
An Innovative Approach to Tackling
the Boundary Effect in Adaptive Random Testing ∗

T. Y. Chen
Swinburne University of Technology

Hawthorn, Australia
tchen@ict.swin.edu.au

De Hao Huang †

Swinburne University of Technology
Hawthorn, Australia

dhuang@ict.swin.edu.au

T. H. Tse
The University of Hong Kong

Pokfulam, Hong Kong
thtse@cs.hku.hk

Zongyuan Yang
East China Normal University

Shanghai, P. R. China
yzyuan@cs.ecnu.edu.cn

Abstract

Adaptive Random Testing (ART) is an effective improve-
ment of Random Testing (RT) in the sense that fewer
test cases are needed to detect the first failure. It is
based on the observation that failure-causing inputs are
normally clustered in one or more contiguous regions in
the input domain. Hence, it has been proposed that test
case generation should refer to the locations of successful
test cases (those that do not reveal failures) to ensure
that all test cases are far apart and evenly spread in the
input domain. Distance-based ART and Restricted Random
Testing are the first two previous attempts. However,
test cases generated by these attempts are far apart but
not necessarily evenly spread, since more test cases are
generated near the boundary of the input domain. This
paper analyzes the cause of this phenomenon and proposes
an enhanced implementation based on the concept of
virtual images of the successful test cases. The results
of simulations show that the test cases generated by our
enhanced implementation are not only far apart but also
evenly spread in the input domain. Furthermore, the fault
detection capability of ART for high-dimensional input
domains is also enhanced.

∗ This project is partially supported by a Discovery Grant of the
Australian Research Council (project no. DP0557246).

† All correspondence should be addressed to: De Hao Huang, Faculty
of Information & Communication Technologies, Swinburne University of
Technology, Hawthorn 3122, Australia. Email: dhuang@ict.swin.edu.au

1. Introduction

1.1. Random Testing

In a typical commercial software development organi-
zation, testing often accounts for over 50% of the total
development cost. Since exhaustive testing is infeasible in
most situations, research has been focused on the selection
of test cases that have higher chances of revealing program
failures [13]. Among the test case selection strategies,
random testing (RT) is regarded as a simple but useful
method [14, 15]. It avoids complex analyses of program
specifications or structures and simply selects test cases
from the whole input domain randomly. Hence, the test
case generation process is cost effective and can be fully
automated. RT has been successfully applied in many real-
life applications [8, 9, 11, 16–18, 21–23]. For example, it is
used as an effective test case generator to test the robustness
of Windows NT applications [11], Java JIT compiler [23],
database systems [22], and several versions of UNIX
system [16, 17]. Furthermore, industry has noticed its
importance and begins to incorporate it in software testing
tools [1].

1.2. Successful Test Cases

If a test case does not reveal any failure, it is regarded
as a successful test case. Most test cases are successful
test cases if the program is written by a competent
programmer [10]. In conventional testing, successful test
cases are usually considered to be useless [20] and will
be discarded or retained only for regression testing later.

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

1©1530-1605/07 $20.00 2007 IEEE
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:08:53 EDT from IEEE Xplore. Restrictions apply.

However, in our view, successful test cases are informative
and should be exploited further. Fault-based testing [19]
is an example of the utilization of successful test cases to
prove the absence of specific kinds of error.

1.3. Adaptive Random Testing

Recently, Chen et al. proposed a method named
Adaptive Random Testing (ART) to improve on the fault
detection capability of RT by exploiting successful test
cases [6]. ART is based on the observation [7] that
failure-causing inputs are clustered together in one or more
regions. In other words, failure-causing inputs are ”denser”
in some areas than others. In general, common failure-
causing patterns can be classified into the block, strip,
and point patterns. Examples of these failure patterns
for a program with a 2-dimensional input domain are
given in the schematic diagrams in Figure 1, where the
outer square represents the input domain and the shaded
areas represent failure-causing inputs. Figure 2(a-c) show
fragments of pseudo-code producing each of these types
of failure pattern. Intuitively, subsequent test cases that
are close to successful test cases are less likely to hit the
failure-causing region than those that are far apart from
successful test cases. Hence, ART exploits the spatial
distribution of successful test cases to ensure that test cases
be evenly spread and far apart from one another.

Simulations and empirical studies of real-life pro-
grams [6] have shown that ART have significantly
enhanced RT in the sense that fewer test cases are needed
to detect the first failure. Chen et al. [7] also proposed to
use F-measure, the number of test cases to detect the first
failure, as the metric for fault detection capability. They
reason that F-measure is a more informative metric because
testing usually stops after the first failure has been detected.

Several ART algorithms have been proposed [2–4]
based on the same rationale. Distance-based ART (DART)
and Restricted Random Testing (RRT) are the first two
attempts. However, these two algorithms have a general
preference in generating test cases close to the edge
of the input domain. In other words, the test cases
generated by these implementations are not evenly spread.
Consequently, the fault detection capability depends on the
location of the failure-causing region.

In this paper, we analyze the cause of this phenomenon
and propose an enhancement to the DART and RRT
algorithms. Section 2 analyzes the root of this
phenomenon. Section 3 proposes the enhanced algorithms
and Section 4 reports on simulation results. The conclusion
is given in Section 5.

Figure 1. Examples of the three types of failure pattern

INTEGER X, Y
INPUT X, Y
IF (X > 7 AND X < 9)

AND (Y > 8 AND Y < 12)
THEN

Z = X + Y
/ / s h o u l d be Z = X ∗ Y

ELSE
Z = X / Y

OUTPUT Z

(a) Block pattern

INTEGER X, Y
INPUT X, Y
IF (X + Y < 10)

/ / s h o u l d be IF (X + Y < 12)
THEN

Z = X ∗ Y
ELSE

Z = X / Y
OUTPUT Z

(b) Strip pattern

INTEGER X, Y
INPUT X, Y
IF (X mod 4 = 0)

AND (Y mod 4 = 0)
THEN

Z = X + Y
/ / s h o u l d be Z = X ∗ Y

ELSE
Z = X / Y

OUTPUT Z

(c) Point pattern

Figure 2. Code fragments producing examples of the
three types of failure pattern

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

2
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:08:53 EDT from IEEE Xplore. Restrictions apply.

Set S to be empty and l to be 0;
do {

Randomly generate k test cases
to form the candidate set C;
for each candidate Ci in C {

for each successful test case S j in S {

dist(Ci,S j) =
√

∑n
p=1(cip − s jp)

2

}
Mini = min{dist(Ci,S j)|1 ≤ j ≤ l}
/*Mini is the minimum Cartesian distance
between test case candidate Ci and all
successful test cases in S*/

}
Take Cq as the test case such that

Minq = max{Mini|1 ≤ i ≤ k}
Add Cq to S
l = l + 1;

} while (Cq does not reveal a failure
and resource limit has not been reached)

Figure 3. The original DART algorithm

2. Boundary Effects in Some ART
Implementations

The rationale behind ART is to achieve an even spread
of test cases by exploiting the spatial distribution of
successful test cases. Based on this rationale, several
implementations of ART have been developed. However,
most of them cannot achieve a truly even distribution of
test cases. An analysis of these implementations will be
presented in this section.

Distance-based ART (DART) [6] is the first implemen-
tation of ART. This method maintains a set of candidate
test cases C = {C1, C2, . . . , Ck} and a set of successful
test cases S = {S1, S2, . . . , Sl}. The candidate set consists
of a fixed number of test case candidates, from which new
test cases will be selected. The successful set records the
locations of all successful test cases, which are used to
guide the selection of the next test case. For each test
case candidate Ci, DART computes its distance di from the
successful set (defined as the minimum distance between Ci

and the successful test cases), and then selects the candidate
Ci having the maximum di to be the next test case. The
algorithm is shown in Figure 3.

It should be noted that candidates located close to the
boundary of the input domain have a higher chance to be
selected as test cases than those close to the center, because
no successful test cases can be outside the boundary. In
this paper, we refer to the phenomenon that the test cases
are more likely to be clustered near domain boundaries as
the boundary effect.

Restricted Random Testing (RRT) [2] is another

Set S to be empty, l to be 0;
do {

do {
Randomly generate a test cases candidate c;
for each successful test case S j in S {

dist(c,S j) =
√

∑n
p=1(cp − s jp)

2

if dist (c, S j) > exclusion zone radius of S j
c is outside the exclusion zone

else
c is inside the exclusion zone

}
} while (c is not outside all the exclusion zone)

c is the next test case
Add c to S
l = l + 1;

} while(c does not reveal a failure
and the resource limit has not been reached)

Figure 4. The original RRT algorithm

implementation of ART. It only maintains the successful set
S = {S1, S2, . . . , Sl} without any candidate set. Instead,
RRT specifies exclusion zones around every successful test
case. It randomly generates test case one by one until
a candidate outside all exclusion zones is found. The
algorithm is shown in Figure 4.

Both DART and RRT select test cases based on the
locations of successful test cases, and use distances as a
gauge to measure whether the next test case is sufficiently
far apart from all successful test cases. Hence, the
boundary effect also exists in RRT. The candidates near the
boundary have a higher chance to be outside all exclusion
zones.

Two series of simulations were conducted to demon-
strate such effect. In the first simulation, we investigated
the spatial distributions of the test cases generated by
DART and RRT without considering the failure-causing
inputs. In each trial of test case generation, the locations
of the first n test cases, where n = 1, 2, 3, 4, 5, 10, 15, 20,
25, 30, 40, 50, 100, 500, or 1000, were recorded. A million
independent trials for DART and RRT were conducted. The
spatial distributions were studied for the first n test cases of
each trial for the respective values of n.

To clearly demonstrate the spatial distribution, the
positions of the test cases were projected onto one
dimension. We analyzed the distribution in one dimension
without loss of generality because ART algorithms treat
every dimension independently. The simulation was
conducted in a 2-dimensional input domain in the shape
of a unit square. The test case distributions in one
dimension are illustrated as histograms with equal bins of
size 0.01, consisting of 0 to 0.01, 0.01 to 0.02, and so
on. The number of test cases that reside within each bin

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

3
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:08:53 EDT from IEEE Xplore. Restrictions apply.

Location of
failure-causing input

DART RRT

Edge 53 50
Center 67 65

Anywhere 66 62

Table 1. Average F-Measure of differently located
failure-causing inputs for DART and RRT under block
failure pattern on a 2-dimensional input domain (θ =
0.01 on an average of 5000 trials)

is computed. For a fair comparison of the distributions in
different test case generation stages, the numbers of test
cases in the histograms were normalized to 1/n of the actual
numbers. Figure 5 illustrates the histograms for DART.
The histograms of RRT are not listed, as they are similar
to DART. It can be seen that test cases always prefer to be
close to the boundary of the input domain, but the preferred
region becomes narrower with the increase of test cases.

The second simulation investigates the fault detection
capability if the locations of failure-causing inputs were
purposely controlled to be close to the boundary or center.
The locations of failure-causing inputs are classified as
the center area or edge area as follows: The center
area (”Center”) is defined as the central 80% of the
whole input domain and the other area is defined as
the edge area (”Edge”). In the simulations, a square
failure-causing region with failure rate 0.01 was randomly
assigned anywhere in the input domain (”Anywhere”) or
confined to specified areas (namely ”Center” or ”Edge”).
For both DART and RRT, the simulation was conducted in
a 2-dimensional input domain. Table 1 lists the average
F-measure of 5000 trials for controlled failure-causing
regions. The results indicate that both DART and RRT have
higher fault detection capabilities when the failure-causing
inputs are close to the boundary.

3. Enhancement of ART Implementations

3.1. Virtual Images of Successful Test Cases

This paper proposes an approach to tackling the
boundary effect of ART implementations. As analyzed in
the last section, the reason for the boundary effect is that
no successful test cases can be outside the input domain.
Our approach introduces a new concept of virtual images
of successful test cases. Intuitively, the virtual image can
be constructed by shifting the input domain. Consider, for
example, a 2-dimensional square input domain, as shown
in Figures 6(a) to 6(h). The squares with solid lines
represent the original input domain with an input range of

� � � � �� � � � � � � � � � � �
� �

� � � � �

� � �
� � � �

� � � � �
� � � � � � �

� � � � �

� � � � �
� � � �

� � � � �

� � � � �
� � � �

� � � � � � � � � �
� � � �

� � � � �

� � � � �
� � � �

� � � � �

� 	
 � �
 � �
 �

� �
 � �
 � �
 � �

Figure 6. Virtual image construction process in 2-
dimensional square input domain

m, and the solid dots represent a successful test case (x,y).
For example, Figure 6(a) shows that the input domain is
virtually shifted left horizontally by a distance of m. The
squares with dashed lines represent the virtual images of
the input domain, and the hollow dot represents the virtual
images of the successful test case. By a horizontal left shift,
a virtual image (x−m,y) is introduced outside the input
domain. The 2-dimensional input domain can be shifted
along one dimension or both dimensions. Figures 6(a) to
6(d) show shifts along one dimension whereas Figures 6(e)
to 6(h) show shifts along both dimensions. There are a total
of 9 virtual images of the successful test case (x,y). They
are (x − m,y),(x + m,y),(x,y + m),(x,y − m),(x − m,y +
m),(x+m,y+m),(x−m,y−m),(x+m,y−m), and (x,y).
It should be noted that the original test case can also be
regarded as an image of itself.

For an n-dimensional input domain, let
s = (s1, s2, . . . , sn) be a successful test case and
(m1, m2, . . . , mn) be the ranges of the input domain. Let
v = (v1, v2, . . . , vn) be a virtual image of s that can be
computed from its original coordinates and the offset
o = (o1, o2, . . . , on) as follows:

vi = si +oi

where oi = −mi,0,mi for i = 1,2, . . . ,n. Obviously, in an
n-dimensional input domain, there are 3n virtual images of
a successful test case.

3.2. Effective Image in Distance Computations

Our enhancement in the ART implementations is based
on the concept of virtual images of successful test cases.
Whenever the locations of the successful test cases are
considered, not only the locations of the originals but also
locations of the virtual images are taken into account.
In previous implementations, the distance computations

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

4
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:08:53 EDT from IEEE Xplore. Restrictions apply.

n=1

0

5000

10000

15000

20000

0
0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

n=2

0

5000

10000

15000

20000

0
0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

n=3

0

5000

10000

15000

20000

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

n=4

0

5000

10000

15000

20000

0
0.

1
0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

n=5

0

5000

10000

15000

20000

0
0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

n=10

0

5000

10000

15000

20000

0
0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

n=15

0

5000

10000

15000

20000

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.
7

0.
8

0.
9 1

n=20

0

5000

10000

15000

20000

0
0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

n=25

0

5000

10000

15000

20000

0
0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

n=30

0

5000

10000

15000

20000

0
0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

n=40

0

5000

10000

15000

20000

0
0.

1
0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

n=50

0

5000

10000

15000

20000

0
0.

1
0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

n=100

0

5000

10000

15000

20000

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

n=500

0

5000

10000

15000

20000

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

n=1000

0

5000

10000

15000

20000

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

Figure 5. Histogram of DART test cases in one dimension. The x-axis represents the locations of test cases. The
y-axis represents the number of test cases per bin of size 0.01.

only covered actual successful test cases. For example,
in an n-dimensional input domain, the distance between a
successful test case s = (s1, s2, . . . , sn) and a candidate
c = (c1, c2, . . . , cn) is calculated as follows:

dist(s,c) =

√
n

∑
i=1

(si − ci)2

The enhanced implementations use the effective image
of the successful test case rather than the successful test
case itself in distance computations. The effective image
e = (e1, e2, . . . , en) of a successful test case s with respect
to candidate c is defined as the virtual image of s that has
the minimum distance from c. The same successful test
case has different effective images for different candidates.
It should be noted that the identification of effective images
does not require the computation of the distance between
every virtual image and the candidate. On the contrary, if
a virtual image has the minimum offset to the candidate
c in each dimension, then this image will automatically
have the minimum distance from c. As mentioned before,
ei(i = 1, 2, . . . , n) can only have a value of si,si + mi or
si −mi. With respect to candidate c, the minimum offset in
the ith dimension is

si − ci if |si − ci| ≤ mi/2
si +mi − ci if |si − ci| > mi/2 and si < ci

si −mi − ci if |si − ci| > mi/2 and si > ci

Therefore, we know that the effective image e =

(e1, e2, . . . , en) has the following property:

ei =

si if |si − ci| ≤ mi/2
si +mi if |si − ci| > mi/2 and si < ci

si −mi if |si − ci| > mi/2 and si > ci

Consequently, the distance computation in the enhanced
implementations is changed to

dist(s,c) =

√
n

∑
i=1

(si − ei)2

As an example of illustration, consider a 2-dimensional
square input domain (Figure 7). The notions are the
same as Figure 6 except that the solid triangles represent
candidates. For candidate (1), the effective image is (x +
m,y), which is the virtual image closest to it. For candidate
(2), the effective image is (x,y−m).

3.3. Enhancement of DART

DART makes use of distance as a gauge to measure
whether test cases are far apart from one another and
selects the candidate with maximum distance between
itself and the successful set as the next test case. However,
since no successful test case can be outside the input
domain, candidates closer to the boundary are more likely
to have a maximum distance from the successful set than
candidates closer to the center of the input domain. Our
enhanced DART algorithm introduces virtual images of the
successful test case and uses effective images in distance

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

5
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:08:53 EDT from IEEE Xplore. Restrictions apply.

� � � � � � �� � � � �
� � � �

� � � � �
� � � �

� � � � � � �� � � � �� � � � � � �

� � � � �
� � � �

� � � � � � �� � � � �
� � � �

�

	

 	 � � � 	 � � � 	
�
 � � � � � � � 	 �

	

 	 � � � 	 � � � 	
�
 � � � � � � � 	 �

�

Figure 7. Virtual images of a successful test case in
2-dimensional square input domain

computations. Other parts are the same as the previous
DART algorithm.

Figures 8(a) and 8(b) compare the original and the
enhanced versions of DART in a 2-dimensional input
domain. Each of Figures 8(a) and 8(b) puts the original
input domain and its 8 images together. The rectangles
with solid lines represent the input domain, the solid
dots represent the successful test case, and the solid
triangles represent the candidates. The rectangles with
dashed lines represent the images of the input domain
while the hollow circles represent the virtual images of
successful test cases. For each candidate in the original
DART in Figure 8(a), only the distance from the original
successful test case is calculated and, hence, Candidate (2)
is selected as the next test case. For each candidate in
the enhanced implementation in Figure 8(b), the effective
image is identified first. Each dotted line represents the
distance between the candidate and its effective image.
Suppose candidate (3) has the maximum distance to the
effective image of the successful test case comparing with
candidates (1) and (2). Then, candidate (3) will be selected
as the next test case. As shown in this example, the
preference of selecting test cases close to the boundary no
longer exists.

3.4. Enhancement of RRT

Although RRT is based on a different intuition, namely
that both RRT and DART utilize Euclidean distances to
measure how far apart test cases are. Hence, similarly
to DART, candidates close to the boundary of the input

�

�
�

�

�

�

� � � � � �

Figure 8. Comparing test case selections between the
original and the enhanced versions of DART

domain have a higher chance to be outside all exclusion
regions than those close to the center.

Similar to the improved DART, RRT can be enhanced
to use effective images instead of the original successful
test cases in judging whether a candidate is outside the
exclusion region. As in DART, among the images of a
successful test case, an effective image is defined as the one
closest to the candidate. It is obvious that if a candidate
is outside the exclusion region of the effective image, it
will be outside the exclusion regions of all other images.
Hence, it is only necessary to check whether the candidate
is outside the exclusion region of the effective image.

Figures 9(a) and 9(b-d) compare the original and
enhanced versions of RRT in a 2-dimensional input
domain. The notations are the same as those of Figure
8, except that circles with dashed lines are used to denote
exclusion regions. In the original RRT shown in Figure
9(a), since candidate (1) is outside the exclusion region,
it is selected as the next test case. For each candidate in
the enhanced implementation shown in Figure 9(b-d), the
effective image is identified first. The images shown as
dashed circles are the effective images. If a candidate is
outside a dashed circle, it is selected as the next test case.
Obviously, candidate (3) will be selected as the next test
case. As illustrated in this example, the boundary effect
will be reduced, if not totally avoided, by our enhanced
version.

4. Simulation Results for the Enhanced
DART and RRT Implementations

The main objective of these simulations is to answer the
following two questions:

• Are the test cases generated by the enhanced
algorithms more evenly spread throughout the input
domain?

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

6
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:08:53 EDT from IEEE Xplore. Restrictions apply.

� �

� �

� � � � � �

� � � � � �

Figure 9. Comparing test case selections between (a)
the original and (b–d) the enhanced versions of RRT

• Are the fault detection capabilities of enhanced algo-
rithms better than those of the original algorithms?

To answer the first question, we repeated the distribution
analyses in Section 2 for the enhanced DART and RRT.
Figure 10 shows the histograms for the enhanced DART.
The histograms for the enhanced RRT are again omitted
because there is no significant difference from those of
the enhanced DART. It is obvious from the figure that the
test cases generated by our enhanced algorithms are more
evenly spread throughout the input domain in all the test
suites under study.

Secondly, we repeated the controlled failure-causing
region simulation for the enhanced DART and RRT
algorithms. Table 2 lists the average F-measure of 5000
trials. It clearly demonstrates that the fault-detection
capabilities for both enhanced versions do not depend on
the location of the failure regions.

To compare the fault detection capabilities between the
enhanced algorithms and the original ones, simulations
were conducted with failure rates 0.01, 0.005, 0.002 and
0.001 for block failure patterns in 2-, 3-, and 4-dimensional
input domains. For each combination of failure rate and
input domain, 5000 test runs were executed and the average
F-measure for each combination was recorded. The fault
detection capability of the enhanced DART and RRT
outperformed the original versions for every combination
of failure rate and input domain. There are two known
observations about the original DART and RRT [5]: (a)

Location of
failure-causing input

DART RRT

Edge 63 63
Center 62 63

Anywhere 63 63

Table 2. Average F-Measure of differently located
failure-causing inputs for DART and RRT under block
failure pattern on a 2-dimensional input domain (θ =
0.01 on an average of 5000 trials)

With the increase of dimensions of the input domain,
the fault detection capability decreases dramatically (that
is, the F-measure increases). (b) The fault detection
capabilities at lower failure rates are better than that at
higher failure rates. For the enhanced DART and RRT, the
fault detection capability also decreases with the increase
of dimensions of the input domain, but the rate is much
moderated. Furthermore, the fault detection capability
appears to be independent of the failure rates. Obviously,
the rectification of the boundary effect has significantly
improved on the fault detection capability for DART and
RRT.

5. Conclusion

Random Testing (RT) is a fundamental testing
technique. It simply selects test cases from the whole input
domain and, hence, does not incur extensive computational
overheads as black-box- or white-box-based test case
selection strategies. As reported by practitioners [9,
12, 16–18, 21, 23], RT can effectively detect failures in
many real-life applications. Chen et al. observed that
failure-causing inputs are often clustered in one or more
contiguous regions in the input domain and, therefore,
proposed Adaptive Random Testing (ART) to improve
on the fault detection capability of RT. Their methods
make use of the locations of successful test cases (which
do not reveal failures) to enforce an even spread of the
subsequent test cases. However, their Distance-based ART
(DART) and Restricted Random Testing (RRT) methods
have preferences in selecting test cases near the boundary
of the input domain (known as the boundary effect). This
effect adversely affects the performance of ART, and the
impact grows with the increase of dimensions of the input
domain.

In this paper, we have analyzed the cause of the
boundary effect and proposed an approach to tackle
it in DART and RRT. Our approach is based on an
innovative concept of virtual images of successful test
cases. Simulation results have clearly indicated that the

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

7
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:08:53 EDT from IEEE Xplore. Restrictions apply.

n=1

0

5000

10000

15000

20000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n=2

0

5000

10000

15000

20000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n=3

0

5000

10000

15000

20000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n=4

0

5000

10000

15000

20000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n=5

0

5000

10000

15000

20000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n=10

0

5000

10000

15000

20000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n=15

0

5000

10000

15000

20000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n=20

0

5000

10000

15000

20000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n=25

0

5000

10000

15000

20000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n=30

0

5000

10000

15000

20000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n=40

0

5000

10000

15000

20000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n=50

0

5000

10000

15000

20000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n=100

0

5000

10000

15000

20000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n=500

0

5000

10000

15000

20000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n=1000

0

5000

10000

15000

20000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 10. Histograms of the enhanced DART test cases in one dimension. The x-axis represents the location of test
cases. The y-axis represents the number of test cases per bin of size 0.01.

2 dimension 3 dimension 4 dimension

Failure
Rate θ

Expected F-measure
of RT(FRT)

Mean
Fmsr

(FART)

FART /
FRT

Mean
Fmsr

(FART)

FART /
FRT

Mean
Fmsr

(FART)

FART /
FRT

0.01 100 67 67% 85 85% 108 108%
0.005 200 132 66% 159 80% 196 98%
0.002 500 323 65% 382 77% 475 95%
0.001 1000 648 65% 754 75% 914 91%

Table 3. Average F-Measure of Original ART for block failure pattern (on the average of 5000 trials)

2 dimension 3 dimension 4 dimension

Failure
Rate θ

Expected F-measure
of RT(FRT)

Mean
Fmsr

(FART)

FART /
FRT

Mean
Fmsr

(FART)

FART /
FRT

Mean
Fmsr

(FART)

FART /
FRT

0.01 100 63 63% 69 69% 75 75%
0.005 200 126 63% 137 69% 150 75%
0.002 500 312 62% 346 69% 371 74%
0.001 1000 632 63% 680 68% 739 74%

Table 4. Average F-Measure of Enhanced ART for block failure pattern (on the average of 5000 trials)

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

8
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:08:53 EDT from IEEE Xplore. Restrictions apply.

2 dimension 3 dimension 4 dimension

Failure
Rate θ

Expected F-measure
of RT(FRT)

Mean
Fmsr

(FART)

FART /
FRT

Mean
Fmsr

(FART)

FART /
FRT

Mean
Fmsr

(FART)

FART /
FRT

0.01 100 66 66% 81 81% 95 95%
0.005 200 130 65% 160 80% 185 93%
0.002 500 328 66% 386 77% 453 91%
0.001 1000 644 64% 765 77% 868 87%

Table 5. Average F-Measure of original RRT for block failure pattern (on the average of 5000 trials)

2 dimension 3 dimension 4 dimension
Rate θ of RT(FRT)

Failure
Rate θ

Expected F-measure
of RT(FRT)

Mean
Fmsr

(FART)

FART /
FRT

Mean
Fmsr

(FART)

FART /
FRT

Mean
Fmsr

(FART)

FART /
FRT

0.01 100 63 63% 71 71% 79 79%
0.005 200 126 63% 140 70% 154 77%
0.002 500 319 64% 353 71% 388 78%
0.001 1000 629 63% 706 71% 765 77%

Table 6. Average F-Measure of Enhanced RRT for block failure pattern (on the average of 5000 trials)

test cases generated by our enhanced algorithms are more
evenly spread throughout the input domain. As a result,
the fault detection capability has also been significantly
improved. This improvement is particularly significant for
high dimensional input domains.

We plan to apply the concept of virtual images to other
ART implementations in future research.

References

[1] D. L. Bird and C. U. Munoz. Automatic generation of
random self-checking test cases. IBM Systems Journal,
22 (3): 229–245, 1983.

[2] K. P. Chan, T. Y. Chen, and D. P. Towey. Normalized
restricted random testing. In Proceedings of the 8th
International Conference on Reliable Software Technologies
(Ada-Europe 2003), volume 2655 of Lecture Notes in
Computer Science, pages 368–381. Springer, Berlin, 2003.

[3] T. Y. Chen and D. H. Huang. Adaptive random testing
by localization. In Proceedings of the 11th Asia-Pacific
Software Engineering Conference (APSEC 2004), pages
292–298. IEEE Computer Society Press, Los Alamitos,
California, 2004.

[4] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and S. P. H. Ng.
Mirror adaptive random testing. Information and Software
Technology, 46 (15): 1001–1010, 2004.

[5] T. Y. Chen, F.-C. Kuo, and Z. Q. Zhou. On the relationships
between the distribution of failure-causing inputs and
effectiveness of adaptive random testing. In Proceedings of
the 17th International Conference on Software Engineering

and Knowledge Engineering (SEKE 2005), pages 306–311.
ACM Press, New York, 2005.

[6] T. Y. Chen, H. Leung, and I. K. Mak. Adaptive random
testing. In Advances in Computer Science: Higher-Level
Decision Making: Proceedings of the 9th Asian Computing
Science Conference (ASIAN 2004), volume 3321 of Lecture
Notes in Computer Science, pages 320–329. Springer,
Berlin, 2004.

[7] T. Y. Chen, T. H. Tse, and Y. T. Yu. Proportional sampling
strategy: a compendium and some insights. Journal of
Systems and Software, 58 (1): 65–81, 2001.

[8] R. H. Cobb and H. D. Mills. Engineering software under
statistical quality control. IEEE Software, 7 (6): 45–54,
1990.

[9] T. Dabóczi, I. Kollár, G. Simon, and T. Megyeri. Automatic
testing of graphical user interfaces. In Proceedings of the
20th IEEE Instrumentation and Measurement Technology
Conference (IMTC 2003), volume 1, pages 441–445. IEEE
Computer Society Press, Los Alamitos, California, 2003.

[10] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test
data selection: help for the practicing programmer. IEEE
Computer, 11 (4): 34–41, 1978.

[11] J. E. Forrester and B. P. Miller. An empirical study of
the robustness of Windows NT applications using random
testing. In Proceedings of the 4th USENIX Windows Systems
Symposium, pages 59–68. Seattle, Washington, 2000.

[12] P. Godefroid, N. Klarlund, and K. Sen. DART: directed
automated random testing. in Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2005), ACM SIGPLAN Notices,
40 (6): 213–223, 2005.

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

9
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:08:53 EDT from IEEE Xplore. Restrictions apply.

[13] B. Hailpern and P. Santhanam. Software debugging, testing,
and verification. IBM Systems Journal, 41 (1): 4–12, 2002.

[14] R. Hamlet. Random testing. In Encyclopedia of Software
Engineering, J. J. Marciniak (editor). Wiley, New York,
2002.

[15] P. S. Loo and W. K. Tsai. Random testing revisited.
Information and Software Technology, 30 (7): 402–417,
1988.

[16] B. P. Miller, L. Fredriksen, and B. So. An empirical study
of the reliability of UNIX utilities. Communications of the
ACM, 33 (12): 32–44, 1990.

[17] B. P. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy,
A. Natarajan, and J. Steidl. Fuzz revisited: a re-examination
of the reliability of UNIX utilities and services. Computer
Sciences Technical Report #1268. University of Wisconsin-
Madison, Madison, Wisconsin, 1995.

[18] E. Miller. WebSite testing. White Paper. Software Research,
Inc., San Francisco, California, 2006. Available at
”http://www.soft.com/eValid/Technology/
White.Papers/wpaper.testing.pdf”.

[19] L. J. Morell. A theory of fault-based testing. IEEE
Transactions on Software Engineering, 16 (8): 844–857,
1990.

[20] G. J. Myers. The Art of Software Testing. Wiley, Hoboken,
New Jersey, 2004.

[21] N. Nyman. In defense of monkey testing: random
testing can find bugs, even in well engineered software.
AutomationJunkies.com, 1999.

[22] D. R. Slutz. Massive stochastic Testing of SQL. In
Proceedings of 24th International Conference on Very
Large Data Bases (VLDB ’98), pages 618–622. Morgan
Kaufmann, San Francisco, California, 1998.

[23] T. Yoshikawa, K. Shimura, and T. Ozawa. Random program
generator for Java JIT compiler test system. In Proceedings
of the 3rd International Conference on Quality Software
(QSIC 2003), pages 20–24. IEEE Computer Society Press,
Los Alamitos, California, 2003.

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

10
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:08:53 EDT from IEEE Xplore. Restrictions apply.

