
An Adaptive Recurrent Network Training Algorithm Using IIR Filter 
Model and Lyapunov Theory 

 
1SENG KAH PHOOI, 2 ZHIHONG MAN, 3H.R.WU, 4KAI MING TSE 

1Monash University (Malaysia) 2 Jalan Kolej, Bandar Sunway, 46150 PJ, Selangor, MALAYSIA 
2School of Computer Engineering, Nanyang Technological University, SINGAPORE 

3 School of CS & SE, Monash University, Clayton VIC 3168, AUSTRALIA 
1School of Microelectronics, Griffith University, Kessels Rd, Nathan QLD 4111,AUSTRALIA 

 
Abstract: - A new approach for the adaptive algorithm of a fully connected recurrent neural network (RNN) based upon 
the digital filter theory is proposed. Each recurrent neuron is modeled by using an infinite impulse response (IIR) filter. 
The weights of each layer in the RNN are updated adaptively so that the error between the desired output and the RNN 
output can converge to zero asymptotically. The proposed optimization method is based on the Lyapunov theory-based 
adaptive filtering (LAF) method [9]. The merit of this adaptive algorithm can avoid computation of the dynamic 
derivatives that is rather complicated in the RNN. The design is independent of the stochastic properties of the input 
disturbances and the stability is guaranteed by the Lyapunov stability theory. Simulation example of the nonstationary 
time series prediction problem is performed. The simulation results have validated the fast tracking property of the 
proposed method. 
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1   Introduction 
Numbers of training methods for RNNs have been 
proposed in different literatures. Backpropagation through 
time (BPTT) [1] is an efficient learning algorithm but it 
cannot be run on-line and is impractical for applying on 
input signals of unknown lengths. The real-time recurrent 
learning (RTRL) [2] is a powerful on-line learning 
algorithm but it is extremely inefficient. Dynamic 
backpropagation [3] is a more useful one but complicated 
computation is required for the fully connected recurrent 
links. All of the above algorithms are, however, based on 
the steepest decent optimization and the speed of 
convergence is relatively low although different 
optimization techniques and adaptation of learning rate 
and momentum factor were developed, for example in [4]. 
Up to now, there is still a very little number of fast 
training algorithms applying at RNN architectures. 

Recently, Kuan proposed a recurrent Newton 
algorithm and showed that the performance could be more 
effective than the conventional BP [5]. The approach 
showed that the search direction required the computation 
of Hessian matrix (second order derivative), which is 
rather computational complex and requires a rather a long 
computational time per iteration. The rate of convergence 
is not substantially faster than the other fast algorithms. In 
the past few years, recursive least squares (RLS) or 
extended Kalman filter (EKF) training algorithm are 
widely used for fast algorithm of RNNs. Williams has 
proposed the training algorithm for RNNs using the EKF 
[6]. Puskorius and Feldkamp have also proposed the 
decoupled extended Kalman filter (DEKF) algorithm for 
RNN that provides robust performance in the modeling of 
nonlinear dynamical system [7],[8]. This approach creates 
disjoint subsets of weights that are considered to be 
decoupled, that allow modeling of the interactions 
amongst the weights to be redundant. As a result, the 
computational complexity and the storage requirements of 

DEKF can be significantly less than those of the general 
EKF, It is, however, noted that these EKF type algorithm 
all require the computation of the dynamic derivatives 
(that is the derivatives with respect to the weights at real 
time training). Most cases, the computational complexity 
of the dynamic derivatives can be significantly affected 
on the algorithm efficiency. 

In this paper, a fast adaptive training algorithm for 
RNN based on the digital IIR filter design is presented 
and each recurrent neuron is modeled by an IIR filter. The 
method of determining the filter coefficients is based 
upon the Lyapunov technique [9]. The synapses and the 
feedback weights are updated in the fashion of layer by 
layer which is similar to the process of determining the 
filter coefficients, The computation of the dynamic 
derivatives is not required. As a result, the computational 
complexity is significantly reduced. Comparing to other 
conventional algorithm the proposed adaptive algorithm 
exhibits very tracking behavior. The filter stability is 
guaranteed because the error dynamic asymptotically 
converges to zero. The results of simulation example are 
included. These results have shown that the proposed 
method performs well. 

2 IIR Filter Neuron Model 
In the fully connected RNN, each neuron in both hidden 
layer and output layer has a feedback loop from the 
neuron itself and the recurrent links from the other 
neurons at the layer which input are coming from the 
previous state of nonlinear output that they y(t -1) of the 
corresponding neurons. Assume are m number of inputs 
and n number of outputs at the corresponding layer. 
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where f{x} is the nonlinear sigmoids function, 
)1/(1 xe −+ ; zj(t) is the summing output inside the 

neuron; yj(t) is the nonlinear output of the neuron and (t-1) 
means the previous state; xi( t) be the input of the neuron; 
akj(t) and bij(t) are the weight of the recurrent synapses 
links, respectively. Each neuron can be separated into 
linear and nonlinear part as shown in both (1) and (2). We 
consider (1) a recursive difference equation that the linear 
output is a weighted sum of the past nonlinear function of 
output and the present input. Therefore, the output can 
produce an IIR if all inputs are unit impulse signal. Thus, 
from the digital filter theory point of view, all neurons can 
be considered as an IIR filter combining with the 
sigmoids function. The weights of each neuron can then 
updated by determining the IIR filter coefficients. 

According to (1), we can reformulate in a simple 
vector form for applying in digital filter theory. 
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j in (4) can be computed by the adaptive algorithms.  
In our approach, the problem of determining the adaptive 
algorithm be formulated as follow. We define the 
Lyapunov function 
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where )(ts L
j is an inversion form of monotonic 

function of  f{x} by the desired outputs )(td L
j .  

Therefore  
)(ts L

j =  f –1{ )(td L
j }       (6) 

An adaptive algorithm is then designed so that 
0)1()()( <−−=∆ tVtVtV . The adaptive training 

algorithm for the multiplayer perceptron model based on 
the new method is detailed in the next section. 

3 Adaptive Algorithm For Multilayer 
Perceptron Model 
The objective of the adaptive training algorithm 
multiplayer perceptron model is to update the weights in 
each layer in order to get error convergence to zero 
asymptotically. As a result, based on (4), weights in each 
layer can be adaptively updated based on the Lyapunov 
theory in [10]. For simplicity, the superscript L can be 
omitted.  

Let us define the estimated weight be )(thL
j , let 

hj(t) = hj(t - 1) + gj(t)αj(t)      (7) 
where  gi(t) is the adaptation gain and αi(t) is a priori 
estimation error defined as 

αj (t)= sj(t) – hj (t-1)uj(t)      (8) 

The adaptation gain gi(t) in (8) is adaptively adjusted 
using Lyapunov stability theory [10] as  
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If the network has three layers (i.e., only one hidden 
layer), the adaptive learning procedure at every iteration 
can then be summarized as follows. 
1 Initialize the weights between input and hidden layer 

randomly. 
2 Propagate input signal through hidden layer to obtain 

output of the hidden layer to obtain output of the 
hidden layer (i.e., input of the output layer). 

3 Evaluate the linear component of desired output by 
using (6). 

4 Update weights between the hidden and the output 
layer using the set of recursive equation (7)-(9). 

5 Apply the input of this output layer (i.e., the output of 
the hidden layer) to evaluate the linear components of 
the hidden layer by using (6) again. 

6 Update the weights between the input and the hidden 
layer by using the set of recursive equations (7)-(9). 

The design procedure of this adaptive RNN algorithm is 
similar to that of [10].  
Define a Lyapunov function 
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and the increment   
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Using the equation (9) in the equation (11), we have 
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According to Lyapunov theory [10], if a positive definite 

function, eg. ∑
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discrete time difference taken along a trajectory is always 
negative, 0)( <∆ tV , then as time t increases, V(t) will 



finally converge to zero. Therefore the sum of error 
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the stability of the error dynamics is guaranteed. 
It is noticeable that the values of uj(t) and αj(t) in (9) 
may be zero and rise singularities problem. Therefore 
the adaptation gain may be modified as in the 
adaptation law (13)    
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where 0 ≤ ∑
=
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j
j

1
κ < 1, and λ1, λ2 are small positive 

numbers. 

4   Simulation  
Nonstationary Time Series Prediction – Simulations have 
been done for a one-step ahead prediction of a nonlinear 
and nonstationary speech signal which is identical to 
those in [11]. The signal is downloaded from the WWW 
[12] and is described as follow: S1 speech sample "When 
recording audio data …", length 10000, sampled at 
8kHz.The NN is expected to be able to track the 
nonstationary signal characteristic. Fig. 1 shows the 
speech signal and the RNN output between iterations (1 
… 5000). Fig. 2 illustrates the square predictor error. 

 
Fig. 1: Speech signal (top) & RNN output (bottom) 

 
Fig. 2: Square output error ( y-axis – x10-5) 

5   Conclusion 
In this paper, an adaptive learning algorithm of fully 
connected RNN is proposed. The proposed algorithm is 
based on the digital filter design theory that each 
recurrent neuron is considered as an IIR filter. The 
weights can be updated by using the new adaptive 
algorithm. The merit of this adaptive algorithm can avoid 
computation of the dynamic derivatives that is rather 
complicated in the RNN. As a result, the computational 
complexity of the proposed algorithm is significant less 
than other reported. The proposed algorithm has fast 
tracking rate and it is also capable of providing a low 
adaptive training error. 
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