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Monogamy inequalities for the Einstein-Podolsky-Rosen paradox and quantum steering
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Monogamy inequalities for the way bipartite Einstein-Podolsky-Rosen (EPR) steering can be distributed among
N systems are derived. One set of inequalities is based on witnesses with two measurement settings, and may be
used to demonstrate correlation of outcomes between two parties, that cannot be shared with more parties. It is
shown that the monogamy for steering is directional. Two parties cannot independently demonstrate steering of a
third system, using the same two-setting steering witness, but it is possible for one party to steer two independent
systems. This result explains the monogamy of two-setting Bell inequality violations and the sensitivity of the
continuous variable (CV) EPR criterion to losses on the steering party. We generalize to m settings. A second type
of monogamy relation gives the quantitative amount of sharing possible, when the number of parties is less than
or equal to m, and takes a form similar to the Coffman-Kundu-Wootters relation for entanglement. The results
enable characterization of the tripartite steering for CV Gaussian systems and qubit Greenberger-Horne-Zeilinger
and W states.
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I. INTRODUCTION

Entanglement is a major resource for quantum communica-
tion and information processing [1]. An important advantage of
quantum communication is the potential for an unprecedented
security [2–5]. In quantum information, the security is based
on properties, such as the no-cloning theorem [6], that
are fundamental to quantum mechanics, but not classical
mechanics.

A property closely connected to the no-cloning theorem is
the lack of shareability of entanglement between a number of
parties. A quantitative formulation for the way entanglement
can be shared among three qubit systems was presented by
Coffman, Kundu, and Wootters (CKW) [7] and represented
an advance in understanding multipartite entanglement. Their
formulation was defined in terms of the concurrence measure
CAB of bipartite entanglement between two qubits A and B [8].
The CKW monogamy inequality is

C2
AB + C2

AC � C2
A{BC}, (1)

where CA{BC} is the concurrence of the bipartition A with
the group {BC}. This relation illustrates that maximum
entanglement can be shared between two parties only.

Despite the importance of monogamy relations for quantum
information, the knowledge of quantitative relations for other
forms of entanglement is so far rather limited. It is known
that the CKW relation can be extended to N qubits [9], and
that a violation of the two-setting Bell inequalities [10] is
completely monogamous [11–13], a property that underpins
the extra “device-independent” security provided by quantum
cryptography using Bell states [3]. Two-party monogamy
does not, however, apply to Bell inequalities involving three
measurement settings per site [14]. There is also a relative
lack of quantitative knowledge about the shareability of
nonlocality in the more complex continuous variable (CV)
systems, although there have been new investigations for
Svetlichny’s nonlocality [15] and much progress has been
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made for the entanglement of CV Gaussian states [16], for
which quantitative monogamy relations have been worked
out [17]. Recent work [18,19] analyzes the reasons for the
difficulty in developing monogamy relations using more
general measures of entanglement, such as entanglement of
formation. In Gaussian CV cryptography [4,20], because Bell
inequalities are not directly violated [21], the monogamy of
other forms of nonlocality is likely to be especially useful.

The objective of this paper is to understand more about
the monogamy associated with the Einstein-Podolsky-Rosen
(EPR) paradox [21–23]. This is the subclass of entanglement
called “quantum steering” [24] that was first formalized as a
distinct type of nonlocality by Wiseman, Jones, and Doherty
[25–30]. Comparatively little is known about the shareability
of this nonlocality, which we refer to as “EPR steering” [31].

Here, we will derive monogamy relations that quantify the
amount of bipartite EPR steering that can be shared by a
number of parties. As might be expected, we find the lack
of shareability is greater than for entanglement. An important
feature of EPR steering monogamy is its directionality. While
entanglement is defined symmetrically with respect to both
parties, this is not true of steering or the EPR paradox [25].
“One-way” steering has been realized [32–34]: that party A

may “steer” another system B does not imply the converse.
This property has implications for the way EPR steering can
be used to achieve secure quantum communication [4]. In this
paper, we identify the directionality associated with steering
monogamy.

Like the CKW result, the relations derived here are
expressed in terms of inequalities. The monogamy relations
are specific to particular EPR steering witnesses. We introduce
two- and three-setting “steering parameters” S

(2)
B|A and S

(3)
B|A,

that involve the variances of Pauli spin matrices, and prove
monogamy relations that apply to three qubits A, B, and C:

S
(2)
B|A + S

(2)
B|C � 2 max

{
1,S2

B|{AC}
}

(2)

and S
(3)
B|A + S

(3)
B|C + S

(3)
B|D � 3 max{1,S2

B|{AC}}, and

S
(3)
B|A + S

(3)
B|C � 2S

(3)
B|{AC]. (3)
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Here, S
(2)
B|A,S

(3)
B|A < 1 are criteria sufficient to demonstrate

an EPR steering of system B, by measurements made on
system A. S(2)

B|A,S
(3)
B|A → 0 implies maximum steering. Similar

results are derived for m-setting steering inequalities. These
relations imply a tight monogamy: steering of a system B

can only be confirmed by m − 1 other parties, using the
same m-setting inequality. The monogamy of Bell inequality
violations is explained because Bell inequalities are also
steering inequalities. Using a graphical representation based
on that of Plesch and Buzek [35], we apply these results to
depict the distribution of bipartite steering associated with the
tripartite Greenberger-Horne-Zeilinger (GHZ) and W states.

More fundamental are monogamy relations based on
criteria for EPR steering that are necessary and sufficient
for detecting steering. Restricting to CV Gaussian systems,
we find that such monogamy relations are possible. EPR
steering of B by A exists iff one can show that a parameter
EB|A involving conditional variances for Bob’s system (given
measurements by Alice) satisfies EB|A < 1 [25,26,36]. This
is the EPR paradox criterion in which “elements of reality”
deduced for Bob’s system show incompatibility between local
realism and the completeness of quantum mechanics [23,36].
For any three parties A, B, and C, we will see that

EB|AEB|C � max
{
1,E2

B|{AC}
}

(4)

and EB|A + EB|C � 2 max{1,E2
B|{AC}}. If steering is shared

between more than two Gaussian sites, then it becomes
directional. Two systems A and C cannot both (Gaussian)
steer a third system B, but we will show by example that the
converse is not true.

A lack of robustness of the EPR criterion to losses
on the steering party, but not on the party being steered,
has been noted in experiments [37,38]. This effect is now
explained in terms of the monogamy relation, and is seen
to be a fundamental one, independent of the mechanism of
generation of the EPR fields, or the way in which losses are
implemented. This very tight form of monogamy comes about
because the witness EB|A is based only on two observables:
position and momentum.

We conclude the paper with a brief discussion. The
steering monogamy inequalities are likely to be useful in
establishing threshold efficiency bounds [39] and one-sided
device-independent quantum communication security [4].

II. MONOGAMY OF TWO-SETTING AND
CV GAUSSIAN STEERING

A. CV EPR steering

Consider the situation of three distinct and separated
systems or parties, labeled A, B, and C. For each system,
quadratures X,P are defined: XA, PA for system A, and
similarly for B and C. We now examine the monogamy result
for the two-observable EPR criterion used to verify the CV
EPR paradox [21–23].

We begin by defining a “steering parameter” that enables
confirmation of the EPR paradox between two systems A and
B [36]. The steering parameter is

EB|A = �infXB|A�infPB|A, (5)

where (�infXB|A)2 is the variance of the conditional distri-
bution for the measurement XB , given a measurement at A.
We normally assume that the measurement at A has been
optimized to minimize the conditional variance value. Here,
X and P are scaled position and momentum quadratures,
so that the Heisenberg relation for system B is given by
�XB�PB � 1. A confirmation of the EPR paradox [36], and
quantum steering [25,26], is given when

EB|A < 1. (6)

This type of inequality is called an “EPR steering” or
“steering” inequality. EPR steering inequalities based on
entropic uncertainty relations have also been derived [40].

Following and summarizing the work of Refs. [25,26,31],
we will use the terminology that measurements of the system
A (of Alice) “steer” another system B (of Bob), if some
conditions are satisfied, that imply the ensemble for B has
been affected by those measurements. This relates closely to
EPR’s notion of “spooky action at a distance,” and steering is
illustrated by an EPR paradox, when Alice’s inferences about
Bob’s system cannot be reconciled for consistency between
local realism premises and the completeness of quantum
mechanics. Steering manifests as a failure of a local hidden
variable (LHV) theory that additionally constrains Bob’s local
hidden variable system to be describable as a quantum state. If
the conditional variances for B are reduced, so that EB|A < 1,
then this implies a directional EPR paradox, whereby the
measurements of A steer the system B. Throughout this paper,
we abbreviate this last phrase, to say that “A steers B,” or “A
EPR steers B.”

Now, we come to the monogamy result for the CV EPR
steering.

Result (1). If A steers B, in such a way that (6) holds, then it
is certain that �infXB|C�infPB|C > 1, i.e., C cannot be shown
to steer B by the EPR criterion. This result is expressed as the
monogamy relation

EB|AEB|C � 1. (7)

The relation has been stated and then proved in a previous
paper [39]. We present the full details here again because the
nature of the proof is central to the results that follow.

Proof. The observer (Alice) at A can make a local
measurement OA to infer a result for an outcome of XB at
B. Denoting the outcomes of Alice’s measurement by Ai ,
we can evaluate the variance of each conditional distribution
P (XB |Ai) and then take the average to define the inference
variance (�infXB|A)2. That is, Alice’s measurement is a
measurement of Bob’s XB, where the uncertainty is given by
�infXB|A. Similarly, she can make a measurement of Bob’s PB ,
with accuracy �infPB|A. Now, observer C (“Charlie”) can also
make inference measurements, with uncertainty �infXB|C and
�infPB|C . Since Alice and Charlie can make the measurements
simultaneously, it is guaranteed by the Heisenberg uncertainty
relation that

�infXB|A�infPB|C � 1. (8)

The relations are ensured because a conditional quantum
density operator ρB|{AiCi } for system B, given the outcomes
Ai and Ci for Alice and Charlie’s measurements, can be
defined, and correctly predicts the results of all measurements.
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FIG. 1. (Color online) Depiction of ways in which bipartite
steering can be shared among three Gaussian CV systems. The
results (a) and (c) also hold for steering detected by two-setting
inequalities. (a) Two parties cannot steer the same system. Here we
depict the monogamy relation EA|BEA|C � 1. (b) The GHZ state has
no bipartite steering between individual parties, but there is two-way
steering between any one party and the group of the other two.
(c) The dual steering by one party of two systems can be realized.
(d) The monogamy relation of (a) prevents the “passing on” of
steering. If A can steer B, and B can steer C, then we know that
A cannot steer C.

Then, the result follows straightforwardly, on using the
Cauchy-Schwarz inequality and the definition of the inference
variances given in Ref. [23]. Similarly, Alice can measure to
infer PB and Charlie can measure to infer XB , and it must also
be true that

�infPB|A�infXB|C � 1. (9)

Hence, it follows that EB|AEB|C � 1. �
The monogamy Result (1) is depicted schematically in

Fig. 1(a) using a generalization of the “entangled-graph”
representation developed by Plesch and Buzek [35]. The rep-
resentation depicts the distribution of bipartite entanglement
in multipartite systems. The circles or nodes represent distinct
physical systems, and a line connecting two systems represents
the bipartite entanglement between them. We generalize the
depiction in the obvious way to denote the bipartite steering
of A by B by an arrow from B pointing toward A. We note
the distinction from the graph-state representation of Hein
et al. [41], in which lines between nodes represent interactions.

CV Gaussian systems are defined as those whereby the
quantum states have a positive Gaussian Wigner function and
the measurements are restricted to be Gaussian [16]. For such
systems, the Result (1) is particularly useful since in this
case the optimized EPR steering inequality (6) is necessary
and sufficient to detect bipartite EPR steering of B by A

[25,26]. (The optimized inequality is that which optimizes
the measurement at A, to minimize the conditional variances.)
Thus, in the Gaussian case, we can make the stronger statement
that a system can be steered by only one other system, i.e., two
distinct systems cannot independently steer the same third
system [Fig. 1(a)]. We will see in Sec. II C that this sort

of monogamy is one-way only. The properties of tripartite
Gaussian steering are therefore directional. Also, we note that
the monogamy inequality (7) can be saturated: EB|A = 1 was
measured by Bowen et al. [37] and Buono et al. [38] for a CV
Gaussian state, with 50% loss on the mode A, which implies
a second mode C satisfying EB|A = EB|C = 1.

B. Monogamy of two-observable EPR steering

The crucial aspect to the proof of the monogamy relation
Result (1) is that the steering inequality involves only two
observables (measurement “settings”) at each site, e.g., posi-
tion and momentum (X and P ). Similar monogamy relations
can therefore be established for other two-observable steering
inequalities.

Let us consider three systems A, B, and C of a fixed
dimension corresponding to a spin J . We define the “steering
parameter”

S
(2)
B|A = ((

�infJ
X
B|A

)2 + (
�infJ

Y
B|A

)2)/
CJ (10)

using the notation explained for (5). Here, JX, J Y , and JZ

are the spin components, and the constant CJ is defined by
the uncertainty relation (�JX)2 + (�JY )2 � CJ [42,43]. EPR
steering of B by A is confirmed if S

(2)
B|A < 1 [44–46]. This in-

equality detects what we will refer to as “two-observable EPR
steering” since the inequality involves only two measurement
settings, JX and J Y , at each site.

Result (2). The monogamy relation

S
(2)
B|A + S

(2)
B|C � 2 (11)

holds. The proof follows as a straightforward extension of the
proofs given for Results (1) and (3) (see below).

The relation has the same consequences for monogamy as
Result (1). If EPR steering of B by A is confirmed by S

(2)
B|A < 1,

then it follows that S
(2)
B|C > 1, i.e., the system C cannot be

shown to steer A by using the same steering inequality.
The case J = 1

2 is especially important since it relates
to the original Bell states on which many experiments and
quantum information protocols are based. In terms of Pauli
spin matrices σX and σY , we find that S

(2)
B|A = (�infσ

X
B|A)2 +

(�infσ
Y
B|A)2. If bipartite EPR steering of B by A is observed

as σ
(2)
B|A = (�infσ

X
B|A)2 + (�infσ

Y
B|A)2 < 1, then we know that

for any third site C, there is no such steering: that is, σ
(2)
B|C =

(�infσ
X
B|C)2 + (�infσ

Y
B|C)2 � 1. The inequality (11) gives us

information about the minimum noise levels for Bob’s qubit
values as inferred by any third “eavesdropper” observer at C,
given that we know the noise levels for Bob’s qubit values as
inferred by Alice at A.

C. Categories of tripartite Gaussian and
two-observable EPR steering

Figures 1 and 2 show possible distributions of bipartite
steering for a tripartite CV Gaussian system [16,17,47]. The
restrictions and possibilities apply also to steering detected
by a two-observable steering inequality. These depictions
are useful because the steering, or lack of steering, for a
specific inequality can give important information about the
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FIG. 2. (Color online) Other configurations for tripartite steering.
Whether (a) and (c) are possible for a Gaussian system is not estab-
lished in this paper, but the monogamy Result (1) immediately tells
us that the configurations of (b) are impossible, for Gaussian systems,
and where steering is detected via two-observable inequalities. The
configurations (d) are likely to be achieved by adding thermal noise
to the single sites.

way correlations or noise inference levels are shared among
three parties.

Before discussing possible bipartite distributions, we recall
several properties of steering [25,26]. First, steering requires
entanglement. We say the EPR steering is “maximum” if the
EPR conditional variances go to zero, i.e., EB|A, S(2)

B|A → 0. For
some pure bipartite systems, the EPR steering can achieve the
maximum value and this corresponds also to the “strongest”
entanglement, as measured either by concurrence [8] or
logarithmic negativity [48]. This is true for the two-mode
squeezed state (EB|A→ 0) [49] and for the qubit Bell-Bohm
EPR state (S(2)

B|A → 0) [10,45]. As not all entanglement will
show EPR steering, two systems can be entangled even if there
is no EPR steering between them.

The possibilities for steering shared between three systems
are therefore limited by the possibilities for entanglement.
Two distinct types of pure tripartite entangled qubit states
exist [50]. These are the Greenberger-Horne-Zeilinger (GHZ)
[51] and W states. Similar states have been defined for the
CV case [52–54]. Here, we discuss the bipartite distribution
for specific CV Gaussian states only, leaving the qubit case
until Sec. VI, since for qubits it is important to also consider
steering detected by three-observable inequalities.

The tripartite GHZ state allows no pairwise bipartite
entanglement between any of the three systems A, B, and
C [7]. The same will be true for the EPR steering of a
GHZ state (i.e., EB|A = EB|C � 1) since steering is a special
sort of entanglement. The GHZ state, however, has bipartite
entanglement between A and the composite system B − C.
A tripartite CV GHZ state is a simultaneous eigenstate
of Xi − Xj (i,j = A,B,C, i �= j ) and PA + PB + PC with
eigenvalues 0 [52]. Party A can choose to predict either of two
noncommuting observables (a single position or the sum of the
momenta) of the combined system BC, and the parties BC can

C
BS2

BS1
η

A

B

B’

FIG. 3. (Color online) Schematic of the generation and EPR
steering of the CV GHZ state, which shows the tripartite steering
of Fig. 1(c). The strong bipartite steering and entanglement of
the two-mode squeezed state can be generated by interfering two
squeezed modes at a beam splitter (BS1).

choose to predict either the position or momentum of system
A [39,55]. Thus, there is a (maximum) “two-way” steering,
i.e., the system A can steer the composite system BC (e.g.,
EA|{BC} = 0) and vice versa (e.g., E{BC}|A = 0). This situation
is depicted in Figs. 1(b) and 3.

Bipartite steering between two individual sites is possible
for other sorts of tripartite CV Gaussian states. However, we
deduce that this bipartite steering, in order to be consistent with
the monogamy relation Result (1), must be “one-way” only.
We find that the outward “dual” steering, where A steers both
B and C, is possible [Fig. 1(c)]. This type of tripartite steering
can be created between modes A, B, C as in Fig. 4. We argue as
follows. The final bipartite steering between the pair A and B

(and similarly between A and C) is equivalent to that between
a mode A with no loss and a second mode B that has been

C

BS2

BS1
η

A

B

B’

FIG. 4. Schematic of the generation of the “dual” EPR steering
as depicted in Fig. 2(c). Strong bipartite two-way EPR steering is
first created between A and B ′. The tripartite steering of Fig. 2(c) is
generated using the second BS2 with vacuum input and efficiency of
transmission η = 0.5.
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subject to 50% loss. That the EPR paradox (and hence steering)
of the lossy system B by A remains possible was summarized
in Refs. [23,32]. The systems B and C are symmetric, and
hence both systems B and C can be steered by A.

The monogamy rule (Result (1)) negates the possibility of
the steering “the other way:” that the lossy Gaussian system
B (of Fig. 4) steers the “lossless” Gaussian system A. The
monogamy rule tells us that steering of A by both B and C is
ruled out. With 50% loss on the original B ′ channel, there will
be symmetry of the correlation between A and C, and A and
B, in which case if B can steer A, then so can C. This would
lead to a contradiction of Result (1). That the EPR paradox
cannot be demonstrated with 50% loss on the steering channel
was noted experimentally [37,38].

There are some open questions. The monogamy Result (1)
tells us that if A can steer B, and B can steer C, then A cannot
steer C, so that two-observable steering cannot be “passed on”
[Figs. 1(d) and 2(a)]. It is left unaddressed, however, whether
the scenario of Figs. 2(a) and 2(c) is possible, although for
qubits, the state discussed by Plesch and Buzek [35] will give
this possibility. The arrangements of Fig. 2(d) are not ruled
out, and are likely to be realized by adding noise to specific
sites, based on results that indicate steering of a system B by
another (A) is lost if thermal noise is added to B [56]. Another
unaddressed question concerns how the one-way dual steering
of Fig. 1(c) can be shared. We might expect that “once split”
the degree of steering would be reduced, in accordance with a
monogamy rule like that of CKW.

III. MULTIOBSERVABLE QUBIT AND QUDIT STEERING
MONOGAMY RELATIONS

More monogamy relations may be derived for EPR steering
inequalities that involve m observables, i.e., m measurement
settings, at each site. We show that no more than m − 1
independent parties can demonstrate “steering” of a system
B, using the same m-observable steering inequality.

A. Bohm’s EPR paradox monogamy

We consider a bipartite EPR steering inequality that
involves three observables: JX,J Y ,JZ . We define the steering
parameter

S
(3)
B|A = ((

�infJ
X
B|A

)2 + (
�infJ

Y
B|A

)2 + (
�infJ

Z
B|A

)2)/
J. (12)

EPR steering of system A by B is obtained when S
(3)
B|A < 1,

which confirms Bohm’s EPR paradox for spins when J =
1
2 [31,45]. This steering inequality was derived from the
uncertainty relation (�JX)2 + (�JY )2 + (�JZ)2 � J that
applies to all quantum states of fixed spin J , i.e., to qudit
systems of dimension d = 2J + 1 [43]. For two qubit systems,
S

(3)
B|A = [(�infσ

X
B|A)2 + (�infσ

Y
B|A)2 + (�infσ

Z
B|A)2

]
/2.

Result (3). We can apply the method of proof of Result (1)
to derive the monogamy steering relation

S
(3)
B|A + S

(3)
B|C + S

(3)
B|D � 3. (13)

Proof. The observer at A (Alice) can make the mea-
surement that gives her the value of Bob’s observable JX

B

with uncertainty �infJ
X
B . The observer at C (Charlie) can

make the measurement that gives the result for Bob’s J Y
B

with uncertainty �infJ
Y
B , and the observer at D can make

the measurement that gives the result for Bob’s JZ
B with

uncertainty �infJ
Z
B . Since the three observers can measure

simultaneously, we see that the quantum uncertainty relations
for spins (as given above) constrains the variances to satisfy

(
�infJ

X
B|A

)2 + (
�infJ

Y
B|C

)2 + (
�infJ

Z
B|D

)2 � J. (14)

Similarly,
(
�infJ

Y
B|A

)2 + (
�infJ

Z
B|C

)2 + (
�infJ

X
B|D

)2 � J (15)

and also(
�infJ

Z
B|A

)2 + (
�infJ

X
B|C

)2 + (
�infJ

Y
B|D

)2 � J. (16)

We then see that the monogamy relation (13) follows, upon
adding the three inequalities. �

The monogamy Result (3) does not exclude two observers
from being able to steer B. However, the relation certainly
prevents all three observers from being able to demonstrate
steering of the same system B via the violation of the
three-observable steering inequalities (i.e. we cannot attain
S

(3)
B|A < 1, S(3)

B|C < 1 and S
(3)
B|D < 1). We can extend the proof of

Result (3) to derive similar results involving m-observable
steering inequalities.

B. Steering inequalities with m observables

Steering inequalities for two qubit systems have been
derived and analyzed in Refs. [27–31]. The multiobservable
steering inequalities derived by Saunders et al. [27] and Bennet
et al. [28] have been used in experiments that confirm steering
without fair sampling assumptions [28–30]. Expressed in
terms of correlation rather than as a noise reduction, these
steering inequalities, similar to Bell inequalities, take the
general form S̃

(m)
B|A � 1, where

S̃
(m)
B|A = 1

Cm

m∑
j=1

cj

〈
σ

j

Bσ
pj

A

〉
. (17)

Here, σ
pj

A , σ
j

B is the Pauli spin component at angle θpj
, θj

for system A/B respectively (where pj is a function of j ),
|cj | = 1, Cm is a constant, and m is the number of measurement
settings at each site. Steering is obtained when S̃

(m)
B|A > 1.

Result (4). The two-observable monogamy relation is
S̃

(2)
B|A + S̃

(2)
B|C � 2, which generalizes to

m∑
k=1

S̃
(m)
B|AK

� m, (18)

where the different parties (distinct from B) are labeled Ak .
The result also applies to the two-observable Bell-Clauser-
Horne-Shimony-Holt (CHSH) inequality

S̃Bell
B|A = 〈

σX
B σX′

A

〉 − 〈
σY

B σY ′
A

〉 + 〈
σX

B σY ′
A

〉 + 〈
σY

B σX′
A

〉
� 2

which is also an EPR steering inequality [25]. EPR steering
is observed when S̃Bell

B|A > 2, and the monogamy relation is
S̃Bell

B|A + S̃Bell
B|C � 4.

Proof. To prove (18), we recall that steering is a failure of
a special type of separable model, called a Local Hidden State
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(LHS) model [25,26]. For any LHS model,

〈
σX

A σY
B

〉 =
∫

ρ(λ)
〈
σX

A

〉
λ

〈
σY

B

〉
λ
dλ, (19)

where 〈σX/Y

A/B 〉λ is the predicted average of the measurement

σ
X/Y

A/B for the local state λ, and the local state for the system
B is to be consistent with a local quantum state (LQS). If the
LHS model is valid, the steering parameter can be written as

S̃
(m)
B|A =

∫
ρ(λ)S̃(m)

B|A(λ)dλ, (20)

where S̃
(m)
B|A(λ) = 1

Cm
�m

j=1cj 〈σ j

B〉λ〈σpj

A 〉λ. The steering inequal-

ity S̃
(m)
B|A � 1 follows from this assumption. A similar result

holds for the Bell-CHSH inequality.
Consider an experiment where the m parties A1, . . . Ak, . . .

measure simultaneously σ
p1
A1

, . . . σ
pk

Ak
, . . . respectively, and the

party at B measures σ
j

B . We denote the outcomes of the
measurements by the symbols σ

pk

Ak
but note they are in fact

numbers, and will be identified as a “hidden” variable set
{λ1, . . . ,λm} ≡ {σp1

A1
, . . . ,σ

pm

Am
}. The state at B conditioned on

these outcomes is definable by a quantum density matrix ρB|λ,
and has an expectation value for σ

j

B which we symbolize by
〈σ j

B |{σpk

Ak
}〉. The linear combination �m

k=1S̃
(m)
B|Ak

can be written
in the form of an LHS model, where the probability ρ(λ) is
established as the probability P of obtaining the outcomes
{σpk

Ak
} of the simultaneous measurements. Explicitly, we can

write
m∑

j=1

cj

〈
σ

j

Bσ
pj

Aj

〉 =
∑

j

∑
σ

pk
Ak

P
({

σ
pk

Ak

})
cj

〈
σ

j

B

∣∣{σpk

Ak

}〉
σ

pj

Aj
, (21)

which becomes
m∑

j=1

cj

〈
σ

j

Bσ
pj

Aj

〉 =
∑

j

cj

∫
ρ(λ)

〈
σ

j

B

〉
λ

〈
σ

pj

Aj

〉
λ
dλ, (22)

where we see that the moments 〈σ j

B〉λ are those of the quantum
state ρB|λ, and that 〈σpj

Aj
〉λ = σ

pj

Aj
= λj . The last line satisfies

the LHS model (20) and hence must be less than or equal to
Cm. This is true regardless of the choice of pj . The �m

k=1S̃
(m)
B|Ak

contains m groups of m terms like (22), but where different
choices of simultaneous measurements are used for a given j .
In this way, the result follows.

To prove the Bell-CHSH result, we consider an experiment
where the parties at A and C measure simultaneously σX′

and
σY ′

, and the party at B measures σX or σY . We denote the
outcomes of the measurements at A and C by the symbols σX′

A

and σY ′
C but note they are in fact numbers, and will be identified

as a “hidden” variable set {λ} ≡ {λ1,λ2} ≡ {σX′
A ,σY ′

C }. The
state at B conditioned on these outcomes is definable by a
quantum density matrix ρB|λ, and has moments which we once
again denote by 〈σX

B |σX′
A ,σY ′

C 〉 and 〈σY
B |σX′

A ,σY ′
C 〉 (we drop the

parentheses for convenience of notation). Now, we see that the
linear combination S̃

(Bell)
B|A + S̃

(Bell)
B|C , namely

〈
σX

B σX′
A

〉 + 〈
σX

B σX′
C

〉 + 〈
σY

B σX′
A

〉 + 〈
σY

B σX′
C

〉
+ 〈

σX
B σY ′

A

〉 + 〈
σX

B σY ′
C

〉 − 〈
σY

B σY ′
A

〉 − 〈
σY

B σY ′
C

〉
,

can be written consistent with a LHS model since the
probability ρ(λ) can be established as the probability of
obtaining the outcomes σX′

A and σY ′
C of the simultaneous

measurements. Explicitly, we can write〈
σX

B σX′
A

〉 + 〈
σX

B σY ′
C

〉
=

∑
σX′

A ,σY ′
C

P
(
σX′

A ,σY ′
C

){〈
σX

B

∣∣σX′
A ,σY ′

C

〉
σX′

A + 〈
σX

B

∣∣σX′
A ,σY ′

C

〉
σY ′

C

}
,

which takes the form〈
σX

B σX′
A

〉 + 〈
σX

B σY ′
C

〉

=
∫

ρ(λ)
{〈

σX
B

〉
λ

〈
σX′

A

〉
λ
+ 〈

σX
B

〉
λ

〈
σY ′

C

〉
λ

}
dλ,

and similarly〈
σY

B σX′
A

〉 − 〈
σY

B σY ′
C

〉

=
∫

ρ(λ)
{〈

σY
B

〉
λ

〈
σX′

A

〉
λ
− 〈

σY
B

〉
λ

〈
σY ′

C

〉
λ

}
dλ, (23)

where we see that the moments 〈σX
B 〉λ, 〈σY

B 〉λ are those of
the quantum state ρB|λ, and 〈σX′

A 〉λ = σX′
A = λ1 and 〈σY ′

C 〉λ =
σY ′

C = λ2. In this way, we can write
〈
σX

B σX′
A

〉 + 〈
σX

B σY ′
C

〉 + 〈
σY

B σX′
A

〉 − 〈
σY

B σY ′
C

〉

=
∫

ρ(λ)
{〈σX

B

〉
λ

〈
σX′

A

〉
λ
+ 〈

σX
B

〉
λ

〈
σY ′

C

〉
λ

+ 〈
σY

B

〉
λ

〈
σX′

A

〉
λ
− 〈

σY
B

〉
λ

〈
σY ′

C

〉
λ

}
dλ

=
∫

ρ(λ1,λ2)
{〈

σX
B

〉
λ
λ1 + 〈

σX
B

〉
λ
λ2

+ 〈
σY

B

〉
λ
λ1 − 〈

σY
B

〉
λ
λ2 }dλ. (24)

The last line satisfies the LHS model (20), on letting 〈σX′
A 〉λ =

λ1 and 〈σY ′
C 〉λ = λ2, and hence must be less than or equal to 1.

By the same argument, we can show 〈σX
B σY ′

A 〉 + 〈σX
B σX′

C 〉 −
〈σY

B σY ′
A 〉 + 〈σY

B σX′
C 〉 � 1. Hence, S̃

(Bell)
B|A + S̃

(Bell)
B|C � 4. �

C. Monogamy of steering using Bell–CHSH moments

Two useful EPR steering inequalities that apply to the Bell–
Clauser-Horne-Shimony-Holt (CHSH) state and experiment
are 〈

σX
B σX′

A

〉 − 〈
σY

B σY ′
A

〉
�

√
2 (25)

and 〈σX
B σY ′

A 〉 + 〈σY
B σX′

A 〉 �
√

2 [27,31,46]. If either of these
inequalities is violated, steering is confirmed. Result (4) allows
us to immediately write monogamy relations associated with
these steering inequalities:

〈
σX

B σX′
A

〉 − 〈
σY

B σY ′
A

〉 + 〈
σX

B σX′
C

〉 − 〈
σY

B σY ′
C

〉
� 2

√
2 (26)

and 〈σX
B σY ′

A 〉 + 〈σY
B σX′

A 〉 + 〈σX
B σY ′

C 〉 + 〈σY
B σX′

C 〉 � 2
√

2.

IV. CHSH–BELL NONLOCALITY MONOGAMY

Since the Bell inequalities are also steering inequalities,
the monogamy of steering implies the monogamy of the two-
setting CHSH–Bell inequalities. The CHSH–Bell inequalities
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are

S̃Bell
B|A = 〈

σX
B σX′

A

〉 − 〈
σY

B σY ′
A

〉 + 〈
σX

B σY ′
A

〉 + 〈
σY

B σX′
A

〉
� 2. (27)

Any Bell inequality is also an EPR steering inequality [25].
Using Result (4), we can therefore deduce the monogamy
relation for the CHSH–Bell inequality

S̃Bell
B|A + S̃Bell

B|C � 4. (28)

The symmetry of the Bell-CHSH inequalities implies that in
an experiment (where there is a fixed choice of measurement
settings at each location) S̃Bell

B|A > 2 is equivalent to S̃Bell
A|B > 2.

That is, as indeed must be true generally given the definition
of Local Hidden Variable theories [25], the violation of a
Bell inequality implies “two-way” steering. The monogamy
relations S̃Bell

A|B + S̃Bell
A|C � 4 and S̃Bell

C|A + S̃Bell
C|B � 4 also hold. If

two parties A-B can violate the Bell–CHSH inequality, then
the pairs A-C, and C-B cannot.

This result for the monogamy of Bell-CHSH violations is
not new [11–13]. What we have discovered from our analysis is
that the monogamy follows as a result of steering monogamy.
All two-observable (setting) steering inequalities possess one-
way monogamy. Since the Bell–CHSH violations imply two-
way steering, this is enough to explain Bell–CHSH monogamy.

Our results explain the shareability, with respect to three
sites, of the three-observable Bell inequality violation of
Collins and Gisin [14]. Being three-observable steering in-
equalities, we can expect, however, using Result (4), that these
violations cannot be shared among four sites.

V. SHARING OF BIPARTITE STEERING

We have seen that a very tight monogamy arises for the
correlations of a steering witness when the number of parties
equals or exceeds m + 1, where m is the number of observables
that need to be measured at each site. Now, we examine the
constraints on the distribution of bipartite steering, when the
number of systems is less than m + 1.

In this section, we therefore derive relations for steering
monogamy that are similar to the CKW inequalities, for
particular witnesses. We quantify how the “total amount of
steering” is shared among the subgroups. Similar to the result
for sharing of entanglement with qubits, we find that the
strongest steering exists only when all the steering is shared
between two parties. Once steering is distributed over a series
of systems, the pairwise steering will diminish. In this paper,
we prove such a rule for steering in one direction only.

A. CV bipartite sharing

We begin with the CV EPR steering relation (5). Given the
definition of the steering parameter EB|A, it must be true that

EB|{AC} � EB|A. (29)

This simple result follows because EB|A is the lowest variance
product possible that arises from the best inference of Bob’s
XB or PB by the group A of Alice. Alice can use any local
observable, defined as a measurement performed on the system
A. The inference of Bob’s measurement by the group AC,
which includes both A and C, must be at least as good as that of

A alone since the observables of system A are a subset of those
of the combined system AC. The steering of B by a combined
group cannot be less effective than that of a subset. It is also true
that EB|{AC} � EB|C . On multiplying the two inequalities to-
gether, we can easily derive several new monogamy relations.

Result (5). For the three systems A, B, and C, it follows
that

EB|AEB|C � E2
B|{AC}. (30)

We can express the product relation in terms of a sum relation,
similar to CKW, by using the simple identity x2 + y2 � 2xy.

Result (6). It is also true that

EB|A + EB|C � 2EB|{AC}. (31)

This follows since we can let x = √
EB|A and y = √

EB|C , and
use that EB|{AC} �

√
EB|A

√
EB|C . Since the maximal steering

is defined when EB|A = 0, and EB|A = 1 is the threshold for
steering, the direction of the inequality is reversed as compared
to that for the CKW relation. We note also that we could choose
x = EB|A and y = EB|C from which we derive the monogamy
result

E2
B|A + E2

B|C � 2E2
B|{AC}. (32)

The relations (30)–(32) express a type of conservation law
for steering. If there is steering of B by a group AC that has
components A and C, so that EB|{AC} < 1, then the steering is
shared among the components. The individual steering of B

by A, or B by C, is reduced and bounded by the monogamy
relations.

If the property (29) is specified as a condition for a
witness for EPR steering, then the relation holds for all such
witnesses. The monogamy relations (30) and (31) would then
become fundamental results for steering monogamy, which
are nonspecific to a particular steering witness or uncertainty
relation.

The monogamy relation of Result (1) is stronger than Result
(5) when steering is present since steering requires EB|A < 1.
We thus write the monogamy relation for the CV EPR witness
(5) as

EB|AEB|C � max
{
1,E2

B|{AC}
}
. (33)

One could test this relation experimentally by adding noise
to mode B so that EB|{AC} >1. We have not demonstrated
saturation of the inequality, except where EB|{AC} = 1, which
was discussed in Sec. II.

B. Qubits and qudits

The qubit case is more interesting. Following the same
approach, we can deduce that S

(2)
B|A � S

(2)
B|{AC} and S

(2)
B|C �

S
(2)
B|{AC}, which implies

S
(2)
B|A + S

(2)
B|C � max

{
2,2S

(2)
B|{AC}

}
(34)

and similarly

S
(3)
B|A + S

(3)
B|C + S

(3)
B|D � max

{
3,3S

(3)
B|{ACD}

}
. (35)

Also,

S
(3)
B|A + S

(3)
B|C � 2S

(3)
B|{AC}. (36)
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The relation (36) for sharing of steering is significant for qubit
systems since it will apply to limit the steering detected using
three-observable steering inequalities, for tripartite systems
(here, the number of sites is less than m + 1). This relation
resembles the CKW relation for entanglement. We use the
relation (36) in the next section to derive the steering properties
of the tripartite qubit W state.

VI. STEERING MONOGAMY OF TRIPARTITE
GHZ AND W STATES

We are now in a position to analyze the distribution of
bipartite steering for the tripartite qubit GHZ and W states.
Consider the GHZ state for three-qubit (spin- 1

2 ) systems:

|ψ〉 = 1√
2
{|↑〉A|↑〉B |↑〉C − |↓〉A|↓〉B |↓〉C}. (37)

The spins can be measured for each system by measurements
performed by Alice, Bob, and Charlie, respectively. By
selecting appropriate measurements, any two parties can
predict precisely the value of any spin component (JX, J Y ,
or JZ) of the remaining spin system [51]. It was explained in
Refs. [31,39] how this implies the two- and three-observable
steering of any one party (e.g., B) by the remaining group
(e.g., AC), i.e., S

(3)
B|{AC} = S

(2)
B|{AC} = 0. It is also true that

the measurement of the single spin system B allows perfect
inference of the orthogonal spin components of the collective
system AC. This implies a Bohm’s EPR paradox and hence
steering since two spin components cannot both be specified
simultaneously in a quantum state description [22,31,46]. Such
two-way collective EPR steering for the GHZ state is depicted
in Fig. 5. The bipartite steering between the individual systems
is evaluated, by tracing over one system, to obtain the reduced
quantum state of the other two. As is well known [7,35,50], the

B
A

(a) (b)

(c)

(2)

(2)

(2)

(3)

(3)

(3)

C

(d)

(3)

(2)

FIG. 5. (Color online) Composition of bipartite EPR steering for
tripartite qubit W and GHZ states. (a) No bipartite EPR steering can
be detected for the W state using two-setting inequalities. Bipartite
entanglement exists, as illustrated by the dashed lines. (b) The GHZ
state shows no bipartite steering. Collective steering of one site by the
group of two can be detected using three- and two-setting inequalities.
(c) Bipartite two-way EPR steering exists for the W state, and can be
detected by the three-setting inequality.

reduced system is a mixture of product states, and is therefore
not entangled. Hence, there can be no bipartite steering.

The W state [50]

|ψ〉 = 1√
3
{|↑〉A|↓〉B |↓〉C + |↓〉A|↑〉B |↓〉C + |↓〉A|↓〉B |↑〉C}

(38)

gives a different sort of steering entanglement. It can be shown
that there is steering of B by the group AC, but the steering
is reduced so that 0 < S

(3)
B|{AC} < 1 [39]. The reduced state for

BA after tracing over C is

ρAB = 1
3 {2|ψ〉〈ψ | + |↓↓〉〈↓↓|}, (39)

where |ψ〉 = (|↑↓〉 + |↓↑〉)/√2 (we use the shortened no-
tation |↑↑〉 ≡ |↑〉A|↑〉B). Conditional variances for Alice
inferring Bob’s results of measurement of spin are calculated
in the Appendix. If Alice measures σA

Z , then the average
conditional variance is (�σZ

B|A)2 = 2
3 . If she measures either

σX
A or σY

A , then, respectively, (�σX
B|A)2 = 5

9 and (�σY
B|A)2 = 5

9 .
Although no steering can be deduced from the two-observable
inequalities of Sec. II B, the values are enough to confirm
three-observable bipartite steering since (using the expression
from Sec. III A) S

(3)
B|A � 8

9 < 1. From the symmetry of the W

state, we can deduce that this steering must be two way (Fig. 5).
We note that the values are consistent with the monogamy
relation (36) [S(3)

B|A + S
(3)
B|C � S

(3)
B|{AC}] that applies in

this case.
The two-observable steering behavior is different. Here, the

stricter monogamy inequality (34) applies: S
(2)
B|A + S

(2)
B|C � 2.

For the W state, we deduce that nosteering is detectable
via two-observable inequalities. The W state has complete
symmetry with respect to the three sites. Hence, if there is
steering of B by A, then there must be steering of B by
C, which we have seen is impossible for two-observable
inequalities (Results (2) and (4)).

VII. DISCUSSION AND CONCLUSION

The monogamy inequalities for EPR steering are likely to be
useful. For example, in order to observe EPR steering with two-
setting inequalities, we understand why it is necessary for the
steering party to have greater than 50% efficiency for detection
of data [37,38]. Otherwise, an eavesdropper could detect the
steering also, which is forbidden by the two-setting monogamy
relation. The argument extends to the m-setting inequalities,
where the bound for efficiency η is η > 1/m [28,39].

Monogamy relations give a simple way to understand
security in quantum communication. If it can be shown that
A steers B via a two-observable inequality, so that EB|A or
S

(2)
B|A < 1, then it is guaranteed that for a third (eavesdropper)

observer C, EB|A or S
(2)
B|A � 1. Where the steering witness is

directly related to the variance of the conditional inference
for Bob’s values of qubits or amplitudes, given Alice’s
measurements, the monogamy relations quantify the minimum
noise levels for an eavesdropper to infer Bob’s values. This
aids our understanding of QKD schemes based on a shared
quadrature amplitude value or a shared qubit value.

The new feature associated with quantum steering is
the potential to implement one-sided device-independent
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cryptographic security [4,25]. The noise levels for the eaves-
dropper are quantified based on the uncertainty relation only,
and do not depend on the details of a particular protocol.
The device-independent security is one way since it is Alice’s
inference of Bob’s amplitudes or spin values that are secured
by the steering monogamy relations.

The monogamy with respect to steering witnesses has
explained the monogamy of violations of Bell inequalities. Bell
monogamy arises because Bell inequalities are also steering
inequalities. As such, the degree of monogamy will depend on
the number of observables (settings) of the Bell inequality.

Finally, the results presented here have enabled a char-
acterization of the bipartite sharing for the tripartite CV
Gaussian states, and for qubit GHZ and W states, and several
experimental tests and realizations have been proposed. Open
questions remain. For example, the monogamy results given in
this paper give a quantification of how the steering of a single
system by a group is shared, but the nature of the reverse
monogamy has not been examined.
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APPENDIX

From (39), if Alice measures σA
Z , then the average condi-

tional variance is(
�σZ

B|A
)2 =

∑
i

P
(
σZ

A = i
)[

�
(
σZ

B

∣∣σZ
A

)]2

= 1

3
× 0 + 2

3
× 1 = 2

3
.

The joint probabilities for measurement are as follows: 1
3 for

both Alice and Bob with spins down; 1
3 for Alice’s spin down

and Bob’s up; and 1
3 for Alice’s spin up and Bob’s down.

If Alice measures spin +1, then Bob’s state is |↓〉 and the
conditional variance is 0. If Alice measures −1, then Bob’s
spin is up and down with probability 1

2 , and the conditional
variance is 1. We can rewrite in the basis of spin X:

ρAB = 1
3 {2|ψX〉〈ψX| + |ψmX〉〈ψmX|}.

Here, |ψX〉 = (|↑↑〉 − |↓↓〉)/√2 and |ψmX〉 = 1
2 {|↑↑〉 +

|↓↓〉 − |↑↓〉 − |↓↑〉. If Alice measures σX
A spin +1 (with

probability 1
2 ), then the probability is 5

6 for Bob’s up and 1
6

down, for which the mean is 2
3 and the conditional variance

is 1 − 4
9 = 5

9 . The same variance is obtained for outcome
−1. Thus, (�σX

B|A)2 = 5
9 . Rewriting in the basis of Y , we

obtain the same conditional variance (�σY
B|A)2 = 5

9 as for
spin X.
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