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Abstract—A genetic algorithm (GA)-based neural network 

classification in the application of brain computer interface (BCI) 

for controlling a wheelchair is presented in this paper. This study 

uses an electroencephalography (EEG) as a non-invasive BCI 

approach to discriminate three non-motor imagery mental tasks 

for disabled individuals who may have difficulty in using BCI 

based motor imagery tasks. The three tasks classification is 

mapped into three wheelchair movements: left, right and forward 

and the relevant combination mental tasks used in this study are 

mental arithmetic, letter composing, Rubik’s cube rolling, visual 

counting, ringtone imagery and spatial navigation. The results 

show the proposed system provides good classification 

performance after selecting the most effective of three 

discriminative tasks across combination of the different non-

motor imagery mental tasks for the five subjects tested. The 

average classification accuracy is between 76% and 85 %, with 

information transfer rates varies from 0.5 to 0.8 bits per trial. 

Keywords- genetic algorithm (GA);  artificial neural network 

(ANN); brain computer interface (BCI);  electroencephalography 

(EEG);  evolutionary algorithm (EA); 

I.  INTRODUCTION 

There are some alternative hands-free technologies used to 
replace the joystick control of a wheelchair for people with 
disabilities including eye movement, voice recognition, chin 
controller, tongue controller, head movement, and sip-and-puff 
systems. These technologies have their own benefits and 
drawbacks. In practical situations, the operation of a chin or 
tongue controller or a sip-and-puff system may discomfort the 
users.  Noisy environments can be problematic for voice 
recognition system. An alternative technology for disabled 
individuals who are still able to move their head properly is a 
real-time telemetric head movement controller using a tilt 
sensor and embedded system [1]. 

There is a requirement of other method for severely 
disabled or locked-in syndrome individuals who are unable to 
move their body and head but whose brain is still capable. A 
brain computer interface (BCI) could be used as an alternative 
solution for these disabled individuals by converting brain 
activities to provide a control for the three wheelchair steering 
commands: left, right and forward [2, 3, 4].  

The acquisition techniques which are available in BCI 
systems basically can be classified into invasive and non-
invasive brain measurements. The invasive method, although it 
could provide a better signal resolution and quality, the main 
drawbacks include the risk of infection, scarring of post-
surgery and other possible long term side effects. On the other 
hand, the electroencephalography (EEG) base non-invasive 
method has the advantages of portability, low cost, better 
temporal resolution although it suffers from low spatial-
frequency resolution and high sensitivity to noise 
contamination including ocular –muscular artifacts and external 
electromagnetic noise [5, 6]. 

So far, from a mental strategy point of view, BCI-EEG 
methods could be divided into either selective attention or 
spontaneous mental signal methods. The P300 technique [7, 8] 
and the steady state visual evoked potential (SSVEP) technique 
[9] are examples of the selective attention method. This BCI 
method relies on external stimuli which might prove difficult 
for the user when controlling a wheelchair as they need to 
focus on the external stimuli, environment and wheelchair at 
the same time. This is not the case for BCI system relying on 
spontaneous mental signals generated voluntarily by the user 
which may include self regulation of the slow cortical potential 
(SCP) [10], control of the sensory motor rhythm (SMR) [11, 
12] and motor imagery tasks as so called event-related 
desynchronization/synchronization (ERD/ERS) [13, 14] which 
focuses on the motor imagery area such as by imagining hand, 
foot or tongue movement.  

Although the motor imagery method is concentrated mostly 
in BCI research and provides a good option for wheelchair 
control, there is a possibility that individuals who have been 
paralyzed or are amputated for a number of years may not be 
able to perform motor imagery mental tasks very well [15, 16].  
Variability in the EEG signal patterns across different subjects 
is another additional issue. Therefore other non-motor imagery 
mental tasks need to be explored as an alternative solution. 

Several researchers have used mental imagery tasks such as 
imagination of non-trivial arithmetic multiplication, letter 
composing, figure 3-D rotation and visual counting [17, 18, 19, 
20]. Also, the non-motor imagery cognitive tasks of auditory 
imagery and spatial navigation have been found to provide a 
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good result of classification in pairs [16, 21]. Therefore the 
study of combination classification for these non-motor 
imagery tasks all together is provided in this paper especially 
for targeting the three commands needed for controlling 
movement of a wheelchair. 

From the classification algorithm point of view, the linear 
and non-linear methods have been explored in the BCI-EEG 
signal classification. Both have their own advantages and 
disadvantages [22, 23, 24]. Because the EEG signal is a multi 
dimensional, in this paper a non-linear method is preferred. The 
method used is based on the genetic algorithm (GA) 
optimization of an artificial neural network (ANN) to classify 
any combination of three tasks out of six non-motor imagery 
mental tasks. The best triplet combination provides the 
effective tasks for three wheelchair steering commands. 

This paper is organized as follows: the details of the 
method are discussed in Section II where the general structure 
of BCI system, data collection, signal pre-processing, feature 
extraction, classification system with GA based ANN, and 
performance measurement, are discussed. Results are given in 
Section III. A conclusion for this study is drawn in Section IV. 

II. METHODS 

A. General Structrure of BCI System 

The model of the BCI system is illustrated in Fig. 1 and 
consists of several elements. First the data is collected from the 
mental cognitive tasks, followed by signal pre-processing 
methods which include window segmentation and digital signal 
processing (DSP) filters. Next, features extraction transforms 
the signals into useful features that are associates with the 
related mental task. The features are fed into neural network 
training, optimization and classification processes. The result 
provides three outputs classification which associates to the 
three wheelchair steering commands (left, right and forward). 
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Figure 1.  Flow of general process diagram 

B. Data Collection and Experiment Procedure 

This study was approved by the university human research 
ethics committee. A total of five able bodied subjects (3 males 
and 2 females) aged between 22 and 40 years participated in 
the experiment. A mono-polar 32 channels EEG system from 
Compumedic with the sampling rate set to 256 Hz was used but 
only ten channels were attached on the scalp for the 
measurement as shown in Fig 2 with the electrodes positioned 
at locations C3, C4, P3, P4, O1, O2, T3, and T4. A reference 
electrode was placed at location A2 and location A1 as GND 
electrode. The electrode placement is referred to the standard of 
international 10-20 system. 

To keep the impedance level low and good electrical 
contact, prepping and EEG gels were applied on the scalp. The 
impedance was measured and maintained below 5 kΩ. 
Unnecessary movements and eyes blinks were kept as 
minimum as possible during data collection in each session 
with the total of six mental non-motor imagery tasks used in 
the study are as follows: 
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Figure 2.  EEG Electrodes placement 

1) Arithmetic calculation (math): Participants were 

instructed to imagine solving a series of one by one digit 

multiplication. 

2) Letter composing (letter): Participants were asked to 

mentally compose a simple letter in mind without vocalizing 

through their mouth. 

3) Rubik’s cube rolling (cube) : Participants were asked to 

imagine a figure of Rubik’s cube being rolled forward. 

4) Visual counting (count): Participants performed 

mentally counting number from one to nine repeatly by 

visualize the number  appearing and disappearing on a 

blackboard in their mind. 

5) Ringtone (tone): Participants were asked to imagine a 

familiar mobile ringtone in their head without moving their 

mouth. 

6) Spatial navigation (navigate): Participants were asked 

to imagine moving around and scanning the surroundings in a 

familiar environment. This task is not using motor imagery 

because the imagination involved examining the surroundings 

rather than foot walking as in motor imagery mental task.  

C3
C4
P3

P4
O1

O2

T3

T4

12s3s 1s
0.25s

1
2

3

45

15s

Discarded
gap

 
Figure 3.  Data segmentation proceses 



C. Signal  Pre-Processing 

Each subject performs a recording session of ten sub-
sessions on each particular mental task with the duration of 15 
seconds on each sub-session as illustrated in Fig. 3. The first 
three seconds is discarded as preparation time. The remaining 
12 seconds is processed for further signal pre processing 
techniques. First, a moving window segmentation of one 
second is used with overlapping every quarter second segments 
to give a result in 45 overlapping segments for the remained 12 
seconds data. Therefore each subject provides data around 
45×10 or 450 units. Next, digital signal processing (DSP) 
filters are employed to improve raw signal quality. These 
consist of a Butterworth band-pass filter with a bandwidth of 
0.1 Hz to 40 Hz followed by a Butterworth notch filter at 50 
Hz. Fig. 4 shows the alpha wave raw data during eyes closed 
action and result after the filters were applied. 

 

Figure 4.  Result of the applied DSP filters 

D. Features Exraction 

For the features extraction process, the power spectral 
density (PSD) is first computed by squaring the fast Fourier 
transform (FFT) of each one second segment signal  to convert 
the time base data into the following frequency bands of EEG 
rhythms: δ (0-3Hz), θ (4-7Hz), α (8-13Hz) and β (14-30Hz). 
Next, the total energy each frequency band was calculated by 
numerical integration of the PSD over that band using the 
trapezoidal rule method. With the energy over four bands 
calculated for each of the 8 channels (C3, C4, P3, P4, O1, O2, 
T3 and T4), 32 total power are made available. Finally, power 
difference as the asymmetry ratio in each spectral band was 
also calculated with the equation as follows: 

    dif R L R LP = P P P P   (1) 

where Pdif is the power different on each band, PR  is the power 
of particular band on right channel and PL is the power  of 
particular band on left channel. The total of 64 spectral power 
differences (4 pairs of channel × 4 combinations on channel x 4 
bands) is calculated. As the result, the overall of 96 units of 
features are extracted on each one second segment. 

 

E. Classification 

1) Artificial Neural Network 

 
The neural network as a non-linear classification method is 

popular tool used in biomedical and brain computer interface 
applications especially for the pattern recognition and 
classification algorithms [25]. This study utilizes a 3-layer feed 
forward neural network with one hidden layer network as 
shown in Fig. 5. The output vector z and the k-th component zk 
are computed as follows: 

 ( )z f b Wx  (2) 
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where f, f1, f2 is the activation function, x represents the input 
vector, W is the weight matrix vector, b is the scalar bias, n is 
the number of input nodes, m is the number of output nodes, wji 
is the weight to the hidden unit yj from input unit xi, wkj 
represents the weights to output unit zk from hidden unit yj. The 
biases are represented by bj and bk. 

 In this study, a log-sigmoid function was assigned as the 
activation function which provides data values between one 
and zero. As the result, prior to the ANN the feature data value 
needs to be scaled to within the range zero to one as follows: 

 - )X*=(X - Xmin) / (Xmax Xmin  (4) 

where X is the input features value, X* is the value after 

scaling, Xmin is the minimum and Xmax is the maximum val 

of the input feature values. 
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Figure 5.  Architecture of ANN 

Figure 6.  Procedure of GA 

begin 

         0      // : iteration number  

         initialize P()      //  P(): population for iteration  

         evaluate ƒ(P())  // ƒ(P()): fitness function 

         while (not termination condition) do 

                  begin 

                            +1 

                           select 2 parent p1 and p2 from P(-1) 

                           perform crossover and mutation operations 

                           reproduce a new P() 

                           evaluate ƒ(P()) 

                  end 

         end 

end 



2) Genetic Algorithm optimization 

 
The conventional ANN by using the gradient-descent (GD) 

technique as the back-propagation algorithm for the parameter 
training of the feed-forward neural networks has both 
convergence to the local minima and sensitivity problems. 
Genetic algorithm (GA), a widely used global search method 
for the optimization problem may solve these problems. 

To optimize the parameters of the neural network, a GA is 

used. The GA process is shown in Fig. 6. First, a set of 

population of chromosomes P is created. Each chromosome p 

contains a set of genes pij, where i = 1, 2, …, np, j = 1, 2, …, 

ng, np and ng denote the population size (number of 

chromosome) and the number of gene respectively. Second, 

the chromosomes are evaluated by a defined fitness function 

which is written as, 

  pifitness f  (5) 

The form of the fitness function depends on the application. 
The better chromosomes return higher fitness values in this 
process.  Third, some of the chromosomes are selected to 
undergo genetic operations for reproduction by the method of 
normalized geometric ranking [26]. This is a selection process 
based on a non-stationary penalty function which is a function 
of the generation number. As the number of generations 
increases, the penalty increases putting more and more 
selective pressure on the GA to find a feasible solution. In 
general, a higher-rank chromosome will have a higher chance 
to be selected. Fourth, the genetic operation of crossover is 
performed. The crossover operation is mainly for exchanging 
information from the two parents, chromosomes p1 and p2, 
obtained in the selection process with a defined probability of 
crossover μc. This probability gives an expected number of 
chromosomes that undergo the crossover.  In this paper, Blend-
α [27] is selected as the operation of crossover as it has a good 
searching ability for handling multimodal and separability 
problems effectively. For Blend-α crossover, the resulting 
offspring is chosen randomly from the interval 

 21 , jj XX following the uniform distribution,  

   jjjj dppX  21
1 ,min  (6) 

   jjjj dppX  21
2 ,max  (7) 

where 
jjj ppd 21  , jp1  and jp2 are the j-th elements of p1 

and p2, respectively, and α is a positive constant. After the 

crossover operation, the mutation operation follows. The 

mutation operation changes the genes of the chromosomes in 

the population such that the features inherited from their 

parents can be changed. A probability of mutation μm is 

defined to govern the operation and it gives an expected 

number of genes that undergo the mutation.  Non-uniform 

mutation [28] is investigated in this paper and it is an 

operation with a fine-tuning capability. The mutated gene is 

given by, 
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where rd is a random number equal to 0 or 1 only. The 

function ∆(τ,y) return a value in the range [0,y] and approaches 

0 as τ increases. It is defined as follows: 
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where r is a random number in the range of [0,1], τ represents 
the current generation number, T represents the total iteration 
number and ζ is a system parameter that determines the degree 
of non-uniformity. After going through the mutation operation, 
the new offspring are evaluated using the fitness function. The 
new population is formed when the new offspring replaces the 
chromosome with the smallest fitness value. After the 
operations of selection, crossover and mutation, a new 
population is generated. The same process is then repeated with 
this new population. This iterative process is terminated when a 
defined condition is met. 

Here the ANN is employed to learn the input-output 
relationship of an application using a GA with arithmetic 
crossover and non-uniform mutation.  The input-output 
relationship is described as follows: 

 ( ) ( ( )), 1, 2, ,y gd d

dt x t t n    (10) 
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the desired outputs of an unknown nonlinear function ( )g   

respectively and nd denotes the number of input-output data 

pairs. The fitness function is defined as, 
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is the mean square error (MSE). The objective is to maximize 

the fitness value of (11) using the improved GA by setting the 

chromosome to be 
ji j kj kw b w b  

 for all i, j and k. The 

range of the fitness value (11) is [0, 1]. It can be seen from 

(11) and (12) that a larger fitness implies a smaller MSE err.  

 

F. Performance Measurement 

This study provides two important ways to measure the 
performance of the BCI system: classification accuracy and 
information transfer rate (ITR). Classification accuracy refers 
to the percentage of correctly classified tasks. ITR or 
sometimes called as bit rate refers to the amount of reliable 
information received  [29] ,with function as follows: 

 2 2 2

1- P
B = log N + Plog P+(1- P)log

N -1

 
 
 

 (13) 

where B is bit rate (bits/trial), N is number of mental task and 

P is to the classification accuracy. Equation (13) shows for a 

trial of N possible mental task has equally probability of being 



the true detection of mental task that the user imagines. The 

probability P that the desired target task will be selected is the 

same for each user desired mental task, and each other 

undesired mental task selections ha the same probability of 

being selected (i.e., (1−P)/(N−1)). 

 

III. RESULTS 

The features dataset per subject consists of 450 units for 
each mental task and 1350 for the total of 3-tasks classification. 
This is divided into half portion for the training set and the 
same amount for the testing set. The GA is employed to 
optimize the parameter of the neural network. The number of 
hidden neurons is changed using value varying from 4 to 40 per 
training session of neural network for each subject in order to 
find the best number that provides highest fitness value or 
lowest MSE to achieve the highest classification accuracy. The 
population size used for the GA is 50 and the training is 
stopped when the training of the neural network reaches up to 
2000 iteration. The probability for crossover is set at 0.8 and 
the probability of mutation is set at 0.1 for the GA based neural 
network training.  Figure 7 shows the selected best fitness 
value plotting which has steady increasing value toward highest 
point for five subjects involved in the study. 

 

Figure 7.  Plotting of fitness value 

The training of the genetic algorithm based neural network 
is done in combination of any three tasks classification of six 
mental cognitive tasks (math, letter, cube, count, tone and 
navigate), providing 20 combinations of training sets in total. 
In each combination, the training of the neural network was 
repeated ten times. This provided ten network weight 
parameters. As a result each mental task is the averaging of ten 
classifications value as shown in Table I and Table II. The 
mean value of triplet mental tasks classification is provided in 
the table as the average classification accuracy. 

The result classification accuracy as shown in Table I 
indicates a variety value of classification accuracy across 
different subjects as the inter subject variability changes. With 
total of 20 combinations of result, each subject has its own 
favorite triplet mental task combination which yields the 
highest classification accuracy between 76% and 85%. In 
detail, subject 1 has best 3-tasks classification between mental 
letter composing, ringtone imagery and spatial navigation with 
classification accuracy around 82%.  Subject 2 archived highest 

accuracy based on combination of mental arithmetic, visual 
counting and spatial navigation with accuracy at 84%. Subject 
3 archived accuracy at 76% of best triplet tasks with mental 
arithmetic, letter composing and spatial navigation. Next, 
subject 4 has best classification accuracy between mental 
Rubik’s cube rolling, visual counting and familiar ring tone 
imagery with accuracy at 85%.  Subject 5 has best 
classification accuracy at 81% between mental arithmetic, letter 
composing and Rubik’s cube rolling. 

 

Figure 8.  Number of hidden neuron versus accuracy 

There are also shown in the table other alternative 
combination tasks on each subject with average classification 
accuracy result above 70%. This could be used as the 
additional chosen combination. 

Figure 8 shows the plotting of the number of hidden neuron 
versus classification accuracy. Each hidden neuron value 
provides a different result. The best chosen hidden neuron 
value gives the highest classification accuracy for five subjects 
is between 24 and 36. Figure 9 and Table II provide a summary 
of the favorite triplet tasks for each individual. This provides 
the best suitable combination task and matching their 
circumstances and background. Generally, with user preferable 
three tasks classification, a satisfactory higher accuracy is 
achieved at between 76% and 85%. This is enough to be used 
in application for three steering wheelchair control system (left, 
right and forward). 

The information transfer rate of the classification is also 
provided in Table II which has value between 0.5 to 0.8 bits per 
trial. The bit rate can also be illustrated as the number of bits 
per minutes by multiplying the bit rate (bits/trials) by system 
speed (trials/min). For example the speed classification of the 
system is set every second which means 60 times in a minute. 
Therefore the value bit rate 0.5- 0.8 bit/trial is corresponded to 
30-48 bits/min. A faster bit rate could be implemented by 
increasing the speed of the system to classify each mental task. 

 

 



TABLE I.  CLASSIFICATION ACCURACY RESULTS FOR FIVE SUBJECTS  
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Triplet  tasks combinations  
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1 Math(1)-Letter(2)-Cube(3) 51 86 51 63 81 75 63 73 83 84 50 72 48 38 63 50 73 94 77 81 

2 Math(1)-Letter(2)-Count(4) 61 83 63 69 85 67 82 78 93 55 47 65 63 61 96 74 78 49 64 63 

3 Math(1)-Letter(2)-Tone(5) 54 84 54 64 84 67 56 69 85 90 45 73 50 67 70 62 74 100 35 70 

4 Math(1)-Letter(2)-Navigate(6) 60 76 83 73 77 80 71 76 88 77 64 76 56 35 50 47 66 99 65 77 

5 Math(1)-Cube(3)-Count(4) 53 44 76 57 95 49 70 71 97 53 62 71 55 69 94 73 75 86 77 79 

6 Math(1)-Cube(3)-Tone(5) 45 56 49 50 94 68 60 74 90 77 45 71 43 71 78 64 71 84 34 63 

7 Math(1)-Cube(3)-Navigate(6) 62 56 71 63 85 56 78 73 90 61 63 71 53 59 64 58 59 80 62 67 

8 Math(1)-Count(4)-Tone(5) 53 71 51 59 98 86 54 80 89 67 47 68 60 99 77 79 69 92 35 66 

9 Math(1)-Count(4)-Navigate(6) 64 81 75 73 87 83 81 84 90 55 57 67 68 87 58 71 67 93 69 76 

10 Math(1)-Tone(5)-Navigate(6) 52 59 83 65 88 61 79 76 85 43 58 62 48 78 72 66 63 46 62 57 

11 Letter(2)-Cube(3)-Count(4) 78 62 48 63 71 48 70 63 68 45 45 53 43 65 93 67 44 84 57 62 

12 Letter(2)-Cube(3)-Tone(5) 83 58 53 65 58 66 54 59 92 50 49 64 40 67 80 62 94 67 43 68 

13 Letter(2)-Cube(3)-Navigate(6) 84 63 70 72 74 51 79 68 78 46 71 65 37 61 48 48 94 55 78 76 

14 Letter(2)-Count(4)-Tone(5) 79 58 70 69 68 81 50 66 63 46 46 52 72 98 79 83 50 61 44 52 

15 Letter(2)-Count(4)-Navigate(6) 80 64 74 73 68 80 81 77 52 43 64 53 49 87 45 61 49 63 93 69 

16 Letter(2)-Tone(5)-Navigate(6) 84 79 84 82 66 53 83 67 80 44 49 58 35 85 55 58 100 35 80 71 

17 Cube(3)-Count(4)-Tone(5) 57 57 55 56 57 67 55 60 51 80 54 62 73 95 87 85 76 76 42 65 

18 Cube(3)-Count(4)-Navigate(6) 54 76 67 66 47 68 91 69 45 55 71 57 66 89 61 72 67 76 90 78 

19 Cube(3)-Tone(5)-Navigate(6) 58 63 72 64 61 58 89 69 55 45 64 55 62 90 68 74 78 35 76 63 

20 Count(4)-Tone(5)-Navigate(6) 73 65 73 71 82 52 95 76 54 46 52 51 88 88 56 78 92 35 80 69 

 

 

 
 

Figure 9.  Graphics of classification result for five subjects 



TABLE II.  RESULT CHOSEN MENTAL TASKS AND BIT RATE 

S
u

b
je

c
t 

Chosen tasks 

Best 

hidden 

neuron 

Mean of 

accuracy 

(%) 

Bit rate 

(bits/trial) 

1 Letter(2)-Tone(5)-Navigate(6) 34 82 0.7 

2 Math(1)-Count(4)-Navigate(6) 24 84 0.8 

3 Math(1)-Letter(2)-Navigate(6) 28 76 0.5 

4 Cube(3)-Count(4)-Tone(5) 26 85 0.8 

5 Math(1)-Letter(2)-Cube(3) 36 81 0.7 

IV. CONCLUSION 

A genetic algorithm has been successfully applied for the 

optimal training of the neural networks to provide 

classification outputs of three mental non-motor imagery tasks 

for application of wheelchair movement control. The results 

show that each subject who participated in the study was able 

to have their own best triplet of mental task combination with 

classification mean accuracy is between 76% and 85% and 

with a bit rate value of around 0.5 to 0.8 bits per trial. This 

would give more flexibility to select a suitable combination of 

non motor imagery mental tasks as an alternative solution for 

disabled individuals who could not perform well using motor 

imagery tasks of a BCI system. 
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