
Implementing a Multipath Transmission Control Protocol

(MPTCP) stack for FreeBSD with pluggable congestion and

scheduling control

A thesis submitted for the degree of

Master of Engineering (Research)

Nigel Williams,

Centre for Advanced Internet Architectures,

Faculty of Science, Engineering and Technology,

Swinburne University of Technology,

Melbourne, Victoria, Australia.

October 24, 2016

Declaration

This thesis contains no material which has been accepted for the award to the candidate of any other

degree or diploma, except where due reference is made in the text of the examinable outcome. To

the best of the candidate’s knowledge this thesis contains no material previously published or written

by another person except where due reference is made in the text of the examinable outcome; and

where the work is based on joint research or publications, discloses the relative contributions of the

respective workers or authors.

Nigel Williams

Centre for Advanced Internet Architectures (CAIA) -

Faculty of Science, Engineering and Technology

Swinburne University of Technology

September, 2017

iii

Acknowledgements

My principal coordinating supervisor Professor Grenville Armitage and coordinating supervisor Dr.

Jason But, for exhibiting great patience and providing valuable guidance and feedback throughout the

creation of this thesis.

James Mack and Amram Williams for their feedback.

Warren Harrop, for going well beyond in providing feedback and support.

Thanks to Lawrence Stewart for his invaluable technical consultations and advice on FreeBSD

kernel programming.

The FreeBSD Foundation, who provided the support funding that allowed me to take on this

project.

The Cisco University Research Program Fund, who provided support funding for the initial

MPTCP project at CAIA, and support while completing this thesis.

Thanks to friends and family for their support and encouragement. Lastly, thanks to Aeri Lee for

her patience, understanding and company.

v

Contents

Abstract 1

1 Introduction 3

2 A Background on Today’s Internet 6

2.1 The Internet Architecture . 6

2.1.1 The Internet Protocol Suite . 8

2.1.2 TCP: A Ubiquitous Transport Protocol . 10

2.1.3 Extending Protocols . 17

2.2 The Network Path . 18

2.2.1 Defining the End-to-end Path . 18

2.2.2 Sources of Dynamic Behaviour . 21

2.2.3 Traffic Engineering Mechanisms . 23

2.3 A Multihomed Future . 27

3 Multihoming at the End-host 28

3.1 Steering Packets . 28

3.2 Multihoming and Path Diversity . 30

3.3 Multihoming and Multipath Solutions . 32

3.3.1 Link-layer . 32

3.3.2 Internet-layer . 35

3.3.3 Transport-layer . 37

3.4 Conclusion . 39

4 Multipath Scheduling and Congestion Control 41

4.1 Multipath Schedulers . 42

vii

viii CONTENTS

4.1.1 Naive approaches . 45

4.1.2 Scheduling for the transport-layer . 46

4.1.3 Improving loss recovery . 50

4.1.4 Assisting the scheduler . 51

4.2 Multipath Congestion Control . 52

4.2.1 Uncoupled Congestion Control . 54

4.2.2 Coupled Congestion Control . 55

4.3 Conclusion . 58

5 Overview: TCP extensions for Multi-addressed Operation 60

5.1 Key Concepts . 60

5.2 MPTCP in Operation . 63

5.2.1 Opening a Connection . 64

5.2.2 Associating Subflows . 66

5.2.3 Transferring Data . 66

5.2.4 Closing a Connection . 70

5.3 Other Protocol Considerations . 70

6 An Architecture for MPTCP in the FreeBSD Kernel 73

6.1 Designing for FreeBSD . 74

6.1.1 Data and Control Structures . 74

6.1.2 Event-driven Model . 79

6.1.3 Leveraging the Modular TCP framework 81

6.1.4 Scheduling and Congestion Control . 83

6.2 CPU and Memory Considerations . 86

6.2.1 Ensuring Fair CPU Use . 86

6.2.2 Shared Memory, Locking and Concurrency 89

6.3 Establishing a Connection . 92

6.4 Sending Data . 97

6.5 Receiving Data . 101

6.6 Closing a Connection . 105

6.7 Conclusion . 105

CONTENTS ix

7 Experimental Evaluation 107

7.1 Experimental Design . 107

7.1.1 Testbed Topology . 108

7.2 Evaluation . 109

7.2.1 Basic Conformance . 109

7.2.2 Creating Multiple Subflows . 112

7.2.3 Retransmissions . 118

7.2.4 Scheduling and Congestion Control . 121

7.2.5 Performance . 127

7.3 Conclusion . 130

8 Conclusion 132

8.1 Summary . 133

8.2 Future Work . 135

A Design Overview of Multipath TCP version 0.3 for FreeBSD-10 136

B Design Overview of Multipath TCP version 0.4 for FreeBSD-11 143

References 158

List of Figures

2.1 The edge and core of the Internet . 7

2.2 An Internet mesh topology . 8

2.3 Layer-to-layer communication . 9

2.4 TCP Header . 10

2.5 TCP three-way SYN handshake. 11

2.6 TCP four-way FIN handshake . 12

2.7 A simple TCP data exchange. 13

2.8 Examples of TCP retransmission. 13

2.9 Multiple paths between two hosts. 19

3.1 A simplified multipath scheduler. 29

3.2 Data striping across asymmetric paths can lead to packet reordering. 30

3.3 Multilink PPP (MP) . 34

3.4 Site-wide and end-host multihoming. A multihomed gateway provides multihoming

for an entire site. A multihomed end-host is directly attached to multiple providers. . 35

3.5 IPv4 mobility requires additional infrastructure to tunnel connections. 36

4.1 A basic decomposition of a multipath scheduler . 45

5.1 MPTCP sits logically between the socket and standard TCP stack. 61

5.2 Generic MPTCP option format . 61

5.3 The 64-bit data sequence is carried over multiple 32-bit TCP sequences. 62

5.4 Negotiating an MPTCP connection. 64

x

LIST OF FIGURES xi

5.5 Examples of joining a subflow. On the left, Host 1 triggers an implicit join to a known

address on Host 2. On the right, Host 2 must advertise an unknown address so that

Host 1 can initiate a join. 65

5.6 Data Sequence Signal option . 67

5.7 MPTCP data exchange using the DSS option. A typical exchange is shown on the

left, while on the right we see a retransmission after a subflow fails. 68

5.8 MPTCP connection close can be combined with the subflow-level close. With multi-

ple subflows, the MPTCP connection is closed first. 69

6.1 Datastructures to support MPTCP in the FreeBSD kernel. Preexisting kernel struc-

tures are shown in grey. 76

6.2 Changing the protocol switch and user request routines of a socket. 77

6.3 Processing a subflow socket event . 80

6.4 Multiple threads are run when receiving a packet. 87

6.5 Receiving a segment in MPTCP. Processing is divided between two SWI threads -

when the subflow receives a packet and for MPTCP-layer aggregation. 102

6.6 Subflow and MPTCP-layer receive structures. 104

7.1 Physical and logical representations of the testbed. 108

7.2 Throughput for MPTCP with a single subflow compared with TCP over the same

path. 113

7.3 Comparing multiple subflows to TCP, with and without shared bottleneck. 113

7.4 Comparing per-subflow and total throughput for MPTCP flows with TCP. 114

7.5 Comparing per-subflow and total throughput for MPTCP flows with TCP where the

router queue is undersized. 116

7.6 Testing fault tolerance. The client is multi-homed and Dummynet and PF provide

middlebox emulation. 118

7.7 Random packet loss causing subflow-level retransmission. 119

7.8 Per-subflow and combined throughput during path loss and data-level retransmission. 120

7.9 Failure on SF2 causes a data-level retransmit. On recovery SF2 is able to send new

data. 120

7.10 Subflow congestion windows for New Reno and Cubic subflows across a shared bot-

tleneck. 123

xii LIST OF FIGURES

7.11 Subflow congestion windows without a shared bottleneck. 124

7.12 Using delay-based and loss-based congestion control on subflows with a shared bot-

tleneck link. 125

7.13 Using delay-based and loss-based congestion control on subflows without a shared

bottleneck. 126

7.14 Comparing Iperf goodput to TCP as the link bandwidth is increased. 127

7.15 Average CPU usage by the kernel as bandwidth increases. 128

7.16 Average count of context switches per-second as bandwidth increases. 129

List of Listings

1 Definition of structure cc algo . 85

2 The mp sched algo structure definition . 86

3 Release MPTCP data and revert to default TCP stack if MPTCP is not requested by

the peer during SYN exchange. 94

4 Using m pkthdr fields to store data-level mappings. 99

5 Identifying and processing MPTCP options. 103

6 Fall back to TCP if ACK+MP CAPABLE is missing 110

7 Successfully establish a MPTCP connection and additional subflow. 111

8 The simplerr module definition. 121

xiii

List of Tables

2.1 A selection of protocols from layers of the Internet suite. 8

2.2 TCP State Variables . 16

4.1 A selection of statistics used by current schedulers. Some must be calculated by the

algorithm. Note that some statistics may serve multiple purposes. 44

5.1 MPTCP State Variables . 63

5.2 Data Sequence Signal Flags . 67

6.1 MPTCP control block sequence variables . 76

6.2 Size of MPTCP datastructures, compared with the existing TCP socket structures. . . 78

6.3 Per-connection locks for TCP . 89

6.4 Per-connection locks for MPTCP . 89

7.1 Example conformance tests. 109

7.2 Linux-endpoint settings required for interoperability. 110

7.3 Mean count of retransmissions (including fast retransmissions, RTOs) when transfer-

ring 20MB. 117

7.4 Total-retransmits per-subflow, MPTCP-independent. 117

7.5 Goodput without rate-limiting . 128

xiv

Abstract

The Internet is a collection of highly interconnected networks. Data sent from an end-host may be

routed through multiple networks, and potentially via multiple distinct paths, to reach a destination.

To facilitate this, the devices connecting networks together are multihomed, having attachments in

multiple networks. The end-hosts served by these networks have been until only recently predom-

inantly single-homed - connected to the Internet through a single point of attachment. It is now

common for Internet connected hosts to have multiple network interfaces, for example Wi-Fi and cel-

lular. Multihoming creates a fundamental shift in end-to-end communications, providing an end-host

with a choice of alternate paths that can be used for additional capacity, redundancy or mobility.

The protocols responsible for moving data between connected devices have remained largely

unchanged since the early days of the Internet. The Transmission Control Protocol (TCP) [1], whose

genesis was in the 1970s, remains the Internet’s default choice for reliable transport. That protocols

like TCP have been able to scale is a testament to their design, however a consequence of their age is

that they are unable to take full advantage multiple network connections at the end-host. For example,

TCP can only utilise a single network path between source and destination per session, and sessions

must be broken and reestablished when endpoints shift their network connectivity from one interface

to another.

The emergence of multihomed end-hosts has been predicted, and solutions have emerged in var-

ious guises over the years. A promising recent proposal is the TCP Extensions for Multipath Opera-

tion with Multiple Addresses, (MPTCP) [2] specification, which has been standardised by the Internet

Engineering Task Force (IETF) and is already deployed across the Internet. MPTCP allows exist-

ing TCP-based applications to utilise whichever underlying interface is available at any given time,

seamlessly maintaining transport sessions when endpoints shift their network connectivity from one

interface to another. Though MPTCP has been demonstrated to operate effectively across the Internet,

there remains wide scope for exploring how and when data transmission across available paths ought

2

to be tied together or decoupled through it’s primary transmission mechanisms of congestion control

and scheduling. Research into these aspects of MPTCP can currently only be undertaken using the

Linux-based reference implementation.

In addition to a comprehensive literature review of technologies relating to multipath communi-

cation, this thesis makes two core contributions:

• We design and implement the first ever MPTCP stack for the FreeBSD operating system. Our

implementation specifically augments FreeBSD with support for pluggable multipath schedul-

ing and congestion control algorithms, vastly simplifying future research on novel scheduling

and congestion control algorithms. Our architecture is extensible, maintainable and has mini-

mal impact on FreeBSDs existing single-path TCP stack.

• We demonstrate a functional prototype, and release our code publicly as a contribution to the

FreeBSD community.

Our implementation is shown to achieve basic MPTCP functionality, and we show that scheduling

and congestion control modules can be defined to effect different dynamic behaviours of multipath

connections. Although our code is currently unoptimised, we show that performance is sufficient

to support current experimentation scheduling and congestion control algorithms. Based on early

feedback from the 2016 FreeBSD Developer Summit, we expect that further development and im-

provement of our FreeBSD MPTCP codebase will take place in the FreeBSD community.

Chapter 1

Introduction

Commoditisation has seen computing power distributed into the hands of billions of people world-

wide, fueling the rapid expansion of Internet-connected devices. In the early 1990s the Internet

reached 1 million connected hosts [3]. A decade later this had grown to 500 million. Current es-

timates put the number of connected devices at over 15 billion [4].

End-hosts connected to the Internet were until only recently predominantly single-homed - i.e.

connected through a single point of attachment. Contemporary computing devices such as smart-

phones, notebooks or servers are often multihomed, featuring multiple network interfaces that poten-

tially use different link technologies, for example Wi-Fi and cellular.

While the breadth and speed of the Internet has evolved considerably, the transport protocols

responsible for moving data between connected devices have largely remained the same. A case in

point is the Transmission Control Protocol (TCP) [1], which first originated in the 1970s [5] to provide

reliable transport across the nascent networks of the time. Today, with relatively few extensions, it

remains the Internet’s default choice for reliable transport, and is used across a range of wired and

wireless network links.

In the new multi-homed reality, protocols designed for single-homed hosts have certain draw-

backs. For example, TCP has two significant shortcomings – it can only utilise a single network path

between source and destination per session, and sessions must be broken and reestablished when end-

points shift their network connectivity from one interface to another. Being bound to a single path also

precludes multihomed devices from using any additional capacity - or redundancy - that might exist

over alternate paths. To enable multihoming at the end-host, solutions have been proposed that either

replace TCP as a transport protocol, as is the case with CMT-SCTP, [6], or attempt to spread a single

TCP connection over multiple paths, for instance Multilink PPP [7]. These protocols, though often

3

4 CHAPTER 1. INTRODUCTION

deployed successfully in niche use-cases, have not seen widespread deployment as general-use mul-

tihoming solutions for a various reasons, including a lack of compatibility with legacy applications

and performance.

The IETF’s Multipath TCP working group is focused on an idea that has emerged in various forms

over recent years: that a single transport session as seen by the application layer might be striped

across multiple Internet paths between the session’s two end-points. The outcome of this working

group is the TCP extensions for multi-addressed operation or Multipath TCP (MPTCP) standard.

When multiple interfaces are concurrently available, MPTCP enables the distribution of an appli-

cation’s traffic across all or some of the available paths (deemed subflows) in a manner transparent

to the application. MPTCP is already deployed on the Internet [8]. The reference implementation,

developed at the Universite catholique de Louvain (UCL) for the Linux kernel, fully implements the

MPTCP protocol and is used in a number of production environments [9]. An implementation by

Apple Inc. for the XNU kernel provides a subset of MPTCP functionality and is enabled on Apple

iOS devices.

As an extension of TCP, an over-arching expectation is that TCP-based applications see the tradi-

tional TCP socket API, but gain benefits when their session transparently utilises multiple, potentially

divergent network layer paths. These benefits include being able to stripe data over parallel paths for

additional speed (where multiple similar paths exist concurrently), or seamlessly maintaining TCP

sessions when an individual path fails or as a mobile device’s multiple underlying network inter-

faces change connectivity state. MPTCP allows existing TCP-based applications to utilise whichever

underlying interface (network path) is available at any given time, seamlessly maintaining transport

sessions when endpoints shift their network connectivity from one interface to another.

Data transmission must be coordinated across the subflows making up the MPTCP session, to

both effectively utilise the total capacity of heterogeneous paths and ensure a multipath session does

not receive “...more than its fair share at a bottleneck link traversed by more than one of its subflows”

[10]. Current approaches focus on the use of schedulers and congestion control (CC) to control how

the end-hosts steers data between the available paths. There is wide scope for exploring how and

when CC for individual subflows ought to be tied together or decoupled, and how CC and scheduling

can be combined for more effective data transmission.

In this thesis we present a comprehensive literature review of technologies relating to multipath

communication and survey current Multipath TCP research. When then make two core contributions:

• We design and implement the first ever MPTCP stack for the FreeBSD operating system. Our

5

implementation specifically augments FreeBSD with support for pluggable multipath schedul-

ing and congestion control algorithms, vastly simplifying future research on novel scheduling

and congestion control algorithms. Our architecture is extensible, maintainable and has mini-

mal impact on FreeBSDs existing single-path TCP stack.

• We demonstrate a functional prototype, and release our code publicly [11] as a contribution to

the FreeBSD community.

We have selected FreeBSD as it has a rich history as a network experiment platform. A FreeBSD

implementation also offers an alternate licensing model to the GPL [12], and the creation of a BSD-

licensed MPTCP implementation benefits both the research and vendor community.

The remainder of this thesis is structured as follows. Chapter 2 provides background on the Inter-

net and network paths. Chapter 3 examines existing multi-homing and multi-path solutions. Chapter

4 surveys existing MPTCP research into congestion control and scheduling. Chapter 5 provides brief

introduction to the Multipath TCP protocol. Chapter 6 describes the key elements of our design and

the rational behind the design choices. Chapter 7 evaluates our prototype. We conclude in Chapter 8

and discuss future work.

Chapter 2

A Background on Today’s Internet

This chapter provides an overview of the Internet’s architecture and highlights key issues effecting

communications sessions between endpoints. Section 2.1 is an overview of the Internet topology

and core components. Section 2.1.1 describes the Internet protocol stack, used by end-hosts to com-

municate over the Internet. Section 2.2 describes what a network path is, sources of dynamic path

behaviour and common traffic engineering methods. Section 2.3 discusses the emergence of multi-

homed end-hosts.

2.1 The Internet Architecture

The Internet is a network of independently administered, interconnected networks. Connecting these

networks are links between gateway nodes (routers). These links and routers provide a path between

networks for packets, the basic data unit of the Internet. Routers make decisions about which link a

packet should be transmitted on a packet-by-packet basis.

Networks that make up the Internet are divided into a core and edge, shown in Figure 2.1. Core

networks provide a pathway, or transit, to other networks on the Internet. Edge networks provide

Internet access to LANs and edge devices such as PCs or mobile devices by connecting directly with

other edge networks or obtaining transit from core networks. Edge devices communicate with one-

another using a set of protocols defined in the Internet protocol suite [13].

Networks can have multiple links to other networks, making the Internet a mesh topology. This

means that is it possible for multiple pathways two exist between two endpoints. The mesh topology

improves redundancy, as in the event of link failure there may be alternate links available. This topol-

ogy also leads to performance benefits, as devices can elect to send data over a better performing path

6

2.1. THE INTERNET ARCHITECTURE 7

Core Edge Edge Devices

Figure 2.1: The edge and core of the Internet

or stripe data across multiple paths. Figure 2.2 illustrates how independent networks are connected

together in a mesh to form the Internet. Hosts within each network can send packets to any other host,

even if the networks do not have a direct link, such as between Network A and Network D.

Packets are delivered via a single-class, best-effort service [13]. In a best-effort network packets

in transit may be corrupted, re-ordered, duplicated or discarded altogether. There are no guarantees

of throughput or on timeliness of delivery. Single-class means that all packets are treated equally

regardless of protocol or generating application.

It is the responsibility of end-hosts attached to the Internet to create the context of a communica-

tions session. This is referred to as end-to-end communications, and together with best-effort delivery

is a core principle of the Internet architecture [13]. The Internet is designed such that the intelligence

of routing and path discovery lies within the network, and the intelligence of a communications ses-

sion exists at the end-hosts.

A fundamental part of best-effort networks is the concept of fair resource usage, or fairness [14].

Resources are shared and end-to-end protocols are relied upon to divide the available network capac-

ity, typically according to some fairness measure. Endpoint-controlled fairness is feasible only when

end-hosts agree to cooperate. If enough end-hosts implement similarly behaved algorithms, approxi-

mate fairness can be achieved without network-based management. A single definition of fairness is

not widely agreed upon [14], and what constitutes fair changes depending on the desired outcomes.

The most common form is that of flow-rate fairness, where end-to-end protocols attempt to attain an

equal division of bandwidth between flows that share a single network link [14].

8 CHAPTER 2. A BACKGROUND ON TODAY’S INTERNET

Network A
Network B

Network C
Network D

Figure 2.2: An Internet mesh topology

Layer

Link Internet Transport Application

Protocol ARP, PPP, Ethernet IP, ICMP TCP, UDP, SCTP HTTP, DNS, BGP

Table 2.1: A selection of protocols from layers of the Internet suite.

2.1.1 The Internet Protocol Suite

The Internet protocol suite is a layered stack of protocols that enable a host to communicate over

the Internet. Within the stack are protocols that provide functionality such as address resolution,

connection setup and reliable transmission. The suite is divided into four layers of abstraction: link,

Internet, transport and application. The suite, and the protocols within, are standards defined by the

Internet Engineering Task Force (IETF) [15].

Internet stack protocols are grouped within each layer according to the function they perform

(Table 2.1). A message originates at the application and is encapsulated by a protocol header from

each layer before transmission. This process is reversed on reception, such that protocols effectively

communicate layer-to-layer, as Figure 2.3 shows. Broadly speaking, the lower layers (link, Internet)

provide media access, addressing and routing. The upper layer protocols (transport, application) form

the communications channel between end-user applications.

2.1. THE INTERNET ARCHITECTURE 9

Application
Transport
Internet
Link

Internet
Link

End-host Router(s)
Application
Transport
Internet
Link

End-host

Figure 2.3: Layer-to-layer communication

The application layer is the topmost layer of the Internet suite. From here data originates and

is eventually consumed. Application layer protocols can be categorised as end-user and support

protocols [13]. End-user protocols provide services to user applications. For example a web browser

will communicate with a web server application using HTTP [16]. Support protocols are typically

engaged by the host system directly. A host might issue a DNS lookup [17] in order to resolve the

location of a web server that a browser wishes to connect to.

Transport layer protocols provide the end-to-end communications channel and signaling between

endpoints. A number of transport protocols have been standardised by the IETF, though the Trans-

mission Control Protocol (TCP) and User Datagram Protocol (UDP) are the primary protocols used

on the Internet [18]. TCP, detailed in Section 2.1.2, is the default choice for reliable, ordered and

connection-oriented data service. UDP is connectionless and unreliable, providing only multiplexing

and error checking to IP datagrams.

The Internet layer includes the Internet Protocol (IP) [19] itself. The Internet Protocol defines

the end-to-end datagram format and provides the addressing and routing framework that enables data

to be delivered between two end hosts. The transmissible unit of IP is the IP packet, and data to

be transmitted may be segmented and placed into a sequence of one or more packets. Within each

packet is an IP header that contains all the meta-data required to reach a destination endpoint. Thus

each packet is self-contained and independently routable. Key within the IP header are the source and

destination IP address fields.

Every host attached to an IP network is identified by an assigned IP address. Decoding an IP

address provides a network address and host address. End-hosts belonging to the same network share

a common network address. The host address is always unique on a given network, making each

end-host individually addressable and allowing packets to be routed directly between two end-hosts.

10 CHAPTER 2. A BACKGROUND ON TODAY’S INTERNET

Acknowledgement Number

Sequence Number

Source Port Destination Port

Window

Urgent PointerChecksum

Data
o�setResv Flags

Bit 0 Bit 31

Options (if data o�set > 5)

20
bytes

Figure 2.4: TCP Header

Since IP is a stateless protocol, an end-host does not need to signal the IP network explicitly in

order to set up a communications channel or transmit new packets. Routing protocols are used to

exchange network reachability between ASs. Routers use the destination IP address in the IP header

to forward packets through the Internet. Protocols such as ICMP, which provides diagnostics and

error notification, are also grouped within the Internet layer.

The lowest layer of the Internet stack is the link layer. Link layer protocols mediate access to

the link to which a host is directly connected. The protocols are divided between network-specific

medium access control (MAC) protocols, which govern the physical transmission of data over a link,

and logical protocols for tasks such as address discovery and configuration.

2.1.2 TCP: A Ubiquitous Transport Protocol

The Transmission Control Protocol (TCP) is the most widely used transport protocol on the Internet.

It is used as transport for the on-demand video, web and file sharing applications that account for the

majority Internet’s traffic volume [20]. Due to it’s pervasiveness, the Internet stack is also referred to

as the TCP/IP stack. TCP provides reliable, sequenced delivery of data between two endpoints over an

IP network. As long as a path exists between the source and destination IP addresses, any transmitted

data will be received at the destination application in-order and error-free. Once established, a TCP

connection is tied to specific IP source and destination endpoints that cannot be changed, even if a host

is accessible by multiple addresses. Where a path fails, TCP provides graceful connection closure.

Connection management, data segmentation, error checking and retransmission are performed by

2.1. THE INTERNET ARCHITECTURE 11

SYN
SEQ: 20

SYN/ACK
SEQ: 300, ACK: 21

ACK
SEQ:21, ACK: 301

Host 1 Host 2

Figure 2.5: TCP three-way SYN handshake.

TCP and hidden from the application.

The TCP header is shown in Figure 2.4. It is added prior to the IP header. The header length is

20 bytes plus up to 40 bytes of options. The port number fields allow multiplexing of multiple TCP

flows with a single IP address. By convention port numbers are used by servers as an identifier for

specific services (E.g. port 80 for web servers) [21]. Together with the IP header protocol field, the

four-tuple of source and destination IP addresses and port numbers uniquely identifies a TCP flow on

the Internet.

A TCP connection is bi-directional and maintains two entirely independent data streams - so

that host is able to reliably send data to the other. Thus both the client and server are capable of

being a sender or receiver in a connection. Features such as retransmission or rate-control operate

independently on each stream.

Connection Establishment and Teardown: TCP is connection-oriented and a finite state ma-

chine (FSM) is defined for session establishment and termination. There are eleven states [1] within

the FSM that, broadly speaking, represent five distinct phases:

• Closed: No connection state exists.

• Listening: Listening for a connection request.

• Opening: Synchronising a connection between two endpoints.

• Established: An open connection over which data can be transferred through the socket.

• Closing: Dismantling the connection.

12 CHAPTER 2. A BACKGROUND ON TODAY’S INTERNET

LEN: 200
SEQ: 50, ACK: 10

Host 1 Host 2

ACK, LEN 200
SEQ: 10, ACK: 450

ACKs two previous
segments, also sends
data

ACK
SEQ:450, ACK: 210

LEN: 200
SEQ: 250, ACK: 10

ACK of the
received data

Figure 2.6: TCP four-way FIN handshake

Connections are established by three-way handshake, shown in Figure 2.5. The handshake serves to

synchronise the sequence streams and negotiate parameters for the session.

The client host initiates the handshake by sending a packet with the SYN flag set (SYN packet)

and a sequence number that will be used to represent the byte stream from the client to the server. The

server responds with a packet that has the SYN and ACK flags set. This SYN/ACK packet acknowl-

edges receipt of the SYN packet while also including the starting sequence number for the server to

client data stream.

Connections are closed by way of a four-way handshake, shown in Figure 2.6. A host indicates

that it no longer wishes to send data by sending a packet with the FIN flag set (FIN packet). The

remote side must acknowledge all received data up to and including the FIN sequence to complete

the handshake. Either host may send a FIN packet once a TCP connection has been established,

however the connection is only partially closed until both hosts complete the handshake. A host that

has not sent a FIN packet may continue to send new data with the expectation that the remote host

will receive it.

There are cases where graceful shutdown is not possible. If for example one side of a TCP session

loses synchronisation or data is corrupted in-transit, it is necessary to notify the remote host that the

connection should be aborted. This is done by sending a packet with the RST flag set (RST packet).

A RST packet will abruptly close the connection, bypassing the four-way handshake.

Reliable and Ordered Packet delivery: TCP uses sequence numbering to provide ordered and

2.1. THE INTERNET ARCHITECTURE 13

LEN: 200
SEQ: 50, ACK: 10

Host 1 Host 2

ACK, LEN 200
SEQ: 10, ACK: 450

ACKs two previous
segments, also sends
data

ACK
SEQ:450, ACK: 210

LEN: 200
SEQ: 250, ACK: 10

ACK of the
received data

Figure 2.7: A simple TCP data exchange.

SEQ: 100
Host 1 Host 2

Packet is lost

Duplicate ACKs
cause retransmission

XSEQ: 200
SEQ: 300
SEQ: 400

ACK: 100
ACK: 100
ACK: 100SEQ: 500

ACK: 100

SEQ: 100

Missing SEQ100,
send duplicate ACKs

SEQ: 800

X
SEQ: 800

Packet is lost, ACK
never sentRetransmission timeout,

SEQ 800 resent

Retransmit triggered
by duplicate ACK

Retransmit triggered
by timeout

Figure 2.8: Examples of TCP retransmission.

14 CHAPTER 2. A BACKGROUND ON TODAY’S INTERNET

reliable delivery. A sequence number is assigned to each byte in the stream and the receiving host

must send positive acknowledgment of each byte received. The acknowledgement informs the sender

of how many bytes were received and indicates the next sequence number expected. In the event that

the network re-orders packets in transit, the sequence numbers can be used by the receiver to restore

the correct byte order. Figure 2.7 shows a basic TCP data exchange on an established connection.

In this example Host 1 sends two packets which are acknowledged with the single ACK-packet from

Host 2. The acknowledgement is piggybacked with a data packet from Host 2 to Host 1. Host 1 then

acknowledges this data with an ACK-packet that contains no data.

Acknowledgements are also used to signal packet loss. A receiver will send duplicate acknowl-

edgements if packets are received that are not the next expected sequence. After receiving multiple

duplicate acknowledgements, the sender will retransmit the missing segment. The absence of ac-

knowledgments is also a potential indicator of packet loss. Each time a packet is sent a retransmis-

sion timer is armed at the sender. The duration reflects the time within which an acknowledgement is

expected and is based on the current Round Trip Time (RTT) estimates [2] for the path. If the timer

elapses before an acknowledgment arrives, the sender assumes the packet was lost and retransmits the

unacknowledged segment. Figure 2.8 shows these retransmission scenarios. First is a retransmission

caused by duplicate ACK packets. Host 1 sends a window of five packets, of which the first is lost

(SEQ100). As each of the remaining packets are received, Host 1 sends an ACK packet for SEQ100.

On detecting the duplicate ACK packets, Host 1 resends SEQ100. In the second example, Host 1

sends a single packet (SEQ800) to Host 2, which is lost. As an acknowledgment is not received the

retransmission timer fires, causing SEQ800 to be resent.

Sliding Window and rate-control: The transmission rate of a TCP flow is determined by a

dynamically scaled sliding window. This represents the window of bytes that can be sent before

requiring an acknowledgment. Two mechanisms shape the size of the sender’s window: flow-control

and congestion control. The size of the sender’s sliding window is the minimum of the flow-control

window and congestion control window.

Flow-control prevents the sender from overwhelming a receiver that does not have adequate mem-

ory to buffer incoming data. Typically, received TCP segments are not passed directly to the appli-

cation but are placed into a receive buffer allocated from kernel memory. The application is notified

when new data are recorded in the buffer, at which time it may read a portion or all of the contained

bytes. The receive buffer has a finite memory limit and the flow-control window is determined by the

free space remaining in the buffer (in bytes). The size is shared with the sender via window updates

2.1. THE INTERNET ARCHITECTURE 15

placed in the window field of the TCP header (Figure 2.4).

In some instances the capacity of the network path to deliver data is greater than the size of the

receive buffer. In such cases the sender’s window will be capped at the size of the receive buffer (i.e.

the advertised window). It is also possible for data to be delivered at a rate faster than the application

reads from the receive buffer. As the buffer fills, window updates are sent to reduce the transmission

rate at the sender and prevent a buffer overrun. When the sender’s window is constrained by the

receiver’s window size rather than the capacity of the network, the rate is said to be receive-window

limited.

Congestion control adjusts the sending window to maximise throughput and reduces the sending

rate when the network is experiencing congestion. TCP congestion control has largely been the driver

of fairness on the Internet [14]. A congestion window (cwnd) is calculated based on the current path

characteristics, and this determines the amount of data that can be transmitted before an acknowledge-

ment is required. Congestion control for TCP has been studied extensively and there are numerous

modifications and enhancements. The following discusses congestion control as outlined in RFC5681

[22].

The size of the congestion window is controlled algorithmically. At the onset of a connection,

the slow start algorithm is used to discover the approximate capacity of the path. During this phase

the congestion window is increased exponentially until either packet loss occurs or a pre-configured

slow start threshold (ssthresh) is reached. At this time the current congestion window is halved and

the congestion avoidance phase begins. The congestion avoidance algorithm grows the congestion

window at a much slower rate then slow start, typically by one segment per RTT. As with slow start,

the congestion window is halved when network congestion is detected. The goal of congestion avoid-

ance is to maximise throughput without adding congestion to the network. It does this by increasing

the window at a conservative rate when there is no congestion, and reducing the congestion window

aggressively when congestion events are detected. If the retransmission timer fires during the con-

gestion avoidance, the sender enters slow-start recovery. The ssthresh is set to half the current

congestion window, the congestion window is set to 1-MSS, and the slow start algorithm again gov-

erns congestion window growth. The congestion avoidance algorithm in [22] and derivatives such as

TCP NewReno are tuned to achieve flow-rate fairness.

Fast retransmit and fast recovery algorithms are also defined [22] to avoid or improve congestion

recovery. These algorithms allow the sender to recover from packet loss without entering slow start

recovery. On detecting three duplicate acknowledgements the fast retransmit algorithm resends the

16 CHAPTER 2. A BACKGROUND ON TODAY’S INTERNET

Variable Description

SND.NXT Send Sequence: Next sequence number to send

SND.UNA Send Unacknowledged: Earliest sequence number sent but not acknowledged

SND.WND Send Window: The window of bytes that the receiver can receive

SND.MAX Send Sequence Max: The highest sequence number sent

RCV.NXT Receive Sequence: The next sequence number expected to receive

RCV.WND Receive Window: Number of bytes that can currently be received

Table 2.2: TCP State Variables

segment beginning at the first sequence number that was sent that has not been acknowledged. This

is the segment that is presumed to have been lost. The ssthresh is reduced and the fast recovery

algorithm controls the congestion window until a positive acknowledgement is received. As a lost

packet may have been part of a larger window of packets, further duplicate acknowledgements may

be received before the retransmission is acknowledged. Fast recovery takes this into account and

inflates the congestion window by one segment for every duplicate acknowledgement received after

fast retransmit, allowing the transmission of new data to continue.

Packet loss is not the only signal used by congestion avoidance algorithms to detect congestion,

and algorithms may use other indicators, for example delay [23, 24]. The network can also explicitly

signal congestion through packet marking schemes. Explicit congestion notification [25] is one such

scheme that has seen some deployment on the Internet [26].

State variables: Each TCP session must track sequence numbers, state transitions, plus various

timers and state flags. Of particular importance are the sequence number variables, through which

the core functionality of the protocol (strict ordering, reliability) is derived. The specification [1] thus

defines key state-variables for the send and receive sequence spaces, which are summarised in Table

2.2. These variables track the bytes being sent and received by each host, and are used to determine

which, and how many, bytes can be sent or received at a given time. We will see later in Chapter 5

that MPTCP inherits the sequence-numbering semantics of TCP.

Options: TCP is extensible, and new functionality is supported via the option field (Figure 2.4),

which provides an additional 40 bytes of space for TCP options. These are extensions to TCP that en-

hance the protocol in some way and are typically negotiated during the opening three-way handshake.

Some options standardised by the IETF include the window scale and timestamps options that enable

high performance TCP [27], and the Selective Acknowledgments (SACK) [28] option that improves

2.1. THE INTERNET ARCHITECTURE 17

TCP’s loss recovery.

2.1.3 Extending Protocols

Protocols typically include some provision for improvement. Networking technologies and applica-

tions evolve and extensibility is crucial if a protocol is to remain useful into the future. A common

way in which a protocol can be extended is via new header fields. Both IP and TCP have been been

improved in this way. In practical terms however the widespread deployment of middleboxes since

the late 1980s has meant deploying new protocols or even extending existing protocols is difficult

[29].

Distinct from routers, middleboxes are not essential for forwarding packets within the Internet, but

instead serve specific traffic management purposes by inspecting or altering information in transiting

packets. They perform a wide variety of functions at all layers of the Internet protocol stack [30].

Enterprise network requirements for content filtering, security and performance means that a wide

range of middleboxes are deployed in such environments [31].

Middleboxes exist to solve a number of problems. Firewalls were developed to provide network

security by filtering incoming and outgoing packets. Network intrusion detection systems (NIDS)

were created in response to a lack of security auditing tools [32]. Network address and port translators

(NAPTs) allow multiple hosts to share a common publicly-accessible IPv4 address. Performance

enhancing proxies may attempt to increase the performance of a connection in a number of different

ways - such as optimising ACKs or caching segments to expedite retransmissions. A middlebox is

not always a distinct appliance.

Middleboxes are deployed to meet specific operational goals for a network and can apply strict

bounds on what is considered acceptable traffic. To accomplish this they can break the end-to-end

principle by altering packet headers and maintaining connection state independently of the end hosts

[29].

Remote network attacks can exploit a wide range of obscure protocol behaviours that may defeat

a firewall or remain undetected by a NIDS [33]. In response to this, security policies enforced by

middleboxes can be restrictive to the point of preventing common protocol behaviours [33]. It can

be easier to apply a restrictive security policy or heavy traffic normalisation

1

rather than attempt to

identify all the potential attack vectors.

For example, approximately 50% of the paths tested in [34] discarded packets that included any

1

A technique of adjusting packet information to fit within a known profile

18 CHAPTER 2. A BACKGROUND ON TODAY’S INTERNET

type of IP options. New TCP options face a similar issue. In [29], an ‘unknown’ TCP option, rep-

resenting a new TCP extension, is included in packets sent across the Internet. They find that some

middleboxes, particularly application-level proxies, will drop packets containing unknown options.

Others forward the packet but strip the unknown option from the TCP header. The paths hostile to

IP and TCP options were fewer but non-negligible, and more common in edge networks than core

networks. Despite this however [29] concludes that it is still possible to extend protocols such as TCP.

As protocols designed for end-host use must transit through edge networks, interference from

middleboxes is a real possibility that must be considered when adding functionality to a protocol. An

alternate solution to extending an existing protocol is to tunnel a new protocol over TCP or UDP,

such as with QUIC (Quick UDP Internet Connections) [35] or UDP encapsulation of SCTP [36].

This sidesteps the issue of middlebox compatibility, however, existing applications would need to be

updated to use the new protocol.

Middleboxes are expensive to purchase, maintain and operate, and adding new capabilities often

means refreshing hardware [31]. It can therefore be cost prohibitive to add support for new protocol

extensions as they are standardised. The widespread presence of middleboxes means that the Internet

is effectively reduced to using only a few existing protocols (TCP, UDP), ports and protocol exten-

sions. This not only severely restricts the ability of designers to create new protocols, but also makes

it difficult to extend existing protocols.

2.2 The Network Path

In this section we describe a how a communications path can be established between two endpoints,

the characteristics that define a path’s behaviour and factors that introduce dynamic behaviour into a

path.

2.2.1 Defining the End-to-end Path

The Internet is a packet switched network. Packets are transmitted by an endpoint into the network

and contain all the information required for delivery to a destination. A path is the collection of

network links traversed as a packet moves between routers (hops) to the destination. Endpoints can

be connected via multiple paths, as shown in Figure 2.9. A stream of packets belonging to the same

end-to-end communications session is a flow. Packets in the same flow do not have to follow the same

path. Links that form a network path are a shared resource. Independent and unrelated flows between

different pairs of endpoints are statistically multiplexed together into a flow aggregate.

2.2. THE NETWORK PATH 19

Figure 2.9: Multiple paths between two hosts.

The path itself is established hop-by-hop, with each router deciding what the next hop should be.

The next hop is selected via route table lookup. Entries in the route table are usually informed by

a cost metric, such as number of hops estimated to reach a given destination network. Subsequent

connections between the same two endpoints can take a different path, depending on routing decisions

in the network. As routers do not maintain per-connection state, paths are not permanent and may

change mid-connection, for example in response to link failure. It is common for the forward and

return paths to be asymmetric [37].

Paths that exist between two endpoints may be disjoint or share a portion of links. Paths using

common links are less redundant, since points of failure are shared. Routers and end-hosts do not

know the complete end-to-end path for a flow. If a failure occurs, the endpoints are not aware of the

location or even the nature of the failure

2

.

Path metrics: Paths and links are described in terms of bandwidth, delay and error rate. Band-

width is the bit-rate capacity. Delay is the time taken for a packet to reach the receiver (i.e. end-to-

end), and is the sum of all the delays incurred along a network path. It is also referred to as one-way

delay, and includes the propagation, serialisation and processing delays at each hop. The error rate is

an expression of how often data bits are altered during a transmission period. The bandwidth-delay

product (BDP) is the product of the bandwidth and end-to-end delay, and represents the amount of

data that can exist on the path. If the end-to-end path is abstracted as a pipe, then the BDP represents

the amount of data it takes to fill that pipe.

Throughput, delay and loss rate are metrics that describe a flow on a path [38, 39]. Throughput is

2

When permitted, ICMP messages can rely basic diagnostic information to an end-host or router.

20 CHAPTER 2. A BACKGROUND ON TODAY’S INTERNET

the total amount of data received per unit time and is indicative of bandwidth utilisation. Delay can

represent one-way delay, round-trip time (RTT) and packet delay variance (jitter). RTT is the sum of

the forward and reverse end-to-end delays. Jitter represents the variation in end-to-end delay between

packets. Loss rate is a measure of the number of packets lost along the path from source to destination

over a given time frame. Together these characteristics provide an indication of a path’s quality at the

time of measurement. Taking measurements of path characteristics can be critical to the performance

of traffic management and congestion control algorithms [40].

The definition of a given characteristic can also vary depending on the measurement context,

which [39] divides into network, flow and end-user. Network context measurements take the perspec-

tive of network devices such as routers. For example delay might measure the forwarding time for

a packet through a router. The flow context describes the characteristics of a single flow from the

perspective of the endpoints. The end-user context relates characteristics to the end-user experience.

Link technology: The links in a path may combine a mix of underlying network technologies,

impacting path characteristics in different ways. The links connecting hops in the path may have

different capacities. A slow link can restrict the maximum throughput that can be achieved along the

path. Link transmission protocols can effect delay and loss rates. For example flows on DOCSIS

access links can experience higher jitter than ADSL links [41]. Wireless networks suffer from errors

due to interference, signal attenuation and channel contention. Link-layer behaviours can also interact

with higher layer protocols. For example TCP has been shown to obtain poor throughput in wireless

networks by falsely interpreting congestion [42, 43].

Queuing: It is possible for the aggregate rate of incoming packets to exceed a router’s forwarding

capacity. Packet arrival rates fluctuate and aggregate throughput can spike significantly over short

timescales [44]. This necessitates the use of queues to buffer packets briefly until transmission is

possible. A longer queue can result in reduced packet loss and increased link utilisation. A queue

should fill only during bursts. The cost of queuing is additional forwarding delay for each packet.

Queues add delay and therefore increase the BDP of the path.

Bottlenecks and congestion: A bottleneck is the slowest link in a communications path. The

end-to-end throughput of a connection is limited to the bandwidth available at the bottleneck link.

Bottlenecks can occur at any point in the network path. A bottleneck can be a slow link, or a link

whose aggregate input exceeds output capacity. Bottlenecks also form due to misconfiguration. For

example incorrectly configured wireless access points can limit the performance of many home broad-

band connections [45].

2.2. THE NETWORK PATH 21

2.2.2 Sources of Dynamic Behaviour

Unlike the provisioned, predictable paths of a traditional telecommunications network, the character-

istics of a path across the Internet are not known in advance and may change. Path characteristics are

shaped by a number of factors such as geographical distance and the underlying link technology and

bandwidth. In addition to these are the more dynamic influences of queuing, link-layer mismatches,

cross-traffic from multiple endpoints and adaptive protocols. These interactions drive changes in

delay, loss and throughput. In this section we describe some key causes of this dynamic behaviour.

Cross-traffic: Given a flow between two endpoints on a shared link, cross-traffic consists of

packets that belong to other flows. A flow must compete for network resources against other flows

in the aggregate. Cross-traffic comes from a range of source applications that can generate packets of

different sizes and at different rates. Flows within the aggregate may change on a hop-by-hop basis,

meaning a flow can compete with different cross-traffic at different points in the network.

The duration of cross-traffic flows also varies. The majority of network flows exists for less than

a few seconds [46]. These short sessions can be signaling-related UDP flows [18] or TCP-based

web-traffic. Short TCP flows do not transition to congestion avoidance [46]. The majority of traffic

volume in an aggregate belongs to comparatively few long-lived TCP flows, which also consume a

higher ratio of resources [47, 48].

Adaptive-rate protocols: Adaptive-rate protocols vary the data transmission rate of a communi-

cations session based on the level of bandwidth or congestion perceived in the path. They are essential

to resource sharing and in preventing congestion collapse in the Internet [49]. By probing the path to

estimate bandwidth and reacting to congestion, an appropriate sending rate can be set that maximises

path utilisation. TCP congestion avoidance is the most widely used adaptive-rate transport protocol on

the Internet. A popular application-layer adaptive-rate technique is HTTP adaptive streaming (HAS),

used by on-demand video streaming clients [50, 51]. YouTube and Netflix, which now account for a

substantial volume of the Internet’s total traffic volume [52], use HAS.

When devising new congestion control algorithms, fairness with other flows is considered a key

performance metric [39]. Despite this, congestion control appears to be unfair when many flows

share a bottleneck [53]. For example long-duration, high-volume or low-RTT connections receive a

greater share of bandwidth [54, 55]. TCP variants may not be fairness-compatible with other TCPs.

For example TCP Vegas flows have been shown to perform poorly at shared bottlenecks with TCP

NewReno [56, 57]. Protocols can also be intentionally modified to more aggressively use the available

bandwidth, ignoring fairness principles for higher performance.

22 CHAPTER 2. A BACKGROUND ON TODAY’S INTERNET

Adaptive-rate flows can interact, causing behaviours such as global synchronisation [49] or un-

even allocation of bandwidth at bottlenecks. Network conditions can also cause adaptive-rate proto-

cols to react in unexpected ways, for instance rapid changes in RTT can result in spurious retransmis-

sions when the RTO estimate of a TCP connection is not able to adjust in time [40].

There can also be interaction between transport-layer and application-layer adaptive protocols,

such as a HAS client using TCP transport. HAS clients uses HTTP requests to fetch sections of

video - perhaps tens of seconds at a time - starting with the lowest bitrate encoding. As the TCP

congestion window evolves the application can request a higher bitrate encoding. A client may fetch

enough video playback that the connection remains idle for a time. If this time is greater than the

RTO calculated by TCP, many implementations will reset the congestion window and all estimates of

path characteristics. On fetching the next sequence, the connection will have returned to slow start.

Queing: A basic queue services packets in a first-in first-out (FIFO) basis, dropping packets that

arrive when once queue is already full. This type of queuing is referred to as drop-tail. FIFO/drop-tail

queues are common in edge network routers [41]. A router on a link that is not sufficiently provisioned

will queue packets during steady-state loads, adding to end-to-end delay. The ability to absorb bursts

is also diminished, leading to increased packet loss and poor throughput. Appropriate sizing of router

buffers is critical to flow performance and end-user quality of experience, particularly for applications

that are sensitive to delay.

The cost of memory for network devices has decreased over time, meaning input queues can be

sized much larger than previously possible. There has been a preference towards using over-sized,

unmanaged FIFO/drop-tail buffers in edge networks [41, 58, 59]. If such queues are not properly

managed, or fail to provide timely congestion feedback, they can grow to sustain high occupancy

without ever draining. Allowing standing queues to form adds latency, increases jitter and more

importantly strips adaptive-rate protocols of necessary congestion signals.

Inappropriately large queues have been shown to add hundreds of milliseconds (or even seconds)

of delay [59, 41] without dropping packets. The consequence of this is that a sender will continue

to grow their window, in turn adding more delay [60]. In recent years the problems related to over-

provisioned and unmanaged queues have coalesced under the term bufferbloat [61]. Research is

ongoing, with various approaches to buffer sizing [62, 63, 64, 65, 66].

Excess queuing is not restricted to edge and core networks, and can be caused by edge devices

such as home routers that are pre-configured with large buffers. Keribich et al. [58] observe that a

cable modem may arrive with a buffer configure for 50Mbps upstream, only to be connected to a

2.2. THE NETWORK PATH 23

1Mbps link. Thus the buffer is vastly over-provisioned and likely to introduce queuing delays.

2.2.3 Tra�c Engineering Mechanisms

Traffic engineering aims to simultaneously improve the end-user experience and maximise use of

deployed resources. This is typically achieved through a service differentiation model which divides

traffic flows for class-specific treatment. This is in contrast to the original Internet service model of a

single-class best-effort network, which has largely relied on the use of rate-fair TCP congestion avoid-

ance for controlling flows [49]. Network-based traffic engineering is in-part motivated by perceived

shortcomings of the end-to-end best-effort service model:

• The Internet has a wide variety of applications whose flows have diverse characteristics and

service requirements. If flows are treated equally, the performance of some applications (such

as delay-sensitive or interactive) can be sub-optimal. Providing adequate performance for all

traffic types in a best-effort network can require over-provisioning of links.

• Network infrastructure is expensive and best-effort service does not grant operators explicit

control of their own resources. Service levels vary as traffic loads change and cannot be guar-

anteed.

• End-to-end fairness mechanisms typically aim to share resources on a per-flow basis. The

content, duration and packet profile of a flow are not taken into consideration. It is not possible

to provide a higher level of service to certain traffic classes.

• End-hosts are not compelled to act fairly and end-to-end based fairness is open to exploitation.

For instance a single TCP application opening multiple parallel streams can easily attain ad-

ditional bandwidth at a bottleneck. A best-effort network cannot enforce fairness or penalise

abusers.

Traffic engineering allows network operators to better manage the available capacity and provide

Quality of Service (QoS). QoS schemes consider the user experience or performance requirements

of flow and can provide provide specific service-level guarantees, such as bounds on delay or mini-

mum throughput. The traffic engineering process can be broken into several important components:

classification, steering, queue management and scheduling, which are discussed below.

Packet classification: The first step in providing QoS enhancements is to differentiate pack-

ets into service classes. Each service class is defined by the path requirements of the application.

24 CHAPTER 2. A BACKGROUND ON TODAY’S INTERNET

Applications can be divided into several broad categories such as delay-sensitive, or delay-tolerant.

Performance and user-experience are bound by path characteristics. For example a delay-sensitive

application will have a maximum tolerable delay or jitter, beyond which the user experience is dimin-

ished.

Packets can be classified based on a number of attributes such as transport protocol, payload size

or flow duration. The descriptors are typically indicative of the traffic class. For example an delay-

sensitive flow could have short, constant rate packets delivered using UDP. Packets may be classified

and marked by a dedicated classifier for treatment by downstream nodes or classified and treated by

a single device without any wider cooperation.

Traffic steering: The most basic form of traffic engineering is the use of routing to direct traffic

aggregates through or between networks. The goal is to efficiently distribute traffic across network

resources by using the most effective path. This reduces congestion and improves resource utilisation.

Routing within a single network domain is referred to as interior routing while routing between

networks is exterior routing.

Open Shortest-Path First (OSPF) [67] is a popular interior routing protocol. OSPF uses a weight-

ing factor for each link to calculate the lowest-cost next-hop and installs these in the routing table.

Weights can be defined manually or algorithmically [68] and can be based on link capacity or similar

metric. Protocols like OSPF can be extended with additional traffic engineering functionality [69].

When a network has multiple external gateways, exterior routing protocols like Border Gateway

Protocol (BGP) are used to select the inbound and outbound links for traffic. A router running BGP

learns the path to different destinations based on route advertisements received from neighbouring au-

tonomous systems. Routes or transit to other networks can be announced by sending route advertise-

ments. Path cost is based on a combined set of attributes that can include hop-count, link-availability,

administrative policy or an arbitrarily defined metric.

By default routers forward packets according to the destination address. Policy-based routing

(PBR) allows administrators to configure specific forwarding policies based on information other than

destination address. First a PBR filter classifies packets using network/transport header information

or packet attributes such as packet size. A matching packet can then be forwarded according to class

policy. PBR can be used to separate traffic for QoS, for example routing UDP and TCP flows to the

same destination network along different paths. Packets not matching any PBR criteria will rely on a

destination-based route table lookup for the next-hop.

Load balancing is the process of distributing traffic loads across links and is closely associated

2.2. THE NETWORK PATH 25

with routing. As mentioned, routing tables are populated with the lowest-cost routes, meaning packets

are always forwarded along the lowest-cost route. If there are multiple paths with the same cost, then

the router can dynamically choose between them. It is possible to intentionally engineer multiple

equal-cost paths for a destination, allowing for the use of a load balancing algorithm. Several load

balancing approaches are described in [70], such as performing a hash on packet head fields and using

the outcome to determine the next hop.

Multiprotocol Label Switching (MPLS) is a label encoding and switching framework that sim-

plifies intra-domain routing and provides traffic engineering functionality [71]. An MPLS router at

the ingress or egress of a domain classifies a packet into a forwarding equivalence class (FEC) and

encodes this into a label attached to the packet. FECs are commonly defined by matching part or

all of the destination address, but can also be based on non-header information. Routers within an

MPLS domain forward packets based on this label without referring to network layer headers. Labels

can be configured to provide an FEC with a fixed path through the domain. The path can be defined

by administrators or calculated dynamically from state information taken from routing protocols. A

label distribution protocol [72] allows routers to reach agreement as to the meaning of labels. FECs

themselves do not explicitly define a class of service but can be used for this purpose, labels can be

configured to provide a fixed-path for FEC-based QoS.

Source routing allows a host to specify the route for a packet. IPv4 has two such options, strict

source and record route (SSRR) and loose source and record route (LSRR) [19]. SSRR explicitly

specifies each hop in the path. LSRR provides a subset of path hops that must be visited. The routing

header extension (now deprecated [73]) of IPv6 provided similar functionality to LSRR [74]. The

IP source-routing extensions have serious security issues [75, 76] and forwarding packets with these

options is discouraged [75]. Several improvements have been proposed [77, 78].

Queue management and packet scheduling: Recall from Section 2.2.2 that unmanaged queues

discard packets only once the queue has reached full occupancy. The problems associated with this

method of queuing have been known for some time, resulting in the development of Active Queue

Management (AQM) techniques [49]. The goal of AQM is to maintain low queue occupancy by

selectively dropping or congestion-marking packets before the queue fills. Shorter queues can reduce

forwarding delay and jitter, improving the end-user experience. AQMs have historically required

some tuning and it is unclear how widespread deployment is, though [41] finds evidence of limited

deployment in several major ADSL access networks in the United States.

Random Early Detection (RED) [49] is a widely available drop-tail AQM. RED manages queue

26 CHAPTER 2. A BACKGROUND ON TODAY’S INTERNET

length by probabilistically signaling congestion avoidance in response to growing queue occupancy

(usually by dropping a random packet as it arrives at the queue). The probability of dropping a packet

increases based on the size of the queue and the duration of queuing (bursts do not trigger higher

probability of loss). At full occupancy all arriving packets are discarded.

Packet scheduling algorithms select which packet should be sent next from a queue of packets.

Scheduling aims to improve the service quality of flows at a bottleneck link through fine-grained

control of link bandwidth. Schedulers can be designed for fair bandwidth distribution, rate shaping

or prioritisation. Schedulers operate on one or more packet queues. In the case of a single queue the

scheduler can control the timing between transmissions. If multiple queues are in use the scheduler

selects the next queue from which to transmit from and the number of packets to send. A priority

scheduler sends packets from a high-priority queue first. A round-robin scheduler might send a packet

from each queue in sequence.

Packet scheduling is often combined with fair queuing or class-based queuing. In the fair queuing

model, packets are sorted into individual drop-tail queues [79] and serviced by a round-robin sched-

uler so that bandwidth is evenly distributed between flows. Weighted fair queuing adds a weighting

factor so that bandwidth can be specified per-queue. FairQueue-CoDel [80] combines a credit-based

fair queuing scheduler with the CoDel [81] AQM algorithm.

Differentiated services (DiffServ) [82] is a class-based preferential scheduling and routing scheme.

End-hosts or classifier nodes at the edge of a DiffServ domain mark packets by placing a class code

in the differentiated service field of the IP header. Classes are coarse-grained and define per-hop

behaviours (PHB) for DiffServ nodes. The PHB dictates the actual queuing and scheduling treatment

required at each node. Several standardised classes exist and include expedited forwarding [83] for

delay-sensitive traffic and assured forwarding [84] for traffic with minimum bandwidth requirements.

Schedulers can be priority-based or rate-based (e.g. fair, weighted) [85].

Packet scheduling can also be implemented at the end-host. Packet pacing [86, 87] is one tech-

nique that aims to reduce the burstiness of TCP. TCPwill typically burst back-to-back as many packets

as the window allows. Depending on the RTT the link may be left idle between bursts. Packet pac-

ing attempts to spread out the transmission window over the RTT of the connection by spacing the

transmission of each packet.

2.3. A MULTIHOMED FUTURE 27

2.3 A Multihomed Future

A host with multiple IP address attachments is multihomed. Multihoming is key to a functioning

Internet - after all, routers must be multihomed in order to connect different networks. The relative

expense of networking hardware meant that initially the Internet edge was largely without multi-

homed end-hosts. It is now common for end-hosts to have multiple interfaces. Smartphones are a

prominent example of this, having cellular and WiFi interfaces capable of simultaneously connecting

to different IP networks. A report [88] by the Internet Society shows that smartphones are already

the predominant mode of web access within the United States, and this is expected to be the case

worldwide in coming years.

Multihoming creates a fundamental shift in end-to-end communications. Traffic engineering

mechanisms that were once the purview of the network can now be implemented at the end host.

Consequently, a multihomed host has several advantages over a single-homed host:

• A flow can spread packets across multiple paths simultaneously for greater throughput.

• Paths can be reserved for fault tolerance or load sharing.

• Local policy can influence path selection.

Strictly speaking, end-hosts with multiple IP addresses can be multihomed ormulti-attached. A multi-

attached host has multiple IP addresses on the same subnet [89]. A multihomed host has attachments

to multiple networks. In this thesis we include any host that has multiple IP addresses under the

definition of multihomed.

Chapter 3

Multihoming at the End-host

We can already see examples of multihoming at the end-host. Datacentre servers are multihomed for

greater throughput or failover. ‘Wi-Fi assist’ [90] in Apple iOS allows a cellular connection to take

take over when a WiFi connection fails. However a lack of a multipath aware end-to-end protocol

means that we have yet to see many of the potential benefits that multihoming can provide. TCP, the

primary transport protocol of the Internet, was designed for single-homed hosts.

There are existing protocols that provide multipath capabilities in some form. A number of end-

to-end solutions previously proposed may now be worth revisiting. This leaves a question as to

which approach provides the most functionality and stands the best chance for future deployment. In

this chapter we first discuss packet steering at the end-host and the impact of path characteristics on

multipath connection performance. We then compare a number of existing multihoming and mobility

solutions at each layer of the Internet suite.

3.1 Steering Packets

Path selection has traditionally been in the hands of the network. Excepting cases in which a differ-

entiated services model is employed, routing decisions are not typically optimised for the needs of

any particular end host or application. A multihomed host has the ability to choose what it considers

is the best path available. Path selection can be achieved through localised routing policy or through

dynamic scheduling and flow-control mechanisms.

A multipath scheduler allows a host to distribute a data stream from a single application across

multiple output interfaces. This is distinct from the network-based schedulers previously discussed,

which multiplex packets from different input queues onto a single output link. A simplified multipath

28

3.1. STEERING PACKETS 29

Output queue Scheduler Output pathsApplication

Figure 3.1: A simplified multipath scheduler.

scheduler is shown in Figure 3.1. In this example the application writes data to the output buffer,

at which time the scheduling algorithm selects the output path (e.g. sequentially). The data is then

transmitted. The scheduler controls how much data is sent, on which path, and when. A scheduler

can be combined with a flow-control mechanism for adaptive-rate behaviour. In this arrangement the

scheduler only selects the transmission path - the flow-control algorithm determines how much can

be sent and the transmission interval.

Previous discussion showed how flow-control algorithms probe the network path and adapt the

transmission rate to maximise throughput. In a multipath scenario this can be used to dynamically

adjust how much data a scheduler can queue on a particular path. For example, if striping across

multiple TCP connections, a scheduler could allocate according to the size of the congestion window,

thus sending more data on the faster path. A more advanced form of flow-control can be attained

through the application of the resource pooling principle [91]. Pooling treats all paths as a single

resource. The flow-control algorithm is aware of conditions on all the paths and can thus more

accurately steer where data is to be scheduled by encouraging the use of the best path (e.g. by

increasing the transmission window of that path).

Ultimately the benefits of using multiple paths in a connection depends on the paths available.

These could be disjoint or share a common bottleneck. A set of disjoint paths might have a large

disparity in bandwidth and delay. The end host should therefore attempt to infer path conditions

to inform scheduling decisions. The type of information available to the scheduler depends on the

layer in which the scheduler operates. A link layer scheduler has a vastly different world view to an

application-level scheduler.

To illustrate, consider an application-level scheduler striping data over multiple TCP sockets.

The space in the output queue of each socket controls how much data can be allocated to a path. The

30 CHAPTER 3. MULTIHOMING AT THE END-HOST

Path A
200ms

Path B
20ms

1

2
3

4Host 1
(sender)

Host 2
(Receiver)

2 3 42 3 41

Send Bu�er Receive Bu�er

Figure 3.2: Data striping across asymmetric paths can lead to packet reordering.

transmission rate is governed by the TCP ACK-clock1. A scheduler integrated in the transport layer

might look at the available congestion window when selecting a path. Such a scheduler could also use

statistics calculated by the flow-control algorithm, such as RTT, when selecting a transmission path.

3.2 Multihoming and Path Diversity

Internet paths are dynamic. At any given time there are a number of mechanisms in play, both at

the endpoints and within the network, that interact to alter the characteristics of an end-to-end path.

The paths between multihomed hosts are thus very likely to have different characteristics. This is

especially true in cases where multi-mode network access technologies are used, for instance the

combination of Wi-Fi and cellular interfaces.

For multipath communications, the primary problem arising from diverse paths is out-of-sequence

packet arrival. It is possible for packets to be re-ordered along a single path (for instance due to packet

loss), however it is more likely to occur if packets are routed or striped across multiple paths. The

main cause of packet reordering in multipath communications is differences in path delay caused by

RTT or bandwidth asymmetry.

Figure 3.2 shows multihomed end-hosts connected via two disjoint paths, where Path A has higher

propagation delay than Path B. Host 1 sends four packets to Host 2: packet 1 is sent on Path A, while

packets 2-4 are sent on Path B. Due to the delay difference, packets 2-4 arrive before packet 1. This

presents several problems. For example if the receiver requires data in the order transmitted (e.g.

using TCP transport), then the packets must be buffered until packet 1 arrives. Alternatively an

1

Acknowledgements create space in the sender’s window, allowing the transmission of new data.

3.2. MULTIHOMING AND PATH DIVERSITY 31

application with timeliness constraints may process packet 2-4 and discard packet 1 when it arrives.

Path loss rate also contributes to packet reordering. Striping data where one path is lossy will

result in out-of-sequence delivery. For reliable protocols the time taken to retransmit must be taken

into account, effectively acting like additional delay on the path.

Packet reordering can degrade performance in several ways. Foremost it effects the timeliness

of delivery, increasing delay and adding jitter. Buffering compresses received segments in time -

meaning data is delivered to the application in chunks. Protocol-specific problems can also occur,

such as retransmits being falsely triggered. In the following paragraphs we detail some common

problems for ordered protocols created by out-of-sequence packets.

Head-of-line blocking occurs when received data cannot be delivered to an application as the next

expected packet has not arrived. Packets must be buffered until in-order. Head-of-line blocking is

symptomatic of schemes that spread data across multiple paths [92, 93, 94]. Returning to the previous

example, we see the receive buffer contents of Host 2 in Figure 3.2. In this example the receiver was

expecting packet 1 to arrive but instead received packets 2-4. Packets 2-4 must be held until packet 1

arrives. Note that the buffer has a finite space. There are a number of issues that arise as a result of

this. Immediately we can see that the goodput

2

of the connection will be limited by the delay of Path

A. The size of the receive buffer is also a consideration, as Host 1 may continue to send packets on

Path B. If the buffer is not sized appropriately it may be fully consumed. A full buffer can cause a

number of subtle effects on adaptive protocols that use sequenced, flow-controlled windows.

Window blocking is one such problem that results from out-of-sequence data occupying a large

portion of the receive buffer. Recall that sliding-window protocols like TCP maintain separate trans-

mission (or congestion) and receive windows. The actual window of data that can be sent at a given

time is the minimum of the transmission window and the receive window minus any in-flight data.

As the receive buffer fills with out-of-order data the sending window shrinks, since no data is being

acknowledged. Once the window is fully transmitted no further data can be sent until an acknowl-

edgement is received. In asymmetric multipath connections this has the effect of throttling the higher

performing path, as the window can only be advanced once the data causing head-of-line blocking

has been received and acknowledged.

Send buffer blocking is another side-effect of a full receiver buffer. A send buffer is typically

large enough to keep the path fed with data. To support reliability, segments must stay in the send

buffer until they have been acknowledged. When head-of-line blocking occurs, data that has been

2

The bytes received per unit time at the application level

32 CHAPTER 3. MULTIHOMING AT THE END-HOST

successfully received cannot be acknowledged. The result is that the send buffer must hold onto

these segments until all the blocking packet is received. Looking again at Figure 3.2, packets 1-4 are

retained in the send buffer at Host 1, even though 2-4 have been received and could have conceivably

have been acknowledged even before packet 1 reaches Host 2.

Given the increased likelihood of packet reordering on multipath connections and the issues that

stem from this, send and receive buffers should be adapted for use with multiple paths. A conventional

approach is to size the buffers at least equal to the BDP of the link. A buffer less than the BDP could

limit the throughput of the link. This equation increases for multipath transport - the receiver must

be able to absorb the BDP of the combined paths, taking into account the delay of the slowest link.

A high delay path therefore has to potential to scale the buffer size requirements dramatically. An

insufficient buffer will cap the throughput of a connection, with slow paths limiting the utilisation of

faster paths. However increasing buffer sizes is not ideal for memory constrained devices or servers

with large numbers of concurrent sessions. Optimal performance requires smart scheduling decisions

so that buffer sizes can be minimised.

3.3 Multihoming and Multipath Solutions

Internet suite protocols in use today were designed before the multihomed end-hosts became common.

Some, such as TCP are fundamentally designed for single-interface operation. For instance a TCP

connection is bound directly to specific source and destination IP addresses and ports that cannot

change without breaking the connection. There are however protocols within the Internet stack that

can leverage a multihomed end-host for multipath transfer in some capacity. In the following sections

we discuss current solutions according to abstraction layer.

3.3.1 Link-layer

Link-layer multihoming solutions aggregate the capacity of multiple network interfaces. Typically the

interfaces are aggregated under a single virtual interface and share a MAC address. Frames are passed

to the virtual interface and a scheduling algorithm determines the physical interface for transmission.

Link layer schemes are limited to a single hop (i.e. the next device directly connected at the link

layer).

Ethernet Link-Aggregation: Ethernet is a widely supported link-layer protocol. Link-aggregation

is the bundling of multiple Ethernet interfaces into a single logical interface. Datacentres and enter-

3.3. MULTIHOMING AND MULTIPATH SOLUTIONS 33

prise networks can use link aggregation to spread network traffic load, provide redundancy or gain

throughput.

The Link Aggregation Control Protocol (LACP, defined in the IEEE 802.1AX), is an open stan-

dard with wide hardware support. LACP simplifies link-aggregation configuration by allowing de-

vices to automatically negotiate with other directly connected LACP devices. In the event of link

failure, failover is performed dynamically. Vendor-specific aggregation techniques also exist.

In LACP terminology, data striping is referred to as frame distribution. The frame distribution

algorithm is implemented in the driver that aggregates the links. The LACP specification does not

define a frame distribution algorithm, however discourages schemes that cause frame duplication or

re-ordering, since any re-ordered frames will be forwarded to the destination as such. The default be-

haviour of LACP in FreeBSD and Linux hosts is to provide flow-based load balancing and automatic

failover [95, 96].

To prevent re-ordering of data frames, link-aggregation devices can identify upper-layer flows and

assign them to a single interface. The definition of a flow may vary, however will typically at least

include the source and destination IP addresses in the packet header. The lacp mode of the FreeBSD

lagg driver identifies flows using a hash of the MAC header and IP source and destination addresses

[95]. A basic load balancing algorithm might distribute flows based on the calculated hash or via

round-robin selection. More advanced algorithms could consider any number of metrics (such as link

load) to more intelligently distribute flows.

Load balancing and failover devices are available by default in operating systems such as FreeBSD

and Linux. The failover mode of the FreeBSD lagg device provides transparent failover between

network interfaces. First a virtual interface is created, then physical interfaces are tied to this (for

example an Ethernet and wireless 802.11 interface). The MAC address of any additional interface

is overridden with that of the master interface. If the master interface fails, the next interface in the

hierarchy takes over. Data is sent via the master interface if and when it regains availability. This

failover mechanism provides higher-layer persistence (since IP and MAC addresses are constant) and

is controlled solely by the host. It does not however provide persistence when changing networks, as

a change in IP address would break existing sockets.

Ethernet link-aggregation can be used in networks that require high performance and/or redun-

dancy. However the benefits exist for a single-hop only and LACP must be enabled at both ends. Thus

for an end-host there is no guarantee of path diversity beyond this hop. LACP supports redundancy

but does not attempt to solve host-mobility.

34 CHAPTER 3. MULTIHOMING AT THE END-HOST

ISP

BRAS/
PPP server

Gateway/
PPP client

DSL
modems

DSLAM

MP session

LAN

Parallel
channel

(a) A site-wide multihoming topology that uses MP at the gateway.

PPP frames MP fragmentation Reassemble frames,
terminate PPP session

Transmission

(b) Fragmentation and reassembly of PPP frames.

Figure 3.3: Multilink PPP (MP)

Multilink PPP: Point-to-Point Protocol (PPP) [7] was extended with Multilink PPP (MP) [97] to

combine multiple physical access links (e.g. ISDN, voiceband modem). MP is currently supported

in enterprise/carrier routers and used for applications such as DSL access links, as shown in Figure

3.3a. MP provides multipath transmission by fragmenting PPP frames and distributing them across

the available access links. This process is shown for the MP-over-DSL scenario in Figure 3.3b.

The design takes into consideration the byte sequence order of higher-layer protocols and explicitly

handles frame re-ordering at the MP termination point.

The standard does not specify a scheduling policy, though features such as data-striping, load

balancing and link scaling are typically supported. MP extends the PPP header with an additional

header comprising a flag that allows the receiver to detect fragmented frames, and a 24-bit sequence

number field to enable reassembly and loss detection. Fragments that arrive out-of-order are held in

a buffer and re-ordered according to sequence number. Fragment reassembly is comparable to TCP

segment reassembly, however there is no retransmission mechanism and a frame is discarded if it is

not reassembled when the first fragment of the next frame arrives [97].

As MP is designed for point-to-point links, the parallel path is likely to exist for only a single

hop before being terminated at the PPP server. It is not an end-to-end multipath solution. As the

3.3. MULTIHOMING AND MULTIPATH SOLUTIONS 35

InternetLAN Provider 1

Provider 2

Multihomed Site Multihomed host

Provider 2

Provider 1

Figure 3.4: Site-wide and end-host multihoming. A multihomed gateway provides multihoming for

an entire site. A multihomed end-host is directly attached to multiple providers.

PPP session must be terminated at a PPP server, this becomes a bottleneck that represents a single

point of failure. MP must be explicitly enabled and configured on the client and server side. Despite

the flexibility in data scheduling and failover, MP does not work when an end-host moves between

networks, or if the host interfaces are configured in different networks.

3.3.2 Internet-layer

There are several factors that make multihoming and mobility support at the Internet layer appealing.

The IP address is a device’s point of attachment to the Internet. The network prefix of this address is

the home network. A device may have multiple interfaces that may be assigned addresses in distinct

networks. A network gateway can be attached to multiple transit providers. Importantly, the Internet

layer allows steering of packets independently of higher-layer protocols.

Site-wide Multihoming: Site-wide multihoming describes a LAN or AS connected to the Inter-

net by more than one transit provider. Hosts within the network are typically single-homed, meaning

path selection occurs at the gateway router. Path selection is transparent to hosts within the LAN. Fig-

ure 3.4 compares site-wide multihoming to end-host multihoming. site-wide multihoming provides

redundancy and load balancing for the entire network. It also allows for policy enforcement in the

inbound and outbound direction. For example routing updates can be used to influence path selection

in the inbound direction, while cost metrics can be applied to steer outbound traffic.

A key benefit of this method of path selection is that it preserves the transport-layer connections

of the end-host [89]. For example a multihomed gateway can shift an end-hosts TCP flow between

transit providers without breaking the connection. As path selection is performed using source or

36 CHAPTER 3. MULTIHOMING AT THE END-HOST

Home Agent Foreign Agent

Mobile Host

Corresponding
Host

Trian
gular
 rout
ing

Figure 3.5: IPv4 mobility requires additional infrastructure to tunnel connections.

destination addresses, transport-layer conditions, such as TCP’s sliding window, are not taken into

account. Scheduling decisions are likely to place more importance on what benefits the network in

aggregate rather than what is optimal for an individual end-host.

Mobility for IPv4 and IPv6: Mobility for IPv4 [98] uses a home agent and foreign agent to

tunnel connections to a mobile host, shown in Figure 3.5. Upon detecting that it has entered a foreign

network, the mobile host discovers a care-of address and registers this address with the home agent.

The care-of address is not generally assigned to the host itself

3

, but is the logical endpoint of the

tunnel between the home and foreign network (typically the foreign agent). The care-of address may

be reused for multiple visiting hosts.

Packets to the mobile host are then tunneled via the home agent and foreign agent. Triangular

routing occurs on the return path if the foreign agent routes packets directly to the corresponding

node. Existing transport-layer sessions can persist through this registration period. New connections

to the home address of the mobile host are tunneled by the home agent to the foreign agent, which

terminates the tunnel and forwards packets to the mobile host. Where possible the return path from

the mobile host is routed directly to the connected endpoint, referred to as triangular routing, or

tunneled back to the home agent in cases where source address filtering prevents a more direct return

route.

After terminating the tunnel, the foreign agent forwards packets to the mobile host with the home

address as the destination. A drawback of this method is that although the host IP address remains

fixed (and thus preserves existing connections), traffic must always pass through the foreign agent

and will pass through the home agent in at least one direction.

3

Though multi-interface devices may obtain a local address via DHCP or some other method.

3.3. MULTIHOMING AND MULTIPATH SOLUTIONS 37

The IPv6 standard has several improvements over IPv4 in handling multihoming and mobility.

Expanded multihoming support means that mobile hosts (even with a single interface) are able to

obtain multiple IPv6 care-of addresses. As a result, the foreign agent is only required for per-existing

connections, or for connections to the home address of the mobile host. Route-optimisation allows

the mobile host to update the corresponding host with the current care-of address. The care-of address

is then bound to the home address of the mobile host. The binding is then used to substitute the home

address with the current care-of address when sending packets. These are then routed directly to the

foreign network.

IPv4 and IPv6Mobility solutions require additional infrastructure deployment and widespread co-

operation amongst network operators to work effectively. They do not support multihoming features

such as data striping or failover.

Shim6: Shim6 [99] is an end-host solution to multihoming. It enables end-hosts with multiple

IPv6 addresses to directly negotiate additional addresses with the corresponding node for the purpose

of failover and load balancing. It does not however support simultaneous use of multiple available

paths, as doing so would potentially impact the underlying transport protocol.

Shim6 provides a working solution to end-host controlled multihoming, however it is limited to

IPv6 networks only and does not currently support data-striping or host-mobility.

3.3.3 Transport-layer

The transport layer is located between the application and the network interfaces. From here protocols

are able to measure the end-to-end characteristics of a path while also having direct access to data in

the socket send queue. Multipath data scheduling decisions have been shown to benefit from transport

layer information [100]. A number of transport-layer solutions for mobility and multipath have been

proposed over the years [101, 102, 103, 104, 105]. The two most promising are SCTP and MPTCP.

Stream Control Transmission Protocol: SCTP [106] is a reliable multihomed transport that

transmits data as an ordered, partially-ordered or unordered sequence. This design was motivated in-

part by the desire to have reliability without the latency caused by head-of-line blocking. It is suited

as a replacement of TCP for application-layer protocols that require reliability but not-strict ordering

of data. Typically these are signaling protocols that are used within core networks. It is available in

most popular operating systems.

An SCTP connection between two endpoints is known as an association. The association encom-

passes all the potential source and destination IP addresses that exist between the two end hosts. To

38 CHAPTER 3. MULTIHOMING AT THE END-HOST

reduce head-of-line blocking, the data sequence to be transmitted can be broken down into smaller

regions. Regions in an association can be further divided into transmitted across multiple sequence

streams (opposed to the single sequence stream of TCP). An individual stream may be ordered or

unordered. Streams can be transmitted between any of the endpoints available to the association.

Congestion control is based on TCP congestion control [107]. For a given association, all streams

that exist between the same IP address endpoints share congestion control parameters. If the associ-

ation has multiple endpoints, congestion control is maintained separately as paths might differ. Mul-

tihoming was initially used for redundancy, providing failover between the available IP addresses.

A later extension, Concurrent Multipath Transfer (CMT-SCTP) [6] provides features such as data

scheduling and the coupling of congestion control across different IP endpoints.

There are several reasons why SCTP has not seen wider deployment. Firstly, middleboxes must

be modified to support SCTP. In particular, SCTP is not able to traverse NAPTs that perform port

translation. These must be modified to support SCTP associations [108]. Many middleboxes have

not been updated to support SCTP, preventing the use of the protocol on paths with such devices.

Legacy NAT traversal can be achieved by encapsulating SCTP in UDP packets [36], though at the

time of writing there is no survey indicating how widely this has been adopted. Thus due to the

difficulty in using SCTP across the Internet, few end-user applications have been updated with SCTP

support.

Multipath TCP: TCP Extensions for Multipath Operation with Multiple Addresses [2] is an

extension to TCP that is currently being standardised by the IETF. It is commonly referred to as

Multipath TCP (MPTCP), due to the implication that multiple IP addresses assigned to a host may

take alternate paths to a given destination IP address. It provides mobility, redundancy and resource

pooling between end-hosts.

It is backwards compatible with existing TCP-enabled applications and is designed to work with

the Internet as it is today. This is achieved by extending TCP and preserving as much as possible

the on-wire behaviour, so as to minimise issues with middleboxes. As with other TCP extensions,

MPTCP is implemented within the TCP stack and becomes available to all TCP sockets. A new

TCP option kind is assigned for MPTCP signaling and MPTCP is negotiated during TCP’s three-way

handshake. A high-level summary of the key aspects of MPTCP is provided below. A more thorough

discussion can be found in Section 5.1.

Like SCTP-CMT, MPTCP is able to stripe data across any IP source/destination pair that is avail-

able to the participant hosts. It does this by transparently establishing multiple streams (called sub-

3.4. CONCLUSION 39

flows) between the transport layer endpoints of the connection, presenting only a single TCP socket

to the application layer. A key difference from SCTP-CMT however is that from the perspective

of the network, each subflow in a connection looks and behaves like a standard, independent, TCP

session. Since subflows are created from within the transport layer, they can be dynamically added

(or removed, in the case of failure) from the MPTCP connection without breaking the original TCP

socket created by the application. Since subflows are completely decoupled from the application, an

MPTCP connection may remain open even if no subflows are currently established.

Importantly, the TCP sequence space (sequence numbers and ACKs) of a subflow is exactly as it

would be for a standard TCP connection. This is vital to maintain compatibility with middleboxes. To

stripe data between the subflows, then, an additional sequence space is defined to allow the receiver

to reassemble data that may have been divided between multiple subflows. This is the data sequence

space and represents the true byte-order of the data as written by the application. As will all MPTCP

signaling, data sequence numbers are transmitted in the TCP option space. In the event of middlebox

interference (for instance removing an MPTCP option from the TCP header), a fall-back mechanism

transitions the connection to standard TCP.

MPTCP provides resource pooling of the available subflows through scheduling and coupling

congestion control. When an application writes new data to the send queue, the scheduler considers

the state of all subflows before deciding which subflow to use for the next allotment of data. Coupled

congestion control links the behaviour of the subflow congestion windows, steering transmission over

the most effective paths. Head-of-line blocking can occur at both the subflow and data-levels, thus

scheduling and congestion control decisions are vitally important. A poor algorithm can lead to severe

performance issues, in some cases worse than using standard TCP alone.

MPTCP has been designed to minimise the barrier of entry for deployment while solving issues

of mobility and multipath. By modifying TCP it is able to maintain compatibility with applications

and function across the Internet.

3.4 Conclusion

Multihomed end-hosts are now commonplace. As a result, benefits such as fault tolerance, load bal-

ancing or data striping are available at the end-host. However these benefits have yet to be realised

for end-to-end multipath connections, leaving scope for further research and development. This chap-

ter considers the primary challenges of multipath communication and assesses existing solutions for

suitability in future multipath research and deployment.

40 CHAPTER 3. MULTIHOMING AT THE END-HOST

Link-layer solutions do not take higher layer protocol information into account when making

scheduling decisions (aside from flow identification). This means scheduling policies must be con-

servative in order minimise impact on higher-layer protocols. Solutions implemented at the Internet

layer would seem a logical choice, however existing methods are compromised in a number of ways.

Site-wide solutions do not allow end-hosts to significantly effect path selection, and do not use higher-

layer flow state when scheduling. Solutions involving the end-host have not been widely deployed

and generally support only one of mobility or multihoming.

There are some significant benefits in solving mobility and multihoming problems in the transport

layer. Access to the application send queue, end-to-end path statistics and control over the outbound

network interface mean that resource pooling, scheduling, path selection and mobility can be handled

at this layer. However there are still some challenges to creating effective and deployable solutions.

Scheduling and congestion control decisions rely on accurate path statistics. Middlebox assumptions

about transport layer protocols mean that any new solutions must be resilient to interference from

such equipment.

Many previous solutions have not gained traction due to lack of support from middleboxes. SCTP

has been the most successful of the new transport-layer protocols, though is used predominantly

within core networks rather than by end-user applications. MPTCP is a more recent solution that

achieves compatibility with existing middleboxes by extending TCP and maintaining as much as

possible the on-wire behaviour.

Several functioning implementations of MPTCP are already in use across the Internet [109, 8].

MPTCP retains the connection-oriented and reliable operation of TCP and adds the ability to pool

locally connected network resources. Backwards compatibility with TCP and a design that func-

tions within the current Internet improve the chance that MPTCP will be more widely adopted then

previously proposed solutions.

Chapter 4

Multipath Scheduling and

Congestion Control

This chapter reviews the current state of sender-side mechanisms for multipath transport protocols.

The discussion is not implementation specific, however much recent work in this area has focused

on MPTCP. As such familiarity with the key concepts of how MPTCP distributes data, as presented

in Chapter 5.1, may provide useful context. Though the emphasis is on MPTCP, we include some

CMT-SCTP research. Both protocols face similar challenges of scheduling and congestion control

across paths with divergent characteristics. By understanding the current scheduling and congestion

control approaches - for instance what metrics are required - a suitably flexible software design can

be created.

In Chapter 3 we discussed how traffic engineering could be implemented at the end-host. As a

transport-layer multipath solution, MPTCP is suitably positioned to provide traffic engineering by

combining scheduling and congestion control. These are closely related, and we now revisit the

broader connections between scheduling and CC as they relate to MPTCP connections.

The role of the scheduler is to decide which is the best path to transmit on. The best path is

that which provides the best application-level performance. This is achieved through several steps.

The scheduler first determines which subflows are available to send data. The best path is the path

that matches the scheduler-specific criteria (e.g. RTT, cwnd size). Once a subflow is selected, the

scheduler must decide the granularity (length) of data to allocate to the subflow. For each of these

decisions the scheduler must rely on input from the CC algorithm.

Multipath CC can be performed at the connection-level or on an individual per-subflow basis

41

42 CHAPTER 4. MULTIPATH SCHEDULING AND CONGESTION CONTROL

using standard single-path CC mechanisms. In single-path transport the task of CC is to optimise

performance while being sensitive to path congestion. For multipath transport, the aim of CC is not to

optimise performance for each subflow, but rather the connection as a whole. It does this by steering

traffic away from subflows that do not improve the overall performance of the connection. The main

mechanism used for steering is the congestion window of each subflow. To balance the distribution

of traffic across the available paths, the CC simply adjusts the congestion window of the paths so

that preferred paths are able to transmit more data. Where using subflow-level CC would result in

all subflows attempting to optimise there own congestion windows (potentially at the expense of the

whole), connection-level CC will only increase the congestion window of a subflow if it benefits the

entire connection.

We can now consider a basic characterisation of the scheduler-CC relationship. The scheduler

first identifies which subflows are able to send data, perhaps those that have non-zero cwnd. The

best path selected from these could simply be the path with the largest cwnd. Other statistics such as

RTT or ssthresh might be taken into account. Finally, the scheduler allocates data to the subflow,

again taking into account factors like cwnd or RTT when deciding the length of allocation. Both

the scheduler and CC algorithm must be in agreement about which is the best path. An inconsistent

approach could lead to poor distribution of data across the paths.

A more detailed discussion of scheduling and CC approaches now follows in Sections 4.1 and

4.2.

4.1 Multipath Schedulers

When presented with multiple paths the sender must decide over which path new data is transmitted.

The approach to servicing each path is critical, as casual allocation of data to different paths risks

decreasing transport-layer performance. What motivates this decision can vary, such as trying to

maximise throughput or minimise delay. The context of a connection is important - sending data

to a mobile host across the Internet requires a different approach to a bulk transfer over symmetric

paths on a private network. Thus the scheduling algorithm should change depending on the use-

case. A common theme however is the notion that all available paths should be regularly serviced

by the scheduler, ensuring that the available capacity is utilised. After all, a major goal of multipath

communication is to leverage additional capacity.

Scheduling approaches in the existing literature can be divided into naive, proactive or reac-

tive methods. Naive algorithms distribute packets with no or little consideration of the impact on

4.1. MULTIPATH SCHEDULERS 43

connection-level performance. A naive scheduler may simply fill the capacity of all the available

paths, even if this results in re-ordering of sequenced data.

Proactive algorithms actively consider transport protocol performance and employ additional in-

telligence to, for example, distribute packets so that they arrive in-order at the receiver. These algo-

rithms attempt to trade-off path utilisation and transport-protocol performance. A proactive approach

may sacrifice aggregate throughput for better application-level responsiveness.

Reactive approaches focus on scheduling strategies that improve recovery from congestion or

packet re-ordering events. This includes when and how much data to retransmit, through to strategies

that determine the best path for retransmission.

A scheduling algorithm may also be accompanied by an optimisation algorithm that modifies

transport-session state in order to influence scheduling decisions. For example an optimisation algor-

ithm may manipulate the congestion window or slow-start threshold of a path, controlling the rate of

transmission.

A scheduler can be further categorised based on when it is run and and the way in which data is

allocated to a path. Barre [110] and Singh [111] describe three approaches:

• Push-allocation: Each path maintains it’s own send queue. When the application presents new

data to send, the scheduler runs and selects a path, copying the data to the output queue of the

selected path. The path may queue the data for a time or transmit immediately.

• Pull-allocation: New data is stored in a global send queue shared by all paths. Only when a

path has a transmission opportunity is data allocated (say after receiving an ACK). Transmission

occurs at the time of allocation.

• Hybrid: A global shared queue and per-path queues exist, allowing both push and pull alloca-

tion.

Each method has trade-offs. Push allocation allows the scheduler to consider path statistics, such as

the length of the output queue, when selecting a path. Since each path has a queue, data can also be

allocated even if it is not transmitted immediately. However as there is no global queue, data must be

transmitted on the path to which it was allocated and cannot be re-assigned after-the-fact.

Pull allocation guarantees that transmission will occur immediately. It is run at the request of the

paths, meaning higher capacity paths will be used more often, since these will have more frequent

opportunities to transmit. A drawback however is that since scheduling is dictated by the transmission

clock of the paths there is less scope for path selection based on other metrics.

44 CHAPTER 4. MULTIPATH SCHEDULING AND CONGESTION CONTROL

Statistic Source Used to

Queue occupancy Send Queue Estimate path capacity

Queuing delay Algorithm Estimate time-to-transmit

Forward-delay Algorithm Estimate delivery time

Round-trip time TCP layer Estimate path capacity

Acknowledgement Interval Algorithm Estimate path capacity

Slow-start threshold TCP layer Estimate path capacity

Congestion Window (cwnd) TCP layer Estimate path capacity

Path RTT-difference Algorithm Measure of path heterogeneity

RTT-envelope Algorithm Detect path RTT inflation

Table 4.1: A selection of statistics used by current schedulers. Some must be calculated by the

algorithm. Note that some statistics may serve multiple purposes.

Hybrid allocation inherits the benefits of both push and pull methods. It is the most flexible

approach however this comes at the cost of complexity, both for the scheduler and for the network

stack scheduling framework. The algorithms discussed in this chapter are a mix of push, pull and

hybrid strategies, as one approach is not necessarily better than the next and all should be supported

for future research. The scheduling framework in the Linux reference implementation supports each

of these approaches to allocation [110].

For all but the most basic algorithms, it is likely that the scheduler will draw upon some statistics

to inform path selection. Frequently these statistics are used to estimate path characteristics such as

capacity, delay or loss rate. More advanced algorithms may attempt to detect network bottlenecks

or anomalies such as bufferbloat. A naive scheduler may consider only a single statistic such as

cwnd, while a proactive scheduler might implement a novel delay-measurement mechanism. From

the literature we can identify two principle sources from which scheduling variables are derived:

• Queue-state: These are based on queue capacity and queue occupancy at the sender.

• Path-state: These reflect the state of the end-to-end path. This includes round-trip times, ca-

pacity, or even if an interface is active or inactive. Transport-layer state variables are usually a

source of path measurements, though a scheduler may implement it’s own measurement mech-

anisms.

Algorithms can read state variables as they are or include them in calculations to derive further

4.1. MULTIPATH SCHEDULERS 45

Multipath
Scheduler

Principle
motivation

Allocation
method

Algorithmic
approach

Selection
Strategy

Capacity-
based

Delay-
aware

Bottleneck
detection

Proactive Reactive

Naive

Path-
driven

Application-
driven

Hybrid

Maximise
Utilisation

Minimise
Jitter

Optimising

Only best
path

Figure 4.1: A basic decomposition of a multipath scheduler

meaning. Variables are often combined in a single calculation. Table 4.1 lists a selection of statis-

tics obtained from queue-state and path-state variables. Different variables may be combined into a

calculation. A scheduler may also aggregate statistics from across multiple paths. In some cases a

scheduling algorithm may add tunable variables or new instrumentation if the the desired statistics

are not available from the send queue or transport protocol.

Figure 4.1 provides a basic decomposition of a multipath scheduling algorithm. We see here that

schedulers can differ greatly in their central motivations, approach to data allocation and in algo-

rithmic complexity. The following subsections discuss a number of existing proposals and concrete

implementations that are representative of the different approaches possible.

4.1.1 Naive approaches

A naive scheduling algorithm selects a path considering little or no flow state information. Such an

algorithm might attempt to use only the highest capacity paths, or conversely try to fill the available

capacity of all the paths. No explicit attempt is made to predict re-ordering at the receiver or perform

additional measurements or calculations to infer path characteristics. Naive algorithms such as ran-

46 CHAPTER 4. MULTIPATH SCHEDULING AND CONGESTION CONTROL

dom selection (RS) and round-robin (RR) are are found in load balancers [112] but can be applied

to multipath scheduling. RS allocation chooses an output path randomly and is completely stateless.

A round-robin (RR) scheduler chooses output paths sequentially. RS is not used for CMT-SCTP or

MPTCP however RR schedulers have been implemented.

ACK-Clocked: A multipath scheduler might simply rely on the transmission clock of the paths to

drive allocation. For protocols like MPTCP, this means being driven by the TCP ACK-clock of each

subflow. Such an algorithm would need to initiate slow-start on each path, which would in turn start

the ACK-clock. We did not find an evaluation of such a scheme for MPTCP or CMT-SCTP in the

literature, however the existing RR schemes at times operate driven by ACK-clock.

Capacity-based RR attempts to fill the available cwnd of the selected path before moving to the

next. Capacity-based RR schedulers are available for CMT-SCTP and MPTCP. Path quality (delay,

loss rate) is not a consideration and each path is used to capacity. If the cwnd for each path is filled,

the scheduler becomes ACK-clocked.

Delay-aware RR orders the available paths according to delay. The default Linux MPTCP refer-

ence implementation uses a delay-aware RR scheduler, LowRTT [113]. LowRTT sends data on the

path with the lowest smoothed RTT (sRTT) that has cwnd available. LowRTT scheduling is mo-

tivated by the fact that many multihomed devices are connected to heterogeneous networks - say a

smartphone connected to Wi-Fi and cellular - a configuration that results in paths whose RTTs differ

significantly [114]. Packet re-ordering can be reduced by allocating more data to the lower RTT path.

This is on the surface a proactive approach, however as with capacity-based RR, once the cwnd of

each path is filled scheduling is driven by the TCP ACK-clock of each path. As a result the scheduler

does not try to anticipate re-ordering and simply assigns data to paths as they request it.

Several studies [115, 6, 100] have shown shortcomings of naive RR approaches over heteroge-

neous paths. Since end-to-end paths across the Internet have such variability it’s likely that re-ordering

will occur when using RR techniques. A number of optimisation algorithms that limit allocation to

poor paths have thus been proposed to augment RR schedulers, which are discussed later in this

chapter.

4.1.2 Scheduling for the transport-layer

For strictly sequenced protocols like MPTCP, a scheduler ideally distributes data so that segments

reach the receiver in sequence-order. Experiments in simple, controlled topologies [100, 116, 117,

94] have shown naive schedulers to suffer head-of-line blocking issues when paths are asymmetric.

4.1. MULTIPATH SCHEDULERS 47

Proactive schedulers offer a means by which to achieve in-order delivery. By calling upon statistics

such as forward or end-to-end delay, output queue size or path capacity, a scheduler can attempt to

estimate when packets will arrive at the receiver, or exclude paths that do not benefit the connection.

Proactive algorithms differ in the type of statistics used and computational complexity. For in-

stance some algorithms may use only send-queue and transport protocol variables, while others may

require more advanced calculations that require new measurement instrumentation. In the following

discussion we define and focus on two broad categories of proactive schedulers - those that attempt

to maximise concurrency while minimising re-ordering (all-paths), and those that try to identify and

use an optimal path (preferred path).

Using all-paths: These schedulers attempt to use the available paths as much as possible and

overcome re-ordering issues by anticipating the arrival order at the receiver. Though essentially trying

to achieve the same goal, several distinct approach exist.

In [118], the Delay-aware Packet Scheduling (DAPS) algorithm is presented as an alternative to

the default capacity-based RR scheduler of CMT-SCTP. DAPS considers the RTT of each path to

distribute data so that packets arrive in-order at the receiver. When run, a schedule is generated that

allocates SCTP ‘chunks’ to each path based on delay. The lower-sequenced chunks are first allocated

to the path with the lowest RTT. If more chunks are available than can be sent over the fastest path,

slower paths are used. DAPS then iterates the completed schedule to transmit packets. Estimating

path delay requires an accurate timestamp mechanism for best results, and the authors propose a new

timestamp scheme for CMT-SCTP, and this would be required for use in MPTCP.

Kim et al. [119] introduce a DAPS-like algorithm for MPTCP (hereafter referred to as Kim-

ALG) that approximates the receive time for each segment on each available path by adding send-

queue delay and an estimate of forward-delay (TCPs sRTT/2). Dividing the sRTT in half is a strong

assumption, as measurements have shown asymmetric paths to be common [37]. It is however easily

obtained and computed, and used by several algorithms in the literature. A table is created for each

path with the estimated delivery time for each segment. The table is then used to compare receive-time

estimates and select a path. The receive-time estimate accumulates as multiple segments are added to

a particular path. For example if Path A has a forward delay of 10ms and Path B a forward delay of

50ms, then 50ms worth of segments would be queued onto Path A before a segment is queued onto

Path B. In this way segments should arrive at the receiver at the same time.

The Forward Delay-based Packet Scheduling (FDPS) [120] scheme measures the delay differ-

ences between paths to determine which path has the shortest forward delay. The delay difference is

48 CHAPTER 4. MULTIPATH SCHEDULING AND CONGESTION CONTROL

the difference between send and receive times for two packets transmitted on two separate paths. The

measurement is achieved using the existing TCP timestamp option and without clock synchronisa-

tion. The paths are ordered according to delay-difference, and data-segments in the application send

buffer are then mapped to each path, starting from the lowest sequence. As FDPS is a pull allocator,

segments are fetched using this mapping whenever a path has a transmit opportunity.

To our knowledge the Kim-ALG and FDPS mechanisms are only known to have been tested by

simulation. Yang et al. [121] propose an out-of-order transmission scheduler (OOT) and test an

implementation in the Linux MPTCP kernel. Each time a packet is enqueued the scheduler is run to

determine which path it should be allocated to. It does this by looking at the existing output queue of

each subflow and estimating the time to deliver. sRTT and queue occupancy are used to estimate the

forward delivery time for each path. A key difference from the DAPS algorithm is that segments can

be allocated to the send queue of a path even if cwnd is currently full. The rationale behind this is

that a fast path might deliver a full cwnd and backlog of packets before a slow path is able to deliver

it right now. As it has been implemented for the Linux MPTCP kernel, a direct initial comparison

with the default LowRTT scheduler is made. The authors find that receive buffer requirements are

reduced and higher throughput is achieved (particularly for shorter duration flows, as re-ordering is

reduced).

The On-Demand Scheduler (ODS) [122] presents an alternative scheduling approach of main-

taining a single output queue and allocating packets when a path presents a transmission opportunity

(i.e. pull scheduling). When transmission of a new packet is possible, the algorithm orders the avail-

able paths according to the estimated time of acknowledgement (ETA), an indicator of when future

transmission opportunities are likely to occur. This includes paths that do not currently have cwnd

available. Then for each data segment in the buffer the path with the lowest ETA that has space avail-

able in the congestion window is selected and the lowest sequence number for that path that would

avoid re-ordering at the receiver is transmitted.

Preferred path: A potential issue with out-of-order scheduling methods is that the application

must have sufficient data to service the paths. If the available paths have high RTT asymmetry,

then a greater number of segments need to be buffered in order to utilise multiple paths. This could

potentially extend to several hundred milliseconds worth of segments. High asymmetry can also lead

to performance loss if all paths are used.

Approaches have thus been devised that avoid using slow paths altogether if it is anticipated that

using the path will impact performance. When applied to MPTCP, these approaches allow connec-

4.1. MULTIPATH SCHEDULERS 49

tions to maintain performance at least on-par with single-path TCP when paths are highly heteroge-

neous. The obvious trade-off in preventing the use of higher-RTT subflows is the potential loss of

throughput. The following algorithms attempt to identify the best available path and then schedule

data predominantly over this.

The Bandwidth Aware Scheduler (BAS) [123] attempts to queue outgoing segments on the path

that offers the shortest delivery time as predicted by path bandwidth. A reception index is calculated

for each path that reflects how quickly the currently queued segments (both transmitted and awaiting

transmission) can be delivered and acknowledged. A dedicated queue is assigned for each path, and

since scheduling is based on the reception index packets can be queued on paths that do not have

congestion window available. This means that segments are always assigned to the best available

path, and contrasts the RR approach of using a sub-optimal path as an alternative if the best path has

exhausted it’s congestion window.

The Constraint-based Proactive Scheduling (CP) algorithm in [124] tries to estimate the remain-

ing buffer capacity at the receiver and the required cost (in terms of buffer size) to send segments

over a particular path. The CP algorithm has been designed for use with multihomed mobile hosts

that have limited memory capacity (i.e. constrained receive buffers) and are connected via heteroge-

neous paths. The algorithm fills the cwnd of the fastest path (lowest RTT) unless a sufficient amount

of buffer is available at the receiver to allow use of a slower path. In the event that buffer space is

available, an optional delay constraint variable enforces a minimum RTT that qualifies a path for use.

One practical consideration is that since slower subflows may be idle for extended periods, active

probing is required to maintain up-to-date path statistics

1

. The algorithm includes a mechanism that

schedules packets over the idle path to act as probes. An implementation of the algorithm for the

Linux kernel is tested using subflows with uncoupled congestion control. The CP algorithm is shown

to perform as well as single-path TCP when the receive buffer is constrained and when paths exhibit

extreme differences in characteristics. It is one of the more complex schedulers discussed here -

featuring system tunables, multiple modes of operation and multiple stages of calculation (ordering

paths, estimating re-ordering and receive buffer requirements, path probing). It has, however been

implemented for the Linux MPTCP kernel.

Hwang [117]] proposes the Freeze packet scheduling scheme (FPS) that aims to preclude the

use of subflows whose paths have significantly higher RTT than the lowest RTT path. The algor-

ithm is specifically designed to prevent worse-than-TCP performance for short (stated as less than

1

Statistics maintained by TCP are invalidated during idle periods

50 CHAPTER 4. MULTIPATH SCHEDULING AND CONGESTION CONTROL

1MB) flows. Several studies have shown MPTCP to perform poorly for short flows [125, 126]. The

FPS algorithm simply freezes transmission on slow paths if there is a pronounced difference in RTT.

The motivation behind the FPS algorithm is that extreme differences in path RTT (e.g. greater than

100ms) have a disproportionately high impact on the completion time of short flows. For example the

LowRTT scheduler may decide to schedule data on a subflow with a long RTT if the the congestion

window of the lowest RTT path is full. For short flows, RTT asymmetry may be such that waiting for

the cwnd to open up on the low RTT flow would be significantly faster.

A tunable thresh delay parameter is used to set the delay threshold that determines whether a

subflow will be frozen. A packet-count threshold can be used to re-instate use of the slower paths

for longer flows (for example reverting to LowRTT scheduling once the count is exceeded). In a

preliminary evaluation, the FPS algorithm outperforms a LowRTT algorithm for short flows where

subflows have highly asymmetric RTTs.

4.1.3 Improving loss recovery

Retransmission policy has a significant impact on how quickly a connection can recover from the

effects of packet re-ordering [115, 100]. A retransmission path should be selected based on how

quickly it can clear any head-of-line blocking. Knowing when to retransmit data is also important, as

packet re-ordering can falsely trigger retransmission signals.

Several MPTCP retransmission strategies have been adopted from previous CMT-SCTP research.

A RR scheduler is used in [6] to study CMT-SCTP performance on diverse-bandwidth paths. The

scheduler introduces re-ordering that interacts poorly with the SACK-based acknowledgement method

used by SCTP, falsely triggering retransmissions that hamper cwnd growth. Further research in [115]

uses a RR scheduler to investigate receive-buffer blocking in CMT-SCTP connections with different

loss-rates. The authors posit that a more intelligent approach to retransmission should be combined

with the RR scheduler to improve performance. Five retransmission policies are defined:

• RTX-SAME: Attempt to resend to the the path that experienced loss.

• RTX-ASAP: Select the first path that has enough congestion window available for the retrans-

mission.

• RTX-CWND: Select the path with the largest congestion window.

• RTX-SSTHRESH: Select the path with the highest slow-start threshold

4.1. MULTIPATH SCHEDULERS 51

• RTX-LOSSRATE: Select the path with the lowest loss rate.

The capacity-estimating policies (RTX-CWND and RTX-SSTHRESH) are shown to be the most ef-

fective at reducing delays caused by retransmissions. Retransmission on the original path on which

the loss occurred is not recommended for a several reasons, for example due to the increased delay

caused in cases of multiple RTOs. Thus the most effective retransmission strategies require the abil-

ity to re-schedule data over an alternate path. These policies are a precursor to the retransmission

strategies used by the Linux MPTCP reference implementation.

Raiciu et al. [113] compare the goodput of MPTCP connections using LowRTT RR scheduling

over Wi-Fi and 3G against a standard TCP connection over Wi-Fi only. They find that goodput for

MPTCP connections drops below that of standard TCP when the receive window size is limited.

Consequently they introduce the opportunistic retransmission (OR) optimisation, which has some

similarity to RTX-CWND. The OR algorithm runs when the connection is receive-buffer limited. At

this time the first unacknowledged data segment is retransmitted on the first alternate path that has

space in it’s congestion window. The intention is to clear the head-of-line blocking and create space

in the receive window more quickly than waiting for the original path to deliver the segment.

Failover-mode scheduling uses a nominated path until it is no longer functional, at which time

data is sent over a backup path. A failure state defines when a path is no longer to be used. Failover

is specified as part of the MPTCP protocol and available in the Linux and Apple implementations

[109]. Failover does not at first glance resemble a scheduler, however the failure state may be defined

by threshold conditions such as loss rate. In this way failover-mode resembles both a loss-recovery

and preferred-path scheduling. The conditions that constitute a failed path can vary, and guidelines

have been proposed to detect these [127].

4.1.4 Assisting the scheduler

Optimisation mechanisms do not explicitly make scheduling decisions but indirectly influence the

schedulers selection process, for instance by manipulating state in the transport protocol. A basic ex-

ample would be reducing the cwnd of a poorly performing path, an action that effects path selection.

Raiciu et al. [113] define the subflow penalisation (SP) algorithm that attempts to reduce the

RTT of poorly performing subflows. The SP algorithm is called after receive-window limiting. Once

triggered, it reduces the congestion window and slow-start threshold of the offending path in order to

lower the RTT. By lowering the RTT the delivery time of the subflow is reduced, and thus re-ordering

is also reduced.

52 CHAPTER 4. MULTIPATH SCHEDULING AND CONGESTION CONTROL

Ferlin-Oliveira et al. [114] identify several instances where the SP algorithm is not effective

when paths suffer from bufferbloat. They propose a Multi-Path Transport Bufferbloat Mitigation

(MPT-BM) mechanism for MPTCP. Like the SP algorithm, BM does not directly make a scheduling

decision but instead tries to reduce the occurrence of bufferbloat (and hence re-ordering and buffer-

blocking) by capping the congestion window of subflows that show signs of RTT inflation. It does

this by comparing minimum sRTT against the current sRTT. This is an example of a more complex

optimisation approach that must perform continuous calculations (in this case once per sRTT).

4.2 Multipath Congestion Control

Congestion control (CC) determines how much data can be placed onto a path each round-trip period,

how much data can be queued for later transmission and the interval at which data is transmitted. As

individual paths are flow-controlled, the congestion window and the functions to manipulate this are

vital in determining where data is sent. The congestion window ultimately determines how much data

can be allocated to a particular path by the scheduler.

Traditionally CC has been applied to a single path between two endpoints. With multipath trans-

port protocols that bundle multiple endpoints into a single connection, is per-path CC the best app-

roach? Two alternatives are available: uncoupled, where each path has it’s own CC function, or

coupled [10], in which a single CC function controls all paths

2

.

When using uncoupled CC each subflow behaves as an independent TCP flow. This is analogous

to bundling TCP connections at the application layer. Though maximising use of each path there is

the undesirable effect of being unfair to cross-traffic. Coupled CC links the cwnd evolution of each

flow using a single function, abstracting all paths to a single shared resource of higher capacity. A

coupled CC algorithm adjusts the cwnd on an individual path only after considering the current state

of all the paths. By combining the transport-layer response the end-host gains the ability to steer

traffic to the best paths available. The ability to apply end-host resource pooling [91] through coupled

CC is a core feature of MPTCP.

One further consideration when coupling subflow behaviour is whether cwnd is shared between

the paths or maintained independently for each. The approach taken by MPTCP and CMT-SCTP is

that of a congestion window per-path. This makes sense as there is an expectation that data will be

transferred over heterogeneous paths where there is little relationship between the cwnd. However

2

Since the following discussion is primarily MPTCP specific, in this section we use the terms subflow and path inter-

changeably.

4.2. MULTIPATH CONGESTION CONTROL 53

sharing congestion windows is a valid approach to providing fairness when flows are known to share

bottlenecks. Protocols adhering to the congestion manager [128] framework or fairness protocols

like Ensemble TCP [129] use shared congestion windows. And so the approach could conceivably be

adapted to MPTCP connections.

Whether coupled or uncoupled, three basic design goals are provided in the specification [2] and

must be met by MPTCP CC algorithms intended for Internet deployment:

1. Provide aggregate throughput at least as good as single-path TCP on the best available path.

2. Not use more capacity on a shared bottleneck than if using single-path TCP over the same path.

3. Move traffic away from congested paths, subject to goals (1) and (2).

These goals establish base expectations for what a MPTCP CC algorithm must achieve. Expressed in

simple terms, an algorithm must be as-good-as TCP, friendly and responsive. What then are some of

the practical considerations in trying to meet these goals?

Goals (1) and (2) require that an algorithm be able to detect when paths are disjoint or when

there is a shared bottleneck. When a bottleneck is detected, the algorithm must then be able to divide

capacity to that of a standard TCP flow. For this, an accurate estimation of what a single-path TCP

would get over the same path is required. Similarly when paths are disjoint the algorithm should

provide better-than-TCP performance. Uncoupled CC will very likely achieve goal (1), but cannot

achieve goal (2).

Goal (3) depends on how tightly coupled the paths are. An ideal approach would remove all

traffic from a path that is experiencing congestion, but also respond quickly when conditions change

(e.g. an in-use path becomes congested). This is difficult to achieve in reality. Responsiveness

requires up-to-date path information. The only way to know the condition of a path is to probe it

by sending packets. And more accurate statistics require more frequent probing, which in turn adds

to congestion. Uncoupled subflows provide the fastest response to fluctuating path conditions, but

contribute to path congestion. More tightly coupled subflows contribute less congestion but take

longer to converge to an optimal state when path conditions change. Thus algorithms exist on a scale

between responsiveness and friendliness and must strike a balance between probing paths enough to

be responsive but not enough to cause congestion. Another consideration is that a path too sensitive

to change may oscillate around an equilibrium, a condition called ‘flappiness’ [10].

The ability CC to steer traffic depends heavily on the scheduler being used. Recall that the CC

algorithm does not directly choose the output path - a subflow must transmit whatever the scheduler

54 CHAPTER 4. MULTIPATH SCHEDULING AND CONGESTION CONTROL

has assigned to it’s output queue. As such the onus of assigning segments to the right path is on the

scheduler. How then does a CC algorithm steer data effectively? In cases where the scheduler and

CC are not directly integrated, the scheduler must rely on information taken from the transport layer

to make decisions. The most obvious approach is to steer by manipulating the congestion window to

encourage or discourage a scheduler from using a given path. Although this is not always effective

at preventing the scheduler from selecting a congested path [130], it is the approach taken by the

coupled CC algorithms discussed in this chapter.

4.2.1 Uncoupled Congestion Control

Existing TCP CC algorithms such as TCP-NewReno [131] or TCP-Cubic [132] can be used inde-

pendently on each subflow of an MPTCP connection. While effective at increasing throughput and

highly responsive to changes in network path conditions, this approach is unfair to TCP cross-traffic

on shared bottlenecks. Although Internet-deployed MPTCP hosts are encouraged to use coupled CC

[10, 2], there are some cases where uncoupled algorithms might be suitable. There are also several

proposals that attempt to adapt existing single-path CC algorithms to multipath operation over the

Internet in a way that is fair to cross-traffic.

The Bidimensional-Probe Multipath Congestion Control (BMC) [133] scheme applies a weight-

ing factor to uncoupled subflows to achieve fairness when subflows share a bottleneck with single-

path TCP flows. A weighting factor is applied to cwnd growth that is proportional to the number of

subflows in the connection. The weight of a standard TCP flow is considered 1. Thus each subflow

sharing a bottleneck is weighted so that the combined throughput is equal to 1. A separate algorithm

is used to detect if any subflow is on a disjoint path. The weighting for subflows on disjoint paths is

increased to better utilise the additional capacity. Although fair to other TCPs, BMC is less efficient

at allocating traffic than coupled approaches [134].

Adhari et al. [135] investigates using uncoupled Low Extra Delay Background Traffic (LEDBAT)

[136] CC for multipath transport. LEDBAT is a delay-based approach that tries limit the amount of

congestion that a flow contributes to the network path by monitoring forward-delay variation. A base-

level delay is established, and any increases in this delay due to queuing along the path are interpreted

as signs of delay. It is designed to yield bandwidth in the presence of cross traffic (e.g. standard TCP

flows). The primary use-case is to allow ‘background’ applications (e.g. software updates) to perform

bulk transfers without interfering with higher-priority traffic flows.

The authors observe that by design LEDBAT will achieve goals (2) and (3), as it’s explicit purpose

4.2. MULTIPATH CONGESTION CONTROL 55

is to avoid adding congestion. Regarding goal (1), they note that since LEDBAT is designed to use

the minimum amount of bandwidth, when compared with a LEDBAT-TCP flow any gains from using

LEDBAT-MP satisfy this goal. Their assessment is that LEDBAT-MP is suitable for well-defined

network environments, such as datacentres, but can be erratic in uncontrolled networks. Notably

very large receive buffers (5MB) are required to handle re-ordering of data-segments effectively. Re-

ordering latency is not an issue for background-class transfers, but the required memory footprint

might be problematic for memory-constrained devices. The authors are planning to further evaluate

and improve LEDBAT-MP for end-user scenarios.

4.2.2 Coupled Congestion Control

MPTCP connections must be friendly toward cross-traffic of different protocols and not contribute

to congestion. One way to achieve this is by coupling the congestion control functions of each path.

Coupled CC algorithms coordinate cwnd evolution across subflows to steer data away from con-

gested bottlenecks. If a bottleneck is unavoidable, subflow congestion windows can be weighted to

ensure fairness to other flows. Steering should not only be viewed in terms of providing fairness, and

algorithms may disregard fairness altogether in pursuit of other purposes.

Several coupled CC and multipath routing algorithms pre-date those proposed for CMT-SCTP

and MPTCP. Particularly relevant is the algorithm and framework of [137], which established that

dynamic rate-control and routing functions could be integrated within a congestion control mecha-

nism at the end-host.

Subflows are coupled by linking the functions that drive congestion window changes. What then

are the specific functions that can be coupled? Recall from Chapter 2.1.2 that TCP flow-control is

divided into distinct phases: slow-start, congestion avoidance (CA) and congestion recovery. The

congestion window is changed in response to positive acknowledgement or congestion notification

signals. The algorithm that responds to these signals varies depending on the current phase. For

instance the response to an ACK during slow-start is different to that of CA

3

, and so on. The coupled

algorithm must therefore choose when to link behaviour and when to use independent functions,

based on the current phase and the type of signals.

Not all functions need to be coupled. For example the default congestion control of MPTCP [10]

only couples the additive increase phase of CA, acting like uncoupled TCP-Reno at all other times.

As with scheduling, additional instrumentation may be used by the algorithm to improve accuracy or

3

For example the classic approach is exponential cwnd grow during slow-start and linear growth during CA.

56 CHAPTER 4. MULTIPATH SCHEDULING AND CONGESTION CONTROL

new variables. For example detecting bottlenecks has been a particular challenge for existing coupled

CC [134], so the inclusion of additional algorithms that drive cwnd changes should be supported.

As with TCP it is expected that different algorithms will be proposed to meet different performance

goals. Here we divide a selection of existing algorithms into those designed for general-purpose

Internet deployment and those with more specialised goals.

Several general-purpose coupled CC algorithms are included with the base Linux MPTCP distri-

bution. These are the linked-increases (LIA) [10, 113], opportunistic linked-increases (OLIA) [130]

and balanced linked adaptation (Balia) [138] algorithms.

LIA was the first coupled CC algorithm standardised for MPTCP. The algorithm couples the

congestion window increase function during the congestion avoidance phase. Window decrease,

slow start and retransmission behave as per standard TCP-Reno [22]. It should be possible to use the

algorithm with different congestion control algorithms such as TCP-Cubic, however at the time of

writing no literature has evaluated this.

The algorithm operates as follows. For each ACK received on a subflow the cwnd is increased as a

proportion of the total cwnd of all subflows. The increase is based on the estimated bandwidth of the

path, with lower loss paths seeing greater increases. Bandwidth is estimated based on loss-rate and

RTT. A limit is placed that prevents any individual increase from being greater than what single-path

TCP would see on that path. Also considered is the bandwidth that would be achieved by a TCP flow

over the best path, and the aggregate rate of the subflows is adjusted to at least this rate.

LIA attempts to continuously probe even high-loss paths, meaning it trades efficient congestion

balancing for better responsiveness to path changes. This trade-off means that the stated design goals

are not met in some cases [10, 130, 139]. Analysis by [130, 138] shows several instances where

LIA provides worse-than-TCP performance or is unfair to other TCP cross-traffic. Critically in some

cases using MPTCP reduces the performance of other flows without a corresponding gain. To support

probing some level of traffic must always be sent across all the paths. This reduces performance of

the best path (and hence the MPTCP connection) while also adding more traffic to congested paths,

which impacts cross-traffic on those links.

OLIA attempts to better address goal (3). As with LIA, only the increase-function is coupled be-

tween the subflows. OLIA tracks the amount of data successfully transmitted between losses (termed

inter-loss distance) and uses this together with RTT to rate which paths are ‘best’. Of the resulting

subset of ‘best’ subflows, those with smaller windows grow faster than those with larger windows.

Therefore traffic from fully used paths can be allocated to paths with free capacity. Analysis in

4.2. MULTIPATH CONGESTION CONTROL 57

[130, 138] shows that OLIA is indeed more friendly and better performing than LIA, however [140]

finds that OLIA can be unresponsive to change when path RTTs are similar.

Balia aims to improve on both LIA and OLIA by achieving an optimal balance between friendli-

ness and responsiveness. Evaluation in [140] shows Balia to be friendlier than LIA and more respon-

sive than OLIA. As with the previous algorithms, Balia applies to the AIMD portion of the congestion

avoidance phase, however both increases and decreases are linked. Balia uses only RTT and cwnd

values of each path in it’s calculation.

Each of the approaches discussed so far uses packet loss as an indicator of congestion. Thus

changes to traffic distribution balance only occur in response to packet loss on a path. This limits

when traffic can be shifted away from a congested path until after loss has occurred. As with loss-

based TCP CC the results in a periodic rise and fall of RTT as path queues are filled and emptied as

congestion window grows and then collapses. Weighted Vegas (wVegas) [141] aims to provide a more

fine-grained and fair balancing of traffic using a delay-based approach.

The wVegas algorithm adjusts subflow cwnd according to the estimated backlog of packets in

queues along the subflow path. If a (user-defined) threshold of queuing is reached, then the cwnd is

reduced, allowing time for queues to clear. A weighting factor based on an estimate of path capacity

is included that increases the window size of higher-capacity paths more quickly, thus acting as a

steering mechanism.

Not all proposed algorithms are designed for general-deployment. As with TCP, different deploy-

ment scenarios benefit from a different CC approach. MP-Veno [142] is one such algorithm that is

designed for use in wireless networks. MP-Veno is derived from TCP-Veno [143], itself a combina-

tion of TCP-Vegas and TCP-Reno. TCP-Veno uses delay-variance to determine whether losses are

due to congestion or random packet loss (common in wireless networks). The multiplicative decrease

function changes depending on whether the algorithm believes the current state is congested or not

congested. The increase function is changed to keep the congestion window within a usable size for

a longer period of time.

TCP-Veno uses a bandwidth threshold value B that represents congestion-level queuing in the

path. On ACK it is compared to an estimate of the current number of packets backlogged (queued)

along the path. A backlog greater than B indicates that the path is in a congested state and any

loss is deemed caused by congestion, and cwnd is reduced as with TCP-Reno. Losses that occur

with a backlog less than B are treated as random packet loss, ans cwnd is reduced by a fraction of

the standard TCP-Reno reduction. MPVeno uses a similar cwnd growth and reduction mechanisms

58 CHAPTER 4. MULTIPATH SCHEDULING AND CONGESTION CONTROL

as TCP-Veno, however a weighting factor is applied to the backlog threshold B that ensures that if

sharing a bottleneck, the sum throughput of the MPVeno subflows does not exceed that of a single

TCP-Veno flow. Preliminary similations comparing MPVeno to LIA indicate that MPVeno may be

more resilient to random packet losses.

The Equally-Weighted MPTCP (EW-MPTCP) [144] proposal attempts to reduce TCP incast [145]

issues caused by MPTCP flows in datacentre networks (DCNs). Using MPTCP in a DCN helps to

spread connections and reduce path collisions [146] but does not completely eliminate incast. EW-

MPTCP is unique in that it adds weightings across multiple MPTCP connections (using LIA CC) so

that the aggregate throughput of connections servicing a request is equal to that of a single TCP flow

(similar in some ways to E-TCP). The rationale behind this is that within DCN topologies a single

request is serviced by multiple concurrent connections, and should therefore be considered part of the

same connection. The weighting uses the number of related connections n as a scaling factor and is

applied to cwndgrowth during slow-start and CA phases. A mechanism for learning the value of n

in an actual implementation is not provided, and a practical implementation would need to solve this

issue. Simulations show that the approach is at least feasible.

4.3 Conclusion

Standard TCP applications are not aware of any underlying multi-path capabilities and cannot influ-

ence where data is steered. MPTCP performs these functions through both scheduling and congestion

control algorithms. As MPTCP is designed to operate over the Internet, it is expected that these mech-

anisms should provide good performance across a range of diverse paths whose characteristics can

change over time.

CC was developed along with the initial MPTCP specification, and several congestion control

choices are already available in the UCL Linux MPTCP distribution. However further research is still

required into areas such as bufferbloat detection and bottleneck detection. Bufferbloat is relatively

common, yet difficult to detect, and can confuse existing algorithms that rely on packet-loss as a

signal of congestion. Current CC algorithms assume that subflows share bottleneck links, even if

paths are fully disjoint, which prevents full utilisation of the available capacities [147].

There is, at the time of writing, no standardised or stand-out approach to scheduling. Proactive

methods are a popular area of research, however are fairly complex and several proposals have yet to

be tested in a real implementation. Naive methods combined with optimisation algorithms have seen

more practical implementations, however known issues (such as bufferbloat detection) still exist and

4.3. CONCLUSION 59

further research is required for solutions.

The existing literature largely focuses on individual schedulers or CC algorithms. The scheduler-

CC relationship is vital, though at this point there does not seem to be a survey examining the inter-

action between different schemes (possibly due in-part to the lack of in-kernel implementations).

Finally, a number of prominent experiments in the existing literature are simulated and do not

feature complex ‘real-world’ topologies or significant cross-traffic. It is critical to be able to test

news schemes in real implementations. For example, what is the processing and memory cost of an

approach? Is it scalable? Is the performance replicated in a real stack and network? Only few studies

[148, 8] have surveyed MPTCP flows in the Internet. In the following chapters we look at the MPTCP

protocol itself before describing our MPTCP architecture for the FreeBSD network stack.

Chapter 5

Overview: TCP extensions for

Multi-addressed Operation

The core goal of MPTCP is to transparently bring resource pooling to existing TCP-based appli-

cations. The resources in this case are IP addresses on the end host, each of which represents a

potentially unique network path. By combining the available addresses, a single transport session

can gain additional throughput or mobility by sending data over interfaces that would otherwise have

been left idle. Only one host in the connection needs to be multihomed to enable MPTCP.

What follows in this chapter is a high-level overview of how MPTCP fits into the network stack,

the design decisions that allow it to remain invisible to both the application and network, and an

operational overview of an MPTCP connection. This discussion should be considered as introductory

only and RFC 6824 [2] should be referred to for greater detail and further reading.

5.1 Key Concepts

From the perspective of the application and network layers, MPTCP looks like TCP. An application

creates a TCP stream socket, while the network sees multiple, seemingly unrelated TCP flows. Since

there is a presumption that most TCP applications will not be MPTCP aware

1

, a MPTCP socket must

respond like a TCP socket. Thus the MPTCP socket abstraction is identical to TCP - namely a single,

connection-oriented, sequenced, reliable, bi-directional network pipe.

To realise the desired transparency and backwards compatibility goals the protocol designers

needed to consider (among other things): where in the network stack MPTCP should reside, what

1

At least initially. An API could be made available for MPTCP aware applications in the future.

60

5.1. KEY CONCEPTS 61

Sockets API

TCP1 TCPn

TCP Application

TCP2 TCP3

Sockets API

TCP

TCP Application

IP

MPTCP

IP IPIP IP

Figure 5.1: MPTCP sits logically between the socket and standard TCP stack.

Kind Subtype

Bit 0 Bit 31

Subtype-specific data (variable)

Length

Figure 5.2: Generic MPTCP option format

would be a suitable signaling mechanism and how to aggregate data from multiple TCP-based sub-

flows.

A transport layer shim: MPTCP needs to be available for all TCP applications on a host system,

and is therefore implemented within the host’s network stack. All operations are embedded within

the transport layer. It is here where the multipath connection is terminated, new paths are discovered

and data scheduling decisions are made.

Within the transport layer, MPTCP is positioned above TCP. This arrangement allows MPTCP to

control the flow of data between the socket and multiple TCP connections that make up the MPTCP

connection. Figure 5.1 compares a standard network stack with an MPTCP-enhanced stack. We

see that each subflow belonging to a MPTCP connection is effectively a standalone TCP connection

bound to a local IP address. MPTCP, in extending across each of the subflows, can decide where data

is sent and is also able to aggregate received data for presentation to the TCP application. Though the

application ‘sees’ a TCP socket, in practice TCP is completely decoupled from the application.

Signaling: Chapter 2 discusses the difficulties in deploying new protocols on today’s Internet.

A key concern of the MTPCP design was how to introduce signaling in a way that was compatible

with the current Internet. Research [29] had shown that it was still possible to extend TCP with

62 CHAPTER 5. OVERVIEW: TCP EXTENSIONS FOR MULTI-ADDRESSED OPERATION

2 3 41

Data Sequence Bytes 1-7
5 6 7 SEQ: 46

DSN: 565 7
4746 48

SEQ: 12
DSN: 121 43

1312 1514

SEQ: 73
DSN: 343 5

7473 75
6
76

Subflow 1

Subflow 2

Subflow 3

Figure 5.3: The 64-bit data sequence is carried over multiple 32-bit TCP sequences.

new options. Thus all signaling for MPTCP connections occurs via TCP options, carried in the TCP

header of constituent subflows.

IANA has assigned a TCP option kind for MPTCP [149], and theMPTCP option is further divided

into subtypes, each defining a signaling operation. The generic format of a MPTCP option is shown

in Figure 5.2. Here the shaded Kind and Length fields inform TCP that this is an MPTCP option of a

given length. The Subtype field denotes the particular MPTCP signal that this option represents. The

subtype and related data is interpreted at the MPTCP-level and has no meaning at the subflow-level.

Several option subtypes are discussed in Section 5.2.

Data-sequence space: MPTCP is not a single TCP sequence space striped across multiple paths.

Rather, an individual TCP subflow exists for each available path and has it’s own 32-bit TCP sequence

space that uses the standard TCP sequence field of the TCP header. Using subflows means that the

application byte stream is distributed across multiple independent sequence spaces.

An additional 64-bit data sequence space is defined to map the single byte sequence from the

application to the subflow sequence spaces. A 64-bit Data Sequence Number (DSN) is assigned to

each byte being sent over the connection. The DSN is functionally analogous to TCP sequence num-

bering, and allows MPTCP to provide in-sequence delivery of data through receive-side reassembly,

and reliability through positive acknowledgement and retransmission.

A DSN is mapped to a subflow’s sequence space at transmission time. The same DSN can be

mapped to multiple subflows, for example if retransmission is required. Figure 5.3 provides an ex-

ample of this mapping. The application has written a sequence of bytes to the send buffer. The

scheduler assigns bytes to three subflows. The DSN is now mapped to the sequence space (SEQ) of

that subflow. The allocation to Subflow 3 shows how the same application-level bytes can be mapped

to multiple subflows

2

.

2

This is useful for retransmitting data on alternate paths, or for schemes that require transmitting the same data simulta-

neously across multiple paths.

5.2. MPTCP IN OPERATION 63

Variable Description

SND.NXT Data-sequence Send Next: Next sequence number to send

SND.UNA Data-sequence Send Unacklowledged: Earliest sequence sent but not acknowledged

RCV.NXT Data-sequence Receive Next: The next sequence number expected to receive

RCV.WND Data-sequence Receive Window: Receive window to be advertised by all subflows

Table 5.1: MPTCP State Variables

At the receiver the TCP SEQ information is used only at the subflow-level. The DSN is used to

reassemble the byte stream arriving across multiple subflows. Any data stream bytes that have been

duplicated (due to say parallel transmission such as in the previous example) is discarded. How the

DSN to subflow mapping is conveyed to the receiver is discussed in Section 5.2.3.

Aside from middlebox compatibility, maintaining an individual TCP sequence space for each

subflow has several advantages. Crucially it means that subflows can take advantage of TCP’s ordered

delivery and reliably at the subflow level. For example a packet loss on a particular subflow is handled

by standard TCP retransmission on that subflow, without requiring intervention from the MPTCP

layer.

Data Sequence Variables: MPTCP state-variables follow closely the model set out by TCP (see

Chapter 2.1.2). The data-level sequence variables duplicate the semantics of TCP entirely, and are

shown in Table 5.1. It is worth re-iterating that each subflow in a connection continues to maintain

its own send and and receive sequence space variables (e.g. SND.NXT). There is one exception -

since the receive window is defined at the connection level (i.e. the receive buffer space available to

the application) all subflows advertise the MPTCP-level RCV.WND rather than advertising individual

windows.

5.2 MPTCP in Operation

TCP is connection oriented, with distinct initiation, established and closing stages. MPTCP also

has separate connecting, established and closed states. The following subsections show the different

MPTCP concepts - transparency, TCP option signaling and the data sequence space - come together

at various stages of the MPTCP connection life cycle.

64 CHAPTER 5. OVERVIEW: TCP EXTENSIONS FOR MULTI-ADDRESSED OPERATION

SYN + MP_CAPABLE
Key(H1)

SYN/ACK + MP_CAPABLE
Key(H2)

ACK + MP_CAPABLE
Key(H1) + Key(H2)

Host 1 Host 2

1.1 1.2
Interfaces

2.1 2.2
Interfaces

Host 1

1.1

1.2

Host 2

2.2

2.1

Initial handshake

Figure 5.4: Negotiating an MPTCP connection.

5.2.1 Opening a Connection

MPTCP functionality is negotiated during the TCP handshake in much the same way as other TCP

options (e.g. SACK). If MPTCP cannot be negotiated the connection continues as a standard TCP

session. The MP CAPABLE option subtype is used to establish MPTCP connections. This option

has duel purpose: (1) To probe whether the remote host is MPTCP enabled and if so (2) synchronise

a MPTCP connection. Synchronisation involves the exchange of unique keys, from which initial

sequence numbers and session tokens are derived.

The MP CAPABLE sequence is shown in Figure 5.4. Negotiation takes place over the endpoint

addresses bound by the application, in this case the address 1.1 on the client (Host 1) and the address

2.1 on the server (Host 2). The client application creates a TCP socket and initiates a connection.

An MP CAPABLE option is included on the SYN packet. A server that does not have MPTCP enabled

will ignore the MP CAPABLE option when the packet is received, and the connection will continue as

standard TCP. If, as in our example, the server is MPTCP enabled then a MP CAPABLE is included

on the returning SYN/ACK.

Also included in the SYN packets are session keys that have been generated by each of the hosts.

A hash function of the keys is used to derive a session token and the initial data sequence numbers. For

example Host 2 uses Key(H1) to obtain the session identifier token and the data sequence number

of the first byte from Host 1. The data sequence numbers are used for byte stream synchonisation,

while the token is used to uniquely identify an MPTCP session at a host.

5.2. MPTCP IN OPERATION 65

Host 1 Host 2

SYN/ACK + MP_JOIN
HMAC(H2), Rand(H2)

ADD_ADDR
ADDR, ID

Host 1 Host 2

1.1
Interfaces

SYN + MP_JOIN
Token(H2), Rand(H1)

SYN/ACK + MP_JOIN
HMAC(H2), Rand(H2)

ACK + MP_JOIN
HMAC(H1)

SYN + MP_JOIN
Token(H1), Rand(H1)

ACK + MP_JOIN
HMAC(H1)

1.1 1.2
Interfaces

2.1 2.2
Interfaces

2.1 2.2
Interfaces

ACK

ACK

ADD_ADDR
ADDR, ID

Host 1 Host 2

1.1 1.2
Interfaces

SYN + MP_JOIN
TokenH2, RandH1

SYN/ACK + MP_JOIN
HMACH2, RandH2

ACK + MP_JOIN
HMACH1

2.1 2.2
Interfaces

ACK

Implicit joint Advetise and join

Figure 5.5: Examples of joining a subflow. On the left, Host 1 triggers an implicit join to a known

address on Host 2. On the right, Host 2 must advertise an unknown address so that Host 1 can initiate

a join.

66 CHAPTER 5. OVERVIEW: TCP EXTENSIONS FOR MULTI-ADDRESSED OPERATION

5.2.2 Associating Subflows

MPTCP connections begin with a single subflow. Additional subflows added only after synchonisa-

tion. Again, the standard TCP handshake is the basis of connecting a new subflow. The MP JOIN

option is included during this handshake. Figure 5.5(a) shows a basic joining scenario, where Host 1

initiates the addition of a new subflow between addresses 1.2 and 2.1.

The MP JOIN uses information exchanged during the MP CAPABLE handshake for session iden-

tification and host verification. The opening MP JOIN includes the session token exchanged during

the MP CAPABLE handshake. This identifies the SYN packet with an existing MPTCP connection.

A random number is included with the token, and is used together with the session keys to create a

HMAC

3

. The purpose of the HMAC is to allow both hosts to verify that each was indeed involved in

the initial connection setup. The SYN/ACK includes the calculated HMAC(H2) and a random num-

ber, but not a token as Host 1 has already associated this 5-tuple with the MPTCP connection. Host

1 then calculates HMAC(H1) for inclusion in the final ACK/MP JOIN. Host 2 verifies HMAC(H1)

from Host 1, responding with an ACK. Following this sequence the subflow is now attached to the

MPTCP connection and data may carry data. In Figure 5.5(a) we see that Host 2 has an additional

interface that is not used. This raises a question as to why Host 1 would not attempt to join a subflow

with address 2.2. The reason is that Host 1 does not yet know about this address.

The ADD ADDR option allows anMPTCP endpoint to advertise an additional IPv4 or IPv6 address

that the receiving host can choose to connect to. This is useful in instances where one host is behind

a firewall or NAT and cannot receive implicit joins. This scenario can be applied to Figure 5.5(b).

Assuming Host 1 is behind a NAT, Host 2 cannot issue an implicit MP JOIN from the address 2.2.

Host 1 cannot connect a new subflow to 2.2 since it is not aware of the address. The ADD ADDR

option is used to inform Host 1 about the additional interface, after which Host 1 can establish a new

subflow at the advertised address.

It is worth noting that the specification does not mandate which host should attempt to add sub-

flows. Either the client or the server may initiate a MP JOIN to known addresses.

5.2.3 Transferring Data

As previously discussed, the 64-bit sequence space ensures that data is delivered in-order and reliably.

Each byte in the stream is assigned a data-sequence number, and during transmission this DSN is

mapped to the sequence space of the selected subflow. The data must be acked at both the subflow

3

keyed-hash message authentication code

5.2. MPTCP IN OPERATION 67

Data sequence number (4 or 8 bytes)

Data ACK (4 or 8 bytes)

Kind Subtype

ChecksumData-level Length

Bit 0 Bit 31

Length Reserved & Flags

Subflow Sequence Number

Figure 5.6: Data Sequence Signal option

Flag When Set

A Data-ACK present

a Data-ACK is 64-bit

M DSN present

m DSN is 64-bit

F Data-FIN is present

Table 5.2: Data Sequence Signal Flags

sequence level (i.e. standard TCP ACK) and at the data sequence level. The Data Sequence Signal

(DSS) option, shown in Figure 5.6, carries the mapping between the data sequence and subflow

sequence and is used to acknowledge DSNs. The DSS is used for several different signals, and the

type of signal is indicated to the receiver by the flags field. The definition of each flag is provided in

Table 5.2.

When sending data the DSS is populated with the DSN, subflow sequence number (SSN), data-

level length and checksum fields. The SSN is a 32-bit sequence number relative to the start of the

subflow sequence. A relative value is used for the SSN as firewalls are known to randomise sequence

numbers, changing the TCP sequence numbers seen at each end-host. The DSN, SSN and data-level

length represent the actual mapping between the data sequence and subflow sequence. A DSS can be

used per-packet, or a single DSN can cover multiple packets.

As an example consider a DSS with the values {DSN:200, SSN:500, Len:1000}. This

tells the receiver that the next 1000 bytes of this subflow (SSN:500-1499) represent data-level

bytes DSN:200-1199. Suppose that the mapping of 1000 bytes is sent in a single packet and that

68 CHAPTER 5. OVERVIEW: TCP EXTENSIONS FOR MULTI-ADDRESSED OPERATION

SEQ: 500
DSN:100 LEN:200

Host 1 Host 2

ACK:700
Data-ACK:500

SEQ:700
DSN:500 LEN:300

1 2
Subflow

SEQ:80
DSN:300 LEN:200

ACK:280

SEQ:500
DSN:100 LEN:200

Host 1 Host 2

ACK:480
Data-ACK:500

SEQ:80
DSN:300 LEN:200

SEQ:280
DSN:100 LEN:200

ACK:280

Typical transmission case

´

1 2
Subflow

1 2
Subflow

1 2
Subflow

Retransmission case

Figure 5.7: MPTCP data exchange using the DSS option. A typical exchange is shown on the left,

while on the right we see a retransmission after a subflow fails.

the packet is fragmented into two packets in transit. Even if the DSS only replicated on the first

packet, the receiver can use the mapping to recover the DSN for the bytes in the second packet from

the TCP sequence number.

Like TCP, MPTCP uses a sliding transmission window. The right edge of the window (i.e. new

data) is progressed when sent data is acknowledged. The size of the window is governed by the

congestion window and receiver’s advertised window. In MPTCP the receiver advertises a receive

window using the window field in the TCP header of the subflows. Since subflows share a receive

buffer, all subflows advertise the same window (receive buffer specifics are discussed further in Chap-

ter 4). As mentioned data must be acknowledged twice - at the subflow level using a standard TCP

ACK and at the data level using a DSS data-ACK. However only the data-ACK confirms that data

has actually been received by the application, so it is this acknowledgement that allows the window

to progress. Figure 5.7 shows the DSS in use when sending and acknowledging data.

The left of Figure 5.7 shows a typical transmission case, where two 200-byte mappings are trans-

mitted across two subflows. Assume the transmission window was 400-bytes, meaning a data-ACK

is required before new data can be sent. The data is received successfully on both subflows. Subflow

1 combines a subflow-level ACK and a data-ACK covering the data sent on both subflows. Sub-

5.2. MPTCP IN OPERATION 69

Host 1 Host 2

FIN/ACK
D-FIN DSN:80 LEN:1

D-ACK:51

FIN
D-FIN DSN:50 LEN:1

ACK
D-ACK:81

Host 1 Host 2

FIN/ACK
D-FIN DSN: 80 LEN:1

D-ACK:51

FIN
D-FIN DSN:50 LEN:1

ACK
D-ACK:81

1 2
Subflow

1 2
Subflow

SEQ: 400
DSN:20 LEN:30

ACK:430
D-ACK:50

FIN

ACK

FIN/ACK

Combined with TCP close Close data-level first

Figure 5.8: MPTCP connection close can be combined with the subflow-level close. With multiple

subflows, the MPTCP connection is closed first.

flow 2 only ACKs at the subflow level. How data-ACKs are transmitted is implementation specific.

For instance it would also have been equally valid to data-ACK on both subflows, or Subflow 2

only. Having received a data-ACK, the right edge of the window progresses and new data can be

transmitted.

On the right of Figure 5.7 is a slightly different scenario in which packet loss occurs. Again two

200-bytes mapping are sent. This time however Subflow 1 fails soon after transmission, meaning

data sequence bytes 100-299 are not delivered. Subflow 2 does not have any issues and delivers the

data sequence bytes 300-499. The 200 bytes are acknowledged at the subflow level (ACK:280)

however a data-ACK is not transmitted, since data sequence acknowledgements are cumulative

and bytes 100-299 were not received. After a timeout period bytes 100-299 are remapped onto

Subflow 2 and retransmitted. Data sequence bytes 100-499 are cumulatively acknowledged and

transmission may advance.

70 CHAPTER 5. OVERVIEW: TCP EXTENSIONS FOR MULTI-ADDRESSED OPERATION

5.2.4 Closing a Connection

In standard TCP the FIN flag is used to inform the receiver that data transmission has completed,

typically the result of an application calling close() or shutdown() on a socket. Both endpoints

must independently send and acknowledge a FIN before the connection is closed. A standard TCP

FIN in an MPTCP connection applies only to the subflow on which it is sent. This allows the closure

of subflows independently of the overall connection. The MPTCP connection must be closed at the

data sequence level. For this, the TCP FIN semantics are replicated using the data-FIN flag and

data-ACK field of the DSS option. Thus for MPTCP-enabled connections, closing a socket initiates

a MPTCP closing handshake.

Figure 5.8(a) shows a MPTCP connection close combined with a TCP subflow close. In this

example all data has been transmitted and acknowledged and Host 1 wishes to close the connection.

The sequence plays out much like a standard TCP closing sequence.

Figure 5.8(b) presents a more complex close for a connection that has two subflows. At the

beginning of this sequence 40 bytes are being sent from Host 1 to Host 2 on Subflow 2. Soon after the

data is acknowledged and Host 1 calls close() on the socket. The scheduler decides to close the

connection by sending a Data-FIN on Subflow 1. Since there are no data outstanding a TCP-level

close is also initiated for Subflow 1. Host 2 sends a data-ACK that acknowledges the data-FIN

sent on Subflow 1, as well as a data-FIN. Host 1 then sends acknowledgements that close Subflow

1 and the MPTCP connection. Although the MPTCP connection has now been closed, Subflow 2 is

still an active TCP connection. The MPTCP implementation can simply initiate a TCP FIN sequence

on this subflow at this time.

It is important to note that the data-FIN is not acknowledged until all previously transmitted

data has been acknowledged by data-ACK (even if the data has been acknowledged at the subflow

level). This ensures that all data transmitted has been received before the connection is closed. As the

examples have shown, subflow-level and connection-level closes are decoupled. Thus the MPTCP

connection is typically closed first to confirm the delivery of data, followed by the subflows.

5.3 Other Protocol Considerations

Reliability: MPTCP must support reliability at the data sequence level. Subflows already benefit

from TCP’s existing recovery mechanisms, though retransmissions are subflow-local. Data sequence

retransmission involves remapping of a DSN to a new subflow when the original subflow is unable to

5.3. OTHER PROTOCOL CONSIDERATIONS 71

deliver the data (perhaps after TCP-level recovery fails). Figure 5.7(b) provided an example of how

the data sequence can be remapped for transmission on an alternate subflow.

The MPTCP specification does not define a particular mechanism for performing data level re-

transmissions, and the how and when of retransmitting data is implementation specific. Data sequence

retransmission might be triggered based on a retransmission timer, or upon detecting a subflow in re-

transmission. For example, an aggressive scheme could perform data sequence retransmission for

every packet loss detected on a subflow. This would reduce delay in retransmitting data at the ex-

pense of efficiency (packet loss is not uncommon so duplicate transmissions would be likely). A

more conservative approach may wait for a subflow to experience multiple TCP-level retransmission

timeouts before resending the data on a new subflows. This approach would reduce the amount of

data duplicated over multiple subflows (since data would have a greater chance of being recovered at

the subflow-level) at the expense of responsiveness - it would take longer for data level retransmits to

occur.

Selecting a subflow on which to retransmit data (when multiple choices are available) is also

important, and has been an active area of multipath research. Subflow selection strategies for retrans-

mission are discussed further in Chapter 4.

Falling Back to TCP: The MPTCP design is heavily influenced by the need to maintain compat-

ibility with today’s Internet. Specifically this means being resilient to interference from middleboxes.

But what is the correct response if such interference is detected? In most cases MPTCP will aim

to ‘fallback’ to a standard TCP connection. This behaviour is transparent and appropriate given the

application was at minimum expecting a TCP socket.

Middlebox resilience is built into signaling procedures. The MP CAPABLE handshake first con-

firms that MPTCP can be indeed be used along the path. Failures (such as the removal of an option)

during at this stage will result in the connection simply continuing as TCP. During design testing it

was found that some middleboxes allow new options on SYN packets but not standard data packets

[2]. Thus a DSS option must be acknowledged by another DSS data-ACK. Failure to carry DSS

options again results in fallback to TCP. Even if a path is known to carry MPTCP options, there are

still instances where the connection must respond by terminating a subflow or falling back to TCP,

for instance if a middlebox alters payload data.

The DSS option, introduced in Section 5.2.3, contains a checksum field when sending mapped

data. This checksum detects if the payload data has been altered in any way. It is important to de-

tect these changes as any alteration in the payload breaks the mapping between the subflow and data

72 CHAPTER 5. OVERVIEW: TCP EXTENSIONS FOR MULTI-ADDRESSED OPERATION

sequence spaces. If sending data on multiple subflows, it is not possible to recover the data or deter-

mine how the changes impact the overall data stream. In this case the affected subflow is terminated

with the MP FAIL signal, which describes the portion of data that will need to be retransmitted. A

checksum failure on a single subflow connection results in an effective fallback to standard TCP.

Chapter 6

An Architecture for MPTCP in the

FreeBSD Kernel

The UCL implementation of MPTCP for Linux has demonstrated one approach to creating an extensi-

ble, modular architecture [110, 150]. Although generalised for adaptation to other operating systems

[110], differences between the Linux and FreeBSD kernels mean that a close translation of this de-

sign is difficult. In this chapter we describe an architecture that is suitable for integration within the

FreeBSD TCP stack. The implementation was designed to meet the following goals:

• Extensibility: Further experimentation into multipath scheduling and congestion control must

be supported through modular scheduling and congestion control frameworks. The in-kernel

components of the implementation should also be easy to modify or improve.

• Maintainability: The FreeBSD stack is constantly changing. The implementation should be

designed with ease of maintenance in mind so that it can stay compatible with the kernel into

the future.

• Minimal impact on TCP stack performance: Adding MPTCP support requires inserting code

into existing TCP code-paths. Impact on the performance of the native FreeBSD TCP stack

when running standard TCP connections needs to be minimised.

Our MPTCP stack is completely implemented within the FreeBSD kernel space, utilising aspects of

the modular TCP framework introduced in FreeBSD-head r292309 [151]. There have been several

significant design evolutions during the development process. These previous designs are documented

in two technical reports [152, 153]. These are also included as appendixes of this thesis.

73

74 CHAPTER 6. AN ARCHITECTURE FOR MPTCP IN THE FREEBSD KERNEL

6.1 Designing for FreeBSD

Implementing MPTCP for the FreeBSD kernel is a significant undertaking. The API is expected to

present the single-session socket of conventional TCP, while underneath, the kernel is expected to

support the learning and use of multiple IP-addresses for session endpoints. This creates a non-trivial

implementation challenge to retrofit such functionality into existing, stable TCP stacks. For example:

• New shared data structures must be initialised appropriately and protected against corruption.

• Additional data-level processing (such as reassembly) must be deferred so as to not delay TCP-

level responses.

• The mainline TCP stack is constantly evolving and MPTCP code must stay compatible.

These are only a few of the challenges in creating an implementation. In this section we discuss how

each of these issues was considered in our design.

6.1.1 Data and Control Structures

In Section 5.1 we described MPTCP as a logical layer between the socket and TCP stack. This

layering separates data-level and subflow-level operations. The MPTCP layer provides the primary

send and receive buffers for the application. It is from these buffers that the scheduler allocates data

and reassembles the data stream from the multiple subflows. The MPTCP layer also has direct access

to the TCP subflows, allowing it to coordinate scheduling and congestion control. To provide these

capabilities, new MPTCP-specific structures are required and the interface between the socket and

transport protocol must be modified.

A standard TCP socket in FreeBSD is composed of three linked datastructures:

• Socket: The socket structure is the interface between the application and the protocol. It

contains a pointer to the protocol-specific datastructures and functions. The send and receive

socket buffers are also held in the socket structure.

• Internet protocol control block: Theinpcb stores IP-layer information such as addresses and

ports, and holds the TCP control block. The kernel maintains a hash list of inpcbs that is

used to map incoming packets to TCP sessions.

• Transmission control protocol control block: The tcpcb holds state variables required for the

6.1. DESIGNING FOR FREEBSD 75

TCP protocol. In addition to maintaining variables for the receive and send data sequences (see

Chapter 2.1.2), the tcpcb tracks the finite state machine and maintains session timers.

MPTCP introduces five new datastructures:

• Multipath protocol control block: The mppcb is the interface between the socket and the

MPTCP protocol and is initialised upon successful MPTCP handshake. It contains endpoint

information (addresses, ports), the MPTCP protocol function and a reference to the Multipath

connection block.

• Multipath connection: The mpconn maintains connection-level state. This includes a list of

subflow subsockets, and settings for the desired scheduling and congestion control algorithms.

The current implementation also maintains variables for path management.

• Multipath subsocket: There is an mp subsock for each subflow. Within are connection-

level related variables for subflow, such as address ID. Linked to this is a standard TCP socket

(consisting of a socket-inpcb-tcpcb) that represents the subflow.

• Multipath control block: Thempcb contains the core state for the MPTCP protocol. Within

are variables for tracking data-sequence numbers, timers and the finite state machine for the

connection. Table 6.1 defines several key mpcb variables referenced throughout the remainder

of this chapter.

• TCPMultipath connection: The t mpconn is the point of connection between the TCP control

block and MPTCP session. It stores subflow-specific state and a back-pointer to the mpcb. It

is attached to the tcpcb via the function block pointer, one of two pointers within the tcpcb

that are used to attach auxiliary datastructure or functions to the standard TCP stack (provided

as part of FreeBSD’s modular TCP stack support, discussed in Section 6.1.3).

Figure 6.1 shows the relationship with the existing TCP structures. Preexisting structures are shaded

grey, with newly defined structures in white. The arrows represent pointers between structures. The

left portion of the figure represents the data-level, while on the right is the subflow-level. We see here

how the standard socket-inpcb-tcpcb arrangement is preserved for each subflow.

The size of each new structure is given in Table 6.2. The total space required for MPTCP datas-

tructures is 2176 bytes without a subflow. Each subflow is 1976 byte, the size of a standard TCP

socket. A single subflow MPTCP connection thus requires 4156 bytes (2176+1976) for protocol

blocks, roughly the equivalent of two standard TCP connections.

76 CHAPTER 6. AN ARCHITECTURE FOR MPTCP IN THE FREEBSD KERNEL

Variable Description

ds snd nxt Data-level SND.NXT

ds snd una Data-level SND.UNA

ds snd una Data-level RCV.UNA

ds rcv wnd Data-level RCV.WND

Table 6.1: MPTCP control block sequence variables

socket

mppcb

mpconn

mpsubsock ...

socket

inpcb

tcpcb
mpcb

t_mpconn

Figure 6.1: Datastructures to support MPTCP in the FreeBSD kernel. Preexisting kernel structures

are shown in grey.

6.1. DESIGNING FOR FREEBSD 77

User-Request
routines

(tcp_usrreqs)

tcp_usr_send

tcp_output

tcp_usr_*

tcp_*

Socket

User-Request
routines

(mptcp_usrreqs)

mptcp_usr_send

Protocol switch
(INET, TCP)

mptcp_output

mptcp_usr_*

mptcp_*

Socket

Protocol switch
(INET, MPTCP)

Application MP Subsocket

Figure 6.2: Changing the protocol switch and user request routines of a socket.

78 CHAPTER 6. AN ARCHITECTURE FOR MPTCP IN THE FREEBSD KERNEL

Structure Size (bytes)

inpcb 464

tcpcb 648

socket 864

mppcb 120

mp conn 616

mpcb 240

t mpconn 336

Table 6.2: Size of MPTCP datastructures, compared with the existing TCP socket structures.

The current control-block structure of the implementation differs significantly from earlier iter-

ations, in which the inpcb and tcpcb structures were directly modified to accommodate MPTCP

state. The move away from this earlier approach was motivated by several factors, though principally:

• The desire to avoid modifying the existing tcpcb and inpcb structures.

• To enforce a more logical delineation between subflow-level and data-level variables, and re-

move connection-level state from the subflows. For example, creating a single mpcb to store

data-level state makes more sense than having the variables replicated across multiple subflow

tcpcbs.

• To simplify the implementation. Early versions of the implementation attached multiple inpcb/tcpcb

pairs to a ‘master’ socket. This took away the ability to re-use existing socket calls for each

subflow, and additional complexity resulted from having multiple subflows share single send

and receive socket buffers. Creating separate MPTCP structure to interface with the socket and

encapsulate the subflows allowed for a simpler design and greater re-use of existing functions.

The current PCB structure could be further refined, for instance by merging the mppcb and mpconn.

This will need to be explored in future work.

Socket-protocol interface: A socket contains a protocol switch structure that identifies the at-

tached network protocol and the entry and exit points between the protocol and the socket. This

includes details of initialisation and control functions and protocol identifiers (e.g INET, TCP). Of

particular interest in the MPTCP case is the user-request routines field, which points to a table of

functions that specify the interface between the socket and the protocol. User-request functions are

6.1. DESIGNING FOR FREEBSD 79

called in response to system calls such as send or connect. Figure 6.2 shows how the protocol

switch applies to an MPTCP connection.

We see that subflow sockets retain the user-request routines as per a standard TCP socket, while

the primary socket calls the MPTCP interface. As MPTCP sits between the MPTCP and TCP layers,

a new protocol switch block is defined for MPTCP sockets. This allows control signals and data

written by the application to be handled by MPTCP before being passed to the subflows. Crucially,

the protocol switch can be changed after the MP CAPABLE handshake, meaning applications can still

request a standard TCP stream socket.

6.1.2 Event-driven Model

The decoupled nature of the implementation and the desire to offload processing to another thread

(discussed in Section 6.2) means that an event-driven approach was devised. In the event-driven

model, MPTCP operations occur in response to messages from subflow or socket events. For example,

a subflow might append a new in-order segment of data to it’s receive buffer. This results in a socket

upcall that queues an message that is later processed in a dedicated event-processing thread. This

approach has some similarities to TCP architectures where connections are queued on a dedicated

protocol worker-thread for processing [154, 155]. We use an event-driven design as it allows the

more computational aspects of MPTCP processing (e.g. data-level aggregation) to be performed

independently of the subflow thread context.

Tasks are handled by the mp event handler routine. An mp event structure is used to hold

information about the event that has occurred and is parsed by the event handler. The procedure for

creating and processing MPTCP events is shown in Figure 6.3 and can be summarised as follows:

1. When an event occurs an mp event is created and inserted into the mp event list. This

list is shared by all MPTCP connections.

2. A task is enqueued on an event processing queue, along with a pointer to the mp event list.

3. The task thread runs, dequeues an event from the mp event list and calls the MPTCP event

handler.

4. The event is decoded and an appropriate handler function is called to take action.

Some MPTCP operations benefit from being performed in the same execution thread as TCP process-

ing. As discussed in Section 6.1.1, the TCP control block (tcpcb) should have access to the MPTCP

80 CHAPTER 6. AN ARCHITECTURE FOR MPTCP IN THE FREEBSD KERNEL

Create mp_event:
Segment received

Append to receive
bu�er

Sub�ow event
upcall

Receive Packet

rcvd_event ...

Add to event list

Enqueue mptcp
task_handler

Thread continues

mptcp_handler

Handler Runs

taskqueue_swi

If events > 0
Dequeue event

Identify event type

Run event handler

Figure 6.3: Processing a subflow socket event

6.1. DESIGNING FOR FREEBSD 81

control block (mpcb). This is so that operations that requires a fast turn-around, such as a data-level

acknowledgement, can be performed more quickly. In the case of Data-ACKs, these can therefore

be piggybacked on TCP ACKs without waiting for MPTCP-level processing. Other MPTCP support-

ing code, such as MPTCP option-processing are also executed within the TCP-processing thread

1

.

The use of a single queue to process events effects the processing parallelism afforded to MPTCP

connections. Critically, this approach serialises event-processing for all connections (even those with

a single subflow) onto a single thread. In effect, this means events on different MPTCP connections

are serviced by a single FIFO queue, with each connection waiting for events on the preceding con-

nection to be processed. This is in contrast to FreeBSDs TCP stack implementation, where each

message for each TCP connection is processed entirely within it’s own thread, allowing for extensive

parallel processing if multiple CPUs are available.

A second consequence relates to scalability. A single taskqueue for all processing MPTCP events

will act as a bottleneck as the number of concurrent MPTCP connections increases. The trade-offs

between a serialised and parallel approach to protocol processing are covered further in Chapter 6.2.

6.1.3 Leveraging the Modular TCP framework

The implementation re-uses much of the existing TCP stack code. An important design consideration

was how tightly the MPTCP code should be coupled with the existing stack. A tightly integrated

approach benefits from greater flexibility and may ultimately be better performing. The trade off is

implementation complexity and a high maintenance overhead (as code must continually be updated

as the TCP stack changes). A less integrated approach may result in less efficient code paths, and

has less direct access to the subflows. This could potentially limit performance in the long-term.

Maintenance is easier however as code is not directly affected by the frequent changes to the TCP

stack.

In our initial prototype releases [152, 153] we took a highly integrated approach. This provided

some benefits such as scheduling flexibility but added significant code to the TCP stack and proved

difficult to maintain and debug. Version 0.5 of the implementation was a ground-up redesign that de-

coupled the majority of MPTCP operations from the TCP stack. The current version further separates

MPTCP by using features of the modular TCP framework.

It is not possible to altogether avoid modifying the TCP stack. The kernel must be patched and

rebuilt to support MPTCP. It is possible however to minimise the changes by using a combination

1

MPTCP is a standardised TCP option and is thus processed alongside options such as TCP-SACK.

82 CHAPTER 6. AN ARCHITECTURE FOR MPTCP IN THE FREEBSD KERNEL

of asynchronous task execution and the modular TCP framework. The framework provides a way

to experiment with new TCP functionality without having to change the mainline TCP stack. As

discussed earlier, some procedures - such as option processing - are best integrated with the TCP

stack. Where code must be added to the existing stack it is enclosed within a #ifdef MPTCP

directive, allowing the inclusion or exclusion of MPTCP using the kernel configuration file.

A benefit of combining in-stack and modular approaches is that it allows for a simpler, largely

decoupled implementation that can be further refined over time into a parallel, MPTCP-specific stack.

We now discuss some of the specific benefits of using the modular TCP framework.

Redefining TCP functions: Existing TCP functions such as tcp output() and tcp do segment()

have been replaced by function pointers and are specified by the tcp function block. This is

the essence of the modular stack and the function pointers allow new functions to be substituted in

place of the defaults.

Dynamic stack selection: The modular framework allows the TCP stack to be changed even after

a call to connect() or listen() has opened a connection. Thus it is possible to attempt to nego-

tiate an MPTCP connection and switch to the default TCP stack if MPTCP is not supported. Ideally

MPTCP infrastructure is only allocated once we are certain that an MPTCP session will take place

(i.e. on completion of the MP CAPABLE handshake). If MPTCP is not negotiated for a connection,

then the default TCP stack should be used.

Extending the TCP control block: The t fb ptr pointer in the tcpcb can be used to attach

arbitrary data associated with a modular TCP stack. As we discussed previously, this pointer allows

MPTCP data to be associated with a subflow tcpcb without having to modify the tcpcb itself. It

is preferable to extend TCP-related structures rather than change them, as changing kernel structures

has various side-effects. For example increasing the size of the tcpcb would increase the memory

use of all TCP connections, even if MPTCP is not active. Perhaps more importantly, modifying

kernel structures modifies the Application Binary Interface (ABI). Changing the ABI is discouraged

as device drivers or modules implemented outside of the kernel may read a kernel structure directly

(rather than via a call to an API). Changes to a structure may potentially break functionality (unless

the external code is recompiled). The end result is that changing the ABI may lead to unpredictable

behaviour on a system with the MPTCP patch applied.

6.1. DESIGNING FOR FREEBSD 83

6.1.4 Scheduling and Congestion Control

We have discussed ongoing MPTCP research in Chapter 4. Much research still remains in the areas of

CC and scheduling for MPTCP. Supporting this research is the key motivation for our implementation.

Therefore scheduling and CC components are designed as kernel modules that can be dynamically

loaded and configured by the user, an approach that eases the path to practical experimentation.

The scheduler component is largely independent of existing TCP mechanisms and operates within

the MPTCP-layer. The scheduling module only needs to provide access into MPTCP control block

and input/output paths. Unlike scheduling, MPTCP flow-control must respond to events at the subflow

level (e.g. the reception of a Data-ACK does not precipitate a change in the congestion window).

The major involvement of the MPTCP-layer is in setting the CC algorithm for each subflow and

allowing the congestion control algorithm to consider the state of multiple subflows when processing

an ACK. The modular scheduling component was therefore designed to compliment the existing TCP-

CC framework to support both coupled and uncoupled CC approaches.

Modular TCP-CC framework: FreeBSD already features a modular CC framework for single-

path TCP (‘ModCC’). It was initially developed at Swinburne University [156] and was modeled on

the SCTP modular CC framework. The framework was designed to provide a platform for conducting

TCP-CC research by allowing CC algorithms to be built as dynamically loadable kernel modules

2

.

We use ModCC as a template for our modular components and adopt the design approach and usage

semantics for the MPTCP scheduling and CC frameworks. Some key features of ModCC:

• CC routines are replaced with calls to a set of function pointers defined in the structure cc algo.

New algorithms are created by implementing these functions.

• Algorithms can allocate additional arbitrary per-connection storage via the cc data pointer.

• The cc var structure is defined to pass related variables between the TCP stack and the new

functions. This includes a pointer to the TCP control block, state flags and cc data

• Pointers to cc algo and cc data in the TCP control block allow CC to be specified per-

connection. If required these can be be changed during a connection.

• Infrastructure to register algorithms and select from a list of registered algorithms.

The cc algo structure shown in Listing 1 encompasses the entirety of an algorithm from the ini-

tialisation function and name to the actual CC functions, of which some or all can be implemented.

2

Previously, every CC change required patching and rebuilding the entire kernel

84 CHAPTER 6. AN ARCHITECTURE FOR MPTCP IN THE FREEBSD KERNEL

For example, an algorithm may replace only ack received and use the default

3

routine for other

CC events. Routines are provided to register and unload algorithms as kernel modules. Registered

algorithms form a global linked-list and can be viewed and selected via the sysctl interface variables

net.inet.tcp.cc.available and net.inet.tcp.cc.algorithm. Any algorithm spe-

cific parameters can be configured via this interface.

Scheduler: The modular scheduling framework is closely modeled on ModCC. Schedulers are

defined by the structure mp sched algo, shown in Listing 2. The scheduler is an MPTCP-layer

mechanism and is attached to the mpconn via the pointer sched algo. Currently only a single

function is required of the scheduler - (*get subflow)(struct mp sched var *sch var).

This function invokes the scheduling algorithm and returns the mp subsock of the selected subflow.

The structure mp sched var stores pointers to mpconn and mp sched data. Through these

pointers the scheduler is able to access all subflows and any variables within. Persistent storage is pro-

vided through mp sched data, which is initialised at the beginning of the connection. Additional

functions may be added in future versions if required. The registration and configuration approach

are identical to that of ModCC. In this case scheduling variables are attached to the sysctl tree

net.inet.tcp.mptcp.sched.

Congestion control: ModCC conveniently implements all the hooks required for MPTCP-CC

and we only needed to include mechanisms at the MPTCP-level for registering and configuring

MPTCP-CCs. Thus all functions defined in Listing 1 can be implemented for a MPTCP-CC. As with

single-path ModCC, an algorithm can override some or all of the CC functions. In the case where no

multi-path function is defined then subflows use the default single-path function. A MPTCP-CC may

also assign single-path CCs on a per-subflow basis mid-connection, by initialising (if necessary) the

new algorithm and changing the cc algo pointer of the subflow TCP control block.

As with the scheduler, a sysctl tree net.inet.tcp.mptcp.cc is created for selecting and

configuring algorithm parameters. MPTCP-CC is kept separate so as to not pollute the single-path

sysctl tree and allow separate defaults to be set for single-path and multi-path TCP connections.

Though MPTCP-CC algorithms are defined using the cc algo structure, they are initialised

along with the MPTCP control block. On initialisation the cc algo for the first subflow is changed

to newly initialised MPTCP-specific algorithm. A single memory structure pointed to by cc data

is also initialised and is shared between the subflows. Subsequent subflows are also set to use the CC

instance created by the MPTCP-layer.

3

TCP-New Reno in FreeBSD

6.1. DESIGNING FOR FREEBSD 85

Listing 1 Definition of structure cc algo

struct cc_algo {

char name[TCP_CA_NAME_MAX];

/* Init global module state on kldload. */

int (*mod_init)(void);

/* Cleanup global module state on kldunload. */

int (*mod_destroy)(void);

/* Init CC state for a new control block. */

int (*cb_init)(struct cc_var *ccv);

/* Cleanup CC state for a terminating control block. */

void (*cb_destroy)(struct cc_var *ccv);

/* Init variables for a newly established connection. */

void (*conn_init)(struct cc_var *ccv);

/* Called on receipt of an ack. */

void (*ack_received)(struct cc_var *ccv, uint16_t type);

/* Called on detection of a congestion signal. */

void (*cong_signal)(struct cc_var *ccv, uint32_t type);

/* Called after exiting congestion recovery. */

void (*post_recovery)(struct cc_var *ccv);

/* Called when data transfer resumes after an idle period. */

void (*after_idle)(struct cc_var *ccv);

/* Called for an additional ECN processing apart from RFC3168. */

void (*ecnpkt_handler)(struct cc_var *ccv);

/* Called for {get|set}sockopt() on a TCP socket with

TCP_CCALGOOPT. */

int (*ctl_output)(struct cc_var *, struct sockopt *, void *);

STAILQ_ENTRY (cc_algo) entries;

};

86 CHAPTER 6. AN ARCHITECTURE FOR MPTCP IN THE FREEBSD KERNEL

Listing 2 The mp sched algo structure definition

struct mp_sched_algo {

char name[MPTCP_SCHED_NAME_MAX];

int (*mod_init)(void);

int (*mod_destroy)(void);

int (*mpcb_init)(struct mpconn);

void (*mpcb_destroy)(struct mpconn);

void (*conn_init)(struct mpconn);

void (*get_subflow)(struct mpconn);

STAILQ_ENTRY (mp_sched_algo) entries;

};

6.2 CPU and Memory Considerations

We have previously discussed the event-driven approach in Section 6.1.2. This is one part of an

overall effort to reduce the impact of running MPTCP on a system as a whole. In this section we

discuss our approach to charging MPTCP for CPU time and managing and protecting memory.

6.2.1 Ensuring Fair CPU Use

A CPU must perform many tasks simultaneously. Not all tasks are of equal importance, therefore a

hierarchy of priorities exist to allow the task scheduler to address the most time-critical tasks first.

Hardware interrupts are the highest priority threads available in FreeBSD, and are run in advance of

other threads in the system. Unlike other threads, hardware interrupts are not scheduled and execute

asynchronously, preempting an already executing thread if necessary. Given the high priority, oper-

ations executed after such an interrupt are typically kept short so that the CPU can return to other

tasks. Hardware interrupt handlers typically queue tasks for later processing by software interrupt

(SWI) handlers. These software handers run in the SWI context and are the highest priority sched-

uled kernel thread.

MPTCP adds additional processing steps on top of TCP. When sending a packet, the scheduler

must be invoked to select a subflow. On the receive side, segments must be aggregated and re-ordered

as they arrive from different subflows. The sharing of MPTCP datastructures between multiple sub-

flows creates overhead when accessed by simultaneously executing threads (this is discussed further

in Section 6.2.2). Each new subflow added to an MPTCP connection increases the amount of CPU

6.2. CPU AND MEMORY CONSIDERATIONS 87

Packet

Copy packet

Hardware Interrupt

Schedule handler

Await next packet

SWI handler

Process packet

Append to bu�er

Wakeup

Kernel-mode thread

Sleep

Copy out of bu�er

Return bytes

Read syscall

Send ACK

Hardware Interrupt
Context

Software Interrupt
Context

Process Thread
Context

Figure 6.4: Multiple threads are run when receiving a packet.

time consumed by that connection, which raises the separate question as to whether an application that

uses MPTCP transport should be able to consume more kernel CPU time as compared to applications

using standard TCP.

This ties in to how much MPTCP processing should be performed in the kernel interrupt context.

On the send-path, for example, the thread context is borrowed from the application that performed

the syscall. The user thread is is thus responsible for copying data to the socket and executing the

protocol-specific functions to send the packet. On the recevie-side, however, protocol operations up

to and including data-level reassembly and receive occur in the SWI context. Given consuming a

disproportionate amount of high-priority CPU time. Ideally MPTCP processing should be deferred

to another thread (for instance in the user context [157]), and charged to the application receiving the

data. This would allow the TCP processing-path to be kept as short as possible, and minimise the

execution time of the software interrupt.

Figure 6.4 shows how processing a received TCP packet is divided between different thread con-

texts. An incoming packet triggers a hardware interrupt. This causes a SWI to be scheduled that,

88 CHAPTER 6. AN ARCHITECTURE FOR MPTCP IN THE FREEBSD KERNEL

when run, handles processing of the packet up to the top of the transport-layer. Code executed in

the SWI is directly tied to processing the current packet (parsing options, updating sequence num-

bers, etc). This includes appending or dropping data from the receive or send buffers. The scheduler

charges the user-space application for CPU time only when data is read out of the receive buffer. This

processing model, where a packet is processed entirely within the calling SWI context, is referred to

as direct dispatch [158] and was introduced as the FreeBSD TCP stack transitioned to multi-threaded

operation.

MPTCP sits logically between the SWI thread that processes the packet and the application thread

that reads out the received data. A fair (to other processes) approach is to defer MPTCP processing,

such as re-ordering segments, to the application context. This is the the approach taken by the UCL

Linux implementation (an advantage of the Linux kernel is that TCP segment reassembly is already

charged to the user process). The FreeBSD kernel does not currently work like this, so for simplicity

we use the taskqueue interface [159] to defer MPTCP processing to another kernel thread. This

deferred dispatch approach more closely resembles the pre-multiprocessing FreeBSD releases that

serviced network protocols (such as TCP) via a single software interrupt context [160, 161].

Taskqueue threads enable asynchronous code execution within the kernel. Several global taskqueues

exist within the FreeBSD kernel and additional taskqueues can be instantiated if required. Enqueuing

and executing a task on a taskqueue works as follows:

1. On an initial thread, a task is placed onto the tail of the desired taskqueue. If the task is already

enqueued then a variable is incremented to reflect how many times the task has been enqueued.

The taskqueue thread is scheduled for a wakeup and the original thread continues to execute.

2. After an unspecified time the taskqueue thread is set to run and the first task on the list is

dequeued. The function associated with the task is called, passing a pointer to related data

structure and a count of how many times it was enqueued.

3. The function processing the task is run. In our case this function would locate the MPPCB for

the connection and perform data-level processing.

We currently use the taskqueue taskqueue swi [159] forMPTCP. Tasks executed in taskqueue swi

are in the same priority class as TCP interrupt threads. However as it is delayed to another thread

TCP-level processing can complete and return without waiting for data-level processing.

As discussed in Chapter 6.1.2, the use of a single taskqueue thread means that receiver-side pro-

cessing for MPTCP connections is serialised. This has an advantage in simplifying lock-order (dis-

6.2. CPU AND MEMORY CONSIDERATIONS 89

Lock Description

INPCB WLOCK Protects the inpcb and tcpcb.

SOCKBUF LOCK Protects send and receive buffers.

SOCK LOCK Protects socket state.

Table 6.3: Per-connection locks for TCP

Lock Description

MPP LOCK Protects the mppcb and mpconn structures.

MP LOCK Protects the mpcb.

Table 6.4: Per-connection locks for MPTCP

cussed in Section 6.2.2 below) but comes with a performance cost to individual connections. Primarily

this impacts the data-receive path to the master socket. For example, subflows cannot append data

directly to the master socket buffer from the SWI thread, even if data is in-order at the data-level. This

means waiting for a context switch and for the MPTCP task thread to be scheduled, even in a best-

case receive scenario. At the connection-level, using a single queue means that multiple connections

cannot be processed in parallel, reducing efficiency in multiprocessor systems.

Using the SWI task queue means that data-level operations still consume software interrupt CPU

time. A near-term improvement might be to use a lower-priority taskqueue dedicated to processing

receive-side MPTCP tasks.

The use of a single taskqueue was largely motivated by ease of implementation, and the ability

to support an event-driven model. Ultimately it would be desirable to transition to an approach that

allows subflows to append data (whether in-order or not) to the master-socket receive queue. MPTCP-

level processing would then be left to complete in the user-space thread belonging to the application.

Improvements to this design, whether by increasing the number of worker threads or adopting a

direct-dispatch approach, must be considered in future work.

6.2.2 Shared Memory, Locking and Concurrency

Multiprocessor CPU architectures are common. For a multi-threaded operating system, this means

that tasks can occur in parallel when threads are scheduled to run on different CPUs concurrently. This

improves system performance by making more effective use of the available CPUs, though careful

consideration must be given to:

90 CHAPTER 6. AN ARCHITECTURE FOR MPTCP IN THE FREEBSD KERNEL

• Scheduling: Threads belonging to the same application may be scheduled to run on different

CPUs. Designs must consider when and where threads might run, and what data might be

accessed when they do run.

• Accessing shared memory: Multiple concurrent threads may need to access the same memory

and this must be synchronised. Failure to correctly synchronise access to shared memory can

lead to data corruption and non-deterministic behaviour. Knowing whether a thread might re-

quire access to shared memory is also important to ensure that memory isn’t freed prematurely.

• Memory consistency: Threads executing on different CPUs may change the same datastructure,

and CPU caches must be kept consistent.

The FreeBSD kernel (and TCP stack) has been optimised over a number of years [158, 161] to provide

a high-level of concurrency on multiprocessor systems. The design of the MPTCP stack was therefore

heavily influence by the need to work within this structure. In this section we discuss the use of locks

and reference counting to ensure data integrity and safe access to shared protocol state. We also touch

on some important considerations when designing for multi-processor architectures.

Locking strategy: As we have seen in Section 6.1.1, an MPTCP connection must share protocol

data structures between multiple subflows that are accessed via multiple thread contexts. FreeBSD’s

reader/writer lock (rwlock) macros are used to synchronise threads that access shared structures.

The rwlock allows shared or exclusive access to data. Multiple threads may acquire a read lock

for simultaneous read-only access. The writer-lock is held exclusively, preventing other threads from

reading or writing to the protected memory.

Acquiring and holding a lock incurs a processing/performance cost. Holding a lock for an ex-

tended period causes lock contention - if other threads require access to the structure they will have

to wait for the current thread to release the lock. If locks aren’t acquired or released in a consistent

order, than deadlocks4 may occur.

There are a number of locks required during processing for a standard TCP connection. Three

locks significant to packet processing are given in Table 6.3. Once a packet has been mapped to a

corresponding protocol block, the INPCB lock is held throughout protocol processing. The socket

buffer locks are acquired only when dereferencing either buffer. The socket lock is held only when

4

Where two threads block waiting for a lock held by the other thread to be released. E.g. Thread 1 holds lock A and

needs to acquire lock B. Thread 2 holds lock B and needs to acquire lock A.

6.2. CPU AND MEMORY CONSIDERATIONS 91

changing socket state

5

. The INPCB lock is ordered before the socket locks, which allows TCP pro-

cessing (e.g. the input path) gain access to the socket structures (for example appending data to the

receive buffer, or changing the socket connection status). As it comes first in the locking order, the

INPCB lock cannot be taken while the socket lock is held. Two additional protocol locks are added

for MPTCP connections, given in Table 6.4. The existing TCP locks are retained and used to protect

subflows.

The MPP LOCK is analogous to the INPCB lock, and comes first in the locking order. This lock

is held when performing connection-level operations (such as running the scheduler or appending data

to the master send buffer). As it sits at the top of the locking hierarchy, no subflows can acquire this

lock. The lock is held only in the send-path and event-processing threads (a direct-dispatch approach

would make the use of this lock difficult, since it cannot be acquired while holding an INPCB lock).

As the mpcb contains the core protocol state for MPTCP (e.g. send sequence numbers, state

machine), the MP LOCK needs to be accessed by the subflows. It therefore comes after the INPCB

lock in the locking order, and can be held by any subflow thread, as well as by MPTCP connection-

level threads.

Reference counting: Due to the use of the taskqueue interface to perform delayed processing

of events, we need to ensure that data structure memory is stable between releasing and acquiring

locks. Given the asynchronous nature of the network stack it is entirely possible that the connection

state may change while an event is pending, for instance a MPTCP connection may close, freeing

associated control blocks. Stability is achieved through reference counting. Reference counts are

used for MPTCP protocol blocks and mp events. A reference is also held on subflow sockets to

prevent premature release when a subflow transitions to the closing phase of the state machine.

Addressing concurrency: Network protocol architectures can vary in the approach to concur-

rency. Willman et al. [154] define three distinct approaches to network stack parallelism - message-

based, connection-serialised by threads, and connection-serialised by locks. The connection-oriented

approaches dedicate protocol threads or locks to specific connection groups. Connections within a

group are processed serially. Message-based architectures focus on processing a message (packet)

entirely within one thread, without dedicated worker threads. This is the approach used by FreeBSD

and Linux, and allows for the direct-dispatch of received packets to the receive buffer. To synchronise

memory-access, the FreeBSD TCP stack uses a fine-grained [161] locking strategy in which locks

5

Though logically distinct, it is worth noting that in implementation the socket lock is actually just the receive-buffer

lock.

92 CHAPTER 6. AN ARCHITECTURE FOR MPTCP IN THE FREEBSD KERNEL

are placed around important data structures only, allowing for greater parallel execution. The trade-

off here is that threads that perform processing may be created in a number of ways, and execute in

different contexts, for example:

• A userspace process performs a write and transmission occurs in a user context thread.

• Alternatively, a packet may be transmitted in a SWI context as a result of a timer firing in the

kernel.

• When receiving a packet, a hardware interrupt causes processing in the SWI context to both

receive and potentially transmit in response.

In the above examples, threads may be scheduled to run on different cores. In the MPTCP case, mul-

tiple subflows may have threads running on multiple core that need to access the mpcb. Conversely,

the single MPTCP event-task thread may need to access memory for subflows that have generated

interrupts on different CPUs. Network cards that support multiple hardware queues and operating

system features such as Receive Side Scaling (RSS)

6

make it very likely that subflows will be spread

across multiple CPUs, increasing lock contention. In addition to this is the cost of cache misses and

memory synchonisation.

The implementation does not take into account where threads will be scheduled to run, though it

is likely that future work will consider for example assigning a MPTCP connection and subflows to a

single CPU.

6.3 Establishing a Connection

Like other TCP extensions MPTCP is negotiated during the three-way handshake. The MPTCP

structures described in Section 6.1.1 are therefore only required if MPTCP is successfully negotiated.

There are two obvious approaches as to when to allocate these structures:

• Allocate all MPTCP-related structures immediately on calling socket(). When a new TCP

socket is created, MPTCP structures are also initialised. This was the approach taken in the

v0.4 implementation [153].

• Delay creation of the MPTCP structures until the completion of the MP CAPABLE handshake.

In such a scenario only the minimum additional infrastructure to synchronise MPTCP is re-

quired during the handshake.

6

(RSS distributes and assigns TCP sessions to different CPU cores [162])

6.3. ESTABLISHING A CONNECTION 93

Immediate allocation is easier from an implementation standpoint though adds overhead for non-

MPTCP connections. An MPTCP connection adds at least six additional structures to a TCP socket,

increasing the per-connection memory footprint. These could conceivably be freed if MPTCP was

not negotiated, however if MPTCP is not expected to be used for the majority of connections it may

be inefficient to continually allocate and free these structures.

Where standard TCP sessions are the majority an alternative approach is to delay allocation of

MPTCP structures until the completion of the MP CAPABLE handshake. In this case only the bare

minimum structures required to enable MPTCP are allocated for the initial handshake. The current

approach follows the delayed allocation method.

If MPTCP is enabled, new TCP sockets will be initialised with the MPTCP stack loaded. This

assigns certain TCP functions to the MPTCP stack equivalents, though does not initially allocate all

MPTCP structures (in particular mppcb, mpconn and mpcb are not initialised). Defaulting to the

MPTCP stack initially provides two benefits:

• For the client, t mpconn can be attached to the tcpcb, providing storage for MPTCP nonces

and tokens during the MP CAPABLE or MP JOIN handshakes. On the server side, the syncache

structure is extended with a pointer to the mptcp syncache structure (discussed further be-

low).

• The function tcp do segment can be replaced with mptcp do segment. This function

can be used to determine whether MPTCP has been successfully negotiated.

. A check for the inclusion of MP CAPABLE during the handshake determines if the remote host

supports MPTCP. In the case where MPTCP is supported by the peer, then the handshake can be

completed and remaining structures allocated and attached to the socket. The TCP connection used

for the handshake then becomes the first subflow. If allocation of the MPTCP structures fails, the

connection reverts to the default TCP stack.

The test for MPTCP support can be performed easily whether the host is active opener (client)

or passive opener (server). For the client this is performed on the SYN/ACK, while on the server it

is performed on the first received SYN and final ACK of the handshake. If MP CAPABLE is missing

during any of the checks then the t mpconn structure is freed and the TCP function block tp fb is

set to the default TCP stack (and thus the connection falls back to standard TCP).

The check for MPTCP options is performed in mptcp do segment(). The pseudo-code is

94 CHAPTER 6. AN ARCHITECTURE FOR MPTCP IN THE FREEBSD KERNEL

Listing 3 Release MPTCP data and revert to default TCP stack if MPTCP is not requested by the peer

during SYN exchange.

mptcp_do_segment()

/* If MPTCP not yet enabled */

if (mptcp_state == 0)

process_tcp_options(tcphdr)

/* MP_CAPABLE not on SYN */

if ((opt_flags & MP_CAP) == 0))

mptcp_ended(tcpcb)

tcpcb->tp_fb = tcp_def_fb

tcpcb->function_block->tcp_def_do_segment()

return

given in Listing 3. The server also tests for MP CAPABLE in syncache add(), the syncache7 [163]

routine for servers to handle incoming SYN packets. The syncache structure (resembling a pared-

down TCP control block) maintains state for embryonic connections (sequence numbers, options)

and is used to handle incoming connections before they become established. Syncache functions

cannot currently be replaced using the modular TCP stack, so we must add a pointer sc mptcp to

the syncache structure. This approach is consistent with other extensions such as TCP Fast Open

that need to store data during the connection handshake.

It is worth touching on stateless connection establishment, where end-hosts perform connection

setup without allocating state variables. In the case that the syncache is exhausted, FreeBSD will fall

back to stateless connection establishment using TCP SYN-cookies [164]. A system administrator

may also configure the server to forgo the syncache and use SYN-cookies exclusively. SYN-cookies

allow connection establishment state to be encoded within the TCP initial sequence numbers of the

handshake. The server therefore does not need to maintain a syncache entry for embryonic con-

nections, and the connection state is reconstructed and validated once the handshake is complete.

SYN-cookies do not encode state for TCP options such as window scaling (or MPTCP), so state must

be retained outside of the SYN-cookie to support stateless open.

The MPTCP specification includes support for stateless MPTCP connection establishment by

echoing the keys in the third MP CAPABLE ACK. More recently a modification to the MP CAPABLE

7

TCP SYN caching for servers to protect against SYN-flood attacks. Aside from using less memory than a tcpcb,

only a limited pool of syncache structures can be allocated at a given time, preventing memory exhaustion.

6.3. ESTABLISHING A CONNECTION 95

handshake was proposed to make stateless establishment more robust [165]. As long as theMP CAPABLE

options are included during the handshake, all data-level state can be reconstructed. MPTCP SYN-

cookies are not currently supported in the implementation, and the connection will negotiate as stan-

dard TCP if a stateless open is used.

The subflow case: Joining a subflow represents a unique problem since it differs from the tra-

ditional socket connection semantics, breaking assumptions used by the TCP stack when associating

packets to connections. As previously mentioned sockets are created using the socket() call,

which initialises a socket structure and attaches an inpcb and tcpcb. On the client side a call

to connect() causes transmission of a SYN packet. The server instead calls listen() to set the

socket and protocol to a listening state before calling accept() and waiting for a incoming SYN

packet. When establishing subflows the client-side process is much the same. Connecting a subflow

on the server side is somewhat more complicated. We now discuses in more depth how a listening

socket creates a new connection and how the subflow join changes this process.

When addresses are bound a reference to the Internet PCB (inpcb) is placed into a global hash

table. The key is based on the local address:port (server) or the local and foreign address:port for

clients. This table is used to map incoming packets to their respective socket (via the inpcb).

Whenever a packet is received a lookup is performed on the inpcb hash list to retrieve the

incpb and socket for the connection. In the case of a SYN packet the associated socket must have

the SO ACCEPTCONN flag set (i.e. accepting connections). If a socket is accepting connections the

syncache is used to temporarily store transport state and the pending connection is queued on the

listening socket for the handshake. Once complete a new socket and PCBs are created and returned

to the application via the the earlier accept() call. The listen socket continues to accept new

connections while the newly created socket carries out the actual communication. Incoming subflow

connections change this process in several ways:

• Subflows must be joined to an already existing and connected socket, not the listen socket - i.e.

subflows are queued on the established MPTCP socket rather than on the LISTEN socket. This

means that the listen socket (as created by the application) has no involvement in the joining of

subflows.

• Joins can be sent to ports or addresses not bound in the original connection, so a standard PCB

hash table lookup may not return the MPTCP socket.

• The application does not accept() a subflow, rather the new socket is connected to the

96 CHAPTER 6. AN ARCHITECTURE FOR MPTCP IN THE FREEBSD KERNEL

existing MPTCP connection (since logically they are connecting to the MPTCP layer and not

the application).

The biggest difference however is the way in which the socket is retrieved for MP JOIN packets.

As mentioned it is not possible to use the existing Internet PCB hash list lookup to find the socket

associated with an incoming SYN. Trying to do so would result in creating a separate single-path

TCP connection (if the join connects to the original listening address:port) or discarding the packet

as an unsolicited SYN. The server must connect an incoming SYN + MP JOIN to an existing MPTCP

connection rather than a socket.

A global hash table of multipath PCBs is created that uses MPTCP session tokens as the key.

The connection token, included with each packet during the mp join exchange, is used to find the

appropriate MPTCP PCB and socket. This way incoming joins can be associated with the correct

MPTCP session (and socket) without requiring an explicit LISTEN socket bound for the destination

IP:port of the packet.

A side effect of this is that all incoming SYNs must be checked for an MP JOIN option be-

fore standard SYN processing takes place. By default in the FreeBSD stack options for incoming

SYNs are parsed only after checking whether a socket is accepting connections. Rather than calling

tcp dooptions() to check for a MP JOIN on all incoming SYNs, the existing option processing

is used where a listening socket already exists, and an explicit check is used when an Internet PCB

lookup fails to find an entry.

In the case where the SYN + MP JOIN destination matches an existing listening socket, a valid

inpcb and socket will be returned and the join option can be processed by the existing call to

tcp dooptions(). At this time the join may be processed and a session token-based lookup can

be used to retrieve the socket of the MPTCP session. A SYN + MP JOIN to an address that is not

currently listening for connections will fail to locate a socket. In this case tcp dooptions() is

called explicitly prior to discarding the packet. In both cases the discovery of an MP JOIN results in

a new entry in the syncache table with the 5-tuple as a key.

Processing the final ACK + MP JOIN follows a similar strategy. However since creating a

syncache entry does not create a new socket

8

, tcp dooptions() and syncache lookup()

must be called explicitly for incoming ACKs that fail to produce a socket after lookup but contain an

MP JOIN and session token.

Unlike when performing the MP CAPABLE handshake, we do not need to consider falling back

8

Or an inpcb. Both are created at the end of the handshake.

6.4. SENDING DATA 97

to the default TCP stack. An MP JOIN is either successful and connects using MPTCP or fails and

all state is discarded. This means that on the client side it is possible to allocate all related MPTCP

structures prior to initiating a join. Lastly we adopt the joining policy of UCL-MPTCP and iOS-

MPTCP of only issuing joins from the client host (i.e. the host that initiated the connection). This

may be to the first known address or additional addresses advertised by the server.

Path management: The current implementation contains basic mechanisms for joining sub-

flows and subflow/connection termination. A more fully featured Path Manager is left for future ver-

sions. For hosts that have multiple addresses, an address can be manually specified for inclusion in

MPTCP connections by setting a sysctl variable

9

. Once added, the address is available to all MPTCP

connections on the host. Currently only the server-side will advertise additional addresses, and the

ADD ADDR is sent as soon as possible once the connection is established. Subflow joining behaviour

is static, and only performed by the client. A client will attempt to send an MP JOIN immediately on

receiving addresses via the ADD ADDR option. If the client is multi-homed, it will send an implicit

MP JOIN once the connection is established.

6.4 Sending Data

An application writes new data to a TCP socket using a syscall such as send() or sendfile().

In the case of send() this results in a call to a user-request routine which copies the data from

userspace to kernel memory address space and appends the copy to the socket send buffer. When

using sendfile()[166], memory is mapped directly from a disk or a shared-memory object to the

send buffer, eliminating the need for a copy. This optimisation is known as zero-copy and is frequently

used when transmitting a large amount of data from disk (e.g. Netflix use sendfile() to achieve

high-throughput transmission of video content [167]).

Memory in the kernel is handled via mbufs - a memory management unit that can be linked

together in a chain to represent a raw byte-buffer, or a more structured packet/record. In addition to

the data itself

10

, the mbuf header describes the type of data and the length. For instance if an mbuf

chain represents a packet, the head mbuf of the chain may contain a pkthdr structure that holds

information about the packet. Multiple packets can be linked together into a queue of records.

Once data is copied or mapped to the send buffer, the tcp output() routine is called to add

9

sysctl net.inet.tcp.mptcp.mp addresses

10

The mbuf may be too small to fit the required data. Aside from internally storing data an mbuf cluster can be use as

external storage.

98 CHAPTER 6. AN ARCHITECTURE FOR MPTCP IN THE FREEBSD KERNEL

TCP headers and send the data. If required, tcp output() will segment the data to conform to the

maximum segment size (MSS) of the transmission interface. The TCP MSS is the maximum number

of bytes that can be carried in a TCP segment (data payload plus options). This value does not include

the TCP or IP header.

The transmission rate of a connection is of course primarily governed by the CC algorithm. A

number of other algorithms such as silly window avoidance adjust the sending rate in more subtle

ways. These largely remain as-is for the subflow context. Therefore in this section we focus on the

broader issues caused by the introduction of the layered MPTCP architecture and the need to take a

data stream as written by the application and distribute it amongst several subflows.

Global and per-subflow send buffers: In Section 3.1 we discussed pull and push scheduling. To

support both approaches the implementation uses a global queue as well as per-subflow queues. In

this arrangement, the scheduler selects a subflow and then copies the data to be sent to the send-queue

of the selected subflow (while retaining a copy in the global queue).

This presented several challenges. In FreeBSD the TCP send buffer is byte-oriented. This means

that data from the application is appended in-order to the send-buffer as a single mbuf chain. This

is a raw byte-stream lacking protocol-level meta-data, and so the responsibility of assigning TCP

sequence numbers and creating MSS-sized segments is given to the tcp output() routine

11

. In

an MPTCP connection data-level bytes can be striped across multiple subflows, thus consecutive

bytes in a subflow send-buffer may not be contiguous at the data-level. This means that the subflow

queue cannot be treated as a traditional, byte-oriented queue. Although bytes are always transmit-

ted in-sequence at the subflow-level, consecutive packets in a single TCP stream may not represent

consecutive bytes sent by the application

12

.

The second challenge that having multiple send-queues introduces is that of how to propagate the

data-level sequence numbers to the subflow level so that tcp output() can build the DSS option.

In standard TCP, tcp output() is responsible for segmenting the byte stream and building the

TCP header. As part of building the TCP header it must also determine TCP sequence numbers. As

mentioned, sequence numbers are not attached to the data in the send buffer but are assigned for each

segment based on the snd nxt field of the TCP control block. A pointer to the first byte of each

segment is set using an offset from the start of the send buffer to the current sequence number to be

transmitted. The segment to be transmitted is copied from this offset when assembling a packet. The

11

If TCP Segmentation Offload is enabled, tcp output() simply passes a send-window sized TCP segment to the IP

layer.

12

A single packet never contains discontiguous data, though.

6.4. SENDING DATA 99

Listing 4 Using m pkthdr fields to store data-level mappings.

/* Access DS mapping values */

#define MP_DSN(mb) (mb)->m_pkthdr.PH_per.sixtyfour[0]

#define MP_SSN(mb) (mb)->m_pkthdr.PH_loc.thirtytwo[0]

#define MP_MAPLEN(mb) (mb)->m_pkthdr.PH_loc.thirtytwo[1]

stack does not keep any record of individual transmitted segments, so the segment and headers are

rebuilt during retransmission.

These issues are solved by adopting a record-oriented approach when writing data to a subflow

send buffer. With a record-oriented approach, multiple mbuf chains are written to the send buffer, with

each chain being a contiguous series of data level bytes. The subflow send buffer thus holds multiple

records, each of which is a contiguous region of the data-level byte sequence. Meta-data is embedded

in the mbuf header to help differentiate the records. The global buffer in our implementation remains

byte-oriented, since it always represents the in-sequence byte stream as-written by the application.

Since each record written to a subflow send buffer contains an mbuf header, data-level mappings

are embedded here. The pkthdr structure contains two 64-bit unions (PH per and PH loc13

) to

pass protocol-specific data within and between layers of the stack. These are used to attach mapping

meta-data (data-sequence number, subflow sequence number and record length) to the mbuf. A flag is

also defined to identify a pkthdr as an MPTCP mapping. The mapping fields and flag are shown in

Listing 4. MP DSN is set when the mbuf header is created by the packet scheduler and is constant until

the header is freed. MP SSN and MP MAPLEN are written when the region is assigned to a subflow,

whether as new data or as a retransmission. From this meta-data tcp output() is able to construct

the DSS option, even after the mapping is segmented or in the event of a subflow-level retransmit.

Using the spare space in the packet header prevents having to allocate memory for an additional

map structure. However the space for meta-data in the mbuf packet header is limited. If further meta-

data is required in the future it would be possible to attach an mbuf tag [168] to the packet header, or

alternatively embed the meta-data into the first mbuf of the chain.

Packet Scheduling: The packet scheduler is responsible for determining which subflows are able

to send data from the global send buffer, and the size of the data allocation. The scheduler can be run

13

As defined, PH per variables persist between layers of the network stack. PH loc values are cleared between layers.

In this case PH per is used for the data-level and PH loc for the subflow-level. MPTCP packet headers do not traverse into

other layers of the stack.

100 CHAPTER 6. AN ARCHITECTURE FOR MPTCP IN THE FREEBSD KERNEL

in three instances:

1. The application writes new data to the global send queue

2. A subflow receives an ACK.

3. A data-level retransmission is triggered.

In the current design subflows do not pull directly from the global send queue but instead request that

the scheduler run by registering a subflow event. If the subflow does not have any data to send (ACK

== SND MAX) then it must wait for the packet scheduler thread to run and allocate new data. It is

possible that the packet scheduler may not allocate new data to the subflow that requested it to run.

Selecting a subflow is only one part of the scheduling process. The following important steps are

also performed:

• Copy the data to a new mbuf chain.

• Attach meta-data to the mbuf packet header.

• Append the mbuf chain to the selected subflow.

The m copym() function is used when copying data from the global send buffer. This produces a

new mbuf pointer and increments the reference count of the data pointed to by to original mbuf chain.

The use of reference counts means that the sent data is only freed once it has been acknowledged at

the subflow and data levels. For instance a mapping sent on two subflows can be acknowledged at the

data-level and freed from the global send buffer while a failed subflow continues to try to retransmit

that data.

Processing Data-ACKs and Retransmissions: Subflow-level ACKs are processed as in stan-

dard TCP. Data-level acknowledgements (D-ACKs) are are also handled at the subflow-level by

tcp dooptions(). As subflows are able to access the mpcb it is possible to check the incom-

ing D-ACK against ds snd una and adjust accordingly if the incoming D-ACK progresses the left

edge of the transmission window. Subflows do not have access to the global send buffer so freeing

of these bytes occurs at the data-level when the scheduler is run. At this time the DSN of the first

mapping in the transmitted queue is compared with the current ds snd una. If ds snd una has

progressed passed the mapping then the difference is dropped from the send buffer.

As described in Section 2.1.2 TCP retransmits in response to duplicate ACKs or a retransmission

timeout (RTO). This is unchanged at the TCP-level. Duplicate ACKs may be the result of short-term

6.5. RECEIVING DATA 101

congestion or a single packet loss due to transmission errors, so we currently do not trigger data-level

retransmission for cases of subflow-level fast retransmit. Data-level retransmits occur when a subflow

transitions to congestion recovery. Mappings that require retransmission are marked as such, and the

scheduler will send these before sending new data.

Subflows will therefore continue to attempt retransmission until the maximum retransmit count

is met. Our default behaviour is to terminate a subflow after 3 RTOs. On occasions where a subflow

recovers and retransmits locally, the receiver will acknowledge the data at the subflow level and

discard the duplicate segments.

6.5 Receiving Data

MPTCP adds a data-level sequence space above the sequence space used in standard TCP. This allows

segments received on multiple subflows to be aggregated and ordered before delivery to the applica-

tion. The processing of received segments is therefore split between subflow-layer and MPTCP-layer.

The task of each subflow at the receiver is to ensure complete and in-order delivery of their data-

level mappings to the MPTCP layer. Once segments are in-order at the subflow level an event is

queued that invokes the MPTCP layer to complete reception in another thread. The MPTCP layer

then aggregates segments from the subflows and puts them into data-sequence order for delivery to

the application. Any data-level signals such as the data-FIN are interpreted at the MPTCP-layer.

Arriving packets are at first processed as standard TCP segments. Though it is preferable to

execute data-level procedures in the MPTCP event-processing task thread (most notably segment

aggregation) in some cases it make more sense to handle these in the subflow thread context. This is

done when deferring to an MPTCP task thread would be inefficient. For example it is better to update

the data-level receive next ds rcv nxt immediately so that a data-ACK can be piggybacked on

any TCP-level ACK.

An abbreviated call graph showing the path from receiving a packet and sending an acknowl-

edgement to appending to the global receive buffer is shown in Figure 6.5. On the left is the software

interrupt thread triggered by packet reception, on the right is the MPTCP task handler run on the

taskqueue swi. The following sections discuss parts of this process in more detail.

Processing options: The subflowmust first parse and validate MPTCP options in the TCP header.

Option processing is handled by the tcp dooptions() function, which has been extended to

identify MPTCP options. Each time a segment is received it is passed to tcp dooptions() to be

parsed along with a pointer to a tcpopt structure to store the result. We have extended tcpopt to

102 CHAPTER 6. AN ARCHITECTURE FOR MPTCP IN THE FREEBSD KERNEL

Segment received

tcp_input()

tcp_do_segment()

tcp_dooptions()

mptcp_dooptions()

sbappend()

sorwakeup()

mp_queue_upcall_event()

tcp_output()

Dequeue mp event

mptcp_event_handler()

mp_input()

mp_reass()

sbappendstream()

sorwakeup()

mp_do_segment()

sbappendstream()

sorwakeup()

Figure 6.5: Receiving a segment in MPTCP. Processing is divided between two SWI threads - when

the subflow receives a packet and for MPTCP-layer aggregation.

support MPTCP options.

MPTCP options can be long, with several containing fields of 64-bits or more. Storing MPTCP

option values would increase the structure size significantly. As such only a pointer *to mptcp

to the location of the option in the TCP header is added. A flag TOF MPTCP is also defined that is

set when an MPTCP option is identified. If the flag is set on returning from tcp dooptions()

then mptcp dooptions() is called, the results of which can be inserted into the MPTCP-specific

t mpconn structure if necessary. Pseudocode for option processing is shown in Listing 5. Initially

the option is detected and a pointer is stored in tcp dooptions(). Then mptcp dooptions()

casts a partial header from the pointer to identify the type of MPTCP option. Finally the option

handler e.g. mptcp do mpcap option() casts the actual option and processes, optionally storing

a result in t mpconn.

Options that are not handled immediately in the subflow thread are passed to the MPTCP-layer.

The size of the options however prevents values from being written directly the mbuf header. Instead

a pointer to the option is stored, which can be cast into an option when required.

Data-level aggregation: For standard TCP the FreeBSD stack maintains a reassembly queue and

receive buffer for incoming segments. If a segment arrives that is not the next expected segment, it is

placed onto the reassembly queue. When the expected sequence arrives it (and any in-order segments

held in the reassembly queue), is appended to the socket receive buffer by sbappendstream().

6.5. RECEIVING DATA 103

Listing 5 Identifying and processing MPTCP options.

tcp_do_segment()

tcp_dooptions(*tcphdr, *tcpopt);

if TOF_MPTCP flag is set

mptcp_dooptions(tp->t_mpconn, tcpopt->to_mptcp)

/* Handling the MPTCP options seperately */

mptcp_dooptions(storage, ptr_to_option)

option = (mp_opt_header*) ptr_to_option

switch (option->option_type)

case: MP_CAPABLE

mptcp_do_mpcap_option(storage, ptr_to_option)

case: MP_DSS

mptcp_do_dss_option(storage, ptr_to_option)

/* ... */

break;

return;

The waiting application (usually a read() syscall thread that is sleeping) is notified by calling

sorwakeup(). If a segment arrives that is in-order and the reassembly list is empty, it is appended

to the receive buffer immediately and the application is notified.

Figure 6.6 shows the receive structure for MPTCP. Both the reassembly queue and receive buffer

are retained at the subflow level. Use of the reassembly queue is unchanged. Since bytes contiguous

at the subflow-level may not be so at the data-level, the receive buffer stores multiple mbuf records

rather than a single byte-stream, with each record representing a contiguous sequence of bytes at the

data level. This means that coalescing is disabled and segments are appended using sbappend(),

which retains the pkthdr of the head mbuf. The call to sorwakeup() now results in an up-

call (subflow so upcall()) that enqueues a subflow upcall event task for the MPTCP layer to

process.

At the the MPTCP-layer a global reassembly queue and receive buffer have been added. The first

step of data-level reassembly involves iterating each subflow receive buffer and moving segments

into the reassembly queue in data-sequence order. Here the pointer to the DSS option in the mbuf

header is used to extract DSNs. After all segments are transferred, in-order segments are appended

104 CHAPTER 6. AN ARCHITECTURE FOR MPTCP IN THE FREEBSD KERNEL

Receive bu	er

Reassembly queue

Global reassembly queue

Global receive bu	er

MPTCP layer

Sub�ow Layer

Application

Figure 6.6: Subflow and MPTCP-layer receive structures.

to the global receive buffer and dropped from the reassembly queue before a wakeup is issued for the

receiving application.

Scheduling data-ACKs: In the FreeBSD TCP stack an ACK is only scheduled after in-order data

is appended to the receive buffer. Following this model for MPTCP would mean that a data-ACK

would only be sent after the data was reassembled at the data-level and written to the global receive

buffer. A data-ACK would then be explicitly sent by forcing output on a subflow. Earlier versions

of the implementation followed this model.

A drawback of this approach is that that the data-ACK is delayed when it ideally should be

piggybacked with subflow-level ACK. Data-ACKs are now scheduled when a mapping is received

that progresses the receive window (i.e. is the next expected at the data level). The consequence of this

is that the acknowledged data-sequence number and received (written to the buffer) sequence must be

tracked separately. Therefore receive next is also tracked at the MPTCP-level according to the receive

buffer occupancy. In the case where a received segment fills a gap in the data-level reassembly queue

a data-ACK is explicitly scheduled from the data-level. Scheduling a data-ACK does not always

mean it is transmitted if delayed acknowledgment14 is enabled.
14

A mechanism used by TCP to reduce the number of acknowledgements sent by a receiver by delaying ACK responses

and acknowledging more data per ACK packet.

6.6. CLOSING A CONNECTION 105

6.6 Closing a Connection

MPTCP connections must be closed at the subflow and MPTCP level. The connection close sequence

is triggered when an application calls close() or shutdown() to begin disconnecting a socket.

Like TCP, MPTCP transitions through a series of closing states. This requires sending a data-FIN

and receiving a data-ACK to complete. As with TCP, all data pending transmission must be sent

before the data-FIN. The data-FIN is carried in a DSS option and therefore subflows cannot be

closed before the MPTCP connection closes.

Just as the application is responsible for closing the socket, the MPTCP layer is responsible for

closing the subflows. The subflow shutdown process is identical to TCP shutdown, therefore no

changes are required - the MPTCP layer can simply call the user request routine tcp usr close()

on each subflow socket to initiate shutdown. Subflow sockets free themselves once the closing hand-

shake is complete, meaning the MPTCP structures can be freed once a close has been initiated on all

subflows.

Occasionally there is a need to close a subflow in the middle of an ongoing connection. This may

be done gracefully via a call to tcp usr close(), which, once all sent data is acknowledged, will

trigger a standard TCP closing handshake. Alternatively the connection can be aborted by sending

a RST. A subflow may independently send a reset in response to standard TCP events, such as a

connection timeout. MPTCP layer may also explicitly abort one or more subflows by calling the

tcp usr abort() routine of that subflow.

A RST received on a subflow applies only to that subflow and does not close the MPTCP connec-

tion. On receiving a RST on a subflow, the MPTCP layer will immediately remove the subflow from

the connection and reschedule any unacknowledged data onto an alternate subflow. If no other sub-

flows are available, the connection enters a MPTCP timeout period. If no new connections become

available during this period the connection will terminate.

The MP FASTCLOSE option is defined in the specification for MPTCP connection-level aborts.

This is not currently supported and the aborting host will simply issue RSTs on all of the subflows

before closing the socket.

6.7 Conclusion

This chapter presents an overview of a Multipath TCP implementation design for FreeBSD. We intro-

duced the major design elements and discussed the reasons for the approach taken. The overarching

106 CHAPTER 6. AN ARCHITECTURE FOR MPTCP IN THE FREEBSD KERNEL

emphasis of the implementation is on ease of maintenance and accessibility for researchers. MPTCP

has been deployed for some specific use-cases but there is not broad awareness of the protocol. .

Developing an implementation that is easy to comprehend and keep up-to-date can help to encourage

further research and development input from the community.

Underpinning this design is the use of the modular TCP stack framework, which allows a signifi-

cant portion of code to be kept separate from the existing TCP stack. Providing modular scheduling

and congestion control makes the stack more accessible for experimentation. Although our design

focus is on enabling experimentation, performance is not neglected and where possible efforts have

been made to ensure that enabling MPTCP does not encumber the host system.

Chapter 7

Experimental Evaluation

In this chapter we evaluate the functionality of the FreeBSD MPTCP implementation. In Section 7.1

we describe our testbed and the rational behind the experiments. In Section 7.2 we evaluate the im-

plementation across a set of scenarios designed to engage the critical functions of the implementation

and demonstrate the pluggable frameworks in use. Lastly we discuss preliminary performance tests

used to identify bottlenecks in the architecture.

7.1 Experimental Design

For several years the MPTCP protocol itself has been studied and evaluated across a range of envi-

ronments - small and large-scale testbeds, in data centres or simply across the Internet. These studies

have demonstrated the utility of MPTCP and helped identify areas of improvement for the proto-

col and provided guidance for implementors. Our goals here are not to evaluate the effectiveness of

MPTCP or optimise implementation details. Nor do we analyse the performance of scheduling or

congestion control algorithms. Rather we aim to validate the basic functionality of our implementa-

tion. Put simply, our central question is: does the implementation work? We attempt to answer by

addressing three aspects:

• Conformance: Does the implementation cover the basics of the MPTCP specification?

• Modularity: Can we load scheduling and congestion control modules to change the dynamics

of a connection?

• Performance: Does the design create any obvious bottlenecks?

107

108 CHAPTER 7. EXPERIMENTAL EVALUATION

Client Server

Multi-homed client Multi-homed server

Physical topology

Figure 7.1: Physical and logical representations of the testbed.

Our experiments are thus are small scale and performed in controlled environments. The topolo-

gies are easily reproducible and it is expected that early adopters will perform similar tests to gain

familiarity with the implementation and common multi-path scenarios.

7.1.1 Testbed Topology

A virtual testbed environment is used for the evaluation. A multipath configuration is used to validate

conformance and modularity aspects, as well as the basic performance on low-bandwidth links. The

same testbed is used with a single-path, single-router topology to measure performance at higher-

bandwidths.

The router, test hosts and network are emulated using VirtualBox [169]. The logical testbed

topology is shown in Figure 7.1. It consists of client and server connected via four links, each in

its own subnet. Either host may be configured to use a single or multiple addresses. Paths may

be configured with or without a shared bottleneck. Network emulation on the router allows path

characteristics such as loss, bandwidth and delay to be adjusted.

The host machine is FreeBSD-based, configured with an Intel Xeon E3-1270 3.40GHz processor

and 32GB of RAM.The client and server VMs were configured with 512MB of RAM and four emu-

lated Intel Gigabit network adapters. The two router VMs were FreeBSD-based and configured with

128MB of RAM and four emulated Intel Gigabit network adapters. Though the hardware configura-

tion is relatively modest, it is adequate for validating the basic performance and functional aspects of

the implementation.

Tools: On the routers, static forwarding rules are added to the FreeBSD system routing table.

7.2. EVALUATION 109

Objective Note

I-D: MP CAPABLE Flag A set to 1 Checksum enabled

I-D: MP CAPABLE Flag B ignored Silently ignore SYNs with the B flag set

I-D: ACK without MP CAPABLE Fail if option missing during handshake

Table 7.1: Example conformance tests.

Dummynet [170] is used to set the bandwidth, delay and loss rate for the end-to-end paths. Iperf

[171] is used to transfer data. Packet traces are presented in tshark [172] format.

7.2 Evaluation

In this section we evaluate the functionality of the implementation using a small set of connection

scenarios. First we show that the implementation conforms to basic connection establishment be-

haviours. We then show that the implementation meets the basic requirements for multiple subflows

and fault-tolerance, and can function at speeds useful for network experimentation.

7.2.1 Basic Conformance

We first assess whether the implementation meets basic requirements of the protocol. In an IETF

Internet Draft [173] Coene details a suite of tests that can be used to evaluate basic compliance of an

MPTCP implementation. The tests range from extremely basic (e.g. does the implementation send

a SYN) to validating an implementation’s response to incorrect signaling. Some example behaviours

are summarised in Table 7.1.

We look at ACK without MP CAPABLE as an example. Line 3 of the packet sequence in Listing

6 shows the MP CAPABLE option missing from the final ACK of a MPTCP handshake. On receiving

this packet the server infers that MPTCP should not be used on this path, falls back to regular TCP,

and on Line 4 transmits the first data without a DSS option. On receiving a data packet without a

DSS option the client falls back to TCP operation. Our current implementation does not support most

cases of fall back, however, for example simply closing the connection in the event that a DSS is

missing mid-connection.

A successful negotiation of an MPTCP connection and the addition of a subflow is shown in

Listing 7. Lines 3-4 show the initial MPTCP handshake. Immediately following this on Line 5 is an

MP JOIN+SYN sent from 172.16.4.2 to the server at 172.16.1.2. The MP JOIN handshake

110 CHAPTER 7. EXPERIMENTAL EVALUATION

Listing 6 Fall back to TCP if ACK+MP CAPABLE is missing

1 172.16.3.2 -> 172.16.1.2 MPTCP 86 48507 -> 5001 [SYN] Seq=0 Win=65535

Len=0 MSS=1460 WS=64 TSval=357172 TSecr=0

2 172.16.1.2 -> 172.16.3.2 MPTCP 86 5001 -> 48507 [SYN, ACK] Seq=0 Ack=1

Win=65535 Len=0 MSS=1460 WS=64 TSval=2729538658 TSecr=357172

3 172.16.3.2 -> 172.16.1.2 TCP 66 48507 -> 5001 [ACK] Seq=1 Ack=1

Win=65664 Len=0 TSval=357216 TSecr=2729538658

4 172.16.3.2 -> 172.16.1.2 TCP 90 48507 -> 5001 [PSH, ACK] Seq=1 Ack=1

Win=65664 Len=24 TSval=357223 TSecr=2729538658

5 172.16.3.2 -> 172.16.1.2 TCP 1514 48507 -> 5001 [ACK] Seq=25 Ack=1

Win=65664 Len=1448 TSval=357223 TSecr=2729538658

Feature to disable Description

MPTCP checksum Disabled via sysctl

TCP segment offload (TSO) Disabled via ethtool

Generic send offload (GSO) Disabled via ethtool

Table 7.2: Linux-endpoint settings required for interoperability.

completes when the server sends a TCP ACK (Line 9) that acknowledges the MP JOIN+ACK (Line

8). Following this data can be send on the new subflow (Lines 13-14).

The implementation supports single-subflow MPTCP connections with the UCL Linux imple-

mentation. Multi-subflow connections are not possible due to current limitations in the path manager

implementation. To achieve interoperability, several configuration changes must applied to the Linux

endpoint (summarised in Table 7.2):

• The DSS checksum field is not currently support and must be disabled on the Linux host to

prevent a connection reset.

• Features that aggregate multiple segments into larger-than-MSS segments (TSO, GSO), are

disabled as they may trigger bugs in the FreeBSD implementation.

Despite present limitations, the ability to perform the MPTCP-handshake and transfer data using

MPTCP-DSS signaling with the UCL Linux implementation is a significant step towards the stated

goal of interoperability. It can be reasonably expected that, as development work continues, ‘out-of-

7.2. EVALUATION 111

Listing 7 Successfully establish a MPTCP connection and additional subflow.

1 172.16.3.2 -> 172.16.1.2 MPTCP 86 61767 -> 22 [SYN] Seq=0 Win=65535

Len=0 MSS=1460 WS=64 TSval=271235 TSecr=0

2 172.16.1.2 -> 172.16.3.2 MPTCP 86 22 -> 61767 [SYN, ACK] Seq=0 Ack=1

Win=65535 Len=0 MSS=1460 WS=64 TSval=3945774304 TSecr=271235

3 172.16.3.2 -> 172.16.1.2 MPTCP 86 61767 -> 22 [ACK] Seq=1 Ack=1

Win=65664 Len=0 TSval=271278 TSecr=3945774304

4 172.16.4.2 -> 172.16.1.2 MPTCP 86 27682 -> 22 [SYN] Seq=0 Win=65535

Len=0 MSS=1460 WS=64 TSval=271283 TSecr=0

5 172.16.1.2 -> 172.16.4.2 MPTCP 90 22 -> 27682 [SYN, ACK] Seq=0 Ack=1

Win=65535 Len=0 MSS=1460 WS=64 TSval=415670129 TSecr=271283

6 172.16.3.2 -> 172.16.1.2 MPTCP 124 61767 -> 22 [PSH, ACK] Seq=1 Ack=1

Win=65664 Len=38 TSval=271286 TSecr=3945774304

7 172.16.1.2 -> 172.16.3.2 MPTCP 124 22 -> 61767 [PSH, ACK] Seq=1

Ack=39 Win=65536 Len=38 TSval=3945774356 TSecr=271286

8 172.16.4.2 -> 172.16.1.2 MPTCP 90 27682 -> 22 [ACK] Seq=1 Ack=1

Win=65664 Len=0 TSval=271329 TSecr=415670129

9 172.16.1.2 -> 172.16.4.2 TCP 66 [TCP Window Update] 22 -> 27682 [ACK]

Seq=1 Ack=1 Win=65664 Len=0 TSval=415670172 TSecr=271329

10 172.16.3.2 -> 172.16.1.2 MPTCP 1422 61767 -> 22 [PSH, ACK] Seq=39

Ack=39 Win=65600 Len=1336 TSval=271366 TSecr=3945774356

11 172.16.1.2 -> 172.16.3.2 MPTCP 1126 22 -> 61767 [PSH, ACK] Seq=39

Ack=1375 Win=64192 Len=1040 TSval=3945774436 TSecr=271366

12 172.16.3.2 -> 172.16.1.2 MPTCP 134 61767 -> 22 [PSH, ACK] Seq=1375

Ack=1079 Win=65536 Len=48 TSval=271414 TSecr=3945774436

13 172.16.1.2 -> 172.16.4.2 MPTCP 450 22 -> 27682 [PSH, ACK] Seq=1 Ack=1

Win=65664 Len=364 TSval=415670261 TSecr=271329

14 172.16.4.2 -> 172.16.1.2 MPTCP 130 27682 -> 22 [PSH, ACK] Seq=1

Ack=365 Win=65664 Len=44 TSval=271463 TSecr=415670261

112 CHAPTER 7. EXPERIMENTAL EVALUATION

the-box’ interoperability is achievable.

7.2.2 Creating Multiple Subflows

A core requirement of our implementation is data transfer across one or more subflows. We use Iperf

to transfer data in the following scenarios:

• Both single-homed. This is equivalent to a standard TCP connection however uses MPTCP

signaling and the data-level sequence space.

• Multi-homed client. This is the expected common case for MPTCP connections. A multi-

homed client connects to a single-homed server and joins an additional subflow.

• Multi-homed server. A server will not initiate a join in our implementation. This test verifies

that the ADD ADDR option is sent and used by the client to join an additional subflow to the

connection.

A bandwidth rate-limit of 5Mbps and RTT of 20ms is applied using the router. The router queue

length is set to 50 slots, providing a maximum queuing delay of 120ms with 1500 byte packets.

Maximum send and receive buffers are set to 128KB for TCP and for individual subflows, allowing

the flows to achieve 5Mbps. We also use this path configuration to create a shared bottleneck. The

router queue is able to absorb any packet-bursts and does not cause packet loss. The client host always

initiates the joining of additional subflows.

Figure 7.2 compares the average throughput obtained for a single subflow against standard TCP

when transferring a 20MB file. The throughput is similar, though the MPTCP subflow is consis-

tently lower. There are several known sources of inefficiency that may account for part of the loss

in throughput. Firstly, the DSS reduces the TCP maximum payload size by 20-bytes for each packet

(e.g. from 1448 to 1428).

A second source of inefficiency comes from the creation of MSS-sized maps on each write to

the MPTCP-level socket buffer. Bulk data is often written into the socket in multiples of 8KB (e.g.

8KB, 16KB, 32KB). The MSS of an MPTCP segment (1428 bytes in our testbed) does not evenly

divide into this, resulting in occasional ‘odd’ mappings that do not fill an entire MSS. As a result, a

small percentage of segments are transmitted that do not fill the available MSS. For example, in trials

transferring 20MB, the mean total of packets transferred was 22,784, and on average 193 packets

were less than the MSS (predominantly being rounded down to 1124 bytes).

7.2. EVALUATION 113

●

● ●

●

0 10 20 30 40

2
3

4
5

6

Time (seconds)

Th
ro

ug
hp

ut
 (M

bp
s)

● TCP
MP−Single

Figure 7.2: Throughput for MPTCP with a single subflow compared with TCP over the same path.

●

● ●

●

0 10 20 30 40 50

2
4

6
8

10

Time (seconds)

Th
ro

ug
hp

ut
 (M

bp
s)

● TCP
MP−Bottleneck
MP−Independent

Figure 7.3: Comparing multiple subflows to TCP, with and without shared bottleneck.

114 CHAPTER 7. EXPERIMENTAL EVALUATION

●

● ●

●

0 10 20 30 40 50

1
2

3
4

5
6

Time (seconds)

Th
ro

ug
hp

ut
 (M

bp
s)

● TCP
MP−SF1

MP−SF2
MP−Total

(a) Shared bottleneck

●

● ●

●

0 10 20 30 40

2
4

6
8

10

Time (seconds)

Th
ro

ug
hp

ut
 (M

bp
s)

● TCP
MP−SF1

MP−SF2
MP−Total

(b) No shared bottleneck

Figure 7.4: Comparing per-subflow and total throughput for MPTCP flows with TCP.

7.2. EVALUATION 115

Figure 7.3 compares the average throughput obtained when the client is multi-homed, with and

without a shared bottleneck link. The simplerr RR scheduler is used to stripe data between the

subflows in MSS-sized segments.

With a shared bottleneck, throughput is again marginally less than that of standard TCP. The

previously discussed inefficiencies are present here, but another contributing factor is the interac-

tion of the subflows at the bottleneck, whose independent congestion control mechanisms compete

for bottleneck bandwidth. Given two independent 5Mbps paths, the connection is able to achieve

approximately double that of the single-path TCP connection and shared-bottleneck MPTCP.

The per-subflow and combined throughputs for each instance are shown in Figure 7.4. We can

see that, in the shared-bottleneck case, SF1 has a higher throughput than SF2 in the early stages

of the connection. This is due to having several RTTs ‘head-start’ over SF2, and being allocated a

full send-buffer as the connection is opened

1

. Once SF2 is joined to the connection this difference in

throughput is reduced as the RR scheduler begins to distribute new data between the subflows equally.

After several seconds, throughput is evenly split between the two subflows and remains this way until

the connection is terminated. Despite the initial imbalance between the two subflows, the overall

throughput consistently approaches the 5Mbps rate limit.

The introduction of an additional subflow clearly presents a change in the dynamic behaviour

as compared to TCP. Having shown results with sufficiently sized bottleneck buffers, we offer this

cautionary illustration of how undersized bottleneck buffers can significantly distort performance re-

sults. Figure 7.5 once more compares the average throughput obtained for multi-subflow connections

to TCP. Here the router queue is reduced to 15 slots. This is slightly undersized for a single 5Mbps

TCP flow and allows the congestion window to grow to the point of inducing packet loss in the router

queue. The presence of packet loss is noticeable through the increased variation in achieved through-

put. The throughput variance is much higher in the multi-subflow cases, and the average throughput

is less than achieved with larger buffers. The reduction in throughput is caused solely by an increase

in packet loss. The number of retransmission is given in Table 7.3, and we see that the multi-subflow

cases see significantly higher packet-loss than standard-TCP.

In the bottleneck case, the increase in packet-loss is due to the combined input of the two sending

subflows exceeding the queuing capacity (recall that the bottleneck queue is sized to match a single

5Mbps TCP flow). It was also observed that packet losses would occur on both subflows simultane-

1

Recall that SF2 does not exist at connection establishment. It must wait until the application writes more data to the

socket to be filled.

116 CHAPTER 7. EXPERIMENTAL EVALUATION

●

●
●

●
● ●

●
●

●
●

●
● ●

●
●

●
●

●
● ● ●

●
●

●
●

● ● ● ●
●

●
●

● ● ●

●

0 10 20 30 40 50

1
2

3
4

5
6

Time (seconds)

Th
ro

ug
hp

ut
 (M

bp
s)

● TCP
MP−SF1

MP−SF2
MP−Total

(a) Shared bottleneck, undersized router queue

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

0 10 20 30 40

2
4

6
8

10

Time (seconds)

Th
ro

ug
hp

ut
 (M

bp
s)

● TCP
MP−SF1

MP−SF2
MP−Total

(b) No shared bottleneck, undersized router queue

Figure 7.5: Comparing per-subflow and total throughput for MPTCP flows with TCP where the router

queue is undersized.

7.2. EVALUATION 117

TCP MPTCP-Bottleneck MPTCP-Independent

73 223 194

Table 7.3: Mean count of retransmissions (including fast retransmissions, RTOs) when transferring

20MB.

SF1 retransmits SF2 retransmits

41 152

Table 7.4: Total-retransmits per-subflow, MPTCP-independent.

ously, due to the tight interleaving of packets by the scheduler and the synchronisation of transmits

on application writes. As each subflow maintains a unique congestion control, two subflows continue

to grow their transmission windows until the bottleneck queue fills and packet loss occurs.

In the independent-path case, overall packet-loss is reduced in comparison to the bottleneck case,

since subflows are not contending for slots on the bottleneck queue. Given the independent paths, it

might be expected that the total number of retransmissions would be comparable to TCP. This did not

turn out to be the case, and looking at the subflows separately helps to explain the causes. The total

number of retransmits for each subflow on an independent-path connection is given in Table 7.4. The

number of retransmissions on SF1 are in-line with expectations, and we see that SF2 is the primary

source of the additional retransmits. The retransmits on SF2 are the result of bursty behaviour in the

initial period after joining the connection.

When the connection is first established, the application performs a large write to the send-buffer

of SF1. It takes several RTTs before SF2 is established, and during this time writes from the applica-

tion are less frequent and smaller. The under-fed SF2 transmits the available data, causing the queue

to build on the router without causing loss. When a large write eventually arrives, the send-buffer of

SF2 is filled, and the congestion window allows a burst of packets to be sent out back-to-back. This

burst causes drop-tail loss at the already partially-filled router queue, and a number of packets must

then be retransmitted. This bustiness is present only while the buffer is undersized. After several sec-

onds the send buffer is filled, and the retransmission rate of the two subflows becomes comparable.

In this case the losses on SF2 are the result of the combination of scheduling and congestion control

algorithms, and the sending application. The congestion window does not evolve in the same way as

a solitary, standard TCP-flow might have.

118 CHAPTER 7. EXPERIMENTAL EVALUATION

Subflow A

Subflow B

Dummynet

Figure 7.6: Testing fault tolerance. The client is multi-homed and Dummynet and PF provide mid-

dlebox emulation.

The underlying observation is that the introduction of additional subflows alters the dynamic

behaviour of the connection such that assumptions based on standard TCP-flow behaviour do not

hold. This is an important consideration when performing network experiments that involve multi-

subflow scenarios.

7.2.3 Retransmissions

A crucial aspect of the implementation is how it reacts to problems along the network path. Common

issues are packet loss or a link losing connectivity. Four causes of packet loss are:

• Rate-control: Congestion control algorithms probe the network path to maximise bandwidth

use. A side-effect of this is packet loss when the size of the congestion window exceeds the

path capacity.

• Random packet loss: Can be caused by link-level transmission errors. For example wireless

links are more susceptible to transmission errors than wired links. Active queue management

schemes like RED may also randomly discard packets to forestall congestion.

• Congestion: A link in the path does not have adequate capacity or buffer space to forward the

aggregate input, causing loss.

• Link failure: A link may fail locally (e.g. a mobile device with transient connectivity) or along

the path.

We introduce random packet loss and link failure to demonstrate subflow-level and data-level recovery

functions, using the topology shown in Figure 7.6.

For MPTCP connections, most losses, such as those caused by TCP congestion control or random

packet loss, are handled at the subflow-level by standard TCP mechanisms. Our tests in Section 7.2.2

7.2. EVALUATION 119

●●●●●●●
●●●●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●● ● ●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●● ● ●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●● ● ●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●

● ●●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time (seconds)

TC
P

Se
qu

en
ce

 N
um

be
r (

,0
00

s)

0
20

40
60

80
10

0

● SF1
SF2

Figure 7.7: Random packet loss causing subflow-level retransmission.

confirm that subflow-level retransmission mechanisms (such as fast retransmit) work in response

to path congestion, so here we look at random loss. To ensure that only random loss is a factor,

we increase the BDP of both paths (RTT + queuing delay) to exceed the maximum cwnd for the

subflows

2

, preventing losses caused by rate-control. Random packet loss (0.05%) is added to the

path of Subflow 2. Figure 7.7 compares the relative TCP-sequence numbers of each subflow. We

see the effect of random loss on Subflow 2, which sends data at a much lower rate than Subflow

1. However, even though Subflow 1 does not experience loss, it is still influenced by the losses on

Subflow 2, and the overall connection is blocked while Subflow 2 is retransmitting (as the naive

scheduler continues to allocate segments to the poor-performing Subflow 2). Loss recovery in this

case occurred completely at the subflow layer.

In our topology subflows can only follow a single path (i.e. they cannot be re-routed), so link

failure causes a complete loss of that subflow. If a path fails, data that has yet to be acknowledged by

Data-ACK must be retransmitted on an alternate subflow for the connection to progress. We bring

down the path of Subflow 2 for a number of seconds to demonstrate both data-level retransmission

2

In our case 64KB, as limited by the send and receive buffer sizes.

120 CHAPTER 7. EXPERIMENTAL EVALUATION

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Time (seconds)

Th
ro

ug
hp

ut
 (M

b/
10

0m
s)

SF1
SF2

Total

Figure 7.8: Per-subflow and combined throughput during path loss and data-level retransmission.

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●● ●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

10 12 14 16 18 20

Time (seconds)

Su
bf

lo
w

 S
eq

ue
nc

e
N

um
be

r (
,0

00
s)

10
00

12
00

14
00

16
00

18
00

20
00

● SF1 SF2

Figure 7.9: Failure on SF2 causes a data-level retransmit. On recovery SF2 is able to send new data.

7.2. EVALUATION 121

Listing 8 The simplerr module definition.

struct sched_algo simplerr_sched_algo = {

.name = "simplerr",

.cb_init = simplerr_sched_init,

.cb_destroy = simplerr_sched_destroy,

.get_subflow = simplerr_get_subflow,

};

and the resumption of transmission when a path regains connectivity. In this example data-level

transmission is triggered if a subflow experiences two RTOs

3

. The per-subflow and overall throughput

is shown in Figure 7.8. The data-sequence numbers transmitted by each host before, during and after

the connection break are shown in Figure 7.9.

In the initial phase of the connection the data-sequence is spread evenly between the subflows. At

approximately 11 seconds the connection stalls as a result of the loss of Subflow 2. After two RTOs

on Subflow 2 the data is re-scheduled on Subflow 1 and the connection resumes, now transmitting

only on Subflow 1. Subflow 2 recovers at approximately 19 seconds, at which time the originally

scheduled (but not delivered) data in the send buffer must be transmitted (seen as a small cluster in

the lower right corner). Once subflow 2 has recovered, the scheduler is again able to distribute new

data between the subflows.

7.2.4 Scheduling and Congestion Control

We have implemented basic modules for scheduling and congestion control using the modular frame-

work. Though limited in practical terms the modules demonstrate the relative ease with which the

dynamic characteristics of an MPTCP connection can be changed.

Scheduling: The implementation defaults to RR scheduling if an alternate module is not loaded.

Our default scheduler, simplerr, has been written using the modular scheduling framework. The

definition is given in Listing 8. The previous multi-subflow tests in this chapter have used the

simplerr scheduler. As it’s name suggests, simplerr is a naive scheduler that allocates data to a

subflow output queue in MSS-sized segments. The scheduler is called whenever new data is written

to the MPTCP socket by the application, when data is received at the MPTCP-level and when a sub-

3

Multiple RTOs are a sign that a link has failed or is experiencing heavy congestion. It is however an approach and can

lead to a period of window blocking, as other subflows may exhaust their send queues in the meantime.

122 CHAPTER 7. EXPERIMENTAL EVALUATION

flow receives a positive TCP-level ACK. As previous research (see Section 4) has shown, a naive RR

approach is of limited practical utility, as it introduces head-of-line blocking and jitter. Simplerr

is therefore suited only to demonstrate the operation of multiple subflows on an MPTCP connection,

and to serve as a module template from which more advanced schedulers can be implemented.

Congestion Control: The implementation defaults to uncoupled per-subflow congestion control,

with the system-default TCP-CC applied to each individual subflow. The MPTCP-CC framework can

be used to set CC for MPTCP connections. An MPTCP-CC module may specify the use of uncoupled

or coupled CC algorithms. The mptcp uncoupled CC module provides two sysctl variables

4

that are used to set an uncoupled algorithm for two subflows. A more realistic module might select a

CC algorithm based on subflow metrics or information, such as the hardware interface type.

Different CC algorithms are unique in how they respond to network feedback, so to demonstrate

the mptcp uncoupled module we compare the cwnd profile of subflows using TCP New Reno

and TCP Cubic. We use the same network configuration as per our previous multi-subflow tests,

with and without a shared bottleneck

5

. Here the queue depth of the router is reduced to cause drop-

tail packet loss and encourage more dynamic congestion window behaviour. Figure 7.10 shows the

bottleneck case, while in Figure 7.11 the bottleneck is removed. In both cases we can easily identify

the unique cwnd profiles of the algorithms - the linear-growth sawtooth of TCP New Reno and the

curved-growth and plateaus of TCP Cubic. Comparing the two scenarios, we see that in the shared

bottleneck case Subflow 1 is able to grow its cwnd significantly during slow-start, to more than 40

segments. This fills the queue and by the time Subflow 2 is able to transmit data, the slow-start phase

sees limited growth before entering congestion avoidance. When the bottleneck is removed, we see

that both subflows are able to grow cwnd to greater than 40 segments during slow-start.

TCP New Reno and TCP Cubic are both loss-based algorithms. Delay-based approaches are suit-

able for use on paths with excessive buffering (e.g. cellular networks) and it is conceivable researchers

may want to explore mixing delay-based and loss-based algorithms for connections that have diverse

paths available. We therefore compare TCP New Reno with the delay-based CAIA Delay-Gradient

(CDG) [174] algorithm. Again we plot cwnd evolution for each subflow over time. Figure 7.12 shows

the shared bottleneck case, while Figure 7.13 is without a shared bottleneck. As with the previous

comparison, the algorithms exhibit distinct cwnd profiles, and here the difference between loss-based

and delay-based approaches is apparent. In both instances the cwnd profile of CDG shows less of the

4net.inet.tcp.mptcp.cc.subflow <N> algo
5

Since the initial subflow has a head start of several RTTs before the second is established, this isn’t a comparison as to

the effectiveness of the algorithms. It is simply a demonstration of how different approaches could be combined.

7.2. EVALUATION 123

0 5 10 15 20

0
10

20
30

40
50

Time (ms)

C
on

ge
st

io
n

W
in

do
w

 (M
SS

 s
eg

m
en

ts
)

(a) Subflow 1: New Reno

0 5 10 15 20

0
10

20
30

40
50

Time (ms)

C
on

ge
st

io
n

W
in

do
w

 (M
SS

 s
eg

m
en

ts
)

(b) Subflow 2: Cubic

Figure 7.10: Subflow congestion windows for New Reno and Cubic subflows across a shared bottle-

neck.

124 CHAPTER 7. EXPERIMENTAL EVALUATION

0 2 4 6 8 10 12

0
10

20
30

40
50

Time (ms)

C
on

ge
st

io
n

W
in

do
w

 (M
SS

 s
eg

m
en

ts
)

(a) Subflow 1: New Reno

0 2 4 6 8 10 12

0
10

20
30

40
50

Time (ms)

C
on

ge
st

io
n

W
in

do
w

 (M
SS

 s
eg

m
en

ts
)

(b) Subflow 2: Cubic

Figure 7.11: Subflow congestion windows without a shared bottleneck.

7.2. EVALUATION 125

0 5 10 15

0
10

20
30

40
50

Time (s)

C
on

ge
st

io
n

W
in

do
w

 (M
SS

 s
eg

m
en

ts
)

(a) Subflow 1: New Reno

0 5 10 15 20 25

0
10

20
30

40
50

Time (s)

C
on

ge
st

io
n

W
in

do
w

 (M
SS

 s
eg

m
en

ts
)

(b) Subflow 2: CAIA Delay Gradient

Figure 7.12: Using delay-based and loss-based congestion control on subflows with a shared bottle-

neck link.

126 CHAPTER 7. EXPERIMENTAL EVALUATION

0 5 10 15

0
10

20
30

40
50

Time (s)

C
on

ge
st

io
n

W
in

do
w

 (M
SS

 s
eg

m
en

ts
)

(a) Subflow 1: New Reno

0 5 10 15

0
10

20
30

40
50

Time (s)

C
on

ge
st

io
n

W
in

do
w

 (M
SS

 s
eg

m
en

ts
)

(b) Subflow 2: CAIA Delay Gradient

Figure 7.13: Using delay-based and loss-based congestion control on subflows without a shared bot-

tleneck.

7.2. EVALUATION 127

0 50 100 150 200 250 300 350

0
50

10
0

15
0

20
0

25
0

30
0

Dummynet Rate Limit (Mbps)

G
oo

dp
ut

 (M
bp

s)

TCP
MP−Single

Figure 7.14: Comparing Iperf goodput to TCP as the link bandwidth is increased.

cyclic, loss-inducing probing of the path capacity.

A crucial requirement of our modular framework is the ability to couple congestion functions of

the subflows, and much of the traffic steering benefits of MPTCP are derived from combining the

congestion functions in this way. The MPTCP-CC framework allows for a coupled approach, though

an implementation is left for future work.

7.2.5 Performance

Supporting MPTCP requires significant additions to the network stack. We conduct an introductory

assessment of the immediate impact that the MPTCP infrastructure has on network performance. In

doing so we can get a sense as to how scalable the implementation will be and if necessary revisit

design choices in future work. As the implementation is a work-in-progress, further development

work is required before a more extensive performance evaluation can be undertaken. Our initial

approach is to measure goodput as the bandwidth is increased.

We measure single-subflow MPTCP goodput as link-bandwidth is increased and compare with

standard TCP. There is no hardware offload (TSO, LRO), and SACK is disabled. This is a use-

128 CHAPTER 7. EXPERIMENTAL EVALUATION

TCP-SACK TCP MPTCP

Goodput (Mbps) 590 436 360

Table 7.5: Goodput without rate-limiting

200 250 300 350

Bandwidth limit (Mbps)

Av
er

ag
e

C
PU

 u
til

is
at

io
n

0
10

20
30

40
50

60 TCP
MPTCP

Figure 7.15: Average CPU usage by the kernel as bandwidth increases.

ful comparison, as even with a single subflow MPTCP infrastructure (e.g. multiple receive buffers,

taskqueue event processing) must be used, which adds overhead and impacts the dynamics of the

underlying TCP subflow (as seen in Section 7.2.2). By using only a single subflow, the effect that

scheduling decisions might have on goodput is removed.

Table 7.5 shows the average maximum goodput and CPU use in the testbed, for a single TCP

and MPTCP connection without rate-limiting. With a theoretical NIC speed of 1Gbps, the testbed

reaches a maximum approaching 600Mbps. Disabling TCP-SACK reduces goodput by approximately

160Mbps. The maximum goodput achieved by MPTCP is approximately 75Mbps less than TCP

without SACK. Figure 7.14 compares TCP and MPTCP with Dummynet rate-limiting enabled.

As with the single-subflow case in Section 7.2.2, the implementation achieves goodput similar

to standard TCP with link speeds up to 150Mbps. Above 150Mbps, the MPTCP implementation

7.2. EVALUATION 129

200 250 300 350

Bandwidth limit (Mbps)

C
on

te
xt

 s
w

itc
he

s
pe

r s
ec

on
d

0
20

0
40

0
60

0
80

0

TCP
MPTCP

Figure 7.16: Average count of context switches per-second as bandwidth increases.

becomes less efficient at using the available bandwidth. To determine whether this decrease in per-

formance is due to processing overhead, we also measured kernel CPU utilisation and the average

number of context switches per second for TCP and MPTCP connections. These are shown for the

sender-side in Figure 7.15 and Figure 7.16. There was no significant difference for these measures on

the receive side.

We see that, as expected, the deferred dispatch model of processing does increase the number

of context switches and CPU time (by at least 10%) required per Mb of goodput. However, in each

case there remains a large amount of CPU overhead, meaning that the goodput in this instance is

not limited by CPU, but by protocol-processing inefficiencies in the implementation. Aside from

disabling SACK, initial analysis showed inadequate send-buffer size (for the subflow socket) to be

the most obvious limiting factor.

To fully utilise the capcity of the path, the send buffer must be large enough to sustain the TCP

flow-control window. As BDP increases, the send buffer size must be increased to maintain the

optimal number of packets in-flight along the path. Accurate and timely data-level buffer sizing has

also been identified as a critical part of MPTCP performance tuning [2]. Larger send buffer sizes

130 CHAPTER 7. EXPERIMENTAL EVALUATION

are attained in TCP through the use of auto-tuning algorthms that allow the buffer-size to be scaled

incrementatlly based on an estimation of the path BDP [175].

Our initial experiments involved static allocation of master send and receive buffers. Since the

kernel places a limit on how much space can be statically reserved for a buffer, this restricted perfor-

mance to roughly 150Mbps, as the master send-buffer was not able to adequately feed the subflow

send buffer. To allow the master socket send buffer to increase in size, a simple algorithm was im-

plemented to scale the data-level send buffer based on occupancy. Auto buffer-scaling is available

in the FreeBSD TCP stack and subflows are thus already able to scale in-line with the master socket

buffers. Activating data-level auto-scaling allowed the MPTCP implementation to exceed 150Mbps

(as shown earlier in Figure 7.14).

Although the simple buffer-scaling algorithm did improve performance of the MPTCP connec-

tion, it was observed that for a given bandwidth the send buffer for the single MPTCP subflow re-

mained undersized compared to that of a standard TCP flow. This indicates that improvement in the

scaling algorithm is required. Auto-buffer scaling performance can be improved by employing band-

width and RTT estimation, and enhancing the current implementation to include BDP estimation will

be the first step for future work in this area.

Though the implementation is not yet capable of high-bandwidth connections, we consider the

current achievable speeds adequate to support a range of scheduling and CC experiments for lower-

bandwidth scenarios (e.g. replicating home-broadband connections). It is expected that the achievable

goodput can be improved with further development.

7.3 Conclusion

The tests presented in this chapter show that ourMPTCP implementation is functional and can achieve

throughputs that are useful for a range of network experiments. The purpose of these tests is to

validate that the implementation meets the basic requirements for creating MPTCP connections, to

demonstrate the use of scheduling and congestion control modules, and to show that performance is

adequate for use in experimentation.

We first showed that the implementation meets the requirements for establishing MPTCP connec-

tions, and when unsuccessful falls back to standard TCP. Beyond the negotiation phase we verify that

the implementation can operate basic multi-subflow scenarios and can outperform a standard TCP

connection when parallel paths are available. We show that subflow-level retransmission mechanisms

are preserved and that data-level retransmissions are possible in the event of path failure.

7.3. CONCLUSION 131

Modular scheduling and CC are key features of the implementation. We show that modules

can be created and loaded with modest effort and are able to access the state required to support

different scheduling and CC approaches. In these experiments a naive round-robin scheduler is used

to distribute data between the subflows. In several instances this causes head-of-line blocking or

leads to correlated packet losses between subflows. The use of this scheduler serves to illustrate the

need for appropriate scheduling and congestion control for MPTCP connections, and the value of

incorporating modular frameworks for experimentation. We show that the implementation is able to

set congestion control on a per-subflow basis and that the congestion window growth of each subflow

matches the expected behaviour of the specified CC algorithm.

Our initial performance tests show that the implementation is able function across a range of

bandwidths. While there is much room for optimisation in future work, the implementation appears

efficient enough to not be a bottleneck if used to run network experiments in the near future.

Chapter 8

Conclusion

As the number of multi-homed edge devices grows, there has been a desire to increase the traffic

engineering options available to end-hosts. MPTCP is a recent solution that has gained traction due

to backwards compatibility with legacy TCP applications and its suitability for Internet deployment.

Two MPTCP implementations are already publicly available: the UCL implementation for the Linux

kernel and Apple’s XNU kernel implementation for OSX and iOS. Of these, only the Linux imple-

mentation supports the full suite of MPTCP capabilities such as backwards compatibility with TCP

applications, simultaneous data transfer, scheduling and data-level reassembly. A key goal of our

implementation is to make MPTCP accessible for FreeBSD-based network research.

In this thesis we have:

• Presented a partially-modular MPTCP architecture for the FreeBSD kernel that includes mod-

ular frameworks to support scheduling and congestion control experimentation.

• Developed a functional prototype based on this design and made it available to the public [11].

• Demonstrated the prototype in several basic MPTCP scenarios and showed that the modular

frameworks are functional and performance is adequate for experimental use.

This is the first publicly available implementation for FreeBSD and lays much of the groundwork

for a fully featured MPTCP stack. Development is ongoing and will continue with input from the

FreeBSD community.

132

8.1. SUMMARY 133

8.1 Summary

A survey of existing multi-homing solutions in Chapter 3 supported the view of the transport layer

as the logical endpoint for end-to-end multi-path sessions. We show that several post-TCP transport

protocols, most notably CMT-SCTP, have already been developed to leverage multi-path enabled

hosts. However, deployment of these protocols across the Internet is found to have been hampered

by the prevalence of middleboxes that ‘normalise’ or discard packets from all but the most common

protocols.

Chapter 4 discussed the current state of research into scheduling and CC for MPTCP. Sender-side

mechanisms are discussed based on their overarching approach - passive and active, push and pull

for scheduling, with coupled and uncoupled for congestion control. The purpose of this survey was

not to identify the best approach, but rather to understand how approaches differ and how they the

can be supported from an implementation standpoint. We identified key requirements of different

approaches - such as access to TCP-level statistics or multiple segment buffers - which ultimately

informed our design.

In Chapter 6 we presented a MPTCP design suitable for implementation in the FreeBSD kernel.

The design includes provision for the primary features of MPTCP. The implementation resulting

from this design is open-source and available to the public [11]. After several iterations we arrived

at a pragmatic approach that aims to balance ease of modification, performance and maintainability.

The core of the implementation combines in-kernel and dynamically loaded code paths. Added to

this are modular frameworks for scheduling and congestion control.

We leverage the FreeBSDmodular TCP stack framework for part of our implementation. Creating

a partially in-kernel and dynamically loaded stack is unusual, though provides some distinct benefits.

Principally it allowed us to minimise the amount of code directly added to the in-kernel TCP stack,

reducing the maintenance burden. In the longer term it means that the MPTCP can continue to

develop in parallel with the TCP stack - integrating new enhancements but remaining distinct and

allowing the flexibility for MPTCP-focused changes that would be difficult to apply directly to the

TCP stack. Another benefit of using a modular stack approach is that MPTCP code paths are only

used for MPTCP connections - TCP connections can be dynamically switched to the standard TCP

stack with minimal effort.

In-kernel components consist of MPTCP protocol-hooks, option processing, and support for man-

aging DSN mappings on output. Changes to the kernel were made only when unavoidable (e.g.

134 CHAPTER 8. CONCLUSION

socket-facing user request routines), or where which functions are not yet modularised (e.g. the TCP

syncache).

We have created modular scheduling and CC frameworks for the MPTCP, allowing such algo-

rithms to be loaded dynamically, and a template module is provided for each of these. The scheduling

and CC frameworks are important additions with respect to the goal of enabling further research.

Much of the dynamic behaviour of MPTCP is derived through scheduling and congestion control,

and by modularising these processes researchers can develop their own schemes without having to

change or recompile the kernel. Since modules are decoupled from the core of the implementation,

they will require few or minimal changes to remain compatible as the implementation evolves. By

using ModCC as a template, the modules present the familiar usage semantics of existing TCP con-

gestion control modules and are configured using the standard sysctl interface.

In Chapter 7 we demonstrate the MPTCP implementation in several scenarios. We first show that

the implementation can negotiate MPTCP connections under a standard TCP socket and fall back to

TCP if the handshake fails. In the event of packet loss, TCP-level loss recovery functions are shown

to retransmit the lost segment. In the event of path failure, we show that data-level retransmission is

possible, and that a path may recover and rejoin the connection.

Two multi-subflow scenarios are presented that show functional multi-path operation and demon-

strate the effect of a shared bottleneck on the subflows. We first show that a multi-addressed client

can initiate a connection to a server through a shared bottleneck and then join an additional subflow to

the connection. When the server is multi-addressed, we show that the additional address is advertised

and that a client issues a join in response. When the bottleneck is removed, we show that MPTCP is

able to take advantage of the additional capacity.

Our demonstration scenarios are performed using a naive round-robin scheduler simplerr that

assigns packets to subflows on a per-segment basis. The scheduler was written using the modular

scheduling framework. We demonstrated use of the modular congestion framework by creating a

module that sets TCP-New Reno for the first subflow and either TCP-Cubic/CDG for the second

subflow. We demonstrate that subflows belonging to the same MPTCP connection can have markedly

different congestion window evolution, and that the window profile matches the expected behaviour

for the algorithm.

As an introductory performance test, we compare single-path MPTCP against standard TCP over

paths with increasing bandwidth limits. We find that when using a single subflow, MPTCP scales

in-line with the standard TCP implementation up to 150Mbps.

8.2. FUTURE WORK 135

8.2 Future Work

Beyond improvements to stability and performance, there are a number of key areas to pursue:

• Further evaluation: The tests presented in this thesis serve only to demonstrate that our imple-

mentation supports the basic MPTCP protocol. The performance in terms of network through-

put, CPU and memory consumption have not been extensively tested here and will be revisited

as the implementation matures.

• Further compliance testing: A more thorough evaluation of fault-tolerance and security issues

(e.g. cryptographic hash strength) is mandatory if the implementation is to be deployed on the

Internet.

• Modular tcp output(): Changes to tcp output were made in only a few key points.

However, to support these changes a number of MPTCP subroutines must be built as part of the

kernel. As tcp output can be replaced by a TCP stack module, a MPTCP-specific version

will be created in the future. This will also allow the output path to be tailored specifically for

MPTCP.

• Path management: In addition to scheduling and congestion control, the path management

process poses several interesting questions. The current implementation uses a static path man-

agement scheme. A separate path management module would allow more complex path man-

agement decisions, for example using link-layer feedback to determine when to initiate a join.

• Improved buffer management: The current implementation performs rudimentary buffer scal-

ing. The ability to appropriately resize send and receive buffers is critical if the implementation

is to be used in real-world or high-throughput scenarios.

• Community engagement: A robust, fully featured release will require ongoing development

and engagement from the wider FreeBSD community. Getting ‘up-to-speed’ with the req-

uisite knowledge of the MPTCP specification and the FreeBSD kernel is a substantial time

investment, meaning there have been no other public MPTCP projects for FreeBSD. With the

availability of this implementation, the hurdle for wider community involvement is reduced.

Appendix A

Design Overview of Multipath TCP

version 0.3 for FreeBSD-10

Originally publicly released as CAIA Technical Report 130424A on April 24, 2013. Available online

at: http://caia.swin.edu.au/reports/130424A/CAIA-TR-130424A.pdf

136

http://caia.swin.edu.au/reports/130424A/CAIA-TR-130424A.pdf

Design Overview of Multipath TCP version 0.3 for

FreeBSD-10

Nigel Williams, Lawrence Stewart, Grenville Armitage

Centre for Advanced Internet Architectures, Technical Report 130424A

Swinburne University of Technology

Melbourne, Australia

njwilliams@swin.edu.au, lastewart@swin.edu.au, garmitage@swin.edu.au

Abstract—This report introduces FreeBSD-MPTCP
v0.3, a modification to the FreeBSD-10 kernel that enables
support for the IETF’s emerging Multipath TCP (MPTCP)
specification. We outline the motivation for (and potential
benefits of) using MPTCP, and discuss key architectural
elements of our design.

Index Terms—CAIA, TCP, Multipath, Kernel, FreeBSD

I. INTRODUCTION

Traditional TCP has two significant challenges – it can

only utilise a single network path between source and

destination per session, and (aside from the gradual de-

ployment of explicit congestion notification) congestion

control relies primarily on packet loss as a congestion

indicator. Traditional TCP sessions must be broken and

reestablished when endpoints shift their network con-

nectivity from one interface to another (such as when

a mobile device moves from 3G to 802.11, and thus

changes its active IP address). Being bound to a single

path also precludes multihomed devices from using any

additional capacity that might exist over alternate paths.

TCP Extensions for Multipath Operation with Multi-

ple Addresses (RFC6824) [1] is an experimental RFC

that allows a host to spread a single TCP connec-

tion across multiple network addresses. Multipath TCP

(MPTCP) is implemented within the kernel and is de-

signed to be backwards compatible with existing TCP

socket APIs. Thus it operates transparently from the

perspective of the application layer and works with

unmodified TCP applications.

As part of CAIA’s NewTCP project [2] we have

developed and released a prototype implementation of

the MPTCP extensions for FreeBSD-10 [3]. In this report

we describe the architecture and design decisions behind

our version 0.3 implementation. At the time of writing, a

Linux reference implementation is also available at [4].

The report is organised as follows: we briefly outline

the origins and goals of MPTCP in Section II. In Section

III we detail each of the main architectural changes

required to support MPTCP in the FreeBSD 10 kernel.

The report concludes with Section IV.

II. BACKGROUND TO MULTIPATH TCP (MPTCP)

The IETF’s Multipath TCP (MPTCP) working group

1

is focused on an idea that has emerged in various forms

over recent years – namely, that a single transport session

as seen by the application layer might be striped or

otherwise multiplexed across multiple IP layer paths

between the session’s two endpoints. An over-arching

expectation is that TCP-based applications see the tra-

ditional TCP API, but gain benefits when their ses-

sion transparently utilises multiple, potentially divergent

network layer paths. These benefits include being able

to stripe data over parallel paths for additional speed

(where multiple similar paths exist concurrently), or

seamlessly maintaining TCP sessions when an individual

path fails or as a mobile device’s multiple underlying

network interfaces come and go. The parts of an MPTCP

session flowing over different network paths are known

as subflows.

A. Benefits for multihomed devices
Contemporary computing devices such as smart-

phones, notebooks or servers are often multihomed (mul-

tiple network interfaces, potentially using different link

layer technologies). MPTCP allows existing TCP-based

applications to utilise whichever underlying interface

(network path) is available at any given time, seamlessly

maintaining transport sessions when endpoints shift their

network connectivity from one interface to another.

When multiple interfaces are concurrently available,

MPTCP enables the distribution of an application’s

1

http://datatracker.ietf.org/wg/mptcp/charter/

CAIA Technical Report 130424A April 2013 page 1 of 6

traffic across all or some of the available paths in a

manner transparent to the application. Networks can

gain traffic engineering benefits as TCP connections

are steered via multiple paths (for instance away from

congested links) using coupled congestion control [5].

Mobile devices such as smartphones and tablets can be

provided with persistent connectivity to network services

as they transition between different locales and network

access media.

B. SCTP is not quite the same as MPTCP
It is worth noting that SCTP (stream control transmis-

sion protocol) [6] also supports multiple endpoints per

session, and recent CMT work [7] enables concurrent use

of multiple paths. However, SCTP presents an entirely

new API to applications, and has difficulty traversing

NATs and any middleboxes that expect to see only TCP,

UDP or ICMP packets ’in the wild’. MPTCP aims to be

more transparent than SCTP to applications and network

devices.

C. Previous MPTCP implementation and development
Most early MPTCP work was supported by the EU’s

Trilogy Project

2

, with key groups at University College

London (UK)

3

and Université catholique de Louvain in

Louvain-la-Neuve (Belgium)

4

publishing code, working

group documents and research papers. These two groups

are responsible for public implementations of MPTCP

under Linux userland

5

, the Linux kernel

6

and a simu-

lation environment (htsim)

7

. Some background on the

design, rationale and uses of MPTCP can be found in

papers such as [8]–[11].

D. Some challenges posed by MPTCP
MPTCP poses a number of challenges.

1) Classic TCP application interface: The API is

expected to present the single-session socket of con-

ventional TCP, while underneath the kernel is expected

to support the learning and use of multiple IP-layer

identities for session endpoints. This creates a non-trivial

implementation challenge to retrofit such functionality

into existing, stable TCP stacks.

2

http://www.trilogy-project.org/

3

http://nrg.cs.ucl.ac.uk/mptcp/

4

http://inl.info.ucl.ac.be/mptcp

5

http://nrg.cs.ucl.ac.uk/mptcp/mptcp_userland_0.1.tar.gz

6

https://scm.info.ucl.ac.be/trac/mptcp/

7

http://nrg.cs.ucl.ac.uk/mptcp/htsim_0.1.tar.gz

2) Interoperability and deployment: Any new imple-

mentation must interoperate with the reference imple-

mentation. The reference implementation has not yet had

to address interoperation, and as such holes and assump-

tions remain in the protocol documents. An interoperable

MPTCP implementation, given FreeBSD’s slightly dif-

ferent network stack paradigm relative to Linux, should

assist in IETF standardisation efforts. Also, the creation

of a BSD-licensed MPTCP implementation benefits both

the research and vendor community.

3) Congestion control (CC): Congestion control (CC)

must be coordinated across the subflows making up

the MPTCP session, to both effectively utilise the total

capacity of heterogeneous paths and ensure a multipath

session does not receive “...more than its fair share
at a bottleneck link traversed by more than one of its
subflows” [12]. The WG’s current proposal for MPTCP

CC remains fundamentally a loss-based algorithm that

“...only applies to the increase phase of the congestion
avoidance state specifying how the window inflates upon
receiving an ACK. The slow start, fast retransmit, and
fast recovery algorithms, as well as the multiplicative
decrease of the congestion avoidance state are the same
as in standard TCP” (Section 3, [12]). There appears

to be wide scope for exploring how and when CC

for individual subflows ought to be tied together or

decoupled.

III. CHANGES TO FREEBSD’S TCP STACK

Our MPTCP implementation has been developed as a

kernel patch

8

against revision 248226 of FreeBSD-10.

A broad view of the changes and additions between

revision 248226 and the MPTCP-enabled kernel:

1) Creation of the Multipath Control Block (MPCB)

and the repurposing of the existing TCP Control

Block (TCPCB) to act as a MPTCP subflow con-

trol block.

2) Changes to user requests (called from the socket

layer) that handle the allocation, setup and deallo-

cation of control blocks.

3) New data segment reassembly routines and data-

structures.

4) Changes to socket send and socket receive buffers

to allow concurrent access from multiple subflows

and mapping of data.

5) MPTCP option insertion and parsing code for input

and output paths.

8

Implementing MPTCP as a loadable kernel module was consid-

ered, but deemed impractical due to the number of changes required.

CAIA Technical Report 130424A April 2013 page 2 of 6

Figure 1. Logical MPTCP stack structure (left) versus traditional

TCP (right). User space applications see same socket API.

6) Locking mechanisms to handle additional concur-

rency introduced by MPTCP.

7) Various MPTCP support functions (authentication,

hashing etc).

The changes are covered in more detail in the following

subsections.

A. Protocol Control Blocks
The implementation adds a new control block, the

MPTCP control block (MPCB), and repurposes the TCP

Control Block (RFC 793 [13]) as a subflow control

block. The header file netinet/mptcp_var.h has been

added to the FreeBSD source tree, and the MPCB

structure is defined within.

A MPCB is created each time an application creates

a TCP socket. The MPCB maintains all information re-

quired for multipath operation and manages the subflows

in the connection. It sits logically between the subflow

TCP control blocks and the socket layer. This arrange-

ment is compared with traditional TCP in Figure 1.

At creation, each MPCB associated with a socket

contains at least one subflow (the master subflow, or

subflow 1). The subflow control block is a modified

traditional TCP control block found in netinet/tcp_var.h.
Protocol control blocks are initialised and attached

to sockets via functions in netinet/tcp_usrreq.c (user

requests). A call to tcp_connect() in netinet/tcp_usrreq.c
results in a call to mp_newmpcb(), which allocates and

initialises the MPCB.

A series of functions (tcp_subflow_*) are implemented

in tcp_usrreq.c and are used to create and attach any

additional slave subflows to the MPTCP connection.

B. Segment Reassembly
MPTCP adds a data-level sequence space above

the sequence space used in standard TCP. This al-

lows segments received on multiple subflows to be

Figure 2. Each subflow maintains a segment receive list. Segments

are placed into the list in subflow-sequence order as they arrive (data-

level sequence numbers are shown). When a segment arrives in data-

sequence order, the lists are locked and data-level re-ordering occurs.

The application is then alerted and can read in the in-order data.

ordered before delivery to the application. Modifications

to reassembly are found in netinet/tcp_reass.c and in

kern/uipc_socket.c.
In pre-MPTCP FreeBSD, if a segment arrives that is

not the next expected segment (sequence number does

not equal RCV.NXT), it is placed into a reassembly

queue. Segments are placed into this queue in sequence

order until the expected segment arrives. At this point,

all in-order segments held in the queue are appended to

the socket receive buffer and the process is notified that

data can be read in. If a segment arrives that is in-order

and the reassembly list is empty, it is appended to the

receive buffer immediately.

In our implementation, subflows do not access the

socket receive buffer directly, and instead repurpose the

traditional reassembly queue for both in-order queuing

and out-of-order reassembly. Unknown to subflows, their

individual queues form part of a larger multipath-related

reassembly data structure, shown in Figure 2.

All incoming segments on a subflow are appended to

that subflow’s reassembly queue (the t_segq member of

the TCP control block defined in netinet/tcp_var.h) in

subflow sequence order. When the head of a subflow’s

queue is in data sequence order (segment’s data level

sequence number equals ds_rcv_nxt), then data-level

reassembly is triggered (ultimately by a wakeup on

the socket which will in turn defer reassembly to the

userspace thread context, but due to unresolved bugs we

currently trigger from kernel thread context).

Data-level reassembly involves traversing each sub-

flow segment list and appending in-sequence (data-level)

segments to the socket receive buffer. This occurs in the

CAIA Technical Report 130424A April 2013 page 3 of 6

mp_do_reass() function of netinet/tcp_reass.c. During

this time a write lock is used to exclude subflows from

manipulating their reassembly queues.

Subflow and data-level reassembly have been split this

way to reduce lock contention between subflows and

the multipath layer. It also allows data-reassembly to be

deferred to the application’s thread context during a read

on the socket, rather than performed by a kernel fast-path

thread.

At completion of data-level reassembly, a data-level

ACK is scheduled on whichever subflow next sends a

regular TCP ACK packet.

C. Send and Receive Socket Buffers
In FreeBSD’s implementation of standard TCP, seg-

ments are sent and received over a single (address,port)

tuple, and socket buffers exist exclusively for each TCP

session. MPTCP sessions have 1+n (where n denotes

additional addresses) subflows that must access the same

send and receive buffers. The following sections describe

the changes to the socket buffers and the addition of the

ds_map. .
1) The ds_map struct: The ds_map struct is defined

in netinet/tcp_var.h and used for both send-related and

receive-related functions. Send and receive related maps

are stored in the subflow control block lists t_txmaps
(send buffer maps) and t_rxmaps (receive buffer maps)

respectively.

On the send side, ds_maps track accounting informa-

tion related to DSN maps advertised to the peer, and

are used to mediate access between subflows and the

send socket buffer. By mediating socket buffer access in

this way, lock contention can be avoided when sending

data from a ds_map. On the receive side, ds_maps track
accounting information related to received DSN maps

and associated payload data from the peer.

Figure 3. Standard TCP Send Buffer. The lined area represents sent

bytes that have been acknowledged by the receiver.

2) Socket Send Buffer: Figure 3 illustrates how in

standard TCP, each session has exclusive access to its

own send buffer. The variables snd_nxt and snd_una

Figure 4. A MPTCP send buffer contains bytes that must be mapped

to multiple TCP-subflows. Each subflow is allocated one or more

ds_maps (DSS-MAP) that define these mappings.

are used respectively to track which bytes in the send

buffer are to be sent next, and which bytes were the last

acknowledged by the receiver.

Figure 4 illustrates how in the multipath kernel, data

from the sending application is still stored in a single

send socket buffer. However access to this buffer is

moderated by the packet scheduler in mp_get_map(),
implemented in netinet/mptcp_subr.c (see Section III-D)

The packet scheduler is run when a subflow attempts

to send data via tcp_output() without owning a ds_map
that references unsent data.

When invoked, the scheduler must decide whether the

subflow should be allocated any data. If granted, allo-

cations are returned as a ds_map that contains an offset

into the send buffer and the length of data to be sent.

Otherwise, a NULL map is returned, and the send buffer

appears ’empty’ to the subflow. The ds_map effectively

acts as a unique socket buffer from the perspective of

the subflow (i.e. subflows are not aware of what other

subflows are sending). The scheduler is not invoked

again until the allocated map has been completely sent.

This scheme allows subflows to make forward

progress with variable overheads that depend on how

frequently the scheduler is invoked i.e. larger maps

reduce overheads.

As a result of sharing the underlying send socket

buffer via ds_maps to avoid data copies, releasing

bytes becomes more complex. Firstly, data-level ACKs

rather than subflow-level ACKs mark the multipath-

level stream bytes which have safely arrived, and there-

fore control the advancement of ds_snd_una. Secondly,

ds_maps can potentially overlap any portion of their

socket buffer mapping with each other (e.g. data-level

retransmit), and therefore the underlying socket buffer

bytes (encapsulated in chained mbufs) can only be

dropped when both ds_snd_una has acknowledged them

CAIA Technical Report 130424A April 2013 page 4 of 6

and all maps which reference the bytes have been

deleted.

To potentially defer the dropping of bytes from the

socket buffer without adversely impacting application

throughput requires that socket buffer occupancy be

accounted for logically rather than actually. To this end,

the socket buffer variable sb_cc of an MPTCP socket

send buffer refers to the logical number of bytes held

in the buffer without data-level acknowledgment, and a

new variable sb_actual has been introduced to track the

actual number of bytes in the buffer.

3) Socket Receive Buffer: In pre-MPTCP FreeBSD,

in-order segments were copied directly into the receive

buffer, at which time the process was alerted that data

was available to read. The remaining space in the receive

buffer was used to advertise a receive window to the

sender.

As described in Section III-B, each subflow now holds

all received segments in a segment list, even if they are in

subflow sequence order. The segment lists are then linked

by their list heads to create a larger data-level reassembly

data structure. When a segment arrives that is in data

sequence order, data-level reassembly is triggered and

segments are copied into the receive buffer. As the size of

the reassembly list is effectively unbounded, we currently

advertise a maximum receive window (TCP_MAXWIN *
scaling factor) on all subflows.

Figure 5. A future release will integrate the multipath reassembly

structure into the socket receive buffer. Segments will be read directly

from the multi-subflow aware buffer as data-level reassembly occurs.

We plan to integrate the multipath reassembly struc-

ture into the socket receive buffer in a future release.

Coupled together with deferred reassembly, an applica-

tion’s thread context would be responsible for perform-

ing data-level reassembly on the multi-subflow aware

buffer after being woken up by a subflow that received

the next expected data-level segment (see Figure 5).

D. Packet Scheduler
The packet scheduler is responsible for determining

which subflows are able to send data from the socket

send buffer, and how much data they can send. A

basic packet scheduler is implemented in the v0.3 patch,

and can be found in the mp_get_map() function of

netinet/mptcp_subr.c.
The current algorithm checks the number of unmapped

bytes (bytes not yet allocated to an existing ds_map
struct) in the buffer and the total occupancy of the buffer.

If the buffer is not full, the application is free to write

more data to the socket so we assign the current contents

of the buffer to the requesting subflow on the basis more

data will be written soon. If the buffer is full (sb_cc is

equal to the buffer’s maximum capacity sb_hiwat), the
application is stalled waiting for buffer space to become

available and subflows are competing for the unmapped

data in the buffer. In this case, we allocate an amount of

data equal to the unmapped bytes divided by the number

of active subflows, with a floor value set to the MSS of

the requesting subflow. This provides some protection

against a subflow being starved of data to transmit.

The scheduler returns an appropriate ds_map struct,

and since the length allocated can exceed oneMSS, this

mapping forms the basis of a multi-packet MPTCP DSS-

map.

The packet scheduler will be modularised and ex-

tended with congestion control hooks in future updates,

providing scope for more complex scheduling of maps.

IV. CONCLUSIONS AND FUTURE WORK

This report introduced FreeBSD-MPTCP v0.3, a mod-

ification of the FreeBSD kernel enabling Multipath TCP

[1] support. We outlined the motivation behind and

potential benefits of using multipath TCP, and discussed

key architectural elements of our design.

We expect to update and improve our MPTCP im-

plementation in the future, and documentation will be

updated as this occurs. We also plan on releasing a

detailed design document that will provide more in-

depth detail about the implementation. Code profiling

and analysis of on-wire performance are also planned.

CAIA Technical Report 130424A April 2013 page 5 of 6

Our aim is to use this implementation as a basis

for further research into MPTCP congestion control, as

noted in Section II-D3.

ACKNOWLEDGEMENTS

This project has been made possible in part by a gift

from the Cisco University Research Program Fund, a

corporate advised fund of Silicon Valley Community

Foundation.

REFERENCES

[1] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP

Extensions for Multipath Operation with Multiple Addresses,”

RFC 6824, Internet Engineering Task Force, 12 January 2013.

[Online]. Available: http://tools.ietf.org/html/rfc6824

[2] G. Armitage and L. Stewart. (2013) Newtcp project website.

[Online]. Available: http://caia.swin.edu.au/urp/newtcp/

[3] G. Armitage and N. Williams. (2013) Multipath tcp

project website. [Online]. Available: http://caia.swin.edu.au/

urp/newtcp/mptcp/

[4] O. Bonaventure. (2013) Multipath tcp linux kernel implemen-

tation. [Online]. Available: http://multipath-tcp.org/pmwiki.php

[5] D. Wischik, C. Raiciu, A. Greenhalgh and M. Handley, “De-

sign, Implementation and Evaluation of Congestion Control for

Multipath TCP,” in USENIX Symposium of Networked Systems
Design and Implementation (NSDI’11), Boston, MA, 2012.

[6] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer,

T. Taylor, I. Rytina, M. Kalla, L. Zhang, V. Paxson,

“Stream Control Transmission Protocol,” RFC 2960, Internet

Engineering Task Force, October 2000. [Online]. Available:

http://tools.ietf.org/html/rfc2960

[7] P. Amer, M. Becke, T. Dreibholz, N. Ekiz, J.

Iyengar, P. Natarajan, R. Stewart, M. Tuexen, “Load

sharing for the stream control transmission protocol

(SCTP),” Internet Draft, Internet Engineering Task Force,

September 2012. [Online]. Available: http://tools.ietf.org/html/

html/draft-tuexen-tsvwg-sctp-multipath-05

[8] A. Ford, C. Raiciu, M. Handley, S. Barré, and J.Iyengar,

“Architectural Guidelines for Multipath TCP Development,”

RFC 6182, Internet Engineering Task Force, March 2011.

[Online]. Available: http://tools.ietf.org/html/rfc6182

[9] C. Raiciu, C. Paasch, S. Barré, A. Ford, M. Honda, F. Duchène,

O. Bonaventure and M. Handley, “How Hard Can It Be?

Designing and Implementing a Deployable Multipath TCP,”

in USENIX Symposium of Networked Systems Design and
Implementation (NSDI’12), San Jose, California, 2012.

[10] S. Barré, C. Paasch, and O. Bonaventure, “Multipath tcp: From

theory to practice,” in IFIP Networking, Valencia, May 2011.

[11] C. Raiciu, S. Barré, C. Pluntke, A. Greenhalgh, D. Wischik, and

M. Handley, “Improving datacenter performance and robustness

with multipath tcp,” in SIGCOMM 2011, Toronto, Canada,
August 2011.

[12] C. Raiciu, M. Handley, and D. Wischik, “Coupled congestion

control for multipath transport protocols,” RFC 6356, Internet

Engineering Task Force, October 2011. [Online]. Available:

http://tools.ietf.org/html/rfc6356

[13] J. Postel, “Transmission Control Protocol,” RFC 793, Internet

Engineering Task Force, September 1981. [Online]. Available:

http://tools.ietf.org/html/rfc793

CAIA Technical Report 130424A April 2013 page 6 of 6

Appendix B

Design Overview of Multipath TCP

version 0.4 for FreeBSD-11

Originally publicly released as CAIA Technical Report 140822A on August 22, 2014. Available

online at http://caia.swin.edu.au/reports/140822A/CAIA-TR-140822A.pdf

143

http://caia.swin.edu.au/reports/140822A/CAIA-TR-140822A.pdf

Design Overview of Multipath TCP version 0.4 for

FreeBSD-11

Nigel Williams, Lawrence Stewart, Grenville Armitage

Centre for Advanced Internet Architectures, Technical Report 140822A

Swinburne University of Technology

Melbourne, Australia

njwilliams@swin.edu.au, lastewart@swin.edu.au, garmitage@swin.edu.au

Abstract—This report introduces FreeBSD-MPTCP
v0.4, a modification to the FreeBSD-11 kernel that enables
support for the IETF’s emerging Multipath TCP (MPTCP)
specification. We outline the motivation for (and potential
benefits of) using MPTCP, and discuss key architectural
elements of our design.

Index Terms—CAIA, TCP, Multipath, Kernel, FreeBSD

I. INTRODUCTION

Traditional TCP has two significant challenges – it can

only utilise a single network path between source and

destination per session, and (aside from the gradual de-

ployment of explicit congestion notification) congestion

control relies primarily on packet loss as a congestion

indicator. Traditional TCP sessions must be broken and

reestablished when endpoints shift their network con-

nectivity from one interface to another (such as when

a mobile device moves from 3G to 802.11, and thus

changes its active IP address). Being bound to a single

path also precludes multihomed devices from using any

additional capacity that might exist over alternate paths.

TCP Extensions for Multipath Operation with Multi-

ple Addresses (RFC6824) [1] is an experimental RFC

that allows a host to spread a single TCP connec-

tion across multiple network addresses. Multipath TCP

(MPTCP) is implemented within the kernel and is de-

signed to be backwards compatible with existing TCP

socket APIs. Thus it operates transparently from the

perspective of the application layer and works with

unmodified TCP applications.

As part of CAIA’s NewTCP project [2] we have

developed and released a prototype implementation of

the MPTCP extensions for FreeBSD-11 [3]. In this report

we describe the architecture and design decisions behind

our version 0.4 implementation. At the time of writing, a

Linux reference implementation is also available at [4].

The report is organised as follows: we briefly outline

the origins and goals of MPTCP in Section II. In Section

III we detail each of the main architectural changes

required to support MPTCP in the FreeBSD 11 kernel.

The report concludes with Section IV.

II. BACKGROUND TO MULTIPATH TCP (MPTCP)

The IETF’s Multipath TCP (MPTCP) working group

1

is focused on an idea that has emerged in various forms

over recent years – namely, that a single transport session

as seen by the application layer might be striped or

otherwise multiplexed across multiple IP layer paths

between the session’s two endpoints. An over-arching

expectation is that TCP-based applications see the tra-

ditional TCP API, but gain benefits when their ses-

sion transparently utilises multiple, potentially divergent

network layer paths. These benefits include being able

to stripe data over parallel paths for additional speed

(where multiple similar paths exist concurrently), or

seamlessly maintaining TCP sessions when an individual

path fails or as a mobile device’s multiple underlying

network interfaces come and go. The parts of an MPTCP

session flowing over different network paths are known

as subflows.

A. Benefits for multihomed devices
Contemporary computing devices such as smart-

phones, notebooks or servers are often multihomed (mul-

tiple network interfaces, potentially using different link

layer technologies). MPTCP allows existing TCP-based

applications to utilise whichever underlying interface

(network path) is available at any given time, seamlessly

maintaining transport sessions when endpoints shift their

network connectivity from one interface to another.

When multiple interfaces are concurrently available,

MPTCP enables the distribution of an application’s

1

http://datatracker.ietf.org/wg/mptcp/charter/

CAIA Technical Report 140822A August 2014 page 1 of 14

traffic across all or some of the available paths in a

manner transparent to the application. Networks can

gain traffic engineering benefits as TCP connections

are steered via multiple paths (for instance away from

congested links) using coupled congestion control [5].

Mobile devices such as smartphones and tablets can be

provided with persistent connectivity to network services

as they transition between different locales and network

access media.

B. SCTP is not quite the same as MPTCP
It is worth noting that SCTP (stream control transmis-

sion protocol) [6] also supports multiple endpoints per

session, and recent CMT work [7] enables concurrent use

of multiple paths. However, SCTP presents an entirely

new API to applications, and has difficulty traversing

NATs and any middleboxes that expect to see only TCP,

UDP or ICMP packets ’in the wild’. MPTCP aims to be

more transparent than SCTP to applications and network

devices.

C. Previous MPTCP implementation and development
Most early MPTCP work was supported by the EU’s

Trilogy Project

2

, with key groups at University College

London (UK)

3

and Université catholique de Louvain in

Louvain-la-Neuve (Belgium)

4

publishing code, working

group documents and research papers. These two groups

are responsible for public implementations of MPTCP

under Linux userland

5

, the Linux kernel

6

and a simu-

lation environment (htsim)

7

. Some background on the

design, rationale and uses of MPTCP can be found in

papers such as [8]–[11].

D. Some challenges posed by MPTCP
MPTCP poses a number of challenges.

1) Classic TCP application interface: The API is

expected to present the single-session socket of con-

ventional TCP, while underneath the kernel is expected

to support the learning and use of multiple IP-layer

identities for session endpoints. This creates a non-trivial

implementation challenge to retrofit such functionality

into existing, stable TCP stacks.

2

http://www.trilogy-project.org/

3

http://nrg.cs.ucl.ac.uk/mptcp/

4

http://inl.info.ucl.ac.be/mptcp

5

http://nrg.cs.ucl.ac.uk/mptcp/mptcp_userland_0.1.tar.gz

6

https://scm.info.ucl.ac.be/trac/mptcp/

7

http://nrg.cs.ucl.ac.uk/mptcp/htsim_0.1.tar.gz

2) Interoperability and deployment: Any new imple-

mentation must interoperate with the reference imple-

mentation. The reference implementation has not yet had

to address interoperation, and as such holes and assump-

tions remain in the protocol documents. An interoperable

MPTCP implementation, given FreeBSD’s slightly dif-

ferent network stack paradigm relative to Linux, should

assist in IETF standardisation efforts. Also, the creation

of a BSD-licensed MPTCP implementation benefits both

the research and vendor community.

3) Congestion control (CC): Congestion control (CC)

must be coordinated across the subflows making up

the MPTCP session, to both effectively utilise the total

capacity of heterogeneous paths and ensure a multipath

session does not receive “...more than its fair share
at a bottleneck link traversed by more than one of its
subflows” [12]. The WG’s current proposal for MPTCP

CC remains fundamentally a loss-based algorithm that

“...only applies to the increase phase of the congestion
avoidance state specifying how the window inflates upon
receiving an ACK. The slow start, fast retransmit, and
fast recovery algorithms, as well as the multiplicative
decrease of the congestion avoidance state are the same
as in standard TCP” (Section 3, [12]). There appears

to be wide scope for exploring how and when CC

for individual subflows ought to be tied together or

decoupled.

III. CHANGES TO FREEBSD’S TCP STACK

Our MPTCP implementation has been developed as

a kernel patch

8

against revision 265307 of FreeBSD-11.

Table I provides a summary of files modified or added

to the FreeBSD-11 kernel.

A broad view of the changes and additions between

revision 265307 and the MPTCP-enabled kernel:

1) Creation of the Multipath Control Block (MPCB)

and the re-purposing of the existing TCP Control

Block (TCPCB) to act as a MPTCP subflow con-

trol block.

2) Changes to user requests (called from the socket

layer) that handle the allocation, setup and deallo-

cation of control blocks.

3) New data segment reassembly routines and data-

structures.

4) Changes to socket send and socket receive buffers

to allow concurrent access from multiple subflows

and mapping of data.

8

Implementing MPTCP as a loadable kernel module was consid-

ered, but deemed impractical due to the number of changes required.

CAIA Technical Report 140822A August 2014 page 2 of 14

File Status

sys/netinet/tcp_var.h Modified

sys/netinet/tcp_subr.c Modified

sys/netinet/tcp_input.c Modified

sys/netinet/tcp_output.c Modified

sys/netinet/tcp_timer.c Modified

sys/netinet/tcp_reass.c Modified

sys/netinet/tcp_syncache.c Modified

sys/netinet/tcp_usrreq.c Modified

sys/netinet/mptcp_var.h Added

sys/netinet/mptcp_subr.c Added

sys/kern/uipc_sockbuf.c Modified

sys/sys/sockbuf.h Modified

sys/sys/socket.h Modified

sys/sys/socketvar.h Modified

Table I

KERNEL FILES MODIFIED OR ADDED AS PART OF MPTCP

IMPLEMENTATION

5) MPTCP option insertion and parsing code for input

and output paths.

6) Locking mechanisms to handle additional concur-

rency introduced by MPTCP.

7) Various MPTCP support functions (authentication,

hashing etc).

The changes are covered in more detail in the follow-

ing subsections. For detail on the overall structure and

operation of the FreeBSD TCP/IP stack, see [13].

A. Protocol Control Blocks
The implementation adds a new control block, the

MPTCP control block (MPCB), and re-purposes the TCP

Control Block (RFC 793 [14]) as a subflow control

block. The header file netinet/mptcp_var.h has

been added to the FreeBSD source tree, and the MPCB

structure is defined within.

A MPCB is created each time an application creates

a TCP socket. The MPCB maintains all information

required for multipath operation and manages the sub-

flows in the connection. This also includes variables for

data-level accounting and session tokens. It sits logically

between the subflow TCP control blocks and the socket

layer. This arrangement is compared with traditional

TCP in Figure 1.

At creation, each MPCB associated with a socket

contains at least one subflow (the master, or default sub-
flow). The subflow control block is a modified traditional

TCP control block found in netinet/tcp_var.h.
Modifications to the control block include the addition

of subflow flags, which are used to propagate subflow

state to the MPCB (E.g. during packet scheduling).

Sockets API

Multipath TCP Session Control
(mpcb)

Subflow 1
(tcb)

Subflow n

TCP-based Process

IP

Subflow 2 ...

Sockets API

TCP
(tcb)

TCP-based Process

IPIP IPIP

Figure 1. Logical MPTCP stack structure (left) versus traditional

TCP (right). User space applications see same socket API.

Protocol control blocks are initialised and attached

to sockets via functions in netinet/tcp_usrreq.c
(user requests). A call to tcp_connect() in

netinet/tcp_usrreq.c results in a call to

mp_newmpcb(), which allocates and initialises the

MPCB.

A series of functions (tcp_subflow_
*

) are imple-

mented in tcp_usrreq.c and are used to create and

attach any additional subflows to the MPTCP connection.

B. Asynchronous Task Handlers

Listing 1 Asynchronous tasks: Provide deferred execu-

tion for several MPTCP session-related tasks.

struct task join_task; /* For enqueuing
aysnc joins in swi */

struct task data_task; /* For enqueuing
aysnc subflow sched wakeup */

struct task pcb_create_task; /* For
enqueueing async sf inp creation */

struct task rexmit_task; /* For enqueuing
data-level rexmits */

When processing a segment, traditional TCP typically

follows one of only a few paths through the TCP stack.

For example, an incoming packet triggers a hardware

interrupt, which causes an interrupt thread to be sched-

uled that, when executed, handles processing of the

packet (including transport-layer processing, generating

a response to the incoming packet).

Code executed in this path should be directly relevant

to processing the current packet (parsing options, updat-

ing sequence numbers, etc). Operations such as copying

out data to a process are deferred to other threads.

Maintaining a multipath session requires performing

several new operations that may be triggered by incom-

CAIA Technical Report 140822A August 2014 page 3 of 14

1

SF1 SF2

2

5

3

4

3. Segment fills hole.
Do reassembly and
call 'sorwakeup' to
wake process

Multipath control block

1. Segment arrives
on subflow 1

2. Insert into segment list

Figure 2. Each subflow maintains a segment receive list. Segments

are placed into the list in subflow-sequence order as they arrive (data-

level sequence numbers are shown). When a segment arrives in data-

sequence order, the lists are locked and data-level re-ordering occurs.

The application is then alerted and can read in the in-order data.

ing or outgoing packets. Some of these operations are

not immediately related to the current packet therefore

can be executed asynchronously. We have thus defined

several new handlers for these tasks (Listing 1) which are

attached to a software interrupt thread using taskqueue9.
Each of the task variables has an associated handler in

netinet/mptcp_subr.c, and provide the following

functionality:

Join task (mp_join_task_handler): Attempt to

join addresses the remote host has advertised.

Data task (mp_datascheduler_task_handler):
Part of packet scheduling. Call output on subflows that

are waiting to transmit.

PCB Create Task (mp_sf_alloc_task_handler):
Allocate PCBs for subflows on an address we are about

to advertise.

Retransmit Task (mp_rexmit_task_handler):
Initiate data-level re-injection of segments after a sub-

flow has failed to deliver data.

The data task and retransmit task are discussed further
in Section III-F and Section III-G respectively.

C. Segment Reassembly
MPTCP adds a data-level sequence space above the

sequence space used in standard TCP. This allows seg-

ments received on multiple subflows to be ordered before

delivery to the application. Modifications to reassem-

bly are found in netinet/tcp_reass.c and in

kern/uipc_socket.c.

9

http://www.freebsd.org/cgi/man.cgi?query=taskqueue

In pre-MPTCP FreeBSD, if a segment arrives that is

not the next expected segment (sequence number does

not equal receive next, tcp_rcv_nxt), it is placed into

a reassembly queue. Segments are placed into this queue

in sequence order until the expected segment arrives. At

this point, all in-order segments held in the queue are

appended to the socket receive buffer and the process is

notified that data can be read in. If a segment arrives

that is in-order and the reassembly list is empty, it is

appended to the receive buffer immediately.

In our implementation, subflows do not access the

socket receive buffer directly, and instead re-purpose the

traditional reassembly queue for both in-order queuing

and out-of-order reassembly. Unknown to subflows, their

individual queues form part of a larger multipath-related

reassembly data structure, shown in Figure 2.

All incoming segments on a subflow are ap-

pended to that subflow’s reassembly queue (the

t_segq member of the TCP control block defined

in netinet/tcp_var.h) in subflow sequence order.

When the head of a subflow’s queue is in data sequence

order (segment’s data level sequence number is the

data-level recieve next, ds_rcv_nxt), then data-level

reassembly is triggered. In the current implementation,

data-level reassembly is triggered from a kernel thread

context. A future optimisation will see reassembly de-

ferred to a userspace thread context (specifically that of

the reading process).

Data-level reassembly involves traversing each

subflow segment list and appending in-sequence

(data-level) segments to the socket receive buffer.

This occurs in the mp_do_reass() function of

netinet/tcp_reass.c. During this time a write

lock is used to exclude subflows from manipulating

their reassembly queues.

Subflow and data-level reassembly have been split this

way to reduce lock contention between subflows and

the multipath layer. It also allows data-reassembly to be

deferred to the application’s thread context during a read

on the socket, rather than performed by a kernel fast-path

thread.

At completion of data-level reassembly, a data-level

ACK is scheduled on whichever subflow next sends a

regular TCP ACK packet.

D. Send and Receive Socket Buffers
In FreeBSD’s implementation of standard TCP, seg-

ments are sent and received over a single (address,port)

tuple, and socket buffers exist exclusively for each TCP

session. MPTCP sessions have 1+n (where n denotes

CAIA Technical Report 140822A August 2014 page 4 of 14

snd_nxt snd_una

SEND BUFFER

TCP Control Block

Figure 3. Standard TCP Send Buffer. The lined area represents sent

bytes that have been acknowledged by the receiver.

additional addresses) subflows that must access the same

send and receive buffers. The following sections describe

the changes to the socket buffers and the addition of the

ds_map.
1) The ds_map Struct: The ds_map struct (shown

in Listing 2), is defined in netinet/tcp_var.h,
and is used for both send-related and receive-related

functions. Maps are stored in the subflow con-

trol block lists t_txmaps (send buffer maps) and

t_rxmaps (received maps) respectively. A data-level

list, mp_rxtmitmaps, is used to queue ds_maps that

require retransmission after a data-level timeout. The

struct itself contains variables for tracking sequence

numbers, memory locations and status. It also includes

several list entries (e.g mp_ds_map_next) as an in-

stantiated map may belong to different (potentially mul-

tiple) lists, depending on the purpose.

On the send side, ds_maps track accounting in-

formation (bytes sent, acked) related to DSN maps

advertised to the peer, and are used to access data in the

socket send buffer (via for example ds_map_offset,
mbuf_offset). By mediating socket buffer access

through ds_maps in this way, rather than accessing the

send buffer directly, lock contention can be reduced

when sending data using multiple subflows. On the

receive side, ds_maps are created via incoming DSS

options and maintain mappings between subflow and

sequence spaces. .

2) Socket Send Buffer: Figure 3 illustrates how in

standard TCP, each session has exclusive access to its

own send buffer. The variables snd_nxt and snd_una
are used respectively to track which bytes in the send

buffer are to be sent next, and which bytes were the last

acknowledged by the receiver.

Figure 4 illustrates how in the multipath kernel, data

from the sending application is still stored in a single

SF1-MAP SF2-MAP UNMAPPED

sf_una

Subflow 1
Control Block

sf_snd_nxtsf_una

Subflow 2
Control Block

sf_snd_nxt

SHARED SEND BUFFER

ds_map ds_map

Figure 4. A MPTCP send buffer contains bytes that must be mapped

to multiple TCP-subflows. Each subflow is allocated one or more

ds_maps (DSS-MAP) that define these mappings.

send socket buffer. However access to this buffer is

moderated by the packet scheduler in mp_get_map(),
implemented in netinet/mptcp_subr.c (see Sec-

tion III-F)

The packet scheduler is run when a subflow attempts

to send data via tcp_output() without owning a

ds_map that references unsent data. When invoked, the

scheduler must decide whether the subflow should be

allocated any data. If granted, allocations are returned as

a ds_map that contains an offset into the send buffer and

the length of data to be sent. Otherwise, a NULL map

is returned, and the send buffer appears ’empty’ to the

subflow. The ds_map effectively acts as a unique socket

buffer from the perspective of the subflow (i.e. subflows

are not aware of what other subflows are sending). The

scheduler is not invoked again until the allocated map

has been completely sent.

This scheme allows subflows to make forward

progress with variable overheads that depend on how

frequently the scheduler is invoked i.e. larger maps

reduce overheads.

As a result of sharing the underlying send socket

buffer via ds_maps to avoid data copies, releasing ac-

knowledged bytes becomes more complex. Firstly, data-

level ACKs rather than subflow-level ACKs mark the

multipath-level stream bytes which have safely arrived,

and therefore control the advancement of ds_snd_una.

Secondly, ds_maps can potentially overlap any portion

of their socket buffer mapping with each other (e.g. data-

level retransmit), and therefore the underlying socket

buffer bytes (encapsulated in chained mbufs) can only

be dropped when acknowledged at the data level and all

maps which reference the bytes have been deleted.

To potentially defer the dropping of bytes from the

socket buffer without adversely impacting application

CAIA Technical Report 140822A August 2014 page 5 of 14

Listing 2 ds_map struct

struct ds_map {
TAILQ_ENTRY(ds_map) sf_ds_map_next;
TAILQ_ENTRY(ds_map) mp_ds_map_next;
TAILQ_ENTRY(ds_map) mp_dup_map_next;
TAILQ_ENTRY(ds_map) rxmit_map_next;
uint64_t ds_map_start; /* starting DSN of mapping */
uint32_t ds_map_len; /* length of data sequence mapping */
uint32_t ds_map_offset; /* bytes sent from mapping */
tcp_seq sf_seq_start; /* starting tcp seq num of mapping */
uint64_t map_una; /* bytes sent but unacknowledged in map */
uint16_t ds_map_csum; /* csum of dss psuedo-header & mapping data */
struct mbuf* mbuf_start; /* mbuf in which this mappings starts */
u_int mbuf_offset; /* offset into mbuf where data starts */
uint16_t flags; /* status flags */

};
...
/* Status flags for ds_maps */
#define MAPF_IS_SENT 0x0001 /* Sent all data from map */
#define MAPF_IS_ACKED 0x0002 /* All data in map is acknowledged */
#define MAPF_IS_DUP 0x0004 /* Duplicate, already acked at ds-level */
#define MAPF_IS_REXMIT 0x0008 /* Is a rexmit of a previously sent map */

throughput requires that socket buffer occupancy be

accounted for logically rather than actually. To this end,

the socket buffer variable sb_cc of an MPTCP socket

send buffer refers to the logical number of bytes held

in the buffer without data-level acknowledgment, and a

new variable sb_actual has been introduced to track

the actual number of bytes in the buffer.

3) Socket Receive Buffer: In pre-MPTCP FreeBSD,

in-order segments were copied directly into the receive

buffer, at which time the process was alerted that data

was available to read. The remaining space in the receive

buffer was used to advertise a receive window to the

sender.

As described in Section III-C, each subflow now holds

all received segments in a segment list, even if they are

in subflow sequence order. The segment lists are then

linked by their list heads to create a larger data-level

reassembly data structure. When a segment arrives that is

in data sequence order, data-level reassembly is triggered

and segments are copied into the receive buffer.

We plan to integrate the multipath reassembly struc-

ture into the socket receive buffer in a future release.

Coupled together with deferred reassembly, an applica-

tion’s thread context would be responsible for perform-

ing data-level reassembly on the multi-subflow aware

Figure 5. A future release will integrate the multipath reassembly

structure into the socket receive buffer. Segments will be read directly

from the multi-subflow aware buffer as data-level reassembly occurs.

buffer after being woken up by a subflow that received

the next expected data-level segment (see Figure 5).

E. Receiving DSS Maps and Acknowledgments
As mentioned in Section III-D1, the ds_map struct is

used within the send and receive paths as well as packet

scheduling. The struct allows the receiver to track incom-

CAIA Technical Report 140822A August 2014 page 6 of 14

ing data-maps, and the sender to track acknowledgement

of data at subflow- and data- levels. The following

subsections detail the primary uses of ds_maps in the

send and receive paths.

1) Receiving data mappings: New ds_maps are cre-

ated when a packet that contains a MPTCP DSS (Data-

Sequence Signal) option that specifies a DSN-map (Data-

Sequence Number) is received. Maps are stored within

the subflow-level list t_rxdsmaps and are used to

derive the DSN of an incoming TCP segment (in cases

where a mapping spans multiple segments, the DSN

will not be included with the transmitted packet). The

processing of the DSS option (Figure 6), is summarised

as follows:

1) If an incoming DSN-map is found during option

parsing, it is compared to an existing list of

mappings in t_rxdmaps. While looking for a

matching map, any fully-acknowledged maps are

discarded.

2) If the incoming data is found to be covered by

an existing ds_map entry, the incoming DSN-map

is disregarded and the existing map is selected. If

the mapping represents new data, a new ds_map
struct is allocated and inserted into the received

map list.

3) The returned map - either newly allocated or

existing - is used to calculate the appropriate DSN

for the segment. The DSN is then “tagged” (see

below) onto the mbuf header of the incoming

segment.

The mbuf_tags10 framework is used to attach DSN

metadata to the incoming segment. Tags are attached

to the mbuf header of the incoming packet, and can

hold additional metadata (e.g. VLAN tags, firewall filter

tags). A structure, dsn_tag (Listing 3) is defined in

netinet/mptcp_var.h to hold the mbuf tag and

the 64-bit DSN.

A dsn_tag is created for each packet, regardless of

whether a MPTCP connection is active. For standard

TCP connections this means the TCP sequence number

of the packet is placed into the dsn_tag. Listing 4 shows

use of the tags for active MPTCP connections.

Once a DSN has been associated with a segment, stan-

dard input processing continues. The DSN is eventually

read during segment reassembly.

2) ACK processing and DS_Maps: The MPTCP layer

separates subflow-level sequence space and the socket

send buffers. As the same data may be mapped to

10

http://www.freebsd.org/cgi/man.cgi?query=mbuf_tags

Listing 3 dsn_tag struct: This structure is used to attach

a calculated DSN to an incoming packet.

/* mbuf tag defines */
#define PACKET_TAG_DSN 10
#define PACKET_COOKIE_MPTCP 34216894
#define DSN_LEN 8

struct dsn_tag {
struct m_tag tag;
uint64_t dsn;

};

Listing 4 Prepending a dsn_tag to a received TCP

packet. The tag is used later during reassembly to

order packets from multiple subflows. Unrelated code

ommitted for brevity.

/* Initialise the mtag and containing
dsn_tag struct */

struct dsn_tag *dtag = (struct dsn_tag *)
m_tag_alloc(PACKET_COOKIE_MPTCP,

PACKET_TAG_DSN, DSN_LEN, M_NOWAIT);
struct m_tag *mtag = &dtag->tag;
...
/* update mbuf tag with current data seq

num */
dtag->dsn = map->ds_map_start +

(th->th_seq - map->sf_seq_start);
...
/* And prepend the mtag to mbuf, to be

checked in reass */
m_tag_prepend(m, mtag);

multiple subflows, data cannot be freed from the send

buffer until all references to it have been removed. A

single ds_map is stored in both subflow-level and data-

level transmit lists, and must be acknowledged at both

levels before the data can be cleared from the send buffer.

Although subflow-level acknowledgment does not im-

mediately result in the freeing of send buffer data, the

data is considered ‘delivered’ from the perspective of the

subflow. Subflow-level processing of ACKs is shown in

Figure 7.

On receiving an ACK, the amount of data acknowl-

edged is calculated and the list of transmitted maps,

t_txdmaps, is traversed. Maps covered by the ac-

knowledgement are marked as being ‘acked’ and are

dropped from the transmitted maps list. At this point

CAIA Technical Report 140822A August 2014 page 7 of 14

Store preceding
map in variable

Yes

No

Yes

No

Receive-next past
end of map?

Have assigned
Preceding map?

Allocate map, insert
Into maps list.

Yes

No

Restore 32-bit DSN
to 64-bit

Iterate received maps list

Remove map and
free

Use existing map
for processing, signal

duplicate found

Yes

No

Data covered by
existing map?

Covers new data?

Reached end of maps?

Is duplicate map
assigned?

Yes

No

Is map NULL? Attempt to locate map
 for TCP seq in header

Yes

No

In tcp_do_segment

DSS Map on
packet?

Yes

No

Is map NULL,
tseq not
Receive next?

Map possibly lost.
Buffer segment, return

No

Yes

Calculate DSN based on
Map and TCP Seq number

Tag segment mbuf with
DSN

Calculate DSN based on
Map and TCP Seq number

Continue with input
processing

Figure 6. Receiver processing of DSN Maps. A list of ds_maps is used to track incoming packets and tag the mbuf with an appropriate

DSN (mapping subflow-level to data-level).

a reference to dropped maps still exists within the data-

level transmit list.

If any maps were completed, the

mp_deferred_drop() function is called (detailed

in Section III-E3 below). At this point the data has

been successfully delivered, from the perspective of

the subflow. It is the MPTCP layers responsibility

to facilitate retransmission of data if it is not

ultimately acknowledged at the data-level. Data-

level acknowledgements (DACKs) are also processed at

this time, if present.

3) Deferred drop from send buffer:
The function mp_deferred_drop() in

netinet/mptcp_subr.c handles the final

accounting of sent data and allows acknowledged

data to be dropped from the send buffer. The ‘deferred’

aspect refers to the fact that the time at which segments

are acknowledged is no longer (necessarily) the time

at which that data is freed from the send buffer. The

process is shown in Figure 8, and broadly described

below:

1) Iterate through transmitted maps and store a refer-

ence to maps that have been fully acknowledged.

The loop is terminated at the end of the list, or if

a map is encountered that overlaps the acknowl-

edged region or shares an mbuf with another map

that has not yet been acknowledged.

2) If there are bytes to be dropped, the corresponding

maps are freed and the bytes are dropped from the

socket send buffer. The process is woken up at this

time to write new data. If there are no bytes to

drop, all outstanding data has been acknowledged

CAIA Technical Report 140822A August 2014 page 8 of 14

In tcp_ack_map

Get last map in
transmitted maps list

NoYes

Do deferred drop

Map NULL?

Process DACK

Set map NULL

Remove from
transmitted maps list

Mark map as 'acked'
(subflow level)

Completed
a map?

Indicate that a map
was completed

Data ACK
present?

Acked > map length?

Map NULL?

NoYes
No

Yes

No
Yes

NoYes

Figure 7. Transmitted maps must be acknowledged at the subflow- and data-levels. However, once acknowledged at the subflow level, the

subflow considers the data as being ’delivered’.

and the send buffer is empty, the process is woken

so that it may write new data.

F. Packet Scheduling
The packet scheduler is responsible for determining

which subflows are able to send data from the socket

send buffer, and how much data they can send. A basic

packet scheduler is implemented in the v0.4 patch,

and can be found within the mp_find_dsmap()
function of netinet/mptcp_subr.c and

tcp_usr_send() in netinet/tcp_usrreq.c.
The current scheduler implementation controls two

common pathways through which data segments can be

requested for output - calls to tcp_usr_send() from

the socket, and direct calls to tcp_output() from

within the TCP stack (for example from tcp_input()
on receipt of an ACK). The packet scheduler will be

modularised in future updates, providing scope for more

complex scheduling schemes.

Figure 9 shows these data transmission pathways,

and the points at which scheduling decisions are made.

To control which subflows are able to send data at a

particular time the scheduler uses two subflow flags:

SFF_DATA_WAIT and SFF_SEND_WAIT.

1) SFF_SEND_WAIT: On calls to

tcp_usr_send(), the list of active

subflows is traversed. The first subflow with

SFF_SEND_WAIT set is selected as the subflow

to send data on. The flag is cleared before calling

tcp_output().
2) SFF_DATA_WAIT: If a subflow is not allocated

a map during a call to tcp_output(), the

SFF_DATA_WAIT flag is set. An asynchronous

task, mp_datascheduler_task_handler is

enqueued when the number of subflows with this

flag set is greater than zero. When run, the task will

call tcp_output() with the waiting subflow.

CAIA Technical Report 140822A August 2014 page 9 of 14

mp_deferred_drop

Map NULL?

Process D-ACKProcess ACK

Iterate DS-level
sent maps list

Insert map into
to-drop list

Map overlaps ds_una,
uncompleted map,

or is a duplicate

Mark map mbuf
as 'cannotdrop'

Set number of bytes
to drop as zero.

Wake up process
to write new data

Assign first map
from to-drop list

Locate mbuf that
map ends in

Adjust map to fit
Within acked mbuf

Drop and free
map

Drop mbufs from
socket, wake

process

Acked, below ds_una
and not a duplicate?

Map start > ds_una?

Data to drop?

All acked,
buffer empty?

Map NULL?

Can mbuf be
freed?

map NULL?

NoYes

No
Yes

No
Yes

No
Yes

NoYes

Set map to
next_map

No

Yes

NoYes

Yes

Yes

Figure 8. Deferred removal of data from the send buffer. Data bytes are dropped from the send buffer only when acknowledged at the

data-level. It is considered deferred as the bytes are not necessarily dropped when acknowledged at the subflow level.

Subflow selection via SEND_WAIT: Figure 10 il-

lustrates the use of the SFF_SEND_WAIT flag.

When a process wants to send new data, it may

use the sosend() Socket I/O function, which re-

sults in a call to the tcp_usr_send() func-

tion in netinet/tcp_usrreq.c. On entering

tcp_usr_send() the default subflow protocol block

(‘master subflow’) is assigned.

At this point the list of subflows (if greater than one) is

traversed, checking subflow flags for SFF_SEND_WAIT.
If not set, the flag is set before iterating to the next

subflow. If set, the assigned subflow is switched, the

loop terminated, and the flag is cleared before calling

tcp_output(). If no subflows are found to be waiting

for data, the ‘master subflow’ is used for transmission.

Subflow selection via DATA_WAIT: The

SFF_DATA_WAIT flag is used in conjunction with

an asynchronous task to divide ds_map allocation

between the active subflows (Figure 11). When in

tcp_output(), a subflow will call find_dsmap()
to obtain a mapping of the send buffer. The process

of allocating a map is shown in Figure 12. The

current implementation restricts map sizes to 1420

bytes (limiting each map to cover one packet). In

cases where no map was returned, the subflow flag is

marked SFF_DATA_WAIT, and the count of ‘waiting’

subflows is increased. If a map was returned, then

the SFF_DATA_WAIT flag is cleared (if set) and the

‘waiting’ count is decremented.

As map sizes are currently limited to a single-packet

size, it is likely that on return from mp_get_map()

CAIA Technical Report 140822A August 2014 page 10 of 14

Process writes data
(PRU_SEND,

TCP User Send)

TCP Output

TCP Input
(Process ACK)

Find DS Map

Data Scheduler Task
“Round-robin”

scheduler

Receive Packet

TCP retransmit timer/
Data retransmit task

Retransmit Timeouts

Figure 9. Common pathways to tcp_output(), the function through which data segments are sent. Packet scheduling components are shown

in orange. Possible entry paths are via the socket (PRU_SEND), on receipt of an ACK or through a retransmit timer. The data scheduler

task asynchronously calls into tcp_output() when there are subflows waiting to send data. Find DS Map is allocates ds_maps to a subflow,

and can enqueue the data scheduler task.

Assign 'master'
subflow

Iterate subflow list

Set
SFF_SEND_WAIT

on subflow

Select this
subflow

tcp_output

Is SFF_SEND_WAIT set? Yes

No

Write new data,
enter tcp_usr_send

Send using
'master' subflow

End of list?

Yes

No

Figure 10. Round-robin scheduling. When a process writes new data

to be sent, the scheduler selects a subflow on which to send data.

mp_get_map

Duplicate map
to retransmit

Insert into subflow
transmit list

No

No

Return map
(or NULL)

Yes

Yes

Insert duplicate
into subflow
transmit list

Remove map from
Data-level

retransmit list

Create a new
map

Any maps waiting for
data-level retransmit?

Any bytes in
send buffer?

Figure 12. Allocating a ds_map in mp_get_map(). First check for

maps that require retransmission. Otherwise, if unsent bytes are in

the send buffer, a new map is allocated, inserted into the transmission

list and returned.

CAIA Technical Report 140822A August 2014 page 11 of 14

Enter
find_dsmap

Get new map
(mp_get_map)

Set
SFF_DATA_WAIT

on subflow

Insert map into
transmit list

Decrement
subflow wait count

Map returned?

YesNo

Wait count > 0?

Return map
(or NULL)

Is SFF_DATA_WAIT
set?

Increment
subflow wait count

Clear
SFF_DATA_WAIT

on subflow

Enqueue data
schedulertask

Yes

Yes
No

No

Data Scheduler

Data scheduler task
handler

Iterate subflow list

Call tcp_output
on subflow

SFF_DATA_WAIT set,
not in retransmit?

Yes
No

End of
list?

Yes

No

Figure 11. DATA_WAIT subflow selection. Enqueing the data scheduler (left) and the data scheduler (right). Rather than send data segments

back-to-back on the same subflow, the scheduler spreads data across the available subflows.

unmapped data remains in the send buffer. Therefore

a check is made for any ‘waiting’ subflows that might

be used to send data, in which case a data scheduler

asynchronous task is enqueued. When executed, the data

scheduler task will call tcp_output() on the first

subflow with SFF_DATA_WAIT set.

G. Data-level retransmission
Data-level retransmission of segments has been in-

cluded in the v0.4 patch (Figure 13). The current imple-

mentation triggers data-level retransmissions based on a

count of subflow-level retransmits. In future updates the

retransmission strategy will be modularised.

The chart on the left of Figure 13 shows the steps

leading to data-level retransmit. Each subflow maintains

a retransmission timer that is started on packet trans-

mission and stopped on acknowledgement. If left to

expire (called a retransmit timeout, or RTO), the function

tcp_timer_rexmt() in netinet/tcp_timer.c
is called, and the subflow will attempt to retransmit from

the last bytes acknowledged. The length of the timeout

is based in part on the RTT of the path. A count is kept

each time an RTO occurs, up to TCP_MAXRXTSHIFT
(defined as 12 in FreeBSD), at which point the connec-

tion is dropped with a RST.

We define a threshold of: TCP_MAXRXTSHIFT /
4 (or 12/4, giving 3 timeouts) as the point at which

data-level retransmission will occur. A check has been

placed into tcp_timer_rexmt() that tests whether

the count of RTOs has met this threshold. If met, a

reference to each ds_map that has not been acknowl-

edged at the data-level is placed into mp_rxtmitmaps
(a list of maps that require data-level re-injection).

Finally, an asynchronous task is enqueued (Figure

13, right) that, when executed, locates the first sub-

flow that is not in subflow-level retransmit and calls

tcp_output(). The packet scheduler will ensure

that ds_maps in mp_rxtmitmaps are sent before

any existing ds_maps in the subflow transmit list

(t_txdsmaps).

CAIA Technical Report 140822A August 2014 page 12 of 14

TCP retransmit timer
fired

Find unacknowledged
maps sent by subflow

No

Continue TCP
retransmit processing

Yes

Enqueue maps in
data-level retransmit list

Enqueue data retransmit
task

Data-level retransmit
handler

Meet data-retransmit

threshold?

Enter data
retransmit handler

Iterate subflow
list

Call tcp_output
on subflow

Is subflow in

TCP retransmit?Yes

No

End of

list?

Yes
No

Figure 13. Data-level retransmit logic (left) and task handler (right). Retransmission is keyed off the count of TCP (subflow-level) retransmit

timeouts.

It should be noted that subflows retain standard TCP

retransmit behaviour independent of data-level retrans-

mits. Subflows will therefore continue to attempt re-

transmission until the maximum retransmit count is met.

On occasions where a subflow recovers from retransmit

timeout after data-level retransmission, the receiver will

acknowledge the data at the subflow level and discard

the duplicate segments.

H. Multipath Session Management
The current implementation contains basic mecha-

nisms for joining subflows and subflow/connection ter-

mination, detailed below. Path management will be ex-

panded and modulularised in future updates.

1) Adding subflows: An address can be manually

specified for use in a connection between a multi-

homed host and single-homed host. This is done using

the sysctl

11

utility. Added addresses are available to all

MPTCP connections on the host, and will be advertised

by all MPTCP connections that reach the established

stage.

Subflow joining behaviour is static, and a host

will attempt to send an MP_JOIN to any addresses

11

sysctl net.inet.tcp.mptcp.mp_addresses

that are received via the ADD_ADDR option

12

.

The asynchronous tasks mp_join_task_handler
and mp_sf_alloc_task_handler currently pro-

vide this functionality. Both will be integrated with a

Path Manager module in a future release.

2) Removing Subflows/Connection Close: The imple-

mentation supports removal of subflows from an active

MPTCP connection only via TCP reset (RST) due to

excessive retransmit timeouts. In these cases, a sub-

flow that has failed will proceed through the standard

TCP timeout procedure (as implemented in FreeBSD-

11) before closing. Any remaining active subflows will

continue to send and receive data. There is currently

no other means by which to actively terminate a single

subflow on a connection.

On application close of the socket all subflows are

shut down simultaneously. The last subflow to be closed

will cause the MPCB to be discarded. Subflows on the

same host are able to take separate paths (active close,

passive close) through the TCP shutdown states.

3) Session Termination: Not documented in this re-

port are modifications to the TCP shutdown code paths.

12

One caveat exists: If a host is the active opener (client) in the

connection and has already advertised an address, it will not attempt

to join any addresses that it receives via advertisement.

CAIA Technical Report 140822A August 2014 page 13 of 14

Currently the code has been extended in-place with

additional checks to ensure that socket is not marked

as closed while at least one subflow is still active. These

modifications should however be considered temporary

and will be replaced with a cleaner solution in a future

update.

IV. CONCLUSIONS AND FUTURE WORK

This report describes FreeBSD-MPTCP v0.4, a modi-

fication of the FreeBSD kernel enabling Multipath TCP

[1] support. We outlined the motivation behind and

potential benefits of using Multipath TCP, and discussed

key architectural elements of our design.

We expect to update and improve our MPTCP im-

plementation in the future, and documentation will be

updated as this occurs. We also plan on releasing a

detailed design document that will provide more in-

depth detail about the implementation. Code profiling

and analysis of on-wire performance are also planned.

Our aim is to use this implementation as a basis

for further research into MPTCP congestion control, as

noted in Section II-D3.

ACKNOWLEDGEMENTS

This project has been made possible in part by a gift

from the Cisco University Research Program Fund, a

corporate advised fund of Silicon Valley Community

Foundation.

REFERENCES

[1] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP

Extensions for Multipath Operation with Multiple Addresses,”

RFC 6824, Internet Engineering Task Force, 12 January 2013.

[Online]. Available: http://tools.ietf.org/html/rfc6824

[2] G. Armitage and L. Stewart. (2013) Newtcp project website.

[Online]. Available: http://caia.swin.edu.au/urp/newtcp/

[3] G. Armitage and N. Williams. (2013) Multipath tcp

project website. [Online]. Available: http://caia.swin.edu.au/

urp/newtcp/mptcp/

[4] O. Bonaventure. (2013) Multipath tcp linux kernel implemen-

tation. [Online]. Available: http://multipath-tcp.org/pmwiki.php

[5] D. Wischik, C. Raiciu, A. Greenhalgh and M. Handley, “De-

sign, Implementation and Evaluation of Congestion Control for

Multipath TCP,” in USENIX Symposium of Networked Systems
Design and Implementation (NSDI’11), Boston, MA, 2012.

[6] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer,

T. Taylor, I. Rytina, M. Kalla, L. Zhang, V. Paxson,

“Stream Control Transmission Protocol,” RFC 2960, Internet

Engineering Task Force, October 2000. [Online]. Available:

http://tools.ietf.org/html/rfc2960

[7] P. Amer, M. Becke, T. Dreibholz, N. Ekiz, J.

Iyengar, P. Natarajan, R. Stewart, M. Tuexen, “Load

sharing for the stream control transmission protocol

(SCTP),” Internet Draft, Internet Engineering Task Force,

September 2012. [Online]. Available: http://tools.ietf.org/html/

html/draft-tuexen-tsvwg-sctp-multipath-05

[8] A. Ford, C. Raiciu, M. Handley, S. Barré, and J.Iyengar,

“Architectural Guidelines for Multipath TCP Development,”

RFC 6182, Internet Engineering Task Force, March 2011.

[Online]. Available: http://tools.ietf.org/html/rfc6182

[9] C. Raiciu, C. Paasch, S. Barré, A. Ford, M. Honda, F. Duchène,

O. Bonaventure and M. Handley, “How Hard Can It Be?

Designing and Implementing a Deployable Multipath TCP,”

in USENIX Symposium of Networked Systems Design and
Implementation (NSDI’12), San Jose, California, 2012.

[10] S. Barré, C. Paasch, and O. Bonaventure, “Multipath tcp: From

theory to practice,” in IFIP Networking, Valencia, May 2011.

[11] C. Raiciu, S. Barré, C. Pluntke, A. Greenhalgh, D. Wischik, and

M. Handley, “Improving datacenter performance and robustness

with multipath tcp,” in SIGCOMM 2011, Toronto, Canada,
August 2011.

[12] C. Raiciu, M. Handley, and D. Wischik, “Coupled congestion

control for multipath transport protocols,” RFC 6356, Internet

Engineering Task Force, October 2011. [Online]. Available:

http://tools.ietf.org/html/rfc6356

[13] G. Wright, W. Stevens, TCP/IP Illustrated, Volume 2, The
Implementation. Addison Wesley, 2004.

[14] J. Postel, “Transmission Control Protocol,” RFC 793, Internet

Engineering Task Force, September 1981. [Online]. Available:

http://tools.ietf.org/html/rfc793

CAIA Technical Report 140822A August 2014 page 14 of 14

References

[1] J. Postel, “Rfc 793: Transmission control protocol, september 1981,” Status: Standard, vol. 88,

2003. (document), 1, 2.1.2, 2.1.2

[2] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP Extensions for Multipath

Operation with Multiple Addresses,” RFC 6824, Internet Engineering Task Force, Jan. 2013.

[Online]. Available: http://www.ietf.org/rfc/rfc6824.txt (document), 2.1.2, 3.3.3, 4.2, 4.2.1, 5,

5.3, 7.2.5

[3] “Internet domain survey, january, 2016,” https://ftp.isc.org/www/survey/reports/current/, ac-

cessed: 2016-10-23. 1

[4] D. Evans, “The internet of things: How the next evolution of the internet is changing every-

thing,” Tech. Rep., 2011. 1

[5] V. Cerf, Y. Dalal, and C. Sunshine, “Specification of internet transmission control program,”

Tech. Rep., 1974. 1

[6] J. R. Iyengar, P. D. Amer, and R. Stewart, “Concurrent multipath transfer using sctp

multihoming over independent end-to-end paths,” IEEE/ACM Trans. Netw., vol. 14, no. 5,

pp. 951–964, Oct. 2006. [Online]. Available: http://dx.doi.org/10.1109/TNET.2006.882843 1,

3.3.3, 4.1.1, 4.1.3

[7] “The Point-to-Point Protocol (PPP),” RFC 1661, Internet Engineering Task Force, Jul. 1994.

[Online]. Available: http://www.ietf.org/rfc/rfc1661.txt 1, 3.3.1

[8] O. Mehani, R. Holz, S. Ferlin, and R. Boreli, “An early look at multipath tcp deployment in

the wild,” in Proceedings of the 6th International Workshop on Hot Topics in Planet-Scale

Measurement. ACM, 2015, pp. 7–12. 1, 3.4, 4.3

158

http://www.ietf.org/rfc/rfc6824.txt
https://ftp.isc.org/www/survey/reports/current/
http://dx.doi.org/10.1109/TNET.2006.882843
http://www.ietf.org/rfc/rfc1661.txt

REFERENCES 159

[9] O. Bonaventure, “Commercial usage of multipath tcp,” http://blog.multipath-tcp.org/blog/

html/2015/12/25/commercial usage of multipath tcp.html, Universit

˜

A

c� catholique de Lou-

vain, accessed: 2016-10-20. 1

[10] C. Raiciu, M. Handley, and D. Wischik, “Coupled Congestion Control for Multipath Transport

Protocols,” RFC 6356, Internet Engineering Task Force, Oct. 2011. [Online]. Available:

http://www.ietf.org/rfc/rfc6356.txt 1, 4.2, 4.2, 4.2.1, 4.2.2

[11] N. Williams, “Source repository: caia-mptcp-freebsd,” https://bitbucket.org/nw-swin/

caia-mptcp-freebsd, accessed: 2016-10-04. 1, 8, 8.1

[12] “Gnu general public license,” https://www.gnu.org/licenses/gpl-3.0.en.html, accessed: 2016-

10-04. 1

[13] “Requirements for Internet hosts - Communication Layers,” RFC 1122, Internet Engineering

Task Force, Oct. 1989. [Online]. Available: http://www.ietf.org/rfc/rfc1122.txt 2.1, 2.1.1

[14] S. Floyd and M. Allman, “Comments on the Usefullness of Simple Best-Effort

Traffic,” RFC 5290, Internet Engineering Task Force, Jul. 2008. [Online]. Available:

http://www.ietf.org/rfc/rfc5290.txt 2.1, 2.1.2

[15] “Internet Engineering Task Force,” http://www.ietf.org, Internet Engineering Task Force, Mar.

2016. [Online]. Available: http://www.ietf.org 2.1.1

[16] R. Fielding and J. Reschke, “Hypertext transfer protocol (http/1.1): Message syntax and rout-

ing,” 2014. 2.1.1

[17] P. V. Mockapetris, “Domain names-concepts and facilities,” 1987. 2.1.1

[18] M. Zhang, M. Dusi, W. John, and C. Chen, “Analysis of udp traffic usage on internet backbone

links,” in Proceedings of the 2009 Ninth Annual International Symposium on Applications

and the Internet, ser. SAINT ’09. Washington, DC, USA: IEEE Computer Society, 2009, pp.

280–281. [Online]. Available: http://dx.doi.org/10.1109/SAINT.2009.65 2.1.1, 2.2.2

[19] “Internet Protocol,” RFC 791, Internet Engineering Task Force, Sep. 1981. [Online].

Available: http://www.ietf.org/rfc/rfc791.txt 2.1.1, 2.2.3

http://blog.multipath-tcp.org/blog/html/2015/12/25/commercial_usage_of_multipath_tcp.html
http://blog.multipath-tcp.org/blog/html/2015/12/25/commercial_usage_of_multipath_tcp.html
http://www.ietf.org/rfc/rfc6356.txt
https://bitbucket.org/nw-swin/caia-mptcp-freebsd
https://bitbucket.org/nw-swin/caia-mptcp-freebsd
https://www.gnu.org/licenses/gpl-3.0.en.html
http://www.ietf.org/rfc/rfc1122.txt
http://www.ietf.org/rfc/rfc5290.txt
http://www.ietf.org
http://www.ietf.org
http://dx.doi.org/10.1109/SAINT.2009.65
http://www.ietf.org/rfc/rfc791.txt

160 REFERENCES

[20] “Cisco visual networking index: Forecast and methodology, 2014–2019,” http://www.

cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/

white paper c11-481360.pdf, Tech. Rep., may 2015. 2.1.2

[21] “Service Name and Transport Protocol Port Number Registry,” http://www.iana.org/

assignments/service-names-port-numbers/service-names-port-numbers.xhtml, Internet As-

signed Numbers Authority, Mar. 2016. [Online]. Available: http://www.iana.org/assignments/

service-names-port-numbers/service-names-port-numbers.xhtml 2.1.2

[22] M. Allman, V. Paxson, and E. Blanton, “TCP Congestion Control,” RFC 5681, Internet

Engineering Task Force, Sep. 2009. [Online]. Available: http://www.ietf.org/rfc/rfc5681.txt

2.1.2, 4.2.2

[23] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi, A. Vahdat, Y. Wang,

D. Wetherall, and D. Zats, “Timely: Rtt-based congestion control for the datacenter,”

SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, pp. 537–550, Aug. 2015. [Online].

Available: http://doi.acm.org/10.1145/2829988.2787510 2.1.2

[24] L. S. Brakmo and L. L. Peterson, “Tcp vegas: End to end congestion avoidance on a global

internet,” IEEE Journal on selected Areas in communications, vol. 13, pp. 1465–1480, 1995.

2.1.2

[25] K. Ramakrishnan, S. Floyd, and D. Black, “The Addition of Explicit Congestion Notification

(ECN) to IP,” RFC 3168, Internet Engineering Task Force, Sep. 2001. [Online]. Available:

http://www.ietf.org/rfc/rfc3168.txt 2.1.2

[26] B. Trammell, M. K¨uhlewind, D. Boppart, I. Learmonth, G. Fairhurst, and R. Scheffenegger,

“Enabling internet-wide deployment of explicit congestion notification,” in International Con-

ference on Passive and Active Network Measurement. Springer, 2015, pp. 193–205. 2.1.2

[27] D. Borman, B. Braden, and V. Jacobson, “TCP Extensions for High Performance,”

RFC 7323, Internet Engineering Task Force, Sep. 2014. [Online]. Available: http:

//www.ietf.org/rfc/rfc7323.txt 2.1.2

[28] ——, “TCP Selective Acknowledgment Options,” RFC 2018, Internet Engineering Task

Force, Oct. 1996. [Online]. Available: http://www.ietf.org/rfc/rfc2018.txt 2.1.2

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.ietf.org/rfc/rfc5681.txt
http://doi.acm.org/10.1145/2829988.2787510
http://www.ietf.org/rfc/rfc3168.txt
http://www.ietf.org/rfc/rfc7323.txt
http://www.ietf.org/rfc/rfc7323.txt
http://www.ietf.org/rfc/rfc2018.txt

REFERENCES 161

[29] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and H. Tokuda, “Is it still

possible to extend tcp?” in Proceedings of the 2011 ACM SIGCOMM Conference on Internet

Measurement Conference, ser. IMC ’11. New York, NY, USA: ACM, 2011, pp. 181–194.

[Online]. Available: http://doi.acm.org/10.1145/2068816.2068834 2.1.3, 5.1

[30] B. Carpenter and S. Brim, “Middleboxes: Taxonomy and Issues,” RFC 3234, Internet

Engineering Task Force, 2002. [Online]. Available: http://www.ietf.org/rfc/rfc3234.txt 2.1.3

[31] J. Sherry and S. Ratnasamy, “A survey of enterprise middlebox deployments,” EECS

Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2012-24, Feb 2012.

[Online]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-24.html

2.1.3

[32] B. Mukherjee, L. T. Heberlein, and K. N. Levitt, “Network intrusion detection,” IEEE Network,

1994. 2.1.3

[33] M. Handley, V. Paxson, and C. Kreibich, “Network intrusion detection: Evasion, traffic

normalization, and end-to-end protocol semantics,” in Proceedings of the 10th Conference on

USENIX Security Symposium - Volume 10, ser. SSYM’01. Berkeley, CA, USA: USENIX

Association, 2001, pp. 9–9. [Online]. Available: http://dl.acm.org/citation.cfm?id=1267612.

1267621 2.1.3

[34] R. Fonseca, G. M. Porter, R. H. Katz, S. Shenker, and I. Stoica, “Ip options are not an

option,” EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-

2005-24, Dec 2005. [Online]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2005/

EECS-2005-24.html 2.1.3

[35] J. Iyengar, I. Swett, R. Hamilton, and A. Wilk, “QUIC: A UDP-Based Secure

and Reliable Transport for HTTP/2,” Internet Engineering Task Force, Internet-Draft

draft-tsvwg-quic-protocol-02, Jan. 2016, work in Progress. [Online]. Available: https:

//tools.ietf.org/html/draft-tsvwg-quic-protocol-02 2.1.3

[36] M. Tuexin and R. Stewart, “UDP Encapsulation of Stream Control Transmission Protocol

(SCTP) Packets for End-Host to End-Host Communication,” RFC 6951, Internet Engineering

Task Force, May 2013. [Online]. Available: https://tools.ietf.org/rfc/rfc6951.txt 2.1.3, 3.3.3

http://doi.acm.org/10.1145/2068816.2068834
http://www.ietf.org/rfc/rfc3234.txt
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-24.html
http://dl.acm.org/citation.cfm?id=1267612.1267621
http://dl.acm.org/citation.cfm?id=1267612.1267621
http://www.eecs.berkeley.edu/Pubs/TechRpts/2005/EECS-2005-24.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2005/EECS-2005-24.html
https://tools.ietf.org/html/draft-tsvwg-quic-protocol-02
https://tools.ietf.org/html/draft-tsvwg-quic-protocol-02
https://tools.ietf.org/rfc/rfc6951.txt

162 REFERENCES

[37] W. John, M. Dusi, and K. C. Claffy, “Estimating routing symmetry on single links by passive

flow measurements,” in Proceedings of the 6th International Wireless Communications and

Mobile Computing Conference, ser. IWCMC ’10. New York, NY, USA: ACM, 2010, pp.

473–478. [Online]. Available: http://doi.acm.org/10.1145/1815396.1815506 2.2.1, 4.1.2

[38] E. Stephan, “IP Performance Metrics (IPPM) Metrics Registry,” RFC 4148, Internet

Engineering Task Force, Aug. 2005. [Online]. Available: http://www.ietf.org/rfc/rfc4148.txt

2.2.1

[39] “Metrics for the Evaluation of Congestion Control Mechanisms,” RFC 5166, Internet

Engineering Task Force, Mar. 2008. [Online]. Available: http://www.ietf.org/rfc/rfc5166.txt

2.2.1, 2.2.2

[40] M. Allman and V. Paxson, “On estimating end-to-end network path properties,” SIGCOMM

Comput. Commun. Rev., vol. 29, no. 4, pp. 263–274, Aug. 1999. [Online]. Available:

http://doi.acm.org/10.1145/316194.316230 2.2.1, 2.2.2

[41] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu, “Characterizing residential

broadband networks,” in Proceedings of the 7th ACM SIGCOMM Conference on Internet

Measurement, ser. IMC ’07. New York, NY, USA: ACM, 2007, pp. 43–56. [Online].

Available: http://doi.acm.org/10.1145/1298306.1298313 2.2.1, 2.2.2, 2.2.3

[42] R. Caceres and L. Iftode, “Improving the performance of reliable transport protocols in mobile

computing environments,” IEEE J.Sel. A. Commun., vol. 13, no. 5, pp. 850–857, Sep. 2006.

[Online]. Available: http://dx.doi.org/10.1109/49.391749 2.2.1

[43] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz, “Improving tcp/ip performance over

wireless networks,” in Proceedings of the 1st Annual International Conference on Mobile

Computing and Networking, ser. MobiCom ’95. New York, NY, USA: ACM, 1995, pp.

2–11. [Online]. Available: http://doi.acm.org/10.1145/215530.215544 2.2.1

[44] G. Hasslinger, J. Mende, R. Geib, T. Beckhaus, and F. Hartleb, “Measurement and

characteristics of aggregated traffic in broadband access networks,” in Proceedings of the

20th International Teletraffic Conference on Managing Traffic Performance in Converged

Networks, ser. ITC20’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 998–1010.

[Online]. Available: http://dl.acm.org/citation.cfm?id=1769187.1769293 2.2.1

http://doi.acm.org/10.1145/1815396.1815506
http://www.ietf.org/rfc/rfc4148.txt
http://www.ietf.org/rfc/rfc5166.txt
http://doi.acm.org/10.1145/316194.316230
http://doi.acm.org/10.1145/1298306.1298313
http://dx.doi.org/10.1109/49.391749
http://doi.acm.org/10.1145/215530.215544
http://dl.acm.org/citation.cfm?id=1769187.1769293

REFERENCES 163

[45] G. Maier, A. Feldmann, V. Paxson, and M. Allman, “On dominant characteristics of

residential broadband internet traffic,” in Proceedings of the 9th ACM SIGCOMM Conference

on Internet Measurement Conference, ser. IMC ’09. New York, NY, USA: ACM, 2009, pp.

90–102. [Online]. Available: http://doi.acm.org/10.1145/1644893.1644904 2.2.1

[46] N. Brownlee and K. C. Claffy, “Understanding internet traffic streams: Dragonflies and

tortoises,” Comm. Mag., vol. 40, no. 10, pp. 110–117, Oct. 2002. [Online]. Available:

http://dx.doi.org/10.1109/MCOM.2002.1039865 2.2.2

[47] K.-c. Lan and J. Heidemann, “A measurement study of correlations of internet flow

characteristics,” Comput. Netw., vol. 50, no. 1, pp. 46–62, Jan. 2006. [Online]. Available:

http://dx.doi.org/10.1016/j.comnet.2005.02.008 2.2.2

[48] C. Estan and G. Varghese, “New directions in traffic measurement and accounting,”

SIGCOMM Comput. Commun. Rev., vol. 32, no. 4, pp. 323–336, Aug. 2002. [Online].

Available: http://doi.acm.org/10.1145/964725.633056 2.2.2

[49] B. Braden, D. Clark, and J. Crowcroft, “Recommendations on Queue Management and

Congestion Avoidance in the Internet,” RFC 2309, Internet Engineering Task Force, Oct.

1996. [Online]. Available: http://www.ietf.org/rfc/rfc2309.txt 2.2.2, 2.2.3

[50] J. Esteban, S. A. Benno, A. Beck, Y. Guo, V. Hilt, and I. Rimac, “Interactions

between http adaptive streaming and tcp,” in Proceedings of the 22Nd International

Workshop on Network and Operating System Support for Digital Audio and Video, ser.

NOSSDAV ’12. New York, NY, USA: ACM, 2012, pp. 21–26. [Online]. Available:

http://doi.acm.org/10.1145/2229087.2229094 2.2.2

[51] R. van Brandenburg, O. van Deventer, F. L. Faucheur, and K. Leung, “Models for

HTTP-Adaptive-Streaming-Aware Content Distribution Network Interconnection (CDNI),”

RFC 6983, Internet Engineering Task Force, Jul. 2013. [Online]. Available: https:

//tools.ietf.org/rfc/rfc6983.txt 2.2.2

[52] Sandvine, “Global internet phenomena report 2h 2014,” https://www.internetsociety.org/

globalinternetreport/, Tech. Rep., 2014. 2.2.2

[53] R. Morris, “Tcp behavior with many flows.” in ICNP. IEEE Computer Society, 1997, pp.

205–211. 2.2.2

http://doi.acm.org/10.1145/1644893.1644904
http://dx.doi.org/10.1109/MCOM.2002.1039865
http://dx.doi.org/10.1016/j.comnet.2005.02.008
http://doi.acm.org/10.1145/964725.633056
http://www.ietf.org/rfc/rfc2309.txt
http://doi.acm.org/10.1145/2229087.2229094
https://tools.ietf.org/rfc/rfc6983.txt
https://tools.ietf.org/rfc/rfc6983.txt
https://www.internetsociety.org/globalinternetreport/
https://www.internetsociety.org/globalinternetreport/

164 REFERENCES

[54] J. R. Iyengar, O. L. Caro, and P. D. Amer, “Dealing with short tcp flows: A survey of mice in

elephant shoes,” 2007. 2.2.2

[55] C. Holman, J. But, and P. Branch, “The effect of round trip time on competing

TCP flows,” Centre for Advanced Internet Architectures, Swinburne University of

Technology, Melbourne, Australia, Tech. Rep. 120405B, 05 April 2012. [Online]. Available:

http://caia.swin.edu.au/reports/120405B/CAIA-TR-120405B.pdf 2.2.2

[56] K. Kurata, G. Hasegawa, and M. Murata, “Fairness comparisons between tcp reno and tcp

vegas for future deployment of tcp vegas,” in Proceedings of INET 2000, 2000. 2.2.2

[57] J. Mo, R. J. La, V. Anantharam, and J. Walrand, “Analysis and comparison of tcp reno and

vegas,” in In Proceedings of IEEE Infocom, 1999, pp. 1556–1563. 2.2.2

[58] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson, “Netalyzr: Illuminating the edge

network,” in Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement,

ser. IMC ’10. New York, NY, USA: ACM, 2010, pp. 246–259. [Online]. Available:

http://doi.acm.org/10.1145/1879141.1879173 2.2.2

[59] M. Claypool, R. E. Kinicki, M. Li, J. Nichols, and H. Wu, “Inferring queue sizes in access net-

works by active measurement,” in Passive and Active Network Measurement, 5th International

Workshop, PAM 2004, Antibes Juan-les-Pins, France, April 19-20, 2004, Proceedings, 2004,

pp. 227–236. 2.2.2

[60] K. Nichols and V. Jacobson, “Controlling queue delay,” Queue, vol. 10, no. 5, pp.

20:20–20:34, May 2012. [Online]. Available: http://doi.acm.org/10.1145/2208917.2209336

2.2.2

[61] J. Gettys and K. Nichols, “Bufferbloat: Dark buffers in the internet,” Queue, vol. 9, no. 11, pp.

40:40–40:54, Nov. 2011. [Online]. Available: http://doi.acm.org/10.1145/2063166.2071893

2.2.2

[62] C. Villamizar and C. Song, “High performance tcp in ansnet,” SIGCOMM Comput.

Commun. Rev., vol. 24, no. 5, pp. 45–60, Oct. 1994. [Online]. Available: http:

//doi.acm.org/10.1145/205511.205520 2.2.2

http://caia.swin.edu.au/reports/120405B/CAIA-TR-120405B.pdf
http://doi.acm.org/10.1145/1879141.1879173
http://doi.acm.org/10.1145/2208917.2209336
http://doi.acm.org/10.1145/2063166.2071893
http://doi.acm.org/10.1145/205511.205520
http://doi.acm.org/10.1145/205511.205520

REFERENCES 165

[63] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,” SIGCOMM

Comput. Commun. Rev., vol. 34, no. 4, pp. 281–292, Aug. 2004. [Online]. Available:

http://doi.acm.org/10.1145/1030194.1015499 2.2.2

[64] C. D. A. Dhamdhere, H. Jiang, “Tcp performance under aggregate fair queueing,” vol. 2.

IEEE, 2005, pp. 1072–1083. 2.2.2

[65] M. Enachescu, A. Goel, T. Roughgarden, Y. Ganjali, and N. Mckeown, “Routers with very

small buffers,” in in IEEE Infocom, 2006. 2.2.2

[66] N. Beheshti, Y. Ganjali, M. Ghobadi, N. McKeown, and G. Salmon, “Experimental study

of router buffer sizing,” in Proceedings of the 8th ACM SIGCOMM Conference on Internet

Measurement, ser. IMC ’08. New York, NY, USA: ACM, 2008, pp. 197–210. [Online].

Available: http://doi.acm.org/10.1145/1452520.1452545 2.2.2

[67] J. Moy, “OSPF Version 2,” RFC 2328, Internet Engineering Task Force, Oct. 1998. [Online].

Available: http://www.ietf.org/rfc/rfc2328.txt 2.2.3

[68] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional ip routing protocols,”

IEEE Communications Magazine, vol. 40, pp. 118–124, 2002. 2.2.3

[69] R. Nagle, “Traffic Engineering (TE) Extensions to OSPF Version 2,” RFC 3630, Internet

Engineering Task Force, Sep. 2003. [Online]. Available: http://www.ietf.org/rfc/rfc3630.txt

2.2.3

[70] C. Hopps, “Analysis of an Equal-Cost Multi-Path Algorithm,” RFC 2992, Internet Engineering

Task Force, Nov. 2000. [Online]. Available: http://www.ietf.org/rfc/rfc2992.txt 2.2.3

[71] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label Switching Architecture,”

RFC 3031, Internet Engineering Task Force, Jan. 2001. [Online]. Available: http:

//www.ietf.org/rfc/rfc3031.txt 2.2.3

[72] “LDP Specification,” RFC 5036, Internet Engineering Task Force, Oct. 2007. [Online].

Available: http://www.ietf.org/rfc/rfc5036.txt 2.2.3

[73] “Deprecation of Type 0 Routing Headers in IPv6,” RFC 5059, Internet Engineering Task

Force, Dec. 2007. [Online]. Available: http://www.ietf.org/rfc/rfc5036.txt 2.2.3

http://doi.acm.org/10.1145/1030194.1015499
http://doi.acm.org/10.1145/1452520.1452545
http://www.ietf.org/rfc/rfc2328.txt
http://www.ietf.org/rfc/rfc3630.txt
http://www.ietf.org/rfc/rfc2992.txt
http://www.ietf.org/rfc/rfc3031.txt
http://www.ietf.org/rfc/rfc3031.txt
http://www.ietf.org/rfc/rfc5036.txt
http://www.ietf.org/rfc/rfc5036.txt

166 REFERENCES

[74] R. H. S. Deering, “Internet Protocol, Version 6 (IPv6) Specification,” RFC 2460, Internet

Engineering Task Force, Dec. 1998. [Online]. Available: http://www.ietf.org/rfc/rfc2460.txt

2.2.3

[75] F. Gont, “Security Assessment of the Internet Protocol Version 4,” RFC 6274, Internet

Engineering Task Force, Jul. 2011. [Online]. Available: http://www.ietf.org/rfc/rfc6274.txt

2.2.3

[76] A. E. P. Biondi, “Ipv6 routing header security,” in CanSecWest Security Conference 2007.

Vancouver, BC, Canada: IEEE Computer Society, april 2007. 2.2.3

[77] J. Hui, J. Vasseur, D. Culler, and V. Manral, “An ipv6 routing header for source routes with

the routing protocol for low-power and lossy networks (rpl),” Internet Engineering Task Force,

2012. 2.2.3

[78] B. Raghavan and A. C. Snoeren, “A system for authenticated policy-compliant routing,”

in Proceedings of the 2004 Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communications, ser. SIGCOMM ’04. New York, NY, USA: ACM,

2004, pp. 167–178. [Online]. Available: http://doi.acm.org/10.1145/1015467.1015487 2.2.3

[79] R. Nagle, “On Packet Switches With Infinite Storage,” RFC 970, Internet Engineering Task

Force, Dec. 1985. [Online]. Available: http://www.ietf.org/rfc/rfc970.txt 2.2.3

[80] T. Hoeiland-Joergensen, P. McKenney, D. Taht, J. Gettys, and E. Dumazet, “The

FlowQueue-CoDel Packet Scheduler and Active Queue Management Algorithm,” Internet-

Draft, Internet Engineering Task Force, Mar. 2016. [Online]. Available: https://tools.ietf.org/

html/draft-ietf-aqm-fq-codel-06 2.2.3

[81] V. J. K. Nichols, “Controlled Delay Active Queue Management,” Internet-Draft, Internet

Engineering Task Force, Mar. 2016. [Online]. Available: https://tools.ietf.org/html/

draft-ietf-aqm-codel-03 2.2.3

[82] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An Architecture for

Differentiated Services,” RFC 2475, Internet Engineering Task Force, Dec. 1998. [Online].

Available: http://www.ietf.org/rfc/rfc2475.txt 2.2.3

[83] B. Davie, A. Charny, J. Bennett, K. Benson, J. L. Boudec, W. Courtney, S. Davari, V. Firoiu,

and D. Stiliadis, “An Expedited Forwarding PHB (Per-Hop Behavior),” RFC 3246, Internet

http://www.ietf.org/rfc/rfc2460.txt
http://www.ietf.org/rfc/rfc6274.txt
http://doi.acm.org/10.1145/1015467.1015487
http://www.ietf.org/rfc/rfc970.txt
https://tools.ietf.org/html/draft-ietf-aqm-fq-codel-06
https://tools.ietf.org/html/draft-ietf-aqm-fq-codel-06
https://tools.ietf.org/html/draft-ietf-aqm-codel-03
https://tools.ietf.org/html/draft-ietf-aqm-codel-03
http://www.ietf.org/rfc/rfc2475.txt

REFERENCES 167

Engineering Task Force, Mar. 2002. [Online]. Available: http://www.ietf.org/rfc/rfc3246.txt

2.2.3

[84] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, “Assured Forwarding PHB

Group,” RFC 2597, Internet Engineering Task Force, Jun. 1999. [Online]. Available:

http://www.ietf.org/rfc/rfc2597.txt 2.2.3

[85] “Configuration Guidelines for DiffServ Service Classes,” RFC 4594, Internet Engineering

Task Force, Aug. 2006. [Online]. Available: http://www.ietf.org/rfc/rfc4594.txt 2.2.3

[86] A. Aggarwal, S. Savage, and T. Anderson, “Understanding the performance of tcp pacing,” in

INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communi-

cations Societies. Proceedings. IEEE, vol. 3. IEEE, 2000, pp. 1157–1165. 2.2.3

[87] D. Wei, P. Cao, S. Low, and C. EAS, “Tcp pacing revisited,” in Proceedings of IEEE INFO-

COM, 2006. 2.2.3

[88] “Internet society global internet report 2015,” https://www.internetsociety.org/

globalinternetreport/, Tech. Rep., 2015. 2.3

[89] J. Abley, K. Lindqvist, E. Davies, B. Black, and V. Gill, “IPv4 Multihoming Practices and

Limitations,” RFC 4116, Internet Engineering Task Force, Jul. 2005. [Online]. Available:

http://www.ietf.org/rfc/rfc4116.txt 2.3, 3.3.2

[90] “About wi-fi assist,” https://support.apple.com/en-au/HT205296, accessed: 2016-05-05. 3

[91] D. Wischik, M. Handley, and M. B. Braun, “The resource pooling principle,” SIGCOMM

Comput. Commun. Rev., vol. 38, no. 5, pp. 47–52, Sep. 2008. [Online]. Available:

http://doi.acm.org/10.1145/1452335.1452342 3.1, 4.2

[92] A. Snoeren, “Adaptive inverse multiplexing for wide-area wireless networks,” oct 1999. 3.2

[93] C. B. Traw and J. M. Smith, “Striping within the network subsystem,” Netwrk. Mag.

of Global Internetwkg., vol. 9, no. 4, pp. 22–32, Jul. 1995. [Online]. Available:

http://dx.doi.org/10.1109/65.397041 3.2

[94] J. R. Iyengar, P. D. Amer, and R. Stewart, “Performance implications of a bounded receive

buffer in concurrent multipath transfer,” Comput. Commun., vol. 30, no. 4, pp. 818–829, Feb.

2007. [Online]. Available: http://dx.doi.org/10.1016/j.comcom.2006.10.011 3.2, 4.1.2

http://www.ietf.org/rfc/rfc3246.txt
http://www.ietf.org/rfc/rfc2597.txt
http://www.ietf.org/rfc/rfc4594.txt
https://www.internetsociety.org/globalinternetreport/
https://www.internetsociety.org/globalinternetreport/
http://www.ietf.org/rfc/rfc4116.txt
https://support.apple.com/en-au/HT205296
http://doi.acm.org/10.1145/1452335.1452342
http://dx.doi.org/10.1109/65.397041
http://dx.doi.org/10.1016/j.comcom.2006.10.011

168 REFERENCES

[95] A. Thompson, “Link Aggregation and Failover,” FreeBSD Foundation. [Online]. Available:

https://www.freebsd.org/doc/handbook/network-aggregation.html 3.3.1

[96] W. T. Thomas Davis, C. T. Constantine Gavrilov, J. V. Janice Girouard, and M. Williams,

“Linux Ethernet Bonding Driver HOWTO,” Linux Kernel Organization, 2005. [Online].

Available: https://www.kernel.org/doc/Documentation/networking/bonding.txt 3.3.1

[97] K. Sklower, B. Lloyd, G. McGregor, D. Carr, and T. Coradetti, “The PPP Multilink

Protocol (MP),” RFC 1990, Internet Engineering Task Force, Aug. 1996. [Online]. Available:

http://www.ietf.org/rfc/rfc1990.txt 3.3.1

[98] C. Perkins, “IP Mobility Support for IPv4, Revised,” RFC 5944, Internet Engineering Task

Force, Nov. 2010. [Online]. Available: http://www.ietf.org/rfc/rfc5944.txt 3.3.2

[99] E. Nordmark and M. Bagnulo, “Shim6: Level 3 Multihoming Shim Protocol for

IPv6,” RFC 5533, Internet Engineering Task Force, Jun. 2009. [Online]. Available:

http://www.ietf.org/rfc/rfc5533.txt 3.3.2

[100] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure, “Experimental evaluation of multipath

tcp schedulers,” in Proceedings of the 2014 ACM SIGCOMM Workshop on Capacity Sharing

Workshop, ser. CSWS ’14. New York, NY, USA: ACM, 2014, pp. 27–32. [Online].

Available: http://doi.acm.org/10.1145/2630088.2631977 3.3.3, 4.1.1, 4.1.2, 4.1.3

[101] L. Magalhaes and R. Kravets, “Transport level mechanisms for bandwidth aggregation on

mobile hosts,” in Proceedings of the Ninth International Conference on Network Protocols,

ser. ICNP ’01. Washington, DC, USA: IEEE Computer Society, 2001, pp. 165–. [Online].

Available: http://dl.acm.org/citation.cfm?id=876907.881588 3.3.3

[102] J. Crowcroft and P. Oechslin, “Differentiated end-to-end internet services using a weighted

proportional fair sharing tcp,” SIGCOMM Comput. Commun. Rev., vol. 28, no. 3, pp. 53–69,

Jul. 1998. [Online]. Available: http://doi.acm.org/10.1145/293927.293930 3.3.3

[103] H.-Y. Hsieh and R. Sivakumar, “A transport layer approach for achieving aggregate

bandwidths on multi-homed mobile hosts,” in Proceedings of the 8th Annual International

Conference on Mobile Computing and Networking, ser. MobiCom ’02. New York, NY, USA:

ACM, 2002, pp. 83–94. [Online]. Available: http://doi.acm.org/10.1145/570645.570656 3.3.3

https://www.freebsd.org/doc/handbook/network-aggregation.html
https://www.kernel.org/doc/Documentation/networking/bonding.txt
http://www.ietf.org/rfc/rfc1990.txt
http://www.ietf.org/rfc/rfc5944.txt
http://www.ietf.org/rfc/rfc5533.txt
http://doi.acm.org/10.1145/2630088.2631977
http://dl.acm.org/citation.cfm?id=876907.881588
http://doi.acm.org/10.1145/293927.293930
http://doi.acm.org/10.1145/570645.570656

REFERENCES 169

[104] K. Rojviboonchai, T. Osuga, and H. Aida, “R-m/tcp: Protocol for reliable multi-

path transport over the internet,” in Proceedings of the 19th International Conference

on Advanced Information Networking and Applications - Volume 1, ser. AINA ’05.

Washington, DC, USA: IEEE Computer Society, 2005, pp. 801–806. [Online]. Available:

http://dx.doi.org/10.1109/AINA.2005.289 3.3.3

[105] M. Zhang, J. Lai, A. Krishnamurthy, L. Peterson, and R. Wang, “A transport layer

approach for improving end-to-end performance and robustness using redundant paths,”

in Proceedings of the Annual Conference on USENIX Annual Technical Conference, ser.

ATEC ’04. Berkeley, CA, USA: USENIX Association, 2004, pp. 8–8. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1247415.1247423 3.3.3

[106] “Stream Control Transmission Protocol,” RFC 4960, Internet Engineering Task Force, Sep.

2007. [Online]. Available: http://www.ietf.org/rfc/rfc4960.txt 3.3.3

[107] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control,” RFC 2581, Internet

Engineering Task Force, Nov. 1999. [Online]. Available: http://www.ietf.org/rfc/rfc2581.txt

3.3.3

[108] R. Stewart, M. Tuexen, and I. Ruengeler, “Stream Control Transmission Protocol (SCTP)

Network Address Translation Support,” Internet Draft, Internet Engineering Task Force, Jul.

2009. [Online]. Available: https://tools.ietf.org/html/draft-ietf-tsvwg-natsupp-08 3.3.3

[109] “ios: Multipath tcp support in ios 7,” https://support.apple.com/en-au/HT201373, accessed:

2016-06-08. 3.4, 4.1.3

[110] S. Barre, “Implementation and assessment of modern host-based multipath solutions,” Ph.D.

dissertation, Universite catholique de Louvain, 2011. 4.1, 6

[111] A. Singh, C. Goerg, A. Timm-Giel, M. Scharf, and T.-R. Banniza, “Performance compari-

son of scheduling algorithms for multipath transfer,” in Global Communications Conference

(GLOBECOM), 2012 IEEE. IEEE, 2012, pp. 2653–2658. 4.1

[112] “Understanding csm load balancing algorithms,” http://www.cisco.com/c/en/us/support/docs/

interfaces-modules/content-switching-module/28580-lb-algorithms.html, accessed: 2016-06-

21. 4.1.1

http://dx.doi.org/10.1109/AINA.2005.289
http://dl.acm.org/citation.cfm?id=1247415.1247423
http://www.ietf.org/rfc/rfc4960.txt
http://www.ietf.org/rfc/rfc2581.txt
https://tools.ietf.org/html/draft-ietf-tsvwg-natsupp-08
https://support.apple.com/en-au/HT201373
http://www.cisco.com/c/en/us/support/docs/interfaces-modules/content-switching-module/28580-lb-algorithms.html
http://www.cisco.com/c/en/us/support/docs/interfaces-modules/content-switching-module/28580-lb-algorithms.html

170 REFERENCES

[113] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene, O. Bonaventure, and

M. Handley, “How hard can it be? designing and implementing a deployable multipath

tcp,” in Proceedings of the 9th USENIX Conference on Networked Systems Design and

Implementation, ser. NSDI’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 29–29.

[Online]. Available: http://dl.acm.org/citation.cfm?id=2228298.2228338 4.1.1, 4.1.3, 4.1.4,

4.2.2

[114] S. Ferlin-Oliveria, T. Driebholz, and O. Alay, “Tackling the challenge of bufferbloat in multi-

path transport over heterogeneous wireless networks,” in Proceedings of the 22nd International

Symposium of Quality of Service (IWQoS), ser. IWQoS ’14. IEEE, 2014, p. 123**128. 4.1.1,

4.1.4

[115] J. R. Iyengar, P. D. Amer, and R. Stewart, “Receive buffer blocking in concurrent multipath

transfer,” IEEE Globecom, 2005. 4.1.1, 4.1.3

[116] I. A. Halepoto, F. Lau, and Z. Niu, “Scheduling over dissimilar paths using cmt-sctp,” in Ubiq-

uitous and Future Networks (ICUFN), 2015 Seventh International Conference on. IEEE,

2015, pp. 535–540. 4.1.2

[117] J. Hwang and J. Yoo, “Packet scheduling for multipath tcp,” inUbiquitous and Future Networks

(ICUFN), 2015 Seventh International Conference on. IEEE, 2015, pp. 177–179. 4.1.2

[118] G. Sarwar, R. Boreli, E. Lochin, A. Mifdaoui, and G. Smith, “Mitigating receiver’s buffer

blocking by delay aware packet scheduling in multipath data transfer,” in Proceedings of the

2013 27th International Conference on Advanced Information Networking and Applications

Workshops, ser. WAINA ’13. Washington, DC, USA: IEEE Computer Society, 2013, pp.

1119–1124. [Online]. Available: http://dx.doi.org/10.1109/WAINA.2013.80 4.1.2

[119] H. A. Kim, B.-h. Oh, and J. Lee, “Improvement of mptcp performance in heterogeneous

network using packet scheduling mechanism,” in Communications (APCC), 2012 18th Asia-

Pacific Conference on. IEEE, 2012, pp. 842–847. 4.1.2

[120] T.-A. Le and L. X. Bui, “Forward delay-based packet scheduling algorithm for multipath tcp.”

4.1.2

http://dl.acm.org/citation.cfm?id=2228298.2228338
http://dx.doi.org/10.1109/WAINA.2013.80

REFERENCES 171

[121] F. Yang, Q. Wang, and P. D. Amer, “Out-of-order transmission for in-order arrival schedul-

ing for multipath tcp,” in Advanced Information Networking and Applications Workshops

(WAINA), 2014 28th International Conference on. IEEE, 2014, pp. 749–752. 4.1.2

[122] T. D. Wallace and A. Shami, “On-demand scheduling for concurrent multipath transfer un-

der delay-based disparity,” in 2012 8th International Wireless Communications and Mobile

Computing Conference (IWCMC), 2012. 4.1.2

[123] M. Fiore, C. Casetti, and G. Galante, “Concurrent multipath communication for real-time traf-

fic,” Computer Communications, vol. 30, no. 17, pp. 3307–3320, 2007. 4.1.2

[124] B.-H. Oh and J. Lee, “Constraint-based proactive scheduling for mptcp in wireless networks,”

Computer Networks, vol. 91, pp. 548–563, 2015. 4.1.2

[125] N. Williams, P. Abeysekera, N. Dyer, H. Vu, and G. Armitage, “Multipath TCP in Vehicular

to Infrastructure Communications,” Centre for Advanced Internet Architectures, Swinburne

University of Technology, Melbourne, Australia, Tech. Rep. 140828A, 28 August 2014.

[Online]. Available: http://caia.swin.edu.au/reports/140828A/CAIA-TR-140828A.pdf 4.1.2

[126] Y.-C. Chen, Y.-s. Lim, R. J. Gibbens, E. M. Nahum, R. Khalili, and D. Towsley, “A

measurement-based study of multipath tcp performance over wireless networks,” in Proceed-

ings of the 2013 conference on Internet measurement conference. ACM, 2013, pp. 455–468.

4.1.2

[127] O. Bonaventure, Q. D. Coninck, M. Baerts, F. Duchene, and B. Hesmans, “Improving

Multipath TCP Backup Subflows,” Internet Engineering Task Force, Internet-Draft

draft-bonaventure-mptcp-backup-00, Jul. 2015, work in Progress. [Online]. Available:

https://tools.ietf.org/html/draft-bonaventure-mptcp-backup-00 4.1.3

[128] H. Balakrishnan and S. Seshan, “The Congestion Manager,” RFC 3124, Internet Engineering

Task Force, Jun. 2001. [Online]. Available: http://www.ietf.org/rfc/rfc3124.txt 4.2

[129] L. Eggert, J. Heidemann, and J. Touch, “Effects of ensemble-tcp,” ACM SIGCOMM Computer

Communication Review, vol. 30, no. 1, pp. 15–29, 2000. 4.2

[130] R. Khalili, N. Gast, M. Popovic, and J.-Y. Le Boudec, “Mptcp is not pareto-optimal: perfor-

mance issues and a possible solution,” Networking, IEEE/ACM Transactions on, vol. 21, no. 5,

pp. 1651–1665, 2013. 4.2, 4.2.2

http://caia.swin.edu.au/reports/140828A/CAIA-TR-140828A.pdf
https://tools.ietf.org/html/draft-bonaventure-mptcp-backup-00
http://www.ietf.org/rfc/rfc3124.txt

172 REFERENCES

[131] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida, “The NewReno Modification to TCP’s

Fast Recovery Algorithm,” RFC 6582, Internet Engineering Task Force, Apr. 2012. [Online].

Available: https://tools.ietf.org/html/rfc6582 4.2.1

[132] S. Ha, I. Rhee, and L. Xu, “Cubic: a new tcp-friendly high-speed tcp variant,” ACM SIGOPS

Operating Systems Review, vol. 42, no. 5, pp. 64–74, 2008. 4.2.1

[133] M. Honda, Y. Nishida, L. Eggert, P. Sarolahti, and H. Tokuda, “Multipath congestion control

for shared bottleneck,” in Proc. PFLDNeT workshop, 2009, pp. 19–24. 4.2.1

[134] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design, implementation

and evaluation of congestion control for multipath tcp,” in Proceedings of the 8th

USENIX Conference on Networked Systems Design and Implementation, ser. NSDI’11.

Berkeley, CA, USA: USENIX Association, 2011, pp. 99–112. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1972457.1972468 4.2.1, 4.2.2

[135] H. Adhari, S. Werner, T. Dreibholz, and E. P. Rathgeb, “Ledbat-mp–on the application of”

lower-than-best-effort” for concurrent multipath transfer,” in Advanced Information Network-

ing and Applications Workshops (WAINA), 2014 28th International Conference on. IEEE,

2014, pp. 765–771. 4.2.1

[136] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind, “Low Extra Delay Background

Transport (LEDBAT),” RFC 6817, Internet Engineering Task Force, Dec. 2012. [Online].

Available: http://www.ietf.org/rfc/rfc6817.txt 4.2.1

[137] F. Kelly and T. Voice, “Stability of end-to-end algorithms for joint routing and rate control,”

SIGCOMM Comput. Commun. Rev., vol. 35, no. 2, pp. 5–12, Apr. 2005. [Online]. Available:

http://doi.acm.org/10.1145/1064413.1064415 4.2.2

[138] A. Walid, Q. Peng, J. Hwang, S. Low, “Balanced linked adaptation congestion

control algorithm for mptcp,” Internet Engineering Task Force, Internet-Draft draft-

walid-mptcp-congestion-control-04, Jan. 2016, work in Progress. [Online]. Available:

https://tools.ietf.org/html/draft-walid-mptcp-congestion-control-04 4.2.2

[139] Y.-C. Chen and D. Towsley, “On bufferbloat and delay analysis of multipath tcp in wireless

networks,” in Networking Conference, 2014 IFIP. IEEE, 2014, pp. 1–9. 4.2.2

https://tools.ietf.org/html/rfc6582
http://dl.acm.org/citation.cfm?id=1972457.1972468
http://www.ietf.org/rfc/rfc6817.txt
http://doi.acm.org/10.1145/1064413.1064415
https://tools.ietf.org/html/draft-walid-mptcp-congestion-control-04

REFERENCES 173

[140] Q. Peng, A. Walid, J. Hwang, and S. H. Low, “Multipath tcp: Analysis, design, and

implementation,” IEEE/ACM Trans. Netw., vol. 24, no. 1, pp. 596–609, Feb. 2016. [Online].

Available: http://dx.doi.org/10.1109/TNET.2014.2379698 4.2.2

[141] Mingwei Xu, Yu Cao, Enhuan Dong, “Delay-based congestion control for mptcp,”

Internet Engineering Task Force, Internet-Draft draft-xu-mptcp-congestion-control-

04, Jan. 2016, work in Progress. [Online]. Available: https://tools.ietf.org/html/

draft-xu-mptcp-congestion-control-04 4.2.2

[142] T.-A. Le, “Improving the performance of multipath congestion control over wireless networks,”

in 2013 International Conference on Advanced Technologies for Communications (ATC 2013).

IEEE, 2013, pp. 60–65. 4.2.2

[143] C. P. Fu and S. C. Liew, “Tcp veno: Tcp enhancement for transmission over wireless access

networks,” IEEE Journal on selected areas in communications, vol. 21, no. 2, pp. 216–228,

2003. 4.2.2

[144] M. Li, A. Lukyanenko, S. Tarkoma, and A. Yl¨a-J¨a¨aski, “Mptcp incast in data center networks,”

China Communications, vol. 11, no. 4, pp. 25–37, 2014. 4.2.2

[145] D. Nagle, D. Serenyi, and A. Matthews, “The panasas activescale storage cluster: Deliver-

ing scalable high bandwidth storage,” in Proceedings of the 2004 ACM/IEEE conference on

Supercomputing. IEEE Computer Society, 2004, p. 53. 4.2.2

[146] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley, “Improving

datacenter performance and robustness with multipath tcp,” in ACM SIGCOMM Computer

Communication Review, vol. 41, no. 4. ACM, 2011, pp. 266–277. 4.2.2

[147] F. Fu, X. Zhou, T. Dreibholz, K. Wang, F. Zhou, and Q. Gan, “Performance comparison of

congestion control strategies for multi-path tcp in the nornet testbed.” 4.3

[148] B. Hesmans, H. Tran-Viet, R. Sadre, and O. Bonaventure, “A first look at real multipath tcp

traffic,” in International Workshop on Traffic Monitoring and Analysis. Springer, 2015, pp.

233–246. 4.3

[149] “Transmission Control Protocol (TCP) Parameters,” http://www.iana.org/assignments/

tcp-parameters/tcp-parameters.xhtml, Internet Assigned Numbers Authority, Mar. 2016.

http://dx.doi.org/10.1109/TNET.2014.2379698
https://tools.ietf.org/html/draft-xu-mptcp-congestion-control-04
https://tools.ietf.org/html/draft-xu-mptcp-congestion-control-04
http://www.iana.org/assignments/tcp-parameters/tcp-parameters.xhtml
http://www.iana.org/assignments/tcp-parameters/tcp-parameters.xhtml

174 REFERENCES

[Online]. Available: http://www.iana.org/assignments/tcp-parameters/tcp-parameters.xhtml

5.1

[150] C. Paasch et al., “Improving multipath tcp,” Ph.D. dissertation, Universite catholique de Lou-

vain, 2014. 6

[151] R. Stewart, “FreeBSD-head Revision 292309,” https://svnweb.freebsd.org/base?view=

revision&revision=292309, FreeBSD Foundation, Dec 2015. [Online]. Available: https:

//svnweb.freebsd.org/base?view=revision&revision=292309 6

[152] N. Williams, L. Stewart, and G. Armitage, “Design Overview of Multipath TCP version

0.3 for FreeBSD-10,” Centre for Advanced Internet Architectures, Swinburne University of

Technology, Melbourne, Australia, Tech. Rep. 130424A, 24 April 2013. [Online]. Available:

http://caia.swin.edu.au/reports/130424A/CAIA-TR-130424A.pdf 6, 6.1.3

[153] ——, “Design Overview of Multipath TCP version 0.4 for FreeBSD-11,” Centre for Advanced

Internet Architectures, Swinburne University of Technology, Melbourne, Australia, Tech. Rep.

140822A, 22 August 2014. [Online]. Available: http://caia.swin.edu.au/reports/140822A/

CAIA-TR-140822A.pdf 6, 6.1.3, 6.3

[154] P. Willmann, R. Scott, and A. Cox, “An evaluation of network stack parallelization strategies

in modern operating systems.” in USENIX Annual Technical Conference, General Track, 2006,

pp. 91–96. 6.1.2, 6.2.2

[155] A. Economopoloulos, “An MP-capable network stack for DragonFlyBSD with minimal use of

locks,” DragonflyBSD, Tech. Rep., 2008. 6.1.2

[156] L. Stewart and J. Healy, “Light-Weight Modular TCP Congestion Control for FreeBSD

7,” Centre for Advanced Internet Architectures, Swinburne University of Technology,

Melbourne, Australia, Tech. Rep. 071218A, 18 December 2007. [Online]. Available:

http://caia.swin.edu.au/reports/071218A/CAIA-TR-071218A.pdf 6.1.4

[157] S. Barr´e, C. Paasch, O. Bonaventure et al., “Multipath tcp-guidelines for implementers,”Work-

ing Draft, IETF Secretariat, Internet-draft draftbarre-mptcp-impl-00, 2011. 6.2.1

[158] R. N. Watson, “Introduction to multithreading and multiprocessing in the freebsd smpng net-

work stack,” Proceedings of EuroBSDCon, 2005. 6.2.1, 6.2.2

http://www.iana.org/assignments/tcp-parameters/tcp-parameters.xhtml
https://svnweb.freebsd.org/base?view=revision&revision=292309
https://svnweb.freebsd.org/base?view=revision&revision=292309
https://svnweb.freebsd.org/base?view=revision&revision=292309
https://svnweb.freebsd.org/base?view=revision&revision=292309
http://caia.swin.edu.au/reports/130424A/CAIA-TR-130424A.pdf
http://caia.swin.edu.au/reports/140822A/CAIA-TR-140822A.pdf
http://caia.swin.edu.au/reports/140822A/CAIA-TR-140822A.pdf
http://caia.swin.edu.au/reports/071218A/CAIA-TR-071218A.pdf

REFERENCES 175

[159] D. Rabson, “Taskqueue – asynchronous task execution,” https://www.freebsd.org/cgi/man.cgi?

query=taskqueue, accessed: 2016-06-12. 6.2.1, 6.2.1

[160] R. Watson, “Freebsd network performance project (netperf),” https://www.freebsd.org/

projects/netperf/, accessed: 2016-07-09. 6.2.1

[161] J. Baldwin and R. Watson, “Freebsd network performance project (netperf),” https://www.

freebsd.org/doc/en/books/arch-handbook/smp.html, accessed: 2016-07-09. 6.2.1, 6.2.2

[162] T. Hudek, “Hardware dec center: Receive side scaling,” https://docs.microsoft.com/en-us/

windows-hardware/drivers/network/ndis-receive-side-scaling2, 2017. 6

[163] J. Lemon, “Syncache,” https://www.freebsd.org/cgi/man.cgi?query=syncache, accessed:

2016-07-20. 6.3

[164] D. J. Bernstein, “Syn cookies, 1996,” https://cr.yp.to/syncookies.html, 2016. 6.3

[165] C. Paasch, A. Biswas, and D. Haas, “Making Multipath TCP robust

for stateless webservers,” Internet Engineering Task Force, Internet-Draft draft-

paasch-mptcp-syncookies-02, Oct. 2015, work in Progress. [Online]. Available:

https://tools.ietf.org/html/draft-paasch-mptcp-syncookies-02 6.3

[166] G. Smirnoff, “mbuf tags – a framework for generic packet attributes,” https://www.freebsd.org/

cgi/man.cgi?query=sendfile&sektion=2, accessed: 2017-08-01. 6.4

[167] ——, “svn commit: r293439 in head,” https://lists.freebsd.org/pipermail/svn-src-head/

2016-January/080924.html, FreeBSD Foundation, Jan 2016. [Online]. Available: https:

//lists.freebsd.org/pipermail/svn-src-head/2016-January/080924.html 6.4

[168] A. Keromytis, “mbuf tags – a framework for generic packet attributes,” https://www.freebsd.

org/cgi/man.cgi?query=mbuf tags, accessed: 2016-07-20. 6.4

[169] “Virtualbox,” https://www.virtualbox.org/wiki/VirtualBox, accessed: 2017-08-02. 7.1.1

[170] L. Rizzo, “The dummynet project,” http://info.iet.unipi.it/

⇠
luigi/dummynet/, accessed: 2016-

08-15. 7.1.1

[171] “Iperf,” https://iperf.fr/, accessed: 2016-10-17. 7.1.1

https://www.freebsd.org/cgi/man.cgi?query=taskqueue
https://www.freebsd.org/cgi/man.cgi?query=taskqueue
https://www.freebsd.org/projects/netperf/
https://www.freebsd.org/projects/netperf/
https://www.freebsd.org/doc/en/books/arch-handbook/smp.html
https://www.freebsd.org/doc/en/books/arch-handbook/smp.html
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/ndis-receive-side-scaling2
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/ndis-receive-side-scaling2
https://www.freebsd.org/cgi/man.cgi?query=syncache
https://cr.yp.to/syncookies.html
https://tools.ietf.org/html/draft-paasch-mptcp-syncookies-02
https://www.freebsd.org/cgi/man.cgi?query=sendfile&sektion=2
https://www.freebsd.org/cgi/man.cgi?query=sendfile&sektion=2
https://lists.freebsd.org/pipermail/svn-src-head/2016-January/080924.html
https://lists.freebsd.org/pipermail/svn-src-head/2016-January/080924.html
https://lists.freebsd.org/pipermail/svn-src-head/2016-January/080924.html
https://lists.freebsd.org/pipermail/svn-src-head/2016-January/080924.html
https://www.freebsd.org/cgi/man.cgi?query=mbuf_tags
https://www.freebsd.org/cgi/man.cgi?query=mbuf_tags
https://www.virtualbox.org/wiki/VirtualBox
http://info.iet.unipi.it/~luigi/dummynet/
https://iperf.fr/

176 REFERENCES

[172] “Tshark,” https://www.wireshark.org/docs/man-pages/tshark.html, accessed: 2016-08-18.

7.1.1

[173] Y. Coene, “Conformance tests for Multipath TCP,” Internet-Draft, Internet En-

gineering Task Force, Jul. 2013. [Online]. Available: https://tools.ietf.org/html/

draft-coene-mptcp-conformance-00 7.2.1

[174] D. A. Hayes and G. Armitage, “Revisiting tcp congestion control using delay gradients,” in

International Conference on Research in Networking. Springer, 2011, pp. 328–341. 7.2.4

[175] J. Semke, J. Mahdavi, and M. Mathis, “Automatic tcp buffer tuning,” ACM SIGCOMM Com-

puter Communication Review, vol. 28, no. 4, pp. 315–323, 1998. 7.2.5

https://www.wireshark.org/docs/man-pages/tshark.html
https://tools.ietf.org/html/draft-coene-mptcp-conformance-00
https://tools.ietf.org/html/draft-coene-mptcp-conformance-00

	Abstract
	Introduction
	A Background on Today's Internet
	The Internet Architecture
	The Internet Protocol Suite
	TCP: A Ubiquitous Transport Protocol
	Extending Protocols

	The Network Path
	Defining the End-to-end Path
	Sources of Dynamic Behaviour
	Traffic Engineering Mechanisms

	A Multihomed Future

	Multihoming at the End-host
	Steering Packets
	Multihoming and Path Diversity
	Multihoming and Multipath Solutions
	Link-layer
	Internet-layer
	Transport-layer

	Conclusion

	Multipath Scheduling and Congestion Control
	Multipath Schedulers
	Naive approaches
	Scheduling for the transport-layer
	Improving loss recovery
	Assisting the scheduler

	Multipath Congestion Control
	Uncoupled Congestion Control
	Coupled Congestion Control

	Conclusion

	Overview: TCP extensions for Multi-addressed Operation
	Key Concepts
	MPTCP in Operation
	Opening a Connection
	Associating Subflows
	Transferring Data
	Closing a Connection

	Other Protocol Considerations

	An Architecture for MPTCP in the FreeBSD Kernel
	Designing for FreeBSD
	Data and Control Structures
	Event-driven Model
	Leveraging the Modular TCP framework
	Scheduling and Congestion Control

	CPU and Memory Considerations
	Ensuring Fair CPU Use
	Shared Memory, Locking and Concurrency

	Establishing a Connection
	Sending Data
	Receiving Data
	Closing a Connection
	Conclusion

	Experimental Evaluation
	Experimental Design
	Testbed Topology

	Evaluation
	Basic Conformance
	Creating Multiple Subflows
	Retransmissions
	Scheduling and Congestion Control
	Performance

	Conclusion

	Conclusion
	Summary
	Future Work

	Design Overview of Multipath TCP version 0.3 for FreeBSD-10
	Design Overview of Multipath TCP version 0.4 for FreeBSD-11
	References

