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Abstract

Today’s enterprise software systems consist of many inter-connected
software components and services, to support the enterprises’ essential
business operations.The testing of a particular component service (for
its initial introduction or upgrade) requires access to other component
services that the component under test depends on, to ensure the entire
system works properly. Due to difficulties in achieving such access (such
as availability and cost), traditional testing methods often use stubs,
mock objects and/or virtual machines to achieve a limited level of access,
sacrificing accuracy and scalability. In recent years, service virtualization
has become an alternative and more effective solution to provide a more
realistic environment for comprehensive testing.

Service virtualization enables the testing of a component service in a
highly interconnected enterprise system by using “virtual” services, i.e.,
executable models that emulate the dependent services in a realistic man-
ner. A number of techniques have been proposed for creating such exe-
cutable service models automatically by analyzing the interaction traces
between the dependent services and other components of the system.
These existing techniques have been proposed for stateless services, and
the creation of service models for stateful services is still unexplored,
severely limiting the applicability of the service virtualization approach.

The main objective of this thesis is to develop techniques for deriving
executable models for stateful services from their interaction traces by
extracting and using the relevant contextual and dependency information
in the interaction messages. To be able to identify the message fields and
their relationships, we first need to identify the types and formats of the
various messages in the service interaction traces. As such, our approach
focuses on three key research issues: 1) message type identification and
format extraction for request messages; 2) message type identification
and format extraction for response messages, which have different chal-
lenges from request messages; 3) inference of service behavior to capture
the message information and relationships necessary to generate appro-
priate responses for service requests that are dependent on the service
state at the time.

Our first research issue concerns the identification of the types and
formats of request messages. By aligning the stable message fields across
the request messages and analyzing the fields’ occurrence rates, we are
able to identify the type field of the request messages, and classify them
into type-specific clusters. Then, the format for each type of messages
is extracted by identifying the recurring (key)word pattern across all
messages in each of the message clusters.

The second research issue focuses on identifying the types and for-
mats of response messages. Different from request messages, response



messages often do not have a distinctive type field, and there may be dif-
ferent types of response messages for a given request message. As such,
a different clustering technique is developed to classify the response mes-
sages into type-specific clusters by identifying the co-occurrence of com-
mon message field patterns across the messages. Then, the format for
each type or cluster of response messages is extracted by identifying the
common (key)words over the messages in the cluster, excluding their
repetitions in individual messages so as to accommodate the fact that
response messages often contain repetitive payload entries.

After identifying the types and formats of request and response mes-
sages, the third research issue concerns the discovery of the behaviour
models for stateful information services, and their use in generating re-
sponse messages for any request messages. It first extracts a general
request-response message protocol model (in the form of a finite state
machine) by identifying and merging (generalizing) information record-
specific message sequences from the given message traces. Then, it iden-
tifies the general relationships between/across message payload fields by
analyzing their recurrences in the message traces. Finally, the general
protocol model and payload relationships are used to instantiate a spe-
cific service model for each information record involved at runtime, to
generate response messages (with appropriate formats and payload fields)
for any incoming request messages concerning that record.

Our approach and techniques are evaluated on message traces col-
lected from a range of real-world software services and systems. The eval-
uation results have shown that our approach has achieved significant im-
provements in both effectiveness (accuracy) and efficiency (performance)
over existing techniques. This covers the identification of message types
and formats, derivation of the service behaviour model (behavioural de-
pendencies between messages and between message payload fields), and
the generation of response messages using the behaviour model, achiev-
ing a level of realistic emulation of stateful service behaviour not seen to
date.
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Chapter 1

Introduction

With today’s technology, enterprise software systems are highly connected with
many heterogeneous software components and services to support complex business
processes and to meet the customers’ growing requirements. Such an enterprise
system needs to be tested before deployment to ensure its quality. The testing of
such interconnected systems requires access to the connected components or services.
But, access to these dependent services at the time of system testing is limited
or even impossible due to the cost, availability or security concerns [2]. Several
techniques have been proposed to facilitate the testing of such enterprise systems by
simulating or mocking the behavior of the connected services. Stubs are generated
to perform some basic functionality of the remote systems [3], while mock objects [4]
and fake [5] provide support for testing by mimicking the real objects. Furthermore,
virtual machines [6, 7] are used to provide runtime environments by replicating the
physical devices for deploying the dependent services. However, these traditional
techniques are unable to provide a scalable and realistic testing environment for
enterprise systems [8]. In contrast, service virtualization simulates the behavior
of the dependent services and provide an alternative approach to providing proper
testing environments for the system under test (SUT).

Service virtualization involves the creation and deployment of “service models”
that emulate the specific behavior of the dependent services, which is required to
exercise the SUT. A service model stands in for a dependent service by listening
to requests from the SUT and returning appropriate responses for the incoming
requests with appropriate performance. Several techniques [3, 2, 9, 10, 11] have
been proposed to create such service models from the actual services interaction
traces that can mimic the behavior of the services by synthesizing responses for
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the incoming requests. But, these techniques have only considered the creation of
service models for stateless services and the creation of service models for stateful
services is still unexplored.

A novel technique is presented in this thesis to creating service models for stateful
services automatically by analyzing the interaction traces of the dependent services.
In particular, we focus on identifying the dependency relationships between mes-
sages to determine the types of responses accurately for the incoming requests and
dependency relationships between message fields to determine the proper payloads
of the response messages.

This chapter is organized as follows. Section 1.1 presents a brief introduction
of service virtualization. In Section 1.2, we present the characteristics of software
services. Section 1.3 presents the research problem while Section 1.4 outlines the key
research questions. We present the major contributions of this research in Section
1.5 and finally, Section 1.6 presents the organization of this thesis.

1.1 Service Virtualization and Its Importance
Service-oriented architecture allows the developer to use third-party services or com-
ponents in developing an enterprise system [12]. But, such integration of third-party
services makes the testing of the entire system more difficult as the testing requires
access to the connected services, which is not always possible [2]. Moreover, the
functionality of an entire system needs to be verified when any of its connected ser-
vices are upgraded. Such an upgrade of the dependent services may have a cascading
effect on the entire system, i.e., a fault in one dependent service may trigger the
failure of the entire system. For example, an unexpected inter-dependency between
systems triggered a failure to the tunnel safety system when CityLink (one of the
toll road operators in Melbourne) attempted to upgrade their billing system, which
leads to the tunnel closure and traffic chaos [13]. Therefore, it is important that an
enterprise systems’ interaction with its interconnected services needs to be tested
prior to deployment.

Service virtualization is a method of emulating the specific behavior of the depen-
dent components or services in testing heterogeneous software systems. In a service
virtualization environment, DevOps teams do not need to use production/actual
dependent services, rather, they use the emulation or virtual services, which enables
frequent and comprehensive testing of a SUT. The behavior/characteristics of a vir-
tual service depends on the dependent/connected services of an enterprise system
and it emulates the specific behavior of the dependent service, which is required to
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execute the development and testing tasks. For example, virtualizing a web service
requires listening for a request message over HTTP, JMS, or MQ and then return-
ing a response message. Virtualizing a database application means that the service
model is able to parse an SQL query and then return the data source rows according
to the query request as the response message.

1.2 Characteristics of Software Services
A software service is a software program that runs on a server, listening for requests
and returning responses based on the incoming requests. A service usually supports
different types of request messages and generates different types of responses for
each request message. The service requester (i.e., SUT in a service virtualization
environment) sends a request message and the service (i.e., the service model in
the service virtualization environment) is responsible for generating an appropriate
response for the incoming request message. This suggests that the request message
from the service requester has to follow formats defined in the service description.
Thus, the service provider can identify the request type and data values from the
request messages, and generate an appropriate response for the request message.
Similarly, the generated responses by the service must follow formats defined in the
service description, so that the receiver can parse the response messages.

A service can be classified as stateless or stateful.
Stateless Service: The result or response for a request does not depend upon

the requests/operations that have been executed previously [14]. For example, the
response messages (http response) of an online newspaper do not depend on the
preceding requests and a reader can send http requests to connect with the server
in a stateless manner.

Stateful Service: Unlike stateless service, the result or response for a request
in a stateful service depends upon the requests/operations that have been executed
previously [14]. An example of such services is a Banking service. An account
has to be opened before getting any financial services, the response of a withdraw
request depends on the requested withdrawal amount and the current balance of
that account, every change made to the account is considered as a change of state
for that account. Therefore, the response of a request in such a banking service
depends on the preceding requests.

However, we consider the statefulness of a service as being reflected in the cap-
tured interaction trace of the service, i.e., a service is considered as stateful only
if the change of the service state is observable in the trace. We do not explicitly
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Internet
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Figure 1.1: Web Service Architecture

consider the complex interplay between dependent services and the change of the
service state due to such unseen interactions and only consider those effect reflected
in the interaction trace. For example, a bank usually pays interest to the savings
account at the end of a month and the balance is credited. But, such changes in
the account are not observable in the trace as the trace is captured by intercepting
the communication between a client (i.e., SUT) and the service (banking service).
Similarly, the financial regulatory authority may freeze an account due to suspicious
activities and again, such changes are not observable in the trace.

Figure 1.1 shows a simplistic overview of how a client communicates with a web
service. A client (a user or an application) usually invokes a series of request mes-
sages to the server (where the service is hosted) and gets the response message from
the server. The messages (request and response) that are transmitted during the
communication must follow the format as defined in the service description language.
The server returns appropriate response messages to the client after identifying the
type of requests from the request messages as the service commonly supports differ-
ent types of request messages. Moreover, the response messages generated by the
server depend on the sequence of preceding messages when the service is stateful.

1.3 Research Problem
A service model can be created manually by defining the behavior of a dependent
service [3]. But, this way of defining the service model to represent the behavior
of a dependent service is a tedious, time-consuming task and requires an expert
with detailed knowledge of the service [11]. Also, the characteristics of the service
model must be different for each different dependent service, i.e., the service model
needs to be defined separately for each dependent service. To construct a proper
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testing environment, require the connection of many such service models one for
each dependent service.

The service model can be created automatically by recording live interactions of
the dependent service and then deducing the behavior of the dependent service from
the recorded service interaction trace. The SUT communicates with the derived
service models in the service virtualization environment instead of accessing the
actual services. As such, the functionality and performance of the derived service
models should reflect the actual dependent services. Therefore, the creation of the
service models requires analysis and extraction of relevant information from the
service interaction trace.

A number of techniques [2, 9, 10, 11] have been proposed to automatically de-
rive service models by analyzing the service interaction trace. These techniques
utilize sequence alignment algorithms [15] to find an interaction similar to the in-
coming request in the service interaction trace. Then, the corresponding response is
transformed using similar payloads in the synthesized response message. But, these
techniques do not consider the service state in synthesizing responses and hence,
are unable to derive service models accurately for stateful services. As described in
Section 1.2, the responses of a stateful service depend upon the preceding requests.
Therefore, the creation of service models for stateful services requires the identifi-
cation of the dependency relationships among messages to represent the behavior
of the dependent services accurately. It implicitly requires the identification of the
different types of requests and the different types of responses that are generated for
the requests. Moreover, the message fields of the response message may correlate
with the corresponding request message or the preceding requests. Thus, the ser-
vice models for stateful services have to identify such correlations between message
fields to synthesize responses with appropriate data values. However, the existing
techniques for identifying symmetric fields1 between request and response messages
do not consider the message structure, resulting in invalid responses. Therefore, the
identification of such correlations between message fields requires to extract message
structure from the request and response messages.

1.4 Research Questions
In order to create service models for stateful services from the service interaction
traces to provide a realistic testing environment, the following research questions

1The message fields containing the same payload in both the request and corresponding response
message.

5



1. Introduction

need to be addressed:

1. “Can the service models identify the types and formats of the request mes-
sages?”

A service usually supports different types of requests and different types of
responses are generated for each of them. Thus, to generate appropriate re-
sponses for the incoming requests, the derived service models have to identify
the request type from the messages. Moreover, each type of request message
has its own format (i.e., message structure). It is also necessary to extract the
formats of the request messages in order to separate the data values from the
structure and consequently, identify the relationships between message fields.
This question is addressed in Chapter 4 of this thesis.

2. “Can the service models identify the different types of responses that are gen-
erated for the same request and extract the formats of the response messages?”

A stateful service usually generates different types of responses for the same
type of request messages at different times due to the service state. Unlike
the request messages, response messages do not always contain message type
field. The different types of response messages have their own format as in the
request messages. Moreover, the response messages usually contain repetitive
patterns of the message fields. Therefore, the service models have to identify
the different types of responses and infer formats of the response messages that
are generated for the same request. This question is addressed in Chapter 5
of this thesis.

3. “Can the service models identify the dependency between messages and between
message fields for tracking the service state to synthesize responses for stateful
services?”

In a stateful service, the responses depend upon the preceding sequence of
requests in addition to the incoming request messages. It implies that a re-
quest or a sequence of requests changes the service state and thus, the service
generates different responses for the same type of requests at different times.
Therefore, it is required for the derived service models to identify such de-
pendency among messages, to synthesize the responses more accurately for
stateful services. Moreover, the message fields of the generated responses may
correlate with the corresponding request and/or preceding messages. Thus,
the service model needs to identify such correlations among message fields for
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synthesizing the responses with appropriate values in the message fields. This
question is addressed in Chapter 6 of this thesis.

1.5 Research Contributions
The overall contribution of this thesis the derivation of service models for stateful
services, enabling the creation of a realistic testing environment for the system
under test. Our approach derives service models by analyzing and extracting the
dependency relationships between messages and between message fields from the
service interaction trace to synthesize responses by considering the service state.
More specifically, this thesis makes the following contributions:

• A technique for inferring formats of the request messages. It identifies the
request type from the messages by analyzing the fixed and variable portions
of request messages and messages are grouped into type based clusters. Then,
the format for each type of request messages is extracted by identifying the
patterns of message fields of all messages in the request-type based cluster.

• A technique for extracting formats of the response messages. Unlike the request
messages, response messages do not always contain a message field to indicate
the type of responses and can not use the technique for extracting formats of
the request messages. As such, the responses are clustered by considering the
co-occurrences of the fixed portions of the messages. Such clustering separates
different types of responses that are generated for the same request. Then, the
format of the responses for each cluster is extracted by identifying the common
portions across the response messages, and considering the repetitions in each
message as the response messages usually contain the repetition sequences of
(key)word and data values. Such a repetition of message structure is effectively
handled in format inference so that the inferred format can accept valid yet
unseen messages.

• A technique to identifying the control and data dependencies between messages
and message fields respectively. To capture the effect of service state, we in-
fer the control dependency between messages by analyzing and extracting the
contextual information (dependency) from the service interaction trace. The
inferred control dependency model is used to keep track of the service state and
determine the proper response type for the incoming request message. More-
over, the data values that are present in the response messages commonly have
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correlations with the corresponding request message or a sequence of preceding
messages (i.e., data dependency). Such dependency between message fields is
extracted by analyzing the data values of the request and response messages,
and utilized in synthesizing responses so that the synthesized responses contain
appropriate data values in the message fields.

We evaluate our approach (format inference) by applying it to a number of traces
collected from both stateful and stateless service. The results show that a greater
improvement in format inference over state of the art approaches. The experimen-
tal results also show that our approach (response generation) achieves significant
improvement in both accuracy and efficiency over existing service virtualization
techniques in synthesizing responses.

1.6 Thesis Structure
The rest of the thesis is organized as follows:

Chapter 2 motivates this research by analyzing an example trace collected from
a real-world service with the underlying protocol being the Light-weight Directory
Access Protocol (LDAP). The research problem is analyzed from different aspects
of our thesis requirements.

In Chapter 3, we review the existing research efforts related to service virtualiza-
tion. We also review the existing research efforts on extracting message structures
and message dependency (i.e., control dependency and data dependency) as such
research works are related to virtualizing stateful services.

Chapter 4 presents our approach to inferring the format of the request messages,
where message type is identified using entropy analysis and message format is ex-
tracted for each request-type based message cluster after extracting keywords from
the messages of that cluster.

In Chapter 5, we present our approach to inferring the format of the response
messages after clustering the responses based on the co-occurrences of message key-
words.

In Chapter 6, we present our approach to inferring service behavior in order to
track the state of the service. We also present an approach to utilizing the inferred
service behavior model (control and data relationships) in formulating responses by
instantiating the behavioral model separately for each of the data record maintained
by the service.

Finally, in Chapter 7, we conclude this dissertation by summarizing the key
contributions and discuss the directions of future research.
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Chapter 2

Motivation and Problem Analysis

In this chapter, we motivate our research using a real-world example of a testing
environment for an enterprise system. The testing scenario is presented in both a
traditional and a service virtualization environment. We identify the key require-
ments for a service virtualization environment and present some examples, which
will be used in later chapters of this thesis.

This chapter is organized as follows. Section 2.1 first presents an overview of
interconnected software systems and then presents an enterprise system in a tra-
ditional testing environment and in a service virtualization environment. Section
2.2 presents an example interaction trace and defines the key concepts and terms
that are used to describe the issues, requirements and techniques of stateful ser-
vice virtualization in this thesis. Section 2.3 presents some key issues of providing
virtualization environment for stateful services by analyzing the testing scenario.
Based on this analysis, Section 2.4 identifies the general requirements of virtualizing
stateful services. This chapter is summarized in Section 2.5.

2.1 Enterprise Software Systems and Their
Testing
Software systems have grown increasingly large through connecting with many other
heterogeneous services to provide support for complex business processes. For ex-
ample, making a phone call requires to operate several heterogeneous systems in-
cluding operational support systems (OSS) and business support systems (BSS).
Several heterogeneous systems are included in the OSS, including network configu-

9



2. Motivation and Problem Analysis

ration and fault management, customer activation, network security, etc. A few of
the interconnected systems in the BSS are billing systems for customers, managing
offers, cross-carrier transactions, etc. Moreover, a proper integration between BSS
and OSS is required to provide the telecommunication services to the customers.
Component-Based Software Engineering (CBSE) is an approach to develop such
large and complicated systems by connecting the available and re-usable systems
or components [16]. Due to the increasing popularity of the service-oriented ar-
chitecture (SOA), third-party services are used as components in developing such
an enterprise system [12]. The availability of third-party services provides flexibility
and enables the developers to build a large and complex system. One example of us-
ing third-party services is to adopt a third-party payment service for an e-commerce
website.

Software testing plays an important role to verify the correctness of software
and confirms the accurate implementations of the requirements [17]. Every software
system has to be tested and requires a confirmation from the testing team before
being deployed to ensure that the system performs as expected and does not pro-
duce any unintended result [17]. Testing of an enterprise system connected with
heterogeneous services requires access to those interconnected or dependent services
to confirm that the entire system works properly and is ready to be released. But,
the use of third-party services or components makes the testing of the entire system
difficult and costly as it requires access to the connected services or components.

In a traditional testing environment, the system under test (SUT) requires access
to the connected services to begin the testing (functional, integration, performance,
etc.) and the software testing team has to wait for nearly completed software [16].
But, due to the need for rapid delivery, it is often impossible to wait for so long
before testing. DevOps aims to shorten the software development life cycle through
continuous delivery where repeated testing in a short period is required [18]. More-
over, DevOps focuses on continuous integration and delivery, which requires fre-
quent access to the dependent services. Service virtualization offers an alternative
approach to testing such complicated software systems, where “virtual” replica of
the dependent services are used instead of accessing the actual services themselves.

2.1.1 Software Testing Environment
Figure 2.1 shows the communication between the system under test and services in
both a traditional environment (Figure 2.1a) and a service virtualization environ-
ment (Figure 2.1b). As the Figure 2.1a shows, an enterprise system is connected
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with n different services and it consumes those dependent services in a traditional
testing environment. The traditional testing environment requires access to the
dependent services or components to run a proper testing and hence, ensuring its
quality. DevOps practices bring faster and frequent releases, which requires repeated
testing and consequently, requires access to the dependent services more frequently.
But, such access to the dependent services is costly and often not possible due to
availability or security concerns [19]. In a service virtualization environment, on the
other hand, the SUT sends request messages to the “virtual” services and gets the
response messages back from these virtual services instead of getting the responses
from the actual services. As Figure 2.1b shows, the SUT communicates with the
virtual services during testing and the virtual services emulate the specific behavior
of the corresponding dependent services to enable the testing without accessing the
actual services. The “virtual (model)” services stand in for actual dependent ser-
vices by listening for requests and returning the appropriate responses to facilitate
the proper testing for the SUT in the service virtualization environment.
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(a) Traditional testing environment
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(b) Service virtualization environment

Figure 2.1: System Under Test in Traditional and Service Virtualization
Environment

2.2 Example Interaction Trace and Terminol-
ogy
This section presents an example interaction trace and defines the key concepts and
terminology that are used to describe the issues, requirements and techniques of
service virtualization in this thesis.

2.2.1 Example Interaction Trace
Table 2.1 shows an illustrative LDAP interaction trace, which is collected from
the CA Identity Manager (IM) service [1] through intercepting the communication
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between a client and the IM service. The CA IM service uses the Light Weight
Directory Access Protocol (LDAP) [20] to manage the digital identities of the per-
sonnel of a large organization. The client send a request message (e.g., search,
delete) to the server (i.e., IM) and then, the server returns a response message to
the client after processing the request. As Table 2.1 shows, the Bind request (i.e.,
the first request) is used to authenticate a client, and the Unbind request (i.e., the
last request) is for closing the connection, which does not require a response. The
request message in-between the bind and unbind requests, i.e., search, add, and
delete requests are used for searching an entry, adding a new entry and deleting an
existing entry respectively from the IM service.

Table 2.1: Ten Interactions of a LDAP Communication Session

No. Interactions

1
Req

LDAP Bind Request Message ID: 1 LDAP Bind Request Protocol Op LDAP

Version: 3 Bind dn: cn=admin,dc=ca,dc=com Authentication Data: Au-

thentication Type: Simple Bind Password: 1228013670

Resp
LDAP Bind Response Message ID: 1 LDAP Bind Response Protocol Op Result

Code: 0 (Success)

2
Req

LDAP Search Request Message ID: 2 LDAP Search Request Protocol

Op Base DN: cn=Dominic MAJOR,ou=Finance,ou=Corporate,dc=ca,dc=com

Scope: 0 (baseObject) Deref Aliases: 3 (derefAlways) Size Limit: 0

Time Limit: 0 Types Only: false Filter: (objectClass=*) Attributes:

Resp

LDAP Search Result Done Message ID: 2 LDAP Search Result Done

Protocol Op Result Code: 32 (No Such Object) Matched DN:

ou=Finance,ou=Corporate,dc=ca,dc=com

3
Req

LDAP Add Request Message ID: 3 LDAP Add Request Protocol Op

dn: cn=Dominic MAJOR,ou=Finance,ou=Corporate,dc=ca,dc=com mail: Do-

minic.MAJOR@ca.com mobile: 6017515 description: Customer Service ob-

jectClass: inetOrgPerson title: Administrative Operator sn: MAJOR

cn: Dominic MAJOR

Resp
LDAP Add Response Message ID: 3 LDAP Add Response Protocol Op Result

Code: 0 (Success)

4
Req

LDAP Search Request Message ID: 4 LDAP Search Request Protocol

Op Base DN: cn=Dominic MAJOR,ou=Finance,ou=Corporate,dc=ca,dc=com

Scope: 0 (baseObject) Deref Aliases: 3 (derefAlways) Size Limit: 0

Time Limit: 0 Types Only: false Filter: (objectClass=*) Attributes:
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Table 2.1 Continued: Ten interactions of a LDAP communication session

No. Interactions

Resp

LDAP Search Result Entry Message ID: 4 LDAP Search Result Entry Pro-

tocol Op dn: cn=Dominic MAJOR,ou=Finance,ou=Corporate,dc=ca,dc=com

mail: Dominic.MAJOR@ca.com mobile: 6017515 description: Customer

Service objectClass: inetOrgPerson title: Administrative Operator

sn: MAJOR LDAP Search Result Done Message ID: 4 LDAP Search Result

Done Protocol Op Result Code: 0 (Success)

5
Req

LDAP Add Request Message ID: 5 LDAP Add Request Protocol Op

dn: cn=Dominic MAJOR,ou=Finance,ou=Corporate,dc=ca,dc=com mail: Do-

minic.MAJOR@ca.com mobile: 6017515 description: Customer Service ob-

jectClass: inetOrgPerson title: Administrative Operator sn: MAJOR

cn: Dominic MAJOR

Resp
LDAP Add Response Message ID: 5 LDAP Add Response Protocol Op Result

Code: 68 (Entry Already Exists)

6
Req

LDAP Add Request Message ID: 6 LDAP Add Request Protocol Op

dn: cn=Susana LOW,ou=Finance,ou=Corporate,dc=ca,dc=com mail: Su-

sana.LOW@ca.com mobile: 6726920 description: Customer Service ob-

jectClass: inetOrgPerson title: Applications Administrator sn: LOW

cn: Susana LOW

Resp
LDAP Add Response Message ID: 6 LDAP Add Response Protocol Op Result

Code: 0 (Success)

7
Req

LDAP Search Request Message ID: 7 LDAP Search Request Protocol Op

Base DN: ou=Finance,ou=Corporate,dc=ca,dc=com Scope: 1 (singleLevel)

Deref Aliases: 3 (derefAlways) Size Limit: 0 Time Limit: 0 Types Only:

false Filter: (objectClass=*) Attributes:
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Table 2.1 Continued: Ten interactions of a LDAP communication session

No. Interactions

Resp

LDAP Search Result Entry Message ID: 7 LDAP Search Result Entry Pro-

tocol Op dn: cn=Dominic MAJOR,ou=Finance,ou=Corporate,dc=ca,dc=com

mail: Dominic.MAJOR@ca.com mobile: 6017515 description: Cus-

tomer Service objectClass: inetOrgPerson title: Administra-

tive Operator sn: MAJOR LDAP Search Result Entry Message

ID: 7 LDAP Search Result Entry Protocol Op dn: cn=Susana

LOW,ou=Finance,ou=Corporate,dc=ca,dc=com mail: Susana.LOW@ca.com

mobile: 6726920 description: Customer Service objectClass: inetOrg-

Person title: Applications Administrator sn: LOW Search Result Done

Message ID: 7 LDAP Search Result Done Protocol Op Result Code: 0 (Suc-

cess)

8
Req

LDAP Delete Request Message ID: 8 LDAP Delete Request Protocol Op dn:

cn=Susana LOW,ou=Finance,ou=Corporate,dc=ca,dc=com

Resp
LDAP Delete Response Message ID: 8 LDAP Delete Response Protocol Op

Result Code: 0 (Success)

9
Req

LDAP Search Request Message ID: 9 LDAP Search Request Protocol Op

Base DN: cn=Susana LOW,ou=Finance,ou=Corporate,dc=ca,dc=com Scope: 0

(baseObject) Deref Aliases: 3 (derefAlways) Size Limit: 0 Time Limit:

0 Types Only: false Filter: (objectClass=*) Attributes:

Resp

LDAP Search Result Done Message ID: 9 LDAP Search Result Done

Protocol Op Result Code: 32 (No Such Object) Matched DN:

ou=Finance,ou=Corporate,dc=ca,dc=com

10
Req LDAP Unbind Request Message ID: 10 LDAP Unbind Request Protocol Op

Resp
null1

2.2.2 Terminology in Stateful Service Virtualization
A service is consumed by the client (i.e., SUT in service virtualization environment)
through sending a request message to the service provider and receiving the response
back from the provider. Thus, in service virtualization environment, the SUT sends
request messages to the dependant services and gets the responses back from the

1Server does not send any response for the unbind request as the client wants to disconnect
from the server.
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dependant services. We refer the pair of a request and the corresponding response
message as an interaction and a collection of consecutive interactions is referred to
as an interaction trace.

A service usually defines the structure or format of the messages that the service
receives and emits, and often involves different types of messages with different
structures. The message structure is usually defined in terms of a sequence of
message fields. These fields can be divided into those with values that are fixed
across the same type of messages, and those with values that vary from message to
message. The fixed fields are referred to as message keywords, have a special meaning
as defined by the underlying message format, and carry structural information. On
the other hand, the fields that differ from message to message are referred to as
value fields and their content as payload.

As an example, consider the third request message (i.e., req#3) in Table 2.1,
an add request message of the Lightweight Directory Access Protocol (LDAP). It
contains a number of keywords (i.e., fixed fields across the add request messages)
such as “LDAP Add Request Message ID:”, “cn=”, “ou=”, “mobile:”, “sn:”, “dc=”
etc. Among those keywords ou=, sn: and dc= represent an organizational unit,
a surname and domain component respectively. Their corresponding value fields
contain an organisation unit’s name (e.g., Finance), an individual’s surname (e.g.,
MAJOR) and a domain component’s name (e.g., ca) respectively.

In the context of this thesis, the concept of a keyword is similar to but broader
than its usual meaning in machine languages. That is, a keyword is a maximum
consecutive sequence of characters that is part of the format for a given message
type. The keyword may be required (i.e., occur in all messages of the given type)
or optional (i.e., occur in some of the messages of the given type). According to our
definition, a consecutive sequence of keywords is considered as one keyword, and
the delimiters used in message formats (if any) are regarded as part of the adjacent
message keywords. For example, “Request Message ID:” in Table 2.1 is considered
as one keyword in this paper’s context. Note that this generalization of the keyword
concept does not impact on the understanding or formulation of messages.

Ideally, every session starts with a Bind request and ends with an Unbind re-
quest in LDAP. Any service (e.g., CA IM) usually refers to the data storage in
formulating responses for the incoming requests. For example, the CA IM service
creates a new entry or record in its data storage in responding to an add request
and generates response based on the outcome of the operation. Similarly, the ser-
vice removes a record specified in the request message from its data storage in
responding to a delete request and the response is generated based on whether

15



2. Motivation and Problem Analysis

the service is able to remove the specified record successfully or unable to find it
in the data storage. Furthermore, a search request is used to retrieve the infor-
mation matching the search query and the service finds the matched records upon
receiving the search request and then puts a sequence of message fields in the gen-
erated response through breaking each of the matched records into a sequence of
message fields. It indicates that the service (both stateful and stateless) breaks the
records in its data storage into message fields while communicating with the client
and the observation is valid for any record-based information service (e.g., Bank-
ing service, Twitter, and GoogleBooks). Thus, a message (request or response) can
be considered as having a sequence of message fields, one or more fields are used
to identify a record in the service. We define such fields as key fields and values
for those fields as key payloads. For example, each record in the identity manager
(IM) service [1] is uniquely identifiable with the key field dn (distinguished name),
i.e., the second request message in Table 2.1 (req#2) is identified with “cn=Dominic

MAJOR,ou=Finance,ou=Corporate,dc=ca,dc=com”.

2.3 Service Virtualization for Stateful Ser-
vices
Service virtualization involves the creation and deployment of “virtual” services
that emulate the specific behavior of the dependent services. As the responses of a
stateful service depend on the service state as well as the incoming request messages,
the service models should consider the service state in generating responses and
consequently, providing a proper testing environment for the SUT.

In this section, we discuss three important issues of service virtualization con-
cerning the emulation of stateful services. The main objective of this thesis is to
create service models for stateful services through extracting relevant contextual
and dependency relationships from the service interaction trace. To do so, we iden-
tify the different types of messages that are involved in the interaction, extract the
formats from the different messages and infer the dependency relationship between
messages and the correlation among message fields.

2.3.1 Format for Request Messages
As explained in Section 2.1.1, an appropriate response needs to be generated for
each of the incoming request messages in the service virtualization environment to
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facilitate the testing of SUT without accessing the actual services. Usually, a service
supports different types of requests and may generates different types of responses
for each type of request message. Therefore, the service models should able to
identify different types of request messages that are involved in the communication,
so the service models can generate appropriate responses for the incoming request
messages. For example, Table 2.1 shows ten interactions (i.e., ten requests and their
corresponding response messages) between a client and the CA IM service [1]. As
the interaction trace shows, the client sends a bind request for authentication and
then sends add, search, and delete requests to add an entry, search for an entry
and delete an existing entry respectively and finally, sends an unbind request to
disconnect from the IM service. Thus, the interaction trace contains five types of
request messages and the IM service responds with proper responses for each of the
request types. As such, the service model needs to identify different types of request
messages for generating the appropriate responses and consequently, to accurately
simulate the behavior of the actual services.

Moreover, the response messages usually contain payloads and some of the pay-
loads in the response messages may correlate with the payloads of the respective
request messages. For example, the message ID field in LDAP messages is a unique
identifier and is used to correlate the request and responses. All response messages
generated for a request message must contain the same message ID as in the request
message. The payload for the message ID field is “1” in both req#1 and resp#1

(Table 2.1). Therefore, a service model has to incorporate such correlations among
message fields, which requires the isolation of the message keywords from the pay-
loads i.e., inferring the formats from the request messages to separate the payloads
and analyzing the extracted payloads.

Furthermore, each request message has a number of message fields and has its
own format. A number of message keywords can be identified for each type of
request messages. For example, the third request message (req#3 in Table 2.1) has
thirteen message keywords including “LDAP Add Request Message ID:”, “LDAP Add

Request Protocol Op dn: cn=”, “sn:”, “title:”, “,dc=”, “mobile:” with “3” as
the associated payload for the first keyword (i.e., LDAP Add Request Message ID:)
and “Dominic MAJOR” for the second keyword (i.e., LDAP Add Request Protocol Op

dn: cn=). On the other hand, the Unbind request message (req#10 in Table 2.1)
has only two keywords: “LDAP Unbind Request Message ID: ” and “LDAP Unbind

Request Protocol Op”. The first keyword has an associated payload “10” whereas
the second keyword does not have a payload.

From the above example, we note that not only do different types of request
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messages have a different number of keywords, but also the keywords themselves
differ from message type to message type. So, the extraction of formats from the
different types of request messages requires the identification of request type from
the request messages and then extraction of the keywords for each different type of
request messages respectively.

2.3.2 Format for Response Messages
As described in the previous sub-section, a service usually support different types
of request messages. But, a service not only supports different types of requests,
it generates different types of responses for different types of requests. Moreover, a
service may generate different types of responses for the same request at different
times based on the service state. So, a model service has to identify the different
types of responses that are generated for each type of the request messages. Different
from the request messages, response messages do not always contain a message type
field to indicate the type of responses, rather, each type of response message has its
own set of keywords and has its own format. For example, the response of a Search

request (resp#2 in Table 2.1) contains six message keywords, whereas another Search

response (resp#7) contains twenty seven message keywords. This suggests that the
keywords of the responses for the same type of request may differ from response
message to response message. Thus, the formats for the response messages are
required to isolate the payloads from the messages and consequently, identify the
correlations among message fields.

Unlike request messages, a response message may contain a repetitive sequence
of message fields and hence, payloads of those message fields appear more than once
in the response messages. For example, the name of an organizational unit (i.e.,
“Finance”) appears twice in the response message of a Search request (resp#7 in
Table 2.1) and it may appear multiple times depending on the number of entries
returned in the search response. Thus, the payloads of such message fields can easily
be mistaken as the message keywords (based on the occurrences) and hence, requires
an explicit technique to identify the message keywords from the response messages.
Moreover, a response message may contain repetition sequences of keyword-payload,
i.e., the whole message structure can be repeated multiple times based on the num-
ber of entries returned. For example, the LDAP search response, resp#4 in Table
2.1 contains one search result entry followed by the search result done whilst resp#7

contains two search result entries followed by the search result done. It indicates, dif-
ferent types of search responses may contain different numbers of entries depending
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on the search query and the scope in the search request. Therefore, such repeti-
tions of message structure (i.e., keyword-payload sequence) need to be considered
in format inference to accurately identify the message format.

2.3.3 Service Behavior
As described in Section 1.2, the responses of a stateful service depend on the service
state as well as the incoming request, and the service state can be changed due to
the previous sequence of interactions (i.e., message dependency). Moreover, some
of the message fields of the responses may correlate with the fields of the incoming
request messages (i.e., dependency among message fields). Thus, the service model
need to identify and utilize such dependency relationships in formulating responses
more accurately for the incoming request messages. We discuss below the key issues
of identifying the dependency among messages and the generation of payloads for
the message fields.

All requests and responses in Table 2.1 (except the bind request) are executed
on two key payloads, i.e., cn=Dominic MAJOR,ou=Finance,ou=Corporate,dc=ca,dc=com and
cn=Susana LOW,ou=Finance,ou=Corporate,dc=ca,dc=com. As the example interactions in
Table 2.1 shows, the same type of search requests generates two different types
of responses (i.e., “ the No Such Object” response for req#2 and the “Success”
response for req#4) at different times. This suggests that the service may generate
different types of responses at different times based on the service state and the
state itself can be modified through executing a request or a sequence of requests.
For example, the second and fourth search requests (i.e., req#2 and req#4) with the
same key payloads (i.e., same dn) in the message fields generate different responses
and an add request appears in between those search requests. It reveals that the
service state has been changed due to the add request. Thus, an interaction or a
sequence of interactions may affect or alter the responses for the following requests
(i.e., dependency among messages).

Again, based on the interactions in Table 2.1, the same request executed on
different key payloads generates different responses. For example, the Add request
with the key payload cn=Dominic MAJOR,ou=Finance,ou=Corporate,dc=ca,dc=com (i.e.,
req#5) generates “Entry Already Exists”, while the same Add request with the key
payload cn=Susana LOW,ou=Finance,ou=Corporate,dc=ca,dc=com (i.e., req#6) generates
“Success” response. It indicates that the state of the service for the key payload
“cn=Dominic MAJOR,ou=Finance, ou=Corporate,dc=ca,dc=com” is different than the
state for the key payload “cn=Susana LOW, ou=Finance,ou=Corporate,dc=ca,dc=com”.
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In addition to the dependency among messages, some of the message fields of
the generated responses depend on the key payload (i.e., record in the service) or
the message fields of the corresponding request message (i.e., data dependency).
The generated response may contain two different types of payloads: i) message-
describing payloads and ii) record-specific payloads.

Message-describing payloads are used to describe the message itself and may
have correlation with the request messages. For example, the payload of the message

ID field in the response message is the same as that in the corresponding request
messages (Table 2.1).

The generated response may contain record-specific payloads in some of the
fields. For example, the fourth response in Table 2.1 (i.e., resp#4) contains a mobile

number, email, title, description surname, etc., which are information related to
the record (i.e., key payload) “cn=Dominic MAJOR,ou=Finance,ou=Corporate,dc=ca,

dc=com”. Thus, the synthesized response should contain valid payloads in such fields
to generate responses accurately.

2.4 General Requirements for Stateful Ser-
vice Virtualization
In the previous section, we have discussed the issues of stateful service virtualization.
In summary, a service supports different types of requests and each of them may
generate different types of responses. Each type of message (request and response)
has its own set of keywords and has its own format. Moreover, the responses of a
stateful service have a dependency on the preceding sequence of interactions and
some of the message fields of the response messages may correlate with the corre-
sponding request or a sequence of the preceding requests. In this section, we present
three general key requirements of creating “virtual” services for emulating stateful
services based on the analysis in the above section.

REQ1: It is required to identify the different types of request messages as the
different types of requests generate different types of responses. Moreover, the mes-
sage fields in the request messages may correlate with the fields in the response
messages. The payloads need to be isolated from the message keywords (i.e., struc-
ture) to extract such correlations among message fields. Therefore, the formats of
the request messages need to be extracted to synthesize responses accurately with
appropriate payloads in the message fields.

REQ2: The service model has to identify different types of responses for the
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different types of requests and even the same request, and infer the formats from
the responses to further analyze the payloads. The service not only supports different
types of requests, but may also generate different responses at different times for the
same type of request, especially in stateful services due to the service state. So, the
service model needs to identify the different types of responses for the same request
to analyze and determine the reasons for generating different types of responses and
consequently, to formulate the responses more accurately for the incoming request
messages. Similar to the request messages, the payloads and the message keywords
need to be isolated from each other (even for the messages with repetitive structures)
for identifying data dependency. Therefore, the service model needs to extract the
format for each type of response message.

REQ3: The service keeps changing its state while executing the requests from
the client and the responses for the subsequent requests depend on the changed
or updated service state. As the sequence of interactions is liable in determining
the responses for the forthcoming requests, the service model has to identify such
dependency among messages (i.e., control dependency) for synthesizing responses
accurately. Moreover, the payloads of the response messages depend on the payloads
of the corresponding request or a sequence of request messages (i.e., data depen-
dency). Thus, the service model needs to identify such data dependency between
message fields to determine the appropriate payloads in the response messages.

2.5 Summary
In this chapter, we have presented an overview of software testing in both traditional
and service virtualization environments. We also have analyzed the issues of stateful
service virtualization and identified key requirements based on these analyses. In
summary, stateful service virtualization requires the extraction of the formats for
both the request and response messages, and the identification of dependency rela-
tionships among messages and message fields. The identification of different types
of request messages and extraction of formats for each request type are required to
detect the incoming request messages and hence, to synthesize responses accurately.
Again, it is required to identify the different types of responses that are generated for
different request and the same type of request at different times. The formats of the
response messages for each type of response messages need to be extracted to fur-
ther analyze the payloads. The inference of the service behavior model is required to
capture the observed individual message dependency relationship and synthesize re-
sponses based on the behavior of the service. We will analyze the existing literature
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in the next chapter from the viewpoint of these key requirements.
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Chapter 3

Related Work

In the previous chapter, we have presented the motivation of this thesis using the in-
teraction trace collected from real-world services and identified the key requirements
for creating stateful service models. In summary, the “virtual” replication of state-
ful services needs to i) extract formats for the request and response messages, and
ii) identify dependencies between messages (i.e., message dependency) and between
message fields (i.e., data dependency). In this chapter, we review and critically
analyze the existing research works from the aspect of these key requirements.

This chapter is structured as follows. In Section 3.1, we present the tradi-
tional techniques in providing testing environments and their limitations in pro-
viding proper testing environments for the system under test (SUT). We discuss
the existing service virtualization techniques and their limitations in virtualizing
stateful services in Section 3.2. In Section 3.3, we present a review and discussion
of existing research on extracting message formats and identify the research gaps.
In Section 3.3, we review the existing research works on inferring behavior models
that characterize the dependency relationships among messages and message fields.
In Section 3.5, we review the existing research works on generating responses from
the service virtualization viewpoint, while the actual purposes of these works were
different, such as detecting malware in network security applications. The chapter
is summarized in Section 3.6.
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3.1 Background: Traditional Testing Envi-
ronments

A suitable test-bed environment is the primary requirement for testing an enterprise
system and hence, ensuring its quality. In this section, we present the traditional
techniques of providing such environments through mimicking the specific behavior
of the dependent components and replicating the physical devices.

HORUS [21] is a technique to generate stubs for marshaling and Unmarshalling
the data values in multi-language Remote Procedure Calls (RPC). A different pro-
gramming language supports different types of data and different machines (envi-
ronments) use different conventions for storing data in memory (e.g., Big-endian,
and Little-endian). The proposed technique generates a language and machine-
independent common specifications through deriving knowledge from a given set of
language and machine specifications. Later, mock objects [4] and fake [5] simulate
the behavior of the complex, real objects and provide support for running unit tests,
especially when it is impractical or impossible to access the real objects. A number of
mocking techniques is available including jMock [4], EasyMock [22] and DynaMock
[23] to mimic certain behavior during the test. However, mock objects require an
intimate knowledge of internal components as it demands the re-implementation of
some of its components for each testing scenario.

On the other hand, another group of techniques has been proposed to create
a proper testing environment by replicating physical devices and running multi-
ple virtual machines simultaneously. Hardware virtualization can be divided into
two categories: i) full system virtualization, where the architecture of hardware is
replicated virtually entirely and ii) paravirtualization, where the modified version of
operating system runs concurrently with other operating systems. The operating
system “VM/370” developed by IBM provides an isolated and independent comput-
ing system to its multiple users. Lately, Paravirtualization systems such as VMWare
[6], VirtualBox [7], Plex86 [24] etc. handle the virtual memory more efficiently com-
pared to the full system virtualization. Such paravirtualization systems provide an
isolated environment for its users. Such hardware virtualization techniques facilitate
the testing of the interconnected systems by deploying the dependent services on vir-
tual machines. However, such virtualization techniques (full or paravirtualization)
through replicating the physical devices suffer scalability problems [8].

Instead of virtualizing hardware level, operating system-level virtualization, i.e.,
containerization is another technique of providing isolated runtime environments for
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applications. A number of containerization techniques have been proposed including
Docker [25], Openvz [26], Google lmctfy [27] etc. Containerization involves bundling
an application/system together with its dependent services and running on the host
operating system. But a container is a light version of the operating system, which
runs inside the host system. Thus, containerization suffers a similar scalability
problem as in hardware virtualization techniques [8].

Summary: The existing efforts on mimicking the interaction behavior using
stubs or mock objects when creating testing environments are tightly coupled with
the programming language of the system under test. Moreover, it is time-consuming
as some of its components need to be implemented repeatedly for each new testing
scenario. On the other hand, the existing hardware virtualization techniques (full
or paravirtualization) and containerization techniques require significant resources
(i.e., physical devices) to scale the testing environment and hence, unable to pro-
vide scalable testing environment for the SUT, e.g., supporting tens of thousands
of dependent services in a testing environment [28]. Therefore, the existing tech-
niques, either by replicating physical devices or by replicating certain features of
the deployment environment, are unable to provide a scalable and realistic testing
environment for an enterprise system. Service virtualization provides a viable alter-
native for creating a proper testing environment by emulating the behaviors of the
dependent components or services.

3.2 Service Virtualization
The concept of service virtualization [19] is to accelerate the development and im-
prove the accuracy of the enterprise system, and reduce the overall cost. Service
virtualization involves the creation and deployment of “virtual services” that em-
ulate the specific behavior of the dependent components or services and facilitate
the testing of the SUT without requiring access to the actual services. The formu-
lation of such service models in the service virtualization environment is relatively
more manageable than in mocking objects where its internal components require
re-implementation for every testing scenario.

There is a number of commercial service virtualization tools that are available
including CA Service Virtualization [29], ServiceV Pro [30], and IBM Service Virtu-
alization [31]. Several open-source service virtualization tools are also available such
as WireMock [32], hoverfly [33], Citrus [34], SoapUI [35], and Wilma [36]. Some re-
search works have also been done for providing such a testing environment through
creating the “virtual” replica of the actual services. The creation of virtual services
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can be done in two ways: (i) manually defining service models by an expert with
the required knowledge of underlying services [28], and (ii) automatically infer ser-
vice models through extracting the relevant knowledge from the service interaction
traces and utilizing them in generating responses [2, 11, 10, 9, 37]. In this section,
we first discuss the limitations of the available commercial and open-source tools.
Then, we present the existing research efforts on virtualizing services and discuss
their limitations in virtualizing stateful services.

CA Service Virtualization [29] models the behavior of the actual service and the
service model facilitates the testing and development of an enterprise system. It
supports the creation of virtual services from i) the recorded service interactions
when the actual service is available and accessible, and ii) Web Services Description
Language (WSDL) when the actual service is unavailable. It provides support for a
wide range of protocols across the front-end, middleware, and back-end technologies
including SOAP, REST, HTTP, HTTPS, JDBC, etc. ServiceV Pro [30] provides
support to virtualize REST and SOAP APIs, TCP, JDBC etc. It also allows the
creation of virtual services either from the recorded service interactions or WSDL or
API definitions. IBM service virtualization [31] comprises two products: Rational
Integration Tester, a tool for setting up interfaces and configuring their behavior and
Rational Test Virtualization Server to run the defined interfaces. It also provides
support for web services (e.g., REST, SOAP), middleware (e.g., JMS) and back-end
(e.g., JDBC) protocols. On the other hand, open-source tools support web service
mocking. For example, SoapUI [35] offers mocking SOAP and REST services, while
WireMock [32] simulates HTTP-based APIs. However, none of the existing tools,
i.e., either commercial or open-source tools, consider the service state in creating
virtual services. As such, these tools are unable to model the behavior of stateful
services accurately.

The use of a scalable emulation environment has been presented in [28] to enable
the realistic and comprehensive testing of an enterprise system. It uses a determin-
istic finite state machine (DFSM) to model the protocols of an enterprise system,
where the input and output alphabets of DFSM are composed of a set of input and
output commands that are available in the underlying services. The deduced DFSM
can approximate the behavior of the actual services and can be used for emulation
with the additional required information about the message encoding strategy of
the modeled services. But, an expert with sufficient knowledge about the modeled
service is required to define the service models manually, which is not always possi-
ble due to the lack of the information especially for legacy systems [38]. Moreover,
it is time-consuming and error-prone as it requires to define the service models for
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each testing scenario and for each service that is involved with the SUT [11].

To resolve this issue, several techniques [2, 9, 10, 11] utilize algorithms from bio-
informatics to infer the service models automatically from the service interaction
traces and do not require the explicit knowledge about the service to be modeled.
Whole cluster [2] models the behavior of the services automatically without requir-
ing explicit knowledge of the target services. It computes the dissimilarity scores for
the incoming request by comparing it with the recorded requests using a variant of
the Needleman-Wunsch [15] algorithm. The closest matched request/interaction is
selected based on the dissimilarity score. Then, the symmetric fields are identified,
i.e., the fields contain the same data value in both the request and corresponding
response messages. Finally, the responses are generated for the incoming requests
through substituting data values (i.e., payloads) for the symmetric fields in the
synthesized responses. But, the proposed whole cluster technique generates many
invalid (different than expected and malformed) responses due to picking the wrong
interaction as the closest interaction. If the request messages of different types con-
tain similar payloads, the proposed technique selects an incorrect interaction as the
closest matched interaction and hence, generates the wrong response for the incom-
ing request. Moreover, it is very inefficient in generating responses as it takes a long
time to find the closest matched request, especially when the size of the recorded
interaction trace is large. The entropy weighted approach [10] finds the closest
matched interaction more accurately by putting more weights on the operation/re-
quest type field relative to other message fields. It performs an entropy analysis
on the recorded interaction trace and then uses the entropy weighted Needleman-
Wunsch algorithm to find the closest matched interaction. As the entropy weighted
approach finds the closest interaction more accurately compared to the whole clus-
ter approach, it synthesizes responses more accurately. However, inefficiency in the
response generation is still not resolved as it also compares the incoming request
against all the messages in the trace.

Cluster centroid [9] is another technique to generate service responses from the
service interactions, especially to improve the runtime efficiency in response gen-
eration. It clusters the interactions based on the dissimilarity ratio matrix and
selects an interaction as the centroid interaction for each cluster. The incoming re-
quest messages are now compared with the centroid interaction instead of comparing
them with every interaction in the recorded trace, which significantly improve the
runtime performance in generating responses. But, the incoming requests are often
matched with the wrong interaction as it compares the request with the centroid
interaction only and discards all other interactions, which leads to generating more
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incorrect responses compared to the whole cluster approach. Opaque Service virtu-
alization (OSV) [11] is the most effective and efficient technique so far in supporting
the emulation of dependent services. It formulates a consensus prototype for each
cluster, i.e., for each type of request messages instead of selecting a centroid inter-
action in the Cluster centroid approach. It compares the incoming request with the
generated prototypes, which is fast and more accurate compared to the previous
approaches. Thus, it synthesizes responses more efficiently for the incoming request
messages. However, all these approaches generate responses by considering the in-
coming request messages only and do not consider the service state in generating
the responses. But the responses of a stateful service depend on the service state as
well as the incoming request messages. Therefore, all these approaches are unable
to synthesize responses accurately for stateful services.

To the best of our knowledge, the only prior technique to synthesize responses
for stateful services is the one proposed in [37]. It employs classification based virtu-
alization (CBV) and sequence-to-sequence based virtualization (SSBV) techniques
to virtualize stateful services. In CBV, the responses of different types are labeled
with a sequence of the request messages of length k. Then, a decision tree clas-
sifier is trained to learn the mapping between the requests and the corresponding
class labels (response types). At runtime, for each incoming request message, it
encodes the request type with k preceding interactions (request and response types)
and then, compare with the training dataset to predict the response to send for
the incoming requests. But, the proposed CBV technique requires the user-defined
parser to identify request types, response types, and contents from the interactions.
On the other hand, the SSBV technique uses Long Short Term Memory (LSTM),
a special neural network to model the services and uses Tensorflow [39] in learning
the network. At first, a vocabulary is created with the letters and characters of the
interactions. The input trace is transformed into a list of enumeration IDs, which
is encoded into a vector. Finally, a decoder is used to decode the vector into the
output sequence. But, the proposed technique has three major limitations. First, it
requires the user-defined parser to identify the type of requests and the type of re-
sponses from the traces. So, an expert with sufficient knowledge about the encoding
of the messages is required for applying the technique. Second, it does not consider
the generation of payloads or data values for responses. Usually, the response for
any request either in stateful or stateless services contains a considerable amount
of data values especially the responses for Read requests in CRUD services. Third,
it does not consider the data or record (entity) specific service state in formulating
responses. Usually, the state of the service can be different for each record or entity
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that the service maintains. For example, in a banking service, an account can be
active, frozen or closed, and the outcome of any operation (e.g., withdraw, deposit,
etc.) on that account depends on the current state for that account. Similarly, the
response of any operation for another account depends on the state of that account
and the service state is unique for each account. As such, the applicability of this
approach is limited in virtualizing stateful services.

Summary: The existing service virtualization techniques including the commer-
cial software, open-source tools and research prototypes do not consider the service
state in creating “virtual” services. As such, the generated responses by the service
models only consider the incoming request messages. But, the responses of a stateful
service depend on the service state in addition to the incoming request messages.
Thus, none of the existing techniques can generate accurate responses for stateful
services and hence, these techniques are limited in simulating the behavior of state-
ful services accurately. However, the only technique considering the service state in
generating responses [37] has major limitations as described above, and can not be
adopted in practice for virtualizing stateful services.

Moreover, none of the existing techniques consider the structure the messages
in synthesizing responses, especially in substituting the payloads from the incoming
requests to the synthesized responses. It leads to breaking the message structure and
resulting in malformed responses, i.e., non-conformant to the actual service proto-
col. Again, some of the message fields of the generated response may correlate with
the corresponding request message or a sequence of the preceding requests. But,
none of the existing techniques consider such correlations in synthesizing responses.
Only a few techniques described in [2, 9, 10, 11] consider symmetric correlations,
i.e., correlation between the request and corresponding response messages. But,
such symmetric correlations are extracted only from the matched interaction with-
out considering the structure of the messages, i.e., by comparing string/characters
between the request and corresponding response messages. As such, the extracted
symmetric correlations are not generic, i.e., not applicable to all interactions, es-
pecially when the length of payloads in the matched interaction is different than
the incoming request. Therefore, the correlations among message fields without
considering the message structure leads to synthesizing invalid responses.

To generate more accurate responses for the stateful services by considering the
service state, the formats of the messages and the relationships between messages
and between message fields (i.e., the behavioral model) need to be extracted from
the service interactions. The service behavior model and the formats of the messages
can be utilized in formulating responses more accurately. We discuss the existing
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research works on extracting message formats, inferring the service behavior model
from message traces, and generating responses for incoming requests, in the following
sections.

3.3 Message Format Extraction
One of the key requirements of our thesis is to extract the formats of the messages
in order to derive the service models more accurately and consequently, to generate
more accurate responses for incoming request messages. The problem of extracting
message formats has been investigated previously with various approaches having
been proposed. In general, the existing message format extraction approaches can
be divided into two broad categories: (i) program code based approaches and (ii)
message trace based approaches.

3.3.1 Program Code Based Approaches
In this section, we present the existing research works on inferring message formats of
the messages by instrumenting the program code of the underlying protocols or ser-
vices. The manual effort of reverse engineering is time-consuming and error-prone.
A number of such reverse-engineering projects targeting different protocols such as
Samba protocol [40], MSN Messenger protocol [41], Yahoo! Messenger protocol [42],
have been lasted for a long period in extracting the specification of the protocols.
Moreover, the extracted specifications in such projects are protocol-specific. Auto-
matic extraction of message formats is required as the protocols frequently update
its details to provide new functionality.

There are several approaches that infer formats of the messages automatically
from the executable code. Polyglot [43] uses dynamic analysis of program binaries
to infer message format by analyzing how the program processes and operates on the
protocol data. Prospex [44] infers message format based on the message trace and
the behavior of the server for each message in the trace. It runs the application in a
controlled environment that supports dynamic data tainting [45, 46, 47] for recording
all operations to the messages and generates an execution trace for further analysis.
Once the execution trace is generated, it uses the technique proposed by Wondracek
et al. [48] to infer the message format. The proposed technique in [48] splits the
messages in the execution trace into fields by identifying the length and delimiter
fields. Once the messages are decomposed into fields, it derives additional four
types of information from the messages, e.g., fields that have a special meaning in
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the protocol and fields that are used as file names. Finally, the sequence alignment
algorithm is applied on the extracted fields, i.e., the structural information about
individual messages, to infer the message format. The technique proposed in [49]
extracts output data formats such as file formats and network packet formats by
analyzing the executable binary. AutoFormat [50] is a tool to infer message format
by analyzing the processing of different fields of messages by the binary code. The
intuition of the approach is that different fields of the same messages are managed in
different execution context, for example, different run time, different call stack etc.
AutoFormat considers two types of execution context: the run-time call stack and
the location of the instruction being executed. Then, it builds a protocol field tree
after identifying fields from the execution context. Finally, the Backus-Naur Form
(BNF) specification is derived as the format from the protocol field tree. Unlike the
existing message format inference techniques that consider only deciphered messages,
ReFormat [51] focuses on inferring formats from the encrypted messages. Similar to
the AutoFormat, it also collects the execution trace that contains the run-time call
stack. Then, it divides the execution trace into different execution phases, i.e., into
an encryption phase and a decryption phase based on the cumulative percentage
of arithmetic and bit-wise instructions executed between transition points. After
that it considers the lifetime [52] of the data to identify the result of the functions
for encryption. Finally, it identifies the buffer containing the decrypted messages
by analyzing the lifetime of the data, and AutoFormat [50] is adopted to infer the
format of the decrypted messages.

Summary: These research efforts infer formats of the messages by analyzing
the program code that implements the underlying protocols or services. These
approaches generate an execution trace to capture the behavior of the program
on messages. Then, formats of the messages are inferred based on the execution
contextual information. They require access to the source code or binary code. But,
such access to the source code or binaries is not always possible and consequently,
these approaches are not applicable when the program code is unavailable, which is
not uncommon when proprietary or legacy systems are involved.

3.3.2 Message Trace Based Approaches
In this section, we present related work about message format extraction from mes-
sage traces. This category of methods infer message formats from the message traces
only and do not require any access to the source or binary code. Existing research on
extracting message format from message traces can be grouped into two categories
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according to the method used in extracting keywords:

• Tokenization Based Methods

• n-gram Based Methods

We introduce each of these categories in turn.

3.3.2.1 Tokenization Based Methods

Tokenization based methods split the messages into tokens using the separators
and/or delimiters in the messages. The natural delimiters and separators include
tabs, space(s), special characters, etc.

Protocol Informatics (PI) [53] is a tool for inferring message format from the
message trace. It identifies the common parts and variable parts through optimal
alignment of messages. It applies the Needleman-Wunsch [15] sequence alignment
algorithm to align the byte sequence of messages and the distance matrix is created
based on the local sequence. The alignment result is then used to build a phyloge-
netic tree 1 using Unweighted Pairwise Mean by Arithmetic Averages (UPGMA) [54].
Finally, progressive alignment (i.e., tree traversing rules) is used to perform multiple
sequence alignment and identify the common/fixed portions across messages.

Discoverer [55] reassembles IP packets into textual messages and then, uses a
predefined set of delimiters to divide the messages into tokens. It adopts a recursive
clustering approach on tokenized messages to group the messages into clusters of
messages with each cluster having the same format. First, tokens are clustered
based on the classes (binary or text) and the direction of the messages. Second,
a recursive clustering is applied to identify the Format Distinguisher (FD) field by
inferring a format for each cluster and then, the inferred formats are examined token
by token from left to right. It selects candidate FD fields based on the threshold (i.e.,
maximum distinct values for FD tokens), which leads to over-classification. Thus,
the formats across the sub-clusters are compared and similar formats are merged
using type-based alignment. The structure (i.e., token type, token sequence) of two
message formats are compared in type-based alignment. It breaks the messages
with a set of delimiters based on the assumption that some delimiters are used to
differentiate the fields in messages. But, not all protocols use delimiters to separate
fields and such delimiters may not be known even if they are used in messages of
unknown or legacy protocols.

1Phylogenetic tree is an evolutionary tree, which shows evolutionary relationships among or-
ganisms.
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ASAP [56] is a framework to analyze the messages and classify them based on
the similarity of the tokens. It breaks the messages into a set of tokens using the
predefined delimiters. It extracts the alphabet of strings (i.e., tokens2 for textual
protocols and n-grams3 for binary protocols) to characterize the traffic. The net-
work payloads are then mapped to a vector space that reflects the characteristics
of the extracted alphabets. Then, the communication template or message format
is identified as the sequence of tokens corresponding to the base directions of the
alphabets in the vector space. ASAP analyzes the payloads to discover the patterns
in honeypot data and helps in designing an intrusion detection system. However,
the inferred message format is imprecise [57].

ReverX [58] is a tool to derive the message format as automata. Similar to
Discoverer, it uses the predefined delimiters to break the messages into tokens. First,
it filters out the messages to make sure the trace contains messages of interested
protocol (i.e., the trace may contain messages of multiple protocols and trace is
filtered so it contains messages of one protocol). Then, messages in the message
trace are grouped into application sessions, where sessions are identified based on
the same source and destination IP address and port number, TCP sequence number
and temporal gaps between messages. After that, the messages of each session are
split into a set of tokens based on the delimiters. Then, it generates a partial
language automaton (PTA), which accepts the observed sequence of tokens in the
message trace. Equivalent states are merged based on the appearances of the data
values associated with fields and the inferred automata models the formats of the
messages.

Wang et al. [59] proposed a technique to extract message formats based on
keyword extraction. First, it breaks the messages into tokens using the predefined
delimiters. Low frequent tokens are then filter out using Jaccard index [60] and an
initial FSM is built by scanning each message using the extracted tokens, which ac-
cept all messages in the trace. Finally, the Moore reduction procedure [61] is applied
to generalize the initial FSM with a minimum number of states and transitions as
the format of the messages.

Maatta and Raty [62] adopted the Message Sequence Chart (MSC) to model the
sequential activities of legitimate network traffic to detect intrusions in traffic. It
uses predefined protocol-specific features to create a feature element for converting
a single message to the modeled XML. The XML prototype of legitimate network
traffic is generated through searching some predefined fields (i.e., IP address, source

2a set of all strings separated by delimiters
3a set of all strings with fixed length n
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port, destination port, etc) in the messages. Then, the MSC notation is used to
model the communication scenario. This method is not applicable when such prior
knowledge about the protocol is not available or only certain message traces of the
protocol are accessible.

SANTaClass [63, 64] is a technique to automatically group the network traffic
into clusters based on packet payload content (PPC). It generates a signature from
the traffic in combination with a real-time traffic classifier. It identifies the common
terms that are present in multiple messages as signatures instead of identifying all
keywords from messages. SANTaClass extracts statistical signatures from the packet
payloads of message trace. Finally, it generates Prefix Tree Acceptor (PTA) with
transition probability as the inferred signatures for the messages.

The approach presented in [65] focused on mining protocol keywords from the
WebSocket [66] protocol. First, it extracts candidate keywords considering a key-
word usually appears more frequently across messages and does not appear many
times in one message. Messages are then quantized as a sequence of alternate pay-
load and keyword tokens. A Hidden semi-Markov Model (HsMM) is built to capture
the relationships between the length of a data field and the preceding keyword. It
captures both the temporal and spatial position relations,i.e., how keywords appear
in messages. Finally, the true keywords are singled out by maximum likelihood
estimation, i.e., a keyword by its positions in the optimum state sequence.

Summary, these techniques infer the format of the messages after identifying
tokens (i.e., keywords) from the messages. These techniques break the messages
into tokens using a set of predefined separators and/or delimiters. All of the above
techniques except Discoverer infer a single format from the messages and do not
consider different types of messages that have different formats. On the other hand,
although Discoverer considers clustering the messages based on the message type,
it does not consider the keyword/token inaccuracy issue. Particularly, payloads
appear more frequently in messages with repetitive structure, which is very common
in the service responses (i.e., false keywords) and keywords in shorter lengths can
be covered with longer length keywords. Thus, these techniques are not effective in
extracting formats from the messages of a service.

3.3.2.2 n-gram Based Methods

Another group of existing techniques finds string patterns of arbitrary length in
messages, called n-grams, where n denotes the number of characters or bytes in the
pattern. The techniques of inferring message formats using n-grams can be further
divided into two categories: i) Inferring generic format, and ii) Inferring type-specific
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format.

Inferring Generic Format

A group of existing approaches focuses on extracting message fields that are
common to all messages. Veritas [67] considers the most frequently occurring strings
as message structure information (message units). In order to obtain the high-
frequency units, Veritas introduces the two-sample Kolmogorov-Smirnov statistical
testing method (K-S test) [68] to tackle the resulting message units set. After the
test, it extracts the message format by combining the message units from the ordered
sequence. Biprominer [69] extracts binary protocol message formats from a given
message trace by inferring a transition probability model as the message format.
It first recursively identifies frequent binary patterns of arbitrary length, called n-
grams (where n denotes the number of bytes in the pattern), in messages. Then, the
probability of a keyword following another keyword is measured. Each keyword has
a transition probability associated with other keywords. Each message is labeled
with the identified keyword/cell. Finally, the messages with labeled patterns are
converted into a transition probability model. The technique proposed in [70] focuses
on the variable portions of the messages and identifies them by using a sequence
alignment algorithm to align all messages in the message trace. It can find the
offsets and lengths of the payload information only when all the messages share
the same format. NEMESYS (Network Message Syntax Analysis) [71] infers the
structure from network messages of binary protocols. It segments messages without
comparing multiple messages to find similarities in byte values, rather it analyzes a
single message at a time to discover its intrinsic structure. It uses the delta of the
congruence in bit values of consecutive bytes, i.e., Bit Congruence Delta (BCD) as
the similarity measure to identify the field boundaries, where Bit Congruence (BC)
is the bit-wise similarity of bytes [72]. Then, the standard Gaussian filter is used to
find the overall tendency across multiple bytes of a message. Finally, messages are
segmented with the inferred field boundaries by approximating the inflection points
of Gaussian-smoothed deltas of Bit Congruences for the message field.

Summary, these techniques infer the format of the messages by identifying the
fixed and variable portions of the messages. But, this group of techniques assumes
that all messages in a message trace contain the same number of message fields
and share the same format. As such, these techniques can only be applicable for
the messages having a similar format. However, a service API usually has different
types of messages with different formats. As such, their applicability in extracting
message formats for service APIs is limited.
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Inferring type-specific Format

AutoReEngine [73] and ProDecoder [74] aim to extract type-specific message
formats form message traces. AutoReEngine adopts the Apriori algorithm [75] to
identify keywords by breaking the messages into n-grams. Then, noisy keywords
are removed by analyzing the variations of keywords’ positions. Each message in
the trace is scanned for identifying the frequent keyword series and messages are
classified according to the similarity among keyword series. The message clustering
is based on the intuition that different types of messages contain different sequences
of message keywords. The keyword series in each cluster is regarded as the corre-
sponding message format. However, as keywords are extracted prior to clustering,
false keywords (e.g., payload information that appears frequently) can be extracted
as keywords, leading to the creation of more clusters than actual message types and
inference of more formats than the actual formats.

ProDecoder [74] decomposes the input messages into words by using n-grams
and then applies a Latent Dirichlet Allocation (LDA) based approach (inspired by
natural language processing) to identify keywords. It computes the probability dis-
tribution of a keyword over n-grams instead of extracting actual keywords. Given
the identified keywords and their corresponding probabilities, the Information Bot-
tleneck (IB) algorithm is then used to cluster the messages. Finally, it infers the
message format for each cluster using sequence alignment. Due to the difference
between natural languages and machine-generated languages (i.e., messages that
are transferred between programs), directly applying LDA causes the inaccuracy of
ProDecoder in message clustering. Often, different types of messages are put into a
single cluster, consequently leading to format over-generalization.

Summary: The above approaches cluster messages based on the similarity among
the keyword sequences and then infer the format for each cluster. But, the inac-
curacy of keyword extraction leads to incorrect classification of messages. These
approaches extract a large number of false keywords (payloads) especially from the
messages containing repetitive patterns and missed actual keywords that are short
in length and covered by longer keywords. Due to those inaccurate keywords, these
techniques either create more clusters than the actual number of clusters or mixes
multiple types of the message into a single cluster, which leads to improper classi-
fication of messages. Therefore, they infer imprecise formats of the messages and
the approaches are not effective in separating payloads from the message keywords.
Moreover, the response messages in services usually contain repetitive sequence of
message keywords and payloads. Therefore, payloads appear more frequently com-
pared to the message keywords in the response messages. As such, more inaccurate
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keywords can be extracted by the above techniques, which leads to imprecise mes-
sage clustering and format inference.

3.4 Service Behavior Inference
Another key requirement of our thesis is to discover the behavior of the service from
the message traces. The service behavior consists of the dependency relationships
between messages and between message fields. So that our approach can generate
more accurate responses by utilizing the inferred dependency relationships (between
messages and between message fields) in formulating responses. We consider two
types of dependency relationships in the service behavior model: i) message de-
pendency to express the dependency relationships among messages, and ii) data
dependency to characterize the relationships between message fields. To the best of
our knowledge, there have been no direct research works on inferring such dependen-
cies among request and response messages. As such, we discuss the existing research
works on inferring the control dependency from the system logs4 to express a valid
sequence of method calls and the data dependency in the following sub-sections.

3.4.1 Control Dependency Model
This section discusses the related works about inferring the control dependency
model from the system logs that describes the valid sequence of inter-component
method calls. Existing research on inferring such model can be classified into two
categories according to the types of model inferred: i) automaton based [76, 77,
78, 79, 80, 81, 82, 83], and ii) non-automaton based, i.e., temporal rule mining
approaches [84, 85, 86, 87].

3.4.1.1 Automaton Based Techniques

A number of techniques have been proposed to derive the control dependency model
from the system logs, which is used to validate the software system and monitor
network applications including intrusion detection and prevention, traffic normal-
ization etc. The model is inferred either in the form of Finite State Automata (FSA)
[77, 79, 88, 83, 89] or in the form of Graph [80, 76, 82, 81], where states/nodes rep-
resent the method invocation and edges/transitions represent valid sequencing of

4System logs contain information about events that are happened during the execution of the
system, whereas traces may contain input data to the system or the captured interactions between
the system and a client.
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method invocations. Most of the model inference works consider the method invo-
cation sequence only, while a few of them incorporate data-flow information along
with the method invocation sequences with aim to represent the behavior of the
system more accurately. We present the existing research works on inferring the
control dependency model of each of these categories in turn.

Method sequence only: A number of techniques infer the control dependency
model from the observed method invocation sequences in the system logs, which is
used to validate the system. kTail [77] is the most basic algorithm for inferring such
model from the logs. It builds a prefix tree acceptor (PTA) from the logs by creating
an individual state for each event (i.e., method) in the logs. Then, it merges the
equivalent states based on their future states. The states are considered as equivalent
based on their k-tails states. Two states with the same k-future are considered as
k-equivalent states. But, such state merging leads to an imprecise model as the
states can be different in their distant future even if they are similar in the next
future [90, 83]. kSteering [79] refines the state merging with the inferred temporal
rules to improve the precision of the model. It mines the future-time [91, 92] and
past-time [93] temporal rules from the traces and utilizes the inferred rules to “steer”
the inference of the model and consequently, increase the precision of the inferred
model.

Synoptic [80, 76], Perfume [81], and CSight [82] infer control dependency models
from the system logs to capture the behavior of a system in the form of Graph. All
these approaches create an initial coarse-grained model by creating only one node
for each event (i.e., method) instead of creating multiple nodes in a different path for
each trace. These techniques use the CEGAR [94] approach to refine the model by
utilizing the mined temporal invariants from the input traces. Synoptic mines three
types of temporal invariants: i) “always followed by”, “never followed by” and “al-
ways precedes by” compared to the past-time and future-time temporal rules in [79]
to increase the precision of the inferred model. Synoptic uses the BisimH algorithm
for refinement which starts with the initial model (compact) until it satisfies all the
invariants mined from the trace graph (union of traces). The initial model is built
by simply merging the same states of the trace graph, i.e., every state will appear
once in the initial model. The resulted model accepts all sequences of method calls
that are present in the logs and may accept method invocation sequence that was
not present in the logs. Each of the inferred invariants is converted into a small FSM
using the BisimH algorithm that accepts the method invocation sequence satisfying
the invariant and then the FSM is traversed to update the graph. The model checker
returns a counterexample path if an invariant is not satisfied in the model graph.
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After refinement, multiple partitions of the graph can be combined by preserving
the invariants. Finally, the model graph is coarsened using the kTail algorithm
with k=0. The model inferred by Synoptic satisfies the temporal properties that
improved developer confidence in the correctness of their systems and were useful
for finding bugs [95]. Perfume [81] extends Synoptic [80, 76] to include the resource
utilization information in the system model to understand the system behavior and
resource use explicitly. System logs may contain how much memory each method
consumes, how much time taken to execute each method, etc. The inferred model
using Perfume encodes those resource usage information to improve program analy-
sis and software processes. Different from the above approaches, CSight [82] mines
the logs of a concurrent system and infer the behavior of the system in the form of
communicating finite state machine (CFSM). It infers the model for a concurrent
system from the logs that satisfy the happens-before relation [96] and the inferred
model can be used in debugging and verifying the concurrent systems.

Summary: These approaches are useful to infer the system’s control dependency
model as a sequence of method calls from the system logs. The inferred models
summarize and generalize the inter-component method calls to support debugging
and verifying the system [79]. The system logs contain the execution sequence of
methods of each component of a system. As such, the inferred models from the
logs are used to identify errors or incorrect order of method invocations in the
system. Therefore, the newer techniques use more stricter generalization rules, i.e.,
preventing imprecise state merging, using the mined temporal invariants to preserve
the observed method invocation sequence in the logs.

These techniques are useful for determining the dependencies between messages.
But, none of the above techniques is dedicated to predicting the response for the
incoming request. Moreover, the proposed approaches only consider the method
invocation sequence to infer the system model and ignore the complex interplay
between the data values and the methods/requests. In the service context, the data
values play an important role in determining the type of responses to send for the
incoming requests.

Data-flow information with method sequence: Several techniques consider the
data value with the method invocation sequence in model inference to represent the
behavior of the system more precisely.

The gkTail algorithm [78] infers the model as Extended Finite State Automata
(EFSA) from the system logs and the source code. The inferred model incorporates
both the event/method sequences and the data values. The transition in EFSA is
annotated by algebraic constraints. At first, it merges similar traces which share the
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same event sequence but differ on the value assigned to parameters. Then, it mines
the algebraic constraints from the value assigned in transitions and builds a PTA
where edges/transitions are annotated with constraints. Finally, states with the
same future of k-length are merged. CONTRACTOR++ [83] infers FSA from the
execution traces 5 using the inferred state invariants (value-based invariants) 6. It
runs Daikon [97] to infer the program state invariants from the execution traces and
then runs CONTRACTOR [89] to infer the FSA from the inferred invariants. State-
enhanced k-tails (SEKT) [83] is another algorithm to infer FSA from the value-based
invariants. Similar to CONTRACTOR++, it infers value-based invariants from the
execution traces by running Daikon and then it applies the modified kTail [77] to in-
fer the FSA by utilizing the inferred invariants. Different from the traditional kTail,
SEKT allows merging the states only if states share the same value-based invariants
in addition to the same k-future. Trace-enhanced MTS (Modal Transition System)
Inference (TEMI) [83] is another algorithm to infer the FSA from the value-based
invariants that represent the method invocation sequence of a system. Unlike CON-
TRACTOR++, TEMI prevents imprecise state merging based on the invariants.
It runs CONTRACTOR++ in the first phase to infer the FSA with maybe transi-
tions. Then, TEMI converts the maybe transitions to required transitions based on
the observed transitions in the execution traces.

Specforge [88] is an approach to synergize the models from the different miners
with the aim to increase the precision of the inferred model as the existing FSA
inference techniques require improvement to make them practicable. It constructs
N models from N different FSA inference techniques and then unifies these FSAs
into a single model through model fission and model fusion. The FSAs are decon-
structed as a list of constraints (temporal logic) between events/methods, i.e., a set
of Linear Temporal Logic (LTL) constraints [98]. Then, the SPIN model checker
[99] is used to remove invalid LTLs, i.e., LTLs that are rejected by the FSA. A sub-
set of LTL is selected from the list of LTLs that are extracted from all FSAs using
four heuristics (i.e., union, majority, satisfied by, intersection). Each of the selected
LTL is converted into a simple FSA and finally, Specforge combines the FSAs into
a unified FSA in the model fusion stage.

An empirical study between techniques that infer a simple model and techniques
that infer an extended model with information about data-values shows that adding
data values with operations does not compromise the quality of the inferred model

5The execution trace includes detailed information about the actual parameter and the return
value for each method.

6State invariants consist of method pre- and post-conditions and object invariants. Such invari-
ants indicate which method can execute in a particular state
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and the inferred model can represent the behavior of the actual system more accu-
rately [100].

Summary: These approaches capture the relationship between data values and
the method sequence. Therefore, the inferred model using these techniques can
represent the behavior of the system more accurately compared to the model con-
sidering method invocation sequence only. These techniques instrument the source
code to include the effect of data values in the method invocation sequence in the
FSA. But, such access to the application program limits their applicability to infer
such kind of dependency model where access to the application program is not pos-
sible. As such, these techniques are not directly applicable in service virtualization
as only interactions between a client and the actual service are accessible and the
source code that implements the underlying services is unavailable.

3.4.1.2 Temporal Rule Mining Approaches

In this section, we discuss the existing research works about temporal rules mining
which capture constraints that a system under analysis must follow. Yang et al.
proposed a technique for inferring temporal rules automatically by analyzing the
execution traces [85]. To infer temporal properties, it instruments the target pro-
gram by inspecting entry and exit points of each method. The execution traces are
collected through running the instrumented program with a test dataset. Then, the
candidate temporal rules are instantiated and the satisfaction ratio for each candi-
date pattern is computed from the execution traces. The candidate temporal rules
with the strongest satisfaction ratio are selected as temporal invariants. Finally,
the inferred temporal invariants are validated through a model checker or manual
inspection. Ernst et al. proposed an approach to discover invariants, along with
instrumentation named Daikon [84]. It instruments the source code and writes the
variable values to the file for inferring the invariants. The file contains a set of values
for every instrumented place (i.e., at the beginning, loop head and end, and method
start). A set of candidate invariants are detected through a range of testing, e.g., a
single variable is tested against its values and multiple variables are tested for iden-
tifying relationships among them. Finally, the invariants having higher confidence
than specified by the user are selected as the temporal invariants.

The technique proposed by Henkel et al. discovers algebraic specifications [86]
from the source code implemented in object-oriented languages such as Java [87]. It
infers the method signature from the source code and infers algebraic specification
in the form of axiom to characterize the behavior of the implementation.

Summary: These approaches infer invariants from the program code to verify
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the correctness of the software or program. The objectives of these techniques are
verifying, debugging the code, while the objective in this thesis is to emulate the
services. However, the inferred temporal rules using these techniques are useful in
refining the control dependency model.

3.4.2 Data Dependency Model
In a service environment, the generated responses for the incoming request messages
usually contain payloads. The payloads for some of its fields may directly depend
on the corresponding request message or the sequence of preceding messages. A
data dependency model can be used to represent such kind of correlations among
message fields. Therefore, the service models can generate responses with appropri-
ate payloads for the incoming requests by utilizing such relationships. This section
presents the related works about finding correlations among message fields.

The existing research works on virtualizing stateless services [2, 11, 10, 9] find
symmetric fields, i.e., message fields that share the same value in the request and
corresponding response messages. With the identified symmetric fields, these tech-
niques substitute the data values in the synthesized responses with the data values
in the incoming request. This substitution ensures that the generated responses
contain the same payloads as in the request message. The techniques proposed in
[101, 102, 103] identify the message id field in the request messages through ana-
lyzing the data-values of the message fields across messages. The message fields are
first checked for numeric test and if any such numeric field found, the data values
of that field across the messages are checked whether the values are increasing or
decreasing sequentially. PRISMA (Protocol Inspection and State Machine Analysis)
[104] extracts a few correlations among message fields in the messages. It extracts
the exact/matched fields, i.e., fields that contain the same value in both the request
and corresponding response messages, partially matched fields, i.e., a part (front or
back) of a field value from the request message is present in the response messages
with or without separators.

Summary: The existing approaches of identifying the correlations among mes-
sage fields are useful in generating responses with appropriate payloads in such
correlated fields. In a service virtualization environment, the response message usu-
ally contains two types of payloads: i) message describing fields that describe the
message itself and ii) record-specific fields that describe a record or an object man-
aged by the service. Among message-describing fields, some of the fields may contain
the same payloads in both the request and corresponding response messages. Ef-
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forts in identifying symmetric field [2, 11, 10, 9] and PRISMA [104] are dedicated
to identify such message-describing fields from the messages. Therefore, the sym-
metric fields are identified from the matched interaction (i.e., one interaction only)
by comparing the request and corresponding response messages. But, the extracted
symmetric field correlations are not verified with the rest of the interactions and
hence, an invalid correlation can be extracted that stands only for the matched
interaction. Moreover, the message structure is not considered in extracting such
correlations, which leads to synthesizing incorrect responses for the incoming request
at times. On the other hand, PRISMA considers the message structure in finding
such message-describing fields. But, it does not consider different types of messages
having different formats. Moreover, the payloads for the record-specific fields may
appear or change in preceding interactions.

3.5 Response Generation
The “virtual” services emulate the actual services through generating responses for
the incoming request messages. We already have reviewed the existing service vir-
tualization works, which generate responses for the incoming requests. In addition,
there are some other research works that generate responses for different purposes,
e.g., detecting malware variant in network intrusion detection systems and prevent-
ing the spam email for spreading.

ScriptGen [102, 103] is a tool that generates “replay” for incoming requests
through finding and updating certain fields of the recorded responses. It uses a
byte-wise statistical analysis followed by the Needleman-Wunsch [15] algorithm to
group similar messages into clusters. It then builds a state machine based on the
sequence of messages observed in the trace. The edge represents incoming request
messages and node represents response messages. The sequence alignment algorithm
is applied to response messages for finding similar response messages and then the
nodes having similar response messages are merged. Finally, a honeyd-compatible
script is generated from the state machine to emulate the behavior of the protocol.

RolePlayer [101] is another tool to mimic the server behavior through generating
“replay” for the incoming requests with the aim to detect malware variants. It parses
the messages and finds the dynamic fields (i.e., IP address, hostname) through
aligning message pairs. It utilizes the knowledge of syntactic conventions of fields
(e.g., IP address contains “dotted quads”) and contextual information (e.g., domain
names) in finding the dynamic fields. Once the dynamic fields have been identified,
it uses a single message as a template and inserts the data values in the template
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for the dynamic fields in generating a replay.
Summary: These approaches utilize sequence alignment to generate the replay

for the incoming requests and able to emulate the server/protocol behavior. How-
ever, RolePlayer does not consider the dependency relationship between messages in
generating replay. Hence, it is not particularly useful in emulating services in virtual-
ization environments where responses depend on the previous sequence of messages.
On the other hand, the state machine inferred by ScriptGen is too simple in terms
of emulating services to provide a suitable testing environment for the SUT. For ex-
ample, it does not consider that a request can generate different types of responses
at different times. Moreover, the responses usually contain some payloads. None of
these techniques consider the generation of payloads for the synthesized responses.
As such, these approaches are limited for the purpose of generating responses in the
context of service virtualization.

3.6 Summary
In this chapter, we have reviewed the existing research efforts that relate to service
virtualization. We have investigated the traditional testing frameworks to support
the testing of an enterprise system. Although the traditional techniques facilitate
testing by replicating resources or mocking interaction behaviors, they are unable
to provide a scalable and realistic testing environment for an enterprise system. We
also have reviewed the existing service virtualization techniques and found their
limitations in virtualizing stateful services as they did not consider the service state
in formulating responses. We have also discussed the current state of the art in
extracting formats of the messages. Although the existing techniques groups mes-
sages having the same type of messages in a single cluster and infer formats for each
cluster, they have limitations. We have reviewed the existing control dependency
model inference techniques and identified their limitations in inferring such model
in emulating services. None of the control dependency model inference technique
considers predicting responses for the incoming requests and does not consider the
interplay between payloads and the messages. We also have analyzed the existing
techniques for extracting data dependency model and none of them consider the
message structure in extracting such dependency among message fields, which leads
to identifying imprecise dependency relationships. Finally, we have reviewed the ex-
isting research works on generating responses for the incoming requests. It reveals
the in-capabilities of the existing works in generating a response in a service virtu-
alization environment as they did not consider different types of responses for the
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different types of requests and even for the same request at different times. More-
over, the generation of payloads has not been considered in synthesizing responses.
This review, did not find any research works that capably deal with stateful ser-
vice virtualization, i.e., considering the service state in generating responses for the
incoming request messages.
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Chapter 4

Format Extraction for Request Messages

In the previous chapter, we have identified the research gaps based on the key
requirements of virtualizing services, especially emulating stateful services. In this
chapter, we present our approach to fulfilling one of the key requirements, i.e., infer
the formats of the request messages to identify different types of requests and to
separate the message keywords from the payloads. We identify the request type field
of messages based on the observation that the request type field has lower variations
compared to other fields and the messages of the same request type have the lowest
dissimilarity between them. Then, the interactions are grouped into clusters based
on the values of request type field and finally, the request message formats are
inferred through extracting the type-specific keywords from the request messages
and identifying the keyword pattern across the request messages in a cluster.

The rest of the chapter is organized as follows: In Section 4.1, we present the de-
tails of our approach to infer the request message formats from the request messages
after giving an overview of the approach. Experimental results on several services
and applications are reported in Section 4.2. Section 4.3 discusses the assumptions
and limitations of our approach. Finally, we summarize this chapter in Section 4.4.

4.1 Approach
The target of our approach is to infer accurate formats for the request messages to
separate the keywords from the payloads i.e., to extract the message structure from
the request messages. The key to achieving this goal is the ability to (i) accurately

Note that this chapter is the detailed version of the work presented in [105].
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Figure 4.1: Overview of Request Format Extraction Approach

separate the interactions into request-type based clusters and (ii) accurately identify
the keywords for each type of request message. The motivation behind our approach
is that the request messages contain a field to indicate the request type, different
types of request messages usually have a different number of keywords, and the
keywords themselves differ from request message to request message. The request
messages are clustered based on the observation that the request type field has the
least variation across all request messages compared to the other fields and accurate
clustering has the lowest dissimilarity among the request messages in a cluster. Then
the request messages from the clustered interactions allow us to extract request
type-specific keywords from the request messages and, hence, infer request message
formats for each cluster.

Figure 4.1 shows the overview of our approach that includes three major steps:
interaction clustering, keyword identification, and format extraction. In the first
step (interaction ilustering), we group all interactions in an interaction trace into
different request-type based clusters with the aim to have each cluster containing
the interactions of one request type only. To do so, we first identify those parts of
the request messages that are common to all request messages, i.e., the Common
Request Message Template. We then identify the request type field by stripping
away the common parts and identifying the next level of least varying part across
all request messages as the request type field. Finally, we divide the interactions into
clusters according to the values of the request type field.

In the second step (keyword identification), we identify the message keywords
from the request messages of each cluster, which are the constant parts across the
request messages in that cluster (in contrast to their variable payload fields). We
first break the request messages down into words of different lengths and select those
words that have high frequency across the request messages in the cluster (according
to a threshold) as candidate keywords. Then, we remove those candidate keywords
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that are primarily parts of other candidate keywords and are not keywords on their
own, resulting in the set of (true)keywords for the given cluster.

In the third step (format extraction), we convert each message in a cluster into
a sequence of keywords with the aim to infer format through generalizing the key-
word sequence across all messages in a cluster. Each request message in a cluster is
first converted into a sequence of alternating keyword and payload fields (i.e. Tok-
enization), using the keywords identified in the previous step. Then, we apply the
Synoptic tool [76] to infer the request message format for the cluster in the form of
a finite state machine (FSM), and finally convert it into a regular expression.

Table 4.1 shows an example interaction trace collected by intercepting the com-
munication between a client and the CA Identity Manager (IM) [1] service, which
will be used to illustrate the detail of our approach to inferring the request mes-
sage formats in the following sub-sections. The CA Identity Manager (IM) [1] is an
enterprise-grade identity management service to manage the digital identity of the
personnel of a large organization and to control the access of their resources. It uses
the Light Weight Directory Access Protocol (LDAP) [20] to add and manage the
user accounts. As Table 4.1 shows, the server does not send any response message
for the Unbind request message as it is used to indicate that the client wants to
disconnect from the server.

Table 4.1: Example Interaction Trace

No. Interactions

1
Req

LDAP Bind Request Message ID: 1 LDAP Bind Request Protocol Op LDAP

Version: 3 Bind dn: cn=admin,dc=ca,dc=com Authentication Data: Au-

thentication Type: Simple Bind Password: 1228013670

Resp
LDAP Bind Response Message ID: 1 LDAP Bind Response Protocol Op Result

Code: 0 (Success)

2
Req

LDAP Add Request Message ID: 2 LDAP Add Request Protocol Op

dn: cn=Dominic MAJOR,ou=Finance,ou=Corporate,dc=ca,dc=com mail: Do-

minic.MAJOR@ca.com mobile: 6017515 description: Customer Service ob-

jectClass: inetOrgPerson title: Administrative Operator sn: MAJOR

cn: Dominic MAJOR

Resp
LDAP Add Response Message ID: 2 LDAP Add Response Protocol Op Result

Code: 0 (Success)
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Table 4.1 Continued: Example Interaction Trace

No. Interactions

3
Req

LDAP Add Request Message ID: 3 LDAP Add Request Protocol Op

dn: cn=Susana LOW,ou=Management,ou=Corporate,dc=ca,dc=com mail: Su-

sana.LOW@ca.com mobile: 6726920 description: Customer Service ob-

jectClass: inetOrgPerson title: Applications Administrator sn: LOW

cn: Susana LOW

Resp
LDAP Add Response Message ID: 3 LDAP Add Response Protocol Op Result

Code: 68 (Entry Already Exists)

4
Req

LDAP Add Request Message ID: 4 LDAP Add Request Protocol Op

dn: cn=Dominic RAYMOND,ou=Record,ou=Customer,dc=ca,dc=com mail: Do-

minic.RAYMOND@ca.com mobile: 6817147 description: Applications Ad-

ministrator objectClass: inetOrgPerson title: Customer Service sn:

RAYMOND cn: Dominic RAYMOND

Resp
LDAP Add Response Message ID: 4 LDAP Add Response Protocol Op Result

Code: 32 (No Such Object) Matched DN: ou=Customer,dc=ca,dc=com

5
Req

LDAP Search Request Message ID: 5 LDAP Search Request Protocol Op Base

DN: cn=Dominic RAYMOND,ou=Record,ou=Customer,dc=ca,dc=com Scope: 0

(baseObject) Deref Aliases: 3 (derefAlways) Size Limit: 0 Time Limit:

0 Types Only: false Filter: (objectClass=*) Attributes:

Resp

LDAP Search Result Done Message ID: 5 LDAP Search Result Done

Protocol Op Result Code: 32 (No Such Object) Matched DN:

ou=Customer,dc=ca,dc=com

6
Req

LDAP Search Request Message ID: 6 LDAP Search Request Protocol Op

Base DN: ou=Finance,ou=Corporate,dc=ca,dc=com Scope: 1 (singleLevel)

Deref Aliases: 3 (derefAlways) Size Limit: 0 Time Limit: 0 Types Only:

false Filter: (objectClass=*) Attributes:

Resp

LDAP Search Result Entry Message ID: 6 LDAP Search Result Entry Proto-

col Op dn: cn=Clive BRANCH,ou=Finance,ou=Corporate,dc=ca,dc=com cn:

Clive BRANCH mail: Clive.BRANCH@ca.com mobile: 6312753 description:

Design Administrator objectClass: inetOrgPerson title: Financial

Economist sn: BRANCH LDAP Search Result Done Message ID: 6 LDAP Search

Result Done Protocol Op Result Code: 0 (Success)
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Table 4.1 Continued: Example Interaction Trace

No. Interactions

7
Req

LDAP Search Request Message ID: 7 LDAP Search Request Protocol Op Base

DN: ou=Construction,ou=Projects,dc=ca,dc=com Scope: 1 (singleLevel)

Deref Aliases: 3 (derefAlways) Size Limit: 0 Time Limit: 0 Types

Only: false Filter: (objectClass=*) Attributes:

Resp

LDAP Search Result Entry Message ID: 7 LDAP Search Result Entry Pro-

tocol Op dn: cn=Eddy BRYCE,ou=Construction,ou=Projects,dc=ca,dc=com

cn: Eddy BRYCE mail: Eddy.BRYCE@ca.com mobile: 5940538 descrip-

tion: Software Consultant objectClass: inetOrgPerson title: Com-

munications Services Co-ordinator sn: BRYCE LDAP Search Result

Entry Message ID: 7 LDAP Search Result Entry Protocol Op dn:

cn=Gwen HUNTER,ou=Construction,ou=Projects,dc=ca,dc=com cn: Gwen

HUNTER mail: Gwen.HUNTER@ca.com mobile: 6340642 description: Re-

sponse Engineer objectClass: inetOrgPerson title: Purchasing Con-

sultant sn: HUNTER LDAP Search Result Done Message ID: 7 LDAP Search

Result Done Protocol Op Result Code: 0 (Success)

8
Req

LDAP Search Request Message ID: 8 LDAP Search Request Protocol Op

Base DN: ou=Training,ou=Human Resources,dc=ca,dc=com Scope: 1 (sin-

gleLevel) Deref Aliases: 3 (derefAlways) Size Limit: 0 Time Limit: 0

Types Only: false Filter: (objectClass=*) Attributes:

Resp

LDAP Search Result Entry Message ID: 8 LDAP Search Result En-

try Protocol Op dn: cn=William SIMPER,ou=Training,ou=Human Re-

sources,dc=ca,dc=com cn: William SIMPER mail: William.SIMPER@ca.com

mobile: 6813842 description: Computing Officer objectClass: inetOrg-

Person title: Consulting Technician sn: SIMPER LDAP Search Result En-

try Message ID: 8 LDAP Search Result Entry Protocol Op dn: cn=Joseph

GRIMES,ou=Training,ou=Human Resources,dc=ca,dc=com cn:Joseph GRIMES

mail: Joseph.GRIMES@ca.com mobile: 6953740 description: Training Of-

ficer objectClass: inetOrgPerson title: Industrial Clerk sn: GRIMES

LDAP Search Result Done Message ID: 8 LDAP Search Result Done Protocol

Op Result Code: 0 (Success)

9
Req

LDAP Search Request Message ID: 9 LDAP Search Request Protocol Op Base

DN: ou=Industrial Relations,ou=Customer,dc=ca,dc=com Scope: 1 (sin-

gleLevel) Deref Aliases: 3 (derefAlways) Size Limit: 0 Time Limit: 0

Types Only: false Filter: (objectClass=*) Attributes:
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Table 4.1 Continued: Example Interaction Trace

No. Interactions

Resp

LDAP Search Result Entry Message ID: 9 LDAP Search Re-

sult Entry Protocol Op dn: cn=Brad DUFFY,ou=Industrial

Relations,ou=Customer,dc=ca,dc=com cn: Brad DUFFY mail:

Brad.DUFFY@ca.com mobile: 8219206 description: Hardware Sup-

port objectClass: inetOrgPerson title: Acting Engineer sn: DUFFY

LDAP Search Result Done Message ID: 9 LDAP Search Result Done Protocol

Op Result Code: 0 (Success)

10
Req LDAP Unbind Request Message ID: 10 LDAP Unbind Request Protocol Op

Resp

4.1.1 Interaction Clustering

The purpose of this step is to identify the request type fields in the request mes-
sages of the interaction trace, and cluster the interactions according to the request
type. For the example interaction trace in Table 4.1, the interactions should be
clustered into four different groups according to their request types, that is, one
group for each of the request types (highlighted in bold): Bind, Add, Search, and
Unbind.

In most existing approaches, messages are clustered according to multiple mes-
sage fields (keywords) and their co-occurrence relationships in a message [53, 55, 58,
73, 74, 106]. Based on this observation, we further utilize the fact that each request
message has a field that defines the request type, e.g., the message field containing
Bind, Add, Search, or Unbind in Table 4.1. Therefore, in this step, we focus on iden-
tifying this request type field before using its values to cluster the interactions. It
involves two major sub-steps. First, we identify the common message template for
request messages that contain all message fields that are common to all request mes-
sages. These common message fields are to be excluded from consideration in the
next sub-step, as they cannot be used to differentiate the different types of request
messages. Second, we identify the specific message field that contains the request
type and then use it to cluster the interactions. The overall clustering algorithm is
shown in Algorithm 1 and is further discussed in detail below.
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Algorithm 1: Interaction Clustering

1: Input: threshold T, message set M, wildcard character W
2: Initialize: field extractor set regex = ∅, entropy set entropy = ∅, dissimilarity

set d = ∅, message clusters clusters = ∅
3: P ← GenerateMessageTemplate(M) based on [11]
4: for i ∈ {1, . . . , length(P )} do
5: if (P (i) = W ) then
6: for j ∈ {i+ 1, . . . , length(P )} do
7: if P (j) 6= W then
8: P (i..j − 1)← (.∗?)
9: break
10: end if
11: end for
12: end if
13: end for
14: temp← Split(P, (.∗?))
15: for i ∈ {1, . . . , |temp| − 1} do
16: regex← regex ∪ Concat (temp(i), (.∗), temp(i+ 1))
17: end for
18: for i ∈ {1, . . . , |regex|} do
19: values(i)← ∅
20: for m ∈M do
21: val ←Extract(m, regex(i))
22: if IsEmpty(val) then
23: values(i)← ∅
24: break
25: end if
26: values(i)← values(i) ∪ {val}
27: end for
28: entropy(i)← CalcEntropy(values(i)) from Eq. (4.2)
29: end for
30: for i ∈ {1, . . . , |entropy|} do
31: if entropy(i) ≤ T then
32: clusters(i)←GetClusters(values(i),M, regex, i) from Eq. (4.3)
33: d(i)← DissimIndex(clusters(i)) from Eq. (4.4)
34: end if
35: end for
36: typeIndex← arg mini{d}
37: Return clusters(typeIndex)
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Request Template Generation

The purpose of this step is to generate a common template from the request mes-
sages with the aim to separate the variable and fixed message fields. In this sub-step,
at line 3 of Algorithm 1, we identify the common request template that captures
all those message fields that appear in every request message. These common mes-
sage fields cannot be used to differentiate different types of request messages and
are, therefore, excluded from further consideration. We adopt the message template
generation technique from [11] to identify the common fields. It uses the multiple
sequence alignment (MSA) technique [107] and inserts gaps (denoted by the ‘♦’
symbol) into the messages during the alignment process, to obtain the MSA profile.
For example, Figure 4.2 shows the character frequencies in the alignment result for
the example interaction trace in Table 4.1 
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Figure 4.2: Character Frequencies in the Alignment Result

Then, the common request message template, P, which contains all the common
message fields across all request messages, is calculated by iterating through each
byte position of the MSA profile, and calculating a template symbol, pi, at that
position using the following Equation [11]:

pi =


ci, if q(ci) ≥ f ∧ ci 6= ♦

⊥, if q(ci) ≥ 1
2 ∧ ci = ♦

#, otherwise
(4.1)

where ci is the consensus symbol at position i, q(ci) denotes the relative frequency
(over the number of messages) of the consensus symbol ci (i.e. the symbol with
the highest frequency count at that position across all request messages), f the
relative frequency threshold, ‘♦’ the gap symbol, ‘#’ the wildcard symbol, and ‘⊥’
the truncation symbol. After a template symbol is calculated for each position, all
truncation symbols are deleted from the common message template, as each of them
represents a position filled with mostly gaps. The common request template then
contains two categories of symbols: the consensus symbol with frequency above the
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threshold at the given position, and the wildcard symbol at other positions that do
not have a consensus symbol above the threshold. With a threshold of or close to 1.0,
the message template contains the message fields common to all request messages,
separated by the wildcard symbol.

By applying this method with a frequency threshold f = 0.80 (as described
in [11]), for example, the following common request template is generated for the
request messages given in the Table 4.1 (please note that the space character is
shown as ‘ ’):
LDAP ###### Request Message ID: # LDAP ###### Request Protocol Op ##:

##=###################,dc=ca,dc=com ####: #################

Request Type Identification and Clustering

The purpose of this step is to identify the request type by analyzing the vari-
able portions of the common request template. In this sub-step, we consider only
those parts of the request messages that are not included in the common template
to identify the request type field. In doing so, we utilise the observation that a
service supports a limited number of request types, and thus the request type field
has lower variation than other fields across the request messages. To identify the
request type field, we need to extract the actual values of the non-common message
fields for all request messages. From line 4 to 13 in Algorithm 1, we first replace
each variable field in the common message template (i.e., those fields containing
consecutive wildcard symbols) with the pattern (.*?). Then, in line 14, we split
the modified common message template into a sequence of the fixed (or common)
and variable fields. From line 15 to 17, we generate field extractors in the form of
regular expressions by merging every variable field with its two surrounding fixed
fields. With the above example common template, for example, Table 4.2 shows the
generated field extractors using Algorithm 1 (lines 4 to 17 ).

Now, we extract the actual data values for each variable field using each of the
field extractors in Table 4.2. With lines 18 to 27 in Algorithm 1, for each of the
field extractors, we extract all the values of its corresponding variable field across
all request messages. For example, Table 4.3 shows the extracted values (separated
by ‘,’) from the example interaction trace (Table 4.1) using the field extractors in
Table 4.2.

After extracting all the variable field values, we exclude some of the fields from
further consideration based on the values for the fields. As Table 4.3 shows, some
request messages contain null or empty value for certain message fields in Table
4.2 and therefore, those fields are excluded as the value for the request-type field
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Table 4.2: Inferred Field Extractors

Field No. Field Extractors
1 LDAP (.*?) Request Message ID:

2 Request Message ID: (.*?) LDAP

3 LDAP (.*?) Request Protocol Op

4 Request Protocol Op (.*?):

5 : (.*?)=

6 =(.*?),dc=ca,dc=com

7 ,dc=ca,dc=com (.*?):

8 : (.*?)$

Table 4.3: Extracted Values for Message Fields

Field No. Values
1 Bind, Add, Add, Add, Search, Search, Search, Search, Search, Unbind

2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

3 Bind, Add, Add, Add, Search, Search, Search, Search, Search, Unbind

4 LDAP Version, dn, dn, dn, Base DN, Base DN, Base DN, Base DN, Base DN,

5 cn, cn, cn, cn, cn, ou, ou, ou, ou,

6 admin, Corporate, Corporate, Customer, Customer, Corporate, Projects,
Human Resources, Customer,

7 Authentication Data, mail, mail, mail, Scope, Scope, Scope, Scope,
Scope,

8

1228013670, Dominic MAJOR, Susana LOW, Dominic RAYMOND, (object-
Class=*) Attributes:, (objectClass=*) Attributes:, (objectClass=*) At-
tributes:, (objectClass=*) Attributes:, (objectClass=*) Attributes:,
10 LDAP Unbind Request Protocol Op

can not be null or empty. For example, req#10 does not contain any value for
the fourth message field (Table 4.2) and hence, the fourth field is excluded to be
considered as request type field. Similarly, we exclude the fields 5, 6 and 7 from
further consideration. After that, we calculate the randomness or entropy of the
values for the remaining fields using the Shannon Index entropy H(i) [108] in line
28 of Algorithm 1.

H(x) = −
R∑
i=1

Pr(i)× ln(Pr(i)) (4.2)

where H(i) is the Shannon entropy for the values of the i-th variable field and
is between 0 (constant) and ln(n) (perfectly random), where n is the number of
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distinct values of the variable field, Pr(j) is the probability or relative frequency of
j-th distinct field value in the value set. For example, Table 4.4 shows the entropy
and the number of distinct values of the remaining message fields (i.e., four fields),
where a lower entropy value indicates a more stable variable message field.

Table 4.4: Entropy of the Example Dataset in Table 4.1

Field No. Entropy No. of distinct values
1 1.17 4
2 2.30 10
3 1.17 4
8 1.50 6

Table 4.5 reports the entropy for one of the evaluation datasets, a more compre-
hensive dataset (LDAP) as the example interaction trace (Table 4.1) contains only
10 interactions and does not show reasonable variations among message fields.

Table 4.5: Entropy of LDAP Dataset in Section 4.2.1

Field No. Entropy No. of distinct values
1 1.80 8
2 4.84 231
3 1.80 8
4 4.98 311
5 5.44 2066

With the observation that the request type field has the least data variation
among all the variable fields, we select the variable field that has the least entropy
(variation) as the request type field to be used for interaction clustering. However,
there may be service protocols where certain message fields may have even less
variability than the request type field. For example, some messages in a particular
protocol may have a field that can take either “SUCCESS” or “FAIL” as possible values.
To include the actual request type field for consideration, we select a number of
candidate (request type) fields that have the relatively lowest variations, by choosing
an entropy threshold (line 31 of Algorithm 1). Based on an examination of common
service protocols, we set the entropy threshold to 3.40, which allows maximum 30
variations in request type fields.

We further stipulate that the most accurate clustering has the lowest dissimilarity
among the request messages in a cluster. Hence, we cluster the interactions according
to the distinct data values of each of the candidate fields (line 32 of Algorithm 1).
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Equation 4.3 defines the method for separating the interaction set M into clusters.

GetClusters(V,M, regex , i) ={cj|j = 1..|V |}

where cj ={m|∀m ∈M∧

Extract(regex ,m)i = Vj}

(4.3)

where V is the vector of possible values for the ith field extracted using the regular
expression regex .

We then calculate the dissimilarity among request messages for each clustering
outcome (line 33 ), and choose the clustering outcome with the lowest dissimilarity
(lines 36 and 37 ). The dissimilarity index for the clusters of each candidate field is
calculated according to mean cluster dissimilarity given in Equation 4.4.

DissimIndex(C ) = 1
|C|

∑
ci∈C

∑
m1∈ci

∑
m2∈ci

∆(m1,m2, wM)

|ci|2
(4.4)

where C is a set of interaction clusters, ∆ is the entropy weighted Needleman-
Wunsch edit distance [15], and wM is the vector entropy weights calculated for
request message set M = ⋃

ci∈C
ci using the method of [10].

For the LDAP example trace given in Table 4.1, the chosen request type field
is the first variable field1, which contains the field values of Bind, Add, Search, and
Unbind, and has the lowest entropy for field values and the lowest dissimilarity for its
clusters, respectively. Table 4.6 shows the clustering result of interactions in Table
4.1

Table 4.6: Interaction Clustering Result

Cluster Interaction No.
Cluster 1 (Bind cluster) 1
Cluster 2 (Add cluster) 2, 3, 4
Cluster 3 (Search cluster) 5, 6, 7, 8, 9
Cluster 4 (Unbind cluster) 10

4.1.2 Keyword Identification
The purpose of this step is to identify the keywords that appear in the request
messages of a given cluster. The input to this step is the set of the request messages

1Field 3 has exactly the same value and is also a valid request type field for the example
interaction trace. We choose the first variable field as the request type field.
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Algorithm 2: Candidate Keyword Generation

1: Input: minimum length N, threshold T, message set M
2: Initialize: keyword tuples K (keyword, frequency) = L(keyword, frequency)

= ∅, keyword multiset W =∅
3: n ← N
4: Boolean found ← true
5: while found = true do
6: for m ∈M do
7: for yi ∈ {xi..xi+n−1 ∈ m|i = 0..length(m)-n} do
8: W ← W ∪ {yi}
9: end for
10: end for
11: L(keyword, frequency)← CountFrequency(W )
12: found ← false
13: for k(keyword, frequency) ∈ L do
14: if frequency ≥ T× |M | then
15: K ← K ∪ {k}
16: found ← true
17: end if
18: end for
19: n ← n+ 1
20: end while
21: Return K

as identified by the clustering described in the previous subsection, and the output is
a set of keywords for the corresponding cluster of request messages. This step has two
major sub-steps. First, a set of candidate keywords are generated from the request
messages of a cluster. Second, remove the candidate keywords that are substrings
of other keywords and, therefore, are not independent keywords themselves.

Candidate Keyword Generation

In the first sub-step (see Algorithm 2), each request message in the cluster is
broken down into words (or grams) of length n using the n-grams technique (lines 5
to 10 ), and then the frequencies of the generated distinctive words or n-grams are
calculated (line 11 ). We set the initial value of n to be 2, so that we can identify
all keywords with a minimum of 2 characters. We then select only those candidate
keywords that have a relative frequency (over the message set size) greater than
a threshold value T (lines 13 to 18 ). At line 19, the length of the grams n is
incremented by 1, and the process continues to find grams of length n+1, until
no new candidate grams are found for a given length. As we apply this candidate
keyword identification step for each request-type based message cluster and the
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request messages in a single cluster are supposed to share the same format, we set
the threshold T to 1.0, to select as candidate keywords only those words that appear
on average at least once in each request message.

Algorithm 2 returns a set of candidate keywords and their frequency of occurrence
in the message trace. For example, Table 4.7 shows some candidate keywords and
their frequencies, which are generated by Algorithm 2 for the request messages of
the request type Add cluster from Table 4.1.

Table 4.7: Candidate Keywords

No. Candidate Keyword Frequency
1 LDAP Add Request Protocol Op dn: cn= 3
2 LDAP Add Request Protocol Op dn: cn 3
3 Request Protocol Op dn: c 3
4 LDAP Add Request Message ID: 3
5 LDAP Add 6
6 LDAP 6

Keyword Identification

The candidate keyword list contains actual keywords and some of their sub-
strings; a substring of a frequent string is also frequent. Thus, in the second sub-step,
we need to remove those candidate keywords that are actually substrings of other
candidate keywords. For example, in Table 4.7, candidate keywords number 1 and
4 are actual keywords whereas the remaining candidate keywords are substrings of
these keywords and hence, can potentially be removed from the candidate keywords
set. However, if a substring k′ of a candidate keyword k occurs “in isolation”, that
is, at a different location/position in a request message from k and not enclosed by
another candidate keyword, then k′ cannot be removed and needs to be retained.

Algorithm 3 describes the process that is used to remove candidate keywords
when they occur as a substring of a candidate keyword (longer), but retain them
when they occur “in isolation” (as described above). At line 2, we sort the candidate
keywords in descending order according to their length. For a particular candidate
keyword k1 (line 3 ), we identify other candidate keywords k2 that are a substring of
k1 (lines 4 and 5 ) and reduce k2’s frequency by the frequency of k1 (line 6 ). After
this process, a candidate keyword’s frequency reflects the number of its distinctive
occurrences, i.e., excluding its occurrences as a substring of other candidate key-
words. Table 4.8 shows the candidate keywords after frequency subtraction of the
candidate keywords in Table 4.7.
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Algorithm 3: Keyword Identification

1: Input: threshold T, keyword list K
2: Sort K according to keyword length in descending order
3: for k1(keyword1, frequency1) ∈ K do
4: for k2(keyword2, frequency2) ∈ K do
5: if k1 6= k2 AND keyword1 contains keyword2 then
6: frequency2 ← frequency2− frequency1
7: end if
8: end for
9: end for
10: for k(keyword, frequency) ∈ K do
11: if frequency < T× |M | then
12: K ← K\{k(keyword, frequency)}
13: end if
14: end for
15: Return K

Table 4.8: Candidate Keywords After Frequency Subtraction

No. Candidate Keyword Frequency
1 LDAP Add Request Protocol Op dn: cn= 3
2 LDAP Add Request Protocol Op dn: cn 0
3 Request Protocol Op dn: c 0
4 LDAP Add Request Message ID: 3
5 LDAP Add 0
6 LDAP 0

At lines 10 to 14 in Algorithm 3, we select only those remaining candidate key-
words that have a relative frequency greater than the threshold as actual keywords.
For example, Table 4.9 shows the actual keywords extracted from the candidate
keywords in Table 4.8.

Table 4.9: Extracted Keywords from the Candidate Keywords in Table
4.8

No. Keywords
1 LDAP Add Request Protocol Op dn: cn=
4 LDAP Add Request Message ID:

4.1.3 Format Extraction
The purpose of this step is to use the set of keywords identified in the previous step
and the original request messages for each request-type based cluster, to extract the
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request format for that cluster. The output message format for each request-type
based cluster is presented in the form of a regular expression, i.e., a sequence of
alternate keywords and payload information segments. This step has two sub-steps:
(1) Tokenization, and (2) Format Inference.

Tokenization

In Tokenization, the original request messages are split into a sequence of tokens,
where each token either corresponds to a keyword that was identified in the previous
step, or to payload information. This is done by selecting a keyword from the
identified keyword lists, finding it in the request messages and storing its position(s)
in the messages. This process continues until all keywords are considered. All
the payload portions of the request messages are then labelled as “VARIABLE”. For
example, we obtain the following sequence for a LDAP Add request message (second
interaction in Table 4.1) after the tokenization step:

LDAP Add Request Message ID: VARIABLE LDAP Add Request Protocol Op dn: cn=

VARIABLE,ou=VARIABLE,ou=VARIABLE,dc=ca,dc=com mail: VARIABLE@ca.com mobile:

VARIABLE userPassword: VARIABLE description: VARIABLE objectClass: inetOrg-

Person title: VARIABLE sn: VARIABLE cn: VARIABLE

Format Inference

In the second sub-step, we use the Synoptic tool [76] to infer the message for-
mat from the above tokenized messages. In general, Synoptic infers a finite state
machine (FSM)-based system model that expresses the correct sequences of events
from an event log. For our purpose, we treat the individual tokens (keywords and
“VARIABLE”) in a message as events. Given the tokenized messages of each cluster
as input, Synoptic produces a finite state machine in terms of the tokens of these
messages. For example, Figure 4.3 shows the inferred format of the Add messages
from the CA Identity Manager (IM) service. It’s important to note that Synoptic
generalizes the individual message instances into a pattern including unlimited rep-
etitions, e.g., the iterative occurrences of “VARIABLE” and ‘,ou=’ (highlighted in red
in Figure 4.3) commonly found in API and programming language definitions.
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START LDAP Add Request Message
ID: 

VARIABLE

LDAP Add Request Protocol Op dn: cn=

VARIABLE

,ou= VARIABLE

,dc=ca,dc=com mail: 

VARIABLE

userPassword:

@ca.com mobile:

VARIABLEVARIABLE

description

VARIABLE

objectclass: inetOrgPerson title:

VARIABLE sn:

VARIABLE

VARIABLE

cn:

END

Figure 4.3: Format of the ADD Message of CA Identity Manager Service
[1]

By replacing “VARIABLE” with ‘.*’, we can convert a FSM into a regular expres-
sion. For example, the FSM in Figure 4.3 is converted into the following regular
expression as the format of the Add messages in Table 4.1 (space character is shown
as ‘ ’):

LDAP Add Request Message ID: .* LDAP Add Request Protocol Op dn: cn=

(.*,ou=)+.*,dc=ca,dc=com mail: .*@ca.com mobile: .* userPassword: .*

description: .* objectClass: inetOrgPerson title: .* sn: .* cn: .*

4.2 Evaluation
We have evaluated our approach to inferring message formats and compared it to two
state of art approaches (i.e., ProDecoder [74] and AutoReEngine [73]), by applying
them to the interaction traces of real-world services. We use 10-fold cross-validation
approach [109] to the experimental datasets i.e., a given dataset is split into 10
folds where each fold is used as a testing dataset and the remaining folds are used
as a training dataset. In the following subsections, we describe the datasets used,
introduce the evaluation metrics, and present the results of our experiments.

4.2.1 Datasets
We have applied all the three approaches to the following four interaction traces
collected from real services that used the following APIs or protocols:

• CA IM (LDAP): Lightweight Directory Access Protocol (LDAP) is commonly
used for accessing and maintaining distributed directory information services
over the Internet Protocol [20]. It is a binary protocol that uses the ASN.1 [110]
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encoding to encode and decode text-based message information to/from its bi-
nary representation. An enterprise directory service implementing LDAP (i.e.
CA IM [1]) is used to obtain the CA IM (LDAP) dataset (henceforth referred to
LDAP). We use the textual representation of LDAP interaction traces, which
contain 5000 interactions of eight different request types of LDAP messages:
Add, Delete, Bind, Search, Modify DN, Modify, Compare, and Unbind. Ta-
ble 4.10 shows the number of interactions for each type of request messages,
reflecting typical real world usage.

Table 4.10: LDAP Messages

Request
Type Bind Add Delete Search Modify Modify

DN
Comp-
are Unbind Total

No. of
Messages 100 928 870 1015 967 90 930 100 5000

• BANK (SOAP): Simple Object Access Protocol (SOAP) is a lightweight pro-
tocol intended for exchanging structured information in a decentralized, dis-
tributed environment [111], used by Web Services. SOAP messages use XML
technologies to define an extensible messaging framework, which provides a
message construct that can be exchanged over a variety of underlying proto-
cols. The BANK (SOAP) (henceforth referred to SOAP) trace is obtained us-
ing a Banking web service and contains 5000 interactions of five different types:
createNewAccount, deposit, withdraw, getAccount and closeAccount. Ta-
ble 4.11 shows the number of interactions for each type of request messages.

Table 4.11: SOAP Messages

Request
Type

CreateNe-
wAccount getAccount deposit withdraw close-

Account Total

No. of
Messages 593 1383 1416 1433 175 5000

• Twitter (REST): Representational State Transfer (REST) is an architecture
for managing information and resources using simple HTTP invocations, used
by REST Web Services. The Twitter (REST) API [112] provides Web applica-
tion developers with a number of services to enable automation of Twitter func-
tionality. The Twitter (REST) (henceforth referred to Twitter) dataset used in
our experiments contains 1465 interactions of six different types: StatusesShow,
StatusesUpdate, statusesuser_timelinejsonuser_id, statusesuser_timeline-
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jsonscreen_name, Search Tweets, and FriendshipsShow. Table 4.12 shows the
number of interactions for each different type of request messages.

Table 4.12: Twitter Messages

Request
Type

Statuses-

Show

Statuses-

Update

statusesuser
_timelinej-
sonuser
_id

statusesuser
_timelinej-
sonscreen
_name

Search-

Tweets

Friendships-

Show
Total

No. of
Messages 258 93 33 34 626 421 1465

• GoogleBooks (REST): GoogleBooks (REST) (henceforth referred to Google-
Books) is a service from Google Inc. to search full text of books and retrieve
book information [113]. The GoogleBooks dataset contains 1913 interactions
of requests that perform searching in a volume, retrieving a specific volume
and retrieving information about public bookshelves. Table 4.13 shows the
number of interactions for each type of request messages.

Table 4.13: GoogleBooks Messages

Request
Type

search
_volume

search
_bookshelf Total

No. of
Messages 1416 497 1913

For each service, we have recorded the communications (i.e. the TCP/IP pack-
ets) between a client and the target service using Wireshark [114]. For each service,
we sent different types of requests to the actual service provider and recorded the
responses.

4.2.2 Evaluation Metrics
For a given interaction trace of a service, we use three standard evaluation metrics,
that is, Precision, Recall and F-measure, to quantitatively evaluate and compare
the effectiveness of our approach to format extraction for the request messages. As
the nature of the message clustering is completely different compared to format
extraction and V-measure [115] evaluates clustering more effectively compared to
F-measure by solving the “problem of matching” [115], we use the V-measure for
evaluating our interaction clustering approach.
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Interaction Clustering: Two criteria are used to compute V-measure: i) homo-
geneity is to identify whether all of its clusters contain only members of a single
class and ii) completeness is to identify where all the members of a given class are
elements of the same cluster. Let N be the number of data points, C the set of
classes, K the number of clusters and A = {aij} the contingency table where aij is
the number of data points that are memebrs of class ci and elements of cluster kj.
Then, we compute the homogeneity and completeness using the following equations
[115]

homogeneity =


1, ifH(C,K) = 0

1− H(C|K)
H(C) , else

(4.5)

completeness =


1, ifH(K,C) = 0

1− H(K|C)
H(K) , else

(4.6)

where

H(C|K) = −
|K|∑
k=1

|C|∑
c=1

ack
N
log

ack∑|C|
c=1 ack

H(C) = −
|C|∑
c=1

∑|K|
k=1 ack
n

log

∑|K|
k=1 ack
n

H(K|C) = −
|C|∑
c=1

|K|∑
k=1

ack
N
log

ack∑|K|
k=1 ack

H(K) = −
|K|∑
k=1

∑|C|
c=1 ack
n

log

∑|C|
c=1 ack
n

Based on the above calculations of homogeneity and completeness, we calculate the
V-measure using the following equation

V -measure = 2× homogeneity × completeness
homogeneity + completeness (4.7)
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Format Extraction: We have applied 10-fold cross-validation [109] in evaluating
format extraction. For a particular request type, true positive is the number of
request messages accepted by the inferred format of the corresponding request type,
false positive is the number of request messages of other types that are accepted by
the inferred format of that type, and false negative is the number of request messages
of the type concerned that are rejected by the inferred format of the corresponding
request type. We also calculate the average number of formats inferred for each
ground-truth format. We calculate the precision, recall and the average number of
formats (N ) for each cluster using the following equations as described in [116]

Precision = TruePositive
TruePositive + FalsePositive (4.8)

Recall = TruePositive
TruePositive + FalseNegative (4.9)

N =
∑|C|
i=1(number of inferred formats∑|C|

i=1(number of ground-truth formats
(4.10)

where C is the number of request type-based clusters.

As described in Section 4.2.1, each evaluation dataset contains different types of
messages. As the number of messages per request-type are uneven, we compute the
weighted score for both precision and recall using the following equations

Precisionw =
∑|K|
k=1(nk × pk)

N
(4.11)

Recallw =
∑|K|
k=1(nk × rk)

N
(4.12)

where K is the number of clusters/request-types, N is the total number of mes-
sages, nk is the number of messages of request type k, pk is the precision of the
inferred format for request type k and rk is the recall of the inferred format for
request type k. Finally, F-measure is calculated as the harmonic mean of precision
and recall using the following equation

F -measure = 2× Precisionw × Recallw
Precisionw + Recallw

(4.13)
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4.2.3 Results
In this section, we present the experimental results (i.e. accuracy and efficiency)
and use ProDecoder [74] and AutoReEngine [73] as the baseline to compare the
accuracy of our approach as they all aim to extract type-specific message formats.
The accuracy corresponding to the interaction clustering and format extraction and
the efficiency of our approach are presented in the following subsections.

Interaction Clustering

Table 4.14 reports the interaction clustering results. It shows that our approach
achieves very high homogeneity, completeness and V-measure in interaction cluster-
ing based on the request type for all four data sets. This is because the examined
datasets contain request type field in the request messages and our approach accu-
rately identifies the request type field through entropy analysis and considering the
dissimilarity among the messages in a cluster. AutoReEngine identifies some false
keywords (extracting payload information as keywords) and uses these keywords for
clustering, it splits request messages of the same request type into multiple clusters
and, consequently, generates more clusters than there are request message types. For
instance, our results show that AutoReEngine splits LDAP Add request messages into
83 different clusters, compared to one cluster in our approach. In total, it generates
144 clusters for all the LDAP request messages, whereas there are only 8 different
request types. ProDecoder also clusters request messages based on keywords, but
it requires the number of clusters as an input parameter. Consequently, ProDe-
coder achieves better completeness compared to AutoReEngine. For instance, for
LDAP the completeness of ProDecoder is 0.71 compared to 0.42 for AutoReEngine.
However, ProDecoder fails to create clusters with low request message counts. For
instance, it splits the LDAP Search messages into three different clusters and mixed
Bind, Unbind, Modify, ModifyDN and Delete messages (with low request type-specific
message counts) into a single cluster and hence, achieves lower homogeneity (0.67)
compared to the homogeneity (0.99) achieves by AutoReEngine as AutoReEngine
does not combine messages from different types into a single cluster except that a
few Delete messages are mixed with Compare messages.

Similarly, for the rest of the datasets, ProDecoder mixed messages from multiple
clusters into a single cluster and hence, achieves lower homogeneity and complete-
ness. On the other hand, AutoReEngine achieves better accuracy than ProDe-
coder, especially completeness for SOAP, Twitter and GoogleBooks. For SOAP,
AutoReEngine classifies messages accurately except that it mixes the messages of
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Table 4.14: Result of Clustering Interactions Based on the Request Type

Data Set
ProDecoder AutoReEngine Our Approach

H C V H C V H C V

LDAP 0.67 0.71 0.69 0.99 0.42 0.59 1.00 1.00 1.00

SOAP 0.25 0.31 0.28 0.94 1.00 0.97 1.00 1.00 1.00

Twitter 0.79 0.66 0.72 0.74 0.92 0.82 1.00 1.00 1.00

GoogleBooks 0.62 0.64 0.63 0.00 1.00 0.00 1.00 1.00 1.00
*Note: H is homogeneity, C is completeness and V is V-measure.

request-types: CreateNewAccount and closeAccount. In the same way, it mixes the
messages of different types into a single cluster for Twitter and GoogleBooks. Au-
toReEngines blends all messages into a single cluster instead of the actual 2 clusters,
and hence achieves the homogeneity 0.00 for GoogleBooks.

However, neither AutoReEngine nor ProDecoder were able to accurately cluster
the request messages according to their request types. Our approach, on the other
hand, accurately identifies the type of each request message by analyzing the entropy
of the message fields and considering the dissimilarity among messages, and hence
correctly clustered the interaction according to the request type, outperforming
both AutoReEngine and ProDecoder, achieves 100% accuracy for the 4 datasets
examined.

Format Extraction

Table 4.15 reports the results of the request format extraction for the four differ-
ent datasets, where N indicates the average number of formats inferred per ground-
truth request-type (A more detailed result of format extraction contains the ac-
curacy of the inferred format for each request-type based cluster is presented in
Appendix A.1). As all approaches infer request formats by identifying common
portions across the request messages of a cluster and different types of request mes-
sages contain different set of keywords, their accuracy in request format extraction
highly depends on the results of the interaction clustering. Table 4.14 shows that
AutoReEngine achieves comparatively low completeness in clustering interactions,
and thus, it achieves low recall in message format inference as well (cf. Table 4.15).
AutoReEngine overclassifies the request messages and infers request formats with
some payload information being considered as keywords. For the LDAP data set,
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Table 4.15: Request Format Extraction Result

Data Set
ProDecoder AutoReEngine Our Approach

P R F N P R F N P R F N

LDAP 0.76 0.83 0.79 1 0.63 0.21 0.31 18 1.00 1.00 1.00 1

SOAP 0.26 1.00 0.41 1 0.97 1.00 0.99 0.80 1.00 1.00 1.00 1

Twitter 0.77 0.77 0.77 1 0.78 0.91 0.84 0.83 1.00 1.00 1.00 1

GoogleBooks 0.89 0.98 0.93 1 0.74 1.00 0.85 0.50 1.00 1.00 1.00 1
*Note: P is precision, R is recall, F is F-measure and N is the average
number of formats per ground-truth format.

it generates 18 clusters on average per ground-truth cluster, i.e., 144 clusters in to-
tal, including 83 clusters for LDAP Add request messages alone. As a consequence,
the inferred request formats (one format corresponding to each cluster) become too
specific and, therefore, cannot match request messages of the same type with differ-
ent payload, resulting in very low recall values. Moreover, it creates an individual
cluster for each ModifyDN messages (most of the time), which leads to achieve 0.00
in both precision and recall. It mixes the messages of Delete and Compare clus-
ters. Therefore, AutoReEngine achieves very low accuracy in extracting formats for
LDAP. On the other hand, the precision and recall of ProDecoder for LDAP are
better compared to AutoReEngine. This is mainly due to the fact that the number
of clusters is an input parameter and therefore, ProDecoder does not overclassify
the request messages. But, ProDecoder includes request messages of different types
into a single cluster and thus has worse results than our approach.

However, AutoReEngine achieves better precision and recall in extracting format
for other datasets (i.e., SOAP, Twitter and GoogleBooks) compared to ProDecoder
as it classifies messages more accurately than ProDecoder (cf. Table 4.14). In SOAP,
AutoReEngine achieves 100% precision and recall in extracting format for all clus-
ters except for CreateNewAccount as it creates mixed cluster and thus, achieves 0.97
as weighted precision. In contrast, ProDecoder achieves lower homogeneity and
completeness in clustering but, it achieves higher recall in format extraction. This
is so because, even though ProDecoder mixed messages of multiple clusters into
a single cluster, it infers the format through identifying the common message se-
quences among messages in a cluster and therefore, it does not accept the message
of other types especially when the mixing is highly asymmetrical. For example,
ProDecorer constitutes the deposit cluster with 1120 messages of deposit type and
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137 messages of CreateNewAccount type and the inferred format for the deposit

cluster contains keywords (most) of deposit messages and hence, does not accept
messages of other types, i.e., achieve 1.00 recall. In the same way, it achieves com-
paratively better precision and recall in format extraction for Twitter and Google-
Books datasets than in clustering. On the other hand, AutoReEngine achieves lower
precision and recall in extracting format for Twitter compared to SOAP and Google-
Books and to Twitter messages clustering. The reason is that AutoReEngine cre-
ates 4 clusters instead of 6 clusters and mixed the messages of statusesupdate and
statusesuser_timelinejsonuser_id clusters into a single cluster and achieves 0.00
precision and recall for the inferred format for that cluster. Similarly, it achieves
low precision and recall for the type friendshipsshow as the cluster contains the
messages of statusesshow type, therefore, infers imprecise format for that cluster
and achieves relatively lower precision and recall in format extraction for Twitter
dataset.

In general, our approach not only achieves high accuracy in interaction clustering,
but also achieves very high accuracy in request format inference. Moreover, our
approach infers request formats with generalization in the form of regular expression.
Thus, it can accept request messages with unseen, yet valid patterns. For example,
LDAP Add request messages may contain organizational units multiple times. In the
format inferred by ProDecoder and AutoReEngine, ‘ou’ appears exactly two times,
but it could be repeated more than two times (as in the dataset). In contrast, the
format inferred by our approach accepts multiple occurrences of ‘,ou=’ in LDAP Add

request messages (cf. the regular expression given at the end of Section 4.1).

Efficiency

While achieving high accuracy in message format extraction is our main objec-
tive, we also quantify the impact on the efficiency of our approach. We instrument
the code of clustering the messages and inferring formats of the messages and record
the times for all datasets. We run the experiments on a machine with Intel Core(TM)
i5-4570 3.20 GHz with 16GB of main memory. For comparison we run our approach
and the compared techniques (i.e., ProDecoder and AutoReEngine) on the same
machine and logged the required time of clustering and extracting formats.

Table 4.16 shows the average2 time (seconds) for clustering the interactions based
on the request type and inferring the formats from the request messages for each
of the request-type based clusters. As Table 4.16 shows, our approach requires

2Each approach infers a set of 10 formats per request-type based cluster as the 10-fold cross-
validation technique is used to evaluate the result.
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Table 4.16: Average Time (in seconds) of Inferring Request Format

Data Set
ProDecoder AutoReEngine Our Approach

TC TF TC TF TC TF

LDAP 246.95 39.68 4.80 0.54 2571.19 3.81

SOAP 437.69 250.03 58.36 159.29 3414.54 81.62

Twitter 63.20 2.92 3.24 6.40 82.32 1.64

GoogleBooks 56.11 13.00 2.31 23.29 56.28 1.85
*Note: TC is the required time (s) for clustering and TF is the
required time (s) for inferring formats.

a comparatively longer time in clustering the interactions based on the request
type. This is so because of the adopted template generation technique [11] utilizes
multiple sequence alignment (MSA) [107] for aligning the request messages and it
requires a long time to get the alignment result, especially for the lengthy messages.
However, our approach requires less time in request format inference compared to
ProDecoder and AutoReEngine except for AutoReEngine over LDAP. The reason
is that the request messages for the LDAP dataset are relatively longer than the
request messages of other datasets and thus, our approach generates more n-grams
from the LDAP request messages as candidate keywords in the keyword extraction
step, which requires more computation time. Nevertheless, the accuracy of the
format inference is much important than the efficiency, and in particular, the format
inference is done in the offline phase before the inferred formats are used in response
generation (online) phase.

4.3 Discussion
In this section, we further reflect on our approach and discuss a few assumptions
and limitations our approach has.

The first point to note that we assume that the interaction traces are not en-
crypted. Otherwise, it would normally be impossible to analyze the message struc-
ture. Furthermore, we focus on services with textual messaging protocols, that is,
the service interactions are in a textual form even though the particular protocol
followed by the service provider does not need to be known. This is because the
keywords in binary protocols may be less than one byte, where the identification
of keywords and request type fields requires different techniques. However, our ap-
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proach may still work with binary messaging protocols with the atomic message
fields of one byte or longer (i.e., no Bit fields). Furthermore, we have assumed that
the messages have a request type field. We consider this assumption as realistic
because we have not encountered messages of a service that does not have a type
field.

In general, the request formats extracted using our approach depend on the given
interaction trace rather than the corresponding service. That is, it can only identify
the formats for those types of request messages that are present in the interaction
trace. Therefore, the diversity of the request types and variations is important to
the extracted request types’ coverage for the given service in its message trace. In
particular, if there is only one message instance for a given request type, the whole
message will be identified as a keyword for that request type due to the fact that
there is no variation identifiable between the request messages of the same type. As
such, it is important for the interaction trace to contain diverse request types, with
variations and instances, as much as possible.

Moreover, our approach selects a number of message fields as the candidate
request type fields based on the entropy of the fields. It utilizes the observation
that the request type field has the least data variation among all the variable fields.
But, there may be service protocols where certain message fields may have even less
variability than the request type field. For example, some messages in a particular
protocol may have a binary field with true or false as possible values. Such message
field will be selected as candidate message type field. Finally, the request type field is
selected by considering that the most accurate clustering has the lowest dissimilarity
among the request messages in a cluster. This consideration ensures the messages in
the same cluster have the lowest dissimilarity among themselves, while the messages
in separate clusters have the highest dissimilarity among themselves. This suggests
that our approach can accurately cluster the messages as long as the messages of
a single cluster have the lowest dissimilarity even if an inaccurate message field is
selected by the entropy-based technique in the preceding step.

Another point of interest concerns the difference between a service in general
and a particular deployment thereof. For example, for the LDAP interaction trace,
we have identified ‘ca.com’ as part of a keyword. From the overall service viewpoint,
it is part of payload (email address), not part of a keyword. From a particular
deployment viewpoint, however, it is important and useful for it to be identified as
part of a keyword because the particular Identity Manager (IM) [1] is deployed at CA
and all email addresses should contain ‘ca.com’; otherwise, it may indicate a breach
of the organizational protocol (i.e., non-CA emails are recorded in the CA directory).
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On the other hand, if the service deployment serves multiple organizations or the
organization does not dictate the use of official email, such a string will not be part
of a keyword (due to variation between request messages). Similarly, if the data
set contains interaction traces from different deployments, such deployment-specific
payload will not appear as part of a keyword in the extracted formats.

4.4 Summary
In this chapter, we have presented an approach to extracting fine-grained request
type-specific formats for a given service from its interaction traces. Our approach
does not require any prior knowledge about the service or its message structure,
nor does it need access to the source code. In our approach, we first identify the
request type field through message alignment and entropy analysis, and use the re-
quest type field to partition the interactions (messages) into request type-specific
clusters. Then, we identify the keywords for each message cluster by breaking the
request messages down to words and analyzing the frequency of their independent
occurrences. Finally, we use the keywords to tokenize the request messages, and
derive the request formats by analyzing the order of appearance of the message to-
kens (keywords and payload segments). We have been able to achieve high accuracy
in clustering the interactions based on the request type and in extracting formats
of the request messages, showing greater improvements over the state of art ap-
proaches. This has been demonstrated through a range of comparative experiments
using datasets from real-world services that follow different messaging protocols.

We will present our approach of inferring formats for response messages in the
next chapter as the response format inference has different challenges than extracting
request formats.
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Chapter 5

Format Extraction for Response Mes-
sages

In the previous chapter, we have presented our approach to extracting the formats
of the type-specific request messages by identifying the request type field from the
request messages. The interactions are clustered based on the request type, including
all of the response messages for the request messages concerned. In this chapter, we
present our approach to fulfilling another key requirement, i.e., inferring the formats
of the response messages to separate the payloads from the message keywords. We
cluster the response messages of each request-based cluster based on the response
type. Then, the format of the response messages for each response-based cluster is
inferred by extracting the type-specific keywords from the response messages of that
cluster. As explained in Section 2.3.2, a number of issues different from inferring
request formats need to be addressed for inferring formats for the response messages.

The rest of the chapter is organized as follows. In Section 5.1, we present the
result of clustering the interactions based on the request type. In Section 5.2, we
present the details of our approach to inferring the formats for the response messages.
The experimental results of applying our approach to the traces collected from a
number of real services are presented in Section 5.3. Finally, we summarize this
chapter in Section 5.4.

5.1 Preliminaries
As described in Section 2.3.2, a service generates different types of responses for
the different types of requests and even for the same type of requests. Each type
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of response message has its own set of keywords and its own format. Thus, the
extraction of the formats of the response messages requires to cluster the interac-
tions based on the request type. This section presents the result of clustering the
interaction trace (cf. Table 4.1) based on the request type. We use the request type
identification technique [105] as described in Chapter 4 for identifying the request
type field from the request messages. It clusters the example interactions in Table
4.1 into four groups: Bind, Add, Search and Unbind. Table 5.1 shows the responses
of the Search cluster after clustering the interactions of Table 4.1 based on the
request-type. We will use this example response cluster to illustrate our approach
in the next section.

Table 5.1: Response Messages of Search cluster

No. Responses

Resp#5

LDAP Search Result Done Message ID: 5 LDAP Search Result Done

Protocol Op Result Code: 32 (No Such Object) Matched DN:

ou=Customer,dc=ca,dc=com

Resp#6

LDAP Search Result Entry Message ID: 6 LDAP Search Result Entry Proto-

col Op dn: cn=Clive BRANCH,ou=Finance,ou=Corporate,dc=ca,dc=com cn:

Clive BRANCH mail: Clive.BRANCH@ca.com mobile: 6312753 description:

Design Administrator objectClass: inetOrgPerson title: Financial

Economist sn: BRANCH LDAP Search Result Done Message ID: 6 LDAP Search

Result Done Protocol Op Result Code: 0 (Success)

Resp#7

LDAP Search Result Entry Message ID: 7 LDAP Search Result Entry Pro-

tocol Op dn: cn=Eddy BRYCE,ou=Construction,ou=Projects,dc=ca,dc=com

cn: Eddy BRYCE mail: Eddy.BRYCE@ca.com mobile: 5940538 descrip-

tion: Software Consultant objectClass: inetOrgPerson title: Com-

munications Services Co-ordinator sn: BRYCE LDAP Search Result

Entry Message ID: 7 LDAP Search Result Entry Protocol Op dn:

cn=Gwen HUNTER,ou=Construction,ou=Projects,dc=ca,dc=com cn: Gwen

HUNTER mail: Gwen.HUNTER@ca.com mobile: 6340642 description: Re-

sponse Engineer objectClass: inetOrgPerson title: Purchasing Con-

sultant sn: HUNTER LDAP Search Result Done Message ID: 7 LDAP Search

Result Done Protocol Op Result Code: 0 (Success)
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Table 5.1 Continued: Response Messages of Search cluster

No. Responses

Resp#8

LDAP Search Result Entry Message ID: 8 LDAP Search Result En-

try Protocol Op dn: cn=William SIMPER,ou=Training,ou=Human Re-

sources,dc=ca,dc=com cn: William SIMPER mail: William.SIMPER@ca.com

mobile: 6813842 description: Computing Officer objectClass: inetOrg-

Person title: Consulting Technician sn: SIMPER LDAP Search Result En-

try Message ID: 8 LDAP Search Result Entry Protocol Op dn: cn=Joseph

GRIMES,ou=Training,ou=Human Resources,dc=ca,dc=com cn:Joseph GRIMES

mail: Joseph.GRIMES@ca.com mobile: 6953740 description: Training Of-

ficer objectClass: inetOrgPerson title: Industrial Clerk sn: GRIMES

LDAP Search Result Done Message ID: 8 LDAP Search Result Done Protocol

Op Result Code: 0 (Success)

Resp#9

LDAP Search Result Entry Message ID: 9 LDAP Search Re-

sult Entry Protocol Op dn: cn=Brad DUFFY,ou=Industrial

Relations,ou=Customer,dc=ca,dc=com cn: Brad DUFFY mail:

Brad.DUFFY@ca.com mobile: 8219206 description: Hardware Sup-

port objectClass: inetOrgPerson title: Acting Engineer sn: DUFFY

LDAP Search Result Done Message ID: 9 LDAP Search Result Done Protocol

Op Result Code: 0 (Success)

5.2 Approach
In this section, we present our approach that takes the response messages of the
request-based cluster as input and automatically infers the formats of the response
messages. The key to achieving this goal is the ability to (i) accurately further clus-
ter the responses for each request-based cluster, (ii) accurately identify the keywords
from the response messages (payload overwhelm messages) by considering the num-
ber of messages that contain a keyword by removing the sub-strings of a keyword
using frequency subtraction, and (iii) generalize the individual message patterns into
the inferred format to handle the pattern with repetition in the response messages.
Figure 5.1 shows the steps of our approach. We describe each of the components
after presenting an overview of our approach.

Our approach has two major steps: i) further clustering the responses of each
request-based cluster according to the response messages, and iii) inferring the for-
mats for each response-based cluster by identifying the cluster-level keywords from
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Figure 5.1: An Overview of Response Format Extraction Approach

the response messages in that cluster. In the first step (Response Messages Cluster-
ing), we group the response messages of a request-based cluster into clusters based
on the response messages by identifying the co-occurrence of the positional keywords
from the response messages. We adopt our recently proposed clustering technique
to cluster the response messages [106]. We use a different technique than the request
message clustering to cluster the responses because the response messages do not
always contain a message type field as in the request messages. Moreover, the iden-
tification of fixed portions across the response messages using the common template
generation technique [11] is not applicable as the different types of responses have
a different set of message keywords and usually, they do not share the similar key-
words. Thus, to cluster the responses, we break the response messages into a set of
tokens. Then, only high-frequency tokens and their positions in the response mes-
sages are considered as candidate positional keywords from the tokenized response
messages. The same keywords appearing in nearby positions are merged based on
a position window and finally, the response messages are clustered based on the
co-occurrence of positional keywords.

In the second step (Format Extraction), every response message in a cluster is
converted into a sequence of alternating keyword and payload using the extracted
keywords from the response messages of the respective cluster. Finally, we infer the
format in the form of a Finite State Machine (FSM) for each response-based cluster
and convert the FSM to a regular expression as the response format for the cluster.

Figure 5.2 shows the clustering result of the interactions listed in the Table 4.1.
After clustering the responses, we extract a set of keywords from the response mes-
sages for each response based cluster. Finally, the format of the response messages
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Figure 5.2: Clustering Result of LDAP Example Interaction Trace

are inferred for each response based cluster, i.e., for the response messages of each
sub-cluster in Figure 5.2.

5.2.1 Response Messages Clustering
The purpose of this step is to cluster the response messages for each request-based
cluster. A service usually supports different types of requests and even generates
different types of responses for the same type of requests at different times. There-
fore, different types of responses need to be identified in order to extract the message
formats. Moreover, each type of responses generated for a particular request type
has its own set of keywords and has its own format. Thus, the responses in the
request-based cluster need to be clustered further based on the response types to
accurately extract keywords and, hence, infer precise format from the response mes-
sages. For example, in Table 5.1, the keywords and the format of the generated
responses Resp#5 and Resp#6 are different. But, we use a different technique to
cluster the responses because of two reasons: (i) response messages may not have
the message type field and (ii) it is not applicable to generate a common template
and identify the fixed and variable portions of the response messages.

For example, the identification of fixed and variable portion for the responses of
the Search cluster (cf. Table 5.1) by generating a common template is not applica-
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ble as the position of the keywords (i.e., LDAP Search Result Done Message ID:) is
different in different response messages even though they share the keywords across
different types of response messages. Let us consider the GoogleBooks interactions
as another example. As Table 5.2 shows, both requests retrieve information about
a bookshelf (for a given bookshelf id), where the bookshelf id for the first request is
“499” and the second request is “0”. The server returns an error response for the
first request as it unable to find a bookshelf with id “499”, whereas the server re-
turns the detailed information about a bookshelf (i.e., the title of the bookshelf, the
date of creation and modification, the number of volumes, etc.). It indicates that
the same request with different bookshelf id returns different types of responses and
the responses contain a different set of message keywords. But, none of the message
fields (common in both responses) defines the response type. Moreover, the common
template generation technique (cf. Chapter 4) is not applicable in separating the
fixed and variable portions of the response messages as they do not have the common
message keywords. As such, we use our recently proposed clustering technique, P-
token[106] to cluster the responses. It effectively clusters the messages based on the
positional keywords. It has three sub-steps: (1) identifying the positional keywords
from the response messages, (2) merging keywords based on position windows and
(3) vectorizing response messages and cluster responses based on the co-occurrence
of the positional keywords.

Table 5.2: GoogleBooks Interactions (bookshelves)

No. Interactions

1
Req

https://www.googleapis.com/books/v1/users/107782646712117400162/

bookshelves/499?key=**********

Resp

{ "error": { "errors": [{ "domain": "global", "reason": "notFound",

"message": "The bookshelf ID could not be found.", "locationType":

"other", "location": "backend_flow" }], "code": 404, "message": "The

bookshelf ID could not be found." }}

2
Req

https://www.googleapis.com/books/v1/users/107782646712117400162/

bookshelves/0?key=**********

Resp

{ "kind": "books#bookshelf", "id": 0, "selfLink":

"https://www.googleapis.com/books/v1/users/107782646712117400162/

bookshelves/0", "title": "Favorites", "access": "PUBLIC",

"updated": "2007-11-10T18:02:25.555Z", "created": 2007-11-

10T18:02:25.555Z", "volumeCount": 6, "volumesLastUpdated":

"2019-10-01T12:56:51.000Z"}
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Identifying Positional Keywords

In this sub-step, we identify keywords from the response messages based on the
following criteria: keywords are common to the same type of response messages and
they appear at relatively fixed positions across the response messages. This sub-step
involves (i) extracting the candidate positional keywords through frequency analysis
of tokens, and (ii) identifying the true keywords through studying the occurrence
and recurrences of candidate positional keywords. First, a response message in a
given trace (i.e., request-based cluster) is split into tokens using tokenization [117],
and the position of each token is recorded. For example, the first response message
(Resp#5) in Table 5.1 can be broken down to tokens(position): “LDAP(0)”, “Search(1)”,
“Result(2)”, “Done(3)”, “Message(4)”, “ID(5)”, etc. Then, the candidate positional
keywords are extracted based on the number of response messages in which a token
appears, rather than the number of all occurrences of a token in all messages. This
consideration emphasizes the importance of a token’s appearance across different
messages, and de-emphasizes the multiple occurrences of a token in a single mes-
sage, because a keyword we are looking for should appears in all messages of the
same type. A threshold has been applied to select only high frequency keywords
as the candidate positional keywords. For example, Table 5.3 shows some posi-
tional candidate keywords extracted from the response messages of Search cluster
(i.e., from Resp#5, Resp#6, Resp#7, Resp#8 and Resp#9) with the threshold 2 (i.e.,
keyword appears at least in 2 messages).

Table 5.3: Candidate Positional Keywords

Candidate Keyword Position Frequency
Message 4 5
Message 71 2
Entry 11 4
Entry 3 4
mail 40 2
mail 41 2

Merging Keywords

In this step, we merge the positional keywords in the same “window”, i.e., those
appearing at slightly different positions in different messages. For example, the same
keyword “mail” in Table 5.3 extracted twice as it appears in two different positions
(i.e., 40 and 41) in the messages because of variable length of payloads. We merge
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the keywords fall into the same window and use “mail(40)” (at the lowest position) to
represent the two positional tokens, update frequency f(mail(40)) to 4, and remove
“mail(41)” from the candidate positional keywords as they correspond to the same
positional keyword. We compute the window size based on the standard deviation
of the keyword’s position for each keyword and adopts the Parzen-Window Density
Estimation [118] to estimate the window size.

δ(t) = 1.06 · σt · V −1/5
t , (5.1)

where σt is the standard deviation of t’s (i.e., token) positions and V is the volume
(variation) of t’s positions. It estimates the window sizes to be 27.93, 3.69 and 3.57
for the keywords “Message”, “Entry” and “mail” respectively. So, the two “mail”
keywords in Table 5.3 are merged together and update its frequency to 4, while
the positional keywords of “Message” and “Entry” are kept as separate keywords.
For example, Table 5.4 shows the positional keywords after merging the positional
keywords in Table 5.3.

Table 5.4: Positional Keywords after Merging

Keyword Position Frequency
Message 4 5
Message 71 2
Entry 11 4
Entry 3 4
mail 40 4

Vectorizing and Clustering Response Messages

In this sub-step, we group the response messages into clusters so that each cluster
is of high homogeneity in terms of the positional keyword sequence across all the
response messages in the cluster. This sub-step involves (i) vectorizing the response
messages based on the positional keywords, and (ii) clustering the response messages
using VAT [119]. We use the positional keywords extracted from the last sub-step as
features in VAT to cluster the response messages for each request-type based cluster.
We use the set S to denote the extracted features. In total, we have |S| features,
where |S| denotes the cardinality of set S. Hence, for an arbitrary message m, we
can define a 1× |S| vector, vm, as follows:

vm = [w(t(i))]1×|S|, ∀ t(i) ∈ S, (5.2)
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where, w(t(i)) is the weight of feature t(i) (positional keyword of token t at position
i) in message m. For each feature t(i) ∈ S, we measure its weight in message m
by examining if it is covered by the token sub-sequence {tm(i), tm(i+1) · · · tm(i+δ(t(i))} in
message m, where tm(j) denotes the j-th token in message m and δ(t(i)) is the window
size of the inspected feature t(i). If t(i) is not covered by the sub-sequence, we
set w(t(i)) = 0; otherwise, set w(t(i)) = 1. For example, we put ‘1’ in k2 column
for Resp#5 in the following vector as the response contains the keyword Message(4),
where k1, k2, k3, k4 and k5 correspond to the keywords Entry(3), Message(4), Entry(11),
mail(40) and Message(71) respectively.

vm =



... k1 k2 k3 k4 k5 ...

Resp5 0 1 0 0 0
Resp6 1 1 1 1 0
Resp7 1 1 1 1 0
Resp8 1 1 1 1 1
Resp9 1 1 1 1 1


(5.3)

Then, we convert each message into a weighted vector based on the positional key-
words appearing in the message. Finally, we adopt Needleman-Wunsch [15] to cal-
culate the dissimilarity between response messages and VAT [119] to cluster the
response messages with the aim to have the lowest dissimilarity among messages
in a cluster. For example, it generates the following dissimilarity matrix for the
response messages of the Search cluster (i.e., Resp#5, Resp#6, Resp#7, Resp#8 and
Resp#9). As the dissimilarity matrix (cf. eq. 5.4) shows, Resp#5 has high dissim-
ilarity with the rest of the response messages of the Search cluster and thus, the
response messages are grouped into two clusters, i.e., Resp#5 in one cluster and
others in another cluster.

Dm =



Resp5 Resp6 Resp7 Resp8 Resp9

Resp5 0.0 0.61 0.64 0.65 0.62
Resp6 0.61 0.0 0.09 0.10 0.15
Resp7 0.64 0.09 0.0 0.01 0.05
Resp8 0.65 0.10 0.01 0.0 0.04
Resp9 0.62 0.15 0.05 0.04 0.0


(5.4)
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5.2.2 Format Extraction
The purpose of this step is to infer a response format for each response-based cluster.
The inferred format is presented in the form of a regular expression, an alternate
sequence of keywords and payload information. This step has two major sub-steps:
(i) Cluster-level Keyword Identification and (ii) Format Inference.

Cluster-level Keyword Identification

The purpose of this sub-step is to identify a set of keywords from the response
messages of each cluster. It accepts all the response messages of the same cluster as
an input and generates a set of keywords for that cluster as an output. It generates
keywords through i) identifying a set of candidate keywords by analyzing the ap-
pearance of n-grams and ii) selecting the true keywords from the candidate keywords
by removing the candidate keywords that are sub-string of another keywords.

Algorithm 4 shows the dedicated algorithm of generating a set of candidate
keywords. At first, each response message in a cluster is split into words (or grams)
of length n using the n-grams technique (lines 6 to 16 ). After breaking the response
messages, it creates a list of message IDs for each n-gram to count the number of
response messages containing the n-gram. It emphasizes the importance of candidate
keyword’s appearance across response messages instead of calculating frequency (i.e.,
repetitive counting) of all occurrences of candidate keywords in a message. As the
response messages usually contain some repetitive patterns, some of the payloads
in the repetitive patterns may appear multiple times and very likely to be picked
as keywords if we count all occurrences of the n-gram. At line 6, we loop over all
the messages in a cluster M and keep track of the current message index or ID in
j. At line 7, the j-th message is broken into consecutive sequence of characters
(n-grams) of length n. We set the initial value of N to be 2 for allowing it to
identify all the keywords of minimum length 2. We create a list with message index
for each n-gram (lines 8 to 14 ). At line 17, the pair of n-gram and its number of
occurrences is generated by counting the number of unique message indices in the
list for that n-gram. A threshold is used to select the candidate keywords (lines 19
to 24 ). As we apply the keyword extraction for each cluster and the messages of
a cluster share a similar format, we set the threshold T to 1.00 for selecting those
keywords that appear once (at least) in every messages. At line 25, the length of
the grams n is incremented by 1, and process continues for finding the candidate
keywords of length n+1, and the whole process continues until no new candidate
keywords are found. In the end, Algorithm 4 returns a set of candidate keywords
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Algorithm 4: Candidate Keyword Generation

1: Input: minimum length N, threshold T, message set M
2: Initialize: keyword tuples K (keyword, number) = L(keyword, number) = ∅,

message ID set D= ∅, keyword multiset W =∅
3: n ← N
4: Boolean found ← true
5: while found = true do
6: for mj ∈M do
7: for yi ∈ {xi..xi+n−1 ∈ mj|i = 0..length(mj)-n} do
8: D ← W [yi]
9: if D = ∅ then
10: W ← W ∪ {yi, D}
11: end if
12: if j /∈ D then
13: D ← D ∪ {j}
14: end if
15: end for
16: end for
17: L(keyword, number)← CountMessageIDs(W )
18: found ← false
19: for k(keyword, number) ∈ L do
20: if number ≥ T ∗ |M | then
21: K ← K ∪ {k}
22: found ← true
23: end if
24: end for
25: n ← n+ 1
26: end while
27: Return K

with the numbers of their appearances in the messages, i.e., the number of messages
containing each of them. For example, Table 5.5 shows some candidate keywords
and their appearances in the messages that are extracted using Algorithm 4 from
the response messages of the Search (success)1 sub-cluster, i.e., from the Resp#6,
Resp#7, Resp#8 and Resp#9 in Table 5.1.

The generated candidate keyword list contains the true keywords and their sub-
strings. The sub-strings of a keyword are also frequent and appear in the same num-
ber of messages. For example, all the sub-strings of a keyword “LDAP Search Result

Entry Message ID:” appear the same number of times in the messages as the key-
word appears. Thus, in this step, Algorithm 3 presented in the Chapter 4 is used to
identify the true keywords from the list of candidate keywords by frequency subtrac-
tion. For example, Table 5.6 shows the candidate keywords and their corresponding

1The response messages of the sub-cluster 2 of the Search request cluster in Figure 5.2
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Table 5.5: Candidate Keywords

No. Candidate Keywords No. of appearance
1 LDAP Search Result Entry Message ID: 4
2 LDAP Search Result Entry Message 4
3 LDAP Search Result Entry 4
4 objectclass: inetOrgPerson 4
5 objectclass: 4
6 object 4

appearance values after subtracting substring’s appearances from the number of
appearances of superstring or super keyword. As Table 5.6 shows, two keywords
(i.e., “LDAP Search Result Entry Message ID:”, “objectclass: inetOrgPerson”)
are extracted from the candidate keywords in Table 5.5.

Table 5.6: Keywords After Subtraction

No. Keywords No. of appearance
1 LDAP Search Result Entry Message ID: 4
2 LDAP Search Result Entry Message 0
3 LDAP Search Result Entry 0
4 objectclass: inetOrgPerson 4
5 objectclass: 0
6 object 0

Format Extraction

The purpose of this sub-step is to infer the message format from the response
messages in each response-based cluster with the set of identified keywords in the
keyword identification step. The inferred format is presented in the form of a regular
expression, an alternate sequence of keywords and payload information. We use
the same format inference technique described in Section 4.1.3 to infer the format
from the response messages, which involves tonenization and format inference. For
example, the following sequence is generated for the third response (i.e., Resp#7) in
Table 5.1 (space character is shown as ‘ ’) after tokenization.

LDAP Search Result Entry Message ID: VARIABLE LDAP Search Result Entry Prot-

ocol Op dn: cn=VARIABLE,ou= VARIABLE,ou=VARIABLE,dc=ca,dc=com cn: VARIABLE m-

ail: VARIABLE@ca.com mobile: VARIABLE description: VARIABLE objectClass: inet-

OrgPerson title: VARIABLE sn: VARIABLE LDAP Search Result Entry Message ID:

VARIABLE LDAP Search Result Entry Protocol Op dn: cn=VARIABLE,ou= VARIABLE,ou
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Figure 5.3: Inferred FSM by Synoptic for the Search Success response

=VARIABLE,dc=ca,dc=com cn: VARIABLE mail: VARIABLE@ca.com mobile: VARIABLE de-

scription:VARIABLE objectClass: inetOrgPerson title: VARIABLE sn: VARIABLE LD-

AP Search Result Done Message ID: VARIABLE LDAP Search Result Done Protocol

Op Result Code: 0 (Success)

Figure 5.3 shows an inferred FSM by Synoptic [76] for the responses of the Search

(Success) cluster
Finally, our approach infers the following format from the response message

of the Search (Success) cluster (space character is shown as ‘ ’). As the inferred
format shows, our approach is able to generalize the repetition (highlighted in “red”)
sequences of keyword-payload allowing the inferred format to accept the valid yet
unseen messages with different number of repetitions.

(LDAP Search Result Entry Message ID: .* LDAP Search Result Entry Pro-

tocol Op dn: cn=(.*,ou=)+.*,dc=ca,dc=com cn: .* mail: .*@ca.com mobile:

.* description:.* objectClass: inetOrgPerson title: .* sn: .* )+ LDAP

Search Result Done Message ID: .* LDAP Search Result Done Protocol Op

Result Code: 0 (Success)

5.3 Evaluation Results
We have evaluated our approach to inferring response message formats of service
APIs and compared it with two state of art approaches (i.e., ProDecoder [74] and
AutoReEngine [73]), by applying to the interaction traces of real-world services. We
run the experiments on the same datasets as described in the Chapter 4 and use
the same evaluation metrics and comparative techniques to evaluate and compare
the effectiveness of our approach. Again, similar to Chapter 4, we describe the
experimental results in terms of accuracy and efficiency in the following sections.
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5.3.1 Accuracy
In this section, we present the accuracy of clustering the responses and extracting
formats for each cluster by our approach and the comparative techniques. We use
ProDecoder [74] and AutoReEngine [73] as the baseline for comparison as they all
aim to infer formats of the messages.

Message Clustering

Table 5.7 reports the overall result (message-volume weighted) of response mes-
sage clustering, while the detailed result of clustering response messages for each
request-based cluster is presented in A.2. It shows that our approach achieves 100%
homogeneity, completeness, and V-measure in the message clustering step for all
four data sets and outperforms the compared approaches for all the datasets.

Our approach outperforms both AutoReEngine and ProDecoder in clustering
response messages as shown in Table 5.7. ProDecoder clusters messages through
keyword identification based on the relationships between keywords learned by us-
ing the LDA [120], from Natural Language Processing. Unlike natural languages,
the machine-generated messages follow a defined sequence of keywords and payloads
(i.e., message format). Hence, direct use of the technique inspired by natural lan-
guage (i.e., LDA) on such machine-generated messages has limitation in extracting
the relationships between message keywords correctly. In contrast, our clustering
approach considers the position (a machine language oriented characteristic) of the
keywords in extracting message keywords from the keyword-payload formatted mes-
sages and clusters the messages based on the extracted keywords. Therefore, our
approach outperforms ProDecoder in clustering response messages for all datasets.
As Table 5.7 shows, ProDecoder achieves 0.69 in V-measure for LDAP, while our
approach achieves 1.00. Similarly, ProDecoder also achieves lower accuracy in clus-
tering responses for other datasets.

However, like our approach, AutoReEngine considers the position of keywords in
the keyword identification step. The candidate keywords with a low standard devi-
ation of positions are considered as keywords in AutoReEngine; otherwise they are
filtered as noise. But, several false keywords (i.e., payloads) are extracted from the
messages, especially from the messages (i.e., responses) with repetitive sequences
of keyword-payload. Meanwhile, some keywords (true) may have large variations
in their positions in the messages due to the significant variation of payloads (i.e.,
length of payloads). As it uses such false keywords in clustering, AutoReEngine
generates a lot more clusters than the actual clusters for the response messages of
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Table 5.7: Clustering Result (Response Messages)

Data Set ProDecoder AutoReEngine Our Approach
H C V H C V H C V

LDAP 0.73 0.65 0.69 0.30 0.36 0.33 1.00 1.00 1.00
SOAP 0.50 0.52 0.51 1.00 0.77 0.87 1.00 1.00 1.00
Twitter 0.62 0.65 0.63 0.82 0.11 0.20 1.00 1.00 1.00
GoogleBooks 0.29 0.27 0.28 1.00 0.31 0.48 1.00 1.00 1.00
*Note: H is homogeneity, C is completeness and V is V-measure.

having payload variations and repetitions. Therefore, it shows comparatively low
completeness for such messages even though homogeneity is relatively high. For ex-
ample, AutoReEngine achieves a homogeneity 0.82 for the Twitter dataset but shows
completeness of 0.11 because it splits the responses of SearchTweets into 190 differ-
ent clusters on average instead of the actual 3 clusters only. Similarly, it generates
many more clusters for GoogleBook and LDAP datasets and thus achieves very low
V-measure in message clustering. However, it shows comparatively high accuracy
for SOAP datasets. This is because, none of the response messages of the SOAP
dataset contain repetition of message fields where it shows 1.00 in homogeneity and
0.77 in completeness.

As the results show, our approach accurately clusters the messages with varying
length payloads and repetitive patterns of payloads by utilizing the position informa-
tion of keywords. The V-measure in message clustering of our approach is 1.00 for
all datasets. This implies that our approach can successfully address the keyword
repetition issue and the ambiguity between the true and false keywords.

Format Extraction

Table 5.8 reports the overall results (message-volume weighted) of the response
format extraction for the four datasets (More detailed results of format extraction
containing the accuracy of the inferred format for the response messages of each
request-type based cluster are presented in Appendix A.3). Note that we also re-
port the average number of formats extracted for each cluster for all datasets and
ideally it should be 1. The accuracy of the response message format extraction
is highly depending on three factors: (i) response message clustering, (ii) format
generalization, and (iii) keyword extraction.

As all approaches infer response formats after clustering the response messages,
the result of clustering has a huge impact on the inferred message format. More
specifically, the message-mixing, i.e., mixing different types of response messages in

89



5. Format Extraction for Response Messages

Table 5.8: Response Format Extraction Result

Data Set ProDecoder AutoReEngine Our Approach
P R F N P R F N P R F N

LDAP 0.81 0.91 0.86 1.00 0.83 0.89 0.86 1.05 1.00 1.00 1.00 1.00
SOAP 0.82 0.90 0.86 1.00 0.73 0.84 0.78 1.50 1.00 1.00 1.00 1.00
Twitter 0.77 0.89 0.83 1.00 0.82 0.95 0.88 24.00 1.00 0.99 0.99 1.00
GoogleBooks 0.99 0.81 0.89 1.00 0.96 0.93 0.94 19.00 1.00 1.00 1.00 1.00
*Note: P is precision, R is recall, F is F-measure and N is the average number of
formats per ground-truth format.

a cluster, will affect the precision of the inferred format, whereas over-classification,
i.e., generating multiple clusters for a single type of responses, will affect the recall
of the inferred format. The inferred formats from AutoReEngine are too specific as
it generates many more clusters than the actual clusters (i.e., over-classification).
Even though the clustering result of AutoReEngine is low, it shows a compara-
tively good result in format extraction because the evaluation metrics, i.e., true
positive, false positive and false negative are calculated in an “OR”ed fashion. For
example, we count as true positive if a test message has been accepted by any of
the inferred formats. AutoReEngine infers too many formats for the Twitter and
GoogleBooks datasets, i.e., it creates 24 clusters on average for the Twitter dataset
and 19 for the GoogleBooks rather than the expected 1 cluster. This indicates that
AutoReEngine extracts many more false keywords from the messages containing
repetition sequences of keyword-payload ( i.e., in large payloads) and consequently,
generates many more clusters than the actual. On the other hand, ProDecoder
classifies the messages inaccurately, i.e., mixing up multiple messages into a single
cluster due to the misidentification of keywords (i.e., missing true keywords and
extracting false keywords) and consequently, infers imprecise message formats (i.e.,
low precision and recall for the inferred format). In contrast, our approach shows
almost 100% precision and recall in the format extraction as it clusters the response
messages accurately.

Furthermore, the generalization ability of our approach plays an important role
in inferring the response formats and consequently, improves the accuracy of the
inferred formats from the response messages. For example, the LDAP response
message Resp#7 (in Table 5.1) contains multiple occurrences of ‘ou’ in the message.
Moreover, the whole structure of search entry (i.e., keyword-payload sequence) ap-
pears repetitively (2 times) in Resp#7, whereas search entry appears only 1 time in
Resp#6. This suggests that the responses of a search request may have one or more
search entries. Therefore, the generalization ability of such repetitive patterns allows
the inferred format to accept the valid but yet unseen messages. As ProDecoder
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adopts MSA to infer the message format for each cluster, it is unable to capture such
generalization in the extracted format. As a consequence, it does not achieve 100%
precision and recall in format extraction for any of the datasets. Most importantly,
it would not be able to achieve 100% accuracy in format extraction even though
it would achieve 100% accuracy in clustering due to its inability in handling the
repetition of keyword-payload sequences. Similarly, AutoReEngine infers the mes-
sage format as a series of keywords and is unable to capture the generalization of
the repetitive patterns in messages. As a result, it achieves low accuracy in format
extraction even though it shows high homogeneity in clustering for the GoogleBooks
dataset. In contrast to ProDecoder and AutoReEngine, our approach can capture
the repetitive patterns and has the generalization capability (cf. the regular expres-
sion given at the end of Section 5.2). Thus, it achieves 100% precision and recall in
format extraction for the LDAP, SOAP and GoogleBook datasets.

In addition, the keyword extraction has an impact on the accuracy of format
extraction especially when the extracted keywords are not only used for message
clustering but also used for the process of inferring the message formats. Our ap-
proach infers format from the tokenized messages, where extracted keywords have
been used to tokenize the response messages. AutoReEngine infers the format as
the series or sequence of keywords from the extracted keywords. Thus, the accuracy
of the inferred format for those approaches depends on the extracted keywords from
the response messages. Our approach achieves 100% F-measure for all the datasets
except for the Twitter dataset, where it achieves 99% recall. This suggests that very
few messages are not accepted by the inferred format (i.e., false negative). Due to
the cross-validation experiment, our approach infers formats of the messages from
the messages in the training dataset and then evaluate the inferred formats against
the messages in the testing dataset. For the response messages of statusesshow
sub-cluster, our approach extracts a keyword “favorite_count:1”, where the num-
ber (i.e., ‘1’) is extracted as part of the keyword as all response messages in the
training dataset contain such number. But, the response messages (some) in the
testing dataset do not contain such number with the keyword “favorite_count:”
and hence, the response messages in testing dataset are rejected by the inferred
format (i.e., false negative). Similarly, such keywords in the response messages of
the Twitter dataset has also affected the accuracy of the inferred format by Au-
toReEngine resulting more clusters and message formats.
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5.3.2 Efficiency
Again, our main objective is to achieve high accuracy in message format extraction,
we also quantify the impact on the efficiency of our approach. We run our experi-
ments and the compared techniques on the same machine as described in Chapter 4
and the time required for clustering the response messages and extracting formats of
the response messages are recorded. Table 5.9 shows the average2 time (seconds) for
clustering the response messages and inferring the formats of the response messages,
while the detailed results are presented in A.4. As Table 5.9 shows, our approach
clusters and infers formats of the response messages faster than the compared tech-
niques for Twitter and GoogleBooks datasets. This is because ProDecoder requires
more time in extracting the distributions of the keywords over messages for longer
length response messages, while the keyword extraction (i.e., breaking messages
into n-grams and identifying n+1 length keyword series) in AutoReEngine requires
more time. On the other hand, our approach takes slightly more time in clustering
the responses for LDAP and SOAP dataset. This is because our approach extracts
keywords with small variations in their positions, which are merged in the keyword
merging step based on the standard deviations of their positions. As the payloads (in
terms of their length) do not vary much in the LDAP and SOAP datasets compared
to the Twitter and GoogleBooks dataset, our approach requires relatively more time
in clustering the responses. However, our approach achieves 100% accuracy in clus-
tering and inferring formats of the response messages by sacrificing some efficiency.
Again, the accuracy of the inferred format is much important than the efficiency in
this thesis, and in particular, the format inference is done in the offline phase before
the inferred formats are used in response generation (online) phase.

Table 5.9: Average Time (in seconds) of Inferring Response Format

Data Set ProDecoder AutoReEngine Our Approach
TC TF TC TF TC TF

LDAP 20.12 2.11 1.47 100.33 40.32 5.21
SOAP 39.12 3.99 19.30 28.67 65.04 39.07
Twitter 1403.55 1839.24 173.31 1148.57 6.74 271.21
GoogleBooks 1907.15 42.28 808.73 1328.02 30.09 2.20
*Note: TC is the required time (s) for clustering and TF is the
required time (s) for inferring formats.

2Each request-based cluster contains different types of responses and we run the 10-fold cross-
validation technique for evaluation.
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5.4 Summary
In this chapter, we have presented our approach for extracting response formats
from the response messages with repetitive sequences of keyword-payload. It neither
assume any prior knowledge about message structures, nor requires access to the
executable code of the applications implementing the services concerned. It takes
an interaction trace grouped into request-based clusters as an input and infers the
formats of the response messages after clustering the response messages based on
their positional keywords. The response messages of each request-based cluster are
tokenized based on their positions and then clustered based on these positional key-
words. Particularly, it addresses the issues of identifying keywords (i.e., missing true
keywords and extracting false keywords) and refines the clusters with mixed message
types to get more accurate message clustering for messages with overwhelming pay-
loads. Finally, it infers the formats from the tokenized response messages for each
response cluster after extracting cluster-level keywords. We have compared our ap-
proach with two existing state-of-the-art approaches for datasets collected from four
real services. The experimental results have shown that our approach outperforms
existing approaches in both clustering messages and extracting formats from the
response messages.
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Chapter 6

Inference of Service Behavior

In Chapter 4, we have presented our approach to identifying request message type
and inferring formats of each type of messages. In Chapter 5, we have presented our
approach to inferring response message formats for each type of response messages in
each request-type based cluster. As such, we are now able to identify different types
of requests that are involved in a service and to identify different types of responses
that are generated for different types of requests and even for the same type of
request. As described in Section 2.3.3, the responses of a stateful service depend on
the sequence of the preceding interactions and the incoming request messages. For
example, a search request, following an add request in LDAP, generates a different
response than the response generated for a search request following a delete request.
In addition to the dependency between messages, there also between message fields
of a response message and the corresponding request message or even the sequence
of the preceding messages.

In this chapter, we propose a new approach to discovering the service behavior
model as a state machine through mining the interaction sequences to track the ser-
vice state and generate the type of response based on the current state of the service
for stateful services. We also infer the dependency between important message fields
and utilize it in synthesizing response message fields with the aim to generate more
accurate responses with appropriate values for the message fields.

This chapter is organized as follows: A simplified form of an example interaction
trace is presented in Section 6.1.1 to illustrate our approach in the following sections.
The detail of our approach to inferring the service behavior model (message depen-
dency and data dependency models) and utilizing them in synthesizing responses is
presented in Section 6.2. The technique of inferring probabilistic service behavior
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for the case where the service is not in a clean start state when trace collection
starts. In Section 6.4, we present the evaluation of our approach on a number of
interaction traces collected from both stateful and stateless services to demonstrate
the suitability of our approach in both services. We discuss the limitations of our
approach in Section 6.5 before summarizing this chapter in Section 6.6.

6.1 Preliminaries
In this section, we define the key concepts and terms that are used in describing our
approach to stateful service virtualization. Section 6.1.1 presents the key concepts
and an example interaction trace and Section 6.1.2 presents the result of cluster-
ing and inferring message formats from the interaction trace using the techniques
described in Chapter 4 and Chapter 5.

6.1.1 Interaction Trace
Table 6.1 shows a simplified form of an example interaction trace for illustrating
the approach (without loosing generality) from the CA IM [1] service implementing
the widely used LDAP protocol [20]. Instead of using the original form of LDAP
messages as presented in Section 2.3.2, we use a simplified form in this Chapter
because it is short in length and easier to follow, and yet includes the important
message fields. The interactions in Table 6.1 are uniquely identifiable with the key
field cn:(common name).

The interaction trace in Table 6.1 contains five types of operations: Bind, Add,
Search, Delete and Unbind, which have been presented in the trace as op:B, op:A,
op:S, op:D, and op:U respectively. The response operations of bind, add, search and
delete requests are specified with the fields op:BindRsp, op:AddRsp, op:SearchRsp

and op:DeleteRsp respectively, while unbind request returns null response. The
result codes for those responses are specified as result:Ok, result:Not found, and
result:AlreadyExists. Moreover, we use only the cn entry to identify an entry or
record in the data storage uniquely (henceforth being referred as key field and its
value as key payload in this thesis), while in practice, the dn entry is used to identify
an entry or record in the LDAP that contains a cn, at least one ou followed by one
or more dc (cf. Table 2.1).

The requests and responses in Table 6.1 are executed on four different key pay-
loads i.e., cn:Judith, cn:Gavin, cn:Linden, and cn:Katy. As Table 6.1 shows, the
CA IM service supports different types of requests, e.g., Add, Search, and generates
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Table 6.1: Simplified Interaction Trace

Index Request Response
1 {id:1,op:B,pwd:1234} {id:1,op:BindRsp,result:Success}

2 {id:2,op:D,cn:Judith} {id:2,op:DeleteRsp,result:Not Found}

8 {id:8,op:D,cn:Gavin} {id:8,op:DeleteRsp,result:Not Found}

15 {id:15,op:A,cn:Judith} {id:15,op:AddRsp,result:Ok}

23 {id:23,op:S,cn:Gavin} {id:23,op:SearchRsp,result:Not Found}

32 {id:32,op:A,cn:Judith} {id:32,op:AddRsp,result:Already Exists}

55 {id:55,op:D,cn:Judith} {id:55,op:DeleteRsp,result:Ok}

90 {id:90,op:D,cn:Gavin} {id:90,op:DeleteRsp,result:Not Found}

112 {id:112,op:A,cn:Gavin} {id:112,op:AddRsp,result:Ok}

130 {id:130,op:S,cn:Gavin}
{id:130,op:SearchRsp,result:Ok,cn:Gavin,
sn:MAJOR,mobile:26952135}

135 {id:135,op:S,cn:Linden} {id:135,op:SearchRsp,result:Not Found}

144 {id:144,op:S,cn:Judith} {id:144,op:SearchRsp,result:Not Found}

210 {id:210,op:A,cn:Gavin} {id:210,op:AddRsp,result:Already Exists}

213 {id:213,op:A,cn:Linden} {id:213,op:AddRsp,result:Ok}

235 {id:235,op:A,cn:Judith} {id:235,op:AddRsp,result:Ok}

242 {id:242,op:A,cn:Katy} {id:242,op:AddRsp,result:Ok}

251 {id:251,op:S,cn:Judith}
{id:251,op:SearchRsp,result:Ok,cn:Judith,
sn:GIDDINGS,mobile:78675623}

283 {id:283,op:A,cn:Gavin} {id:283,op:AddRsp,result:Already Exists}

300 {id:300,op:U}

different responses for different types of requests, e.g., AddRsp and SearchRsp. The
response codes (i.e., results) are also different for different types of responses, e.g.,
Not Found, Ok, Already Exists.

6.1.2 Result of Message Analysis
As the basis for further discussions in this chapter, this section presents the result
of clustering the interactions and inferring the formats for the messages in Table 6.1
using the techniques described in Chapter 4 and Chapter 5.

Request Based Interaction Clustering:

Tables 6.2, 6.3, 6.4, 6.5, and 6.6 show the interactions after clustering the inter-
actions of Table 6.12, corresponding to the request type B, A, D, S, and U respectively
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using the technique described in Chapter 4. Table 6.7 shows the inferred formats of
the request messages for each request-type based cluster.

Table 6.2: Cluster 1 (Bind)

Index Request Response
1 {id:1,op:B,pwd:1234} {id:1,op:BindRsp,result:Success}

Table 6.3: Cluster 2 (Add)

Index Request Response
15 {id:15,op:A,cn:Judith} {id:15,op:AddRsp,result:Ok}

32 {id:32,op:A,cn:Judith} {id:32,op:AddRsp,result:Already Exists}

235 {id:235,op:A,cn:Judith} {id:235,op:AddRsp,result:Ok}

112 {id:112,op:A,cn:Gavin} {id:112,op:AddRsp,result:Ok}

210 {id:210,op:A,cn:Gavin} {id:210,op:AddRsp,result:Already Exists}

283 {id:283,op:A,cn:Gavin} {id:283,op:AddRsp,result:Already Exists}

213 {id:213,op:A,cn:Linden} {id:213,op:AddRsp,result:Ok}

242 {id:242,op:A,cn:Katy} {id:242,op:AddRsp,result:Ok}

Table 6.4: Cluster 3 (Delete)

Index Request Response
2 {id:2,op:D,cn:Judith} {id:2,op:DeleteRsp,result:Not Found}

55 {id:55,op:D,cn:Judith} {id:55,op:DeleteRsp,result:Ok}

8 {id:8,op:D,cn:Gavin} {id:8,op:DeleteRsp,result:Not Found}

90 {id:90,op:D,cn:Gavin} {id:90,op:DeleteRsp,result:Not Found}
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Table 6.5: Cluster 4 (Search)

Index Request Response
144 {id:144,op:S,cn:Judith} {id:144,op:SearchRsp,result:Not Found}

251 {id:251,op:S,cn:Judith}
{id:251,op:SearchRsp,result:Ok,cn:Judith,
sn:GIDDINGS,mobile:78675623}

23 {id:23,op:S,cn:Gavin} {id:23,op:SearchRsp,result:Not Found}

130 {id:130,op:S,cn:Gavin}
{id:130,op:SearchRsp,result:Ok,cn:Gavin,
sn:MAJOR,mobile:26952135}

135 {id:135,op:S,cn:Linden} {id:135,op:SearchRsp,result:Not Found}

Table 6.6: Cluster 5 (Unbind)

Index Request Response
300 {id:300,op:U}

Table 6.7: Inferred Formats from the Request Messages

Cluster Request Formats
Cluster 1 (Bind cluster) {id:1,op:B,pwd:1234}

Cluster 2 (Add cluster) {id:(.*),op:A,cn:(.*)}

Cluster 3 (Delete cluster) {id:(.*),op:D,cn:(.*)}

Cluster 4 (Search cluster) {id:(.*),op:S,cn:(.*)}

Cluster 5 (Unbind cluster) {id:300,op:U}

Response Based Interaction Clustering:

Table 6.8 and 6.9 show the interactions after clustering the interactions of Table
6.5 (Search) based on responses, corresponding to result:Not Found and result:Ok

respectively. After clustering the interactions based on the response messages, we
infer the format of the response messages for each response based cluster. Table
6.10 shows the inferred response formats from the response cluster 1 (Table 6.8) and
cluster 2 (Table 6.9). Then, we store all the different response formats with their
corresponding interaction type in a map of key-value pairs (henceforth referred to
ResponseMap, where the interaction type1 is the key and the inferred format is the

1Interaction type is defined as the combination of the request type and corresponding response
type. In case, either the request or the response messages do not contain the type information,
the combination of the cluster ID for the request and corresponding responses is considered as the
interaction type.
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value) to be used in generating responses at runtime. Table 6.11 shows the entries
in a ResponseMap for the example interaction trace in Table 6.1.

Table 6.8: Search Response Cluster 1 (Not Found cluster)

Index Request Response
144 {id:144,op:S,cn:Judith} {id:144,op:SearchRsp,result:Not Found}

23 {id:23,op:S,cn:Gavin} {id:23,op:SearchRsp,result:Not Found}

135 {id:135,op:S,cn:Linden} {id:135,op:SearchRsp,result:Not Found}

Table 6.9: Search Response Cluster 2 (Ok cluster)

Index Request Response

251 {id:251,op:S,cn:Judith}
{id:251,op:SearchRsp,result:Ok,cn:Judith,
sn:GIDDINGS,mobile:78675623}

130 {id:130,op:S,cn:Gavin}
{id:130,op:SearchRsp,result:Ok,cn:Gavin,
sn:MAJOR,mobile:26952135}

Table 6.10: Inferred Formats from the Response Messages

Cluster Format (Response)
Cluster 1 (Not Found) {id:(.*),op:SearchRsp,result:Not Found}

Cluster 2 (Ok) {id:(.*),op:SearchRsp,result:Ok,cn:(.*),
sn:(.*), mobile:(.*)}
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Table 6.11: Entries of ResponseMap Containing Response Formats

Key (Interaction Type) Value (Response Format)
S_SearchRsp(Not Found) {id:(.*),op:SearchRsp,result:Not Found}

S_SearchRsp(Ok)
{id:(.*),op:SearchRsp,result:Ok,cn:(.*),
sn:(.*),mobile:(.*)}

A_AddRsp(Ok) {id:(.*),op:AddRsp,result:Ok}

A_AddRsp(Already Exists) {id:(.*),op:AddRsp,result:Already Exists}

D_DeleteRsp(Ok) {id:(.*),op:DeleteRsp,result:Ok}

D_DeleteRsp(Not Found) {id:(.*),op:DeleteRsp,result:Not Found}

6.2 Approach

In this section, we present the details of our approach which takes an interaction
trace as input and infers the service behavior which can be used to synthesize re-
sponses for the incoming requests. It facilitates the creation of “virtual” services
for providing test-bed environments by examining how actual services respond to
the requests. As shown in Figure 6.1, our approach involves three stages: the trace
analysis and service behavior inference phase, which are performed offline, and a
response generation phase, which is performed online or at runtime.

Trace Analysis: As described in Section 6.1.2, the formats of the request and
response messages are extracted for each request based cluster and response based
cluster respectively.

Service Behavior Inference: In this step, we infer the behavior of the service from
the interaction trace that captures the dependency between messages (henceforth
being referred as message dependency and control dependency, interchangeably) and
between message fields, which can be used in synthesizing responses. At first, the
interaction trace is partitioned based on the data values of key fields (i.e., record
in the data storage) that are associated with the request messages. The intuition
behind the partitioned to have the relevant interactions sequentially, i.e., creating a
separate partition for the interactions operate on the same record. Then, we define
the interaction type by combining the request type and the corresponding response
type for each interaction. The interaction type trace is generated by putting the
interaction types together in order as the interactions appear in the record-based
partition and the model trace is created by combining the interaction type traces for
all record-based partitions. The message dependency model is then inferred from
the model trace through generalizing the observed behavior of the individual record-
based partition to deduce the process of changing the service state and therefore, to
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Figure 6.1: Overview of Response Generation Approach

apprehend the reasoning for generating different responses at different times. Then,
A set of substitution rules (i.e., data dependency) are inferred for each response-
based cluster from the formats of the response and corresponding request messages,
and the payloads associated in the messages to determine the payloads for the
synthesized response messages.

Response Generation: At runtime, the inferred message dependency model is
used to track the state of the service and to identify the type of responses to be
sent for the incoming request messages. An individual instance of the inferred
model is used for each of the different records or key payloads associated with the
request messages to keep track of the service state at runtime. Finally, the inferred
payload relationships (i.e., substitution rules) are used to insert the appropriate
data values in synthesizing responses and the synthesized responses are sent back
for the incoming request messages.

6.2.1 Record Based Partition (Step M1)
In this step, the interaction trace is partitioned based on the key payloads (i.e.,
record) present in the request messages for having the relevant interactions in the
consecutive order. The intuition behind the partition is that the state of the service
is record specific and usually, the operation on one record does not affect the state of
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another record (Section 2.3.3). As Table 6.1 shows, the same Delete request executed
on two different records (i.e., Judith and Gavin) generates two different responses
(Index:55 and Index:90) due to the distinct service states for the records. It implies
that at any time the current state for the key payload “cn:Judith” is different from
the state for the key payload “cn:Gavin” and the operations on “cn:Judith” do not
change or update the state for the key payload “cn:Gavin”. As the interactions on
different records are interleaved in the interaction trace and our goal is to capture
the contextual information to find the previous request or sequence of requests for
which a given type of responses are generated, we partition the interaction trace
based on the records (i.e., key payload).

Table 6.12: Partitioned Interaction Trace Based on the Key Payloads

Index Request Response
2 {id:2,op:D,cn:Judith} {id:2,op:DeleteRsp,result:Not Found}

15 {id:15,op:A,cn:Judith} {id:15,op:AddRsp,result:Ok}

32 {id:32,op:A,cn:Judith} {id:32,op:AddRsp,result:Already Exists}

55 {id:55,op:D,cn:Judith} {id:55,op:DeleteRsp,result:Ok}

144 {id:144,op:S,cn:Judith} {id:144,op:SearchRsp,result:Not Found}

235 {id:235,op:A,cn:Judith} {id:235,op:AddRsp,result:Ok}

251 {id:251,op:S,cn:Judith}
{id:251,op:SearchRsp,result:Ok,cn:Judith,
sn:GIDDINGS,mobile:78675623}

8 {id:8,op:D,cn:Gavin} {id:8,op:DeleteRsp,result:Not Found}

23 {id:23,op:S,cn:Gavin} {id:23,op:SearchRsp,result:Not Found}

90 {id:90,op:D,cn:Gavin} {id:90,op:DeleteRsp,result:Not Found}

112 {id:112,op:A,cn:Gavin} {id:112,op:AddRsp,result:Ok}

130 {id:130,op:S,cn:Gavin}
{id:130,op:SearchRsp,result:Ok,cn:Gavin,
sn:MAJOR,mobile:26952135}

210 {id:210,op:A,cn:Gavin} {id:210,op:AddRsp,result:Already Exists}

283 {id:283,op:A,cn:Gavin} {id:283,op:AddRsp,result:Already Exists}

135 {id:135,op:S,cn:Linden} {id:135,op:SearchRsp,result:Not Found}

213 {id:213,op:A,cn:Linden} {id:213,op:AddRsp,result:Ok}

242 {id:242,op:A,cn:Katy} {id:242,op:AddRsp,result:Ok}
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Table 6.13: Partitioned Interaction Trace Without Key Payload

Index Request Response
1 {id:1,op:B,pwd:1234} {id:1,op:BindRsp,result:Success}

300 {id:300,op:U}

In this step, we take an interaction trace containing requests and their corre-
sponding responses and a set of user-defined regular expression for identifying the
key fields as input. The regular expression is used to parse the request messages and
extract the key payloads associated with the interaction (i.e., request message). For
example, our approach extracts Judith as the key payload from the second interac-
tion (Index:2) of Table 6.1 for a given regular expression cn=(.*?). Similarly, we
extract the key payloads from all interactions of an interaction trace. Finally, the
interaction trace is partitioned based on the extracted key payloads. In some cases,
interactions may not contain such payloads in the request messages (e.g., authenti-
cation requests in LDAP). For example, Bind and Unbind requests in LDAP do not
have such key payload, i.e., those messages do not contain the cn message field. We
create a separate partition containing such interactions of having no key payloads.

Table 6.12 shows the rearranged interaction trace after combining the interac-
tions from the record based partitions, where the interactions of Indices: 2, 15,

32, 55, 144, 235 and 251 are from partition 1 (Judith), interactions of Indices:
8, 23, 90, 112, 130, 210 and 283 are from partition 2 (Gavin), interactions of In-
dices: 135, 213 are from partition 3 (Linden) and interaction of Index: 242 is from
partition 4 (Katy). On the other hand, Table 6.13 shows the interactions without
key payloads in them (i.e., partition 5).

6.2.2 Model Trace Generation (Step M2)
The purpose of this step is to create a model trace from the interaction trace, which
will be used to infer the message dependency model in the model inference step (Step
M3). At first, each interaction in the rearranged interaction trace (Table 6.12 and
Table 6.13) is marked with the interaction type. For example, the interaction type for
the fifth interaction in Table 6.12 (Index: 144) is “S_SearchRsp(Not Found)”2 as the
request message belongs to the “Search” cluster (Table 6.5) and the corresponding
response message is a member of the “Not Found” cluster (Table 6.8). A separator

2The result “Not Found” is used as the response type for the illustration purpose. In prac-
tice, the cluster ID of the response message is used as the response type in formulating in-
teraction type. The interaction type for the fifth interaction in Table 6.12 (Index: 144) is
“S_Response(Cluster 1)”
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“_” is used in between the request type and the corresponding response type in
formulating the interaction type.

Table 6.14: Model Trace (Key Payload)

Trace No. Traces

1
D_DeleteRsp(Not Found), A_AddRsp(Ok), A_AddRsp(Already Ex-
ists), D_DeleteRsp(Ok), S_SearchRsp(Not Found), A_AddRsp(Ok),
S_SearchRsp(Ok)

2
D_DeleteRsp(Not Found), S_SearchRsp(Not Found),
D_DeleteRsp(Not Found), A_AddRsp(Ok), S_SearchRsp(Ok),
A_AddRsp(Already Exists), A_AddRsp(Already Exists)

3 S_SearchRsp(Not Found), A_AddRsp(Ok)

4 A_AddRsp(Ok)

Table 6.15: Model Trace (Non-key Payload)

Trace No. Traces
1 B_BindRsp(Success), U_””

Once the interactions in the rearranged interaction trace are labeled with the
interaction type, an interaction type trace for each record based partition is created
by putting the interaction type in a sequential order with a separator (,) as they
appeared in the record based partition. For example, the trace in the first row of
Table 6.14 is created for the interactions of partition 1 (i.e., interactions of the key
payload “Judith”) and similarly, second, third and fourth traces are created from
the interactions of partitions 2, 3 and 4 respectively. Finally, the model trace is
generated as a collection of interaction type traces, where we put all interaction type
traces for different record-based partitions together. In the same way, another model
trace is generated from the non-key payload interactions, for example, Bind and
Unbind interactions in LDAP. In contrast to the interaction trace, the model trace
only contains the type information of request and response messages, which allows
finding the responsible sequence of requests for generating different responses, that
is, to extract the dependency between messages and, hence, identify the accurate
response type to send for an incoming request.

Table 6.14 shows the generated model trace from the rearranged interaction trace
of Table 6.12 (i.e., interactions with key payloads). Table 6.15 shows the generated
model trace for the interactions without key payloads, i.e., from the interactions of
Table 6.13.
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6.2.3 Model Inference (Step M3)
In this step, our goal is to infer the message dependency from the generated model
trace in Step M2 and infer message field dependency from the inferred formats in
trace analysis phase. This step has two sub-steps: i) Message Dependency, and ii)
Data Dependency (i.e., message field dependency).

Message Dependency

The objective of this step is to infer the FSM (Finite State Machine) from the
model trace to express the dependency between messages and consequently, to track
of the current state of the services at runtime. We use the kTail (k=0) [77] algorithm
to infer the control dependency from the model trace generated in the previous step.
kTail is the most basic algorithm for inferring a system behavior model from a se-
quence of inter-component method calls, and several techniques have been proposed
to infer a more precise model from the traces based on the kTail algorithm. The lat-
est approaches use stricter generalization rules in merging states and most of them
use temporal in-variants to refine the inferred model, intending to prevent imprecise
merging and consequently, infer a more precise system model [59, 79, 80, 82]. Those
approaches are useful to infer a model from the system logs to validate the system
by checking the sequence or order of method calls. The inferred models summarize
and generalize the inter-component method calls to support debugging and verifying
the system [79]. The system logs contain the execution sequence of methods of each
component of a system and the inferred models from the logs are used to find the
errors in the execution sequence of methods, stricter generalization rules are applied
for inferring such models. For example, WriteData() method of a system opens a
connection to the database (openConn), writes data (write) and then close the con-
nection (closeConn). Those methods (i.e., openConn, write, closeConn) are to be
executed consecutively for the method WriteData to function accurately. Therefore,
the model inference techniques use the stricter generalization rules to include those
methods in a sequential order in the inferred model.

However, to communicate in a service environment, a client consumes services by
sending a request message and getting the response back from the service provider.
The client does not need to know the internal details of any component or the
execution sequence of methods of any component of a service provider, it only con-
sumes the services and the internal details are considered as black-box to the client.
For example, in a banking service, a withdraw request may have a series of method
calls, e.g., checkAccount to check the account number is valid, checkBalance to check
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the account has sufficient balance to withdraw. To consume the withdraw service,
a client does not need to know the internal details, i.e., the sequence of internal
method calls and the service provider sends the response to the client even if the
client sends the request with an invalid account number or with an invalid with-
drawal amount. Moreover, in a service, a client is allowed to send any request at
any time (i.e., does not need to follow the order/sequence) and always get the re-
sponse back from the service provider. The service provider sends an error response
if an incorrect request is issued by a client. For example, in LDAP, a client must
sends a Bind request for authentication before sending Add, Search or any other
request to the LDAP server. But, if a client sends Add, Search or any other request
even before authenticating, it will receive an authentication error response from the
server. As the client does not need to follow any sequence/order for consuming
services and the internal structures of any component of a service is unknown to
the client, we use the less restrictive (i.e., kTail with k=0) algorithm to infer the
message dependency model (i.e., control dependency) and the inferred model is able
to capture the dependency relationships among messages.

Figure 6.2 and Figure 6.3 show the inferred message dependencies from the model
trace of Table 6.14 and Table 6.15 respectively. As the example dataset contains
a very small number of interactions and it does not have all possible sequences of
communications, the inferred model in Figure 6.2 from the example model trace
does not comprise all possible paths. But, in practice, the inferred models from the
model trace for our experimental dataset are most likely the ‘flower model’ (i.e.,
every node in the model is linked with every other node). We present a complete
message dependency model inferred by our approach from a large LDAP trace is
given in Appendix A.5.
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INITIAL

D_DeleteRsp(NotFound)

A_AddRsp(Ok)

S_SearchRsp(NotFound)

A_AddRsp(AlreadyExists)

S_SearchRsp(Ok)

D_DeleteRsp(Ok)

Figure 6.2: Inferred Message Dependency from the Model Trace in Table
6.14

INITIAL

B_BindRsp(Success)

B_BindRsp(Success)

U_""

U_""

Figure 6.3: Inferred Message Dependency from the Model Trace in Table
6.15
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Data Dependency

The objective of this step is to extract the relationships between the message
fields as substitution rules from the inferred request format and the corresponding
response format. The inferred substitution rules are stored in a map of key-value
pairs (henceforth referred to RulesMap, where the interaction type is the key and
the substitution rules are the value) for use in synthesizing responses. A set of sub-
stitution rules is inferred for each of the response based clusters through comparing
the inferred request format and the corresponding request format. At first, a set of
candidate substitution rules is inferred by comparing the actual data values (i.e.,
payloads) of the variable portions of the messages (the request and corresponding
response messages). For example, we compare the following request format (i.e.,
Cluster 3 (Search) in Table 6.7) with the corresponding format for the responses
(i.e., Cluster 2 (Ok) in Table 6.10)

Request Format : {id:(.*),op:S,cn:(.*)}

Response Format : {id:(.*),op:SearchRsp,result:Ok,cn:(.*), sn:(.*),mobile:(.*)}

As the request format contains two variable message fields and the response
format contains four variable message fields, a maximum of eight (i.e., 2×4) different
substitution rules can be inferred from these formats. Initially, we infer a candidate
substitution rule for each of the variable fields based on the data values for the
variable fields of the request messages and for the variable fields of the corresponding
responses. For example, our approach extracts 251 from the first request message in
Table 6.9 (Index: 251) for the first variable field of the request format and extracts
251 from the corresponding response (Index: 251 in Table 6.9) for the first variable
field of the response format. As the same payload appears in both the request and
corresponding response messages, our approach infers a candidate substitution rule
for the first variable field of the request and response formats. Then, we verify the
inferred candidate substitution rule for the rest of the interactions of the respective
cluster and finally, infer the substitution rule only if the candidate substitution
rule is valid for all interactions of that cluster. In the same way, our approach
infers substitution rules (if possible) for the rest of the variable fields from the above
formats. Our approach infers the following substitution rules from the above request
and response formats and stores it in the RulesMap for the key “S_SearchRsp(Ok)”
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No. Substitution Rules
1 {id:(.*?),op:S,cn:} – {id:(.*?),op:SearchRsp,result:Ok,cn:}

2 {,op:S,cn:(.*?)} – {,op:SearchRsp,result:Ok,cn:(.*?)}

Similarly, we infer the substitution rules, i.e., the dependency relationships
among message fields for each of the response based clusters and store the inferred
rules in the RulesMap. Our approach of inferring substitution rules is more com-
prehensive compared to the symmetric field identification [2]. This is so because
our approach infer candidate substitution rules from an interaction by comparing
the payloads in the request message with the payloads in corresponding response
message and then verify the candidate rules against all interactions in the respective
response-based cluster, whereas the technique presented in [2] identifies symmetric
fields by inspecting only the closest matched interaction (i.e., a single interaction).
Moreover, our approach infers substitution rules by comparing the message fields of
the request and corresponding response formats rather than comparing string (byte)
in the symmetric field identification.

Some message fields in the response messages may contain record-specific pay-
loads (cf. Section 2.3.3). This suggests that such fields are not directly correlated
with the message fields of the corresponding request message. The data dependency
model extracts the payloads from the recorded interactions of relevant cluster (based
on the incoming request) for such fields in synthesizing responses.

6.2.4 Response Selection (Step R1)
At runtime, the inferred service behavior model (i.e., message dependency and field
dependency) is used to formulate the responses for the incoming request messages
from the system under test. We utilize the inferred model to find the current state
for the record (i.e., key payload) associated with an incoming request and to select
the type of response to send back for the incoming request. Algorithm 5 is used to
identify the response type by considering the service state for any incoming request
at runtime. Here, we use a map to keep the record-specific (payload-specific) history
of interactions and to store the record-specific current state of the service. Initially,
as shown in Figure 6.2, the current state for all key payloads is set to “INITIAL”.
Now, for any incoming request, we extract the payload associated with the request
messages and identify the type of request from the incoming request message at
lines 3 and 4 respectively. Then, we search the current state in the map at line
5 for the extracted payload and store it in c. If the map does not have any state
information for the respective payload, we start with the “INITIAL” state of the
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Algorithm 5: Response Selection

1: Input: request message M, key payload and service state map H, model graph
G

2: Initialization: current state c=initialState(G), node labels L=getNodeLabel(G)

3: d ← getKeyPayload(M)
4: r ← getRequestType(M)
5: if d ∈ H.keys then
6: c← H.get(d)
7: end if
8: for e ∈ c.outEdges do
9: n← e.Target
10: l ← L.get(n)
11: if r ∈ l then
12: insert H(d, n)
13: Return l
14: end if
15: end for
16: Return emptyString

service. At line 8, check the node labels of all edges/paths from the current node
to identify any node among those connected nodes that contain the request type of
incoming message (lines 9 to 11 ) and if any such nodes found, the current service
state for the associated payload in the map is updated with the new service state
and finally, return the response type for the incoming request (lines 12 to 13 ). If
no such node found (uncommon for a complete model) then return an empty string
as the response type for the incoming request.

As an example, consider the following Delete request as incoming request

{id:50,op:D,cn:Dominic}

As Algorithm 5 depicts, our approach extracts Dominic as the key payload and
D as the request type. Then it finds the current state for the payload Dominic in
the map and as the key payload Dominic appears for the first time, the current
state (c) is set to the “INITIAL” state. Now, it checks all of the out edges of the
initial state and finds a node among the connected nodes that contains the incoming
request (i.e.,D). Our approach found the connected node D_DeleteRsp(NOT Found),
which contains the incoming request type D. It then updates the current state for the
key payload Dominic to “D_DeleteRsp(NOT Found)” in the map and finally, returns
D_DeleteRsp(NOT Found) as the response type for the above incoming request.
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6.2.5 Response Transformation (Step R2)

In this step, we synthesize the response once the type of response to send back for the
incoming request is identified in the previous step. First, we find the format of the
response to send in the ResponseMap (Table 6.11) using the selected response type.
For example, if the “D_DeleteRsp(Not Found)” response is selected in the response
selection step (i.e., Step R1 ) for an incoming Delete request, the format of the
response to send is “{id:(.*),op:DeleteRsp,result:Not Found}”. Once we get the
format of the response from the ResponseMap, the variable portions of the format
need to be filled with the appropriate values (i.e., payloads) and finally, return the
synthesized response to the requester (i.e., the system under test). The payloads
of the synthesized response can be divided into two categories: i) message specific
payloads and ii) key payload (record) specific payloads.

The first category of payloads is used to describe the response message itself.
The message id field in LDAP messages is such an example and used to uniquely
identify the messages and to correlate the request and response messages. It implies
that the value of the message id field in the response must be the same as in the
request message to be considered as a valid response. We use the message field
dependency relationships, i.e., inferred substitution rules to insert the appropriate
payloads for those message-describing fields in the synthesized responses.

The second category of payloads is related to the key payloads. For example,
the LDAP search response contains a mobile number, telephone number, address,

email, postal code, surname, etc., which are information related to an entry (i.e.,
record). The response in Table 6.12 (Index: 251) contains mobile number and
surname, which are related information of key payload cn:Judith. As our approach
does not consider general data model for generating data values, we use the payloads
from one of the responses in the interaction trace to approximate the data values
for those fields in the generated responses. In this step, we randomly select one
of the interaction from the respective response cluster because the closest matched
interaction as described in [9] does not improve the accuracy although reduces the
efficiency. For example, if the D_DeleteRsp(Not Found) response is selected in Step
R1 for an incoming Delete request then we select one interaction randomly from
the DeleteRsp(Not Found) cluster. After choosing the interaction, we extract the
payloads from the response of the chosen interaction and insert them into the syn-
thesized responses for the record-specific fields and finally, send the synthesized
responses to the system under test.

For the example incoming request, D_DeleteRsp(Not Found) is selected as the
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response type in the previous step. Now, we search for the response format in
the ResponseMap (i.e. Table 6.11) using the key “D_DeleteRsp(Not Found)” and
also search for the substitution rules in the RulesMap with the same key to insert
the appropriate payloads into the synthesized response. We get the following re-
sponse format and substitution rules in the respective maps for the response type
D_DeleteRsp(Not Found):

Response Format: {id:(.*),op:DeleteRsp,result:Not Found}

Substitution Rule: {id:(.*?),op:D,cn:} - {id:(.*?),op:DeleteRsp,result:Not
Found}

As the substitution rule contains two different portions, we use the first portion
of the substitution rule (i.e., {id:(.*?),op:D,cn:}) to extract the payload from the
incoming request message and then use the second portion of the substitution rule
(i.e., {id:(.*?),op:DeleteRsp,result:Not Found}) to insert the payload into the
response message. Our approach extracts “50” from the example incoming request
and the following response will be sent back after inserting the extracted payload
(i.e., “50”) into the response format and the generated response is identical to the
expected response.

{id:50,op:DeleteRsp,result:Not Found}

Let us consider another example: an incoming request Search, followed by Delete

and Add requests. The incoming request and the expected or actual response are as
below:

Incoming Request: {id:345,op:S,cn:Craig}

Expected Response: {id:345,op:SearchRsp,result:Ok,sn:LINK,mobile:
543219087}

The response type S_SearchRsp(Ok) is selected from the model according to Step
R1. We get the following response format and substitution rules (two) respectively
for the response type S_SearchRsp(Ok)

Response Format: {id:(.*),op:SearchRsp,result:Ok,cn:(.*),sn:(.*),mobile:(.*)}

Substitution Rules: {id:(.*?),op:S,cn:} – {id:(.*?),op:SearchRsp,result:Ok,cn:}

{,op:S,cn:(.*?)} – {,op:SearchRsp,result:Ok,cn:(.*?)}
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As the response format contains four variable message fields, the appropriate
payloads (values) need to be inserted for those fields in the synthesized response.
Our approach utilizes the inferred substitution rules to get the respective payloads
from the incoming request and insert them into the synthesized response. Our
approach extracts “345” and “Craig” from the incoming request using the first and
second substitution rules respectively and generates the following response after
inserting them into the response

{id:345,op:SearchRsp,result:Ok,cn:Craig,sn:(.*),mobile:(.*)}

As the generated response does not have data values for its two remaining fields
(record-specific payloads), our approach finds an interaction from the S_SearchRsp(Ok)

cluster (i.e., Table 6.9) randomly and extracts the payloads for those fields and fi-
nally, insert those payloads in the synthesized response. Let us assume that our
approach selects the second interaction from Table 6.9. The following response is
synthesized after inserting the data values for sn and mobile fields

{id:345,op:SearchRsp,result:Ok,cn:Craig,sn:MAJOR,mobile:26952135}

The above synthesized response contains the expected payloads in id and cn but
not in sn and mobile.

6.3 Message Dependency (Non-clean Start)
The inferred service behavior model in Figure 6.2 is deterministic as the traces in
Table 6.1 are collected based on the assumption that the initial state of service state
is empty, i.e., none of the records were added before collecting the traces (hence-
forth being referred as Clean Start)). In practice, the initial state of the service is
often non-empty (henceforth being referred as non-clean Start) when data collec-
tion starts, as we do not have access to the actual service except some interactions
between the actual service and a client. The records presented in the captured inter-
action traces may or may not be added before data collection begins. Such records
play an important role to decide the responses to send for the incoming requests,
especially for stateful services. For example, the response for the Delete request
(Index: 2) in Table 6.1 would be Ok instead of Not Found if the record “Judith”
was added before recording/capturing the interaction trace and in such case, the
subsequent responses for the same request with the record “Judith” would also be
different than the responses in Table 6.1. Table 6.16 shows the captured interaction
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trace when the record “Judith” was added before intercepting the communication.
As Table 6.16 shows, the same Delete request on different records, i.e., on “Judith”
and “Gavin” generates different types of responses. It indicates that the same re-
quest may generate two or more different types of responses depending on the initial
state of the service. To handle such issues, we infer a probabilistic message depen-
dency model from the interaction traces for describing both the transitions and their
probabilities in the inferred model. At runtime, the type of the responses to send
for the incoming request messages may be selected (as described in Section 6.2.4) in
two different ways, i.e., the transition in the control dependency model is selected:
i) randomly, and ii) based on the probabilistic scores associated with the edges. We
run the response generation experiments using both ways of selecting the response
type from the inferred message dependency model.

Figure 6.4 shows the probabilistic message dependency inferred from the inter-
actions in Table 6.16.

Table 6.16: Interaction Trace (Non-clean Start)

Index Request Response

1 {id:1,op:B,pwd:1234} {id:1,op:BindRsp,result:Success}

2 {id:2,op:D,cn:Judith} {id:2,op:DeleteRsp,result:ok}

8 {id:8,op:D,cn:Gavin} {id:8,op:DeleteRsp,result:Not Found}

15 {id:15,op:A,cn:Judith} {id:15,op:AddRsp,result:Ok}

23 {id:23,op:S,cn:Gavin} {id:23,op:SearchRsp,result:Not Found}

32 {id:32,op:A,cn:Judith} {id:32,op:AddRsp,result:Already Exists}

55 {id:55,op:D,cn:Judith} {id:55,op:DeleteRsp,result:Ok}

90 {id:90,op:D,cn:Gavin} {id:90,op:DeleteRsp,result:Not Found}

112 {id:112,op:A,cn:Gavin} {id:112,op:AddRsp,result:Ok}

130 {id:130,op:S,cn:Gavin}
{id:130,op:SearchRsp,result:Ok,

sn:MAJOR,mobile:26952135}

135 {id:135,op:S,cn:Linden} {id:135,op:SearchRsp,result:Not Found}

144 {id:144,op:S,cn:Judith} {id:144,op:SearchRsp,result:Not Found}

210 {id:210,op:A,cn:Gavin} {id:210,op:AddRsp,result:Already Exists}

213 {id:213,op:A,cn:Linden} {id:213,op:AddRsp,result:Ok}
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Table 6.16 Continued: Interaction Trace (non-clean Start)

Index Request Response

235 {id:235,op:A,cn:Judith} {id:235,op:AddRsp,result:Ok}

242 {id:242,op:A,cn:Katy} {id:242,op:AddRsp,result:Ok}

251 {id:251,op:S,cn:Judith}
{id:251,op:SearchRsp,result:Ok,

sn:GIDDINGS,mobile:78675623}

283 {id:283,op:A,cn:Gavin} {id:283,op:AddRsp,result:Already Exists}

300 {id:300,op:U}

INITIAL

D_DeleteRsp(Ok)

0.5

A_AddRsp(Ok)

1.0 S_SearchRsp(NotFound)

1.0

D_DeleteRsp(NotFound)

0.5

1.0

1.0

A_AddRsp(AlreadyExists)

1.0S_SearchRsp(Ok)

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

Figure 6.4: Probabilistic Message Dependency Inferred from the Example
Interaction Trace

6.4 Evaluation
In this section, we present the experimental results to evaluate the effectiveness
of our approach. In Section 6.4.1, we present a summary of the datasets. The
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evaluation approach and criteria are presented in Section 6.4.2. The compared
techniques are presented in Section 6.4.3, and the results of our experiments are
presented in Section 6.4.4.

6.4.1 Datasets
We run the experiments on datasets collected from both stateful (i.e., LDAP and
SOAP) and stateless services (i.e., Twitter and GoogleBooks). For stateless ser-
vices, we use the same datasets as described in Chapter 4. For stateful services,
we use different traces based on the initial state of the services to run the experi-
ments. The LDAP datasets contain 20157 and 19930 interactions when the service
state is initial and non-initial respectively, while the SOAP datasets contain 20000
interactions in both cases. We run the experiments on stateless datasets (i.e., Twit-
ter, GoogleBooks) to demonstrate that our approach is applicable for virtualizing
stateless services as well.

6.4.2 Evaluation Approach and Criteria
To evaluate the accuracy of our approach, we use the popular cross-validation ap-
proach [121], with the advantage of validating each interaction exactly once and
ensuring that all interactions are used both in training and testing datasets. In our
experiments, we use 10-fold cross-validation [109] to the experimental datasets. As
we aim to synthesize responses for stateful services and the sequence of interactions
affect the current state of the services, we need to keep the relevant interactions
(i.e., record-based interactions) together. To do so, we partition the interaction
trace based on the key records associated with the request messages and generate
folds based on the number of record based partitions. As the folds are generated
using the interactions from the key record based partitions, not every fold contains
the same number of interactions in the training and testing dataset. However, our
technique ensures all interactions are used both in the testing and training datasets.
We also measure the efficiency in terms of time required to generate responses and
the maximum amount of memory required to run our approach and the compared
techniques.

To measure the accuracy, we compare the synthesized responses with the recorded
or actual responses and the following criteria are used in assessing the synthesized
responses:
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Table 6.17: Accuracy Criteria for Assessing the Synthesized Responses

(i) Expected {id:25,op:SearchRsp,result:Ok,cn:Joseph, sn:GRIMES}
Generated {id:25,op:SearchRsp,result:Ok,cn:Joseph, sn:GRIMES}

(ii) Expected {id:25,op:SearchRsp,result:Ok,cn:Joseph, sn:GRIMES}
Generated {id:25,op:SearchRsp,result:Ok,cn:Joseph, sn:RAYMOND}

(iii) Expected {id:25,op:SearchRsp,result:Ok,cn:Joseph, sn:GRIMES}
Generated {id:32,op:SearchRsp,result:Ok,cn:Dominic, sn:RAYMOND}

(iv) Expected {id:25,op:SearchRsp,result:Ok,cn:Joseph, sn:GRIMES}
Generated {id:32,op:SearchRsp,result:Not found}

(v) Expected {id:25,op:SearchRsp,result:Ok,cn:Joseph, sn:GRIMES}
Generated {id:32,op:AddRsp,result:Ok}

(vi) Expected {id:25,op:SearchRsp,result:Ok,cn:Joseph, sn:GRIMES}
Generated {id:32,op:SearAdRsp,result:Ok}

1. Identical: The synthesized response is identical to the expected (or recorded)
response (cf. Example (i) in Table 6.17)

2. Data Consistent: The synthesized response contains the expected response
type and has the expected payloads in the critical fields3 but may differ in
some payload information (cf. Example (ii) in Table 6.17 where “id” and “cn”
are identical with the expected response but differs in “sn”)

3. Protocol Exact: The synthesized response contains the expected response
type, but it differs in the critical and possibly other fields (cf. Example (iii)
in Table 6.17 where “op” (response type) and “result” (response code) are
identical but differ in critical fields, i.e., “id”, “cn” and other fields, i.e., “sn”)

4. Protocol Plausible: The response type of a synthesized response is identical
to that of the expected response but has the wrong response code (i.e., result)
and possibly differs in “id” (cf. Example (iv) in Table 6.17)

5. Well-Formed: The synthesized response has the wrong response type (i.e., op)
but it corresponds to one of the valid response messages (cf. Example (v) in
Table 6.17)

6. Malformed: Synthesized response does not meet any of the above criteria, i.e.,
not a valid type of response at all (cf. Example (vi) in Table 6.17).

3We consider the key fields (e.g., “cn” in LDAP) and the message-describing fields (e.g.,
“message id” in LDAP) together as critical fields.
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6.4.3 Compared Techniques
We compare our approach with two other existing Opaque Service Virtualization
(OSV) approaches of synthesizing responses for stateless services. One of those is
the Whole Cluster [2] approach, identifying a closest matched interaction from the
recorded interactions for the incoming request and send back the responses after
transformation. The second compared method is the message prototype based OSV
[11]. It uses multiple sequence alignment to generate message prototypes for different
types of requests and at runtime, compares the incoming request with the generated
prototype instead of the recorded interactions to find the closest matched interaction.
Although the technique proposed in [37] aims for stateful service virtualization, we
did not compare our approach against it because its limitations as listed in Chapter
3, especially for its inability in generating application layer responses with payloads.

6.4.4 Results
We evaluate our approach in two aspects: accuracy and efficiency, with the aim to
answer the following questions

• Q1 (Accuracy): With the inferred service behavior model as described in
Section 6.2, is our technique able to generate more accurate responses for
both stateless and stateful services? Does the inferred formats as described
in Chapter 4 and Chapter 5 and the inferred dependency between message
fields as described in Section 6.2.3 improve the accuracy of the synthesized
responses?

• Q2 (Efficiency): Is our technique able to generate responses in a reasonable
(relative to the actual services) time with the use of attainable resources?

Accuracy

This section presents the result in terms of accuracy of our approach and the
compared techniques in synthesizing responses. The experiments are carried out
on the traces that are collected from two different scenarios: i) Clean Start, the
data/records used in collecting traces were not added before data collections starts
and ii) Non-clean Start, the records associated with the captured interactions in the
trace may or may not be added (i.e., a few records may be added, while others not)
before data collections starts.
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6. Inference of Service Behavior

Clean Start

This section presents the result of the experiments considering clean start. Fig-
ure 6.5 shows the accuracy of our approach versus opaque service virtualization
(OSV) approaches (whole cluster and prototype) in generating responses, while Ta-
ble 6.18 shows the detailed result of response generation. As Figure 6.5 shows that
our approach outperforms the OSV approaches in generating accurate responses for
stateful services. For the LDAP dataset, our approach generates about 88% iden-
tical responses, while the whole cluster and prototype-based OSV generate about
33% and 30% identical responses respectively. This demonstrates more than 50%
improvement over the existing OSV approaches (whole cluster and prototype) in
generating identical responses. As the Figure 6.5 shows, all three approaches gen-
erate data consistent responses for LDAP. It happens because the actual responses
for a few requests contain the record-specific payloads, e.g., mobile number, address

etc. and none of the techniques consider an accurate “data model” in synthesiz-
ing responses and hence, generates responses with the different payloads in such
fields. Again, all approaches generate protocol plausible responses for the LDAP
dataset. But, our approach generates only about 3% protocol plausible responses,
whereas the whole cluster and prototype generate about 43% and 39% respectively.
It indicates that our approach reduces the generation of protocol plausible responses
compared to other approaches. However, with the use of the service behavior model,
our approach is expected to generate either identical or data consistent responses
only but it also generates very few protocol plausible responses. The reason for that
one of the request operations, i.e., the ModifyDN request, updates the value of the
key field, causes the inferred model being unable to keep track of the service state
for the updated key payload and hence, generates protocol plausible responses for
the future requests associated with the updated key payload. The detailed process
of generating protocol plausible responses is explained in Appendix A.6 with an
example interaction trace. Very importantly, our approach does not generate any
malformed responses, while the whole cluster and prototype techniques generate
about 7% and 23% malformed responses respectively. Neither the whole cluster
approach nor the prototype-based OSV considers the message structure during pay-
load substitution and hence, generates malformed responses. On the other hand,
our approach infers the format of the messages and utilizes the inferred format in
substituting payloads to synthesizing responses and consequently, does not generate
any malformed responses.

Similarly, for the SOAP dataset, our approach generates about 43% identical re-
sponses, whereas the whole cluster and prototype generate about 40% and 35% iden-
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Response Generation Result (Clean Start)
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Figure 6.5: Response Generation Result (Clean Start)

tical responses respectively. Again, our approach does not generate any malformed
responses, while the compared approaches generate some malformed responses. For
SOAP, the improvement in generating identical responses of our approach is less
as compared to the LDAP dataset. It shows that our approach generates more
data consistent and protocol plausible responses compared to the LDAP dataset
and hence, reduces the generation of identical responses. The reason for generating
more data consistent responses is that the responses for most of the request mes-
sages in SOAP, i.e., getAccount, withdraw, deposit contain the value of balance

field and the value of balance field changes over different types of requests. As our
approach does not consider an accurate “data model”, i.e., how payloads change
over time in synthesizing responses, the synthesized responses do not contain the
exact payloads for the balance field. Similarly, the reason for generating more pro-
tocol plausible responses is that i) LDAP is a CRUD (Create, Read, Update and
Delete) type service, where an entry or record can be deleted with the delete re-
quest and be re-created with the add request, whereas a bank account can only
be created/opened once and there is no request in the SOAP trace to re-open the
same account after closing it through the closeAccount request and ii) the type of
the responses (e.g., DeleteRsp(Success), DeleteRsp(Not Found)) for the incoming
requests in LDAP depend only on the key payload. So, the different types of re-
sponses are generated based on whether the record is already added, deleted, etc. in
the data store or not, whereas the response type (e.g.,withdrawResponse(Success),

withdrawResponse(Fail)) for a withdraw request in SOAP not only depends on the
key payload “account number”, but also depends on the current balance and the
requested withdrawal amount. Therefore, the response of a withdraw request can be
withdrawResponse(Fail) either due to the invalid account number or the insufficient
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6. Inference of Service Behavior

Table 6.18: Response Generation Result (Clean Start)

Dataset Method No. Identical
Data

Consis-
tent

Protocol
Exact

Protocol
Plausi-

ble

Well-
Formed

Mal-
formed

LDAP

OSV
(Whole
Cluster) 20157

6760
(33.54%)

3192
(15.84%) 0 8786

(43.58%) 0 1419
(7.04%)

OSV
(Proto-
type)

6086
(30.19%)

1344
(6.67%) 0 7954

(39.46%) 0 4773
(23.68%)

Our Ap-
proach

17733
(87.98%)

1835
(9.10%) 0 589

(2.92%) 0 0

SOAP

OSV
(Whole
Cluster) 20000

8101
(40.51%)

2284
(11.42%)

189
(0.94%)

8526
(42.63%) 0 900

(4.50%)

OSV
(Proto-
type)

7082
(35.41%)

6453
(32.27%) 0 4948

(24.74%) 0 1517
(7.58%)

Our Ap-
proach

8734
(43.67%)

6057
(30.28%) 0 5209

(26.05%) 0 0

Twitter

OSV
(Whole
Cluster) 1465

0 808
(55.15%)

399
(27.24%)

256
(17.47%) 0 2

(0.14%)

OSV
(Proto-
type)

0 462
(31.54%)

185
(12.63%)

177
(12.08%) 0 641

(43.75%)

Our Ap-
proach 0 1131

(77.20%) 0 334
(22.80%) 0 0

Google-

Books

OSV
(Whole
Cluster) 1913

497
(25.98%) 0 0 0 0 1416

(74.02%)

OSV
(Proto-
type)

248
(12.96%) 0 0 0 0 1665

(87.04%)

Our Ap-
proach

497
(25.98%)

1288
(67.33%) 0 128

(6.69%) 0 0

fund in the balance field and hence, our approach is unable to track of the service
state due to the non-key payload.

In general, our approach achieves a significant accuracy improvement in gener-
ating accurate responses compared to the existing techniques for stateful services,
i.e., for LDAP and SOAP. our approach considers the current state of the service
and utilizes the relationships among message fields in formulating responses for the
incoming request messages. Thus, it is less chance to generate inaccurate responses,
whereas the whole cluster and prototype approaches do not consider the service state
and message structure in synthesizing responses and hence, generate malformed re-
sponses.

For stateless services, i.e., for Twitter and GoogleBooks, our approach does not
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generate malformed responses, while the compared techniques generate malformed
responses due to the same reason as described above (i.e., ). As Table 6.18 shows,
none of the approaches generate identical responses for the Twitter dataset because
the responses contain massive payloads including a timestamp. However, our ap-
proach generates about 77% data consistent response, while prototype and whole
cluster approach generate about 31% and 55% data consistent responses. As Table
6.18 shows, all three approaches generate protocol plausible responses for the Twitter
dataset. It happens because some requests generate different types of responses but
the captured interaction trace is not recognized as the reason for generating different
responses. For example, the response of a searchTweets request can either be empty
or a number of Tweets based on the search query but it is not possible to infer the rea-
son for generating different responses by analyzing the interaction trace only. Unlike
the Twitter dataset, our approach and the compared techniques generate identical
responses for the GoogleBooks dataset. The responses of search_bookshelf con-
tain “error” message when the bookshelf_id is not found in the GoogleBooks. The
“error” responses share exactly the same message structure and hence, all three ap-
proaches generate a few identical responses for such requests. Similar to the Twitter
dataset, our approach generates protocol plausible responses for the GoogleBooks
dataset as a request generates different types of responses at different times but the
dependency among messages is not observable in the captured interaction trace.

In general, our approach outperforms the existing service virtualization tech-
niques in generating accurate responses. The message dependency model facilitates
to select the correct types of responses for the incoming requests and the substitu-
tion rules to insert the appropriate payloads in the synthesized responses. Unlike
the whole cluster and prototype-based OSV approaches, our approach stops the
generation of malformed responses as it utilizes the inferred message formats in
synthesizing responses.

Non-clean Start

Our approach infers a probabilistic message dependency model for non-clean
start, i.e., the record may or may not be added before data collection starts. In such
case, the types of responses for the incoming requests are selected in two different
ways: i) randomly or ii) with the use of probabilistic scores that has been seen in
the training dataset.

Figure 6.6 and Table 6.19 show the accuracy of synthesizing responses for non-
clean start. As the result shows, our approach (random and probabilistic) achieves
higher accuracy in generating identical responses compared to the existing tech-
niques for stateful services (i.e., LDAP and SOAP). Again, the improvement in
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Response Generation Result (Non-clean Start)
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Figure 6.6: Response Generation Result (Non-clean Start)

generating identical responses for the SOAP dataset is not as much as LDAP due to
the same reason as described in the previous section (i.e., Clean Start). As Figure
6.6 shows, our approach of selecting the type of response based on the probabilistic
score achieves better accuracy for all datasets compared to randomly selecting the
type of response from the message dependency model. This is so because our ap-
proach (probabilistic) considers the ratios of their appearance (in training dataset)
in choosing the response types for the incoming requests.

For stateless services, the change of the service state is not observable in the
interaction trace and we use the same dataset, our approach of inferring and uti-
lizing probabilistic message dependency model achieves similar accuracy compared
to our approach with deterministic model in synthesizing responses for Twitter and
GoogleBooks datasets.

In general, our approach achieves higher accuracy compared to the existing tech-
niques in synthesizing responses for both stateful and stateless services. Again, as
the Figure 6.5 and Figure 6.6 show, our approach outperforms the existing ap-
proaches for both clean start and non-clean start. First, our approach does not
generate any malformed responses as it utilizes the format of the messages in formu-
lating responses. On the other hand, the existing approaches (i.e., the whole cluster
and prototype OSV) do not consider the message structure in generating responses
and consequently, generate malformed responses. Moreover, the identification and
classification of the response messages for the same request allow our approach to
generating the protocol plausible responses for the incoming requests. The inferred
message dependency model facilitates the generation of identical, data consistent
and protocol exact responses.

124



6.4 Evaluation

Table 6.19: Response Generation Result (Non-clean Start)

Dataset Method No. Identi-
cal

Data
Consis-

tent

Proto-
col

Exact

Proto-
col

Plausi-
ble

Well-
Formed

Mal-
formed

LDAP

OSV
(Whole
Cluster)

19930

6226
(31.24%)

2850
(14.30%)

0
9572

(48.03%)
0

1282
(6.43%)

OSV (Pro-
totype)

5627
(28.23%)

708
(3.55%)

0
8976

(45.04%)
0

4619
(23.18%)

Our App
(Random)

10742
(53.90%)

1532
(7.69%)

0
7656

(38.41%)
0 0

Our App
(Probabilis-
tic)

16784
(84.21%)

1865
(9.36%)

0
1281

(6.43%)
0 0

SOAP

OSV
(Whole
Cluster)

20000

9042
(45.21%)

3373
(16.87%)

157
(0.78%)

6485
(32.43%)

0
943

(4.71%)

OSV (Pro-
totype)

6913
(34.57%)

6346
(31.73%)

0
5067

(25.33%)
0

1674
(8.37%)

Our App
(Random)

8998
(44.99%)

6244
(31.22%)

0
4758

(23.79%)
0 0

Our App
(Probabilis-
tic)

11787
(58.94%)

5852
(29.26%)

0
2361

(11.80%)
0 0

Twitter

OSV
(Whole
Cluster)

1465

0
808

(55.15%)
399

(27.24%)
256

(17.47%)
0

2
(0.14%)

OSV (Pro-
totype)

0
462

(31.54%)
185

(12.63%)
177

(12.08%)
0

641
(43.75%)

Our App
(Random)

0
902

(61.57%)
0

563
(38.43%)

0 0

Our App
(Probabilis-
tic)

0
1114

(76.04%)
0

351
(23.96%)

0 0

Google-
Books

OSV
(Whole
Cluster)

1913

497
(25.98%)

0 0 0 0
1416

(74.02%)

OSV (Pro-
totype)

248
(12.96%)

0 0 0 0
1665

(87.04%)
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Table 6.19 Continued: Response Generation Result (Non-clean Start)

Dataset Method No. Identi-
cal

Data
Consis-

tent

Proto-
col

Exact

Proto-
col

Plausi-
ble

Well-
Formed

Mal-
formed

Our App
(Random)

407
(21.28%)

845
(44.17%)

0
661

(34.55%)
0 0

Our App
(Probabilis-
tic)

494
(25.82%)

1201
(62.78%)

0
218

(11.40%)
0 0

Efficiency

To measure the efficiency of our approach, we instrument the response gener-
ation code and record the response generation times for all datasets. We run the
experiments on Intel Core(TM) i5-4570 3.20 GHz with 16GB of main memory. For
comparison we run our approach and the compared techniques (i.e., the whole clus-
ter and prototype OSV) on the same CPU and also logged the actual time of getting
response back from the actual services at the time of collecting the interaction traces.

Response Generation Time

Table 6.20 shows the average time (ms) to generate responses using the whole
cluster OSV, prototype OSV and our approach. It also reports the average response
generation time for the actual services. As Table 6.20 shows, our approach takes
only a fraction of a millisecond to generate responses and significantly faster than
the compared approaches and even faster than the actual services. For example, the
actual IM service takes 55.74ms on average to generate a response for the incoming
request, while our approach requires only 0.35ms to generate a response, i.e., 159
times faster than the actual service. On the other hand, the whole cluster approach
requires an extremely long time to find the closest matched interaction, as it com-
pares the incoming request against all interactions in the training dataset and the
experimental dataset contains a large number of interactions, especially for state-
ful services. The whole cluster approach is 67 times slower than the actual LDAP
and 10653 times slower than our approach in generating responses. As Table 6.20
shows, the whole cluster consumes about 90% of the time or more to find the closest
matched interaction through comparing the incoming request message against all
interactions in the trace and hence, requires a long time to generate responses. On
the other hand, the prototype-based OSV compares the incoming request messages
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Table 6.20: Average Response Generation Time (ms)

Dataset No. Real
Services

OSV (Whole Cluster) OSV (Prototype) Our Approach
M S T M S T RS M S T

LDAP 19930 55.74 3784.53 1.33 3785.86 2.07 0.37 2.44 0.14 0.01 0.20 0.35
SOAP 20000 16.52 8264.33 1.38 8265.71 2.88 0.81 3.69 0.31 0.01 0.07 0.39
Twitter 1465 278.3 118.69 12.72 131.41 0.39 15.76 16.15 0.05 0.01 0.18 0.24
Google-
Books 1913 10.66 42.77 31.98 74.75 2.59 151.88 154.47 0.03 0.01 0.07 0.11
*Note: M is the time for Matching, S is the time for Substitution, RS is the time for the
Response Selection and T is the total time.

Table 6.21: Average Analysis Time

Dataset No.
OSV (Pro-
totype) Our Approach

Analysis
(s)

Analysis
(s)

Model
Inference
(ms)

Total
(s)

LDAP 19930 8959.49 3254.06 64.69 3254.12
SOAP 20000 95871.22 5590.37 43.46 5590.41
Twitter 1465 18657.06 1086.18 98.31 1086.27
GoogleBooks 1913 21456.32 1821.48 10.36 1821.49

with the generated prototype for each different request instead of comparing it with
the actual request messages in the trace. Thus, it generates responses much faster
than the actual services and whole cluster approach for all datasets except Google-
Books. For example, prototype-based OSV is 22 times faster than the actual service
for LDAP and 1551 times faster than the whole cluster approach. However, it is
about 7 times slower than our approach to generating responses for LDAP. As the
responses in the GoogeBooks dataset contain the “searched query” multiple times
(depending on the number of books) and prototype approach extracts substitution
rules at runtime, the process of synthesizing responses requires a long time and
hence, the prototype approach is slow for GoogleBooks. In contrast, our approach
infers the substitution rules at the trace analysis phase and utilizes the inferred rules
at the time of generating responses and hence, generates response more efficiently
compared to the existing approaches.

Table 6.21 reports the average time for the analysis phase. As the whole clus-
ter approach does not have an analysis phase, Table 6.21 shows the analysis time
required for our approach and the prototype-based OSV approach. Our approach
requires less time for the trace analysis phase compared to the prototype-based
approach for all datasets.
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Memory Usage

Table 6.22 shows the maximum amount of memory consumed in different stages
by our approach and the compared techniques. As the prototype approach utilizes
MSA to generate a prototype, it takes much memory to align sequences/messages
and to derive the prototypes. Our approach takes less amount of memory for LDAP
and SOAP datasets compared to the prototype approach in the analysis phase. But,
it takes more memory for Twitter and GoogleBooks because the responses are long
in length and our approach infers format from the responses through identifying
the keywords from the messages, which requires to store many intermediate values
(i.e., candidate keywords) in memory. At runtime, our approach takes less memory
compared to both the whole cluster and prototype OSV as our approach neither
searches for a closest matched interaction nor it infers any substitution rules at
runtime (it utilizes the pre-inferred rules instead).

Table 6.22: Maximum Memory Usage (MB)

Dataset No.
Memory Usage (MB)

OSV (Whole
Cluster)

OSV (Prototype) Our Approach
Analysis Runtime Analysis Runtime

LDAP 19930 2821.69 10033.00 2356.45 592.09 207.78
SOAP 20000 4385.02 10832.30 2054.98 739.57 535.63
Twitter 1465 1394.03 5863.21 893.23 6033.18 351.84
GoogleBooks 1913 2295.66 10343.60 1534.29 11726.02 1840.33

6.5 Discussion
We have developed an approach to generating responses by considering the state of
the service for the incoming requests. As described in Section 6.4.4, the evaluation
results show that our approach is able to generate more accurate responses for both
stateful and stateless service through inferring the service behavior model from the
trace. Moreover, the format of the messages facilitates to improve the accuracy of
the generated responses by preventing the generation of the malformed responses.
At the same time, our approach is efficient enough in synthesizing responses for the
incoming requests.

Our approach inferred the service behavior model to identify the dependency
between messages and between message fields that allow us to keep track of the ser-
vice state and to insert the appropriate payloads in the synthesized responses. The
interactions are grouped into request-type based clusters to detect different types
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of requests in the interaction trace after identifying the request type field in the
request messages. The format for each request-type based messages is inferred to
separate the message keywords from the payloads. The interactions are then further
clustered based on the response type to reveal the different types of responses that
are generated for the same request and for different requests after identifying the
different types of responses per request-based cluster using the positional keyword-
based clustering. In the same way, the format for each response-type based messages
is inferred and stored in a map. The dependency between message fields (between
request and the corresponding response messages) is inferred as substitution rules
from the request and corresponding response formats and stored in another map.
The interaction trace is partitioned and rearranged based on the key payload, with
the aim of having the related interactions together. The message dependency model
is inferred from the sequence of interactions to characterize the relationships among
messages that in turn assists in keeping track of the service state. At runtime, an in-
stance of the inferred model for each key payload associated with the request message
is used to keep track of the service state for the key payload and select the type of
response to send back in formulating responses for the incoming requests. Finally,
the inferred data dependency model is used to determine and insert appropriate
payloads in the synthesized responses.

6.5.1 Identical and Malformed Response Generation
Result
The experimental results on four datasets both from stateless and stateful services
demonstrate that our approach generates responses more accurately and efficiently
compared to the existing approaches. The accuracy of the synthesized responses are
measured based on the criteria described in Section 6.4.2, where identical is the high-
est degree of accuracy (the generated responses are exactly same as the expected)
and malformed is the lowest (the generated responses are not interpretable). Figure
6.7 shows the result of generating identical (dark green) and malformed (dark red)
responses by our approach and the compared approaches for non-clean start. It
clearly shows that our approach outperforms the existing techniques in generating
identical responses for stateful services (i.e., LDAP and SOAP). The change of the
service state is not observable in the interaction trace and the responses contain an
extensive amount of the record-specific payloads (not seen in the messages) in the
traces of stateless services (i.e., Twitter and GoogleBooks). Thus, our approach gen-
erates less identical responses for stateless services. As Figure 6.7 shows, both the
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Identical and Malformed Response Generation Result (Non-clean Start)
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Figure 6.7: Identical and Malformed Response Generation Result (Non-
clean Start)

whole cluster and prototype approaches generate malformed responses for stateless
services (i.e., Twitter and GoogleBooks), while our approach does not generate any
malformed responses both for stateful and stateless services. It indicates our ap-
proach performs better compared to the existing techniques in generating responses
both for stateful and stateless services and demonstrate the applicability of our
approach both in stateful and stateless services.

6.5.2 Zoom-In Result (SOAP)
Table 6.23 shows the zoom-in result of response generation for the SOAP dataset
to demonstrate the accuracy of our approach and the compared techniques for each
type of request message. It shows that our approach generates identical responses
for all incoming requests of createNewAccount and closeAccount requests as the re-
sponses for those requests do not contain payloads for non-key fields (e.g., balance,
account name, etc.). On the other hand, our approach generates data consistent re-
sponses (most) for the getAccount request as the responses of getAccount requests
contain the current balance of the respective account. Thus, our approach is un-
able to generate the exact payloads for the balance field as we do not consider a
“data model” in synthesizing responses. As Table 6.23 shows, none of the com-
pared techniques (i.e., the whole cluster and prototype OSV) is able to generate
100% identical responses for the createNewAccount and closeAccount requests. It
also shows that our approach generates a number of protocol plausible responses
for the deposit and withdraw requests and consequently, generates less number of
identical responses compared to the existing approaches for those requests. This
is so because the response (type) of a withdraw request not only depend on the
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Table 6.23: Zoom-In Result of Response Generation (SOAP)

Request
Type

No. of
Interac-
tions

Approach Identical
Data

Consis-
tent

Proto-
col

Exact

Proto-
col

Plausi-
ble

Well-
Formed

Mal-
formed

Create-
New-
Account

2084

OSV (Whole
Cluster) 66.99% 10.03% 7.53% 8.54% 0% 6.91%

OSV
(Prototype) 0% 29.66% 0% 31.14% 0% 39.20%

Our
Approach 100% 0% 0% 0% 0% 0%

Get-
Account 5792

OSV (Whole
Cluster) 8.66% 20.48% 0% 66.10% 0% 4.76%

OSV
(Prototype) 0.40% 87.62% 0% 11.98% 0% 0%

Our
Approach 12% 88% 0% 0% 0% 0%

Deposit 5631

OSV (Whole
Cluster) 50.38% 5.09% 0% 40.45% 0% 4.08%

OSV
(Prototype) 57.04% 4.68% 0 38.28% 0% 0%

Our
Approach 34.37% 10.21% 0% 55.42% 0% 0%

Withdraw 5793

OSV (Whole
Cluster) 49.40% 9.94% 0% 36.34% 0% 4.32%

OSV
(Prototype) 66.40% 8.56% 0% 25.04% 0% 0%

Our
Approach 57.32% 6.64% 0% 36.04% 0% 0%

Close-
Account 700

OSV (Whole
Cluster) 72% 3.86% 4.57% 19.58% 0% 0%

OSV
(Prototype) 0% 0% 0% 0% 0% 100%

Our
Approach 100% 0% 0% 0% 0% 0%

account number (key payload), also depends on the requested withdrawal amount
and the current balance. The change of the service state due to the non-key pay-
load leads to incorporate a misled transition in the inferred message dependency
model. Thus, the message dependency model picks the wrong types of responses
for the withdraw requests. Moreover, the selection of wrong response (type) for
the withdraw request leads the wrong response (type) selection for the subsequent
deposit requests. On the other hand, both the whole cluster and prototype-based
OSV generate more identical responses compared to our approach for the deposit

request, but the whole cluster approach also generates a few malformed responses.
In the same way, the prototype-based OSV achieves comparatively higher accuracy
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in generating identical response for the withdraw request. As described above, our
approach is unable to track the service state if it is changed/updated due to the
non-key fields. Overall, our approach achieves better accuracy compared to the
whole cluster and prototype OSV in generating identical responses for the SOAP
dataset.

6.5.3 Diversity of the Traces
The evaluation of our approach is performed on four datasets that are collected from
real services. The datasets cover a range of application domains such as enterprise
information management, SOAP-based banking services, REST-based information
services, and social media applications. One of the threats to validity is the diver-
sity of the datasets. However, our experimental datasets cover most of the services
scenarios: i) Stateful versus stateless – A service can be either stateful or stateless.
LDAP and SOAP datasets are collected from stateful services, while Twitter and
GoogleBooks datasets from stateless services. ii) A set of operations – A service
usually supports a set of requests and generates different types of response messages
for each of these requests. Our experimental datasets LDAP, SOAP, Twitter, and
GoogleBooks contain eight, five, six and two types of request messages respectively
and consequently, each of them generates different types of response messages. iii)
Payloads – The generated response usually contains a significant payload. The re-
sponse messages for all datasets contain payload information especially the response
messages of the Twitter and GoogleBooks datasets containing a huge amount of
payloads. In general, the large majority of application services have the above char-
acteristics.

6.5.4 Limitations
One of the limitations of our approach is its inability to automatic identify the key
payload from the interactions on which the state of the service depends. In this
work, the user has to provide a regular expression for identifying the key field and
extracting the key payload information from the interactions. In future work, we
plan to identify the key payload information automatically.

Another limitation of our approach is the lack of generating exact payloads for
the non-key fields, i.e., fields other than the key fields. Our approach does not
consider an accurate data model to monitor the way of changing the data values of
non-key fields over time and hence, generates inexact values for those fields while
formulating responses. For example, in LDAP, the synthesized response of a search
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request may contain outdated values in the mobile number field if the mobile number
has been updated through invoking a modify request before the search request. To
address this limitation, a data model should be inferred to store and keep track of
the change history of payloads over time in addition to the service behavior model,
to generate responses with exact payloads in the responses and model the service
behavior more accurately.

Finally, our approach will only be applicable to textual protocols or services as
the adapted process of identifying the request type and response type is particularly
suitable for the traces of textual services. The service behavior model can still be
useful to track the service state and to synthesize the responses for binary traces
with the use of an alternative technique for identifying the request type and response
type and extracting the request and response formats from the binary messages.

6.6 Summary
We have presented a new approach in service virtualization to create an emulation
environment for stateful services. It extracts the dependency relationships among
messages through mining the contextual information in the relevant interaction trace
and come up with a service behavior model to track the service state while the client
communicates with the virtual services. It exhibits that more accurate responses
can be generated by considering the message dependency on the use of the behav-
ior model. It also utilizes the message format in synthesizing responses to ensure
message structure is retained in the synthesized responses and the dependency re-
lationships between message fields utilized to insert appropriate payloads in the
synthesized responses. Our approach has been able to achieve higher accuracy in
generating responses, especially for stateful services. Moreover, it performs also well
for stateless services.

133



6. Inference of Service Behavior

134



Chapter 7

Conclusion and Future Work

In this thesis, we have introduced an approach and associated techniques to deriving
“virtual” services from service interaction trace for stateful services. The derived
virtual services allow testing of an interconnected system without requiring access
to the connected services. In this chapter, we summarize the contributions of this
thesis and outline some future works. Section 7.1 presents the key contributions of
our research and we discuss directions for future work in Section 7.2.

7.1 Summary of Contributions
In this thesis we have demonstrated that our approach of generating responses can
track the service state and mimic the behavior of stateful services by considering
service state in synthesizing responses. The main objective of this thesis is to vir-
tualize stateful services for providing a large and realistic testing environment. To
achieve our objective, we have made the following key contributions:

Request Message Format: We have proposed an approach to identifying the re-
quest type field in the request messages and inferring the formats of the request
messages. As a service commonly supports several types of request messages and
thus, the request message contains a field to indicate its type. Based on this ob-
servation, our approach identifies the request type field from the request messages
by analyzing the variable portions of the request messages. The request messages
are partitioned into type-specific clusters using the identified request type field. A
set of keywords is extracted for each request type-based messages by analyzing their
frequency of occurrences independently in the messages. Finally, the format of the
request messages is inferred for each request-type based message cluster by tokeniz-
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ing the messages using the identified keywords and generalizing the keyword-payload
patterns of individual messages. The experimental results have demonstrated that
our approach achieves very high accuracy in clustering the messages based on the
request type as it considers the variability (entropy) of the message fields and the
dissimilarity among request messages in a cluster to identify the request type field.
The results also have demonstrated that our approach infers the formats of the re-
quest messages precisely as it accurately extracts the type-specific keywords from
the messages and generalizes the recurring keyword patterns across all messages in
each of the message clusters.

Response Message Format: We have addressed the issue of inferring formats
from the response messages with nested repetition structure. Moreover, the re-
sponse messages do not always contain a message type field, rather, each type of
response messages has its own set of keywords and has its own format. Existing
techniques of inferring formats of the messages do not consider the repetitive se-
quences of keyword-payload in extracting keywords and thus, extract many false
keywords, which leads to generating many more clusters than the actual clusters.
On the other hand, our approach considers the position of the keywords and the
frequency of messages containing a keyword rather than the number of times a key-
word appears, which leads to the accurate identification of keywords. The extracted
keywords are further refined based on the variations of positions, i.e., the standard
deviation of keywords’ positions. Each response message is then converted into a
weighted vector based on the positional keywords appearing in the message. Fi-
nally, response messages are clustered based on the dissimilarity among messages
(i.e., weighted vector) and formats of response messages are inferred. The nested
repetition structure of the response message is effectively handled by our approach of
inferring formats as it generalizes the keyword-payload patterns across all response
messages of a response-based cluster. The experimental results have demonstrated
that our approach accurately clusters the response messages of request type-based
clusters, and infers formats of the response messages precisely due to the capability
of dealing with the repetitive keyword-payload patterns.

Behavior Model and Response Generation: We have proposed a novel technique
to synthesize response messages for incoming request messages by considering the
service state. It identifies the dependency among messages (i.e., control depen-
dency) by analyzing and extracting the contextual information from the interaction
traces. A sequence of request-response type pair is generated for each key payload
to capture the message sequence patterns (key payload specific), which are respon-
sible to generate different types of response messages for different types of requests
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and even for the same requests. The dependency among messages is inferred by
incorporating the message sequence patterns for all key payloads. Moreover, the
dependencies between message fields (i.e., data dependency) are extracted from the
interaction trace to determine appropriate payloads in the synthesized responses.
Using the inferred service behavior model, our technique synthesizes the responses
by determining the response type to send from the control dependency model and
including appropriate payloads from the data dependency model. The proposed
technique is evaluated for both stateful and stateless services and the experimental
results have shown significant improvements in generating identical responses for
stateful services over existing techniques. The results also have demonstrated that
our approach greatly improves the accuracy in synthesizing responses for stateless
service by preventing the generation of malformed responses. Moreover, our ap-
proach generates responses more efficiently compared to the existing techniques for
both stateful and stateless services and hence, can provide a comprehensive testing
environment for the system under test in service virtualization.

7.2 Future Work
In this dissertation, we have proposed techniques to derive service models for stateful
services so that they can be used in emulating the behavior of the dependent services.
A number of research works can be done to further improve the quality of the derived
service models for representing the behavior of the actual services. We outline some
of these potential future research directions below.

7.2.1 Key Payload Identification
In our current response generation approach, the interactions are partitioned based
on the key payload for having the relevant interactions together. As described in
Section 6.2.1, the service state is independent for each key payload and the de-
pendency among messages is considered uniquely for each key payload associated
with the interactions. Therefore, the interactions are partitioned based on the key
payloads for identifying the dependency between messages. However, we assume
that the key payload is identified by a user (given regular expression). To automate
this key payload identification, we intend to investigate the process of identifying
such key payloads automatically from the service interaction trace. One probable
way is to analyze the interactions in-between two same types of requests that are
generated different types of response messages. Some of the message fields may be
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excluded from further consideration based on the semantic analysis. The ability to
automatically identify the key payload field from the interaction trace will remove
the required human efforts to identify such fields.

7.2.2 The Impact of Non-key Payloads
We have developed an approach to identify the dependency between messages to
keep track of the service state and synthesize responses for stateful services based
on the service state. We have analyzed the traces based on the key payloads and
identified the situation of generating different types of responses for the same types
of request messages. However, the service state can also be changed due to non-
key fields. Such effects of non-key payloads are ignored in our current approach
and hence, protocol-plausible responses are generated in such circumstances. For
example, in a banking service, the response may generate different responses for
a withdraw request if the account does not have sufficient balance. Our approach
identifies these two different types of responses that are are generated for withdraw

request, but didn’t identify the reason for generating such response messages. One
probable way is to further analyze the payloads and identify such interplay between
the key and non-key payloads in determining the responses. The ability to identify
such relationships with non-key payloads will reduce the generation of protocol-
plausible response messages.

7.2.3 Data Model Inference
In this research, our approach of synthesizing responses has extracted the depen-
dency among message fields to determine the appropriate payloads in the synthesized
responses. In our current approach, the data dependency model identifies the rela-
tionships of the message fields with the corresponding request message and/or the
preceding request message. But, some of the payloads can be changed over time
and such changes in the payloads are not considered in the data dependency model.
Therefore, our approach synthesizes responses with inexact payloads in such fields
(i.e., data-consistent responses) although it identifies the types of responses accu-
rately. For example, in a banking service, the balance of an account changes due
to withdraw or deposit requests. Similarly, in the CA IM service, the name, mobile
number, address, etc. of a record (i.e., employee) can be changed/updated using a
modify request. Thus, the response message for a request following such a modify

request should contain the updated/modified payloads for those modified fields. A
data model may be inferred from the traces to monitor such changes in the payloads.
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The ability to infer such a data model may be useful in synthesizing responses with
exact payloads and consequently, to further enhance the quality of emulation.

7.2.4 Inter-service Interactions
In this dissertation, we have investigated the change of the service state due to the
preceding sequence of interactions, and considered the service state in synthesizing
responses. But, some dependencies between services may exist and the service state
of a connected or dependent service may be changed due to the interactions with
other services. For example, in banking service, an account can be authorized for di-
rect debit and then, the authorized organization can take payments (i.e., withdraw)
automatically from the account. Such interactions with other services change the
state of the respective account. Thus, the derived service models need to consider
such interactions between services, to handle multiple interrelated services and con-
sequently, to represent the behavior of the dependent services more accurately. In
this dissertation, we have considered the effect of other services as black-box, i.e.,
the traces are collected by intercepting the communication of a single service but
the collected traces encapsulate the effect of other services. The transformation of
the messages between services are not explored explicitly but the messages by the
service in focus encapsulate the effect of the dependent services. In future work,
we plan to investigate the dependency between services. One probable way is to
correlate the timestamps of the messages from multiple traces for identifying the
possible dependency relationships among themselves. The identification of such
correlations between services will be assisting in generating more accurate responses
to the incoming request messages.
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Appendix A

Zoom-In Results

A.1 Request Format Extraction Result
Table A.1 shows the Zoom-In results of format extraction from the request messages.
We evaluate the inferred format for each request-type based cluster and report the
results, i.e., precision, recall and F-measure in Table A.1. As Table A.1 shows, all
three approaches achieve 100% precision and recall for the LDAP Bind messages.
This is because the payloads in Bind messages do not vary from messages to mes-
sages, i.e., the same Bind request is used for authentication and the interaction trace
contains the same Bind request message 100 times as we collect LDAP trace from 100
sessions. In the same way, ProDecoder and our approach achieve 100% precision
and recall for Unbind messages. However, AutoReEngine achieves lower accuracy
for Unbind. Unlike to Bind messages, Unbind messages contain different payloads for
the “message id” field. AutoReEngine puts most of the Unbind messages into the
clusters of other request types and creates the Unbind cluster with very few Unbind

messages (about 10% only), which leads the inferred format containing payload and
thus, achieves very low precision and recall.

AutoReEngine creates a separate cluster for each ModifyDN messages, which leads
to infer too specific format and achieves 0.00 in both precision and recall. On the
other hand, ProDecoder creates mix cluster for ModifyDN and hence, achieves very
low precision. Both ProDecoder and AutoReEngine create mixed cluster for the
rest of the request types and thus, achieve low precision and recall. For the mixed
clusters, the precision and recall of the inferred format depend on the nature of the
mixing: i) if the mixed cluster contains messages of two different types of requests
and one of the request type dictates the mixed cluster, precision will be relatively
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high, ii) if the mixed cluster contains messages of multiple clusters (more than two
clusters) and none of the message type alone dictates the mixed cluster, the inferred
format will be imprecise and achieve lower precision. For example, the precision of
Modify cluster for ProDecoder is 0.90 as it creates the Modify cluster accurately for
most of the folds and Modify dictates the cluster (about 90% of the messages are of
the Modify type) when it mixes with Bind messages. On the other hand, the precision
of the ModifyDN cluster for ProDecoder is 0.08 as it puts ModifyDN messages to other
cluster and mixed the rest with the Compare messages. In contrast, our approach
classifies messages accurately and hence, infer more accurate formats through iden-
tifying the type-specific keywords and by generalizing the keyword sequences across
messages in a cluster.

For SOAP, both ProDecoder and AutoReEngine create 4 clusters and infer 4 for-
mats instead of 5 ground-truth clusters/formats. AutoReEngine puts the messages
of closeAccount into the createNewAccount cluster and hence, achieves low preci-
sion for createNewAccount. However, it accurately classify the request messages of
other types and thus, achieves high precision and recall. On the other hand, ProDe-
coder puts the messages of closeAccount into all clusters and consequently, infers
imprecise formats for all types and delivers low precision.

For Twitter, both ProDecoder and AutoReEngine create mixed cluster for statu-

sesupdate. AutoReEngine puts all messages of statusesupdate & statusesuser

_timelinejsonuser_id into one cluster and thus, infer imprecise format and achieve
0.00 in both precision and recall. While ProDecoder mixes the message of statuses-

update, statusesuser_timelinejsonuser_id & statusesuser_timelinejsonscreen

_name and thus, achieve 0.00 as well. AutoReEngine accurately cluster the message
of statusesuser_timeline- jsonscreen_name and hence, achieve high precision and
recall in format extraction from that type of messages. ProDecoder generates mix
cluster for statusesuser _timelinejsonscreen_name and hence, infer imprecise for-
mat for that cluster. It accurately cluster the messages of statusesshowjsonid and
infer format precisely.

For GoogleBooks, AutoReEngine mixes all messages into one cluster and thus,
achieve lower precision in format extraction. ProDecoder clusters the messages
accurately for most of the folds and generates mix cluster for a few folds and hence,
achieve relatively higher accuracy than AutoReEngine in extracting request format
from the messages.

In general, our approach achieves high accuracy in format extraction because of
two reasons: i) it clusters the request messages accurately based on the request-type
after identifying the request type field through entropy analysis and by consider-
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ing the dissimilarity among messages in a cluster, and ii) accurately identifying
type-specific keywords and removing false keywords (substrings) through frequency
subtraction and inferring format through generalization, which allows the inferred
format accept yet unseen, valid messages.

Table A.1: Request Format Extraction Result (Zoom-In)

Dataset Cluster
ProDecoder AutoReEngine Our Approach

P R F P R F P R F

LDAP

Bind 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Add 0.40 1.00 0.57 0.60 0.19 0.29 1.00 1.00 1.00

Delete 0.84 1.00 0.91 0.26 0.01 0.02 1.00 1.00 1.00

Search 1.00 0.49 0.66 0.84 0.55 0.66 1.00 1.00 1.00

Modify 0.90 1.00 0.95 0.50 0.03 0.06 1.00 1.00 1.00

ModifyDN 0.08 1.00 0.15 0.00 0.00 0.00 1.00 1.00 1.00

Compare 0.65 0.64 0.64 0.94 0.17 0.29 1.00 1.00 1.00

Unbind 1.00 1.00 1.00 0.60 0.10 0.17 1.00 1.00 1.00

Weighted
Score

0.76 0.83 0.79 0.63 0.21 0.31 1.00 1.00 1.00

SOAP

createNewAcc-
ount

0.10 1.00 0.18 0.77 1.00 0.87 1.00 1.00 1.00

deposit 0.28 1.00 0.44 1.00 1.00 1.00 1.00 1.00 1.00

getAccount 0.28 1.00 0.44 1.00 1.00 1.00 1.00 1.00 1.00

withdraw 0.29 1.00 0.45 1.00 1.00 1.00 1.00 1.00 1.00

closeAccount - - - - - - 1.00 1.00 1.00

Weighted
Score

0.26 1.00 0.41 0.97 1.00 0.99 1.00 1.00 1.00

Twitter

friendshipsshow 0.80 0.80 0.80 0.62 1.00 0.77 1.00 1.00 1.00

statusesupdate 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00
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Table A.1 Continued: Request Format Extraction Result (Zoom-In)

Dataset Cluster
ProDecoder AutoReEngine Our Approach

P R F P R F P R F

statusesuser
_timelinej-
sonuser_id

0.37 1.00 0.54 - - - 1.00 1.00 1.00

statusesuser
_timelinejson-
screen_name

0.50 1.00 0.67 1.00 1.00 1.00 1.00 1.00 1.00

statusesshow 1.00 1.00 1.00 - - - 1.00 1.00 1.00

searchtweets 0.80 0.80 0.80 1.00 0.98 0.99 1.00 1.00 1.00

Weighted
Score

0.77 0.77 0.77 0.78 0.91 0.84 1.00 1.00 1.00

Google-
Books

search_volume 0.89 0.97 0.93 0.74 1.00 0.85 1.00 1.00 1.00

search_book-
shelf

0.89 1.00 0.94 - - - 1.00 1.00 1.00

Weighted
Score

0.89 0.98 0.93 0.74 1.00 0.85 1.00 1.00 1.00

A.2 Response Message Clustering Result
Table A.2 shows the Zoom-In result of clustering the responses of each request-based
cluster. As it shows, all three approaches cluster the Bind and Unbind responses
accurately for the LDAP dataset as the responses of the Bind requests are same and
responses for the Unbind requests are empty. For the rest of the request-based clus-
ters of LDAP, both ProDecoder and AutoReEngine cluster responses inaccurately
due to the misidentification of keywords from the messages. On the other hand, our
approach extracts keywords from the messages by considering the keyword’s posi-
tions in the messages and hence, achieves 100% accuracy in clustering the response
messages of all datasets. For SOAP, all three approaches cluster the responses of
closeAccount request accurately as the responses do not vary from the responses
to responses of the closeAccount request. Again, for the rest of the request-based
clusters, both ProDecoder and AutoReEngine mixed the responses of multiple clus-
ters into one. For Twitter, ProDecoder cluster the responses accurately except

146



A.2 Response Message Clustering Result

for the statusesshow and searchtweets clusters as those clusters contain the mes-
sages of one type of responses only. It creates mixed cluster for the responses of the
statusesshow and searchtweets clusters. On the other hand, AutoReEngine creates
many more clusters than the actual except for the statusesshow and searchtweets

clusters. For example, it creates 22 clusters for the responses of the statusesupdate-
based cluster. For the GoogleBooks dataset, all three approaches cluster responses
of the search_bookshelf cluster. This is because the search_bookshelf request
either returns an error response when the searched bookshelf is not found in the
database or the detail information about a bookshelf. Those responses contain a
distinctive set of keywords and thus, all three approaches cluster such messages us-
ing the extracted keywords. But, both ProDecoder and AutoReEngine are unable
to cluster the responses accurately of the search_volume cluster. In general, our
approach considers the position of the keywords in the messages of repetitive se-
quence of keyword-payload and hence, it extracts the keywords accurately from the
messages and achieves higher accuracy in clustering the responses.

Table A.2: Response Clustering Result (Zoom-In)

Dataset Cluster
ProDecoder AutoReEngine Our Approach

P R F P R F P R F

LDAP

Bind 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Add 1.00 1.00 1.00 0.15 0.19 0.17 1.00 1.00 1.00

Delete 1.00 0.69 0.81 0.15 0.26 0.19 1.00 1.00 1.00

Search 0.28 0.22 0.25 0.27 0.21 0.24 1.00 1.00 1.00

Modify 0.42 0.46 0.44 0.44 0.58 0.50 1.00 1.00 1.00

ModifyDN 0.70 0.75 0.72 0.89 0.87 0.88 1.00 1.00 1.00

Compare 1.00 0.85 0.92 0.32 0.38 0.35 1.00 1.00 1.00

Unbind 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Weighted
Score

0.73 0.65 0.69 0.30 0.36 0.33 1.00 1.00 1.00

SOAP

createNewAcc-
ount

0.26 0.14 0.18 1.00 1.00 1.00 1.00 1.00 1.00

deposit 0.66 0.75 0.70 1.00 1.00 1.00 1.00 1.00 1.00

getAccount 0.34 0.38 0.36 1.00 0.39 0.56 1.00 1.00 1.00
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Table A.2 Continued: Response Clustering Result (Zoom-In)

Dataset Cluster
ProDecoder AutoReEngine Our Approach

P R F P R F P R F

withdraw 0.54 0.55 0.54 1.00 0.78 0.88 1.00 1.00 1.00

closeAccount 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Weighted
Score

0.50 0.52 0.51 1.00 0.77 0.87 1.00 1.00 1.00

Twitter

friendshipsshow 1.00 1.00 1.00 1.00 0.10 0.18 1.00 1.00 1.00

statusesupdate 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00

statusesuser
_timelinej-
sonuser_id

1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00

statusesuser
_timelinejson-
screen_name

1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00

statusesshow 0.01 0.01 0.01 0.75 0.09 0.15 1.00 1.00 1.00

searchtweets 0.53 0.60 0.56 0.69 0.16 0.27 1.00 1.00 1.00

Weighted
Score

0.62 0.65 0.63 0.82 0.11 0.20 1.00 1.00 1.00

Google-
Books

search_volume 0.04 0.02 0.03 1.00 0.07 0.13 1.00 1.00 1.00

search_book-
shelf

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Weighted
Score

0.29 0.27 0.28 1.00 0.31 0.48 1.00 1.00 1.00

A.3 Response Format Extraction Result
Table A.3 shows Zoom-In result of inferring formats of the response messages. As
Table A.3 shows, all three approaches achieve 100% accuracy in format inference for
the responses of the LDAP Bind and Unbind clusters. The payloads of the Bind re-
sponses do not vary from responses to responses, while Unbind responses are empty.
ProDecoder creates a mixed cluster for other types of the LDAP messages and
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hence, achieves lower precision and recall for the inferred formats of the response
messages. On the other hand, AutoReEngine achieves 100% precision and recall for
some types (e.g., Add) even though it creates more clusters than the actual. This
is because we evaluate the response in “OR” -ed fashion, i.e., the inferred formats
are considered valid if any one of them accepts the message of that cluster. Due
to the same reason, it achieves 100% accuracy in format extraction for some types
of Twitter messages. For SOAP, ProDecoder achieves 100% accuracy in format ex-
traction for the responses of the closeAccount request as it correctly clusters the
messages. But, it achieves lower accuracy for all other types. AutoReEngine is
unable to achieve 100% accuracy for any type of SOAP messages. In contrast, our
approach accurately infers formats of the responses for the SOAP dataset. For Twit-
ter, ProDecoder achieves 100% accuracy for the statusesshow and statusesupdate

clusters as the responses of those clusters contain a single type of responses and
those responses do not contain repetition sequence of keyword-payload. Due to
the same reason, both ProDecoder and AutoReEngine achieve 100% accuracy in
format extraction for the responses of search_bookshelf in GoogleBooks dataset.
As Table A.3 shows, the accuracy of the statusesuser_timelinejsonuser_id and
statusesuser_timelinejsonscreen_name (Twitter) for ProDecoder is lower even though
it accurately clusters the responses of those types. This is due to the incapability of
generalizing the individual message pattern into the inferred format. The responses
of search_volume cluster in GoogleBooks also contain the repetition sequence of
keyword-payload and hence, both ProDecoder and AutoReEngine achieve lower ac-
curacy, while our approach achieves 100% accuracy in extracting formats of such
response messages.

Table A.3: Response Format Extraction Result (Zoom-In)

Dataset Cluster
ProDecoder AutoReEngine Our Approach

P R F P R F P R F

LDAP

Bind 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Add 0.67 1.00 0.80 1.00 1.00 1.00 1.00 1.00 1.00

Delete 0.74 0.81 0.77 1.00 1.00 1.00 1.00 1.00 1.00

Search 0.99 0.94 0.96 0.71 0.64 0.67 1.00 1.00 1.00

Modify 0.80 0.96 0.87 0.50 0.87 0.63 1.00 1.00 1.00

ModifyDN 0.88 0.94 0.90 0.49 0.81 0.61 1.00 1.00 1.00

Compare 0.82 0.81 0.81 1.00 1.00 1.00 1.00 1.00 1.00
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Table A.3 Continued: Response Format Extraction Result (Zoom-In)

Dataset Cluster
ProDecoder AutoReEngine Our Approach

P R F P R F P R F

Unbind 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Weighted
Score

0.81 0.91 0.86 0.83 0.89 0.86 1.00 1.00 1.00

SOAP

createNewAcc-
ount

0.93 1.00 0.96 0.93 1.00 0.96 1.00 1.00 1.00

deposit 0.80 0.93 0.86 0.81 0.93 0.87 1.00 1.00 1.00

getAccount 0.85 1.00 0.92 0.79 1.00 0.88 1.00 1.00 1.00

withdraw 0.75 0.73 0.74 0.56 0.60 0.58 1.00 1.00 1.00

closeAccount 1.00 1.00 1.00 0.50 0.50 0.50 1.00 1.00 1.00

Weighted
Score

0.82 0.90 0.86 0.73 0.84 0.78 1.00 1.00 1.00

Twitter

friendshipsshow 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

statusesupdate 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

statusesuser
_timelinej-
sonuser_id

1.00 0.83 0.91 1.00 0.80 0.89 1.00 1.00 1.00

statusesuser
_timelinejson-
screen_name

1.00 0.88 0.94 1.00 0.79 0.88 1.00 1.00 1.00

statusesshow 0.61 0.74 0.67 0.78 0.81 0.79 1.00 0.91 0.95

searchtweets 0.63 0.87 0.73 0.68 0.99 0.81 1.00 1.00 1.00

Weighted
Score

0.77 0.89 0.83 0.82 0.95 0.88 1.00 0.99 0.99

Google-
Books

search_volume 0.98 0.74 0.84 0.95 0.90 0.92 1.00 1.00 1.00

search_book-
shelf

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Weighted
Score

0.99 0.81 0.89 0.96 0.93 0.94 1.00 1.00 1.00
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A.4 Response Format Inference Time
Table A.4 shows the Zoom-In result of required time for clustering the responses of
each request-based cluster.

Table A.4: Time (s) for Clustering and Inferring Response Formats
(Zoom-In)

Dataset Cluster
ProDecoder AutoReEngine Our Approach

C F C F C F

LDAP

Bind 1.38 0.03 0.96 0.84 0.14 0.96

Add 14.15 1.97 0.99 57.20 23.64 3.33

Delete 17.87 2.53 1.32 75.17 44.10 4.27

Search 31.79 3.73 2.05 209.72 63.45 6.43

Modify 22.45 1.30 1.52 103.70 52.08 7.81

ModifyDN 2.10 0.04 0.96 0.98 0.25 4.98

Compare 18.92 1.60 1.66 75.12 28.50 4.98

Unbind 0.01 0.00 0.00 0.00 0.00 0.02

Avg. Time
(message-
weighted)

20.12 2.11 1.47 100.33 40.32 5.21

SOAP

createNewAcc-
ount

21.25 1.52 15.17 10.54 90.85 23.86

deposit 44.83 4.10 20.70 24.88 90.62 42.54

getAccount 39.73 5.36 19.24 48.14 60.15 40.70

withdraw 44.44 4.06 21.55 24.54 40.50 43.13

closeAccount 5.04 0.14 3.93 0.71 10.32 16.44

Avg. Time
(message-
weighted)

39.12 3.99 19.30 28.67 65.04 39.07

Twitter

friendshipsshow 22.39 5.45 2.71 40.69 11.60 1.15

statusesupdate 26.13 2.54 20.78 4.15 14.96 228.63
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Table A.4 Continued: Time (s) for Clustering and Inferring Response For-
mats (Zoom-In)

Dataset Cluster
ProDecoder AutoReEngine Our Approach

C F C F C F

statusesuser
_timelinej-
sonuser_id

308.43 67.78 68.13 243.21 0.78 73.20

statusesuser
_timelinejson-
screen_name

306.25 67.68 69.60 214.41 0.71 71.76

statusesshow 115.78 25.26 11.27 42.93 0.33 12.90

searchtweets 3185.11 4282.58 388.65 2617.80 5.53 586.89

Avg. Time
(message-
weighted)

1403.55 1839.24 173.31 1148.57 6.74 271.21

Google-
Books

search_volume 2575.88 57.11 1091.57 1794.13 37.24 0.67

search _book-
shelf

1.88 0.04 2.89 0.04 9.73 6.58

Avg. Time
(message-
weighted)

1907.15 42.28 808.73 1328.02 30.09 2.20
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A.5 Inferred Service Behavior

INITIAL

Modify_ModifyRsp(Not found)

Delete_DeleteRsp(Not found)

Add_AddRsp(Ok)

Search_SearchRsp(Not found)

ModifyDN_ModifyDNRsp(Not found)

Modify_ModifyRsp(Ok)

Add_AddRsp(AlreadyExists)

Search_SearchRsp(Ok)

Delete_DeleteRsp(Ok)

Compare_CompareRsp(CompareFalse)

ModifyDN_ModifyDN(Ok)

ModifyDN_ModifyDN(AlreadyExists)

Compare_CompareRsp(CompareTrue)

Figure A.1: Inferred Model from LDAP Trace (Clean start)
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A.6 Generation of Protocol Plausible Responses
This section presents the details of generating protocol plausible responses by our
approach. In general, our approach keeps track of the service state and generates
responses based on the current state of the services, therefore, it is expected that
our approach generates at least a data consistent response. Unfortunately, our ap-
proach generates a few protocol plausible responses, especially when the service state
is changed due to non-key fields or the value of key field is updated during com-
munication. We present the detail process of protocol plausible response generation
with an example for LDAP dataset.

INITIAL

A_AddRsp
(Ok)

A_AddRsp
(AlreadyExists)

S_SearchRsp
(NoSuchObject)

MDN_MDNRsp
(NoSuchObject)

MDN_MDNRsp
(Ok) D_DeleteRsp

(Ok)

S_SearchRsp
(Ok)

D_DeleteRsp
(NoSuchObject)

Figure A.2: Partial Service Behavior Model

The service behavior model inferred by our approach as depicted in Figure A.1
contains so many nodes & edges, we use a partial model shows in Figure A.2 to
describe the details of generating protocol plausible responses by our approach.

Let us consider the interaction trace shows in Table A.5 as an example. At
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Table A.5: Incoming Requests and Expected Responses

Index Incoming Request Expected Response
1 {id:1,op:S,cn:Judith} {id:1,op:SearchRsp,result:Not Found}

2 {id:2,op:A,cn:Judith} {id:2,op:AddRsp,result:Ok}

3
{id:3,op:MDN,Oldcn:Judith,
Newcn:Gavin}

{id:3,op:MDNRsp,result:Ok}

4 {id:4,op:A,cn:Gavin} {id:4,op:AddRsp,result:Already Exists}

5 {id:5,op:D,cn:Gavin} {id:5,op:DeleteRsp,result:Ok}

runtime, that is, at the time of generating responses for the incoming requests, our
approach create an instance of the inferred model for each different key records
associated in the request messages as described in Section 6.2.4. Therefore, the
service state for the record “Judith” is set to “INITIAL” as described in the Algorithm
5 in Chapter 6. Then it selects “S_NoSuchObject” as the response type for the first
request of Table A.5 and generates the following response after transformation,
which is an identical response as per the evaluation criteria described in Section
6.4.2

{id:1,op:SearchRsp,result:Not Found}

Similarly, it generates identical response for the second and third requests in
Table A.5. But, the value of the key-record (i.e.cn) is changed after executing
the third request, that is, ModifyDN) request takes two common names and the old
common name is replaced by a new common name. In third request (index:3), the
value of cn (i.e.Judith) is replaced by Gavin. Therefore, the key record Judith is
no more available in the data store and the key record Gavin retains the current
state of the service for the record Judith. But, our approach assigns “INITIAL” as
the current state when the key record appears for first time and it generates the
following response for the fourth (index:4) request

{id:4,op:AddRsp,result:ok}

The above generated response is evaluated as protocol-plausible based on the
evaluation criteria described in Section 6.4.2. Similarly, our approach generates
protocol-plausible response for the fifth (index:5) request in Table A.5 and it contin-
ues to generate protocol-plausible responses for the record Gavin until an add request
becomes observable in the interaction trace.
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Appendix B

Interaction Trace Example

B.1 Lightweight Directory Access Protocol
(LDAP)
The LDAP example trace contains eight types of request messages, which are Add,

Delete, Bind, Search, Modify DN, Modify, Compare, and Unbind. For each type
of request messages, we present an example request message and the corresponding
response message.

B.1.1 Bind Operation
The Bind operation is used to authenticate a client to the LDAP server. An example
of such a request and the corresponding response messages are following

LDAP Bind request

LDAP Bind Request Message ID: 1 LDAP Bind Request Protocol Op LDAP Version: 3
Bind dn: cn=admin,dc=ca,dc=com Authentication Data: Authentication Type:
Simple Bind Password: 1228013670

LDAP Bind response

LDAP Bind Response Message ID: 1 LDAP Bind Response Protocol Op Result
Code: 0 (Success)
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B.1.2 Add Operation
The Add operation is used to create a new entry (i.e., record) into the LDAP server.
An example of such a request and the corresponding response messages are following

LDAP Add request

LDAP Add Request Message ID: 10 LDAP Add Request Protocol Op dn: cn=Susana GIDDINGS
,ou=Records,ou=Customer,dc=ca,dc=com mail: Susana.GIDDINGS@ca.com mobile: 5530146
description: Customer Service objectClass: inetOrgPerson title: Customer Service
sn: GIDDINGS cn: Susana GIDDINGS

LDAP Add response

LDAP Add Response Message ID: 10 LDAP Add Response Protocol Op Result
Code: 0 (Success)

B.1.3 Search Operation
The Search operation is used to perform a search in the LDAP directory server. An
example of such a request and the corresponding response messages are following

LDAP Search request

LDAP Search Request Message ID: 24 LDAP Search Request Protocol Op Base DN:
cn=Judith GIDDINGS,ou=Administration,ou=Corporate,dc=ca,dc=com Scope: 0 (baseObject)
Deref Aliases: 3 (derefAlways) Size Limit: 1 Time Limit: 0 Types Only: false Filter:
(cn=Judith STONE,ou=Management,ou=Corporate) Attributes: 1.1

LDAP Search response

LDAP Search Result Done Message ID: 24 LDAP Search Result Done Protocol Op Result
Code: 32 (No Such Object) Matched DN: ou=Administration,ou=Corporate, dc=ca,dc=com

B.1.4 Delete Operation
The Delete operation is used to delete an existing entry (i.e., record) from the LDAP
directory server. An example of such a request and the corresponding response
messages are following
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LDAP Delete request

LDAP Delete Request Message ID: 4 LDAP Delete Request Protocol Op dn: cn=Gavin
GIDDINGS,ou=Records,ou=Customer,dc=ca,dc=com

LDAP Delete response

LDAP Delete Response Message ID: 4 LDAP Delete Response Protocol Op Result
Code: 0 (Success)

B.1.5 Modify Operation
The Modify operation is used to update/modify an existing entry (i.e., record) in
the LDAP directory server. An example of such a request and the corresponding
response messages are following

LDAP Modify request

LDAP Modify Request Message ID: 10 LDAP Modify Request Protocol Op dn:
cn=Mark MAJOR,ou=Management,ou=Corporate,dc=ca,dc=com changetype: modify
add: telephoneNumber telephoneNumber: 6176185 replace: description
description: Acting Supervisor delete: mobile

LDAP Modify response

LDAP Modify Response Message ID: 10 LDAP Modify Response Protocol Op Result Code:
16 (No Such Attribute) Error Message: modify/delete: mobile: no such attribute

B.1.6 Modify DN Operation
The Modify DN operation is used to update/modify DN of an existing entry (i.e.,
record) in the LDAP directory server. An example of such a request and the corre-
sponding response messages are following

LDAP Modify DN request

LDAP Modify DN Request Message ID: 42 LDAP Modify DN Request Protocol Op Current
Entry DN: cn=Judith STONE,ou=Administration,ou=Corporate,dc=ca,dc=com New RDN:
cn=Mark GIDDINGS Delete Old RDN: true New Superior: ou=Records, ou=Customer,dc=
ca,dc=com
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LDAP Modify DN response

LDAP Modify DN Response Message ID: 42 LDAP Modify DN Response Protocol Op Result
Code: 0 (Success)

B.1.7 Compare Operation
The Compare operation is used to check whether an existing entry (i.e., record) in the
LDAP directory server has the specified attributes. An example of such a request
and the corresponding response messages are following

LDAP Compare request

LDAP Compare Request Message ID: 16 LDAP Compare Request Protocol Op Entry
DN: cn=Susana RAYMOND,ou=Infrastructure,ou=Support,dc=ca,dc=com Attribute
Type: mail Assertion Value: Susana.MAJOR@ca.com

LDAP Compare response

LDAP Compare Response Message ID: 16 LDAP Compare Response Protocol Op Result
Code: 32 (No Such Object) Matched DN: ou=Infrastructure,ou=Support, dc=ca,dc=com

B.1.8 Unbind Operation
The Unbind operation is used to disconnect from the LDAP server. An example of
such a request and the corresponding response messages are following

LDAP Unbind request

LDAP Unbind Request Message ID: 39 LDAP Unbind Request Protocol Op

LDAP Unbind response

""

B.2 Simple Object Access Protocol (SOAP)
The SOAP example trace contains five types of request messages, which are CreateNew-

Account, GetAccount, Deposit, Withdraw and CloseAccount. For each type of re-
quest messages, we present an example request message and the corresponding re-
sponse message.
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B.2.1 CreateNewAccount Operation
The CreateNewAccount operation is used to create a new account in banking service.
An example of such a request and the corresponding response messages are following

CreateNewAccount request

<S:Envelope
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/>
<S:Body>

<ns2:createNewAccount
xmlns:ns2="http://publisher.webservice.bank.com/">
<arg0>

<accountName>John Taaffe</accountName>
<accountNumber>229464651</accountNumber>
<accountType>SAVINGS</accountType>
<balance>415.66</balance>

</arg0>
</ns2:createNewAccount>

</S:Body>
</S:Envelope>

CreateNewAccount response

<S:Envelope
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/>
<S:Body>

<ns2:createNewAccountResponse
xmlns:ns2="http://publisher.webservice.bank.com/">
<return>

<accountName>default</accountName>
<accountNumber>229464651</accountNumber>
<balance>0.0</balance>
<message>Sorry, the account already exists</message>
<result>AlreadyExists</result>

</return>
</ns2:createNewAccountResponse>

</S:Body>
</S:Envelope>
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B.2.2 GetAccount Operation
The GetAccount operation is used to find the details of an existing account in banking
service. An example of such a request and the corresponding response messages are
following

GetAccount request

<S:Envelope
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/>
<S:Body>

<ns2:getAccount
xmlns:ns2="http://publisher.webservice.bank.com/">
<arg0>

<accountNumber>1647664720</accountNumber>
</arg0>

</ns2:getAccount>
</S:Body>

</S:Envelope>

GetAccount response

<S:Envelope
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/>
<S:Body>

<ns2:getAccountResponse
xmlns:ns2="http://publisher.webservice.bank.com/">
<return>

<accountName>Judy Blume</accountName>
<accountNumber>1647664720</accountNumber>
<balance>99978.0</balance>
<result>SUCCESS</result>

</return>
</ns2:getAccountResponse>

</S:Body>
</S:Envelope>
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B.2.3 Deposit Operation
The Deposit operation is used to deposit money to an existing account in banking
service. An example of such a request and the corresponding response messages are
following

Deposit request

<S:Envelope
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/>
<S:Body>

<ns2:deposit
xmlns:ns2="http://publisher.webservice.bank.com/">
<arg0>

<accountNumber>1568941178</accountNumber>
<amount>6319</amount>
<transactionDate>2005-08-21</transactionDate>

</arg0>
</ns2:deposit>

</S:Body>
</S:Envelope>

Deposit response

<S:Envelope
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/>
<S:Body>

<ns2:depositResponse
xmlns:ns2="http://publisher.webservice.bank.com/">
<return>

<accountNumber>1568941178</accountNumber>
<balance>16106.00</balance>
<message>The deposit request of amount 6319 has been
successful</message>
<result>SUCCESS</result>

</return>
</ns2:depositResponse>

</S:Body>
</S:Envelope>
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B.2.4 Withdraw Operation
The Withdraw operation is used to withdraw money from an existing account if the
account has sufficient amount of money in banking service. An example of such a
request and the corresponding response messages are following

Withdraw request

<S:Envelope
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/>
<S:Body>

<ns2:withdraw
xmlns:ns2="http://publisher.webservice.bank.com/">
<arg0>

<accountNumber>229464651</accountNumber>
<amount>5411.00</amount>
<transactionDate>2010-11-24</transactionDate>

</arg0>
</ns2:withdraw>

</S:Body>
</S:Envelope>

Withdraw response

<S:Envelope
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/>
<S:Body>

<ns2:withdrawResponse
xmlns:ns2="http://publisher.webservice.bank.com/">
<return>

<accountNumber>229464651</accountNumber>
<balance>0.00</balance>
<message>The withdraw request of amount 5411 has been
successful</message>
<result>SUCCESS</result>

</return>
</ns2:withdrawResponse>

</S:Body>
</S:Envelope>
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B.2.5 CloseAccount Operation

The CloseAccount operation is used to close an existing account in banking service.
An example of such a request and the corresponding response messages are following

CloseAccount request

<S:Envelope
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/>
<S:Body>

<ns2:closeAccount
xmlns:ns2="http://publisher.webservice.bank.com/">
<arg0>

<accountNumber>4114286369</accountNumber>
<transactionDate>2011-11-24</transactionDate>

</arg0>
</ns2:closeAccount>

</S:Body>
</S:Envelope>

CloseAccount response

<S:Envelope
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/>
<S:Body>

<ns2:closeAccountResponse
xmlns:ns2="http://publisher.webservice.bank.com/">
<return>

<accountNumber>4114286369</accountNumber>
<message>Sorry, no such account is available</message>
<result>NoSuchAccount</result>

</return>
</ns2:closeAccountResponse>

</S:Body>
</S:Envelope>
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B.3 Twitter
The Twitter example trace contains six types of request messages, which are Friend-

shipsshow, Statusesupdate, Searchtweets, StatusesShow, statusesuser_timeline-

jsonuser_id and statusesuser_timeline_jsonscreen_name. For each type of re-
quest messages, we present an example request message and the corresponding re-
sponse message.

B.3.1 Friendshipsshow Operation
The Friendshipsshow operation is used to find the detailed information about the
relationship between two arbitrary users. An example of such a request and the
corresponding response messages are following

Friendshipsshow request

GET https://api.twitter.com/1.1/friendships/show.json?source_id=524642832&
target_id=133093395&include_entities=1&include_rts=1

Friendshipsshow response

{
"relationship": {
"source": {
"id": 524642832,
"blocking": null,
"notifications_enabled": null,
"following": false,
"followed_by": false,
"screen_name": "_abbiecornish",
"marked_spam": null,
"can_dm": false,
"id_str": "524642832",
"all_replies": null,
"want_retweets": null

},
"target": {
"id": 133093395,
"following": false,
"followed_by": false,
"screen_name": "russellcrowe",
"id_str": "133093395"
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}
}

}

B.3.2 Statusesupdate Operation
The Statusesupdate operation is used to update the current status of an authen-
ticated user (i.e., Tweeting). An example of such a request and the corresponding
response messages are following

Statusesupdate request

POST https://api.twitter.com/1.1/statuses/update.json status=circumaviator
\%20laughingly \%20unkemptness\%20scleretinite\%20nonthinking\%20catalogicl
\%20vicissitudinous\%20bundook\%20sagenite\%20feltyfare.&include_entities=1&
include_rts=1

Statusesupdate response

{
"contributors": null,
"text": "circumaviator laughingly unkemptness scleretinite nonthinking
catalogical vicissitudinous bundook sagenite feltyfare.",
"geo": null,
"retweeted": false,
"in_reply_to_screen_name": null,
"truncated": false,
"lang": "en",
"entities": {
"symbols": [],
"urls": [],
"hashtags": [],
"user_mentions": []

},
"in_reply_to_status_id_str": null,
"id": 425241003532894200,
"source": "<a href=\"http://www.baidu.com\" rel=\"nofollow\">traffic_gen</a>",
"in_reply_to_user_id_str": null,
"favorited": false,
"in_reply_to_status_id": null,
"retweet_count": 0,
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"created_at": "Mon Jan 20 12:18:50 +0000 2014",
"in_reply_to_user_id": null,
"favorite_count": 0,
"id_str": "425241003532894208",
"place": null,
"user": {
"location": "",
"default_profile": true,
"profile_background_tile": false,
"statuses_count": 179,
"lang": "en-gb",
"profile_link_color": "0084B4",
"id": 2300564737,
"following": false,
"protected": false,
"favourites_count": 0,
"profile_text_color": "333333",
"description": "",
"verified": false,
"contributors_enabled": false,
"profile_sidebar_border_color": "C0DEED",
"name": "miao",
"profile_background_color": "C0DEED",
"created_at": "Mon Jan 20 01:18:51 +0000 2014",
"default_profile_image": true,
"followers_count": 0,
"profile_image_url_https": "https://abs.twimg.com/sticky/default_profile_
images/default_profile_2_normal.png",
"geo_enabled": false,
"profile_background_image_url": "http://abs.twimg.com/images/themes/theme1/
bg.png",
"profile_background_image_url_https": "https://abs.twimg.com/images/themes/
theme1/bg.png",
"follow_request_sent": false,
"entities": {
"description": {
"urls": []

}
},
"url": null,
"utc_offset": null,
"time_zone": null,
"notifications": false,
"profile_use_background_image": true,
"friends_count": 2,
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"profile_sidebar_fill_color": "DDEEF6",
"screen_name": "roundhole19",
"id_str": "2300564737",
"profile_image_url": "http://abs.twimg.com/sticky/default_profile_images/
default_profile_2_normal.png",
"listed_count": 0,
"is_translator": false

},
"coordinates": null

}

B.3.3 Searchtweets Operation
The Searchtweets operation is used to search with Tweets since the first one posted
in 2006. An example of such a request and the corresponding response messages are
following

Searchtweets request

GET https://api.twitter.com/1.1/search/tweets.json?q=
Majestic\%20http\%3A\%2F\%2Ft.co\%2FAzVLm6NhFa&with_twitter_user_id=
true&include_entities=1&include_rts=1

Searchtweets response

{
"statuses": [
{
"retweeted": false,
"in_reply_to_screen_name": null,
"possibly_sensitive": false,
"truncated": false,
"lang": "pl",
"in_reply_to_status_id_str": null,
"id": 422981825489682400,
"in_reply_to_user_id_str": null,
"in_reply_to_status_id": null,
"created_at": "Tue Jan 14 06:41:40 +0000 2014",
"favorite_count": 0,
"place": null,
"coordinates": null,
"metadata": {
"result_type": "recent",
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"iso_language_code": "pl"
},
"text": "RT @Ryan_Kwanten: Majestic... http://t.co/AzVLm6NhFa",
"contributors": null,
"retweeted_status": {
"contributors": null,
"text": "Majestic... http://t.co/AzVLm6NhFa",
"geo": null,
"retweeted": false,
"in_reply_to_screen_name": null,
"possibly_sensitive": false,
"truncated": false,
"lang": "pl",
"entities": {
"symbols": [],
"urls": [],
"hashtags": [],
"media": [
{
"sizes": {
"small": {
"w": 340,
"resize": "fit",
"h": 453

},
"thumb": {
"w": 150,
"resize": "crop",
"h": 150

},
"medium": {
"w": 600,
"resize": "fit",
"h": 800

},
"large": {
"w": 1024,
"resize": "fit",
"h": 1365

}
},
"id": 408740134721310700,
"media_url_https": "https://pbs.twimg.com/media/Bawi_KeCUAAaTMa.jpg",
"media_url": "http://pbs.twimg.com/media/Bawi_KeCUAAaTMa.jpg",
"expanded_url": "http://twitter.com/Ryan_Kwanten/status/
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408740134712922112/photo/1",
"indices": [
12,
34

],
"id_str": "408740134721310720",
"type": "photo",
"display_url": "pic.twitter.com/AzVLm6NhFa",
"url": "http://t.co/AzVLm6NhFa"

}
],
"user_mentions": []

},
"in_reply_to_status_id_str": null,
"id": 408740134712922100,
"source": "web",
"in_reply_to_user_id_str": null,
"favorited": false,
"in_reply_to_status_id": null,
"retweet_count": 57,
"created_at": "Thu Dec 05 23:30:17 +0000 2013",
"in_reply_to_user_id": null,
"favorite_count": 209,
"id_str": "408740134712922112",
"place": null,
"user": {
"location": "",
"default_profile": false,
"profile_background_tile": true,
"statuses_count": 354,
"lang": "en",
"profile_link_color": "0084B4",
"profile_banner_url": "https://pbs.twimg.com/profile_banners
/158900583/1364356693",
"id": 158900583,
"following": false,
"protected": false,
"favourites_count": 91,
"profile_text_color": "333333",
"description": "The official Ryan Kwanten Twitter account.",
"verified": true,
"contributors_enabled": false,
"profile_sidebar_border_color": "FFFFFF",
"name": "Ryan Kwanten",
"profile_background_color": "C0DEED",

171



B. Interaction Trace Example

"created_at": "Wed Jun 23 23:35:04 +0000 2010",
"default_profile_image": false,
"followers_count": 178699,
"profile_image_url_https": "https://pbs.twimg.com/profile_images
/3436412603/2341fc2d7345b1e9b74f5ab72300ddb6_normal.jpeg",
"geo_enabled": false,
"profile_background_image_url": "http://a0.twimg.com/profile_background_
images/825737319/c30b658b3253133e9fa0c9a7000f2fff.jpeg",
"profile_background_image_url_https": "https://si0.twimg.com/
profile_background_images/825737319/c30b658b3253133e9fa0c9a7000f2fff.jpeg",
"follow_request_sent": false,
"entities": {
"description": {
"urls": []

},
"url": {
"urls": [
{
"expanded_url": "https://www.facebook.com/RyanKwanten",
"indices": [
0,
23

],
"display_url": "facebook.com/RyanKwanten",
"url": "https://t.co/HxItxdgm89"

}
]

}
},
"url": "https://t.co/HxItxdgm89",
"utc_offset": null,
"time_zone": null,
"notifications": false,
"profile_use_background_image": true,
"friends_count": 14,
"profile_sidebar_fill_color": "DDEEF6",
"screen_name": "Ryan_Kwanten",
"id_str": "158900583",
"profile_image_url": "http://pbs.twimg.com/profile_images/
3436412603/2341fc2d7345b1e9b74f5ab72300ddb6_normal.jpeg",
"listed_count": 2063,
"is_translator": false

},
"coordinates": null,
"metadata": {
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"result_type": "recent",
"iso_language_code": "pl"

}
},
"geo": null,
"entities": {
"symbols": [],
"urls": [],
"hashtags": [],
"media": [
{
"sizes": {
"small": {
"w": 340,
"resize": "fit",
"h": 453

},
"thumb": {
"w": 150,
"resize": "crop",
"h": 150

},
"medium": {
"w": 600,
"resize": "fit",
"h": 800

},
"large": {
"w": 1024,
"resize": "fit",
"h": 1365

}
},
"id": 408740134721310700,
"media_url_https": "https://pbs.twimg.com/media/Bawi_KeCUAAaTMa.jpg",
"media_url": "http://pbs.twimg.com/media/Bawi_KeCUAAaTMa.jpg",
"expanded_url": "http://twitter.com/Ryan_Kwanten/status
/408740134712922112/photo/1",
"indices": [
30,
52

],
"id_str": "408740134721310720",
"type": "photo",
"display_url": "pic.twitter.com/AzVLm6NhFa",
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"url": "http://t.co/AzVLm6NhFa"
}

],
"user_mentions": [
{
"id": 158900583,
"name": "Ryan Kwanten",
"indices": [
3,
16

],
"screen_name": "Ryan_Kwanten",
"id_str": "158900583"

}
]

},
"source": "<a href=\"https://mobile.twitter.com\"
rel=\"nofollow\">Mobile Web (M5)</a>",
"favorited": false,
"in_reply_to_user_id": null,
"retweet_count": 57,
"id_str": "422981825489682432",
"user": {
"location": "",
"default_profile": false,
"profile_background_tile": true,
"statuses_count": 9594,
"lang": "en",
"profile_link_color": "510969",
"profile_banner_url": "https://pbs.twimg.com/profile_banners/310652200/
1389892120",
"id": 310652200,
"following": false,
"protected": false,
"favourites_count": 6026,
"profile_text_color": "6814A8",
"description": "I am. Whatever you say I am, if I wasn’t. Then
why would I say I am.",
"verified": false,
"contributors_enabled": false,
"profile_sidebar_border_color": "000000",
"name": " Hayley",
"profile_background_color": "FFFFFF",
"created_at": "Sat Jun 04 03:39:01 +0000 2011",
"default_profile_image": false,
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"followers_count": 1331,
"profile_image_url_https": "https://pbs.twimg.com/profile_images/
378800000831774897/0e565bd296ea03a217e9abbd2c2bee12_normal.jpeg",
"geo_enabled": true,
"profile_background_image_url": "http://a0.twimg.com/profile_background
_images/378800000071035705/1c9368d724131c7136888ab585104c38.jpeg",
"profile_background_image_url_https": "https://si0.twimg.com/profile_
background_images/378800000071035705/1c9368d724131c7136888ab585104c38
.jpeg",
"follow_request_sent": false,
"entities": {
"description": {
"urls": []

}
},
"url": null,
"utc_offset": null,
"time_zone": null,
"notifications": false,
"profile_use_background_image": true,
"friends_count": 1617,
"profile_sidebar_fill_color": "9A14C7",
"screen_name": "hkeevers",
"id_str": "310652200",
"profile_image_url": "http://pbs.twimg.com/profile_images/378800000831774897/
0e565bd296ea03a217e9abbd2c2bee12_normal.jpeg",
"listed_count": 2,
"is_translator": false

}
}

],
"search_metadata": {
"since_id": 0,
"count": 15,
"max_id": 422981825489682400,
"refresh_url": "?since_id=422981825489682432&q=Majestic\%20http\%3A\%2F\%2Ft.co
\%2FAzVLm6NhFa&include_entities=1",
"query": "Majestichttp\%3A\%2F\%2Ft.co\%2FAzVLm6NhFa",
"max_id_str": "422981825489682432",
"since_id_str": "0",
"completed_in": 0.041

}
}
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B.3.4 StatusesShow Operation
The StatusesShow operation is used to get a single Tweet of an account (specified
by id). An example of such a request and the corresponding response messages are
following

StatusesShow request

GET https://api.twitter.com/1.1/statuses/show/423234210736787456.json?
include_entities=1&include_rts=1

StatusesShow response

{
"contributors": null,
"text": "@Headshambles Don’t drop your guitar!",
"geo": null,
"retweeted": false,
"in_reply_to_screen_name": "Headshambles",
"truncated": false,
"lang": "en",
"entities": {
"symbols": [],
"urls": [],
"hashtags": [],
"user_mentions": [
{
"id": 710955037,
"name": "Mark Hamilton",
"indices": [
0,
13

],
"screen_name": "Headshambles",
"id_str": "710955037"

}
]

},
"in_reply_to_status_id_str": "423232313636311040",
"id": 423234210736787460,
"source": "<a href=\"https://about.twitter.com/products/tweetdeck\"
rel=\"nofollow\">TweetDeck</a>",
"in_reply_to_user_id_str": "710955037",
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"favorited": false,
"in_reply_to_status_id": 423232313636311040,
"retweet_count": 0,
"created_at": "Tue Jan 14 23:24:33 +0000 2014",
"in_reply_to_user_id": 710955037,
"favorite_count": 0,
"id_str": "423234210736787456",
"place": null,
"user": {
"location": "Sydney",
"default_profile": false,
"profile_background_tile": false,
"statuses_count": 11317,
"lang": "en",
"profile_link_color": "990000",
"profile_banner_url": "https://pbs.twimg.com/profile_banners/22711711/1356051799",
"id": 22711711,
"following": false,
"protected": false,
"favourites_count": 1941,
"profile_text_color": "333333",
"description": "January 9-26 in Sydney. Music, theatre, opera, dance, visual arts,
ideas, free & family events. It’s big. This is our city in summer. #sydfest",
"verified": true,
"contributors_enabled": false,
"profile_sidebar_border_color": "FFFFFF",
"name": "Sydney Festival",
"profile_background_color": "86CEDE",
"created_at": "Wed Mar 04 01:14:38 +0000 2009",
"default_profile_image": false,
"followers_count": 47853,
"profile_image_url_https": "https://pbs.twimg.com/profile_images/2505506864/
tekyg38071cjub5w1n90_normal.png",
"geo_enabled": true,
"profile_background_image_url": "http://a0.twimg.com/profile_background_
images/378800000103520193/ef9daab733b72f6056e3404f8941dfdb.jpeg",
"profile_background_image_url_https": "https://si0.twimg.com/profile_
background_images/378800000103520193/
ef9daab733b72f6056e3404f8941dfdb.jpeg",
"follow_request_sent": false,
"entities": {
"description": {
"urls": []

},
"url": {
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"urls": [
{
"expanded_url": "http://www.sydneyfestival.org.au",
"indices": [
0,
22

],
"display_url": "sydneyfestival.org.au",
"url": "http://t.co/1A76sKRwUL"

}
]

}
},
"url": "http://t.co/1A76sKRwUL",
"utc_offset": 39600,
"time_zone": "Sydney",
"notifications": false,
"profile_use_background_image": true,
"friends_count": 6321,
"profile_sidebar_fill_color": "FAD105",
"screen_name": "sydney_festival",
"id_str": "22711711",
"profile_image_url": "http://pbs.twimg.com/profile_images/2505506864/
tekyg38071cjub5w1n90_normal.png",
"listed_count": 1088,
"is_translator": false

},
"coordinates": null

}

B.3.5 Statusesuser_timelinejsonuser_id Operation

The Statusesuser_timelinejsonuser_id operation is used to get a collection of the
most recent Tweets posted by the user indicated by the id. An example of such a
request and the corresponding response messages are following

Statusesuser_timelinejsonuser_id request

GET https://api.twitter.com/1.1/statuses/user_timeline.json?user_id=27
042513&include_my_retweet=true&include_entities=1&include_rts=1
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Statusesuser_timelinejsonuser_id response

[
{

"contributors": null,
"text": "Starry night! http://t.co/kGhhHRcBVi",
"geo": null,
"retweeted": false,
"in_reply_to_screen_name": null,
"possibly_sensitive": false,
"truncated": false,
"lang": "en",
"entities": {
"symbols": [],
"urls": [
{
"expanded_url": "http://instagram.com/p/jXcrnwihLO/",
"indices": [
14,
36

],
"display_url": "instagram.com/p/jXcrnwihLO/",
"url": "http://t.co/kGhhHRcBVi"

}
],
"hashtags": [],
"user_mentions": []

},
"in_reply_to_status_id_str": null,
"id": 425024613622771700,
"source": "<a href=\"http://instagram.com\" rel=\"nofollow\">Instagram</a>",
"in_reply_to_user_id_str": null,
"favorited": false,
"in_reply_to_status_id": null,
"retweet_count": 152,
"created_at": "Sun Jan 19 21:58:59 +0000 2014",
"in_reply_to_user_id": null,
"favorite_count": 438,
"id_str": "425024613622771713",
"place": null,
"user": {
"location": "Sydney ",
"default_profile": false,
"profile_background_tile": false,
"statuses_count": 751,
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"lang": "en",
"profile_link_color": "2FC2EF",
"id": 27042513,
"following": false,
"protected": false,
"favourites_count": 1,
"profile_text_color": "666666",
"description": "Instagram: @TheHughJackman",
"verified": true,
"contributors_enabled": false,
"profile_sidebar_border_color": "181A1E",
"name": "Hugh Jackman",
"profile_background_color": "1A1B1F",
"created_at": "Fri Mar 27 16:45:10 +0000 2009",
"default_profile_image": false,
"followers_count": 3614701,
"profile_image_url_https": "https://pbs.twimg.com/profile_images/
124111564/08_Jackman_085_normal.jpg",
"geo_enabled": false,
"profile_background_image_url": "http://abs.twimg.com/images/themes/
theme9/bg.gif",
"profile_background_image_url_https": "https://abs.twimg.com/images/themes/
theme9/bg.gif",
"follow_request_sent": false,
"entities": {
"description": {
"urls": []

}
},
"url": null,
"utc_offset": -28800,
"time_zone": "Pacific Time (US & Canada)",
"notifications": false,
"profile_use_background_image": true,
"friends_count": 21,
"profile_sidebar_fill_color": "252429",
"screen_name": "RealHughJackman",
"id_str": "27042513",
"profile_image_url": "http://pbs.twimg.com/profile_images/124111564/
08_Jackman_085_normal.jpg",
"listed_count": 22199,
"is_translator": false

},
"coordinates": null

},
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...................

...................
]

B.3.6 Statusesuser_timeline_jsonscreen_name Oper-
ation
The Statusesuser_timeline_jsonscreen_name operation is used to get a collection
of the most recent Tweets posted by the user indicated by the screen_name. An
example of such a request and the corresponding response messages are following

Statusesuser_timeline_jsonscreen_name request

GET https://api.twitter.com/1.1/statuses/user_timeline.json?screen_
name=RafaelNadal&include_my_retweet=true&include_entities=1&include_rts=1

Statusesuser_timeline_jsonscreen_name response

[
{

"contributors": null,
"text": "Recuperando fuerzas después de entrenar bajo el calor
australiano!! \nRecharging batteries after practice with the...
http://t.co/morVrqpcVa",
"geo": null,
"retweeted": false,
"in_reply_to_screen_name": null,
"possibly_sensitive": false,
"truncated": false,
"lang": "es",
"entities": {
"symbols": [],
"urls": [
{
"expanded_url": "http://fb.me/VeDTBE1T",
"indices": [
117,
139

],
"display_url": "fb.me/VeDTBE1T",
"url": "http://t.co/morVrqpcVa"
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}
],
"hashtags": [],
"user_mentions": []

},
"in_reply_to_status_id_str": null,
"id": 423367086144892900,
"source": "<a href=\"http://www.facebook.com/twitter\" rel=\"nofollow\">
Facebook</a>",
"in_reply_to_user_id_str": null,
"favorited": false,
"in_reply_to_status_id": null,
"retweet_count": 364,
"created_at": "Wed Jan 15 08:12:33 +0000 2014",
"in_reply_to_user_id": null,
"favorite_count": 502,
"id_str": "423367086144892929",
"place": null,
"user": {
"location": "Manacor",
"default_profile": false,
"profile_background_tile": false,
"statuses_count": 1437,
"lang": "es",
"profile_link_color": "050505",
"id": 344634424,
"following": false,
"protected": false,
"favourites_count": 16,
"profile_text_color": "0A0A0A",
"description": "Tennis player.",
"verified": true,
"contributors_enabled": false,
"profile_sidebar_border_color": "FFFFFF",
"name": "Rafa Nadal",
"profile_background_color": "C0DEED",
"created_at": "Fri Jul 29 10:44:02 +0000 2011",
"default_profile_image": false,
"followers_count": 5625513,
"profile_image_url_https": "https://pbs.twimg.com/profile_images/
1475846482/Imagen_perfil_normal.jpg",
"geo_enabled": false,
"profile_background_image_url": "http://a0.twimg.com/profile_background_
images/378800000115991559/9bad21643487dc1d2b2b017458b25131.jpeg",
"profile_background_image_url_https": "https://si0.twimg.com/profile_
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background_images/378800000115991559/9bad21643487dc1d2b2b017458b25131.jpeg",
"follow_request_sent": false,
"entities": {
"description": {
"urls": []

},
"url": {
"urls": [
{
"expanded_url": "http://www.rafaelnadal.com/",
"indices": [
0,
22

],
"display_url": "rafaelnadal.com",
"url": "http://t.co/ZU7sGR5Dct"

}
]

}
},
"url": "http://t.co/ZU7sGR5Dct",
"utc_offset": -36000,
"time_zone": "Hawaii",
"notifications": false,
"profile_use_background_image": true,
"friends_count": 74,
"profile_sidebar_fill_color": "7AC0D6",
"screen_name": "RafaelNadal",
"id_str": "344634424",
"profile_image_url": "http://pbs.twimg.com/profile_images/
1475846482/Imagen_perfil_normal.jpg",
"listed_count": 18297,
"is_translator": false

},
"coordinates": null

},

......................

......................
]
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B.4 GoogleBooks
The GoogleBooks example trace contains two types of request messages, which are
Search_Volume and Search_Bookshelf. For each type of request messages, we present
an example request message and the corresponding response message.

B.4.1 Search_Volume Operation
The Search_Volume operation is used to search books in the GoogleBooks based on
the keywords or retrieve information about a specific volume using volume id. An
example of such a request and the corresponding response messages are following

GoogleBooks Search_Volume Request

https://www.googleapis.com/books/v1/volumes?q=Tragedy\%20in\%20the
\%20Victorian\%20Novel&maxResults=40

GoogleBooks Search_Volume Response

{
"kind": "books#volumes",
"totalItems": 6454,
"items": [
{
"kind": "books#volume",
"id": "SQA4AAAAIAAJ",
"etag": "+h0RNCgaeW8",
"selfLink": "https://www.googleapis.com/books/v1/volumes/SQA4AAAAIAAJ",
"volumeInfo": {
"title": "Tragedy in the Victorian Novel",
"subtitle": "Theory and Practice in the Novels of George Eliot, Thomas Hardy
and Henry James",
"authors": [
"Jeannette King"

],
"publisher": "CUP Archive",
"publishedDate": "1979",
"description": "Dr King examines the rise of the novel in the nineteenth
century, and how it came to embody the tragic vision of life which had
previously been the domain of drama. Dr King focuses on three novelists,
George Eliot, Thomas Hardy and Henry James.",
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"industryIdentifiers": [
{
"type": "ISBN_10",
"identifier": "0521297443"

},
{
"type": "ISBN_13",
"identifier": "9780521297448"

}
],
"readingModes": {
"text": false,
"image": true

},
"pageCount": 192,
"printType": "BOOK",
"categories": [
"Literary Criticism"

],
"maturityRating": "NOT_MATURE",
"allowAnonLogging": false,
"contentVersion": "0.0.1.0.preview.1",
"imageLinks": {
"smallThumbnail": "http://books.google.com/books/content?id=
SQA4AAAAIAAJ&printsec=frontcover&img=1&zoom=5&edge=curl&source=gbs_api",
"thumbnail": "http://books.google.com/books/content?id=
SQA4AAAAIAAJ&
printsec=frontcover&img=1&zoom=1&edge=curl&source=gbs_api"

},
"language": "en",
"previewLink": "http://books.google.com.au/books?id=SQA4AAAAIAAJ
&printsec=frontcover&dq=Tragedy+in+the+Victorian+Novel&
hl=&cd=1&source=gbs_api",
"infoLink": "http://books.google.com.au/books?id=SQA4AAAAIAAJ&dq=
Tragedy+in+the+Victorian+Novel&hl=&source=gbs_api",
"canonicalVolumeLink": "https://books.google.com/books/about/Tragedy_
in_the_Victorian_Novel.html?hl=&id=SQA4AAAAIAAJ"

},
"saleInfo": {
"country": "AU",
"saleability": "NOT_FOR_SALE",
"isEbook": false

},
"accessInfo": {
"country": "AU",
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"viewability": "PARTIAL",
"embeddable": true,
"publicDomain": false,
"textToSpeechPermission": "ALLOWED",
"epub": {
"isAvailable": false

},
"pdf": {
"isAvailable": false

},
"webReaderLink": "http://play.google.com/books/reader?id=SQA4AAAAIAAJ&hl=
&printsec=frontcover&source=gbs_api",
"accessViewStatus": "SAMPLE",
"quoteSharingAllowed": false

},
"searchInfo": {
"textSnippet": "Dr King examines the rise of the novel in the nineteenth
century, and how it came to embody the tragic vision of life which had
previously been the domain of drama."

}
}
..................................
..................................

]
}

B.4.2 Search_Bookshelf Operation
The Search_Bookshelf operation is used to get a collection of a user’s public book-
shelves for the user indicated by the user ID. An example of such a request and the
corresponding response messages are following

GoogleBooks Search_Bookshelf Request

https://www.googleapis.com/books/v1/users/107782646712117400162/
bookshelves/0?key=*************

Search_Bookshelf Response

{
"kind": "books#bookshelf",
"id": 0,
"selfLink": "https://www.googleapis.com/books/v1/users/107782646712117400162/
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bookshelves/0",
"title": "Favorites",
"access": "PUBLIC",
"updated": "2019-10-01T13:29:39.162Z",
"created": "2019-10-01T13:29:39.162Z",
"volumeCount": 7,
"volumesLastUpdated": "2019-10-01T13:29:39.160Z"

}
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