is very small, because typically they are very close. The
receiver buffers and reorders copies of packets. Hence this mechanism does not introduce
additional delay.

Our approach also avoids TCP handshakes failing due to timeout. On the other hand
it lowers the capacity compared to active channels where large IPGs encode bits. Our
technique works for UDP-based protocols that have per-packet timestamps, such as RTP.

Bidirectional flows associated with request/response protocols can also pose a chal-
lenge for active and passive timing channels. For example, a TCP client may have to wait
for a response or a TCP ACK before it can send the next packet. These dependencies lead
to errors if two timing channels are encoded in both directions of a flow. Furthermore,
they are problematic for passive channels. If the overt sender is waiting for a response
before continuing to send, the covert sender’s buffer is drained completely. However,
for some UDP-based applications, such as Q3, the packet flows in both directions are
basically independent (asynchronous).
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For bidirectional asynchronous protocols the passive channel is encoded in both di-
rections. However, for TCP only one direction of a flow is used. If a bidirectional covert
channel is needed, two simultaneous TCP flows could be used. We leave the study of
bidirectional channels over single TCP flows as future work.

If the overt traffic contains timestamps that are accessible for the warden, such as TCP
timestamps, (semi-)passive covert senders must manipulate these timestamps according
to the modified IPGs. Otherwise the channel could be detected by observing discrep-
ancies between the protocol timestamps and the actual IPGs. If the covert sender cannot
manipulate these timestamps it must keep IPG modifications small so they look like noise.

4.3.2 Sender/receiver timing accuracy

Channel timing noise consists of packet timing inaccuracies at the covert sender, packet
timestamping inaccuracies at the covert receiver and network jitter. There are several
things covert sender and receiver can do to minimise inaccuracies.

The receiver noise can be minimised by using high-performance capture cards that
provide highly accurate packet timestamps, such as DAG cards [197]. Although high-
performance capture devices exist, most covert receivers will rely on consumer-grade
network interface cards (NICs) that may or may not support timestamping in hardware.

Our prototype based on CCHEF, described in Appendix A, was carefully designed to
maximise the sender’s packet timing accuracy (see Appendix C.2). However, CCHEF is a
userspace program and thus competes with other userspace programs for CPU time. Other
programs using a lot of CPU time, such as the Q3 client, decrease CCHEF’s timing ac-
curacy. To avoid this we use real-time Linux [198] and CCHEF runs as real-time process
with high priority (see Appendix C.2). Furthermore, we set the kernel’s tick frequency to
10 kHz to minimise the size of time slices4.

We performed experiments to estimate the sender’s timing accuracy (see Appendix
C.2). The results show that for Q3 client-to-server traffic, with a packet rate of approxi-
mately 91 pps, the error is less than 40 µs, despite the covert sender and Q3 client machine
running at 100% CPU load. For scp traffic the error is higher because of the higher packet
rate (approximately 164 pps) and the larger amount of processing needed for TCP packets,
but still mainly within 100 µs.

Some of the above measures to improve the covert sender’s timing accuracy imply
a high degree of control over the host. However, if CPU utilisation and packet rate are
not very high they are not required. For example, using interactive SSH or Q3 server-to-
client traffic in our testbed does not require a real-time operating system with high tick
frequencies to achieve low error rates.

4Even high frequencies cause only relatively small context switching overhead on modern CPUs [199].
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4.3.3 Hash functions

We use the CRC32 and “Bob’s hash” hash functions5. For UDP we use 40 bytes of
each packet as input (IP ID, source and destination address, protocol, total length, UDP
header, first 19 bytes of UDP payload) as suggested in [193, 194]. However, for TCP
only 21 bytes are used, because the covert sender modifies the TCP timestamp as well as
the TCP checksum. This means the IP header fields listed above, and the TCP sequence
number and acknowledgement number are used.

We verified that the output of the hash functions is uniform given the input in our
experiments described in Section 4.5. CDFs of the values of the two hash functions show
that for all applications both functions deliver almost perfect uniform distributions (see
Appendix C.3). We also used the two-sample Kolmogorov-Smirnov (KS) test to test
the hypothesis that the different distributions are uniform. In each test we compared the
generated hash values with a uniform distribution. Based on the results in all cases we
cannot reject the hypothesis that the distributions are uniform at 95% significance level.

4.4 Channel capacity

Now we develop a model for the channel and derive the channel capacity. We use the re-
sults in Section 4.5 to estimate the maximum transmission rates of the channel depending
on different networks conditions.

The channel model of the IPG timing channel is similar to the model of the TTL
channel described in Section 3.3. Again, we assume the channel is memoryless and we
focus on a binary channel. There are three possible sources of errors:

• bit substitutions caused by timing jitter,

• bit substitutions and deletions caused by loss of overt packets and

• bit substitutions caused by reordering of overt packets.

Timing jitter, the combined effects of packet timing inaccuracies, timestamping inaccura-
cies and network jitter, causes bit substitutions on the channel. We can model the channel
under the effects of timing jitter either as a BSC [22] or a BAC [169]. In our experiments
the resulting error rates are approximately symmetric. Hence we use the BSC to deter-
mine the capacity. If covert sender and receiver can utilise information contained in the
overt traffic, the impact of the last two sources of errors depends on the protocol.

If the protocol has no sequence numbers (e.g. UDP), the covert receiver does not know
which bits were lost. Hence we model packet loss as a binary deletion channel [22]. If the

5Previous research showed that CRC32 and “Bob’s hash” are suitable for packet selection [194].
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Figure 4.12: Inter-packet gap timing channel model

transport protocol has sequence numbers (e.g. RTP or TCP), the covert receiver knows
which packets were lost and we use a binary erasure channel [22]. In contrast to storage
channels, like the TTL channel, packet retransmissions (e.g. TCP) are only helpful if they
can be manipulated such that their IPGs encode the lost bits.

Since the covert channel is encoded in IPGs between two packets, every lost packet
not only causes a deletion or erasure but also a possible substitution error in the following
bit, effectively further increasing the timing jitter. Packet reordering always results in
potential substitution errors because even if the covert receiver can reconstruct the original
sequence of packets it does not know the original IPGs. Effectively packet reordering also
increases the timing jitter. The error rate of the BSC is pN = f (pT, pR, pL), where pT is
the substitution error rate caused by timing jitter, pR is the substitution error rate caused
by reordering, and pL is the packet loss rate. We empirically measure pN in Section 4.5.

We model the overall channel as a cascade of the two separate channels where the
leftmost channel is either a deletion channel with symbol lost indicated by a “_” or an
erasure channel with a symbol value unknown indicated by a “?” (see Figure 4.12).

The capacities for the individual channels and the cascade were derived in Section 3.3.
In any case the lower bound of the capacity of the IPG covert channel is:

C ≥max
{︀
0,1−

[︀
H (pL)+ (1− pL) H (pN)

]︀}︀
. (4.9)

If packet loss can be detected based on information in the overt traffic the capacity is:

C = (1− pL) (1−H (pN)) . (4.10)

If the IPGs of retransmitted packets can be used to retransmit lost bits the capacity is:

C = 1−H (pN) . (4.11)

Table 4.1 summarises the channel capacity for the UDP and TCP transport protocols.
In contrast to the TTL channel there is no gain for encoding in single flows. The capacity
C is always in bits per IPG (bits per symbol) and the average transmission rate in bits per
second is computed using Equation 3.14, where fS is the average rate of packet pairs.
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Table 4.1: Channel capacity based on overt traffic
UDP w/o seq numbers UDP with seq numbers TCP

Single or multiple flows Equation 4.9 Equation 4.10 Equation 4.11

4.5 Empirical evaluation

Here we describe our testbed, present the measured channel error rates and resulting ca-
pacities based on various network conditions, and evaluate the throughput achieved using
Section 3.4’s protocol for reliable transport relative to the channel capacity. Finally, we
analyse the delay introduced into the overt traffic for passive channels.

4.5.1 Methodology

Our testbed consisted of two computers connected via a Fast Ethernet switch6. Alice and
Bob, CCHEF instances, were co-located with the actual sender and receiver. However,
they could have been middlemen acting without knowledge of the user(s) of the applica-
tions. As applications we used scp, interactive SSH and Q3, the same applications that
were used in the TTL channel experiments (see Section 3.5.6).

Each experiment lasting 20 minutes was repeated three times and we report the av-
erage statistics. Network delay/jitter, packet loss and reordering were emulated using
Linux Netem [189]. The network delay/jitter was emulated using Pareto distributions
with a mean of 25 ms and standard deviations (σ) of 0, 0.1, 0.2, 0.3, 0.5, 1 and 2 ms in
each direction, since previous research suggested that network jitter is heavy-tailed [200],
and Netem only supports Uniform, Gaussian and Pareto jitter distributions. Setting the
kernel’s tick timer frequency to 10 kHz ensured delay emulation was accurate to ±100 µs.

Figure 4.13 shows CDFs of the absolute IP Delay Variation (IPDV [201]), both in the
testbed with Pareto distributions with different standard deviations and measured across
two Internet paths. The 8-hop Internet path’s RTT was approximately 32 ms, and the
13-hop path’s RTT was approximately 46 ms. All measurements used ping (ICMP re-
quest/reply), potentially inflating the observed Internet path RTTs, as pinged hosts were
not under our control and ICMP echo packets may have low priority in routers. We esti-
mated the one-way delay to half the measured RTT.

We emulated packet loss and reordering rates of 0%, 0.1%, 0.5% and 1% with a
correlation of 25% [189], because loss and reordering in the Internet are typically bursty.
Prior to the experiments we verified the accuracy of Netem (see Appendix F). Due to the

6An Intel Celeron 2.4 GHz with 256MB RAM and an Intel Celeron 3.0 GHz with 1GB RAM, both
running LinuxRT 2.6.20. A low-end Alloy NS-16J switch introduced timing errors up to 100–200 µs.
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Figure 4.13: Absolute IPDV distributions for different testbed settings and two real paths
across the Internet

large number of parameters we do not explore all parameter combinations but investigate
the dependency on one parameter while the others are fixed to sensible values.

The models Fmodel were built as follows. First, we measured the IPG distribution of
each application at the source, unaffected by timing jitter. We then added a small amount
of noise. Without the added noise the covert channel would not work well for applications
with very narrow IPG distribution, such as Q3 client-to-server and scp traffic. The added
noise represents timing jitter caused by the network, or a high CPU or NIC load at the
host, which the warden would also encounter in reality, especially when being multiple
hops away from the covert sender. For applications with wider IPG distributions, such as
Q3 server-to-client and SSH traffic, it may not be necessary to add noise. However, to
even the playing field we always added noise.

For Q3 and SSH we used normally distributed noise. For scp there are many very
small IPGs between data packets (tens of microseconds up to a few hundred microsec-
onds) and fewer larger IPGs (tens of milliseconds). Since accurate packet timing in the
order of a few tens of microseconds is impossible, the model was constructed such that the
IPGs between ‘back-to-back’ packets were increased (using a uniform noise distribution)
and the larger IPGs were reduced to maintain the original rate.

For the noise we used standard deviations of 0.5 ms, 0.75 ms and 1 ms (referring to a
model with noise standard deviation of x as model-x). For Q3 and SSH traffic the location
of the sub-bands was chosen such that peaks in the distributions are approximately in the
middle of bands. Our models are histograms with small bin sizes of 10 µs, as our traffic
sources cannot be modelled well with standard statistical distributions.
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Figure 4.14: Error rate (left) and maximum transmission rate (right) for sparse encoding with
model-0.5 (left graph has log y-axis)
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Figure 4.15: Error rate (left) and maximum transmission rate (right) for sparse encoding with
model-1.0 (left graph has log y-axis)

4.5.2 Error rate and capacity

First we measured the error rate of the channel based on the encoding scheme, network jit-
ter, packet loss and reordering. We also investigated the effect of different models (model-
0.5, model-0.75, model-1.0). Based on the channel model we computed the maximum
transmission rates. For sparse encoding we used f = 0.3 because the channel is hard to
detect for such low f (see Section 7.4). For sub-band encoding we set l = 5 ms. The
buffering parameters were set to minimise errors caused by insufficient buffering.

Figure 4.14 and Figure 4.15 show the error rate for sparse encoding for model-0.5 and
model-1.0 depending on the standard deviation of the emulated delay without packet loss
or reordering (graphs for model-0.75 are in Appendix C.4). They also show the maximum
transmission rates. There is not much variation in the measured error rate, except for SSH
with error rates below 1%, and hence for clarity no error bars are shown.
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Figure 4.16: Error rate (left) and maximum transmission rate (right) for sub-band encoding
with model-0.5 (left graph has log y-axis)
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Figure 4.17: Error rate (left) and maximum transmission rate (right) for sub-band encoding
with model-1.0 (left graph has log y-axis)

The results show that for model-0.5, the error rate increases relatively quickly with
increasing network jitter. But for model-1.0 the increase is more moderate. The error
rate for Q3 server-to-client traffic and SSH is much smaller due to the wider model dis-
tributions, but the maximum transmission rates are still small because of the low packet
rates. Due to f = 0.3 the maximum rate of sparse encoding is already much lower than
for sub-band encoding or the TTL channel.

Figure 4.16 and 4.17 show the same graphs for sub-band encoding. We see that sub-
band encoding is less robust than sparse encoding; the error rate increases faster with
increasing network jitter. Again, Q3 server-to-client traffic and SSH have the lowest er-
ror rates, but also the smallest transmission rates. Because of the larger number of overt
packets used the maximum transmission rates are significantly larger for small to moder-
ate jitter compared to sparse encoding.
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Figure 4.18: Error rate (left) and maximum transmission rate (right) depending on packet
reordering for sparse encoding with model-0.5 (left graph has log y-axis)
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Figure 4.19: Error rate (left) and maximum transmission rate (right) depending on packet
reordering for sub-band encoding with model-0.5 (left graph has log y-axis)

We now investigate the effects of packet reordering. The packet reordering rate was
configured via Netem, but the actual error rate also depends on the delay configured and
the application’s IPG distribution (see Section 3.5.6). We configured the delay individu-
ally for the different applications so that the resulting reordering rates were similar.

Figure 4.18 shows the error rates and maximum transmission rates for sparse encoding
depending on the packet reordering rate for model-0.5 without emulated network jitter.
Figure 4.19 shows the same for sub-band encoding.

For sub-band encoding the bit error rate approximately equals the expected reordering
rate from Equation 3.4 (differential case) plus the errors caused by timing jitter. However,
for sparse encoding the error rate is lower because in Equation 3.4 we assumed that all
packet pairs are used.
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Figure 4.20: Error rate (left) and maximum transmission rate (right) depending on packet
loss for sparse encoding with model-0.5 (left graph has log y-axis)

The maximum transmission rates are only slightly reduced for the reordering rates
emulated. We also performed experiments with emulated network jitter (σ = 0.2 ms) and
packet reordering. Normalised on the base error rate with zero packet reordering the error
rates are similar to the rates without emulated jitter. The error rates produced for different
models are also similar.

Finally, we investigate the effects of packet loss. Figure 4.20 shows the error rates
and maximum transmission rates for sparse encoding depending on the packet loss rate
for model-0.5 without emulated network jitter. Figure 4.21 shows the same for sub-band
encoding.

We computed the error rates as follows. After each experiment the lost packets were
identified using the packet hashes. Then dummy zero bits were inserted for deletions.
Since the data was uniform random approximately 50% of the inserted bits cause errors.
The remaining errors, minus the base error at zero packet loss, are the substitution errors
following each deletion. Unlike for the TTL channel with AMI encoding, it is difficult to
predict these errors because they depend on the application’s IPGs.

For Q3 and SSH the transmission rate decreases only slightly with increasing packet
loss. For scp the maximum transmission rate decreases more substantially, because the
packet rate of the overt traffic decreases. TCP flows usually experience reduced packet
rates in the presence of network delay and packet loss, but for passive IPG timing channels
this effect is increased because of the added buffering delay. As for reordering, the result-
ing error rates are smaller for sparse encoding compared to sub-band encoding. Again,
the error rates caused by packet loss do not change significantly with different emulated
network jitter or different models.
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Figure 4.21: Error rate (left) and maximum transmission rate (right) depending on packet
loss for sub-band encoding with model-0.5 (left graph has log y-axis)

Our new timing channels have high capacities if network jitter is low. Transmission
rates are up to over hundred bits per second. However, if the network jitter is high the
capacity is severely reduced and much smaller than the TTL channel’s capacity.

Sparse encoding has lower error rates since each bit is encoded using the full distri-
bution. For larger f the error rate is similar, but the maximum transmission rate increases
accordingly. Sub-band encoding provides higher transmission rates because a larger frac-
tion of the IPGs can be used for encoding. The larger the sub-band size the more robust
the encoding becomes. Sub-band encoding can be used if the reduction in robustness is
tolerable, i.e. when there is not too much timing jitter. Otherwise, sparse encoding should
be used since it is more robust.

Q3 and scp have very narrow IPG distributions, and in our experiments even interac-
tive SSH was limited because we played back a short recorded session repeatedly. Appli-
cations with wider IPG distributions can provide much more robust channels. However,
transmission rates would still be low since such applications also have low packet rates.
Active channels have slightly higher transmission rates because no IPGs need to be ‘sac-
rificed’ for buffer management.

4.5.3 Burstiness of errors

The burstiness of errors does not affect the channel capacity, but it affects the performance
of techniques for reliable data transport. How bursty the errors are depends on the encod-
ing scheme and the IPG distribution of the normal traffic. Figure 4.22 illustrates this for
scp and Q3 showing CDFs of the distance between errors in bits for the experiments with
σ = 0.3 ms and no packet loss and reordering and simulated uniformly distributed errors
with same error probabilities .
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Figure 4.22: Distance between bit errors in bits for sparse encoding (left) and sub-band en-
coding (right)

Sub-band encoding experiences burstier errors than sparse encoding, and scp pro-
duces burstier errors than Q3. With emulated packet loss and reordering errors are even
burstier, since lost or reordered packets likely create error bursts and we emulated corre-
lated packet loss and reordering. The emulated network jitter, packet reordering and loss
were stationary, and hence the measured error rate was also stationary.

4.5.4 Throughput

We measured the throughput over the channel using the reliable transport protocol de-
veloped in Section 3.4. We used sub-band encoding, because for low network jitter its
capacity is higher than that of sparse encoding7. For all experiments without packet loss
and reordering we used the non-deletion technique and for the remaining experiments we
used the marker-based technique. We used the same codes for scp and SSH, but different
codes for Q38. The code lengths were similar to those used for the TTL channel (see
Appendix C.6). The duration of experiments with interactive SSH was increased to one
hour to increase the number of transmitted data blocks.

The encoding parameters were manually tuned according to the error rates in the dif-
ferent scenarios with the goal of achieving a very low block corruption rate with FEC
alone. As in Section 3.5 we computed the actual throughput assuming a FEC+ARQ
scheme with a target block corruption rate of 1−9. Because we used relatively high redun-
dancies for the RS codes, in all experiments the block corruption rate was below 0.5%. In
many experiments it was actually zero.

7We used model-1.0 and set l = 5 ms (as before).
8For scp and SSH the error rates are similar, but for Q3 the channel has consistently higher error rates.
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Figure 4.23: Throughput depending on the standard deviation of the network delay for 0%
packet loss and reordering

Figure 4.23, 4.24 and 4.25 show the throughput for the different applications and
error rates. For scp the data was transferred from Alice to Bob, and the covert channel
was encoded in this direction. For Q3 the throughput from Alice to Bob is much larger,
as Alice’s host running the Q3 client sent one packet every 10–20 ms, but Bob’s host
running the server only sent one packet every 50 ms [190]. For SSH the covert channel
was encoded in the traffic sent by the remote host (target of the SSH session).

The results show that throughput reduces quickly with increasing network jitter, but
only moderately for increasing packet reordering. With increasing packet loss the through-
put decreases substantially for scp, because not only is more redundancy needed but also
the overt packet rate decreases substantially. The throughput is still at least 20 bits per
second for overt flows with higher packet rates, such as scp or Q3 client-to-server traffic.

Figure 4.26 shows the percentage of the channel capacity reached for the different
applications (averaged over both directions for Q3). We computed the capacity based on
the configured packet loss rate, and the substitution error rates measured.

The percentage of the capacity reached is at least 30–40%, except for high packet loss.
Unlike for the same experiments with the TTL channel here the impact of packet loss is
more severe than the impact of packet reordering, because lost packets not only cause
deletions but also substitution errors9.

The percentage for scp is always the highest. We think the percentage for Q3 is lower
because errors are less bursty as shown before, making the RS code less effective. For
SSH the percentage is often lower because the error rates are slightly smaller than for
scp and hence the code was slightly over-dimensioned. Furthermore, despite the longer

9The TTL channel with MED modulation scheme has no additional substitutions caused by deletions.
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Figure 4.24: Throughput depending on the packet loss rate with 0.2 ms standard deviation of
network delay and 0% packet reordering

experiments the results for SSH are still affected by rounding errors due to the small
number of blocks transmitted (see Section 3.5.6).

We also examined the variability of the covert bit rate over time (see Appendix C.5).
Without packet loss the rate is relatively constant for all applications. With packet loss it
is still relatively constant for Q3 and SSH, but for scp it varies significantly.

We outlined in Section 3.5.6 how use of TCP-specific information could improve the
capacity of the TTL channel for overt TCP traffic. To a lesser degree similar improvements
may be introduced to IPG timing channels. TCP sequence numbers could be used to
detect packet loss and possibly also to retransmit covert bits. The latter assumes each bit
is uniquely associated to a TCP sequence number and the selection of overt packet pairs
is modified, so that if a packet is selected all retransmission of it are also selected.

However, bit errors caused by packet reordering cannot be prevented. Our current im-
plementation already puts packets in the correct order before decoding, but it is impossible
to reconstruct the original IPGs.

4.5.5 Buffering delay

We examined the delay introduced to the overt traffic for (semi-)passive channels. We
used the buffering delay configuration from the previous experiments and two additional
configurations resulting in smaller delays. The network delay was fixed to 25 ms in each
direction and packet loss and reordering were set to zero. For the encoding fraction and
sub-band size we used the same parameters as before, and we used model-0.5. Figure
4.27 depicts the measured error rate depending on the mean buffering delay.
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Figure 4.25: Throughput depending on the packet reordering rate with 0.2 ms standard devi-
ation of network delay and 0.1% packet loss rate
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Figure 4.26: Percentage of capacity reached for the different applications and network jitter,
packet loss and reordering rates (averaged over both directions for Q3)

The mean buffering delays for the smallest delay setting are similar for sparse and
sub-band encoding for all applications. For Q3 the error rate is very similar for all set-
tings. For scp and SSH the error rate increases greatly with smaller buffering delays when
using sparse encoding, but for sub-band encoding the increase for scp is more moder-
ate and there is no increase for SSH. Sub-band encoding performs smaller IPG changes
than sparse encoding, reducing the chances of buffer underflows. However, if the IPG
distribution centres around a single peak, such as for Q3, there is no difference.

For Q3 the smallest delays are about 35 ms (client-to-server) and 70 ms (server-to-
client). If the channel is encoded simultaneously in both directions it could get noticed
by latency-conscious players, but if encoded in only one direction the added delay is
relatively small given that for RTTs of up to 100–150 ms players usually do not notice a
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Figure 4.27: Error rate vs. mean buffering delay for sparse encoding (left) and sub-band
encoding (right) (note log y-axis)

degradation of game-play [202]. For interactive SSH the delay is less than 75 ms (sub-
band encoding) and less than 150 ms (sparse encoding), which is tolerable. Because scp
was bandwidth-limited, smaller or larger buffering delays do not significantly affect the
overt packet rate or throughput, unless there is packet loss.

For model-1.0 the buffering delay is similar for Q3, but significantly increased for scp
and SSH. Again, for bandwidth-limited scp the increased delay is only noticeable if there
is packet loss, but the now 300 ms delay for SSH might get noticed. However, as said
before for semi-passive channels the introduced delay can be large.

4.6 Conclusions

We showed that IPGs of real UDP and TCP traffic are often auto-correlated, which makes
previous timing channels proposed in [104, 105] easy to detect. We proposed new im-
proved encoding schemes that are harder to detect, but have either reduced capacity
(sparse encoding) or reduced robustness (sub-band encoding). Our new techniques gen-
erate the random numbers needed for encoding from the packets themselves. Only this
makes the channel usable for UDP-based overt traffic that has no accessible sequence
numbers. Our new schemes can be used for active and passive channels.

We created a proof-of-concept implementation and discussed several implementation
issues, including how to handle overt traffic dependencies, how to send packets accurately
and the choice of hash functions and their input. We also proposed a channel model that
allows computing the channel capacity based on the channel errors.

We performed experiments in a testbed with different emulated network conditions,
using three applications as overt traffic. Our results show that the new timing channels
have low error rates and high capacities for low network jitter. Transmission rates are up
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to over hundred bits per second. However, the capacity is severely reduced if the network
jitter is high. Then it is much smaller than the capacity of the TTL channel.

Sparse encoding has lower error rates since each bit is encoded using the full IPG
distribution. However, sub-band encoding provides higher transmission rates because a
larger fraction of the IPGs can be used. The wider the IPG distribution of the normal
traffic, the more resistant the channel becomes against timing jitter and the greater the
robustness improvement of sparse encoding over sub-band encoding. The applications
used in our experiments have narrow IPG distributions, but we believe this is typical for
many existing applications. However, there are some applications with wider distributions
that would make the channel more robust, but the maximum transmission rate would still
be relatively low, because such applications also have low packet rates.

For a hybrid FEC+ARQ scheme we measured throughputs of 30–40% or more of the
capacity. Even with modest packet loss and reordering the throughput was still over 20
bits per second for two of the applications used, which is much higher than the commonly
accepted limit of one bit per second [19].

It is difficult to summarise the comparison of the capacity of the IPG timing channel
and the TTL channel, because for both channels the capacity varies significantly based
on the noise, and some types of noise affect only one channel but not the other. We
make a general comparison assuming TTL noise (1−3) and network jitter (σ = 0.2 ms),
low packet loss and reordering rates (0.1%) and the best encoding schemes under these
conditions (MED and sub-band encoding).

Then the TTL channel achieves approximately 0.97 bits per packet and the IPG timing
channel achieves approximately 0.78 bits per packet pair. This means the IPG timing
channel has 70–80% of the capacity of the TTL channel. This is consistent with the code
rates used in the experiments with the reliable transport protocol. The average code rate
of the IPG timing channel was about 77% of the code rate of the TTL channel.

The new encoding techniques work well for active channels or semi-passive chan-
nels, where the introduced buffering delay is not of concern. Furthermore, even with the
currently simple buffering algorithm they are suitable for passive channels in most cases.
Only for high-rate TCP flows and higher packet loss rates they cannot be used as the
throughput of the overt traffic is severely reduced.

4.6.1 Future work

Our improved timing channels work for both active and passive channels, but we have not
analysed the performance of active channels. Also, we have not investigated multi-symbol
channels that encode more than one bit per IPG. The analysis could be extended to cover
a wider range of applications generating the overt traffic, including some with wider IPG
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distributions, and to a larger range of network conditions. Furthermore, experiments could
be carried out across Internet paths, for example using the PlanetLab overlay network.

There are a number of avenues to further improve passive channels, including the
study of bidirectional channels over single TCP flows, developing new passive channels
that encode covert data in large IPGs as well, and automatically optimising the location
of sub-bands during model creation. The buffering delay management algorithm needed
for passive channels should be improved. For example, it could use a prediction of future
IPGs of the overt traffic to optimise introduced delay.

Our proof-of-concept implementation is a userspace application, which limits the
covert sender’s ability to time packets accurately. Future work could investigate accuracy
improvements possible with a sender implemented as kernel module, and when using a
real-time UDP extension for real-time Linux.

Another interesting area for future research is the study of related timing channels. For
example, the TCP timestamps could be used to create a noise-free active channel in TCP
traffic, similar to the one in [64] but harder to detect, or the timing of message sequences
could be manipulated to create timing channels with various application-layer protocols.
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Chapter 5

Covert Channels inMultiplayer Games

In this chapter we develop and analyse a novel indirect covert channel hidden inside
multiplayer first person shooter (FPS) online game traffic, called Reliable FPS Covert
Channel (RFPSCC). RFPSCC provides reliable data transport for our new covert modu-
lation scheme we call FPS Covert Channel (FPSCC), which itself is unreliable because
the covert channel is noisy.

FPSCC is a channel between game clients hidden from game server operators and
players. While it is likely that Alice and Bob are players of the game, FPSCC could also
be used in scenarios where they are middlemen using the game traffic of other unwitting
players. FPSCC encodes covert information in slight variations of character movements
intended by human players. We choose variations that have no visible effect on the move-
ments as perceived by human players. Serves usually do not log character movement.

FPSCC has a number of desirable properties for users. FPS games are very common
and their network traffic is not suspicious, although it may not be present everywhere.
FPSCC is both a broadcast and an indirect channel – one covert sender transmits infor-
mation to one or more covert receivers using a game server as an intermediary, rather
than directly exchanging covert data. Detection of the covert sender does not directly ex-
pose the identities of the covert receiver(s) who could be any of the players online at the
same time. FPSCC is impractical to eliminate, because it is tied to player movement (an
intrinsic function inside the games).

FPSCC could be used for collusion as well as exchanging game-unrelated information
unbeknownst to adversaries. Capable adversaries could easily detect overt communica-
tion, such as VoIP or traditional and in-game instant messaging. Beyond games, many
companies are exploring the use of immersive virtual worlds, such as Second Life [28],
for distributed training, collaboration and general business; this opens up the potential for
covert ex-filtration of commercially sensitive information via FPSCC-like channels.

First, we provide some background on FPS games and their network protocols. Then
we present the design of the modulation scheme (FPSCC). Next, we discuss various
sources of bit errors that make FPSCC unreliable. FPSCC experiences bit substitutions
as well as bit insertions and deletions (synchronisation errors). Then we present the de-
sign of RFPSCC, a unicast bidirectional channel over FPSCC. Finally, we evaluate the
throughput of RFPSCC based on a proof-of-concept implementation and compare it with
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the channel capacity. The channel capacity is estimated based on an information-theoretic
model we propose.

Our proof-of-concept implementation is based on the game Quake III Arena (Q3)
[188]. We chose Q3 because it runs under Windows and Linux, the source-code is freely
available and Q3’s general client-server communication architecture is shared by many
other FPS games. While Q3 itself is outdated some game modifications based on Q3
were still popular 3–4 years ago, for example Wolfenstein: Enemy Territory [203].

We analyse the throughput and bit error rate of RFPSCC based on a large number of
test games with various degrees of network delay and packet loss impacting on the overt
traffic. We show that RFPSCC is reliable (no bit errors) and provides throughputs of up
to over 15 bits/s (with client-to-server and server-to-client packet rates of approximately
86 and 20 packets per second respectively). RFPSCC has a low throughput, but it is still
sufficient for exchanging text messages or chatting.

5.1 Background

5.1.1 First person shooter online games

The publishing model for FPS games, such as Quake III Arena, Unreal Tournament and
Counter-Strike Source, makes them intriguing for use as covert channels. FPS games are
based on the client-server architecture, and publishers typically release their servers free
– relying on Internet Service Providers (ISPs), dedicated game hosting companies and
individual enthusiasts to host FPS servers.

FPS game servers typically host from less than 10 to around 30+ players and partic-
ularly for popular games there may be tens of thousands of individually operated servers
active on the Internet at any given time [190, 204]. Alice and Bob thus have a wide variety
of game servers through which to establish legitimate-looking overt traffic flows.

5.1.2 Player movement protocol

Q3 relies on UDP packets to carry information between clients and servers. FPSCC
utilises the network traffic that occurs during game play, and ignores traffic associated
with server-discovery and initial client connection.

Figure 5.1 illustrates the message flow during game play. User commands are sent
from client to server once per graphics frame rendered (but no faster than once every
10 ms). Snapshots are sent from server to client once every 50 ms (by default). Transmis-
sions of user commands and snapshots are not synchronised.

Figure 5.2 illustrates the movements that may be indicated in each user command.
Movement occurs along three axes (x – left/right, y – up/down, z – forward/backward) and
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change of view angle may be requested along the x- and y-axes (pitch and yaw angles).
A user command also indicates movement-unrelated mouse and keyboard button state as
well as the selected weapon. To compensate for packet loss, each packet sent by the client
contains the current and previous user commands. Client messages also contain ‘reliable’
commands, such as the “disconnect” command.

Each client receives game world state updates in snapshots. A snapshot contains the
server’s authoritative belief about the state of the client’s player (position, view angles
and player-specific events) as well as the state of all other entities potentially visible to
the client’s player (positions, view angles and events). Entities can be other human player
characters, computer-controlled characters (bots) or objects. Entity state updates are not
sent for entities that the client’s player cannot see; however, not all potentially visible en-
tities are actually visible on the player’s screen. This reduces network traffic and mitigates
a source of potential client-side cheating (chapter 7, [190]). Server messages also contain
‘reliable’ commands, such as printing messages on the client’s screen.

Q3 uses sequence numbers in both directions to detect loss of packets. If loss occurs,
reliable commands are retransmitted. Lost user commands and entity state updates are
never retransmitted as they are continuously updated anyway. User commands sent by
the client are timestamped, as are player and entity state updates sent by the server. Con-
sequently every update of player state sent by the server can be unambiguously linked to
a corresponding previous user command sent by a client.

All user commands and snapshots are delta-encoded to reduce packet size, so a data
field is only sent if it has changed, and all messages are compressed using adaptive Huff-
man encoding [205]. Despite differences in specific details, most FPS game protocols
utilise a similar overall design.

Figure 5.3 illustrates the relationship between player position information sent to the
server, and the same information received by other clients. Let xi be client 1’s player
input for their character’s position or view angle along an axis in user command i and let
y j be the position or view angle of client 1’s character sent by the server to both clients in
snapshot j. We assume xi and yi are integer values or the integer part of real values.
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As user commands usually arrive more frequently than snapshots are emitted, each y j

is computed based on the most recently received xi. Client 2 renders client 1’s player on
screen based on y j until it receives y j+1, a period indicated by the boxes.

5.2 FPS covert channel

FPSCC creates a covert channel between two game clients. Alice and Bob may be delib-
erately built into actual clients or be middlemen manipulating game traffic of unwitting
players. Alice encodes covert information by modulating xi from client 1 with visually
imperceptible fluctuations of character movement. Bob decodes covert information from
y j updates arriving in snapshots.

FPSCC is not limited to unidirectional communication, as Bob could send covert in-
formation to Alice at the same time. FPSCC aims to avoid detection by either the players
controlling the game clients, or by an adversary (Wendy).

5.2.1 Encoding and decoding

We leverage the fact that Q3 encodes more detail in xi and y j than is normally observed
by a human player. FPSCC modulates players view angle commands for pitch (between
−87 and 87 degrees) and yaw (between −180 and 180 degrees), since players’ view angles
are, with small exceptions discussed later, almost entirely dictated by player input. Other
information in user commands is less suitable. Position information may be perturbed
by various ‘forces’ acting on a player’s character, making it hard to predict y j from xi.
Surreptitious manipulation of mouse button or key state is harder to hide from players,
and also would result in a very low capacity.

We use changes in view angles to encode covert information. To minimise detec-
tion, FPSCC only encodes covert information between two snapshots when players are
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Figure 5.4: Example of covert channel encoding

adjusting their character’s view. If a player stops, the covert channel pauses. The covert
channel is effectively masked if FPSCC-induced changes are small compared to players
own input. Our experience suggests that such a covert channel is unlikely to be noticed by
players and would not affect their ability to play. In our experiments none of the human
players noticed unusual view angle changes, not even of their own player characters.

Before we discuss the details of the encoding we present an example. Figure 5.4
illustrates the encoding of covert bits using the pitch angle, with a zero start value and
the same user input as in Figure 5.3. One bit of covert information is encoded per angle
change as per the encoding rule (Equation 5.1). This means an even change signals a
logical zero and an odd change signals a logical one. The angle values modified by Alice
are shown in bold. The boxes indicate the time periods in which a covert bit is transmitted.

The details of FPSCC’s encoding are as follows. Alice encodes N bits of covert infor-
mation with an integer value of b (0 ≤ b ≤ 2N −1) into each angle change so that:

b =
⃒⃒⃒
ỹ j− ỹ j−1

⃒⃒⃒
mod 2N , (5.1)

where ỹ j and ỹ j−1 are the angle values manipulated by Alice. However, Alice can only
indirectly modify y j by modifying the user input xi.

As noted previously, the game server computes y j from the most recently arrived xi.
Q3’s asynchronous message transmissions, unpredictable client message rate and variable
network delay make it difficult for Alice to predict which xi will be used by the game
server to compute y j . Therefore, Alice has to encode the same covert bits in all xi sent
between the arrival of y j−1 and y j.

Let the change in user input be ∆i = xi − xi−1. When Alice detects an angle change,
she starts encoding the next covert bits to be sent bn in the current and following user
commands. Each time a snapshot is received from the server, Alice checks whether the
angle value has changed (ỹ j , ỹ j−1). If not, Alice continues sending bn. Otherwise Alice
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assumes bn has been successfully transmitted and updates the previous angle value ỹ j−1.
The next user angle change will cause Alice to start sending bits bn+1 and so on.

Even if Alice has not actually sent any bits, an angle change will still cause her to
treat bn as sent. For example, this can happen when Alice could not send anything be-
cause there were no user angle changes or user commands, but the server forced an angle
change (see Section 5.3). Treating bn as sent prevents bit deletions and insertions, but bit
substitutions may still occur.

Alice encodes covert bits by manipulating xi, adding a small δi:

x̃i = xi+δi . (5.2)

If ∆i , 0 Alice encodes b by selecting δi such that:

b =
⃒⃒⃒
x̃i− ỹ j−1

⃒⃒⃒
mod 2N . (5.3)

From equation 5.2 and equation 5.3 follows:

δi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩b−
(︁
xi− ỹ j−1

)︁
mod 2N , xi− ỹ j−1 ≥ 0

−b−
(︁
xi− ỹ j−1

)︁
mod 2N , xi− ỹ j−1 < 0

. (5.4)

However, Alice must avoid completely negating the angle change. If
(︁
xi− ỹ j−1

)︁
+ δi

equals zero she needs to modify δi accordingly:

δi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩2N +δi , xi− ỹ j−1 ≥ 0

−2N +δi , xi− ỹ j−1 < 0
. (5.5)

Alice minimises the angle changes she introduces and thereby increases FPSCC’s
stealth by modifying the angle computed using equations 5.4 and 5.5 as follows:

x̃i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⌊x̃i⌋ , xi− ỹ j−1 ≥ 0, x̃i > 0

⌊x̃i−1⌋ , xi− ỹ j−1 ≥ 0, x̃i ≤ 0

⌊x̃i+1⌋ , xi− ỹ j−1 < 0, x̃i > 0

⌊x̃i⌋ , xi− ỹ j−1 < 0, x̃i ≤ 0

. (5.6)

The next snapshot value ỹ j will be based on one of the x̃i arrived at the server between
snapshot j−1 and j, and possible noise on the channel n j. Bob decodes the covert bit(s)
similar to equation 5.3:

b̂ =
⃒⃒⃒
ỹ j− ỹ j−1+n j

⃒⃒⃒
mod 2N . (5.7)
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Bob is not able to distinguish normal angle changes without covert bits encoded from
changes with encoded covert bits. If Alice continuously transmits bits there is no problem,
but she may not have data to send all the time. In the latter case Alice either transmits
dummy bits or does not encode bits into angle changes. In both cases Bob identifies
blocks of valid data based on higher-layer semantics.

In general the problem is solved if Alice sends data in blocks of bytes with headers
containing a block identifier (preamble). The preamble identifies the start of a block and
needs to be ‘unique’ so it can be distinguished from data and pseudo-random bits caused
by user angle changes when Alice is not sending or from dummy bits. If the channel
carries text characters a simple protocol works as follows. Alice transmits continuously,
sending dummy zero bytes if necessary. Bob treats zero bytes as terminators of messages.

Byte and block synchronisation between Alice and Bob are discussed in more detail
in Section 5.4. Another question is how Alice and Bob can identify and authenticate each
other. This is discussed in Section 5.2.3.

5.2.2 Number of encodable bits

In the simplest case Alice sends one bit per angle change (N = 1). However, N could
be selected based on the user input: the larger the user’s angle change, the larger Al-
ice’s modification can be without compromising the stealth of the channel, such as by
materially impacting on game play or creating visible anomalies.

We define the dimensionless variable L as the limit of the ratio of the absolute values
of Alice’s modification and the total angle change (where 0 < L < 1):

max(|δi (b,Ni)|)
max(|δi (b,Ni)|)+ |∆i|

≤ L . (5.8)

We also assume there exists an absolute maximum δmax limiting Alice’s modification
regardless of ∆i. Then the number of encoded bits Ni is chosen to be (see Appendix D.1):

Ni ≤min
(︁⌊︀

log 2 (δmax+1)
⌋︀
,
⌊︁
log 2

(︁
1+L·(|∆i|−1)

1−L

)︁⌋︁)︁
. (5.9)

Figure 5.5 illustrates the number of encodable bit over the user change ∆i for different
values of δmax and L. For different δmax the lines are slightly offset for improved visibility.

5.2.3 Broadcast and unicast channels

As previously noted, Bob only receives snapshots containing ỹ j updates relating to Alice
if Alice’s in-game character is potentially visible to Bob inside the game environment.
Consequently, there are two transmission modes open to Alice – unicast and broadcast.
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Figure 5.5: Number of bits encodable vs. user angle change for different δmax, L

If Alice knows the in-game identity of Bob’s client then she can chose to only send
covert data when Bob’s character is known to be in range, as determined from the server
snapshots. This is unicast mode, and the covert channel may pause from time to time.
However, if Alice has no idea on which client Bob resides, she simply transmits covert
data continuously. This is broadcast mode, where the covert channel may experience
significant periods of lost bits.

Regardless of Alice’s transmission mode, Bob is not required to know in advance on
which game client Alice resides. Bob can simply attempt to decode covert information
from ỹ j updates relating to every player. Any stream of ỹ j updates that generates ‘mean-
ingful’ covert information can be presumed to come from Alice. “Meaningful” could
mean the existence of pre-defined bit sequences as used in [122] or data structures pre-
viously agreed upon by Alice and Bob. However, if Alice’s client’s identity (e.g. player
name) is known, Bob can focus on decoding ỹ j updates from that specific player.

FPSCC in multicast mode allows multiple instances of Bob, each associated with a
different game client. Each Bob decodes part or all of the covert channel’s data stream as
their associated players cross paths with Alice inside the game’s virtual world.

5.2.4 Simultaneous yaw and pitch encoding

FPSCC supports encoding bits in both pitch and yaw simultaneously. In our scheme Bob
always decodes the bits in fixed order, the first Np bits from pitch (bn) and the second Ny

bits from yaw (bn+1). But Alice has to encode the bits in the order the user changes angles
between snapshots. For example, if a yaw change in user command i is followed by a
pitch change in user command i+1, Alice encodes bn in yaw and bn+1 in pitch. This is a
problem, because in this case FPSCC would actually swap bits bn and bn+1.
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Figure 5.6: Round trip time limit of FPSCC

To prevent this, Alice needs to swap bits bn and bn+1 as soon as she receives user
command i+ 1. However, it may still happen that after Alice has swapped the bits user
command i+1 arrives after the server has already created the next snapshot and effectively
user command i is used. If Alice discovers this from snapshot j, she swaps the bits again
(bn was sent encoded in yaw and bn+1 remains to be sent).

To avoid bit errors Alice then encodes bn+1 in pitch in the user command following
snapshot j to ‘override’ the previously encoded bn. Since the previous pitch change was
based on user movement, this does not violate the “no encoding if no user change” policy.

5.2.5 Impact of round trip time

Figure 5.4 assumes that the RTT between Alice and the server, plus the time between
two user commands, is smaller than the time between two snapshots. Otherwise, during
encoding Alice would not know the actual value of ỹ j−1 and hence could not compute the
correct δi. However, there is no limit for the RTT between Bob and the server.

Let ∆u be the time between user commands and ∆s the time between snapshots. Then,
the maximum tolerable RTT for Alice is (see Figure 5.6):

RTT ≤ ∆s−∆u . (5.10)

FPS games are sensitive to latency and players would usually only choose servers
with RTTs of less than 100–150 ms [206, 202]. Given that server updates usually occur
every 50 ms, and client messages often every 10 ms, FPSCC would be limited to situations
where RTT ≤ 40 ms. FPSCC works over larger RTTs at the cost of reducing the capacity.
The bits bn are now sent in m server snapshots, where m ≥ 2 and m ·∆s−∆u ≥ RTT. The
server-time timestamps ts are used to control which snapshots contain covert bits. Alice
and Bob only encode and decode from snapshots where ts mod m = 0.

To improve performance Alice could send bits in overlapping time periods between
m snapshots (pipelining). Alice encodes covert bits every snapshot based on the current
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angle and the old angle ỹ j−m and Bob decodes accordingly. Alice and Bob need to buffer
the last m angle values. However, unfortunately this method does not work in combination
with the technique for encoding simultaneously into both angles described above.

Alternatively, Alice could predict the angle of the next snapshot and use the predicted
angle for encoding. The accuracy of the prediction depends on the jitter inherent in the
timing of client and server messages and the network jitter. We leave the design of a more
efficient approach as future work.

5.2.6 Deployment considerations

Cheat protection built into multiplayer FPS games makes deployment of covert channels
challenging. Client software and data files are checked for integrity and the memory of
the client machine is searched for signatures of known cheats. Games typically encrypt
their network protocol to protect against proxy-based cheats.

It is straightforward for a player to act as Bob. FPS clients usually allow recording of
demo files, which contain all the unencrypted entity state updates seen during the recorded
game sequence. Bob simply records a ‘demo’ and decodes the covert data after the game.
However, if Bob is not a player he has to intercept the network traffic like Alice.

Alice needs to modify the protocol data during the game. We implemented FPSCC
using a proxy-based approach, because Q3 is open source and hence the encryption algo-
rithm is known. However, even if an encryption algorithm is not publicly known it may be
possible to crack it as described in [207]. Proxies cannot be detected by current anti-cheat
software integrated in games.

Alice could also be deployed on the client as a client-side modification (called “mod”).
However, many public servers do not accept modified clients. Alice can still be deployed
on the client like other client-side cheating tools. These tools work without requiring a
modification of the game client and can only be detected if the anti-cheat software knows
their signature. Even if Alice’s signature became known, it could be modified easily to
evade the signature detection. Currently, no method exists for reliably detecting unknown
client-side cheats.

5.2.7 Implementation considerations

The Q3 network protocol is encrypted. Our implementation of Alice accesses traffic in
both directions to acquire and update the Q3 encryption keys, decrypt user commands,
perform the covert channel modulation, and re-encrypt the modified user commands. Bob
passively decrypts packets in both directions and decodes the covert channel from the
snapshots. Our prototype of FPSCC is based on CCHEF (described in Appendix A).
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Figure 5.7: Visibility matrix contained in Q3 map files defines potential visibility between
different parts (clusters) of the map

Our implementation properly handles the various encodings of view angles in different
Q3 messages. In user commands angles are encoded as signed 16-bit integer ( α360 ·65535),
angles in player state are encoded as floating-point numbers and angles in entity state
are encoded as the integer parts of the floating-point numbers. The integer-floating-point
conversion introduces rounding errors and Alice ensures that these do not cause bit errors.
Our implementation also handles wrapping of the yaw angle, which wraps around from
−180 degrees to 180 degrees and vice versa.

Our implementation supports map changes and client disconnects. During a map
change or when a client is disconnected the channel pauses. But it resumes seamlessly
when the new map has been loaded or the client has been reconnected.

5.3 Sources of bit errors

5.3.1 Visibility

The Q3 server does not send the state of an entity to a player, if the entity is not potentially
visible to the player. Whether an entity is potentially visible is decided based on the
Potentially Visible Set (PVS) information contained in map files and the actual positions
of the player and the entity on a map.

PVS information is computed during map creation. The map editor divides a map
into n clusters and for each cluster computes which other clusters are potentially visible
[208, 209]. The PVS is stored as n× n bit matrix in the Q3 map file. A cluster i is
potentially visible from a cluster j when the i-th bit in the j-th row of the matrix is set. For
example, given the PVS shown in Figure 5.7, cluster 4 is visible from cluster 1, but it is
not visible from cluster 2. To determine what entities are potentially visible to the player
in the current snapshot the server checks if any of the clusters a bounding box around the
entity touches is visible from the cluster the player’s character is in.

The PVS does not define what exactly is visible on a player’s screen. This is deter-
mined by the rendering process on the client. The PVS information is used to cull the
number of objects before the rendering in order to reduce the rendering time. It is also
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Figure 5.8: An example of asymmetric visibility in Q3, where Alice can see Bob, but Bob
cannot see Alice.

used to reduce network traffic and mitigate cheating by only sending entity state updates
for entities a player can potentially see (chapter 7, [190]).

In Q3 potential visibility is asymmetric. This means that if Alice can see Bob, Bob
cannot necessarily see Alice. There are two reasons for the asymmetry. Firstly, the PVS
matrix in the map file may contain asymmetries. We presume this is because of the way
the complex PVS algorithm works. Secondly, the way the server determines visibility for
the purpose of entity state updates in snapshots also leads to asymmetries. The server only
checks visibility between the one cluster given by the player character’s position with all

clusters the bounding box around the other player touches.

Let CA and CB be the set of clusters a bounding box around Alice’s and Bob’s player
character touches, and let cA and cB be the clusters Alice and Bob are in. It can happen
that Alice sees Bob because one cluster in CB is visible from cluster cA, but Bob cannot
see Alice because no cluster in CA is visible from cB. For example, in Figure 5.8 Alice’s
and Bob’s characters are in the front clusters but their bounding boxes touch the front and
back clusters. Visibility is asymmetric with the given PVS (Alice can see Bob, but Bob
cannot see Alice).

For FPSCC the asymmetric state exchange is problematic, because it does cause bit
insertions and deletions. In Section 5.4 we describe RFPSCC, which synchronises the
transmission and reception of bits. Furthermore, we developed a modified version of Q3
with symmetric visibility (see Appendix D.2), which allowed us to analyse the throughput
of FPSCC with symmetric state exchange and compare it against RFPSCC (see Section
5.5). Since other FPS games may use a symmetric PVS our modified Q3 implementation
also demonstrates the applicability of FPSCC to these games.

5.3.2 Player death and teleportation

When players die they respawn after a short time at one of several map locations. Respawn-
ing changes the player’s position as well as the view angles. This server-enforced angle
change can cause bit errors if the dead player respawns within the potentially visible range
of the other player, since the resulting angles depend solely on the server. But bit errors
can be prevented as players can detect their own death and the death of other players.
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If Alice has died she stops encoding covert data until fully respawned, but still keeps
track of her own angle changes. If Bob is also sending, Alice continues to decode covert
data from him. Bob continues to encode covert data, but stops decoding from Alice until
she has fully respawned. However, he continuously tracks Alice’s angle changes.

This approach presupposes that the “Alice is dead” and “Alice is alive again” signals
are synchronised between Alice and Bob. This may not be the case when Bob loses
visibility of Alice after her death but before her respawn. Then Bob may never receive
the “Alice is alive again” signal and would be ‘out of sync’ with Alice. RFPSCC enforces
a re-synchronisation of the channel after one or both players died.

Players may enter teleportation devices (e.g. portals), which will teleport them to
another place on the map. Teleportation may not only change the player’s position but
also the view angles. This is effectively the same as players’ respawning and is handled
in the same way.

5.3.3 Angle clamping and movers

The Q3 server clamps the pitch angle (ỹ j) between a minimum of −87 and a maximum
of 87 degrees in snapshots, regardless of the angle indicated in a client’s previous user
command (x̃i). This can cause bit substitutions in the snapshot where the angle is clamped
and bit deletions in further snapshots while the angle remains clamped.

To avoid these errors, Alice and Bob do not encode or decode bits in snapshots where
they discover the angle is clamped until the angle plus Alice’s modification is within the
allowed range again. In practice players usually do not look straight up or down, so pitch
clamping is uncommon (see Section 5.5.1).

A mover is a moving platform that player characters can stand on. If the mover rotates,
view angles change not only based on the player’s input, but also depend on the rotation
of the mover. Therefore, bit substitutions may occur. RFPSCC prevents bit errors by
enforcing a re-synchronisation of the channel if Alice detects that she did not sent the bits
she intended to send based on the actual angles value in the snapshot.

5.3.4 Packet loss and reordering

As Q3 uses UDP, user commands and snapshots can be reordered or lost in the network.
We assume that Alice and Bob do not buffer any messages to avoid additional latency,
so reordered messages are effectively lost. We first discuss the effects of loss on user
commands and then on snapshots.

User commands are highly redundant as several are sent between two snapshots. If
no user commands reach the server between snapshots, Alice is simply not able to send
bits. However, if some user commands arrive it is crucial that at least one of them has
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covert bits encoded based on the angles from the previous snapshot (see Section 5.2.5).
Otherwise, substitution errors may occur. Lost user commands never cause bit deletions
or insertions, because Alice always knows whether any bits were sent from the snapshots.

Loss of snapshots is worse than loss of user commands. If the same snapshot is lost for
Alice and Bob FPSCC remains unaffected. But a snapshot that is lost for either Alice or
Bob causes bit deletions and insertions in the lost snapshot as well as possible substitution
errors in the following snapshot. Using Q3’s sequence numbers Alice and Bob can detect
lost snapshots and act accordingly (see Section 5.4.3).

5.4 Reliable data transport

We now develop Reliable FPSCC (RFPSCC) – a protocol to cope with the various bit
errors. Our novel scheme, tailored to the characteristics of FPSCC’s overt channel, adds
bit synchronisation, a framing layer to provide byte and frame synchronisation, and a
transport layer to provide encryption. We focus on using FPSCC in unicast mode – an
equivalent for broadcast FPSCC is left for future work.

5.4.1 Bit synchronisation

The basic idea is that Alice explicitly lets Bob know whether she can see him or not and in
the same way Bob informs Alice. This requires the use of two special channel symbols. If
Alice sends an UNSYNC symbol to Bob, she indicates that she cannot see Bob. If Alice
sends a SYNC symbol to Bob, she indicates that she can see Bob. A drawback of using
two special symbols is the increased amplitude of the induced angle changes in order to
have 2N + 2 symbols. Alternatively, Alice could send special bit patterns, but this would
decrease the throughput.

Our scheme works even in the presence of substitution errors, because Alice always
determines whether she has sent (UN)SYNC from the snapshots rather than what she
intended to send. Since RFPSCC is a bidirectional channel we extend our notion of
covert sender and receiver to covert peers.

Alice and Bob implement the state machine shown in Figure 5.9. Initially Alice and
Bob are in IDLE state. A peer in IDLE state sends UNSYNCs. When a peer in IDLE
state sees the other peer it goes into LISTEN state. In this state a peer sends SYNCs.
Only when both peers send a SYNC to each other in the same snapshot the channel’s
state changes to OPEN, because only then both peers can be sure that they can see each
other. Furthermore, Alice and Bob only enter the OPEN state if both players are alive.
Covert data is only exchanged when the channel is OPEN. An OPEN channel goes back
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Figure 5.9: Bit synchronisation state machine

to LISTEN state if an UNSYNC or SYNC is received, or back into IDLE state if visibility
is lost. The time period the channel is OPEN is called a transmission period.

There are two causes of teardown. Firstly, if one or both peers’ players die, both
peers go into LISTEN state. This prevents the case that a dead player loses visibility and
is then unable to send an UNSYNC. Dead players cannot send anything because they
cannot move. Q3 sends player-death signals synchronously to all players, so no further
synchronisation problem arises.

Secondly, if one peer loses visibility to the other peer, it changes into IDLE state.
From the next snapshot on it then sends UNSYNCs. The other peer either loses visibility
or receives an UNSYNC and then also ends the transmission period. Whichever peer
lost visibility last has potentially sent bits the other peer could not receive. To avoid bit
deletions these bits need to be re-sent. The problem is to determine the exact number
of bits. If a peer receives an UNSYNC it knows that the other peer lost visibility in the
previous snapshot and can re-send any bits sent in this and the previous snapshot1.

However, there is still the case that neither peer receives an UNSYNC, making it
impossible to re-send the correct number of bits. This happens when one peer loses
visibility and the other peer loses visibility in the following snapshot. We solve this
problem by involving the framing layer (see below). Nevertheless, the maximum number
of bit deletions is limited to 4N (both angles changed in this and the previous snapshot).

RFPSCC also forces the end of a transmission period if a peer detects that it did not
send the bits intended to be sent based on the actual angle values in the next snapshot. This
prevents bit errors from movers. To avoid pitch-clamping errors, a peer does not encode
or decode bits in snapshots where the angle plus FPSCC’s modifications is clamped.

1In the rare case that there is no user angle change in the snapshot following the visibility loss, RFPSCC
enforces an angle change.
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Figure 5.10: Rollback of bits sent at the end of frames

To support larger RTTs FPSCC only encodes bits in every m-th snapshot where m is
selected based on the maximum RTT and the time between user commands (see Section
5.2.5). Even when clients normally send user commands every 10 ms, occasionally there
can be larger gaps, which cause bit errors if the maximum tolerable RTT is exceeded.
To avoid these errors a peer ends a transmission period when it detects that the gap be-
tween two consecutive user commands is larger than a configurable threshold. It sends an
UNSYNC to the other peer, which then also ends the transmission period.

5.4.2 Framing and transport

The main tasks of the framing layer are to solve the bit synchronisation problem and to
identify blocks of bytes in the bit stream (byte synchronisation). There exist a number of
framing techniques, for example fixed or variable block length, or start of frame sequence
plus bit stuffing (e.g. High-level Data Link Control – HDLC), or CRC (e.g. Asynchronous
Transfer Mode – ATM).

RFPSCC’s framer uses lower-layer information for framing. All the bits in a trans-
mission period are treated as one frame. Any incomplete bytes at the end of frames are
discarded by the receiver and re-sent by the sender. The teardown bit synchronisation
problem is solved as follows.

Both peers re-send all bits sent in the last two snapshots before teardown, resulting in
at most 4N bit insertions but no bit deletions (see Figure 5.10). For N ≤ 2 at most one
byte is inserted. To prevent byte insertions, each peer sends the parity of the length of
the previous frame (odd or even) at the start of the following frame and the decoding is
delayed by one frame. If the actual parity of a frame differs from the parity indicated by
the sender, the receiver discards the last byte before passing the data to the transport layer.

Our scheme supports larger N by aligning frame sizes on multiples of eight bits. For
example, if frames sizes are aligned to 16 bits (word-aligned) up to 16 inserted bits can
be tolerated and hence N can be up to four. Frame parity is then computed based on the
number of words.
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Table 5.1: Average per-frame overhead for the different framing techniques
Scheme Overhead (bits/frame)

Block length 0
HDLC 16+0.0161 · (s+8)
CRC 40

RFPSCC
4.5 (byte-aligned)
8.5 (word-aligned)

The RFPSCC framing scheme has low overhead. To ensure byte synchronisation,
any bits of incomplete bytes at the end of frames are retransmitted. Assuming a uniform
distribution of the number of extra bits at the end of frames, the mean overhead is:

o =
1
w

w−1∑︁
i=0

i , (5.11)

where w is the number of bits the frame is aligned on. For example, w = 8 for byte-
aligned frames and w = 16 for word-aligned frames. This means the mean overhead is 3.5
bits per frame if frames are byte-aligned or 7.5 bits per frame if frames are word-aligned.
Since the number of substitution errors is effectively zero (see Section 5.5), only a single
parity bit per frame is required.

In comparison the overhead of HDLC is an 8-bit preamble plus a number of stuffed
bits per frame, whereas the overhead for CRC-based framing is 32 bits. Furthermore,
both HDLC and CRC framing need a sequence number to detect which frames arrived.
This adds to the overhead and also increases the probability of corrupted frames. Simple
block length framing has zero overhead, but it can only be used for unicast transmissions
in the absence of synchronisation errors (symmetric visibility and zero packet loss).

Table 5.1 summarises the average overhead in bits per frame for all framing tech-
niques. In case of HDLC the overhead depends on the size of the payload data in bits
s and the rate of stuffed bits R = 0.0161 [11]. We assumed fixed-size blocks (no frame
length field), 8-bit sequence numbers are used with HDLC and CRC framing, and the
payload data is uniformly random distributed.

There are no substitution or synchronisation errors above the framing layer. This
means the transport layer can use fixed block sizes and block ciphers for encryption, and
further error detection or correction techniques are not necessary.

5.4.3 Packet loss

Only the loss of snapshots affects bit synchronisation. To avoid synchronisation errors
we extend our scheme so that transmission periods also end if one or more snapshots
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Figure 5.11: Rollback of bits sent at the end of frames after loss of snapshots

were lost that are used for encoding and decoding (depending on the RTT only every m-th
snapshot is used). Each peer detects lost snapshots by tracking the Q3 sequence numbers.

For example, if Bob is in state OPEN and detects that snapshots were lost, he goes
into LISTEN state. In the next snapshot he will then send an UNSYNC to Alice who will
then also change to LISTEN state. Figure 5.11 illustrates this sequence of events. This
teardown sequence is basically the same as described in Section 5.4.1.

The only difference is that more bits need to be re-sent. To avoid bit deletions in any
possible sequence of events Alice needs to re-send all bits sent in the snapshot(s) lost
for Bob and the two snapshots afterwards. However, Bob has no way of indicating to
Alice how many snapshots were lost. Hence the number of bits to be re-sent is fixed
during operation and must be configured according to the maximum possible number of
consecutive lost snapshots lmax (maximum loss burst). The maximum number of inserted
bits is then (2+ lmax) ·2N.

In order to cope with more than eight inserted bits, frame sizes must be aligned to
multiples of eight bits as described previously. For example, if N = 2 and bursts of up to
two lost snapshots shall be supported the maximum number of inserted bits at the end of
frames is 16. Then word-aligned frames guarantee that all bit insertions are corrected.

Lost user commands can cause bit substitutions. These are prevented because a peer
also ends a transmission period when it detects that the bits that were actually sent are not
equal to the bits that should have been sent (as described in Section 5.4.1).

5.4.4 Alternatives

Because of the asymmetric state exchange FPSCC has a significant number of deletions
and insertions that occur in bursts. In our experiments we measured 3–4% deletions and
1–2% insertions. In reality rates will likely vary depending on the map, the number and
behaviour of players etc.
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Some coding schemes have been developed to deal with deletion and insertion chan-
nels. However, as Mitzenmacher points out in a recent paper, “[...] the problem of coding
for the deletion channel and other channels with synchronization errors [...] remains a
largely unstudied area.” and “[...] most of the work in this area remains fairly ad hoc.”
[20]. Many schemes we examined have limitations which make them unsuitable for FP-
SCC, such as they can handle only small insertion/deletion rates of less than 1%, they can
handle either insertions or deletions but not both, or they assume insertions and deletions
are not bursty. Also, implementations are usually not readily available.

Furthermore, as demonstrated in previous chapters, coding schemes typically require
careful parameter tuning in order to provide zero error rates with minimum overhead. But
this optimum is difficult to achieve given FPSCC’s variable error rates. RFPSCC performs
well for varying error rates without much tuning.

5.5 Throughput

We analyse the throughput of RFPSCC depending on various factors such as the number
of bits encoded per angle change, the network delay and packet loss.

5.5.1 Testbed setup

Our experiments were a mix of tests in a controlled testbed and across real Internet paths,
with test machines consisting of two covert game clients, a normal Q3 game client and a
Q3 game server2. The covert game clients ran the Q3 client and CCHEF with RFPSCC
module. To avoid bias, the covert data was uniform random (same probability of one and
zero bits), as one would expect if Alice and Bob encrypted their data.

For delay and loss emulation we used Linux Netem [189]. The Linux kernel’s tick
frequency was set to 1 kHz in order to emulate delays accurate to ±1 ms. We verified that
Netem is accurate prior to running the experiments (see Appendix F).

We emulated RTTs of 25 ms (close server and fast network access), 75 ms (close server
and typical network access) and 125 ms (further away server and typical network access).
We chose 125 ms to be the maximum delay as previous research showed that players aim
for a maximum RTT of 100–150 ms and higher RTTs affect their performance [206, 202].
We used constant symmetric delays, since only the maximum RTT matters.

We emulated loss rates of 0%, 0.5% and 1% in each direction. For RFPSCC the
limiting factor is not the loss rate, but the maximum number of consecutive snapshots

2The two covert game clients had 2.4 GHz Celeron CPUs, and GeForce 7300GT and GeForce MX 440
graphics cards. The normal game client had a 2.8 GHz Pentium CPU and an Intel on-board graphics card.
All clients and the server ran ioquake3 1.35 on Linux 2.6.18.
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Figure 5.12: Angle distributions for four different human players and four different bots with
same configuration for pitch (left) and yaw (right)

lost. We assumed a maximum loss burst of two snapshots for 0.5% and three snapshots
for 1% loss rate, meaning a loss burst lasted less than 150 ms and 200 ms respectively.
Previous studies showed that loss in the Internet is often below 1% [183, 184] and our
maximum burst length is only slightly less than the median reported in [184]. This is
consistent with our own Internet measurements showing that loss rates are far below 1%
given high-speed broadband access (see below). Furthermore, while Q3 tolerates some
loss, it needs to be reasonably low for good game-play [202, 210].

Long measurements with human players are problematic, as exhaustion or change in
playing style over time possibly introduces bias in the results. Therefore we used client-

side bots as players that behave consistently and never get tired [211]3. We configured the
bots to play as human-like as possible (e.g. limited their speed and limited their vision to
180 degrees). However, the bots were probably still faster than the average human player.

We performed a limited number of experiments with nine human players in order to
compare throughput and angle distributions of humans and bots. Figure 5.12 compares the
angle distributions of human players and bots without FPSCC. Overall the distributions
of the bots are similar to that of human players showing uniformly distributed yaw and
s-shape pitch distributions. However, the variability between different human players is
higher than the variability between different bots with the same configuration.

The pitch distribution of the bots has some ‘steps’ compared to the smooth distribution
for humans. This is also noticeable on screen as abrupt pitch movements. We do not know
the reason for this, as we do not have access to the source code or specifications of the
bot. The pitch distributions also illustrate that pitch clamping never occurred on the flat
map we used; pitch angles were always between −20 and 60 degrees.

3Q3’s built-in bots cannot be used as they are part of the server.
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Figure 5.13: Channel model for FPSCC

The angle change rates of bots and humans are relatively similar for yaw: 8.6 changes
per second for bots compared to 9.3 changes per second for humans. But for pitch there is
a larger difference: 1.7 changes per second for bots compared to 6.0 changes per second
for humans. On the flat map bots do not need to change pitch very often, but randomness
in mouse movements causes more pitch changes for human players.

The bots produce less angle changes per second. The throughput of RFPSCC is likely
to be up to 50% higher for human players if one bit is encoded per angle change, which is
consistent with the results (see Section 5.5.4). However, the bots allow us to qualitatively
compare the influence of different parameters based on large datasets.

In all experiments we used the map q3dm1. The map was restarted every 10 minutes,
because deathmatch games typically run for only 10–15 minutes.

5.5.2 Channel capacity

We propose an information-theoretic channel model for FPSCC to estimate the channel
capacity. Later we compare the measured throughputs with the channel capacity.

The output of the channel only depends on the input and the errors, but not on previous
inputs. The channel has substitution errors as well as bit insertions and deletions. Hence
we model the channel as memoryless combined deletion/insertion/substitution channel
with error rates pD, pI and pS (see Figure 5.13).

Deletion/insertion/substitution channels have not been very well studied [20]. Their
exact capacity is not known but Gallager proved a lower bound [171, 173]:

C ≥ 1−H (pD)−H (pI)−H (pS) , (5.12)

where H (.) is the binary entropy. The Gallager model does not make any assumptions
on the error patterns. Zigangirov later improved the Gallager bound [172], and recent
research used simulation-based approaches to estimate the information rate [174]. But for
FPSCC’s deletion and insertion rates observed the differences are negligible and therefore
we use the simpler Gallager bound.
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Table 5.2: Average angle change rate (symbol rate) depending on the RTT
RTT (ms) Rate (symbols/s)

25 10.3
75 6.3
125 4.8

From the experiments we examined the average number of deletions, insertions and
substitutions, as if no synchronisation mechanism had been used. We measured deletion
rates of 3–4% and insertion rates of 1–2% for bots and human players alike, independent
of the RTT. In the following we assume average rates of pD = 0.032 and pI = 0.016.

The sole source of substitution errors were too large gaps between user commands
(see Section 5.2.1), since the map has no teleporters or movers and pitch clamping did
not occur. For fast clients that send user commands at least every 20 ms the substitution
error rate would have been zero for our selected RTT values. However, there were very
few gaps of 30 ms. The substitution error rate increases with increasing RTT, but even for
125 ms it is much smaller than the deletion and insertion rates (pS = 0.0031).

Based on Equation 5.12 we estimate the lower bound of the capacity in bits per symbol
(angle change). The number of symbols depends on the RTT and the player behaviour.
We computed the average symbol rate fS for the different RTTs from the experimental
data (see Table 5.2). With increasing RTT it takes longer for the players to kill each other
and hence the rate does not proportionally decrease with increasing RTT.

Our model can be extended to include packet loss. Loss of snapshots causes bit dele-
tions (snapshots lost for the receiver) and insertions (snapshots lost for the sender). The
loss of snapshots for sender and receiver is independent and therefore both pD and pI are
increased by the packet loss rate pL.

Loss of user commands increases the chance of late user commands and hence in-
creases pS. Given the RTTs in our experiments bit errors are only caused if the last user
command in a period between snapshots is lost; the loss of earlier commands does not
matter. Therefore, pS is increased by 1

2 pL since even if a command is lost there is a 50%
chance that the covert bits are correct (uniform random data).

In case of symmetric visibility without packet loss we model the channel as q-ary
symmetric channel (q-SC). As before, N is the number of bits encoded per angle change.
Then the number of symbols is q = 2N . The capacity of the q-SC is [212]:

C = 1−
H(pS)− pS log2

(︁
2N −1

)︁
N

. (5.13)

Note that for N = 1 the capacity of the q-SC is identical to the capacity of the BSC
[22], and for N = 2 it is only marginally higher (< 0.03 bits/symbol given the relatively
low pS). Finally, if the capacity and symbol rate are known the maximum transmission
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Figure 5.14: RFPSCC throughput depending on RTT (left) and packet loss rate (right)

rate of the channel in bits per second is:

R ≥ N ·C · fS . (5.14)

5.5.3 Bot players

We measured the throughput and bit error rate depending on the number of players, bits
encoded per angle (bpa), RTT and packet loss rate. For each distinct parameter setting
we let the bots play five one-hour games. In total we collected data for over 170 hours
of game-play. The throughput in both directions (Alice to Bob, Bob to Alice) differs less
than 0.1 bits/s and hence we only plot the means in the following graphs.

Figure 5.14(left) compares the average throughput over increasing RTT for 1 bpa and
2 bpa and two or three players with 0% packet loss. Figure 5.14(right) compares the
average throughput over increasing loss rate for 1 bpa and 2 bpa and two or three players
at an RTT of 75 ms. The error bars denote the standard deviation over the five games. The
bit error rate was zero in all experiments.

The throughput of RFPSCC decreases relatively quickly with increasing RTT. How-
ever, it decreases less than expected. For example, the throughput for 75 ms should be
50% of the throughput for 25 ms, but the actual throughput reduces only to about 57%
(from 6.15 bits/s to 3.5 bits/s). This is because the higher the latency, the longer the bots
need to kill each other since aiming becomes more difficult. The same effect occurs for
human players [202]. Enabling packet loss support causes a throughput reduction and all
experiments with 0% loss had loss support disabled. Hence the throughput of RFPSCC
decreases more rapidly between 0% and 0.5% and then the reduction is slower.

Figure 5.15 shows the throughput depending on packet loss for RTTs of 25 ms and
125 ms. The trends are similar to the results shown in Figure 5.14(right). Increasing RTT
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Figure 5.15: RFPSCC throughput depending on packet loss for an RTT of 25 ms (left) and
125 ms (right)

across a plausible range of values causes a more significant reduction in throughput than
adding plausible levels of packet loss.

Because of limited resources we only tested RFPSCC with two and three bot players.
The throughput reduces with increasing number of players and since the bots are unaware
and unsupportive of RFPSCC this trend would continue for a larger number of players.
However, if both Alice and Bob are players and covert sender/receiver, they could improve
the throughput by staying in range of each other, which also is natural in recent team-based
games if both are in the same team.

We also tested RFPSCC across the Internet. The two Q3/RFPSCC clients were at
the same location as before. The Q3 server was located 15 hops away from the clients
and the average RTT was 48–49 ms, as measured by traceroute and ping. The server was
connected to the Internet via an ADSL2 link. The game traffic shared the ADSL2 link
with other traffic, but the total amount of traffic was always much below the link capacity.

In some initial tests we measured snapshot loss rates between 0.0015% and 0.01%
with only single snapshots lost each time (indicating our non-bursty testbed loss settings
are justified). Hence we configured RFPSCC for a maximum loss burst of one snapshot.
We performed three one-hour measurements with 1 bpa and three one-hour measurements
with 2 bpa. The throughput was 3.15± 0.3 bits/s for 1 bpa and 6.25± 0.2 bits/s for 2 bpa
(with zero bit errors). These results are consistent with the testbed measurements.

Table 5.3 compares the maximum transmission rates with the measured throughputs
without packet loss for different delays (values rounded). RFPSCC achieves 77–90%
(1 bpa) and 89–96% (2 bpa) of the capacity lower bound. The overhead is always approx-
imately 0.6–0.7 bits/s. Leigh compared Gallager’s capacity lower bound with the rate of
efficient watermark codes, assuming zero substitution errors [173]. Given the error rates
of FPSCC the best watermark code provides approximately 0.5 bits/symbol meaning it
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Table 5.3: Comparison of the channel capacity with empirically measured throughputs with-
out packet loss (bpa = bits per angle change)

RTT (ms) Maximum rate (bits/s) Throughput (bits/s)
1 bpa 2 bpa 1 bpa 2 bpa

25 6.9 13.8 6.2 (90%) 13.2 (96%)
75 4.2 8.4 3.5 (83%) 7.9 (94%)

125 3.1 6.2 2.4 (77%) 5.5 (89%)

Table 5.4: Comparison of the channel capacity with empirically measured throughputs with
packet loss (bpa = bits per angle change)

RTT (ms) Packet loss (%) Maximum rate (bits/s) Throughput (bits/s)
1 bpa 2 bpa 1 bpa 2 bpa

25 0.5 6.1 12.2 5.2 (85%) 10.8 (89%)
25 1 5.4 10.8 4.6 (85%) 9.6 (89%)
75 0.5 3.7 7.6 2.9 (78%) 5.9 (78%)
75 1 3.3 6.6 2.5 (76%) 5.1 (77%)

125 0.5 2.8 5.6 2.2 (77%) 4.4 (79%)
125 1 2.4 4.8 1.9 (77%) 3.7 (77%)

achieves approximately 75% of the capacity. This is less than what RFPSCC achieves for
non-zero substitution error rates.

Table 5.4 compares the lower bound of the capacity with the actual throughput for
different RTTs and packet loss rates. For low RTTs RFPSCC is quite efficient (≥ 85%),
but for higher RTTs the efficiency reduces to approximately 77%.

We conclude that RFPSCC is reliable. The throughput of RFPSCC is low, but it is
of the same magnitude as the throughput of sophisticated packet timing covert channels
providing 5–20 bits/s (see Chapter 4 and [104]). Since game sessions typically last from
tens of minutes up to 1–2 hours [213], the overall amount of data that can be transmitted
is substantial. For example, about 2.7 kbyte can be transmitted in one hour (assuming two
players, 2 bpa encoding, an RTT of 75 ms and a packet loss rate of 0.5%).

5.5.4 Human players

We also performed five-minute games with nine different human players at an RTT of
25 ms without packet loss. All players used the same client for playing. Each time one
human player played against one bot. Hence any variation of a player’s behaviour is
purely based on the player’s actions and not on varying behaviour of the opponent. Figure
5.16 shows a boxplot comparing the throughput of bots (from the previous experiments)
and human players.

Boxplots show the distributions of different variables using boxes with whiskers. The
box shows the inter-quartile range (IQR) – the bottom end of a box denotes the first
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Figure 5.16: Comparison of throughput with bots and human players for 1 and 2 bits encoded
per angle change

quartile, the bold line inside a box denotes the second quartile (median) and the top end
of a box denotes the third quartile. Whiskers extend up to 1.5 times the IQR. Any values
further away are deemed outliers and shown as little circles.

As expected, the variance of the throughput is much larger with human players as they
have different playing styles. As predicted by the comparison of the angle changes per
second for 1 bpa the throughput is up to 50% higher with human players, but on average
the increase is only 20%. In general the throughput increases by 1–2 bits/s with human
players. The bit error rate was zero in all experiments.

5.5.5 Symmetric visibility

We also measured the throughput for Q3 with symmetric visibility (see Section 5.3.1). In
the absence of packet loss no synchronisation errors occur and hence we used simple and
efficient block-size framing. But the channel is not error-free as substitution errors may
occur, for example because of occasional large gaps between user commands. Therefore,
we used a (48,40) RS code for error correction. A short code was selected in order to
get data in small time intervals and we performed initial experiments to determine the
amount of redundancy necessary to achieve a zero bit error rate. However, our choice
remains somewhat ad-hoc, as we did not perform an extensive search for the best code.

Figure 5.17 compares the average throughput for symmetric visibility over increasing
RTT for 1 bpa and 2 bpa and two or three players without packet loss. The error bars
denote the standard deviation. Despite the overhead of the RS code the average throughput
is 1–2 bits/s higher than the throughput for standard Q3 with RFPSCC (see Figure 5.14).
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Figure 5.17: Throughput of FPSCC with (48,40) RS code depending on RTT if visibility
between players is symmetric

Table 5.5: Comparison of the channel capacity with empirically measured throughputs for
Q3 with symmetric visibility without packet loss (bpa = bits per angle change)

RTT (ms) Maximum rate (bits/s) Throughput (bits/s)
1 bpa 2 bpa 1 bpa 2 bpa

25 10.2 20.4 8.0 (78%) 15.6 (77%)
75 6.2 12.4 4.8 (77%) 9.8(79%)

125 4.7 9.4 3.6 (77%) 7.3(78%)

The results give an indication of the possible throughput for FPS games that have
symmetric visibility. Note that the simple transport scheme for symmetric visibility can-
not tolerate packet loss, as each lost snapshot could cause bit synchronisation errors. If
packet loss can occur, RFPSCC must be used. However, other types of games may use
TCP-based protocols and then for the covert channel there would be no lost packets.

Table 5.5 compares the maximum transmission rates with the measured throughputs
for different delays (values rounded). FPSCC with symmetric visibility achieves 77–79%
of the capacity. Given the overhead of the RS code and per-block sequence numbers
FPSCC should achieve about 81% of the capacity. We think the difference of about 3% is
caused by inefficiencies in the implementation.

We now discuss the main factors that contribute to the overhead of RFPSCC compared
to the simple scheme for symmetric visibility. RFPSCC requires that both peers send
SYNC symbols after visibility has been established. Even in the typical case where Alice
and Bob synchronise as quickly as possible one snapshot is lost (up to 2N bits). In the
worst case the overhead is much higher. At the end of frames both Alice and Bob roll
back some bits that were sent. Up to 4N bits are lost because of the rollback and with
packet loss support this increases to up to (2+ lmax) ·2N bits.
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Throughput is also reduced because with RFPSCC a dead peer cannot receive bits (see
Section 5.3). Since the dead time is usually short we assume the peer still alive is usually
visible for the whole time. Then the overhead depends on the average number of bits per
second, the number of deaths per second and the time it takes for players to respawn (two
seconds by default).

5.6 Conclusions

We developed and analysed a novel covert channel in first person shooter online game
traffic (FPSCC). FPSCC encodes covert bits as imperceptible variations of a player’s char-
acter’s movements. FPSCC is not limited to FPS games, but could be applied to any game
where player movements of one or more in-game characters are regularly propagated to
other players and their game clients. We empirically evaluated FPSCC using a proof-of-
concept implementation based on Quake III Arena.

One major problem to overcome was bit synchronisation errors on the channel caused
by asymmetric state exchange and packet loss. We developed a mechanism for reliable
transport tailored to FPSCC (called RFPSCC) that eliminates bit synchronisation errors
and has low overhead.

We analysed the throughput and bit error rate of RFPSCC in a testbed with different
network delays and packet loss rates as well as across the Internet. We also varied the
number of bits encoded per angle change and the number of players on the map. We
found the channel provides throughputs of up to over 15 bits/s with human players. The
bit error rate is zero, even with modest packet loss on the overt channel.

We also developed a variant of FPSCC for symmetric state exchange requiring no
synchronisation mechanism that works in the absence of packet loss. We evaluated this
variant with a modified game server and measured throughputs of 1–2 bits/s higher than
for RFPSCC with zero bit error rate. We developed an information-theoretic model to es-
timate the channel’s capacity. We found the throughput measured for RFPSCC is always
over 77% and up to over 90% of the capacity, suggesting that RFPSCC is quite efficient.

RFPSCC’s throughput is lower than that of the network-layer channels analysed in the
previous chapters. However, it is sufficient to covertly engage in low-speed text messaging
or general data transfers. Key advantages of RFPSCC for users are that it is an indirect
channel and it cannot be eliminated without eliminating the overt channel (the game).
However, as we will show in Chapter 7 the channel can still be detected.
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5.6.1 Future work

While our current results are very encouraging, more trials with more players, different
maps and game settings could be done to enhance our understanding of (R)FPSCC’s
limitations and performance. Most of our work focused on FPSCC in unicast mode, the
use of FPSCC in broadcast mode is left for further study. Furthermore, the application
of similar channels to non-FPS online multiplayer games or immersive virtual worlds
remains future research.

RFPSCC is quite efficient for small RTTs as our comparison with the channel capacity
shows, but for larger RTTs the performance decreases significantly. An improved encod-
ing technique should be developed to increase the performance for larger RTTs. Another
avenue of new research is to make the channel stealthier. While it appears to be difficult
to make the channel hard to detect for Quake III Arena, for other games or immersive
worlds it may be less challenging.

FPSCC is a channel between two game clients. There could be a variant of FPSCC
utilising only the user commands and snapshots exchanged directly between a client and
the server. Usually FPS game servers are dedicated servers, but players can simultane-
ously run a client and a server on their computer. We leave an implementation and analysis
of this channel for future work.
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Chapter 6

Temperature-based Covert Channels

In this chapter we investigate noisy indirect timing channels that transmit covert data
via changes of temperature (referred to as temperature-based covert channels), exploiting
the fact that a host’s CPU temperature depends on the number of service requests pro-
cessed per time unit and the skew of a host’s system clock depends on the temperature.
Clock skew changes can be estimated remotely from a series of a clock’s timestamps.

The initial purpose of such channels was to reveal hidden services [44] – services
(e.g. web servers) hidden inside anonymisation networks (e.g. the Tor network [214])
providing mutual anonymity1. The attacker identifies the hidden service by correlating
variable clock-skew patterns measured over time for several candidates with the request-
rate pattern sent to the hidden service over the anonymisation network.

Temperature-based channels could possibly be used for general-purpose covert com-
munications, even in scenarios where most other simpler covert channels are not available,
because it is difficult to eliminate them completely [44]. They are not trivial to detect and
their indirect nature makes it harder for an adversary to discover the link between covert
sender and receiver.

We first provide some background on Tor hidden services and outline previous attacks
against them. Then we describe how temperature-based covert channels work. Next, we
develop a novel technique to minimise one key source of channel noise inherent in the
clock-skew estimation. This technique not only makes the channel much more effective
because of an increased capacity. It also enables new more efficient attacks against Tor
hidden services, which we then describe.

Our new attacks are based on the correlation of clock skew measured for the hid-
den service across Tor and clock skew measured directly for several candidates. High-
frequency timestamps are not available across Tor and only our improved channel enables
accurate clock-skew estimation from low-frequency timestamps, such as HTTP times-
tamps. The amount of traffic exchanged is reduced significantly, since remote clock-skew
estimation generates much less traffic than remote modulation of CPU load.

We evaluate the effectiveness of the improved channel and the new attacks in a testbed
as well as over the Internet. The results show that the channel’s noise is significantly

1The identity of the service operator is not revealed to the user and the identity of the user is not revealed
to the service operator.
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reduced by up to two orders of magnitude. We also demonstrate that our new attacks
works; it identifies the hidden server in less than 2.5 hours. We focus on Tor, but our
results should be applicable to other low-latency hidden service designs.

Finally, we propose a method to estimate the capacity of the channel. Knowing the
capacity is very important for determining whether the channel poses a threat in certain
scenarios and actions should be taken against it. We compute upper bounds of the capacity
based on empirical data collected for example intermediate hosts. The results show that
the capacity is limited to 10–20 bits per hour.

The low capacity makes the channel less relevant for general-purpose communication.
However, the capacity is more than sufficient for attacking hidden servers where only a
few bits need to be transmitted. Murdoch’s attack could be executed with reasonably
probability for false positives in only 1–2 hours, much quicker than assumed in [44]. In
this case the channel requires handling (elimination, capacity limitation or monitoring).

6.1 Background

First we describe previous attacks against Tor hidden services. Then we explain how
temperature-based covert channels work. Next, we discuss a key component of the chan-
nel – the remote estimation of clock skew. Finally, we provide an overview of remotely
accessible clocks, required for clock-skew estimation.

6.1.1 Existing attacks against Tor

The Tor network [214] is the latest generation of the Onion Router Project [215]. Tor is a
popular, deployed system and as of January 2008 there are about 2 500 active Tor servers.
The Tor hidden service facility allows the provision of pseudonymous services, protecting
the owners’ identity and also resisting selective DoS attacks [214].

High-profile examples where this feature would have been valuable include blogs
whose authors are at risk of legal attacks [216, 217]. Other hidden web sites host sup-
pressed documents, permit the submission of leaked material, and distribute software
written under a pseudonym.

Since Tor is an overlay network, servers hosting hidden services are accessible both
directly and over the anonymous channel. Traffic patterns through one channel have ob-
servable effects on the other, thus allowing a service’s pseudonymous identity and IP
address to be linked.

Øverlier and Syverson showed that a hidden service could be located rapidly because
a Tor hidden server selects nodes at random to build connections [218]. The attacker
repeatedly connects to the hidden service, and eventually a node she controls will be the
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one closest to the hidden server. By correlating input and output traffic, the attacker can
discover the server’s IP address.

Murdoch and Danezis presented an attack where the target visits an attacker-controlled
web site, which induces traffic patterns on the Tor circuit protecting the client [219].
Simultaneously, the attacker probes the latency of all the publicly listed Tor nodes and
looks for correlations between the induced pattern and observed latencies. When there is
a match, the attacker knows that the node is on the target circuit, and so she can reconstruct
the path, although not discover the end node.

Murdoch proposed the most recent attack based on temperature-based covert channels
[44]. This attack is described below.

6.1.2 Temperature-based covert channel

In a temperature-based covert channel Alice modulates the CPU load of an unwitting
intermediate host connected to a network (e.g. a public server) by varying the rate of
requests sent to it based on the covert bits to be encoded. The varying request rate will
cause CPU load changes on the intermediate host. The change in CPU load changes the
temperature, which in turn induces changes in clock skew – the deviation of the interme-
diate’s clock from the true time. Bob measures the intermediate’s clock skew by obtaining
timestamps from the intermediate’s clock and comparing these against a local clock. Bob
then decodes the covert bits by estimating the clock-skew changes [44].

Two scenarios are possible. In the first scenario both Alice and Bob are separated
from the intermediate by a network. Alice and Bob could be controlled by the same
person (e.g. attacking Tor hidden services), or could be different persons (e.g. general
covert communications). In the second scenario Alice is located on the intermediate host
itself and manipulates the CPU load directly; only Bob is separated by a network. This is a
possible scenario for the ex-filtration of sensitive information. The scenarios are depicted
in Figures 6.1 and 6.2.

When attacking hidden services the attacker takes the role of Alice and Bob, and the
intermediate host is the target [44]. The attacker induces a load pattern on the target by
frequently accessing the hidden service via the anonymisation network or staying silent,
effectively sending a pseudo-random bit sequence. At the same time the attacker measures
the clock skew of a set of candidate hosts. The attacker has identified the hidden server if
the same bit sequence is recovered from the clock-skew measurement of a candidate.

6.1.3 Clock-skew estimation

All networked devices have clocks constructed from hardware and software components.
A clock consists of a crystal oscillator that ticks at a nominal frequency and a counter
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Figure 6.2: Temperature-based covert channel where Alice induces load directly on the in-
termediate host

that counts the number of ticks. The actual frequency of a device’s clock depends on the
environment, such as the temperature and humidity, as well as the type of crystal.

It is not possible to directly measure a remote host’s true clock skew. However, the
attacker can measure the offset between the target’s clock and a local clock, and then
estimate the relative clock skew. For a packet i, containing a timestamp of the target’s
clock received by the attacker, the offset õi is [44]:

õi = t̃i− tri = sctri +

tri∫︁
0

s(t)dt− ci/h−di , (6.1)

where t̃i is the estimated time at the intermediate, tri is the local time the packet was
received, sc is the constant clock-skew component, the integral over s (t) is the variable
clock skew component, ci/h is the quantisation noise for random sampling and di is the
network delay.

The constant clock skew is estimated by fitting a line above all points õi while min-
imising the distance between each point and the line above it using the linear program-
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Figure 6.3: Estimating the variable clock skew

ming algorithm described in [220]. This leaves the variable part of the clock skew and the
noise. To estimate the variable clock skew per time interval, the same linear programming
algorithm is used for each time window of size w.

Figure 6.3 shows an example of a clock skew measurement across the Internet. The
target was 22 hops away with an average RTT of 325 ms. The measurements were taken
from the TCP timestamp clock ticking with a frequency of 1 kHz (see Section 6.1.4)2. The
constant clock skew sc has already been removed. The dots (·) are the offsets between the
two clocks, the line (−) on top is the piece-wise estimation of the variable skew and the
triangles (△) are the negated values of the derivative of the variable clock skew. To be
consistent with [44] in this chapter we always plot the negated variable clock skew.

The noise apparent in the figure has two components: the network jitter on the path
from the attacker to the target and the timestamp quantisation error. Note that the network
jitter also contains noise inherent in the attacker’s measurement of when packets are re-
ceived, and noise caused by variable delay at the intermediate host between generating the
timestamps and sending the packets. In Figure 6.3, we clearly see the 1 ms quantisation
noise band below the estimated slope caused by the 1 kHz clock. Offsets below this band
were also affected by network jitter.

The samples close to the slope on top are the samples obtained immediately after clock
ticks with negligible network jitter. The samples at the bottom of the quantisation noise
band are samples obtained immediately before clock ticks. With the linear programming
algorithm, only the samples close to the slope on top contribute to the accuracy of the
measurement. Assuming an uncongested network, the network jitter is skewed towards
zero and often small even on long-distance links (see Section 6.4.2). The quantisation
noise is inversely proportional to the frequency of the intermediate’s clock. Depending

2No additional CPU load was generated on the intermediate host during the measurement.
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on the timestamps used and the intermediate’s operating system, the clock frequency is
typically between 1 Hz and 1 kHz, resulting in a noise band between 1 s and 1 ms. If the
target does not expose a high-frequency clock, the quantisation noise can be significantly
larger than the noise caused by network jitter.

To increase the accuracy of the measurement in the presence of high quantisation
noise, w must be set to larger values, as the probability of getting samples close to the
slope on top increases with the number of samples. However, large windows only al-
low very infrequent measurements. Oversampling provides more frequent results while
keeping w large to minimise the error. Without oversampling the time windows do not
overlap and the start times of the windows are S = {0,w,2w, . . . ,nw}. With oversampling,
the windows overlap and the windows start at times S = {0,w/o,2w/o, . . . ,nw/o}, where
o is the oversample factor.

However, over-sampling with large w still has drawbacks. The first estimate is ob-
tained only after w/2 regardless of o, since clock-skew estimates are always assigned to
the middle of the time windows. This means for large w it is impossible to get estimates
close to the start and end of measurements. Furthermore, averaging caused by large win-
dows makes it impossible to measure steep clock-skew changes accurately, for example
when a CPU load inducement starts and temperature increases quickly [44].

6.1.4 Timestamp sources

Previous research used different timestamps for clock-skew estimation: ICMP times-
tamps, TCP timestamps or TCP sequence numbers [221, 44].

TCP sequence numbers on Linux are the sum of a cryptographic result and a 1 MHz
clock. They provide good clock-skew estimates over short periods because of the high
frequency, but re-keying of the cryptographic function every five minutes makes longer
measurements more difficult [44].

ICMP timestamps have a fixed frequency of 1 kHz. Their disadvantage is that they are
affected by clock adjustments done by the Network Time Protocol (NTP) [222], which
makes estimation of variable clock skew more difficult. Furthermore, ICMP messages are
now blocked by many firewalls.

TCP timestamps have a frequency between 1 Hz and 1 kHz, depending on the oper-
ating system. They are currently the best option for clock-skew measurements because
they are widely available and unaffected by NTP adjustments on Linux, FreeBSD and
Windows [221]. However, even TCP timestamps are not always available. They may not
be enabled on certain operating systems and they cannot be used if there is no end-to-end
TCP connection to the intermediate host, i.e. across the Tor network.
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HTTP timestamps have a frequency of 1 Hz and are available from every web server.
However, they have not been used previously for clock-skew measurements due to the
low frequency. We describe how to exploit them in Section 6.3.

6.2 Improved covert channel

In previous research, the clock skew was remotely measured by random sampling of the
clock [221, 44]. To minimise the quantisation error, Murdoch proposed to use synchro-
nised sampling instead of random sampling [44]. Here, the attacker synchronises the
timestamp requests with the target’s clock ticks, attempting to obtain timestamps imme-
diately after clock ticks, where the quantisation error is smallest. Synchronised sampling
improves the accuracy, especially for low-resolution timestamps.

We first describe how synchronised sampling improves the efficiency of the existing
covert channel. Next, we describe the novel synchronised-sampling technique in detail.
Finally, we discuss possible errors that reduce its accuracy.

6.2.1 Synchronised sampling

To prevent high quantisation noise the attacker must probe the target’s clock immediately
after clock ticks occurred, because here the quantisation error is smallest. To achieve
this, the attacker has to synchronise its probing frequency and phase with the remote
clock. We assume the attacker selects a nominal sample frequency, based on the desired
accuracy and intrusiveness of the measurement.

The attacker cannot measure the exact time difference between the arrival of probe
packets and the clock ticks. To maintain synchronisation, the attacker has to alternate
between sampling the clock before and after a clock tick. Only samples taken after the
clock tick are used for the clock-skew estimation.

Samples taken before the clock tick can be corrected by adding one tick, as their true
value is actually closer to the next clock tick. However, the linear programming algorithm
still cannot use these samples because for them the quantisation error and network jitter
are in opposite directions and cannot be separated.

Figure 6.4 illustrates the benefit of synchronised sampling. The solid step line is the
target’s clock value over time and the dashed line is the true time. Random samples are
distributed uniformly between clock ticks whereas synchronised samples are taken close
to them3. The quantisation errors are the differences between samples’ y-values and the
true time. The absolute quantisation errors are shown as bars at the bottom. Synchronised
sampling leads to smaller errors in comparison with random sampling.

3Times for samples before the tick have been corrected as described earlier.
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Figure 6.4: Advantage of synchronised sampling over random sampling

Our algorithm is similar to existing Phase Lock Loop (PLL) techniques used for align-
ing the frequency and phase of a signal with a reference [223]. However, whereas PLL
techniques measure the phase difference of two signals, we can only estimate the phase
difference by detecting whether a sample was taken before or after a clock tick.

6.2.2 Algorithm

Initially, the attacker starts probing with the nominal sampling frequency and measures
how many clock ticks occur in one sample interval (target_ticks_per_interval).
The measurement is repeated to obtain the correct number of ticks.

The attacker cannot measure the exact time difference between the arrival of a probe
and the target’s clock tick. However, the attacker can measure the position of the probe’s
arrival relative to the target’s clock tick based on the number of clock ticks that occurred
between the current and the last timestamp (ticks_diff). If the number of clock ticks
is less than target_ticks_per_interval, the sample was taken before the tick and
vice versa. If ticks_diff equals target_ticks_per_interval the position is un-
changed. At the start of the measurement the position is not known and the attacker needs
to continuously increase or decrease the probe interval until a change occurs.

The probe interval, the reciprocal of the probe frequency, is controlled using the fol-
lowing mechanism (see Algorithm 6.1). It is adjusted based on the position error each
time a position change occurs and the previous position was known using a Proportional
Integral Derivative (PID) controller [224]. PID controllers base the adjustment not only
on the last error value, but also on the magnitude and the duration of the error (integral
part) as well as the slope of the error over time (derivative part). Kp, Ki and Kd are pre-
defined constants of the PID controller, dimensioned based on initial experiments.
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Alternatively, the linear programming algorithm [220] is used to estimate the relative
clock skew between attacker and target based on a sliding window of timestamps, and the
probe interval is adjusted based on the relative clock skew. This technique works well if
the estimates are accurate (e.g. high-frequency clocks and low network jitter).

Algorithm 6.1 Probe interval control

function probe_interval_adjustment(pos, last_pos)
if pos , last_pos and pos , UNKNOWN and
last_pos , UNKNOWN then
return Kp·(last_adj_before + last_adj_behind) +

Ki·(integ_adj_before + integ_adj_behind) +
Kd·(deriv_adj_before + deriv_adj_behind)

else

return 0

In order to maintain synchronisation, the attacker has to enforce regular position
changes. This is done by modifying the time the next probe will be sent. If the cur-
rent position is before the clock tick the send time of the next probe is increased based
on the last adjustment last_adj_before. If the current position is behind the clock tick
the next probe’s send time is decreased based on the last adjustment last_adj_behind.
The adjustments are modified based on how well the attacker is synchronised.

If a change of position occurs between two samples, the difference between the ar-
rival of the probe packet and the target’s clock tick is smaller than the last adjustment
and therefore the next adjustment is decreased. If no position change occurs the error is
assumed to be larger than the last adjustment and the next adjustment is increased. The
initial adjustment is a pre-defined constant. Algorithm 6.2 shows the probe send time
adjustment algorithm. Parameters α and β are pre-defined constants that determine how
quickly the algorithm reacts (0 < α < 1 and β > 1).

Algorithm 6.2 Next probe send time adjustment

function next_probe_time_adjustment(pos, last_pos)
if pos = BEFORE then
last_adj = last_adj_before

else
last_adj = last_adj_behind

if pos , last_pos then
return α·last_adj

else
return β·last_adj

The probe interval and send-time adjustments are limited to a range between pre-
defined minimum and maximum values to avoid very small or very large changes. If
packet loss is detected, the algorithm adjusts ticks_diff by subtracting the number
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of lost packets multiplied by target_ticks_per_interval. Reordered packets are
considered lost. Loss of responses is detected using sequence numbers. A sequence
number is embedded into each probe packet such that the target will return the sequence
number in the corresponding response.

The actual sequence number encoding depends on the protocol used for probing. For
ICMP the sequence number is the ICMP Identification field whereas for TCP the se-
quence number is the TCP sequence number field. For HTTP it is not possible to embed
a sequence number into the protocol directly. Instead, sequence numbers are realised by
making requests cycling through a set of URLs. A sequence number is associated with
each URL. HTTP responses are mapped to HTTP requests using the known content length
for each object4.

Algorithm 6.3 shows the synchronisation procedure. Our algorithm works with dif-
ferent timestamps and different clock frequencies. It has been tested with ICMP, TCP and
HTTP timestamps and TCP clock frequencies of 100 Hz, 250 Hz and 1 kHz.

Algorithm 6.3 Synchronised sampling

foreach response_packet do
diff = target_timestamp − last_target_timestamp

if target_ticks_per_interval = NA then
pos = UNKOWN
target_ticks_per_interval = ticks_diff

else if ticks_diff > target_ticks_per_interval then
pos = BEHIND

else if ticks_diff < target_ticks_per_interval then
pos = BEFORE

else
pos = last_pos

probe_interval = probe_interval +
probe_interval_adjustment(pos, last_pos)

probe_time = last_probe_time + probe_interval +
next_probe_time_adjustment(pos, last_pos)

last_pos = pos
last_target_timestamp = target_timestamp
last_probe_time = probe_time

6.2.3 Errors

Constant delay on the path from the attacker to the target has no effect, but changes in
delay affect the synchronisation process. In Appendix E.1 we provide more details on the
sources of variable delays that affect the synchronisation process. They include jitter in

4We assume there are multiple objects with different content lengths accessible on the web server.
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the sending process (jitter at the attacker), network jitter (queuing delays in routers) or
jitter in the target’s packet receiving process.

Often we can assume the network is uncongested and therefore network jitter is skewed
towards zero. This is usually the case in a LAN (see Section 6.4). Even on long paths
across the Internet jitter is often small, as many links are not heavily utilised and path
changes are not frequent. However, when measuring clock skew over a Tor circuit we
expect much higher network jitter. A Tor circuit is composed of a number of network
connections between different nodes. The overall jitter does not only include the jitter of
each connection but also the jitter introduced by the Tor nodes themselves.

The timing of probes is not very exact if the attacker is a userspace application. Even
if the send() system call is executed at the appropriate time, there is a delay before the
packet is actually sent onto the physical medium. The variable part of this delay affects
the synchronisation process. The error could be reduced by running the software as kernel
module, using a real-time operating system or using special network cards capable of very
precise sending of packets.

Any variable delay in the packet receiving process of the target has the same effect
and is unfortunately out of control of the attacker. The only way an attacker could reduce
such errors would be to adjust the sending of the probe packets based on a prediction of
the jitter inside the target, which appears to be a challenging task.

Another error is introduced at the attacker when timestamping the probe response
packets. Furthermore, an error is introduced when the relative clock skew between at-
tacker and target changes due to NTP and the algorithms needs to adjust the probe fre-
quency. However, the attacker can control its time keeping and avoid sudden clock
changes, and as described earlier some timestamps are unaffected by NTP.

6.3 New attacks

We first define the threat model. Then we describe the new attacks against Tor. Finally,
we describe how HTTP timestamps are used in the new attacks.

6.3.1 Threat model

We assume that the attacker’s goal is to link the hidden service pseudonym to the identity
of its operator, which in practice can be derived from the server’s IP address. Our attacker
cannot observe, inject, delete or modify any network traffic, other than that to or from
her own computer. The attacks we present here do not require control of any Tor node.
However, we do assume that our attacker can access hidden services, which means she is
running a client connected to a Tor network.
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We also assume that our attacker has a reasonably limited number of candidate hosts
for the hidden service (say, a few hundred). To mask traffic associated with hidden ser-
vices, many of their hosts are also publicly advertised Tor nodes, so this scenario is plau-
sible. All of our attack scenarios, with one notable exception, require that the attacker can
access the candidate hosts directly via their IP address. Again, since many hidden servers
are also Tor nodes, it is plausible that at least the Tor application is accessible.

6.3.2 New attacks against Tor

A major disadvantage of the attack in [44] is that the attacker needs to exchange large
amounts of traffic with the hidden service across the Tor network to induce CPU load
changes. It may not be possible to actually send sufficient traffic because Tor does not
provide enough bandwidth, or because the service operator actively limits the request
rate to avoid overload, prevent DoS attacks etc. Furthermore, the attack also relies on an
exposed high-frequency clock on the target for adequate clock-skew estimation.

Synchronised sampling improves the existing attack by reducing the duration and
hence the amount of network traffic required. It also makes the existing attack appli-
cable in situations where high-resolution timestamps are not available. Furthermore, it
opens the door for new variants of the attack based on clock-skew measurements across
the Tor network.

High-frequency ICMP or TCP timestamps are not available across Tor, since it only
supports TCP and streams are re-assembled on the client, removing any headers. But syn-
chronised sampling can use low-frequency HTTP timestamps obtained from a hidden web
server. The new attacks do not require generating load on the target and hence the amount
of traffic exchanged is greatly reduced, as measuring clock-skew requires only a small
amount of traffic; the exchange of one request/response every 1.5 seconds is sufficient.

In the first new attack variant, the attacker measures the variable clock skew of the hid-
den service via Tor, and of all the candidate hosts directly5. Then the attacker compares
the variable clock-skew pattern of the hidden service with the patterns of all candidates.
The variable clock skew patterns of different hosts differ sufficiently over time (see Sec-
tion 6.4.3), and the duration of the attack could be increased arbitrarily.

A quicker version of this attack could only compare the fixed clock-skew of the target
measured via Tor with the fixed clock-skew measured directly for all candidates. Kohno
et al. showed that the fixed clock skew of a particular host changes very little over time,
but the difference between different hosts is significant [221].

Another new attack variant is based on the idea of using clock-skew estimates for
geo-location [44]. The attacker identifies the location of the candidates based on their IP

5Both timestamp sources must be derived from the same clock.
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Figure 6.5: HTTP request/response and the timestamps used for clock-skew estimation

addresses and a geo-location database, such as GeoLite [225]. The attacker also measures
the variable clock skew of the hidden service via Tor and estimates the location based
on the variable clock-skew pattern. For example, the longitude can be estimated based
on temperature peaks and troughs, and the latitude can be estimated by estimating the
day length [44]. This attack works even when the attacker cannot access timestamps of
the candidate hosts directly. However, it does not allow an unambiguous identification if
candidate locations are geographically close together.

6.3.3 HTTP timestamps

The attacker acts as HTTP client sending minimal HTTP requests to the target. All recent
HTTP servers include a 1 Hz timestamp in the Date header of HTTP responses because
it is mandatory for HTTP 1.1 [226]. The HTTP timestamp is usually generated after the
server has received the client’s request6. The corresponding client timestamp is the time
the packet containing the Date header is received, which is usually the first packet sent by
the server after the TCP connection has been established (see Figure 6.5).

The client should open a TCP connection well in advance of needing to send the HTTP
request to avoid the HTTP request being delayed by TCP’s three-way connection estab-
lishment handshake, and ideally keep the connection open for the entire measurement
period. However, HTTP servers may close the TCP connection after sending a reply.
Therefore, the client should immediately re-open a torn-down TCP connection, enabling
the next HTTP request to be sent at the right time, as determined by the synchronised
sampling algorithm.

6We verified this for Apache 2.2.4 [227].
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6.4 Empirical evaluation

First we compare the accuracy of synchronised and random sampling in a LAN testbed
using TCP timestamps with typical clock frequencies of 100 Hz, 250 Hz and 1000 Hz,
as well as 1 Hz HTTP timestamps. Since within the LAN network jitter is negligible
the results show the maximum improvement of using synchronised sampling. Next, we
compare the accuracy of synchronised and random sampling based on TCP timestamps
across a 22-hop Internet path.

Then we compare the accuracy of synchronised and random sampling when probing
a web server running as a Tor hidden service. We also show that a hidden web server can
be identified among a candidate set by comparing the variable clock skew over time using
synchronised sampling. Furthermore, synchronised sampling shows daily temperature
patterns usable for geo-location that could not be identified using random sampling.

Finally, we investigate how long our synchronised probing technique needs for the
initial synchronisation, which is the time until the attacker has locked on to the phase and
frequency of the target’s clock ticks. We compare the times for probing a web server in a
LAN and probing a hidden web server over a Tor network.

It is impossible to measure the true values of the variable clock skew. We evaluate
the accuracy of synchronised and random sampling against a baseline, estimated from
timestamps with a precision of 1 µs, for which the quantisation error is negligible. In our
tests a UDP client on the attacker sends packets to a UDP server running on the target.
For each ‘request’ received the UDP server returns a packet with a timestamp set to the
send time of the ‘response’. The UDP client records the time it receives a response. We
estimate the variable clock skew for this timestamp series using synchronised sampling.
We refer to this as UDP probing or UDP measurement.

We compare the variable skew estimates for synchronised and random sampling with
the reference values from the UDP measurement, using the root mean square error (RMSE)
of the data values x against the reference values x̂:

RMSE =

√︃
1
N

∑︁
i

(x̂i− xi)2 . (6.2)

We also compute histograms of the noise band for synchronised and random sampling.
The noise is defined as difference between the variable clock offsets and the variable
clock-skew estimated from the UDP measurement. For random sampling the quantisation
noise band is uniform with width 1/ f , where f is the clock frequency. For synchronised
sampling it depends on how well the algorithm tracks the target’s clock tick.

In all experiments we set α= 0.5 and β= 1.5. For TCP timestamps the linear program-
ming algorithm was used to adjust the probe interval with a sliding window of size 120
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Figure 6.6: Noise distributions in LAN: synchronised sampling (left) and random sampling
(right)

(LAN) and 300 (Internet). For HTTP timestamp measurements the probe interval was
adjusted using a PID controller with Kp = 0.09, Ki = 0.0026 and Kd = 0.02. The oversam-
pling factor was chosen such that the time between two clock-skew estimates was always
30 s regardless of the window size. This has the advantage of providing approximately
the same number of estimates for different window sizes7.

6.4.1 Synchronised and random sampling within LAN

The attacker and target with a TCP clock frequency of 1 kHz were connected to the same
Gigabit Ethernet switch8. The attacker simultaneously performed synchronised, random
and UDP probing. Synchronised and random probing had an average sampling period of
1.5 s, the same period as in [44]. The UDP probing was performed with a faster aver-
age sample rate of 1 Hz to achieve a higher accuracy for the reference measurement. A
second UDP measurement was carried out in order to investigate the error between UDP
measurements. The experiment lasted approximately 24 hours.

Inside the LAN the average RTT was only 130 µs and the RTT/2 jitter was small with a
maximum of 60 µs and a median of 30 µs. Figure 6.6 shows histograms of the noise bands
of synchronised and random sampling. For synchronised sampling most of the offsets are
within 100 µs whereas for random sampling there is the expected 1 ms noise band.

Figure 6.7 compares the RMSEs of synchronised sampling, random sampling and the
second UDP measurement for different window sizes against the UDP reference with
maximum window size (1800 s). It also compares the UDP reference against itself at
smaller window sizes.

7For smaller windows there are still more samples at the start and end of measurement periods.
8Attacker and target were PCs with Intel Xeon 3.6 GHz Quad-Core CPUs, both running Linux 2.6.
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Figure 6.7: RMSEs of synchronised, random sampling and UDP reference in LAN with a
target clock frequency of 1 kHz (log y-axis)

The results show that synchronised sampling performs significantly better than ran-
dom sampling. There is a difference between the second UDP measurement and the UDP
reference, but it is smaller than the difference between synchronised sampling and the
UDP reference. The error of a UDP measurement is sufficiently small for using it as
baseline, and in further experiments we carried out only one UDP measurement.

The target’s clock frequency was 1 kHz, which is the maximum TCP clock frequency
of current operating systems. However, in reality many hosts actually have lower TCP
clock frequencies. For example, 100 Hz is the frequency used by older Linux and FreeBSD
kernels and 250 Hz is the frequency of recent Linux 2.6 kernels.

We used the same setup to evaluate the RMSEs for lower clock frequencies. This time
we ran three synchronised and three random probing processes simultaneously for 24
hours, rounding the target’s timestamps so that we effectively measured 100 Hz, 250 Hz
and 1 kHz clocks. Figure 6.8 shows the RMSEs for synchronised and random sampling
for the different clock frequencies. The UDP measurement is omitted for better read-
ability. The results show that the RMSE for random sampling increases significantly for
lower clock frequencies, but the accuracy of synchronised sampling does not depend on
the clock frequency.

In another LAN experiment we ran an Apache 2.2.4 web server on the target and the
attacker used HTTP probing. The average probing interval was 2 s. The web server was
completely idle, except for the requests generated by the attacker. The duration of the
experiment was approximately 24 hours.

Although the experiment was carried out between the same two hosts as before, the
RTT/2 jitter was higher with a maximum of 120 µs and a median of 60 µs. The web
server running in userspace introduced the additional jitter. Figure 6.9 shows the noise for
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synchronised sampling and random sampling. For synchronised sampling the noise band
is only slightly larger than in Figure 6.6 because of the higher jitter. For random sampling
the noise band is 1 s because of the HTTP clock frequency of 1 Hz.

Figure 6.10 shows the RMSEs of synchronised sampling, random sampling and the
UDP measurement against the reference at maximum window size. The RMSEs of syn-
chronised sampling and UDP reference are very similar to the results in Figure 6.7. Be-
cause of the large noise band, the RMSE for random sampling is more than two orders of
magnitude above the RMSE for synchronised sampling. This demonstrates that our new
technique is able to measure clock-skew changes for low-frequency clocks effectively, an
infeasible task for random sampling.
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Figure 6.10: RMSEs of synchronised sampling, random sampling and the UDP measurement
for HTTP probing in LAN (log y-axis)

6.4.2 Synchronised and random sampling across Internet

The attacker was the same machine as in Section 6.4.1 located in Cambridge, UK. The
new target9 had a TCP timestamp frequency of 1 kHz and was 22 hops away located in
Canberra, Australia. The average RTT between measurer and target was 325 ms. We
performed synchronised, random and UDP probing for approximately 21 hours, using the
same parameters as in Section 6.4.1

Despite the high RTT, the jitter was relatively small and skewed towards zero (see
Appendix E.2). Figure 6.11 shows the histograms of the noise bands. For synchronised
sampling most of the offsets are within 250 µs of the reference whereas for random sam-
pling there is the expected 1 ms noise band.

Figure 6.12 shows the RMSEs of synchronised sampling, random sampling and the
UDP reference against the UDP reference at maximum window size. Here, the gain
of synchronised sampling is smaller because of the higher network jitter, but it is still
significant for smaller window sizes.

6.4.3 Attacking Tor hidden services

For our measurements we used a private Tor network. Our Tor nodes were distributed
across the Internet running on PlanetLab [228] nodes. The main reason for using a private
Tor network was the poor performance of hidden services in the public Tor network. Be-
sides huge network jitter preventing accurate clock-skew measurements, hidden services
always disappeared after a few hours preventing longer measurements. While currently it

9A PC with 2.4 GHz Celeron CPU running FreeBSD 4.10.
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Figure 6.11: Noise distributions for Internet path: synchronised sampling (left) and random
sampling (right)
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Figure 6.12: RMSEs of synchronised sampling and random sampling for TCP probing across
Internet path (log y-axis)

is difficult to carry out the attack in the public Tor network, it should become easier in the
future, since the Tor team is improving the performance of hidden services.

We selected 18 widely geographically distributed PlanetLab nodes on which we ran
Tor nodes (three were directory authorities). We selected nodes that had low CPU utili-
sation at the time of selection. One machine hosted another Tor node and the hidden web
server10. Another machine hosted a Tor client and our probe tool11. No load was induced
on the server, so any clock skew changes were caused by ambient temperature changes.

First we performed an experiment similar to the ones in Section 6.4.1 and Section
6.4.2. Synchronised and random sampling were performed across the Tor network, while

10An Intel Core2 2.4 GHz with 4 GB RAM running Linux 2.6.16.
11An Intel Celeron 2.4 GHz with 1.2 GB of RAM running Linux 2.6.16. We used tsocks [229] with Tor

patches to enable our tool to interact with the Tor client via the SOCKS protocol.
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Figure 6.13: Noise distributions for private Tor testbed: synchronised sampling (left) and
random sampling (right)

UDP probing was performed directly between the client and the hidden server. The mea-
surement duration was approximately 18 hours.

The average RTT between client and hidden server across Tor was 885 ms. The RTT/2
jitter was considerably higher than in the previous measurements (see Appendix E.2).
Figure 6.13 shows histograms of the noise bands of synchronised and random sampling.
For random sampling it shows the expected 1 s noise band. For synchronised sampling
the noise is greatly reduced. Most of the offsets are much less than 100 ms away from the
slope given by the UDP reference.

Figure 6.14 shows the variable clock skew for synchronised sampling as squares (�),
random sampling as circles (�) and the UDP reference as line (−) for window sizes of
1800 s and two hours. The noise is much smaller for synchronised sampling compared to
random sampling especially for 1800 s windows. For two-hour windows one can clearly
see a daily temperature pattern of the reference curve, with the temperature and hence the
clock skew decreasing during night hours and suddenly increasing in the morning.

The synchronised sampling curve shows the same pattern with added noise. In con-
trast, for random sampling the pattern is not clearly visible because of the much higher
noise. An attacker could use such daily temperature patterns to estimate the geographic
location of the target, as described in Section 6.3.2.

In Figure 6.15 we compare the RMSEs of synchronised sampling, random sampling
and the UDP reference against the UDP reference at maximum window size. The RMSE
of synchronised sampling is almost one magnitude lower than the RMSE for random
sampling even for window sizes as large as two hours.

In the second experiment we performed the actual attack. We treated all 19 Tor nodes
as candidates and measured their clock skew directly using TCP timestamps and synchro-
nised sampling. At the same time we measured the clock skew of the hidden web service
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Figure 6.14: Estimated clock skew changes for hidden service in private Tor network for a
window size of 1800 s (left) and 2 hours (right)
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Figure 6.15: RMSEs of synchronised, random sampling and UDP reference for hidden web
service in private Tor network (log y-axis)

via Tor based on HTTP timestamps using synchronised and random sampling simultane-
ously. The experiment lasted about ten hours. One of the nodes stopped responding in the
middle of the experiment.

Figure 6.16 shows two graphs where each line is the RMSE between the HTTP clock
skew estimate obtained from the hidden service via Tor using random/synchronised sam-
pling and the TCP clock skew estimate of one candidate node. We used a window size of
three hours, as for smaller windows random sampling was not able to consistently select
one candidate as the best. The RMSE of the HTTP timestamp estimate and the correct
candidate is shown as thick line while RMSEs for other candidates are shown as thin lines.

For synchronised sampling the RMSE between the Tor measurement and the direct
measurement of the correct candidate is small, and with increasing duration becomes
significantly smaller all other RMSEs (except one). For random sampling all RMSEs
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Figure 6.16: RMSEs between the HTTP clock-skew estimate obtained from hidden service
via Tor using random sampling (left) or synchronised sampling (right) and the
TCP clock-skew estimates of all candidate nodes

are high indicating that there is no good match of the Tor hidden service with any of the
candidates. After a longer time the RMSE with the correct candidate becomes smallest,
but only by a very small margin.

The time it takes to identify the hidden server is the period from the start of the mea-
surement until the RMSE of the correct candidate becomes smallest. Note that the initial
1.5 hours it takes to get the first clock skew estimate are not included in Figure 6.16.
Synchronised sampling is able to identify the correct candidate much faster than random
sampling, needing only 139 minutes compared to 287 minutes.

While the variable clock skew of the TCP clock and HTTP clock are a good match,
the fixed skew of the two clocks differs on our hidden server. This makes it impossible
to evaluate an identification of the hidden server based on the fixed skew. However, since
we know the true fixed skew of the HTTP clock, we can analyse how long it takes to
get an accurate estimate using synchronised and random sampling. We use the data from
the previous experiment and assume the skew estimate is correct if within 0.5 parts per
million of the true value. Again synchronised sampling outperforms random sampling,
needing only 23 minutes compared to 102 minutes.

6.4.4 Initial synchronisation time

We briefly analyse the initial synchronisation time, which is the time it takes until the
attacker has locked on to the phase and frequency of the target’s clock ticks.

Figure 6.17 plots the values of adj_before, adj_behind and probe_interval (see
Section 6.2) over the number of samples taken from the target’s HTTP clock every 2 s.
The y-axis is limited to values between −10 ms and 10 ms and the x-axis is limited to
the first 1 000 clock samples. Note that before-adjustments are always positive, while
behind-adjustments are always negative.
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Figure 6.17: Initial synchronisation for HTTP probing in LAN (left) and probing a hidden
web server over the Tor network (right)

In the LAN experiment initial synchronisation is established after only about 40 sam-
ples (approximately 1.5 minutes) and further adjustments and probe interval changes are
very small (less than 500 µs and 100 µs respectively). When probing over the Tor network
synchronisation is more difficult because of the much higher network jitter. Consequently
initial synchronisation takes about 70 samples (approximately 2.5 minutes) and the algo-
rithm is forced to make larger adjustments of up to several milliseconds.

6.5 Channel capacity upper bound

Now we estimate an upper bound of the capacity of the temperature-based covert channel,
more specifically the improved channel with synchronised sampling.

We first propose an overall model for the channel. Our model consists of a Matlab
Simulink [230] model for modelling the relation between CPU load and clock skew, and
a communication channel model for modelling the transmission of information via clock-
skew changes. Next, we describe a set of experiments carried out for developing the
Simulink model. Then we present the Simulink model and compare its outputs with the
empirical measurements. Next, we investigate the channel noise. Finally, we estimate the
channel capacity for two example intermediate hosts.

6.5.1 Channel model

We model the channel as an Additive White Gaussian Noise (AWGN) channel [22], on the
basis that the channel’s multiple independent sources of noise are approximately Gaussian
(from the Central Limit Theorem), which is confirmed by our experimental results. Thus
the channel capacity depends on the channel’s bandwidth and signal to noise ratio (SNR).
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Figure 6.18: Model of the temperature-based covert channel

Figure 6.18 shows our channel model. The input of the AWGN channel is a clock
skew signal generated by Alice sS (t). The output of the channel r (t) is the clock skew
signal measured by Bob plus the noise. The noise n (t) includes noise introduced by the
clock-skew estimation (i.e. network jitter and timestamp quantisation noise) as well as
noise because of CPU load or temperature fluctuations.

Alice can only indirectly manipulate sS (t) by modulating CPU load sL (t). To model
the relationship between sL (t) and sS (t) through changes of temperature sT (t) we use a
Simulink model (see Section 6.5.3), parameterised according to the measured behaviour
of particular intermediate hosts (see Section 6.5.2). Using the Simulink model we esti-
mate the channel’s bandwidth and signal power (see Section 6.5.5).

We estimate the noise power for a particular intermediate host from empirical mea-
surements of r (t) without input signal sS (t). We show that the noise, after being detrended
from ambient temperature trends, is indeed approximately Gaussian (see Section 6.5.4).

We estimate an upper bound of the capacity assuming ideal conditions for Alice and
Bob. Alice’s signal power is maximal because Alice is located on the intermediate host
and CPU load is controlled directly. On the other hand the noise is minimal. The improved
clock-skew estimation technique is used, and network jitter is minimal as our testbed is
very small and uncongested. Ambient temperature changes are also small because all PCs
were located in rooms that were air conditioned for human comfort.

6.5.2 Clock-skew measurements

We carried out several experiments for developing and fitting the Simulink model, where
we varied CPU load and measured the resulting clock-skew changes.

The first intermediate host (Intermediate 1) was a 2.4 GHz Intel Celeron CPU inside
a midi-tower case running Linux 2.6. Both CPU and power supply fans ran at constant
speed. The second intermediate host (Intermediate 2) was a 2.8 GHz Intel Pentium CPU
inside a slim desktop case running FreeBSD 4.10. It had a more effective thermally-
controlled CPU fan designed so that most of the warm air is blown out of the case directly.
Alice was located on the intermediate host. Bob was a second PC running Linux 2.6
connected to the same Fast Ethernet switch.
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CPU load was induced using cpuburn [231]. During the experiments no network
traffic, besides Bob’s clock probes, was send to the intermediate host. Also, no other
processes ran that used significant amounts of CPU time12.

In our experiments we generated periodic square wave signals sL (t) and remotely
measured the resulting sS (t). Each signal period was a time of maximum induced CPU
load (approximately 100% load) followed by the same time of idle CPU (approximately
0% load) allowing the system to cool down to its previously unloaded temperature. Each
experiment consisted of ten consecutive signal periods. We ran separate experiments
using load-inducement times of 180, 300, 600, 1200, 1800, 2400 and 3600 seconds.

Changes in the ambient temperature or humidity affect the clock crystal and hence in-
troduce noise. During our experiments we tried to minimise this noise. PCs were located
in air-conditioned rooms and we performed measurements during times when doors and
windows were mostly closed and no humans were inside the rooms. Nevertheless, there
were some changes in the ambient conditions. However, these ambient changes usually
happen on longer timescales and it is possible to remove long-term trends. Furthermore,
if the induced clock skew change is large the noise is much smaller than the signal, which
is the case for Intermediate 1.

We probed the TCP clock of the intermediate hosts with an average frequency of 1 Hz.
Since we used synchronised sampling the timestamp quantisation noise was very low
despite the low clock frequencies of 250 Hz (Intermediate 1) and 100 Hz (Intermediate 2).
Connecting Alice and Bob to the same switch minimised network jitter.

With our settings one clock-skew estimate is obtained for time windows of w seconds,
containing w clock samples. If w is set too small, the clock skew estimates contain a
lot of noise. On the other hand too large w lead to averaging and prevent the accurate
measurement of steep changes. Figure 6.19 shows the estimated variable clock skew for
3600 s load inducement on Intermediate 1 for w = 120 s and w = 600 s (average over the
ten periods). The figure clearly shows the higher noise with w = 120 s. On the other
hand the averaging caused by w = 600 s is also clearly visible when looking at the steep
clock-skew decrease occurring when the load inducement ends. This averaging is more
problematic for shorter load-inducements.

We examined window sizes of 60, 120, 180, 240, 300 and 600 seconds. We found
that for 60 s and 120 s windows the noise is very high whereas for windows of 240 s and
larger there is too much averaging. Therefore, for Intermediate 1 we selected w = 180 s.
However, for Intermediate 2 the induced clock-skew changes are almost one magnitude
smaller. To limit the noise to acceptable levels we used w = 600 s. Oversampling was
used to obtain one clock-skew estimate every 30 s regardless of w.

12Housekeeping processes used minimal CPU resources and could have caused some network traffic.
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Figure 6.19: Effect of clock-skew estimation window size on the shape of the received signal

6.5.3 Simulink model

The input of the model is a CPU load signal sL (t) (values ranging from 0 to 1) and the
output of the model is the corresponding clock-skew signal sS (t) (values in parts per
million). Our model has two heat capacitors. One has a larger capacity and heats up
slower (presumably the inside of the PC’s case) while the other has a smaller capacity and
heats up quicker (presumably the CPU and heat sink).

Figure 6.20 shows the model for Intermediate 113. The gain constants and capacities
were fitted based on the empirical data. However, the structure of the model is generic.
For Intermediate 2 we used the same model but with different parameters. We believe the
model could be applied to other potential intermediate hosts, as the overall shape of CPU
load induced clock-skew changes looks similar for other PCs [44].

We used the same CPU load signals used in the empirical measurements as input
for the model. Figure 6.21 compares the clock-skew change experimentally measured
(average over all ten signal periods) with the output of the model. Overall there is a
very good match. Despite the larger window size the empirical data for Intermediate 2 is
much noisier given that the clock-skew changes are almost one magnitude smaller. Note
that all clock-skew estimates have been detrended from ambient temperature changes and
normalised to allow direct comparison. Hence Figure 6.21 shows relative changes of
clock skew rather than the real absolute values.

With ambient changes removed our system is basically time-invariant as sS (t) depends
only on sL (t). Ideally our system would also be linear, as a linear time invariant system is
easy to analyse. Unfortunately our Simulink model shows non-linear behaviour.

13The capacities are C1 = 2.625−6 and C2 = 1.675−6.
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Figure 6.21: Comparison of clock-skew output of Simulink model and normalised empirical
measurements for intermediate host 1 (left) and intermediate host 2 (right)

Key sources of non-linearity are the thermally controlled CPU fan (Intermediate 2
only), which results in a very quick settling of the temperature compared to a constant-
speed fan. For both intermediates the cooling down is slower than the heating up because
loading the CPU introduces additional energy, but when the CPU is idle there is no ad-
ditional energy introduced for cooling; the thermally-controlled fan returns to its lowest
speed immediately after the load inducement stops.

There are other dependencies that are non-linear in general, but within our operating
conditions we assume them to be linear. In general temperature does not change linearly
with CPU load, but it depends on the mix of instructions executed as well as possible CPU
frequency changes. Since our CPUs ran with constant frequency and we always generated
load with cpuburn we assume this relation is approximately linear. In general clock skew
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Figure 6.22: Comparison of clock-skew output of linearised Simulink model and normalised
empirical measurements for intermediate host 1 (left) and intermediate host 2
(right)

does not change linearly with CPU load, but for typical temperatures inside PC cases the
relation is also approximately linear [44].

For each intermediate host we generated a linear model from the non-linear model
using the Matlab Simulink function linmod()14. Figure 6.22 compares the output of the
linearised model with the detrended normalised empirical data (average over all ten signal
periods). For Intermediate 1 the linear model matches quite well, although it does deviate
slightly in the cool-down phase. For Intermediate 2 the linear model does not match as
well because it cannot capture the very steep temperature rise and settling.

6.5.4 Channel noise

In order to estimate the noise n (t) we measured clock-skew changes of the intermediate
hosts, but without any CPU load inducement. We also measured the temperature inside
the room and inside the PC case.

In the following graphs we show the temperatures (both normalised on the minimum
temperature of each series) and the remotely measured variable clock skew for Interme-
diate 1. Figure 6.23(left) shows a few hours in the afternoon and evening. The case
temperature is fluctuating within a few 0.1 degrees Celsius without a clear trend and does
not closely follow the room temperature trend before 20:00 hours. Overall the variable
clock skew looks similar to random noise.

Figure 6.23(right) shows 8–9 hours during the night. Room and case temperature are
decreasing and the clock skew is decreasing accordingly. Thus the variable clock skew is
not random but has a clear trend following the trend of the ambient temperature.

14Linearisation for individual blocks based on pre-programmed analytic block Jacobians.
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Figure 6.23: Variable clock skew and case/room temperature of intermediate host 1 during
afternoon/evening (left) and night (right)

During the day temperature changes inside the case were not highly correlated with
the room temperature changes. This was probably because the intermediate host PC was
located in close proximity to two other PCs that were actively used during the day. During
the night when all PCs were idle, the case temperature followed the trend of the room
temperature closely, but was about 3.2 degrees Celsius higher. For Intermediate 2 we
observed similar behaviours.

The noise is clearly not Gaussian because of the ambient changes. However, we can
detrend the data from the ambient changes. We used a LOWESS smoother [232] to com-
pute a smoothed series of data points. We then subtracted the smoothed series from the
actual data series to compute the detrended series. In the following we investigate whether
the detrended noise has a Gaussian distribution.

We use the Shapiro-Wilk statistical test of normality (see Appendix E.3). For Inter-
mediate 1 with outliers removed we cannot reject the hypothesis that the data is Normally
distributed at 99% significance level. For Intermediate 2 we cannot draw the same con-
clusion. However, the statistical test is quite sensitive to small deviations.

Figure 6.24 and Figure 6.25 show quantile-quantile (QQ) plots of the empirical dis-
tributions against the theoretical Normal distribution for both intermediate hosts. In all
graphs the points follow the quantile-quantile line closely, except at the edges. This indi-
cates that the empirical distributions are roughly Gaussian, except for some outliers.

6.5.5 Channel capacity

The channel is time-invariant, and we showed that the noise is approximately Gaussian.
Therefore, we model the covert channel as an AWGN channel. The channel capacity is:

C = B · log 2

(︂
1+

P
N

)︂
, (6.3)

167



CHAPTER 6. TEMPERATURE-BASED COVERT CHANNELS

−3 −2 −1 0 1 2 3

−0.2

−0.1

0.0

0.1

0.2

0.3

Theoretical quantiles

S
a

m
p
le

 q
u
a
n

ti
le

s
 (

p
p

m
)

−3 −2 −1 0 1 2 3

−0.2

−0.1

0.0

0.1

0.2

Theoretical quantiles

S
a

m
p
le

 q
u
a
n

ti
le

s
 (

p
p

m
)

Figure 6.24: QQ plots of detrended variable clock skew during the day (left) and night (right)
for intermediate host 1
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Figure 6.25: QQ plots of detrended variable clock skew during the day (left) and night (right)
for intermediate host 2

where B is the bandwidth of the channel, P is the average signal power and N is the
average noise power [22].

The covert channel is basically a base-band system acting as a low-pass filter on the
input signal. To estimate the bandwidth we need to estimate the upper cut-off frequency,
which is commonly defined as the frequency where the power of the output has decreased
by 3 decibel (dB). For Intermediate 1 we computed the bandwidth directly from the lin-
ear Simulink model (Bode plot). For Intermediate 2 the linear model does not fit very
well. We estimated the bandwidth by simulating different signal period lengths with the
Simulink model and identifying when the power has decreased by approximately 3 dB.

The bandwidths are B1 ≈ 0.000434 Hz for Intermediate 1 and B2 ≈ 0.000444 Hz for
Intermediate 2. This means the period of the signal is approximately 2304 s (Intermedi-
ate 1) and 2250 s (Intermediate 2), which is equivalent to 1152 s load followed by 1152 s
idle time and 1125 s load followed by 1125 s idle time. This is broadly consistent with
the results from the empirical measurements (see Figure 6.21). For Intermediate 1 the
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Figure 6.26: Channel capacity for both intermediate hosts based on signal-to-noise ratio,
where the points CDay and CNight depict the capacities given the empirically
measured channel noise during the day and night on each capacity curve

measured 1200 s load inducement signal has approximately 52% of the power, which is
exactly what the model predicts. For Intermediate 2 the measured 1200 s load inducement
signal has approximately 47% of the power. The model predicts approximately 53%, but
it is hard to empirically measure the low signal power exactly.

Figure 6.26 shows the channel capacity based on the SNR in dB for Intermediate 1
(C1) and Intermediate 2 (C2). The capacity increases almost linearly with the SNR for
larger SNRs. However, the sending power is not unlimited and hence the capacity cannot
increase to infinity. The question is: what SNRs can be achieved?

We estimated the average power of signal and noise by computing the power spec-
tral density (power per frequency band), integrating over all frequency bands within the
channel bandwidth and then normalising the power based on the number of samples of
the signal. We computed the average signal power based on the Simulink model output
for alternating 0% and 100% CPU load with a frequency equal to the channel bandwidth.
We computed the average noise power from the empirically measured detrended noise
signals, separately for day and night time.

As expected for both intermediates the SNRs are higher during the night, as there was
more noise during the day. For Intermediate 2 the SNRs are smaller, despite lower noise
due to the larger sample windows, because of the much smaller signal power. Figure 6.26
shows the capacities CDay and CNight for the day and night SNRs on both capacity curves.

Depending on the noise the capacity is between 0.0046 bits/s and 0.0059 bits/s (Inter-
mediate 1) and between 0.0032 bits/s and 0.0045 bits/s (Intermediate 2). This equates to
around 16.4–21.1 and 11.7–16.1 bits per hour. Note that these estimates are upper bounds,
because we assumed the noise power to be minimal (idle intermediate host) and the signal
power to be maximal (100% CPU load with cpuburn). In reality the capacity is likely to

169



CHAPTER 6. TEMPERATURE-BASED COVERT CHANNELS

be lower, because the CPU load that the covert sender can generate is smaller, and the
noise on the channel is larger (higher CPU load jitter and network jitter).

6.5.6 Discussion

Our capacity estimates are significantly higher than Murdoch’s estimate of 2–8 bits per
hour [44]. However, this estimate was ad-hoc based on an inspection of the experimental
data and could not consider the improved clock-skew measurement technique.

The low capacity makes the channel less relevant for general-purpose communication,
since there exist other covert channels with much higher capacities, as shown previously.
However, there may be situations in which this is the only available channel, because
many other channels are easy to eliminate. Furthermore, the temperature-based covert
channel can penetrate “air-gap” security boundaries [44]. It can be used across devices
not connected by a network, if the devices can have temperature effects on each other.

The capacity of the channel is more than sufficient for revealing hidden servers since in
this scenario only a few bits need to be transmitted. The probability of choosing a wrong
host from the candidate set, a false positive, is pFP = 2−n where n is the number of covert
bits transmitted [44]. For example, even if only 16 bits are transmitted the probability of
a false positive is only pFP = 1.525879−5. Given our capacity estimates it takes only 1–2
hours to transmit 16 bits.

Covert channels with capacities of less than one bit per second are often deemed
acceptable [19]. However, in scenarios where small capacities pose a security threat, such
as in anonymisation networks, temperature-based covert channels require handling.

6.6 Conclusions

Temperature-based covert channels suffer from two main sources of noise: timestamp
quantisation noise and network jitter. Timestamp quantisation noise is often much worse
than network jitter, especially if the intermediate host’s accessible clock has a low fre-
quency and the network path between covert sender and receiver is uncongested.

We developed an enhanced covert channel by improving the remote clock-skew esti-
mation based on Murdoch’s idea of synchronised sampling [44]. The evaluation shows
that our new algorithm provides more accurate clock-skew estimates than the previous
approach. The quantisation noise is significantly reduced to a small margin independent
of the clock frequency. If the clock frequency is low, the accuracy improves by up to two
orders of magnitude. This means the channel capacity is increased.

The improved covert channel not only increases the efficiency of Murdoch’s attack
against hidden services [44]. It also paves the way for new more efficient attacks against
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hidden servers generating a lot less network traffic, which we described and partly eval-
uated. Our improved clock-skew estimation technique could also be used to improve the
identification of hosts based on their clock skew as proposed in [221]. An open-source
proof-of-concept implementation of our novel clock-skew measurement technique has
been released [233].

We also proposed a method for estimating the capacity of temperature-based covert
channels. Based on empirical measurements we developed a Simulink model for mod-
elling the relation between CPU load and clock-skew, and used it to determine the chan-
nel’s bandwidth and signal power. We showed that the measured detrended noise is ap-
proximately Gaussian. Therefore, we estimated the capacity based on the additive white
Gaussian noise channel model. For two example intermediate hosts we showed that upper
bounds of the capacity are around 11.7–16.1 and 16.4–21.1 bits per hour.

The capacity of the channel is more than sufficient for attacking hidden servers. But
for general-purpose communications it is quite small, and there are other covert channels
with higher capacities. However, many other channels are easy to eliminate and there
may be situations where the temperature-based covert channel is the only usable channel.

6.6.1 Future work

We showed that our new proposed attacks against Tor hidden services work in principle,
but we did not provide a comprehensive evaluation and the private Tor network we used
was relatively small. Future work could extend our evaluation and analyse the sensitivity
and specificity of our new attacks using a larger test network with more hidden servers or
possibly even the public Tor network itself.

Our proof-of-concept implementation runs in userspace, which naturally limits its
ability to exactly time probe packets. A kernel implementation, use of network cards
capable of high-precision traffic generation, or use of a real-time kernel could further
increase the accuracy. Furthermore, our implementation could be improved by fine-tuning
the algorithm parameters.

We did not investigate suitable encoding techniques. Our Simulink model in combina-
tion with the Matlab Simulink communications toolbox can be used to develop encoding
and error correction techniques, and measure the actual throughput of the channel. The
development and analysis of techniques to use remote clock-skew estimation for approx-
imate geo-location is an interesting subject left for further study.

With respect to the estimation of the channel capacity, future work could examine a
larger number of different intermediate hosts and estimate the channel capacity when CPU
load is generated remotely through varying the rate of requests send across the network
to typical server applications (e.g. web server).
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Chapter 7

Countermeasures

In the previous chapters we analysed the performance of different covert channels
and showed that, apart from the temperature-based covert channel, channel capacities are
sufficient for general-purpose communication. We also demonstrated that even with non-
optimal encoding schemes the achievable throughput is reasonably high for practical use,
even in the presence of moderate channel errors. We now develop and analyse techniques
for detecting and eliminating the covert channels.

The TTL covert channel is not hard to eliminate in principle, but simple approaches
may not be efficient. We propose a method that has no negative impact on the network
traffic and is efficient enough for real-world deployment. The inter-packet timing channel
cannot be eliminated completely, but its capacity can be drastically reduced by introduc-
ing artificial network jitter. We show that this method practically eliminates the channel
without having a larger negative impact on the performance of the applications that gen-
erate the overt traffic.

The multiplayer game traffic channel can only be eliminated by eliminating the overt
traffic (the game). It is hard to completely eliminate the temperature-based covert channel.
However, given that the channel’s capacity is very small, it only requires handling in
certain scenarios, such as anonymisation networks. Furthermore, we propose measures to
further reduce the channel’s capacity.

We evaluate the use of Machine Learning (ML) techniques for detecting different
types of covert channels. First we describe our ML-based approach, and then apply it
to detect the different covert channels. We show that ML techniques are successful in
detecting TTL and game-traffic covert channels with over 95% accuracy. If inter-packet
times are auto-correlated the timing channel proposed in [104, 105] is also detected with
over 95% accuracy. However, the new improved timing channel is harder to detect with
accuracies of only up to 70–80%.

Because the channel capacity of the temperature-based channel is very low and we
propose measures to further reduce it, we do not include this channel in our analysis.
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Figure 7.1: Example classifier built by C4.5 that detects the RFPSCC covert channel based
on the estimated entropy rate of modulo delta pitch angle changes

7.1 Machine Learning

We use supervised ML to differentiate between normal traffic and covert channels. Super-
vised ML techniques build a classifier in the training phase based on data instances with
class labels attached. The classifier is build so that the data instances are ‘optimally’ sep-
arated into the different classes based on characteristics (features) of the instances other
than the class label. All better ML techniques build ‘optimal’ classifiers, but avoid mak-
ing the classifier too specific (avoid overfitting). The classifier is then used in the testing
phase to classify data instances of unknown class.

There are many different ML algorithms [234]. Previous research showed that for
classification of network traffic the better techniques provide similar accuracy, but differ
greatly regarding training time and classification speed [235]. We use the C4.5 decision
tree classifier [236], more precisely its implementation in the Waikato Environment for
Knowledge Analysis (WEKA) [237], because it performed well previously [235]. Using a
decision tree algorithm has the advantage that a human can interpret the resulting classifier
(classification tree), although with increasing size this becomes difficult.

7.1.1 C4.5 decision tree

C4.5 creates a classifier based on a tree structure of nodes, branches and leaves [236].
Nodes in the tree represent features, and branches represent value tests. A series of nodes
and branches is terminated by a leaf, which represents the class. Determining the class
of an instance is simply a matter of tracing the path of nodes and branches to a termi-
nating leaf node. The complexity of a tree typically increases with increasing number of
independent features and increasing size of the training data.

Figure 7.1 illustrates a small classification tree. This particular classifier was gener-
ated by C4.5 to detect RFPSCC based on the estimated entropy rate of modulo delta pitch
angle changes (see Section 7.6).

C4.5, as other decision tree learners, uses the ‘divide and conquer’ method to construct
a tree from a set of training instances S . If all cases in S belong to the same class, the
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decision tree is a leaf labelled with that class. Otherwise the algorithm will use tests to
divide S into several non-trivial partitions.

Each of the partitions becomes a child node of the current node and the tests to separate
S are assigned to the branches. C4.5 uses two types of tests each involving only a single
attribute A. In case of discrete attributes the test is A =? with one outcome for each value
of A. For real attributes the test is A ≤ θ where θ is a constant threshold. To find the
optimal partitions C4.5 relies on greedy search and selects the test set that maximizes an
entropy-based gain ratio [236].

The divide and conquer approach partitions the data until every leaf contains instances
from only one class or a further partition is not possible because two instances have the
same features but different class. If there are no conflicting cases the tree will correctly
classify all training instances. This over-fitting leads to a decrease of the prediction accu-
racy. C4.5 attempts to avoid over-fitting by removing some structure from the tree after it
has been built (tree pruning) [236].

Because C4.5 selects the feature tests in order of maximising the entropy-based gain
ratio it is not adversely affected by unimportant or irrelevant features like some other
techniques. The most useful features are always used at the top of the tree and irrelevant
features are ignored. Using a feature selection technique is not necessary, although some-
times it still improves accuracy slightly [235]. In our experiments we used the default
WEKA 3.4.4 settings for all parameters of C4.5.

7.1.2 Evaluation metrics

To determine the accuracy we compute the true positive rate, false positive rate, precision
and recall for each class (covert and normal). A true positive (TP) is a class instance
correctly classified. A false positive (FP) is a non-class member misclassified as class
member and a false negative (FN) is a class member misclassified as non-class member.

Recall or TP rate is the number of class members classified correctly over the total
number of class members:

recall = TP rate =
TP

TP+FN
. (7.1)

The overall TP rate is the total number of correctly classified instances divided by the
total number of instances, which is equivalent to the average TP rate over both classes.
The FP rate is the number of FPs over the total number of class members:

FP rate =
FP

TP+FN
. (7.2)

Precision is the number of class members classified correctly over the total number of
instances classified as class members:
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precision =
TP

TP+FP
. (7.3)

The F-measure is the evenly weighted harmonic mean of precision and recall [237]:

F =
2 ·precision · recall
precision+ recall

. (7.4)

For recall, precision and F-measure higher values are better. For FP rate lower values
are better. Since there are two classes and we usually use classes of same size, a precision,
recall or F-measure of 50% is equal to random guessing.

We also examine the complexity of a classifier. As measure of complexity we use the
total number of nodes of the resulting decision tree. The smaller the complexity is, the
smaller the memory footprint and classification time of the classifier are1.

We perform k-fold cross-validation for each dataset. The data set is randomly divided
into k subsets, and the classification is repeated k times. Each time, one of the k subsets
is used as the test set and the other k− 1 subsets form the training set. Then the average
accuracy statistics across all k trials are computed. The advantage of this method is that
less importance is placed on how the data is divided. Every data instance is in a test set
exactly once, and is in a training set k−1 times. The variance of the accuracy estimate is
reduced as k is increased. We always perform 10-fold cross-validation.

7.1.3 Generic features

Here we describe generic features used for detecting different channels. Features devel-
oped for specific channels are described in the respective sections of each channel. For
generic features that have parameters we describe the choice of parameter values in the
respective sections of each channel.

Let X = [X1, . . . ,Xn] be a series of random variables with values x1, . . . , xn. Two fea-
tures we use for all channels are the first order entropy (referred to as Entropy) and an
estimate of the entropy rate (referred to as EntropyRate). The first order entropy (Shan-
non entropy) is a useful metric to compare the shape of distributions of random variables.
High values indicate higher uncertainty whereas low values indicate lower uncertainty of
the random variables. Entropy is defined as [22]:

EN(X1, . . . ,Xm) = −
∑︁

P (x1, . . . , xm) · log 2P (x1, . . . , xm) . (7.5)

For comparing the complexity/regularity of a time series of random variables we com-
pute an estimate of the entropy rate. The entropy rate is high if the data series has high
complexity; it is low if the series has regularities.

1WEKA includes the root node in the count, meaning an ‘empty’ tree has a size of one.
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The exact entropy rate of a finite sequence of observations cannot be measured and
must be estimated. To estimate the entropy rate we use the corrected conditional entropy
(CCE) [238]. The conditional entropy (CE) of Xm given the previously observed sequence
X1, . . . ,Xm−1 is:

CE(Xm|X1 . . .Xm−1) = EN(X1, . . . ,Xm)−EN(X1, . . . ,Xm−1) . (7.6)

The CCE is defined as:

CCE(Xm|X1, . . . ,Xm−1) = CE(Xm|X1, . . . ,Xm−1)+perc(Xm)EN(X1) , (7.7)

where perc(Xm) is the percentage of unique patterns of length m and EN(X1) is the
first order entropy of X1. The estimate of the entropy rate is the minimum of CCE over
different values of m:

EER(X) =min(CCE(X,m) |m = 1, . . . ,n) . (7.8)

The minimum exists because CE decreases while the corrective term perc() increases
with increasing m. Given our datasets the minimum is usually reached for small m and
hence the search can be terminated quickly.

To compute the entropy rate, the data needs to be binned. Previous work suggested
that equiprobable binning2 of the data is the most effective [238, 107]. The number of bins
Q must be chosen a-priori. A larger Q retains a larger amount of information. However,
if Q is too large the number of possible patterns is increased exponentially (Qm) and the
ability to recognise longer patterns is reduced (CCE is dominated by the second term).
We select Q based on some initial experiments.

7.2 Detection of TTL channels

The warden needs to distinguish between normal TTL variation and the covert channel.
First, we discuss several strategies how the warden can possibly detect the covert channel.
Next, we present a modified sparse encoding scheme tailored to the TTL channel that
improves the stealth for smaller encoding fractions. Finally, we analyse how effectively
Wendy can detect the channel on a per-flow basis. We describe the datasets and features
used, and present the results of our evaluation.

2The size of bins is selected so that each bin holds approximately the same number of instances.
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Figure 7.2: Frequency of TTL changes depending on the encoding fraction for the Twente
trace (left) and the Bell trace (right)

7.2.1 Detection strategies

If Wendy is only one hop away from Alice, detection is trivial as any observed TTL
variation reveals the covert channel. Otherwise, detection is harder than detection of
noiseless channels, because of the presence of normal TTL variation (see Section 3.1).

The DUB modulation scheme is trivial to detect, as the number of distinct TTL values
exceeds that of normal flows. The other modulation schemes are not as apparent if only
one bit is encoded per TTL or TTL pair with an amplitude of one (see Section 3.1).

A high frequency of TTL changes is suspicious since without covert channel usu-
ally only a very small percentage of flows experience many TTL changes (see Section
3.1.4). However, Alice can improve the stealth through lowering the rate of induced TTL
changes, and thereby also the transmission rate, by using the sparse encoding technique
proposed in Section 4.2.2.

Figure 7.2 shows the CDFs of the frequency of TTL changes depending on the frac-
tion of overt packets used (0.1%, 1%, 5%, 20%, 40%, 60%, 80%, 100%). The frequency
decreases with decreasing encoding fraction. For high encoding fractions the covert chan-
nel is obvious, but for low encoding fractions the frequency of TTL changes is similar to
the frequency of normal TTL variation.

Wendy can also monitor the overall percentage of flows with TTL changes. If she
knows the usual percentage she can detect abnormal increases. Figure 7.3 shows the in-
crease of the number of flows with TTL changes over the encoding fraction. For higher
encoding fractions there is a huge increase for the Twente trace. However, for the Bell
trace the increase is more modest because the normal TTL noise is more than one mag-
nitude higher than in the Twente trace. When the encoding fraction is reduced to values
close to the natural noise level there is no large increase.
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Figure 7.3: Increase in number of flows with TTL changes with increasing encoding fraction
(log y-axis)

In order to achieve low TTL change frequencies Alice and Bob must drastically reduce
their rate to about 5% of the maximum rate. However, even with this small encoding
fraction the throughput could still be in the order of tens of bits per second.

For low encoding fractions Wendy cannot observe an increase of TTL changes. Fur-
thermore, in reality Alice and Bob would often encode the covert channel in only a small
number of flows, not affecting distributions of metrics computed for large sets of flows.
Then Wendy can only detect the channel by an in-depth comparison of a flow’s TTL
change patterns with regular change patterns.

7.2.2 Modified sparse encoding

Sparse encoding selects overt packets uniformly (see Section 4.2.2), which is problematic
for the TTL channel at very low encoding fractions. In Section 7.2.5 we show that de-
tection accuracy decreases with decreasing encoding fraction, but then actually increases
again for very small encoding fractions. This happens because the volume of the overt
traffic is dominated by a small number of large flows that have many packets. For small
encoding fractions most of the covert bits are encoded in these large flows. However,
normal TTL variation is not biased towards large flows.

A modified sparse encoding scheme improves the stealth for very low encoding frac-
tions. It encodes covert bits with higher probability in short flows or at the beginning of
long flows. Let n be the sequence number of a packet in a flow as determined by Alice
and Bob, let nmax be the maximum number of packets in a short flow and let RS be the
total number of packets divided by the number of packets in short flows for a traffic mix.
Given a desired encoding fraction f the actual packet selection probability f̃ is:
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f̃ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩min(1,RS · f ) , n ≤ nmax

1
RS−1max(0,RS · f −1) , n > nmax

. (7.9)

Then analogue to Equation 4.7 in Section 4.2.2 packets are selected as carrier of the
covert channel if (⊕ operator denotes the XOR function):

H (b⊕ k) ≤ f̃ , (7.10)

where H is a good hash function, b is the hash input taken from a packet and k is part
of Alice’s and Bob’s shared secret.

It is not necessary to have a very accurate estimate of RS. However, if RS is not
accurate the desired encoding fraction is not achieved. Modified sparse encoding relies on
packet counters being synchronised between Alice and Bob, for example TCP sequence
numbers or timestamps. Otherwise, there are synchronisation errors if there is packet loss.

7.2.3 Datasets and methodology

As source of overt traffic we used the Twente and Bell traces described in Section 3.1
(approximately 40 million and 20 million packets). As in Section 3.1 we only considered
flows with at least four packets and an average packet rate of at least one packet per
second. Although this significantly reduced the number of flows, our datasets were still
left with approximately 38 million and 19 million packets respectively.

We used CCHEF to encode the covert channel into a fraction of the overt traffic (0.1%,
1%, 5%, 20%, 40%, 60%, 80%, 100%) using the MED and DED modulation schemes.
Packet loss and reordering were always zero. The modulated overt traffic was stored
as a new trace file. For modified sparse encoding we computed RS from the trace files
and verified that f̃ ≈ f (relative error was always below 0.5%)3. We then computed the
features for the traces with the covert channel as well as for the original unmodified traces.

For each modulation scheme and encoding fraction we created a dataset containing
the same number of normal flows and flows with covert channel (randomly sampled from
the larger set). Equal-sized classes prevent a bias of the classifier towards a larger class.
For Twente each dataset has 6 430 flows. For Bell each dataset has 25 990 flows due to
the larger number of normal flows with TTL changes.

In our datasets the number of packets per flow (size of flows) and hence the number
of covert bits per flow differs greatly. Therefore, we do not only analyse the flow-based
classifier accuracy but also the bit-based classifier accuracy based on the number of TTL

3 We used nmax = 50, RS = 5.85 (Twente) and RS = 7.52 (Bell).
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changes, which for the covert channel is proportional to the number of covert bits. The
latter better reflects how much of the covert data is detected.

As metric for the classification accuracy (detection accuracy) we use the F-measure
averaged over both classes because in terms of TTL changes the two classes are very
unbalanced. Even with small encoding fractions the covert class has many more TTL
changes and thus the average bit-based TP rate is completely dominated by the accuracy
of the covert class. In contrast both classes contribute evenly in the averaged F-measure.

The instances of the covert class are randomly sampled from a larger data set. Fur-
thermore, during cross-validation instances are randomly selected for either the training or
the testing set. Preliminary tests showed that flow-based accuracy only varied slightly, but
bit-based accuracy and complexity varied significantly. Therefore, we performed cross-
validation 25 times and report average performance metrics.

7.2.4 Features

Let X = [X1, . . . ,Xn] be the series of TTLs of a flow with values x1, . . . , xn. Since the
occurrence of normal TTL changes largely depends on the traffic sources, as most changes
are not routing-related (see Section 3.1), there could be correlations between the observed
TTL change patterns and the actual TTL values. To eliminate possible bias we normalised
all TTLs on a per-flow basis dividing each TTL by the minimum TTL:

Xnorm = x1, . . . , xn−min(x1, . . . , xn) . (7.11)

For each flow we computed the Entropy and the EntropyRate of the TTL values. For
the latter the number of bins Q was set to the number of unique values in X (usually
two) or a maximum value Qmax, whichever was higher. We performed a number of initial
experiments and found that Qmax = 5 provided the best results.

The series Xnorm can be converted into a series of zeros and ones, where a one indicates
a TTL change and a zero indicates no TTL change. This series can be viewed as a series
of m binary random variables Y = [Y1, . . . ,Ym]. The next two features are based on Y .

The first feature is based on the observation that normal TTL changes often occur at
the start or end of flows. We define the distribution of positions of TTL changes as:

CPOS =
⌊︃(︃

index(Y (y = 1))
(m−1)

)︃
B
⌋︃
/B , (7.12)

where index(Y (y = 1)) are the indices of the packet pairs where changes occurred (rang-
ing from [0,m−1]) and B is the number of equal-sized bins4. We then used the median

4We set B = 10 in our experiments.
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Figure 7.4: Detection accuracy for the MED modulation scheme for both traces using sparse
encoding (left) and modified sparse encoding (right)

and the first-order entropy of the distribution as features (referred to as ChangePosMedian

and ChangePosEntropy).

We also computed the runs test for Y using the R function runs.test() [239]. The
runs test is a statistical test that tests whether a data series is random or not. The runs test
statistic is used as a feature (referred to as RunsStatistic). The idea behind this feature is
that for most normal flows TTL changes are not random, whereas for the covert channel
they are random because the covert bits are uniformly random distributed.

Finally, we used the number of TTL changes divided by the number of packet pairs as
another feature (referred to as NumberChanges).

7.2.5 Results

Figure 7.4 plots the average flow-based and bit-based F-measure over the encoding frac-
tion for the MED modulation scheme for both traces using all features. The left graph
shows the detection accuracy with sparse encoding as described in Section 4.2.2. The
right graph shows the detection accuracy with modified sparse encoding described in
Section 7.2.2, which we use throughout the rest of this section.

For Twente the flow-based accuracy is over 95% for high encoding fractions, but
it decreases to around 83–84% for low fractions. With sparse encoding the accuracy
increases again for very low encoding fractions, but with modified sparse encoding it
stays low. For Bell the per-flow classification accuracy is over 95% for high encoding
fractions. It gradually decreases, but stays over 90% even for low encoding fractions.

The bit-based accuracy is significantly higher for both traces. For Bell it is over 95%
even for low encoding fractions, but for Twente it decreases to around 90%. Flows with
more covert bits are easier to detect, which is somewhat expected. In general the overall
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Table 7.1: Feature sets used for analysing the impact of different features on detection accu-
racy and classifier complexity

Set Features

1 ChangePosEntropy, ChangePosMedian, Entropy, EntropyRate, RunsStatistic, NumberChanges
2 ChangePosEntropy, ChangePosMedian, Entropy, EntropyRate,
3 ChangePosEntropy, ChangePosMedian
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Figure 7.5: Detection accuracy for the MED modulation scheme depending on the feature
set for Twente (left) and Bell (right)

accuracy is higher for Bell. Although there are more normal flows with TTL changes in
the Bell trace the classifier is able to better separate them from flows with covert chan-
nels. The detection accuracy for the DED modulation scheme is similar, although for low
encoding fractions it is 1–2% lower (see Appendix B.12).

As mentioned previously, the accuracy of C4.5 is not much affected by irrelevant fea-
tures. However, the larger the number of features used the more complex the classifier
becomes. We now analyse the impact of different feature sets on the accuracy and com-
plexity of the classifier. Table 7.1 lists the different feature sets. Set 1 is the complete set
of features. Set 2 and Set 3 are reduced feature sets. We successively removed features
that are less relevant because they are less prominent at the top levels of the tree generated
with the full feature set.

Figure 7.5 shows the average F-measure for the different feature sets for both traces for
the MED modulation scheme. For Set 2 there is only a small accuracy reduction compared
to the full set. For Set 3 the decrease is substantial for Twente, but less dramatic for Bell.
The results for the DED modulation scheme are similar (see Appendix B.12).

Figure 7.6 shows the complexity of the classifier for the different feature sets for the
MED modulation scheme. For Set 2 the complexity is almost the same as for the full
feature set. However, for Set 3 it is dramatically reduced. The complexity for the Bell
trace is slightly larger because that trace contains more flows with normal TTL changes.
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Figure 7.6: Complexity of the classifier for the MED modulation scheme depending on the
feature sets for Twente (left) and Bell (right)

For both traces the complexity is largest for very small encoding fractions. Again, the
results for DED are similar (see Appendix B.12).

Our results show that for both modulation schemes the TTL covert channel is detected
with over 95% accuracy if a large fraction of overt packets is used. Even if only a small
fraction is used the accuracy only decreases to about 85–90%, because the TTL covert
channel does not mimic normal TTL variation very well.

The complexity of the classifier is almost constant for different encoding fractions, but
does increase for very small fractions. It is larger than the complexity of the classifiers
for the other investigated covert channels. The complexity can be reduced at the cost of
reducing the accuracy by reducing the number of features.

7.3 Elimination of TTL channels

We assume that the warden is located at the perimeter of a protected network, co-located
with firewalls or intrusion detection systems. In principle it is not very difficult to elimi-
nate the TTL channel, if the warden is able to manipulate the TTL field of packets. The
warden needs to set the TTLs of all packets of a flow to the same value, i.e. ‘clamp’ the
TTL value.

Ideally, the warden should set the TTLs to the smallest TTL value of the flow observed
thus far, thereby avoiding increasing any TTLs. However, this approach requires that
the warden maintains per-flow state (lowest TTL), which may be problematic if CPU or
memory resources are limited. Furthermore, this technique opens the door for a new DoS
attack if an attacker is able to spoof valid packets of an existing flow. Then the attacker can
send packets with arbitrary low TTL forcing all following packets to be dropped before
they reach the destination.

184



CHAPTER 7. COUNTERMEASURES

An alternative solution is to set each TTL to an arbitrary value smaller than the origi-
nal TTL but large enough so that packets are not dropped before reaching the destination.
Modern operating systems use initial TTL values of at least 64 [167, 168], and the max-
imum number of hops in the Internet is typically less than 32 [167]. For packets coming
into the protected network the warden can reduce the original TTL value to a small value
equal or slightly larger than the known maximum number of hops inside the network. For
outgoing packets the warden can reduce the TTL to 32. This approach does not require
per-flow state and does not create opportunities for new DoS attacks.

It is quite unlikely that the original TTL values are smaller than the clamp value,
unless a covert channel is used. However, should this happen the warden would have to
increase TTL values. To avoid this, the warden should not change the TTL values, but
instead monitor or block the suspicious flow. A warden that is not able to manipulate all
packets of a flow cannot completely eliminate the channel, but would probably reduce its
capacity because of the added noise.

7.4 Detection of packet-timing channels

Now we analyse the detection accuracy for covert channels in inter-packet times (also
referred to as IPGs). Previous work on the detection of IPG timing channels only used
simple tests based on single features [107]. We evaluate classifiers that use multiple fea-
tures to differentiate between the classes. First, we describe the datasets and features used.
Then we present the results of our analysis.

7.4.1 Datasets and methodology

As normal traffic we used the datasets introduced in Section 4.1. The covert traffic was
created based on these datasets using sparse encoding or sub-band encoding described in
Chapter 4. For each normal flow we generated one corresponding covert channel based
on the same IPG distribution. The covert data was uniformly random distributed, as it
would be if covert sender and receiver used encryption.

Each dataset had the same number of covert and normal flows to avoid bias of the
classifier towards a larger class (see Table 7.2). As in Section 4.1 we used the first 5 000
IPGs of each flow. Since each instance of the covert class has roughly the same number of
covert bits, bit-based accuracy is equivalent to flow-based accuracy. For sparse encoding
we evaluate the detection accuracy depending on the encoding fraction f . For sub-band
encoding we evaluate the accuracy based on the size of the least significant part l.

The classification accuracy and classifier complexity vary depending on the random
covert data and the random number series T and R used for encoding (see Section 4.2.2).
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Table 7.2: Datasets for evaluating the detection accuracy and classifier complexity for inter-
packet gap timing channels

Dataset Normal flows Covert flows

Q3 client-to-server 106 106
Q3 server-to-client 224 224

Skype 44 44
Twente UDP 111 111
Twente TCP 220 220

Furthermore, some variation is introduced since during the cross-validation instances are
randomly selected for either the training or the testing set. Therefore, we performed
cross-validation 10 times and report average performance metrics.

7.4.2 Features

Let X = [X1, . . . ,Xn] be the series of IPGs of a flow with values x1, . . . , xn. For each X we
computed the Entropy and the EntropyRate. To determine the number of bins Q for the
entropy rate we performed several initial tests and found Q = 5 provided the best results.

We computed another feature based on the two-sample Kolmogorov-Smirnov (KS)
test. This test tests the hypothesis that two samples were drawn from the same distribution.
A low KS test statistic means that the distributions are similar whereas a high KS test
statistic means the distributions are different. The KS test is distribution-free, meaning it
is applicable to a variety of types of data with different distributions.

The KS test computes the test statistic for two distributions. What we need however
is a feature that reflects how different a distribution is from the set of distributions char-
acterising the normal traffic. Therefore, we computed the set of KS test statistics between
the data instance (covert or normal) and all instances of normal traffic (excluding a test of
a normal instance with itself) using the R function ks.test() [239]. We used the mean
of the set of KS statistics as feature (referred to as MeanKS).

7.4.3 Results

First, we analyse the detection accuracy and classifier complexity for sparse encoding.
Figure 7.7(left) shows the F-measure averaged over both classes for the different datasets
depending on f . The results for f = 1.0 show that the covert channel in [104, 105] is
detected with high accuracy. The TCP and Q3 server-to-client traffic has the least auto-
correlations and consequently the detection accuracy is smallest. However, it is still in the
range of 90–95%. Averaged over all datasets the detection accuracy is over 95%.
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Figure 7.7: Detection accuracy (left) and classifier complexity (right) for the different
datasets using sparse encoding

When f is reduced the detection accuracy is also reduced, especially for f < 0.4. For
smaller f the detection accuracy is similar for the different datasets, except for Skype
traffic it is higher because of the higher auto-correlations.

Figure 7.7(right) shows that the classifier complexity is small. For the UDP-based
traffic it is generally less than ten nodes. For TCP it is consistently higher, because of the
wider variety of traffic characteristics. Since the covert channel mimics the shape of the
distributions of the IPGs very well, the Entropy metric is not useful. The EntropyRate
metric measures the complexity of the series of IPGs and differentiates well between the
covert channel with iid IPGs and normal traffic with auto-correlated IPGs. The MeanKS
metric is occasionally used at the bottom of the tree.

Now we analyse the detection accuracy and classifier complexity for sub-band encod-
ing. Figure 7.7(left) shows the F-measure averaged over both classes for the different
datasets depending on l. The detection accuracy is very low for small l. It increases with
increasing l, but even for larger values it only reaches 80–90%. For l = 5 ms the detection
accuracy is only up to 70–80%.

Figure 7.7(right) shows that the classifier complexity is slightly higher than for sparse
encoding. However, in most cases the classifier still only has up to 20 nodes. Again,
the classifier relies mainly on EntropyRate, but MeanKS is also used occasionally at the
bottom of the tree.

The timing channel proposed in [104, 105] is difficult to detect when IPGs are iid,
which is the case when packet send times directly depend on human actions (e.g. Telnet).
However, it is easy to detect with over 95% accuracy if there are correlations in IPGs,
which is the case for several network applications (see Section 4.1). Our new encoding
schemes are harder to detect with accuracies of only up to 70–80%. The stealth is im-
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Figure 7.8: Detection accuracy (left) and classifier complexity (right) for the different
datasets using sub-band encoding

proved by reducing the channel capacity (sparse encoding) or the robustness (sub-band
encoding). We think these are good trade-offs as stealth is paramount for covert channels.

The buffering delay introduced could reveal (semi-)passive covert channels, but it is
difficult to detect. The warden would have to know the usual network delay and the
delay the covert channel experiences. Measuring the usual delay is difficult, since the
warden typically has no access to end hosts, and covert sender and receiver could tamper
with active measurements. Measuring the delay of the covert channel is also not easy.
For TCP traffic it could be estimated (e.g. [240]), but for UDP-based traffic there is no
general solution. A delay-based detection of the channel may be possible, but it appears to
be much harder than an analysis of IPGs, the sequence of messages or the packet payload.

Another possible approach for detecting (semi-)passive timing channels is to let the
overt sender embed the actual packet send times in the packets. The timestamps must be
secured by either encrypting or protecting them with digital signatures. Then the channel
can be detected if the covert sender’s manipulations exceed typical noise. However, this
approach would require modifications of existing protocols and network stacks.

7.5 Elimination of packet-timing channels

In Section 4.5 we showed that timing jitter greatly reduces the channel capacity and ef-
fectively eliminates the channel. For Pareto-distributed jitter with σ ≥ 2 ms, the capacity
of the channel reduces to one bit per second or less (see Figures 4.14 and 4.16).

If the warden does not know which traffic flows carry covert channels, she may
‘blindly’ introduce artificial jitter into the IPGs of all flows in order to limit the capacity.
This practically eliminates the covert channel possibly present in a few flows. However,
it also unnecessarily introduces network jitter into a large number of legitimate flows.
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Here we examine how the deliberately introduced inter-packet timing jitter affects the
performance of the applications that generate the overt traffic.

We used the same testbed as described in Section 4.5. This time we used Netem [189]
to introduce timing jitter into the overt channel without any covert channel present. We
emulated Pareto-distributed network jitter with a mean of 25 ms and standard deviations
of 0.3, 0.5, 1, 2, 3, and 5 ms5. The Linux kernel’s tick frequency was set to 10 kHz, so the
emulated delays were accurate to about ±100 µs.

As before, we used scp file transfer, interactive SSH and Q3 game traffic as overt
traffic (see Section 4.5). As performance indicators we measured the data throughput
(scp) and the jitter (SSH and Q3). We performed each experiment three times and report
the average throughput and jitter. We also performed preliminary tests with a human
operator (SSH) or player (Q3) to gauge the effects of the network jitter on the usability of
the two applications. We leave a comprehensive usability study for future work.

The latency of the actual application traffic was measured passively using the Syn-
thetic Packet Pairs (SPP) technique [241]. During the experiments we recorded the traffic
at both hosts, and then computed latency by halving the RTTs estimated by SPP after the
fact (since emulated delay was symmetric).

Figure 7.9 shows the average TCP throughput, normalised based on the maximum
throughput with zero network jitter6, depending on the increasing network jitter. In the
first experiment scp limited the bandwidth to 2 Mbit/s as before, but in the other two
experiments there was no limit. In the third experiment we used a smaller mean network
delay of 5 ms in each direction.

When scp limits the bandwidth the throughput does not decrease with increasing jitter
because scp ‘compensates’ any throughput fluctuations of the TCP protocol. Otherwise,
the throughput reduces down to 80% (25 ms RTT) or 55% (5 ms RTT).

With σ = 2 ms, where the covert channel is practically eliminated, the throughput
is still approximately 93% for the same network delay used to evaluate the channel in
Section 4.5. We think such a relatively small reduction is acceptable in order to limit the
capacity to the common limit of one bit per second [19]. With smaller network delays the
throughput reduction is much more substantial, but it is questionable if a covert channel
could work with such high packet rates given the inaccuracies inherent in timing packets.
In general the throughput reduction depends on the network delay and jitter, the artificial
network jitter, and the TCP protocol variant and configuration7.

Figure 7.10 shows the IPDV [201] distributions for SSH and Q3 traffic. As expected,
the distributions look very similar for both applications. Even for σ = 5 ms the IPDV

5The jitter was introduced without reordering of packets.
6Maximum throughputs without network jitter were approximately 2 Mbit/s, 11.5 Mbit/s and 40 Mbit/s.
7We used TCP Reno with the default configuration of Linux 2.6.20.

189



CHAPTER 7. COUNTERMEASURES

l l l l l l l

0 1000 2000 3000 4000 5000

50

60

70

80

90

100

Delay std. dev. σσ

T
h

ro
u

g
h
p
u

t 
(%

)

l l l l l l l

l 25ms, 2MBit/s

25ms, No limit

  5ms, No limit

Figure 7.9: Average TCP throughput depending on the standard deviation of the emulated
network jitter (artificial noise)
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Figure 7.10: Absolute IPDV for Q3 (left) and SSH (right) traffic depending on the standard
deviation of the emulated network jitter (artificial noise)

is mostly contained within ±10 ms. No study exists on the impact of jitter on Q3, but
previous work for other FPS games showed that jitter of this magnitude has only little
impact on the quality of games and does not affect the performance of players [242].
Since Q3 arguably has stricter latency and jitter requirements than SSH, the effect for
SSH should be negligible. Preliminary experiments with a human user did not show any
adverse effects on the usability. The introduced jitter was not noticeable.

Our results show that the covert channel is practically eliminated with only small
performance degradations of the applications generating the overt traffic. However, chan-
nels in overt traffic with wider IPG distributions are more robust against network jitter.
Since the warden cannot introduce high jitter into high-rate TCP flows or flows of highly-
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interactive applications without affecting their performance, she must select the appropri-
ate noise level based on a flow’s application type and IPG distribution.

Flows with wider IPG distributions have comparatively low packet rates, however
covert sender and receiver could use multiple such flows. This means the warden must
not only analyse the traffic on a per-flow level, but also should look at patterns of multiple
flows over time. For example, many simultaneously active SSH terminal sessions between
two hosts could be considered as suspicious.

It is possible that other jitter distributions are more effective in eliminating the covert
channel with fewer ‘side-effects’. We leave a more in-depth study as future work.

7.6 Detection of multiplayer-games channels

First we discuss varies ways Wendy could detect FPSCC. Then we describe the datasets
and features used in our analysis. Finally, we evaluate the detection accuracy and classifier
complexity.

7.6.1 Detection strategies

We assume that Wendy is usually one or multiple client(s) connected to the same server
as Alice and Bob and logs all received player movement updates (although covert data
would only be received when Wendy is visible to Alice’s or Bob’s player). Since the
number of existing servers is typically very large, Wendy might monitor a smaller sub-
set of suspicious servers. Wendy could also be located on the server and log all player
movements, but it seems practically impossible to deploy her on thousands of servers.
However, Wendy could set up some ‘honeypot servers’ to attract covert channel users.

FPSCC cannot be detected because of the small latency it adds. Our passive mid-
dleman implementation introduces only 1–2 ms additional latency. Given that in-game
client-side reporting of ‘ping’ is not very accurate, FPSCC is unlikely to be discovered by
players monitoring their ping. Furthermore, we assume that Alice and Bob always play
with FPSCC enabled and hence Wendy does not know their regular ping statistics.

Slight angle movements of another player character are basically invisible to human
players. The game server already introduces errors of up to one degree by only distributing
the integer values of angles (see Section 5.2.7). If Alice is a middleman, there is a greater
chance that the player whose character’s movements are being modulated might notice
abnormalities, since the server transmits view angles to the player as full floating point
numbers. However, Alice could ‘clean’ the view angles being sent back to the client from
the server.
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Figure 7.11: Packet length distributions in client-to-server (left) and server-to-client (right)
direction for normal Q3 traffic and RFPSCC with one bit and two bits encoded
per angle change

FPSCC may affect the aim of players and hence their performance. However, there are
a variety of other factors affecting their performance, such as network jitter, opponents,
playing strategy or fatigue. Furthermore, again we assume that Alice and Bob always
play with FPSCC enabled and hence Wendy does not know their usual performance. In
our experiments with nine human players described below, none of the players noticed the
view angle fluctuations RFPSCC introduced, not even in their own uncleaned view angles.
While none of the players attributed changes in their own performance to RFPSCC, two
players noticed that their opponent performed better without RFPSCC.

Nevertheless, even if invisible to players, FPSCC affects the view angles. Because Q3
messages are delta encoded and Huffman-compressed, packet sizes could be affected as
well. Figure 7.11 compares the packet sizes of RFPSCC versus normal traffic for 1 bpa
and 2 bpa. Each graph shows four datasets for normal traffic, RFPSCC with 1 bpa and
RFPSCC with 2 bpa, each randomly selected from the overall data.

For the packet size distributions the differences between different players are larger
than the differences between RFPSCC and normal traffic. Q3 is known to exhibit wide
variation in packet sizes versus the number of players and the map played [243]. Without
knowing the normal distributions for each combination of map and number of players, it
is very difficult for Wendy to detect RFPSCC. In practice it is even harder because the
number of players changes over time. However, in our analysis we have the ideal case
where Wendy only compares distributions for the same map and same number of players.

Figure 7.12 shows the angle distributions of RFPSCC and normal traffic. Each graph
has four datasets for normal traffic, RFPSCC with 1 bpa and RFPSCC with 2 bpa, ran-
domly selected from the overall data. For pitch and yaw the differences between different
players are larger than the differences between RFPSCC and normal players. If Wendy
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Figure 7.12: Angle distributions for pitch (left) and yaw (right) for normal Q3 traffic and
RFPSCC with one bit and two bits encoded per angle change

does not know the usual angle distributions of a particular player, it is difficult for her
to detect RFPSCC, especially as the number of players and the map may also impact on
the distributions. However, knowing RFPSCC’s modulation technique Wendy could also
compare modulo delta angles (see Section 7.6.3).

7.6.2 Datasets and features

We collected data from a number of games with nine different human players. Each player
played three five-minute games, one without RFPSCC, one with RFPSCC with 1 bpa and
one with RFPSCC with 2 bpa. To establish equal conditions every human player played
against a bot. Our test games were carried out with an RTT of 25 ms and zero packet loss.
The RTT does not have an impact on the detection accuracy and packet loss would only
make it harder to detect RFPSCC because of the incomplete data.

In total we collected data for 15 sets of games since some players played more than
once, and we also included the bot as another player. To increase the number of data
instances we divided the existing data into subsets of 500 consecutive samples each and
use each subset as separate instance. We chose 500 samples as size of the subsets because
classification accuracy decreases for smaller sets as shown in Figure 7.16 and initial tests
indicated that there is very little gain for larger sets.

To ensure that in each training dataset RFPSCC and normal classes have the same
number of instances, we always reduced the larger class to the size of the smaller class
using random sampling. For packet sizes and yaw there are 60 instances per class, but for
pitch there are only 44 instances per class. Since our datasets are small there is consider-
able variance in the performance metrics depending on how instances are selected during
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Figure 7.13: Accuracy of detecting RFPSCC based on packet length distributions in client-to-
server and server-to-client direction for one bit and two bits encoded per angle
change

the cross-validation. Therefore, we performed cross-validation ten times and report the
average performance metrics.

Let X = [X1, . . . ,Xn] be the series of packet lengths or view angles with values x1, . . . , xn.
The first two features we computed are the Entropy and the EntropyRate of X. To deter-
mine the number of bins Q for the entropy rate we performed initial tests. For packet
lengths and view angles we found Q = 5 provided the best results. For modulo delta an-
gles Q was set equal to the modulo. We also computed the MeanKS feature introduced in
Section 7.4.

7.6.3 Results

First we investigate if RFPSCC can be detected based on observed packet lengths. Figure
7.13 shows the average TP rate, and the per-class F-measure for packet lengths in client-
to-server and server-to-client direction for 1 bpa and 2 bpa encoding. The results show
that packet length cannot be used to detect RFPSCC. In most cases C4.5 fails to build a
classifier and the average accuracy and F-measure are 50% (equal to random guessing).

Next, we examine the effectiveness of detecting RFPSCC based on angle distributions.
Figure 7.14 shows the average TP rate, and the per-class F-measure for pitch and yaw for
1 bpa and 2 bpa.

The results show that RFPSCC in yaw cannot be reliably detected. Since the yaw
distribution is wide (−180 to 180 degrees) compared to the small changes of RFPSCC,
the classifier cannot distinguish between both. However, the pitch distribution is narrower
since pitch varies only between −20 and 60 degrees (see Figure 7.12). Hence relatively
the RFPSCC changes are larger and the classifier has higher accuracy. Still the average TP
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Figure 7.14: Accuracy of detecting RFPSCC based on pitch and yaw angle distributions for
one bit and two bits encoded per angle change

rate is less than 90%. As expected, the more bits are encoded per angle change the easier
it is to detect RFPSCC. The feature providing the best discrimination is the EntropyRate,
but MeanKS and Entropy are also used in case of pitch.

A skilled warden, who is aware of RFPSCC and its encoding, could compare the
distribution of modulo delta angles. In practice Wendy would not know the number of
bits encoded per angle, but could test against classifiers build for different moduli. Figure
7.15 shows the average TP rate, and the per-class F-measure for pitch and yaw for 1 bpa
and 2 bpa.

For delta modulo pitch 1 bpa the classifier achieves an average TP rate of 98% or
higher. For delta modulo yaw 1 bpa the classifier achieves average TP rates of approx-
imately 96%. The accuracy decreases slightly with increasing number of bits encoded
per angle. No single feature stands out, but EntropyRate and Entropy are used more
frequently and further up in the tree than MeanKS.

We also investigated how quickly RFPSCC can be detected, i.e. how many angle sam-
ples are needed. We performed cross-validation with the first 25, 50, 100, 200, 300, 400,
500 samples of the datasets using modulo delta angles. Figure 7.16 shows the average TP
and FP rates depending on the number of samples.

The TP rate is quite low and the FP rate is very high for only a small number of sam-
ples. At least 400–500 samples are needed to increase the accuracy to acceptable levels.
As discussed in Section 5.5.1, the average number of view angle changes for human play-
ers was approximately 6 changes per second for pitch and 9 changes per second for yaw.
This means Wendy can reliably detect RFPSCC by observing Alice for at least 45–65
seconds, assuming Alice is sending continuously.
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Figure 7.15: Accuracy of detecting RFPSCC based on modulo delta pitch and yaw angle
distributions for one bit and two bits encoded per angle change
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Figure 7.16: True positive rate (left) and false positive rate (right) depending on the number
of modulo delta angle samples (x-axis is log scale)

In 45 seconds RFPSCC can transmit approximately 270 bits, given our results in Sec-
tion 5.5 (assuming two players, 2 bpa encoding, an RTT of 75 ms and a packet loss rate
of 0.5%). If Alice sends shorter messages, she may evade detection.

Classification performance can be further improved by considering classification costs.
False negatives can be reduced at the cost of increasing false positives or vice versa. A
cost matrix is used to specify classification cost and then C4.5 considers the costs during
the training phase. For example, the cost matrix:

C =

⎡⎢⎢⎢⎢⎢⎣ 0 10
1 0

⎤⎥⎥⎥⎥⎥⎦ , (7.13)
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Figure 7.17: ROC curves for detecting RFPSCC based on modulo delta pitch (left) and yaw
(right) depending on the number of bits encoded per angle

means it is ten times costlier to classify an instance of RFPSCC as normal than to classify
a normal instance as RFPSCC (assuming RFPSCC is the first class).

Figure 7.17 shows the Receiver Operating Characteristics (ROC) curves for pitch and
yaw. For pitch with 1 bpa a very high TP rate is achieved even with zero false positives.
However, in all other cases a very high TP rate is only reached with false positive rates of
at least 3–5%. Another possible way to increase accuracy is to use two separate classifiers
for pitch and yaw and combine their results. We leave this as future work.

We showed that while RFPSCC looks very similar to normal game traffic, it is detected
with an accuracy of at least 95%. However, usually the number of false positives is still in
the order of 3–5%. It appears likely that the detection accuracy is smaller in practice when
the set of different players is very large. Packet length and angle distributions cannot be
used to detect RFPSCC reliably. Only using the modulo of the angle differences provides
accurate detection.

Since RFPSCC must impose some structure on the bits sent to provide bit synchroni-
sation, it cannot exactly mimic normal behaviour. This is similar to other covert channels
that suffer from bit insertions or deletions. RFPSCC’s stealth could be improved in future
work by better disguising these structures.

Note that FPSCC (but not RFPSCC) could be used for unidirectional transmission.
Then, even if Wendy detects the channel and identifies Alice, Bob is still partly protected.
If Alice is using broadcast mode, Wendy cannot know which of the client(s) acting as
Bob(s). In unicast mode, Alice can interfere with Wendy identifying Bob by sending
‘garbage’ with similar characteristics to FPSCC, when Bob is not in range.
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7.7 Elimination of multiplayer-games channels

FPSCC cannot be eliminated without eliminating the game traffic, because player move-
ment is intrinsic to the game. Additional noise could be introduced to limit the channel ca-
pacity, such as the game server introducing minute, random fluctuations in every player’s
view angles. However, such noise must have no visible consequences for the players.

But Alice could always counter this noise by increasing the ‘sending power’. If Alice
is also the overt sender then she is actually playing the game, in which case she can
use larger view angle fluctuations possibly visible on her screen, while Wendy has to
stay below a threshold where the changes become visible. Wendy could only effectively
jam FPSCC by first detecting Alice’s use of the channel and then inserting large noise
specifically into her angle changes or disrupting her traffic (e.g. disconnect her).

7.8 Measures against temperature-based channels

It is very difficult to completely eliminate temperature-based covert channels. However,
a number of measures can be employed to reduce their capacity.

A seemingly obvious way of eliminating the channel is to prevent Bob’s sampling
of the clock by removing all timestamps from network protocols. However, this has a
negative effect on the performance or functionality of protocols. For example, the TCP
timestamp extension is needed for improving the performance of TCP and the HTTP
timestamp is needed for HTTP caching. Furthermore, many low-level operating system
events are triggered on timer interrupts and could be remotely detected and used instead
of explicit timestamps [221].

A clock crystal that is not affected by temperature changes eliminates the channel.
However, temperature-compensated crystals might not have adequate accuracy [244].
Oven-compensated crystals have good accuracy, but are very expensive and power hun-
gry [244]. Thus it seems unlikely that accurately compensated crystals would ever be
deployed widely.

The opportunity for Alice to induce CPU load cannot be completely eliminated. How-
ever remote load inducement could be limited if the network traffic is throttled before it
reaches the intermediate host or in the worst case on the intermediate host itself before
it reaches an application. If Alice is located on the intermediate host a similar measure
would be to limit the amount of CPU time a process or user can use.

Another countermeasure is to increase the channel noise by randomly varying CPU
load on the intermediate host or in the extreme case by continuously running the CPU at
full load. However, this strategy is obviously very inefficient. Furthermore, care must be
taken in its implementation because the temperature does not only depend on the CPU
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load but also on the specific mix of instructions executed and hence different types of
tasks can have different temperature effects [244].

The channel should be relatively easy to detect if Alice tries to maximise the transmis-
sion rate by generating large CPU load changes, and thus sends large amounts of traffic.
However, Alice and Bob could always vary their traffic or CPU load patterns trying to
evade detection, although this would most likely also reduce the transmission rate. Then
detection of the channel may not be straightforward. A warden would have to look for
abnormal traffic or CPU load patterns indicating either Alice or Bob. Hence the detection
accuracy depends on the regular patterns at the intermediate host.

7.9 Conclusions

We proposed a number of channel-specific and effective techniques for eliminating the
different covert channels.

The TTL channel is not difficult to eliminate. Even in rare cases where it cannot be
completely eliminated at least its capacity is reduced. The inter-packet gap timing channel
cannot be completely eliminated, but we showed for a small number of example applica-
tions that the channel can be eliminated with only minor side-effects on the performance
of the overt traffic.

It is hard to eliminate the temperature-based covert channel completely. However,
given that the channel’s capacity is very low, it only requires handling in certain scenarios,
such as anonymisation networks. Furthermore, we discussed some measures that can be
applied to further reduce the channel’s capacity.

Elimination of covert channels is not always possible, as the game traffic channel
demonstrates. Detection is another important countermeasure. Even if the channel could
be eliminated, the warden may choose not to do so because successful detection usually
allows identifying the covert sender and receiver. Furthermore, demonstrated detection
acts as deterrence to possible users of the channel.

We investigated how effectively ML techniques can detect different covert channels.
We proposed a number of characteristics to separate covert channels from normal traffic.
While some of the features proposed were generic and were used for different covert chan-
nels, some were tailored to specific channels. We used the C4.5 decision tree algorithm
because it showed good performance in previous work [235].

Even low-amplitude TTL covert channels are easy to detect if encoded in a high frac-
tion of overt packets, because normal TTL variation is infrequent. For high encoding
fractions the TTL covert channel is detected with over 95% accuracy. With smaller en-
coding fractions the accuracy is reduced. However, it is still in the order of 85–90%,
because the channel does not mimic normal TTL variation very well.
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The inter-packet gap timing channel proposed in [104, 105] is easy to detect with
over 95% accuracy if the IPGs of normal traffic are auto-correlated. Our new encoding
schemes are harder to detect with accuracies of only up to 70–80%, since they mimic the
shape and auto-correlation of normal IPGs well. While detection of the covert channel
embedded in game traffic is non-trivial, it can be detected with accuracies of over 95% if
the warden knows its modulation technique.

Our work demonstrates that some covert channels can be eliminated but are hard to
detect (new IPG timing channels), while others can be detected but are hard to eliminate
(game traffic covert channels). This means in order to handle different types of covert
channels future security systems must implement both countermeasures.

7.9.1 Future work

Future research could develop new more effective features to further improve the detection
accuracy and study the performance of other ML algorithms. We think that developing
better features is more promising than evaluating other ML techniques, since the better
ML algorithms usually provide similar classification accuracy [235].

The elimination of IPG timing channels needs further research. Our results are promis-
ing, but we have only investigated one specific technique. Future work should evaluate
other noise distributions or noise-introducing techniques that limit the channel capacity
with only minimal side-effects. As discussed earlier, adaptive techniques are needed that
introduce noise at different levels based on the characteristics of the overt traffic. Usability
trials may be needed to quantify the effects of eliminating covert channels on interactive
applications, such as online games.

We described how to eliminate TTL channels, but an implementation of the proposed
method does not exist yet. Another avenue of future research is the analysis of coun-
termeasures against the temperature-based channel. This channel may become more at-
tractive to users in the future if other higher-capacity channels are handled by the next
generation of security systems.

Our software framework, CCHEF, could be modified in order to use it not only for
creating covert channels, but also for detecting and eliminating them. This would allow
testing and evaluating the countermeasures in real networks.

200



CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Chapter 8

Conclusions and FutureWork

Historically, covert channels were identified as instruments to violate security policies
by leaking information from a high-security process to a low-security process on mono-
lithic Multi Level Secure (MLS) systems, typically military systems. With the emergence
of low-cost, highly distributed and networked computer systems, the focus of research
has expanded to include network-protocol covert channels between different hosts.

The possible applications for covert channels have extended far beyond the MLS sce-
nario. For example, government agencies or criminals may use covert channels for com-
munication, hackers or spies may use them for data ex-filtration or controlling hacked
systems, or the general population may use them for circumventing censorship or com-
pany security policies.

As discussed in Chapter 2 many existing covert channels are simple noise-free chan-
nels. They are easy to implement, but they are also easy to eliminate and detect. Very
little variation of normal behaviour of traffic sources and the absence of noise make these
channels stand out. Furthermore, they can be removed easily through protocol normali-
sation. There are a few more complex channels, which are harder to detect and eliminate,
but suffer from noise. Their performance has not been studied much in previous work.
Furthermore, previous research never compared different types of channels.

In this thesis we analysed and compared the performance of several selected noisy
covert channels. We compared the channels based on experiments in real networks and
information-theoretic concepts. Not all of the chosen channels are entirely new, but we
usually developed novel improved encoding schemes. We also developed protocols for
reliable data transport and analysed their throughput. Finally, we developed countermea-
sures against the channels and evaluated their performance.

We demonstrated that the potential of the Internet to support sophisticated covert
channels is considerably greater than suggested by the simple channels developed so
far. We developed noisy storage and timing channels that are not trivial to detect or
eliminate, yet provide sufficient capacity for covert communications. We also showed
that multiplayer games provide hitherto unexplored possibilities for covert channels and
temperature-based covert channels are possible. Taken together this means that security
policies and technologies need to become significantly more aware of covert channels.
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Building covert channels and observing their behaviour provides an excellent means
to analyse them. However, development can be time consuming. Instead of building
each channel separately we developed a software framework for implementing covert
channels described in Appendix A. Our framework is modular and can be extended easily.
It embeds covert channels in existing overt traffic and provides an extensible mechanism
for the selection of overt packets used for the covert channel. The design of the framework
proved successful as it was barely modified through the duration of the thesis.

In Chapter 3 we analysed a noisy storage channel in the Time-to-live (TTL) field. We
analysed the characteristics of the noise based on traffic traces. Normal TTL changes
only occurred in less than 1% of packet pairs, but in 2–6% of the flows. The noise is low
enough to provide capacities of more than 0.9 bits per overt packet, but large enough so
that the channel is not as obvious as simple noise-free storage channels.

We developed new encoding schemes that can be used for passive covert channels, are
stealthier and provide up to 5% higher capacities than existing schemes. We proposed a
channel model that allows computing the channel capacity based on TTL noise and overt
packet loss and reordering. The capacity of the channel ranges from a few tens of bits per
second up to a few hundreds of bits per second for single overt traffic flows, and up to
thousands of bits per second when encoding in large traffic aggregates.

We showed in Chapter 7 that the TTL channel is detected with over 95% accuracy
if a large fraction of the overt traffic is used. Even for very small fractions the detection
accuracy is still 85–90%, because the channel does not mimic normal TTL variation very
well. Since the TTL field is manipulated by routers, elimination is not as trivial as for
simple storage channels, but we proposed an efficient method to eliminate the channel.

Recently noisy timing covert channels were proposed that encode data in inter-packet
times. In Chapter 7 we showed that with the existing encoding scheme the channel is still
easy to detect with over 95% accuracy if normal inter-packet times are auto-correlated.
In Chapter 4 we showed that for several applications this is often the case. We developed
new improved encoding schemes that have reduced capacity or robustness but are harder
to detect with accuracies of less than 70–80% even if inter-packet times are correlated.

If network jitter is relatively small, the capacity is 70–80% of the TTL channel’s
capacity. The capacity is still at least several tens of bits per second for single overt traffic
flows as shown in Chapter 4. However, it can be drastically reduced to less than one
bit per second by introducing artificial network jitter. We showed in Chapter 7 that the
channel is practically eliminated with only small negative impact on the performance of
the applications generating the overt traffic.

In Chapter 3 we proposed new reliable transport schemes for noisy covert channels,
including noise from overt packet loss and reordering. In Chapter 3 and 4 we showed that
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these schemes achieve throughputs of 50% of the capacity for TTL channels and 30–40%
of the capacity for inter-packet gap timing channels.

The channels analysed in Chapters 3 and 4 are direct channels, where covert data is
transmitted directly from covert sender to receiver. We also investigated indirect channels
where an intermediate host acts as proxy, which increases the security.

In Chapter 5 we demonstrated the potential for novel covert channels based on emerg-
ing applications by developing and analysing an indirect noisy storage channel using mul-
tiplayer game traffic as cover. The capacity is only up to 10–20 bits per second, but this
is still sufficient for covert messaging or chatting. Since the channel is noisy we devel-
oped a tailored mechanism for reliable data transport, which achieves over 77% of the
capacity. The channel could also be used in immersive virtual worlds that are similar
to games. Although interesting in itself our work illustrates that new applications may
present opportunities for entirely novel covert channels.

A key advantage of this channel for users is that it cannot be eliminated. In Chapter 7
we showed that while detection is non-trivial, the channel can be detected with accuracies
of over 95% if the warden knows its modulation technique. However, even if the channel
is detected receivers may still be partly protected, since it is a broadcast channel.

In Chapter 6 we analysed an indirect noisy temperature-based timing channel. First
we developed a novel technique to reduce a main component of the channel noise by up
to two orders of magnitude. We then proposed a method to estimate the channel capacity.
For two example intermediate hosts we found the capacity is only 10–20 bits per hour.
Compared to other channels the capacity is very small and hence these channels are not
well suited for general-purpose communication.

However, temperature-based channels are potentially hard to detect and eliminate, and
can be used in situations where other channels are not available. Furthermore, they are
very effective for revealing hidden services in anonymisation networks. We proposed
several measures to reduce the channel’s capacity.

We demonstrated that machine-learning techniques are effective in detecting different
types of covert channels with accuracies of over 95% based on different characteristics,
some of which we developed specifically for particular channels.

Based on our analysis of different channels we draw the following conclusions. Many
existing modulation schemes were developed ad-hoc, without good knowledge of the
characteristics of normal traffic. For noise-free channels this may not have consequences,
but for noisy channels this can result in significantly reduced capacity and stealth.

Noisy covert channels provide sufficient throughput for communication purposes. Ide-
ally reliable transport techniques should exploit information of overt protocols to min-
imise packet loss and reordering related channel errors. However, we demonstrated that
even more general reliable transport techniques provide adequate performance.
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Our work characterises the trade-offs between channel complexity, capacity, robust-
ness and stealth. Simpler channels are easier to implement and have higher capacities but
on the other hand are also easier to eliminate and detect. More complex channels are more
difficult to implement and have lower capacities, but are harder to eliminate and detect.
Indirect covert channels provide additional security, but are harder to construct and have
lower capacity than direct channels.

8.1 Future research directions

This thesis raises a number of new avenues for future research. Besides extending our
study of the different channels towards a wider range of operating conditions, for each of
the topics explored in this thesis there remain a number of items for further research.

The TTL channel’s stealth can be improved through modulation schemes using more
sophisticated models of regular TTL variation. Our proposed technique for reliable data
transport, which ought to be applicable to other network-layer storage and timing chan-
nels, can be improved to increase throughput with higher noise levels.

Our improved inter-packet timing encoding schemes can be used for both active and
passive channels, but we have not evaluated the performance for active channels. Also,
we have not investigated encoding more than one bit per inter-packet gap. The buffering
delay management algorithm should be improved to minimise the added delay for passive
channels. How to automatically select the optimal model for sub-band encoding is another
open question. Our implementation could be further improved to reduce noise introduced
at the sender and receiver. Another interesting area for research is the study of other
timing channels, such as the timing of message sequences.

There is a lot of room to further explore the novel game-traffic channel. The channel
could be studied in more detail in the context of the particular game we used (more play-
ers, different maps and game settings). The encoding scheme could be refined to improve
the stealth and to increase the throughput, especially for large round trip times. Further-
more, the channel could be applied to other games or immersive virtual worlds, where
player character movements are regularly propagated to other participants. However, the
important point of this research is to show that new applications may offer completely
novel channels.

A number of aspects of the temperature-based covert channel remain unexplored. First
and foremost we have not analysed the channel’s capacity for remote covert senders mod-
ulating CPU load through a varying rate of requests. Furthermore, we did not study how
information can be transmitted reliably across the channel. Besides covert communica-
tions, the channel could be used for approximate geo-location of hosts based on remotely
measured daily temperature patterns. The development and analysis of such techniques
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remains future work. Apart from our work, indirect channels have been barely analysed
and should receive more attention.

We proposed elimination techniques for the different channels, but we have not im-
plemented and analysed all of them. Most notable, the design and analysis of techniques
for eliminating inter-packet gap timing channels needs further work. Other noise dis-
tributions or noise-introducing techniques that limit the channel capacity with minimum
side-effects for different types of traffic should be evaluated. Adaptive techniques are
needed that introduce noise at different levels based on the characteristics of overt traffic.

We showed that most channels are detected with relatively high accuracy, but there is
still room for improvement. New research could focus on improving the detection accu-
racy by developing new features or using different machine-learning algorithms. Methods
for detecting temperature-based covert channels have not been studied yet.

The software framework for creating covert channels could be extended with new
covert channel techniques and more efficient schemes for reliable transport. Currently
there is no support for link-layer channels and there are no techniques for reliable trans-
mission based on retransmissions. In the future the software could be modified so that
it also becomes a framework for detecting and eliminating covert channels, making it
possible to analyse and compare the efficiency of different countermeasures.

Very little work exists on formal methods for the identification of covert channels in
network protocols. Instead of having to eliminate or detect existing covert channels at
least some of them should be prevented during protocol design. However, with a lack of
formal identification methods, covert channel identification remains ad-hoc at best or is
not attempted at all in the worst case.

The construction of high-capacity covert channels that are hard to detect and elimi-
nate is challenging. This is made even more difficult since error detection and correction
mechanisms need to be used over noisy channels. Unless well hidden such mechanisms
can reveal the channel.

We think that new applications and higher protocol layers still offer many unexplored
opportunities for covert channels. Furthermore, different types of channels could be com-
bined to increase the performance. On the other hand the development of improved chan-
nels necessitates further work to develop improved countermeasures. It seems likely that
the arms race of developing new improved covert channels and developing more effective
countermeasures will continue.
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Appendix A

Covert Channels Software Framework

To empirically evaluate covert channels according to the criteria outlined in Section
2.1.6 it is necessary to create such channels. For the vast majority of covert channels
implementations are not publicly available or simply do not exist. Furthermore, commu-
nication over a covert channel does require more than just sending bits (modulation and
demodulation). For example, a framing technique is needed to identify blocks of bytes
in the bit stream (byte synchronisation) and an error correction technique is needed if the
channel is noisy.

Instead of (re)implementing techniques as separate tools we chose to design and im-
plement a modular framework where for example, a specific framing technique can be
used with different covert channels. The design of our framework follows the layered
approach traditionally used in the design of communication networks. A layer receives
a data block from a lower/higher layer, removes/adds header and trailer, and passes the
modified data block to the next higher/lower layer without knowing any details of other
layers. However, cross-layer information exchange is also possible if really necessary.
Another advantage of an integrated tool is that it can create a single channel that actually
is a combination of multiple covert channels.

This appendix presents the design and implementation of the Covert Channels Evalu-
ation Framework (CCHEF), pronounced chef, which can be used to create covert channels
in network protocols. CCHEF was used to prototype and evaluate TTL covert channels
(see Chapter 3), packet timing covert channels (see Chapter 4) and covert channels in first
person shooter games (see Chapter 5). CCHEF was designed for (semi-)passive covert
channels that use existing application traffic as cover. Hence, the active temperature-based
covert channel (see Chapter 6) had to be implemented as separate tool.

First we describe the overall goals and main features. Then we present the architecture
of CCHEF. Finally, we show how CCHEF is configured and provide a simple example. A
more detailed manual for users or developers of covert channels is provided in [245]. The
total size of CCHEF is roughly 20 000 total Source Lines of Code (SLOC) [246]. CCHEF
has been made publicly available under the GNU license [247].
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A.1 Goals and features

The main goal of CCHEF is to create covert channels for research purposes:

• Evaluate the capacity, stealth and robustness of covert channels and compare differ-
ent channels.

• Evaluate and compare mechanisms to eliminate, limit the capacity or detect differ-
ent covert channels.

• Create test traffic for existing intrusion detection software or firewalls (overt traffic
with covert channels).

No attempts were made to hide the presence of the CCHEF application itself. The sender
and receiver are normal user space applications and if root privileges are needed for the
execution, they need to be started as root. This allowed us to focus on the actual covert
channel techniques, avoids facilitating possible misuse, and improves the portability, since
techniques to hide executables are often operating system dependent.

There are two different types of scenarios we wanted to support:

1. CCHEF should work in real networks with real overt traffic. This allows evaluat-
ing covert channels across real networks and is mandatory for testing of existing
intrusion detection software or firewalls.

2. Usually testing with real traffic is restricted to controlled testbeds where it is almost
impossible to generate a realistic traffic mix from a larger number of hosts. There-
fore, CCHEF should also be capable of running on a single host emulating the use
of covert channels with overt traffic from trace files.

The following paragraphs describe the main features of CCHEF. CCHEF supports both
storage and timing channels as long as they are (semi-)passive. CCHEF supports covert
channels in the IP protocol and in higher-layer protocols (e.g. TCP, HTTP). It is planned
to extend CCHEF in the future to also support link-layer channels. CCHEF currently only
works with IPv4. Support for IPv6 may be added in the future.

CCHEF is very flexible and extensible. It is possible to create new covert channel
modulation modules without need to modify any code of the framework itself. Further-
more, it is possible to easily modify or add new code for encryption, authentication, fram-
ing and reliable transport. The source code of CCHEF was written with portability in
mind, so that CCHEF can be used on different operating systems. However, the primary
development platform was Linux and currently some functions only work on Linux.

CCHEF embeds covert channels into any existing application traffic. This means the
cover traffic is real and does not look suspicious in any way. CCHEF cannot be used
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Figure A.1: CCHEF is used to transmit information across a network (Alice sending to Bob)

when the overt traffic needs to be very specific and tailored to the covert channel, such as
required for temperature-based covert channels (see Chapter 6).

CCHEF is efficient in terms of CPU and memory usage, but the overall performance
depends heavily on the implementation of the modules performing the modulation and
providing reliable transport. In our experiments we confirmed that CCHEF can handle
overt traffic of up to a few Mbit/s and trace files with up to a few hundred million packets.

A.2 Design and implementation

First we present an overview of CCHEF’s architecture and the different layers. Then we
discuss parts of the architecture in more detail: input/output devices, selection of overt
packets, covert channel modulation modules and error simulation/emulation.

A.2.1 Usage modes

Figure A.1 shows how CCHEF is used for transmitting covert information across a net-
work. For clarity the figure only shows the unidirectional channel of Alice sending to
Bob, but channels in CCHEF can be bidirectional and therefore Bob could send to Alice
at the same time.

Alice and Bob tap into an overt channel, which is a number of traffic flows between
Alice and Bob. Alice and Bob can be the sender and receiver of the overt traffic instru-
menting network applications or act as middlemen and use pre-existing overt traffic of
unwitting users. Alice intercepts the overt traffic, encodes the covert data and re-injects
the overt traffic with the embedded covert channel into the network. Bobs intercepts the
overt traffic, decodes the covert data and possibly removes the covert channel.

Figure A.2 shows how CCHEF is used to evaluate covert channels based on overt
traffic from trace files. In this case covert information is not actually sent across a net-
work; Alice and Bob are a single entity. For each overt packet read from the trace file
CCHEF first embeds the covert information, optionally simulates noise and then decodes
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Figure A.2: CCHEF is used to evaluate covert channels based on overt traffic from trace files
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Figure A.3: CCHEF main modules

the covert information from the packet straight away. The received data is compared with
the sent data and statistics are computed (e.g. error rate). The modified trace can be stored
for later use, such as testing firewalls or intrusion detection systems.

A.2.2 Main modules

Figure A.3 shows the main modules of CCHEF. The heart of CCHEF is the Channel

module that interfaces with multiple Device modules. Covert data to be sent is read from
a Covert In device while received covert data is passed to a Covert Out device. The Overt

In/Out device intercepts and re-injects overt traffic. The Selection module selects which
packets of the overt traffic are used to encode the covert channel.

The Overt In/Out module intercepts overt packets in the send direction. A subset
of the packets (carrier traffic) is chosen by the Selection module and passed on to the
Channel module. Packets not selected are re-injected into the network. The Channel
module encodes covert data into the carrier traffic and passes the modified packets back
to the Overt In/Out device, which then re-injects them back into the network.

Overt packets arriving in the receive direction are intercepted by the Overt In/Out
module and are passed on to the Channel module if selected by the Selection module.
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Figure A.4: CCHEF channel module functions at sender and receiver

The Channel module decodes covert data present in the packets and if possible removes
the covert channel. CCHEF also supports passive receivers that work with copies of the
original packets and do not delay the overt traffic, if removing the covert channel is not
desired or not possible. Then, the Overt In/Out device intercepts copies of packets.

The Channel module performs all the functions necessary for covert communica-
tion such as modulation/demodulation of the covert data, segmenting the covert bits
into blocks (framing/deframing), encryption/decryption and error detection and correc-
tion (see Section A.2.3). A configuration module configures all devices and the channel
based on a configuration file (see Section A.3).

A.2.3 Channel module

The Channel module is composed of multiple sub modules, each representing a commu-
nication layer of the covert channel. Figure A.4 shows the details of the layers on the
sender (left) and receiver (right). There are four main modules in CCHEF: modulation,
framing, encryption and transport1. The modulation, framing and transport modules are
similar to the physical, link and transport layers of the Open Systems Interconnect (OSI)
model. CCHEF only supports communication between one covert sender and one or mul-
tiple covert receiver(s) and therefore the equivalent of the network layer capable of routing
does not exist.

The Modulation modules are responsible for modulating/demodulating the covert bits
into the overt packet stream and bit synchronisation (if needed). Each module implements
a certain covert channel technique and provides modulation and demodulation functions.
Multiple modulation modules can be used in parallel to encode covert data using different
covert channel techniques simultaneously. However, Alice and Bob must use the same set

1Framing, Encryption or Transport modules can be null modules if their function is not required.
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of modules with the same parameters in the same order. The implemented modules are
described in Section A.2.6.

The Framing module is responsible for framing, including byte synchronisation. Each
Framing module provides a framing and deframing method. The implemented modules
are described in Section A.2.7. The Transport module is responsible for error detection
and correction using FEC or ARQ techniques, and flow control (if needed). It also per-
forms segmentation of the data into blocks of bytes. The implemented transport modules
are described in Section A.2.8.

The Encryption module encrypts/decrypts the covert data. The main reason for having
this type of module is not to actually secure the covert data, as CCHEF was developed
for the sole purpose of research. But encryption can change the distribution of the input
data, which may affect the characteristics of the channel. For example, the capacity of
the binary symmetric channel is achieved only for uniformly random data [22]. Currently
only a simple XOR-based algorithm is implemented.

During operation sender and receiver compute statistics, for example the total number
of covert bits sent or received. They also log copies of the sent and received bit streams
for later analysis, such as computing bit error rates. Alice logs the bit stream sent before
transport and before modulation. Bob logs the bit stream received after demodulation
and after transport. If CCHEF is used with overt traffic from traces the bit streams can
be compared during operation. If a network separates Alice and Bob, the bit streams are
stored and can be compared offline.

A.2.4 Device modules

Devices are used to input and output covert data, and to intercept and re-inject overt traffic.
There are a number of different device modules. Table A.1 summarises the purposes of the
different devices. A “yes” indicates the usual purpose of a device, whereas a “possible”
indicates a possible but unlikely use.

The Random device generates a uniform random data stream (the probability of ze-
ros and ones is equal). The Null device writes data to /dev/null, when the received data
should be ignored. The Text device reads from a text file or outputs to a text file. The Tun-

nel device reads/writes IP packets from/to a tunnel network device. This enables CCHEF
to tunnel IP packets across the covert channel. The Netfilter Queue device instruments
the Netfilter queue framework inside the Linux kernel [248]. This framework consists
of a number of hooks in the packet processing routines of the kernel. Packets are inter-
cepted and delivered to a userspace application. The userspace application can modify
the packets and re-inject them back into the kernel.

The Libtrace device reads/writes packets from/to various trace files and supports dif-
ferent formats, including libpcap format, Endace Record Format (ERF), and older formats
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Table A.1: Device modules and their function
Device Covert In Covert Out Overt In/Out

Random yes no no
Null no yes no
Text yes yes no

Tunnel yes yes possible
NetfilterQueue possible possible yes

Pcap possible possible yes
Libtrace possible possible yes

used by DAG cards [197]. Its main purpose is to read overt traffic from trace files and to
create trace files with embedded covert channels. However, it could also be used to send
recorded IP packets across the covert channel. It is based on the libtrace library [249].

A.2.5 Packet selection and Selector modules

The packet selection module determines which overt packets are used as carrier for the
covert channel. The module is composed of a number of sub modules: classifier module,
flow-grouping module, and selector module (see Figure A.5).

Overt packets are usually obtained either via the Netfilter Queue device (real network)
or via the Libtrace device (traffic traces). The Classifier module only passes on packets
that match a set of configurable rules, based on the standard 5-tuple of source/destination
IP address, protocol, and UDP/TCP ports. Non-matching packets are re-injected into the
network immediately. The module limits the covert channel to overt traffic between the
specified source and destination pair(s).

The Flow Grouping module groups packets into bidirectional flows according to the
5-tuple. Each flow is identified by a ‘unique’ flow ID. Packets are grouped into flows
because many covert channel techniques encode data relative to flows and need to keep
per-flow state (e.g. some TTL covert channels, packet timing channels, game traffic chan-
nel). Flows are ended by a timeout or by a TCP connection teardown2, in which case flow
state of modulation modules is deleted (see below). The first packet of a flow defines the
‘forward’ direction. Packets with IP addresses and ports reversed are recognised as going
in the ‘backward’ direction.

Finally, packets are passed to the Selector module. The purpose of this module is to
select only specific packets within a flow or across flows as carrier for the covert data,
possibly determined by a secret shared between Alice and Bob. Packets meeting the se-
lection criteria are passed on to the modulation module. Modified packets are re-injected
into the network by the Overt In/Out device.

2CCHEF tracks TCP state but does not implement a full TCP state machine for performance reasons.
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Figure A.5: Selection of overt packets to be used as carrier for covert data

Currently, the following Selector modules exist. The All module selects every packet.
The Hash module selects a fraction of the overt traffic based on sparse encoding (see
Section 4.2.2). The TTLHash module implements modified sparse encoding for the TTL
channel (see Section 7.2.2).

A.2.6 Modulation modules

Modulation modules are responsible for encoding covert data into the overt traffic and for
decoding (and possibly removing) covert data from the overt traffic. Modulation modules
are realised as shared libraries. This means new modules can be added without the need
to modify or recompile CCHEF.

A module has global constructor and destructor functions to initialise and destroy
global state. A module also has per-flow initialise and destroy functions, which are called
each time a new flow starts or an existing flow ends (as determined by CCHEF’s flow-
grouping module). The per-flow initialise function allows a module to allocate per-flow
state. For each selected overt packet CCHEF calls either the encode or the decode function
of a module depending on the direction of the overt packet as determined by the Classifier
(forward or backward). CCHEF passes pointers to the packet data, packet meta-data (such
as packet arrival timestamps) and the allocated per-flow state (if any) to the encode and
decode functions.

CCHEF also provides timers for modulation modules. A module can register multiple
timers at start-up and every time a new flow starts. Each timer is characterised by a unique
ID and a timeout value. When a timer expires CCHEF calls the timeout function of the
module. Each time the timeout function is called the module can adjust the timeout value
of the expired timer, which includes destroying the timer.

Figure A.6 summarises the various functions of modulation modules called by the
Channel module. We implemented a number of modulation modules. As simple exam-
ple, we implemented the covert channel in the IP ID field as described in [36]. Several
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Figure A.6: Modulation module functions

modules were developed for different techniques to encode covert information in the TTL
field (see Chapter 3). Two modules were developed for encoding covert information into
the timing of packets (see Chapter 4). The game traffic covert channel described in Chap-
ter 5 was implemented as another modulation module.

A.2.7 Framing modules

Framing modules are mainly responsible for framing, but can also provide other features,
such as error detection and correction. The sender segments the data into fixed-size or
variable-size blocks of bytes. We call these blocks frames because we consider this pro-
cess as being similar to the link layer in the OSI model. The sender must segment the data
such that the receiver can identify frame boundaries in the incoming bit stream.

Framing modules are realised as C++ classes. Currently six modules exist. The Start

Of Frame (SOF) module implements the framing technique used by Ethernet (HDLC).
The CRC framing module identifies frames based on CRC32 (as done by ATM). The
Null module does nothing and is useful for analysis of channels without using a framing
technique. The RS framer identifies frames based on RS codes and the SOF2 framer is
used for reliable transport with packet loss (see Section 3.4). There is also a specific
framing module for the game traffic covert channel (see Section 5.4).

A.2.8 Transport modules

Transport modules segment data into blocks and provide functions to make the commu-
nication over noisy covert channels reliable. For example, they add sequence numbers
or perform FEC so that lost frames can be detected and corrupt frames can be corrected.
They can also implement ARQ schemes in case of bidirectional channels.

Transport modules are realised as C++ classes. Currently there are three transport
modules. The Simple module provides 8-bit sequence numbers for detecting lost data
blocks and FEC based on RS codes. The Marker transport module implements a scheme
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for reliable data transport over channels with deletions using a combination of marker
codes and RS codes (see Section 3.4). The Null module does nothing and can be used if
the underlying channel is error-free.

A.2.9 Error simulation modules

CCHEF can simulate channel errors. This is most useful in trace-file mode (see Figure
A.2). The error simulation is done at the sender after the bit modulation. An error module
has two functions, which are called with a pointer to the current overt packet and its meta-
data. The pre function is called prior to modulation, allowing the error module to learn
the original unmodified packet data. The post function is called after the modulation and
enables the module to modify the overt packet with embedded covert data and thus to
simulate various error characteristics of the covert channel.

The error simulation was designed to simulate channel errors caused by the modifica-
tion of data fields in the packet (storage channel) or timing noise (timing channel) on the
path between Alice and Bob. However, lost or reordered IP packets also introduce errors
on the covert channel. CCHEF supports the emulation of overt packet loss and reordering,
but currently only uniform random distributions are implemented.

A.3 Configuration

This section illustrates how CCHEF is configured. For further information the reader is
referred to [245]. An XML configuration file controls the behaviour of CCHEF. The file is
divided into several parts. In each part the configuration information is specified as pref-
erences (PREFs). Preferences have a name, a value and (optionally) a type specification
[245]. Figure A.7 shows an example configuration file.

The MAIN section defines general settings e.g. the name of the log file. MODULE spec-
ifications define modulation modules, DEVICE specifications define input and output de-
vices, FRAMER specifications define framing techniques, and TRANSPORT specifications
define transport protocols. Optional specifications define encryption techniques, packet
selection techniques, and noise simulation methods. Finally, the covert channel is defined
by specifying the devices for the input and output of covert data, the source of overt pack-
ets used as cover, the covert channel module(s) and the framing and transport techniques,
as well as optionally packet selection, encryption and noise simulation methods.

A channel must specify Cover and either CovertIn or CovertOut (unidirectional
channel) or both (bidirectional channel) referring to devices specified. It must also spec-
ify one or more modules under Modules referring to module(s) specified. If multiple
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<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE CONFIG SYSTEM "config.dtd">
<CONFIG>
<MAIN>
<!-- general settings -->

</MAIN>
<MODULE NAME="ttl">
<PREF NAME="BitsPerPacket">1</PREF>
<PREF NAME="Delta">1</PREF>

</MODULE>
<TRANSPORT NAME="Simple">

<PREF NAME="Type">Simple</PREF>
<PREF NAME="BlockSize">16</PREF>
<PREF NAME="Parity">0</PREF>

</TRANSPORT>
<FRAMER NAME="SOF">
<PREF NAME="Type">SOF</PREF>

</FRAMER>
<DEV NAME="InFile">
<PREF NAME="Type">File</PREF>
<PREF NAME="Filename">send.txt</PREF>

</DEV>
<DEV NAME="OutFile">
<PREF NAME="Type">File</PREF>
<PREF NAME="Filename">recv.txt</PREF>

</DEV>
<DEV NAME="NFQueue">
<PREF NAME="Type">NetfilterQueue</PREF>
<PREF NAME="Filter">src_host 192.168.1.123 AND dst_host 192.168.4.45</PREF>

</DEV>
<CHANNEL NAME="channel1">
<PREF NAME="CovertIn">InFile</PREF>
<PREF NAME="CovertOut">OutFile</PREF>
<PREF NAME="Cover">NFQueue</PREF>
<PREF NAME="Framer">SOF</PREF>
<PREF NAME="Transport">Simple</PREF>
<PREF NAME="Modules">ttl</PREF>

</CHANNEL>

</CONFIG>

Figure A.7: Example CCHEF configuration file

modules are used, sender and receiver configuration files must list the modules in exactly
the same order.
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Appendix B

Time-to-live Covert Channels

This appendix contains additional material for TTL covert channels analysed in Chap-
ter 3 and Chapter 7.

B.1 TTL error probability distributions

Figures B.1 and B.2 show the TTL error distributions for the Grangenet, Twente, Waikato
and Bell traces, which are not shown in Section 3.1.5.

B.2 Error probability analysis

In this section we derive error probabilities for the different modulation schemes described
in Section 3.2. Let the discrete random variable Xi be the TTL error of a packet i and X

the error probability distribution over all packets. We base our analysis on the following
assumptions:

1. The covert data is uniformly random distributed (the probability of a zero or one
being transmitted is equal to 1

2 ). This is typically the case if the data is encrypted.

2. We assume that one bit of covert data is encoded per TTL, since otherwise the
stealth would be severely reduced (see Section 3.1).

3. We assume all Xi are independent identical distributed (iid) random variables and
the probability distribution is stationary.

For direct encoding techniques the error probability only depends on the error occurring
for each packet independently of other packets. An error occurs if the absolute value of
the TTL error is greater than zero and an odd number. Because even errors do not modify
the lowest bit, they do not cause errors on the covert channel. Since the maximum TTL
value is 255 the error probability is:

PD =

127∑︁
k=−128

P(X = 2k+1) . (B.1)
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Figure B.1: TTL error distribution for the Grangenet trace (left) and Twente trace (right)
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Figure B.2: TTL error distribution for the Waikato trace (left) and Bell trace (right)

Mapped encoding schemes encode a logical zero and a logical one as two different
TTL values. Usually one of the TTL values is the most common TTL value of a packet
flow and the other value is a slight modification.

We assume that the receiver either knows the mapping or learns it by watching the TTL
sequence and assuming the two most common TTL values are the symbols for a logical
zero and a logical one. Then the error probability only depends on the error occurring for
each packet independently of other packets.

First we derive the error probability for MED encoding. The error probability for
0→ 1 and 1→ 0 errors is not identical. The probability for 0→ 1 errors is:

P0→1 = P(X ≤ −
⌈︃
∆

2

⌉︃
) , (B.2)
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where ⌈.⌉ is the ceiling function. The probability for 1→ 0 errors is smaller for even
∆ because we assume the receiver decodes a logical one in case the received symbol is
exactly the threshold value (the middle between a logical zero and logical one):

P1→0 = P(X ≥
⌈︃
∆

2
+

1
2

⌉︃
) . (B.3)

Given the first assumption, how the receiver decides at the threshold does not affect
the overall error probability. However, in general it is best to decode the threshold value
as the bit occurring most frequently in the data. The overall error probability follows from
Equations B.2 and B.3:

PMED =
P0→1(∆)

2
+

P1→0(∆)
2

=
P(X ≤ −

⌈︁
∆
2

⌉︁
)

2
+

P(X ≥
⌈︁
∆
2 +

1
2

⌉︁
)

2
. (B.4)

In the same way the error probability for MEI is derived to:

PMEI =
P(X ≥

⌈︁
∆
2

⌉︁
)

2
+

P(X ≤ −
⌈︁
∆
2 +

1
2

⌉︁
)

2
. (B.5)

If the error distribution is symmetric PMEI and PMED are identical.

Differential encoding schemes encode covert bits as change between two TTL values
and therefore the error probability depends on the difference of the two errors. Let Z =

Y − X be the difference of the two error distributions of two consecutive packets x and
y. Then the probability that Z is larger than some integer z can be computed using the
discrete convolution [250]:

P(Z ≥ z) =
∞∑︁

m=z

∞∑︁
n=−∞

P(X = n) ·P(Y = m+n) . (B.6)

For AMI encoding a 0→ 1 error occurs when the absolute value of Z is larger than
∆
2 (assuming at the threshold the receiver decodes a logical zero). A 1→ 0 error occurs
when Z is in the interval [∆2 ,

3△
2 +

1
2 ) and the bit is encoded as TTL decrease or when Z is

in the interval (−3△
2 −

1
2 ,−

∆
2 ] and the bit is encoded as TTL increase. This is because any

TTL change larger than △2 is decoded as logical one. The probability that a logical one
is encoded as increase or decrease is 1

2 given the first assumption. Then the overall error
probability is:
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PAMI =
P0→1(∆)
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2
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P(|Z| > ∆2 )

2
+

1
2 P(

⌈︁
∆
2

⌉︁
≤ Z <

⌈︁
3△
2 +

1
2

⌉︁
)

2

+

1
2 P(−

⌈︁
3△
2 +

1
2

⌉︁
< Z ≤ −

⌈︁
∆
2

⌉︁
)

2
. (B.7)

For DUB a 0→ 1 error occurs when Z is larger than ∆ (assuming at the threshold the
receiver decodes a logical zero) and a 1→ 0 error occurs when Z is smaller or equal than
−∆. The overall error probability is:

PDUB =
P0→1(∆)

2
+

P1→0(∆)
2

=
P(Z > ∆)

2
+

P(Z ≤ −∆)
2

. (B.8)

We simulated all modulation schemes and measured the error rates. CCHEF was used
to simulate a channel between covert sender and receiver. The sender-part of the simulator
encoded covert bits into the TTL fields of overt packets. Then the packets’ TTL values
were modified to simulate the channel error. Finally, the receiver-part of the simulator
decoded the covert bits from the overt packets. Finally, we computed the error rate, which
is the number of wrongly decoded bits divided by the total number of bits.

We used a simple idealised TTL noise model. The error was simulated using a Normal
distribution with a mean of zero and standard deviations σ = {1.0,1.5}. The values of σ
were chosen such that the resulting error rates were similar to the error rates of empirical
TTL error distributions. In practice the actual error probabilities can be computed based
on the empirical error distributions (see Section 3.1).

In all simulations we used uniform random covert data. The overt data was a synthetic
packet trace with approximately 42 million packets. The initial TTL value was always
set to 128. Let A be the peak-to-peak signal amplitude of the encoding schemes, the
difference between the signal level of logical one and zero. Then for direct schemes
A = 1, for DUB A = 2∆ and for all other techniques A = ∆. We varied the amplitude
within a limited range (1 ≤ A ≤ 6). Every experiment was repeated 20 times.

Since the Normal distribution is symmetric both mapped error probabilities (Equa-
tions B.4 and B.5) give identical results. Therefore we only simulated MED as represen-
tative for both techniques. For direct encoding schemes we assumed knowledge of the
true hop count at the receiver.
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Figure B.3: Error rate for different modulation schemes and amplitudes for Grangenet trace
(left) and Twente trace (right)

For comparing the simulation results with the theoretical probabilities we used the
relative root mean square error (RMSE), which is the RMSE of the simulated error rates
xi compared to the theoretical error probability x̂ divided by x̂:

δRMSE =
RMSE

x̂
=

√︁
1
N
∑︀

i(x̂− xi)2

x̂
. (B.9)

The results show that the relative RMSE is always less than 2% indicating a good
match between the theoretical error probabilities and the simulation results.

B.3 Error rate for modulation schemes and traces

Figures B.3 and B.4 show the error rates of the different modulation schemes depending
on the amplitude for the Grangenet, Twente, Waikato and Bell traces, which are not shown
in Section 3.5.2.

B.4 Hop count differences instead of TTL differences

We investigated if the error rate for mapped and differential schemes is reduced by using
hop count differences instead of TTL differences. Note, that this technique does not work
if modulated TTL values cross boundaries between different initial TTL regions (e.g.
increasing a TTL value of 62 by 4 would change the estimated hop count from 2 to 62).
This is the case for MEI and DUB even for very small amplitudes, because they increase
TTL values.

Figure B.5 shows the average error rates for MED0, MED and AMI when using hop
count differences on the same scale as Figure 3.13. Error rates with TTL differences
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Figure B.4: Error rate for different modulation schemes and amplitudes for the Waikato trace
(left) and Bell trace (right)
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Figure B.5: Average error rate of MED0, MED and AMI encoding schemes across all traces
when using hop-count differences

are shown as gray curves. MED0 and AMI show some notable improvements across all
datasets for larger amplitudes. However, for MED the improvement is negligible.

B.5 Error rate changes over time

Figures B.6 and B.7 show the error rate changes over time for the MED modulation
scheme and the Grangenet, Twente, Waikato and Bell traces, which are not shown in
Section 3.5.4.
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Figure B.6: Error rate for the MED modulation scheme over consecutive windows of 100 000
bits for Grangenet (left) and CAIA (right)
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Figure B.7: Error rate for the MED modulation scheme over consecutive windows of 100 000
bits for Twente (left) and Bell (right)

B.6 Number of retransmissions for ARQ scheme

Here we derive the average number of (re)transmissions needed in a selective repeat ARQ
scheme, given the actual bit substitution and deletion rates and a target block corruption
probability. The average number of (re)transmission is used to compute the throughput of
a combined FEC+ARQ scheme in Section 3.5.5, Section 3.5.6 and Section 4.5.4.

Given substitution and deletion probabilities pS and pD the corruption probability for
a data block is:

pB = 1− (1− pE)N , (B.10)

where pE = pS+ pD and N is the size of the block in bits including sequence numbers
and checksums. The probability that a block is corrupted after T (re)transmissions is:
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Figure B.8: Block corruption rate depending on code rate for the Grangenet trace (left) and
Twente trace (right) without packet reordering and loss
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Figure B.9: Block corruption rate depending on code rate for the Waikato trace (left) and Bell
trace (right) without packet reordering and loss

p̂B = pT
B . (B.11)

From equation B.11 follows that given the actual block corruption probability and a
target block corruption probability p̂B the average number of (re)transmissions needed is:

T (pB, p̂B) =max
(︃
1,

log( p̂B)
log(pB (pE,N))

)︃
. (B.12)
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Figure B.10: Block corruption rate depending on code rate for Waikato (left) and Bell (right)
for 0.5% packet loss

B.7 Block corruption rate

The following graphs show the block corruption rate depending on the code rate for the
traces not shown in Section 3.5.5, but only for experiments where graphs are shown for
the CAIA and Leipzig traces in Section 3.5.5.

Figure B.8 and B.9 show the block corruption rate over the code rate for the Grangenet,
Twente, Waikato and Bell traces and the different modulation schemes without packet
reordering and loss. Figures B.10 and B.11 show the block corruption rate depending
on the code rate for the Grangenet, Twente, Waikato and Bell traces and the different
modulation schemes for 0.5% packet loss without packet reordering. Figures B.12 and
B.13 show the block corruption rate depending on the code rate for the Grangenet, Twente,
Waikato and Bell traces and the different modulation schemes for 0.1% packet loss and
0.5% packet reordering.

B.8 Throughput for trace files

This section shows the graphs of throughput depending on TTL error rate, packet loss and
reordering for the traces not shown in Section 3.5.5.

Figures B.14 and B.15 show the throughput depending on the packet loss rate for the
Grangenet, Twente, Waikato and Bell traces with 0% packet reordering. Figures B.16
and B.17 show the throughput depending on the packet reordering rate for the Grangenet,
Twente, Waikato and Bell traces with 0.1% packet loss rate.
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Figure B.11: Block corruption rate depending on code rate for Waikato (left) and Bell (right)
for 0.5% packet loss
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Figure B.12: Block corruption rate depending on code rate for Grangenet (left) and Twente
(right) for 0.1% packet loss and 0.5% packet reordering

B.9 Decoding speed

Tables B.1 and B.2 show the average decoding speed for the reliable transport techniques
proposed in Section 3.4 for the best modulation scheme at the optimum code rate and
compares it to the average throughput of the best modulation scheme for the different
traces and packet loss rates. The performance was measured on a PC with Intel Core2
2.4 GHz CPU and 4 GB of memory. The results show that even for the experiments with
the highest error rate the decoder is still much faster than the actual throughput of the
channel.
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Figure B.13: Block corruption rate depending on code rate for Waikato (left) and Bell (right)
for 0.1% packet loss and 0.5% packet reordering
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Figure B.14: Throughput depending on the packet loss rate for Grangenet (left) and Twente
(right) for 0% packet reordering

B.10 Covert bit rate over time

Here we analyse the average bit rate of the TTL channel over time. We analyse the
raw bit rate after demodulation, but prior to framing and error correction. We use the
data from the experiments described in Section 3.5.6. Figure B.18 plots the bit rate over
time for Q3 client-to-server traffic and scp traffic (direction of the data), averaged over
non-overlapping windows of 500 bits, for the MED modulation scheme with 0% and 1%
packet loss and emulated Pareto-distributed jitter with σ = 0.2 ms.

The results show that for Q3 client-to-server traffic the bit rate is constant even for 1%
packet loss for both encoding schemes, apart from the initial connection phase and map
changes occurring every 600 seconds. Packet reordering has no effect on the burstiness.
For Q3 server-to-client and SSH traffic the results are very similar and hence not shown.
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Figure B.15: Throughput depending on the packet loss rate for Waikato (left) and Bell (right)
for 0% packet reordering
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Figure B.16: Throughput depending on the packet reordering rate for Grangenet (left) and
Twente (right) with 0.1% packet loss

For scp traffic the bit rate is almost constant without packet loss. With packet loss the
overt packet rate and hence the covert bit rate fluctuates greatly. The higher the loss rate
is, the greater the burstiness is. We leave a more comprehensive study as future work.

B.11 Code parameters

Here we describe the various codes used in the trace file and testbed experiments described
in Section 3.5.5 and 3.5.6.

In the trace file experiments we separated the trace files into two groups where each
group contains traces with similar TTL error rates. CAIA, Grangenet and Twente were in
the low error rate group and Bell, Leipzig, Waikato were in the high error rate group. In
the experiments we varied the redundancy of the RS coder (K) separately for each group.
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Figure B.17: Throughput depending on the packet reordering rate for Waikato (left) and Bell
(right) with 0.1% packet loss

Table B.1: Average throughput and receiver decoding speed for best encoding scheme de-
pending on packet loss rate (0% reordering)

Loss 0% Loss 0.1%
Trace Scheme Throughput

(bits/s)
Decoding

Speed
(bits/s)

Throughput
(bits/s)

Decoding
Speed
(bits/s)

CAIA MED 69 17.9M 58 6.5M
Grangenet DED 65 17.0M 55 6.0M

Twente MED 454 14.5M 388 5.4M
Waikato MED 1 273 8.1M 1 093 4.8M

Bell MED 192 10.2M 165 3.6M
Leipzig MED 10.6k 11.6M 9 102 4.8M

Table B.3 shows the used parameters depending on the trace group and packet loss
and reordering rate. For the outer marker code we state the size of the preamble, whereas
for the inner marker code we state the number of bits between markers followed by the
number of marker bits. For the RS code we state N,K. Note that K includes the CRC32
checksum and 8-bit sequence number part of each block. The last column shows the
overall block size in bytes.

Table B.4 shows the code parameters used in the different testbed experiments in the
same format. TTL errors and packet loss caused identical error rates for all applications.
For packet reordering we tuned the emulated delay so that error rates were similar for the
different applications. Hence we used the same codes for all applications. The table also
shows the code rate, which was verified from the experimental data.
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Table B.2: Average throughput and receiver decoding speed for best encoding scheme de-
pending on packet loss rate (0% reordering)

Loss 0.5% Loss 1.0%
Trace Scheme Throughput

(bits/s)
Decoding

Speed
(bits/s)

Throughput
(bits/s)

Decoding
Speed
(bits/s)

CAIA MED 51 3.2M 43 2.7M
Grangenet DED 49 3.2M 41 2.6M

Twente MED 346 3.4M 291 2.4M
Waikato MED 995 3.8M 838 2.3M

Bell MED 150 2.5M 126 1.4M
Leipzig MED 8 267 3.5M 6 934 2.0M
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Figure B.18: Average bits per second over time for Q3 client-to-server traffic (left) and scp
traffic (right)

B.12 Detection results

This section contains the detection accuracy and classifier complexity results for the DED
modulation scheme. The results for the MED modulation scheme are shown in Section
7.2. Figure B.19 shows the flow-based and bit-based detection accuracy for both traces
using sparse encoding and modified sparse encoding. Figure B.20 shows the overall de-
tection accuracy depending on the different feature sets, described in Section 7.2, for both
traces using modified sparse encoding. Figure B.21 shows the complexity of the classifier
depending on the feature sets.
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Table B.3: Code parameters (trace file experiments)
Trace group
(TTL error)

Loss
(%)

Reordering
(%)

Outer
Marker

Inner
Marker

RS Block size
(bytes)

Low 0 0 NA NA 255,255–235 255
Low 0.1 0 40 bit 16,2 240,236–216 275
Low 0.1 0.1 40 bit 16,2 240,236–208 275
Low 0.1 0.5 40 bit 16,2 240,232–196 275
Low 0.5 0 40 bit 16,2 176,167–139 203
Low 1.0 0 40 bit 16,3 176,155–131 214
High 0 0 NA NA 255,239–191 255
High 0.1 0 40 bit 16,2 240,227–179 275
High 0.1 0.1 40 bit 16,2 240,227–179 275
High 0.1 0.5 40 bit 16,2 240,215–155 275
High 0.5 0 40 bit 16,2 176,158–122 203
High 1.0 0 40 bit 16,3 176,146–110 214

Table B.4: Code parameters (testbed experiments)
TTL
error
(%)

Loss
(%)

Reordering
(%)

Outer
Marker

Inner
Marker

RS Block size
(bytes)

Code rate

0 0 0 NA NA 73,69 73 0.88
0.001 0 0 NA NA 73,69 73 0.88
0.1 0 0 NA NA 77,69 77 0.83
1.0 0 0 NA NA 101,69 101 0.63
0.1 0.1 0 40 bit 16/2 96,82 113 0.68
0.1 0.5 0 40 bit 16/3 96,72 119 0.56
0.1 1.0 0 40 bit 16/4 96,62 125 0.46
0.1 0.1 0.1 40 bit 16/2 96,76 113 0.63
0.1 0.1 0.5 40 bit 16/2 96,60 113 0.49
0.1 0.1 1.0 40 bit 16/2 96,44 113 0.35
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Figure B.19: Detection accuracy using DED modulation for both traces using sparse encod-
ing (left) and using modified sparse encoding (right)

255



APPENDIX B. TIME-TO-LIVE COVERT CHANNELS

0.0 0.2 0.4 0.6 0.8 1.0

75

80

85

90

95

100

Encoding fraction f

F
−

m
e
a
s
u
re

 (
%

)

Set 1 flows

Set 1 bits

Set 2 flows

Set 2 bits

Set 3 flows

Set 3 bits

0.0 0.2 0.4 0.6 0.8 1.0

75

80

85

90

95

100

Encoding fraction f

F
−

m
e
a
s
u
re

 (
%

)

Set 1 flows

Set 1 bits

Set 2 flows

Set 2 bits

Set 3 flows

Set 3 bits

Figure B.20: Detection accuracy for the DED modulation scheme depending on the feature
set for Twente (left) and Bell (right)
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Figure B.21: Complexity of the classifier for the DED modulation scheme depending on the
feature sets for Twente (left) and Bell (right)
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Appendix C
Packet-timing Covert Channels

This appendix contains additional material for inter-packet timing covert channels
analysed in Chapter 4 and Chapter 7.

C.1 Inter-packet time analysis

Here we show the histograms of the inter-packet gaps (IPGs) for the example flows where
we show the ACFs of the IPGs in Section 4.1.

Figure C.1 shows the histograms of the IPGs of Q3 client-to-server traffic for two
example clients – a local client and a remote client. Figure C.2 shows the histograms of the
IPGs of Q3 server-to-client traffic for the flows for which the ACFs are shown in Figure
4.2. Figure C.3 shows the histograms of IPGs for Skype traffic for a flow measured at
the source and another flow measured 11 hops away from the source. The corresponding
ACFs are shown in Figure 4.4.

C.2 Sender timing accuracy

At the sender noise is mainly introduced because of inaccuracies when sending the pack-
ets. Our prototype, based on CCHEF described in Appendix A, enables a covert channel
module to specify whether an intercepted packet should be re-injected as early as possible
or at a later time. Packets to be re-injected later are stored in an event list. To conserve
CPU time CCHEF sleeps when no events are due and no overt packets are intercepted. To
maximise timing accuracy CCHEF wakes up slightly earlier for re-injection events and
then performs busy waiting until the scheduled time.

This approach provides accurate timing if there are no other processes using signifi-
cant amounts of CPU time. Otherwise, the timing is non-deterministic, since it can hap-
pen that CCHEF does not awake at the right time because another process is still running.
One option to avoid this problem is to run CCHEF on dedicated machines that are bridged
in the network close to the overt senders/receivers. Another option is to use a real-time
operating system and give CCHEF a higher priority than other userspace processes.

In our testbed we used the latter approach because it requires fewer computers. We
used Linux 2.6.20 with the PREEMPT patch, commonly referred to as LinuxRT [198].
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Figure C.1: Histogram of IPGs of Q3 client-to-server traffic of local client (left) and remote
client (right)
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Figure C.2: Histogram of IPGs of Q3 server-to-client traffic for a server with little auto-
correlation (left) and a server with moderately auto-correlated IPGs (right)

CCHEF ran as real-time process with high priority, all memory was locked to prevent
page faults, and the stack was prefaulted [198].

CCHEF intercepts and re-injects packets using the Netfilter queue framework [248].
CCHEF uses the POSTROUTING hook since this hook is the last hook before a packet is
sent and most of the packet processing has been done already [251]. After re-injecting a
packet CCHEF tries to give up the rest of the current time slice. This allows the higher pri-
ority kernel to immediately process the packet and send it into the network. Furthermore,
we set the kernel’s tick frequency to 10 kHz to minimise the size of time slices. Etsion
et al. showed that even with a tick frequency of 10 kHz there is only a small increase in
context switching overhead for modern CPUs [199].

Without accurate measurement equipment (e.g. DAG cards) the accuracy of the covert
sender cannot be exactly measured. However, we estimate the accuracy as follows. We
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Figure C.3: Histogram of IPGs of Skype traffic measured at the source (left) and 11 hops
away from another source (right)
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Figure C.4: Difference between send times of the covert sender and actual send and receive
times measured with tcpdump for Q3 client-to-server traffic (left) and scp traffic
(right)

injected the covert channel into the timing of Q3 client-to-server packets and scp packets
(rate-limited to 2 Mb/s). CCHEF logged the covert sender’s IPGs, and we ran tcpdump
on both the sender and receiver. Both hosts were connected via a cross-over cable.

Figure C.4 shows the CDFs of the absolute differences between the IPGs of CCHEF
and the IPGs measured with tcpdump at the sender and the receiver. In each graph the
left curve shows the time differences at the sender, which underestimate the noise because
tcpdump sees the packets before they are actually sent into the network. The right curve
shows the time differences at the receiver which overestimate the noise because they also
contain the noise introduced by the receiving process. The noise is bounded by the two
lines (shaded area).

The results show that for UDP packets at a rate of approximately 86 pps the error is
less than 40 µs, despite the covert sender and Q3 client running at 100% CPU load. For
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Figure C.5: Distribution of packet hash values for different types of overt traffic vs. uniform
distribution

scp traffic the error is higher because of the higher packet rate, approximately 164 pps, and
the larger amount of processing needed for TCP packets, but still mainly within 100 µs.

It is possible to further improve the accuracy by running the covert sender and receiver
in kernel space, for example as Linux kernel modules. In previous work we showed that
a kernel-based UDP sender has timing inaccuracies of less than 5 µs even at high packet
rates [252]. Such a solution has potential drawbacks, such as reduced flexibility and
extensibility.

C.3 Hash function output

Figure C.5 shows the CDFs of the values of the two hash functions for the different types
of overt traffic, as well as the theoretical uniform distribution (see Section 4.3.3). The
figure shows that for all applications both hash functions deliver almost perfect uniform
distributions, since all lines are basically on top of each other.

C.4 Error rate and capacity

Here we show additional results that are not shown in Section 4.5. Figure C.6 shows the
error rate for sparse encoding with model-0.75 depending on the standard deviation of the
emulated delay and the maximum transmission rates for each overt traffic type. Figure
C.7 shows the same graphs for sub-band encoding with model-0.75.
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Figure C.6: Error rate (left) and maximum transmission rate (right) for sparse encoding with
model-0.75 (left graph has log y-axis)
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Figure C.7: Error rate (left) and maximum transmission rate (right) for sub-band encoding
with model-0.75 (left graph has log y-axis)

C.5 Covert bit rate over time

Here we analyse the average bit rate of the channel over time. We analyse the raw bit
rate after demodulation, but prior to framing and error correction. We use the data from
the experiments described in Section 4.5. Figure C.8 plots the bit rate over time for Q3
client-to-server traffic and scp traffic, averaged over non-overlapping windows of 500 bits,
for sub-band encoding with 0% and 1% packet loss and sparse encoding with 0% packet
loss (Pareto-distributed network delay with σ = 0.2 ms and model-0.5).

For Q3 client-to-server traffic the bit rate is relatively constant for both encoding
schemes even for 1% packet loss, apart from the initial connection phase and map changes
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Figure C.8: Average bits per second over time for Q3 client-to-server traffic (left) and scp
traffic (right)

occurring every 600 seconds1. Packet reordering has no effect on the burstiness. For Q3
server-to-client and interactive SSH traffic the results are similar and hence not shown.

For scp the bit rate is relatively constant for both encoding schemes as long as there
is no packet loss, but there is more variation than for Q3 and SSH traffic. With packet
loss the overt packet rate and hence the covert bit rate fluctuates greatly for both encoding
schemes. The higher the loss rate is, the greater the burstiness is. We leave a more
comprehensive study as future work.

C.6 Code parameters

Table C.1 shows the code parameters used in the different experiments. We used one set
of codes for Q3, which had the highest error rates, and another set of codes for scp and
SSH, since their error rates were similar. In the latter case the codes were tuned for scp,
which experienced slightly higher bit error rates.

In all experiments with packet loss and reordering the outer marker code had a 40-
bit preamble. For the inner marker code we state the number of bits between markers
followed by the number of marker bits. For the RS code the table states N,K. Note that K

includes the CRC-32 checksum and 8-bit sequence number part of each block. The table
also shows the code rate, which was verified from the experimental data.

1Map changes are masked for sparse encoding due to the much lower bit rate.
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Table C.1: Code parameters
Delay

std. dev.
(ms)

Loss
(%)

Reordering
(%)

Application Inner
Marker

RS Block size
(bytes)

Code rate

0 0 0 Q3 NA 101,91 101 0.85
0 0 0 scp, SSH NA 101,95 101 0.89

0.1 0 0 Q3 NA 101,85 101 0.79
0.1 0 0 scp, SSH NA 101,93 101 0.87
0.2 0 0 Q3 NA 101,61 101 0.55
0.2 0 0 scp, SSH NA 101,75 101 0.69
0.3 0 0 Q3 NA 101,29 101 0.24
0.3 0 0 scp, SSH NA 101,41 101 0.37
0.2 0.1 0 Q3 16/2 96,56 113 0.45
0.2 0.1 0 scp, SSH 16/2 96,68 113 0.60
0.2 0.5 0 Q3 16/2 96,42 113 0.33
0.2 0.5 0 scp,SSH 16/2 96,52 113 0.42
0.2 1.0 0 Q3 16/3 96,28 119 0.19
0.2 1.0 0 scp,SSH 16/3 96,46 119 0.35
0.2 0.1 0.1 Q3 16/2 96,50 113 0.40
0.2 0.1 0.1 scp, SSH 16/2 96,66 113 0.54
0.2 0.1 0.5 Q3 16/2 96,44 113 0.35
0.2 0.1 0.5 scp, SSH 16/2 96,62 113 0.50
0.2 0.1 1.0 Q3 16/2 96,32 113 0.24
0.2 0.1 1.0 scp, SSH 16/2 96,48 113 0.38
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Appendix D
Covert Channels inMultiplayer Games

This appendix contains additional results for the covert channel in multiplayer games
analysed in Chapter 5 and Chapter 7.

D.1 Maximum number of encodable bits

Here we show how the right hand term of equation 5.9 is derived from equation 5.8:

max(|δi (b,Ni)|)
max(|δi (b,Ni)|)+ |∆i|

≤ L . (D.1)

The maximum absolute value for δi given Ni is 2Ni −1 and so it follows:

2Ni −1
2Ni −1+ |∆i|

≤ L

2Ni −1 ≤ L2Ni −L+L |∆i|

2Ni −L2Ni ≤ 1−L+L |∆i|

Ni ≤

⌊︃
log 2

(︃
1+L (|∆i| −1)

1−L

)︃⌋︃
.

D.2 Making Q3 visibility symmetric

The PVS in the map file can be modified to make it symmetric using algorithm D.1. The
processing time is negligible for small maps. For example, making the PVS of the stan-
dard map q3dm1 symmetric takes less than one second on an Intel Core 2 Duo 2.4 GHz
machine. While it would take longer for bigger maps the time would still be very small
compared to the total time needed to build a map [253].

The Q3 server implementation also needs to be modified to make visibility in snap-
shots symmetric. One solution is to compute the visibility based on all clusters a player’s
bounding box touches (see algorithm D.2). If CA and CB are the set of clusters a bound-
ing box around Alice’s and Bob’s player character touches, the server has to check if any

265



APPENDIX D. COVERT CHANNELS IN MULTIPLAYER GAMES

Algorithm D.1 Making the PVS matrix in Q3 map files symmetric

for i in 0...num_of_clusters do
for j in 0 to num_of_clusters do
if bit(i,j) > 0 then
bit(j,i) = 1

Algorithm D.2 Making visibility symmetric in Q3 server (simple solution)

// build snapshot for player p
for e in 0...num_of_entities do
c1 = get_clusters(p)
c2 = get_clusters(e)
for i in 0...c1.size()−1 do
for j in 0...c2.size()−1 do
if PVS[c1[i],c2[j]] > 0 then

add_entity_to_snapshot(e)
break

cluster in CA is visible from any cluster in CB and vice versa. While this solution is simple
to implement, it increases the complexity from O(n) to O

(︁
n2

)︁
.

An improved solution keeps track of the visibility between all players for each snap-
shot by implementing a p× p player visibility matrix (PVM), where p is the maximum
number of players. Each element (n,m) of the matrix is either set to NA (visibility un-
known), to zero (player n cannot see player m) or one (player n can see player m). Before
snapshots are built the matrix is initialised with NA values. Then the server builds the
snapshot for each player using algorithm D.3.

The algorithm builds on four functions: is_player(e) returns true if e is a player,
get_player_num(e) returns the number of a player entity, is_visible(p,e) returns
true if player p can see entity e (existing Q3 function), and add_entity_to_snapshot(e)
adds the entity e to the snapshot for the current player (existing Q3 function).

This improved solution should be faster than the current Q3 server implementation.
The first test (Alice visible to Bob?) is still O(n), but the second test (Bob visible to
Alice?) reduces from O(n) to O(1). Since the maximum number of players is limited to
32, the amount of extra memory needed for the PVM is negligible.

We implemented the simple solution and did not measure any increase in CPU load
on the server for up to three players on a small map (q3dm1).
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Algorithm D.3 Making visibility symmetric in Q3 server

// build snapshot for player p
for e in 0...num_of_entities do
if is_player(e) then
x = PVM[p, get_player_num(e)]
if x = NA then
if is_visible(p, e) then
add_entity_to_snapshot(e)
PVM[get_player_num(e), p] = 1

else
PVM[get_player_num(e), p] = 0

else if x = 1 then
add_entity_to_snapshot(e)

else
// standard procedure
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Appendix E

Temperature-based Covert Channels

This appendix contains additional results for the temperature-based covert channel
analysed in Chapter 6 and Chapter 7.

E.1 Sending jitter and target jitter

We carried out a number of experiments in a LAN to estimate the jitter introduced by the
target, the attacker’s probe sending jitter and the jitter caused by timestamping of probe
responses at the attacker (see Section 6.2).

To estimate the jitter on the target we used the setup shown in Figure E.1, using
the same computers for attacker and target as described in Section 6.4.1. All traffic
between attacker and target was measured via an optical splitter and timestamped by a
high-precision traffic measurement DAG card [197] inside a separate PC. The DAG card
allowed us to very precisely measure the time between each probe from the attacker and
the corresponding response from the target.

Figure E.2 shows the variable part of the time differences between probe packets and
corresponding response packets as measured by the DAG card (RTT jitter). This is the
jitter caused by the target. It is not possible to further separate this into the jitter affecting
the probes and jitter affecting the responses. The jitter is mainly 0–80 µs with a tail
extending up to 120 µs.

Another source of error is the inability of a userspace program to exactly control the
sending of packets. There is a variable delay between the time a userspace program
executes the send() system call and the time the NIC actually sends the packet on the

DAG PC

Attacker Target

Synchr. TCP probing 

DAG

Splitter 

Figure E.1: Experimental setup to measure the timing jitter introduced by the target
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Figure E.2: RTT jitter caused by the target
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Figure E.3: Experimental setup to measure the timing jitter inherent in sending probe packets
and timestamping responses at the attacker

medium. For estimating this error we used the network setup shown in Figure E.3, with
the same attacker and target as before.

The attacker probed the target using synchronised sampling. An optical splitter du-
plicated all traffic on the network between attacker and target and fed a copy of it into
a DAG card inside the attacker, whose own clock chip was synchronised with the host
clock. According to the DAG statistics 99% of the time synchronisation was within ±2
µs for the duration of the experiment.

A histogram of the variable part of the time differences between the execution of the
send() call and reception of the probe by the DAG card is shown in Figure E.4. The send
jitter is mostly in the range of 0–35 µs, but there are very few large values of up to 600 µs.

This experimental setup also allowed us to estimate the jitter between the arrival of re-
sponses and when they are actually timestamped. Figure E.5 shows the variable part of the
time differences between the response packet timestamps generated by the Linux kernel
and the DAG card. The receive jitter is 0–60 µs and looks almost uniformly distributed.

E.2 Network jitter

Figure E.6 shows the RTT/2 jitter measured across the 22-hop Internet path (see Section
6.4.2). Despite the high average RTT of 325 ms, the jitter is relatively small and skewed
towards zero. Figure E.7 shows the RTT/2 jitter measured over the PlanetLab Tor testbed
(see Section 6.4.3). The jitter is considerably higher than in all other experiments.
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Median: 23.13 µµs
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Figure E.4: Probe sending jitter at attacker (x-axis is cut off at 50 µs)
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Figure E.5: Probe response timestamping jitter at attacker

E.3 Noise normality tests

We use the Shapiro-Wilk statistical test of normality to test whether the noise has a Gaus-
sian distribution. This test performed very well when compared against other tests of
normality [254]. Table E.1 shows the statistics for all data and for 96% of the data (2%
outliers removed at each edge). For Intermediate 1 with outliers removed we cannot re-
ject the hypothesis that the data is Normally distributed at 99% significance level. For
Intermediate 2 we cannot draw the same conclusion, as the resulting p-values are too low.

271



APPENDIX E. TEMPERATURE-BASED COVERT CHANNELS

Median: 0.04 ms

RTT jitter / 2 (ms)

D
e

n
s
it
y

0

2

4

6

8

10

12

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Figure E.6: RTT/2 jitter on path across the Internet

Median: 6.06 ms

RTT jitter / 2 (ms)

D
e

n
s
it
y

0.00

0.02

0.04

0.06

0.08

0 50 100 150 200

Figure E.7: RTT/2 jitter over PlanetLab Tor testbed

Table E.1: Shapiro-Wilk test statistics and p-values
Intermed. host Test statistic (W) p-value

Day (100%) 1 0.973 ≪ 1%
Day (96%) 1 0.995 2.6%

Night (100%) 1 0.987 ≪ 1%
Night (96%) 1 0.996 1.5%
Day (100%) 2 0.992 0.05%
Day (96%) 2 0.982 ≪ 1%

Night (100%) 2 0.981 ≪ 1%
Night (96%) 2 0.991 ≪ 1%
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Appendix F

Netem Accuracy

We conducted a number of experiments to verify the accuracy of Netem. Our testbed
consisted of two computers1 connected by a Fast Ethernet switch. Both Linux kernel’s
tick timer frequencies were configured to 10 kHz. We then used Netem to emulate con-
stant RTTs of approximately 25 ms, 75 ms and 125 ms, by setting one-way delays of
12 ms, 37 ms and 62 ms (initial experiments indicated that the actual delay is always a
few hundred microseconds higher than the configured delay). We also used Netem to
emulate packet loss rates of 0.1%, 0.5% and 1.0%.

We used Q3 to generate traffic in both directions. We also ran CCHEF on both hosts
with a special module that does not create a covert channel, but instead for each packet
logs its arrival timestamp and a packet hash, where the hash is computed as described in
Section 4.2.2 and Section 4.3.3. After the experiments we computed the RTTs from the
two series of packet hashes and timestamps using SPP [241]. We also computed the loss
rate based on the packet hashes.

Figure F.1 shows the RTT distributions measured in the experiments. For each RTT
emulated there is a very narrow distribution around a median slightly lower than the de-
sired RTT. The median values of the three distributions are 24.9 ms, 74.9 ms and 124.9 ms.
The standard deviation of each distribution is approximately 0.09 ms. The results demon-
strate that the delay emulation is very accurate, if one takes Netem’s ‘overhead’ into
account when configuring RTTs.

We performed the same experiments with the kernel’s tick timer frequency set to
1 kHz. The resulting RTT distributions are wider and the standard deviations increase
to almost 1 ms. However, the reduced accuracy is still sufficient for the experiments with
the TTL channel and FPSCC. For packet loss the results show that the actual loss rates
are very much identical to the loss rates configured for Netem (see Table F.1).

When emulating delay variation with Netem we verified that packets are not reordered
if a pfifo queue is used. Netem does reorder packets if variable delay is configured and
the default tfifo queue is used. The percentage of reordered packets depends on the inter-
packet times of the network traffic and Netem’s configuration. This is the ‘natural’ way
of emulating packet reordering, but it closely ties reordering to jitter. Reordering can only

1An Intel Celeron 2.4 GHz with 256MB RAM and an Intel Celeron 3.0 GHz with 1GB RAM, both
running Linux 2.6.20.
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Figure F.1: Histograms of different RTTs emulated by Netem

Configured (%) Measured (%)

0.1 0.099
0.5 0.498
1.0 0.999

Table F.1: Measured packet loss rates compared to configured packet loss rates

be increased/decreased by increasing/decreasing the overall jitter. But in our analysis of
inter-packet gap timing channels we wanted to study both effects separately.

Hence we used Netem’s capability of configuring the probability of reordered packets.
In this case Netem delays all packets that are not reordered according to the fixed delay
specified and reordered packets are not delayed. This means the actual reorder rate not
only depends on the configured reorder rate, but also on the inter-packet times of the
traffic and the fixed delay configured. The key difference to the first approach is that now
jitter is only introduced for the reordered packets, but not for the rest. In our experiments
we tuned the fixed delay for each application so that the resulting reordering rates were
relatively similar.
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