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IMPACT ACTIONS ON ROCKFALL PROTECTION BARRIER 

Arnold Yong1, Nelson Lam2, Mahdi M. Disfani3, Emad Gad4 

ABSTRACT: Rockfall hazards have always been an issue in mountainous areas. To mitigate these hazards, efforts 

have been put in to building rockfall protection barriers. The erection of barriers in mountainous areas can often be 

difficult and costly when piling is required. This research explores the viability of building barriers without foundation. 

This type of barrier will experience rocking when subject to impact. A rocking barrier relies solely on inertial 

resistance to resist impact. An advantage of a rocking barrier is that the barrier itself experiences significantly less 

stress compared to a cantilever wall. Closed-form expressions have been developed and validated by the use of Finite 

Element Method (FEM) analysis and experimentations. Closed-form expressions enable users to predict the horizontal 

displacement of the wall by hand calculations. 
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1 INTRODUCTION 

Rockfall is a very common natural disaster that often 

occurs in mountainous regions, for example Switzerland, 

Japan and Hong Kong. It can be caused by landslides, 

earthquakes [1], chemical degradation and weathering of 

rocks [2], freeze and thaw processes due to cold climates 

[3, 4], etc. Over the years, a lot of efforts have been 

taken by the governments for rockfall prevention and 

protection. For instance, Hong Kong has spent about 

US$2.3billion to address landslide and rockfall hazards 

in the past 20 years [5]. Although the impact area of a 

rockfall event is usually small, it can severely damage 

structures that are struck. More importantly, rockfall 

poses a significant threat to human lives. 

In order to prevent rockfalls from reaching the public, 

passive rockfall protection barriers need to be erected in 

mountainous regions. The design of structures exposed 

to rockfall hazard would need to take into considerations 

impact actions. A traditional approach in codes of 

practice is to represent impact actions by equivalent 

quasi-static forces [6, 7]. However, this approach has not 

been supported by research, and cannot be applied with 

confidence.  

The equal energy method is more transparent as it is 

based on fundamental laws of physics. It involves 

equating the kinetic energy of the impactor and the 

target’s strain energy at maximum deflection, and takes 

the form as shown by Equation (1) [8]: 

Δ =
𝑚𝑣0

√𝑚𝑘
(1) 

This expression is able to estimate the deflection demand 

of the structure ( Δ ) when the impactor’s mass ( 𝑚 ), 

impact velocity (𝑣0) and target’s stiffness (𝑘) are known.

It might seem to be a versatile method, but it assumes 

that the total amount of the impacting energy is absorbed 

by the target. In the case where only a small amount of 

energy has been transferred, this expression will produce 

highly inaccurate result. 

On top of that, Equation (1) has not incorporated the 

mass of the target as input. In fact, it has been shown that 

the inertial effects arising from the target’s mass can 

significantly reduce its deflection [9, 10]. Analytical 

solutions were derived and validated by physical 

experiment and FEM simulation. However, the 

validations were done by considering the two extreme 

cases for the analytical solution: impactor embedded into 

the target and impactor perfectly rebounded from the 

target. These two scenarios provide predictions for the 

range of deflection. Tests were conducted to ensure that 

the recorded deflection is in between the two limits. This 

paper goes one step further to validate the analytical 

solution based on an assumed amount of energy loss as 

measured by COR. 

Analytical solutions discussed above are able to estimate 

the deflection of the target with some sort of constraints 

(cantilever, simply supported, etc). This paper explores 

the viability of designing rockfall barriers without any 

base restraints. The barrier is expected to resist impact 

solely by the inertial effects arising from its self-mass. 

Quantification of the wall’s deflection demand based on 

an analytical model will be the focus of the paper. 

2 WALL WITH RESTRAINED BASE 

2.1 ANALYTICAL SOLUTION 

To take into account the target’s inertial effect and 

energy loss from the system, Equation (1) has been 

modified. By assuming that the transfer of momentum is 

immediate (short contact duration), the principle of 

conservation of momentum can be applied: 

𝑚𝑣0 = −𝑚𝑣1 + 𝛼𝑚𝑣2 (2) 

where 𝑚 and 𝑣0 is the mass and incident velocity of the

impactor, 𝑣1 and 𝑣2  is the velocity of the impactor and

target after the impact, and 𝛼  is the mass ratio of the 

target to impactor. 

The kinetic energy loss is incorporated into the 

expression by using the Newton’s Coefficient Of 

Restitution, COR (the target’s initial velocity of zero is 

not included in the expression): 

𝐶𝑂𝑅 =
𝑣1 + 𝑣2

𝑣0
(3) 

By combining Equation (2) and (3): 

𝑣2

𝑣0

=
1 + 𝐶𝑂𝑅

1 + 𝛼
(4) 

By the use of Equation (4), the kinetic energy ratio can 

then be expressed as: 

𝐾𝐸2

𝐾𝐸0

=

1
2

𝛼𝑚𝑣2
2

1
2

𝑚𝑣0
2

= 𝛼 (
𝑣2

𝑣0

)
2

= 𝛼 (
1 + 𝐶𝑂𝑅

1 + 𝛼
)

2

(5) 

Also, 

𝐾𝐸2 =
1

2
𝑘Δ2 (6) 

By substituting Equation (6) into Equation (5): 

Δ =
𝑚𝑣0

√𝑚𝑘
× √𝛼 (

1 + 𝐶𝑂𝑅

1 + 𝛼
)

2

(7) 

Equation (7) is similar to Equation (1), except that it 

includes a factor derived from the kinetic energy ratio, 

Equation (5). 

As explained above, Equation (7) is derived from the 

fundamental principle of equal momentum. However, it 

is based on the assumption of a system of spring 

connected lumped masses. Thus, it is important to carry 

out physical experimentation and FEM computer 
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numerical simulation to verify the expression along with 

Equation (5). 

2.2 EXPERIMENTAL AND NUMERICAL 

VERIFICATION 

The experimental set up is shown in Figure 1. A 

pendulum impact test was conducted on a 1m long steel 

beam with cross section of 0.15m × 0.02m. The steel 

beam was welded onto another steel beam, which was in 

turn bolted rigidly onto the ground. Steel plates with 

total mass of 38kg were attached onto the beam to 

increase the effective target mass. All the steel beams 

and plates used here are mild steel with density of 

7850kg/m3, Young’s modulus of 200GPa, and yield 

strength of 300MPa. A cast iron ball weighing 5kg was 

raised to a height of 1m and then released to strike the 

beam. The incident velocity of impact was 4.43m/s, 

which will later be checked with measurements by High 

Speed Camera (HSC). A laser displacement sensor 

ILD1700-50 with measurement frequency of 2.5kHz and 

measurement range of up to 50mm was used to measure 

the beam’s displacement following the impact. At the 

same time, a HSC with frame rate of 3000fps was used 

to measure the velocity of the impactor before and after 

the impact. 

 

Figure 1: Cantilever steel beam experimental set up 

Meanwhile, FEM computer simulations were carried out 

using software LS-DYNA, as shown in Figure 2. Instead 

of connecting the pole to a beam, the base of the pole 

was simply fixed by specifying constraint in all six DOF 

by using the BOUNDARY card. From the LS-DYNA 

library, MAT_001 was chosen to be the material model 

for the steel pole and plates, whereas MAT_020 was 

chosen for the impactor. Since the steel plates were 

rigidly bolted to the pole in the physical experiment, the 

contact between them was defined as per the tied surface 

to surface contact algorithm. In addition, the automatic 

surface to surface contact algorithm was used to define 

the contact between the impactor and the steel plate that 

it comes in contact with. A stiffness based hourglass 

control type (IHQ = 4) with hourglass coefficient of QM 

= 0.03 was specified as per recommendation by Ref. [11] 

in order to prevent zero energy hourglass mode that can 

lead to model’s instability. The input parameters are 

summarised in Table 1. 

 

Figure 2: FEM for the cantilever beam experiment 

Table 1: Main parameters used in FEM for cantilever 
beam in LS-DYNA 

Parameters Input 

Impactor material MAT_20 Rigid 

Target material MAT_001 Elastic 

Contact algorithm 

between impactor and 

dummy mass 
 

automatic surface to surface 

Contact algorithm 

between dummy mass 

and target beam 

tied surface to surface 

Hourglass control type 4 

Hourglass coefficient 0.03 

Boundary condition Base fixed in all 6 DOF 

 

Importantly, hand calculation check of the results was 

carried out by the use of Equation (7). As recommended 

in [12], for a cantilever beam, the generalised stiffness (𝑘) 

is 3𝐸𝐼/𝐿3, and the generalised mass (𝛼𝑚) is a quarter of 

the total mass of the beam. The full dummy mass needs 

to be added to the generalised mass as all the dummy 

mass effectively resist the impact. 𝐶𝑂𝑅  was calculated 

by the use of Equation (3), with the HSC measurements 

as shown in Table 2. The calculated/measured input 

parameters for Equation (7) are shown in Table 3. 

Table 2: Velocities of the impactor and target for 
cantilever beam test 
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 Impactor Target 

Velocities prior to 

impact 
4.43 m/s 0 m/s 

Velocities on 

rebounce 
0.73 m/s 1.05 m/s 

Table 3: Calculated/measured input parameters for 
Equation (7) 

Parameters Values 

𝑚 5 kg 

𝑣0 4.43 m/s 

𝑘 60 kN/m 

𝛼 8.38 

𝐶𝑂𝑅 0.4 

 

The results from the experiment, LS-DYNA simulation 

and hand calculation are summarised in Figure 3. 

 

Figure 3: Deflection values of cantilever beam from 
experiment, LS-DYNA and hand calculation 

As shown in Figure 3, results from both the experiment 

and LS-DYNA match closely with the hand calculation 

estimate. The maximum deflection from experiment and 

LS-DYNA were 16.9 mm and 16.7mm respectively, as 

compared to the hand calculation value of 17.2 mm. 

Hence, Equation (7) is valid. Importantly, the use of 

energy ratio as defined by Equation (5) has also been 

validated. 

3 WALL WITH UNRESTRAINED BASE 

3.1 ANALYTICAL SOLUTION 

A sketch of a typical rectangular block with unrestrained 

base under impact is shown in Figure 4. It will undergo 

rocking and may overturn depending on the amount of 

displacement experienced during rocking. 

 

Figure 4: Rectangular wall experiencing rocking effect 
under impact 

In Section 2.1, the principle of conservation of 

momentum was employed to derive the analytical 

solution. Similarly, the principle of conservation of 

angular momentum has been employed: 

 𝑚𝑣0ℎ = −𝑚𝑣1ℎ + 𝐼𝜃�̇� (8a) 

   

 𝐼𝜃 = 𝑀𝑤𝑎𝑙𝑙 ×
ℎ2 + 𝑡2

3
 (8b) 

   

 �̇� =
𝑣2

ℎ
 (8c) 

where 𝐼𝜃  is the rotational inertia of the wall and �̇� is the 

angular velocity of the wall, about bottom left corner. 

In Section 2.1, 𝛼 was taken as the mass ratio. For the 

rocking block, 𝛼 is defined by Equation (9). 

 𝛼 =
𝐼𝜃

𝑚ℎ2
 (9) 

By combining Equation (8a), (8c) and (9): 

 𝑣0 + 𝑣1 = 𝛼𝑣2 (10) 

Then, by combining Equation (9) with the 𝐶𝑂𝑅 

expression of Equation (3): 

 
𝑣2

𝑣0

=
1 + 𝐶𝑂𝑅

1 + 𝛼
 (11) 

The kinetic energy in the wall immediately following the 

impact is: 

 𝐾𝐸 =
1

2
𝐼𝜃�̇�2 =

1

2
𝐼𝜃 (

𝑣2

ℎ
) =

1

2
𝛼𝑚𝑣2

2 (12) 

Hence, the kinetic energy ratio can be expressed as: 

 
𝐾𝐸

𝐾𝐸0

=

1
2

𝛼𝑚𝑣2
2

1
2

𝑚𝑣0
2

= 𝛼 (
1 + 𝐶𝑂𝑅

1 + 𝛼
)

2

 (13) 

Note that Equation (13) is identical to Equation (5), 

except that the expression for 𝛼  is defined differently 

due to difference in the nature of the motion 

(linear/rotational). Thus, the validation of Equation (5) in 

Section 2.2 does validate the use of Equation (13), i.e. 
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the use of kinetic energy ratio to represent the energy 

loss from the system. This expression can further be used 

to derive the analytical solution for estimating deflection 

Δ. 

 

Figure 5: Sketch of rocking wall showing geometry 

As shown in Figure 5, the wall is expected to be lifted by 

Δℎ  when it is at its maximum deflection Δ . Thus, the 

total amount of energy gained by the wall can be 

expressed by its potential energy gained: 

 𝑃𝐸 = 𝑀𝑤𝑎𝑙𝑙𝑔Δℎ  (14) 

This potential energy gained can be equated to the 

kinetic energy in the wall right after the impact, i.e. 

𝑃𝐸 = 𝐾𝐸 . By using this relationship and combining 

Equation (13) and (14): 

 𝑀𝑤𝑎𝑙𝑙𝑔Δℎ = 𝛼 (
1 + 𝐶𝑂𝑅

1 + 𝛼
)

2

×
1

2
𝑚𝑣0

2 (15) 

Rearranging Equation (15) gives: 

 Δℎ =
𝑚𝑣0

2

2𝑀𝑤𝑎𝑙𝑙𝑔
𝛼 (

1 + 𝐶𝑂𝑅

1 + 𝛼
)

2

 (16) 

Up to this point, Equation (16) is already able to relate 

the measureable input parameters to the wall’s 

movement, in terms of Δℎ. A step further will be taken to 

relate Δℎ  to the interest of the context, Δ. This will be 

done solely based on the geometry of the wall. 

From the wall’s geometry as shown in Figure 5: 

 sin 𝜃 =
Δ

ℎ
 (17a) 

 tan 𝜃 =
Δℎ

𝑡
2

=
2Δℎ

𝑡
 (17b) 

By using small angle approximation (assuming 𝜃  is 

small), sin 𝜃 ≈ tan 𝜃 ≈ 𝜃 . Combining this relationship 

with Equation (17a) and (17b) gives: 

 Δ =
2ℎ

𝑡
× Δℎ (18) 

Combining Equation (16) and (18) gives: 

 Δ =
𝑚𝑣0

2

𝑀𝑤𝑎𝑙𝑙
𝑔𝑡
ℎ

𝛼 (
1 + 𝐶𝑂𝑅

1 + 𝛼
)

2

 (19) 

With Equation (19), the wall’s deflection can simply be 

calculated by hand. However, Equation (18) has 

limitations as it is only valid with a small angle of 

rotation of the rocking wall. 

3.2 EXPERIMENTAL AND 

NUMERICAL VERIFICATION 

Experimental and numerical studies have been carried 

out to verify the use of the hand calculation analytical 

solution presented in this paper. 

A pendulum test using the same impactor from Section 2 

was conducted on a 0.2m × 0.4m × 0.2m concrete block 

with mass of 76kg, as shown in Figure 6. A 10mm thick 

timber piece was placed behind the block to simulate the 

translationally restrained condition of the block’s rear 

bottom corner. The timber piece was placed rigidly such 

that there was no translational movement. Again, a 5kg 

cast iron ball was raised to a height of 1m before it was 

released to produce an incident velocity of 4.43m/s. The 

impactor in this experiment was hung by two steel cables 

(instead of one). This was to ensure that the impactor 

travels in the desired trajectory in order that it strikes the 

middle of the block. A laser displacement sensor 

ILD1402-100 with measurement frequency of 1.5 kHz 

and measurement range of up to 100mm were used to 

measure the block’s displacement generated by the 

impact. 

 

Figure 6: Rocking wall experimental set up 
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Meanwhile, FEM numerical computer simulation was 

carried out using LS-DYNA, as shown in Figure 7. 

Instead of having the base fully fixed, only a corner was 

restrained in the translational direction by adding a plate 

similar to that in the actual experiment. Since 

gravitational load is applied, the wall was modelled to sit 

on a “ground” plate which is constrained in all 6DOF. 

Gravitational load of 𝑔 = 9.81𝑚/𝑠2 was applied.  

For the concrete block, the continuous surface cap model 

(CSCM) MAT_159 was chosen from the LS-DYNA 

library as the material model. The validation application 

of MAT_159 for concrete under impact actions can be 

found in Ref. [13, 14]. The same material model was 

also used to model the floor. MAT_020 was chosen to 

model the impactor. The automatic surface to surface 

contact algorithm was used to define both the contact 

between the impactor and the wall, as well as the contact 

between the wall and the floor. A stiffness based 

hourglass control type (IHQ = 4) with hourglass 

coefficient of QM = 0.03 was specified based 

recommendations in Ref. [11] in order to prevent zero 

energy hourglass mode that can result in model’s 

instability. The input parameters are summarised in 

Table 4. 

 

Figure 7: FEM for the rocking wall experiment 

Finally, hand calculation was carried out. 𝐶𝑂𝑅  was 

calculated by the use of Equation (3). The velocities of 

the impactor and the target were taken from LS-DYNA 

simulation, as shown in Table 5. The calculated/ 

measured input parameters for the hand calculation 

procedure are shown in Table 6.  
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Table 4: Main parameters used in FEM for cantilever 
beam in LS-DYNA 

Parameters Input 

Impactor material MAT_20 Rigid 

Target material MAT_159 CSCM Concrete 

Ground material MAT_159 CSCM Concrete 

Contact algorithm 

between impactor and 

target 
 

automatic surface to surface 

Contact algorithm 

between target and base 
automatic surface to surface 

Hourglass control type 4 

Hourglass coefficient 0.03 

Boundary condition 
Both ground and restraining 

plate fixed in all 6 DOF 

 

Table 5: Velocities of the impactor and target for rocking 
wall test 

 Impactor Target 

Velocities prior to 

impact 
4.43 m/s 0 m/s 

Velocities on 

rebounce 
0.99 m/s 0.64 m/s 

 

Table 6: Calculated/measured input parameters for 
rocking wall hand calculation procedure 

Parameters Values 

𝑚 5 kg 

𝑣0 4.43 m/s 

𝐶𝑂𝑅 0.37 

𝑀𝑤𝑎𝑙𝑙  76 kg 

𝑡 0.2 m 

ℎ 0.4 m 

 

The details of the hand calculation process are shown in 

below to show that it is feasible to be done without the 

aid of any computer program. 

The rotational inertia of the wall is first calculated in 

order to calculate 𝛼: 

𝐼𝜃 = 𝑀𝑤𝑎𝑙𝑙 ×
ℎ2 + 𝑡2

3
 

 

= 76 ×
0.42 + 0.22

3
 

 
= 5.1 𝑘𝑔𝑚2 
 
 

𝛼 =
𝐼𝜃

𝑚ℎ2
=

5.1

5(0.4)2
= 6.33 

 

From Equation (19): 

Δ =
𝑚𝑣0

2

𝑀𝑤𝑎𝑙𝑙
𝑔𝑡
ℎ

𝛼 (
1 + 𝐶𝑂𝑅

1 + 𝛼
)

2

 

=
5(4.43)2

76 (
(9.81)(0.2)

0.4
)

(6.33) (
1 + 0.37

1 + 6.33
)

2

 

= 0.058𝑚 

= 𝟓𝟖𝒎𝒎 

A more accurate estimate of Δ  is 71mm when the 

geometry of the rotating block is factored into the 

calculation. Details of the refined calculation are not 

shown herein. 

This hand calculation method gives the maximum value 

of the deflection, which is critical from a design 

perspective. In order to better compare with the 

experimental and computer simulation results, a 

deflection-time history curve (instead of just one 

maximum point) has been generated for the hand 

calculation method. This was done based on varying the 

kinetic energy to potential energy ratio at different point 

of time (maximum kinetic energy and zero potential 

energy right after the impact, and vice versa when the 

deflection reaches Δ ). The peak of the curve is the 

maximum deflection, i.e. 71mm. 

The results from the experiment, LS-DYNA simulation 

and hand calculation are summarised in Figure 8. 

 

Figure 8: Deflection values of rocking wall from 
experiment, LS-DYNA and hand calculation 

As seen from Figure 8, the deflection value calculated 

from the expressions from Section 3.1 matches with 

those from the FEM simulation as well as the 

experimental measurement. Hence, the hand calculation 

methodology is verified. 
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4 CONCLUSIONS 

The use of kinetic energy ratio expression was first 

verified by conducting pendulum impact tests on a 

cantilever steel pole, followed by FEM simulations. This 

serves to verify the simplified expression developed in [9] 

by the use of an expression which includes COR, which 

can be measured by HSC. 

The second part of the paper explores a new innovative 

type of rockfall barrier, which is without a foundation at 

the base. It is called the rocking wall, as it relies rocking 

and inertia to resist the impact action. A methodology 

was derived to estimate the displacement of a rocking 

wall for given impact condition. Physical 

experimentations and FEM simulations were used to 

verify the proposed method of calculation. This 

methodology is attractive in the sense that it can be 

simply done by hand calculations. Every step of the 

methodology presented is transparent. Thus engineers 

will be able to apply it with confidence. 
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