
Modelling and Solving QoS Composition Problem
Using Fuzzy DisCSP

Xuan Thang Nguyen
Faculty of Information and

Communication Technologies

Swinburne University of Technology

Melbourne VIC 3122, Australia

Email:xnguyen@ict.swin.edu.au

Ryszard Kowalczyk
Faculty of Information and

Communication Technologies

Swinburne University of Technology

Melbourne VIC 3122, Australia

Email: rkowalczyk@ict.swin.edu.au

Manh Tan Phan
Faculty of Information and

Communication Technologies

Swinburne University of Technology

Melbourne VIC 3122, Australia

Email: tphan@ict.swin.edu.au

Abstract— Web service compositions have attracted consider-
able efforts in the context of supporting enterprise application
integrations. For a composite service, in addition to its functional
requirements, QoS requirements are important and deserve a
special attention. The central question to a QoS composition
problem is how to compose a service from different sub-
component services so that its overall QoS can satisfy certain
requirements. In this paper, we propose an agent-based method
using Fuzzy Distributed Constraint Satisfaction Problem (Fuzzy
DisCSP) techniques to solve this problem. We show that by using
the composition structures, local constraints can be constructed
and used with DisCSP. We also present an a new algorithm called
the Fuzzy constraint satisfaction Algorithm for Distributed Envi-
ronment (FADE) to solve the problem and discuss our experiment
in building a prototypical system to prove the feasibility of our
approach.

I. INTRODUCTION

There have been tremendous developments in the area

of Web services recently. Web services’ capability for in-

tegrating distributed and heterogeneous applications across

organizational boundaries has attracted considerable research

in various areas including Web service discovery, composition,

and management. Web service composition focuses on the

problem of composing a value-added composite Web service

from different Web services. There are two key requirements

in in the composition process: finding syntactic and semantic

matches of the component Web services and satisfying non-

functional requirements or Quality of Service (QoS). We call

the latter - QoS composition problem for composite Web

services as opposed to the former - functionality composition

problem. Because component Web services of a composite

Web service can also be composite, a composite Web service

can have any number of composition nested level. In parallel

to the advancement of Web services, the MAS and AI com-

munity has shown an increasing interest in the Distributed

Constraint Satisfaction Problem (DisCSP) in the last few years.

DisCSP has been widely viewed as a powerful paradigm for

solving combinatorial problems arising in distributed, multi-

agent environments. A DisCSP is a problem with finite number

of variables, each of which has a finite and discrete set of

possible values and a set of constraints over the variables.

These variables and constraints are distributed among a set of

autonomous and communicating agents. A solution in DisCSP

is an instantiation of all variables such that all the constraints

are satisfied. Fuzzy DisCSP is a DisCSP with soft constraints,

i.e. different constraints have different important levels. In

negotiation context, fuzzy constraints have been used widely to

model service clients and providers’ preferences over attribute

values of products. Fuzzy constraints are useful to describe

the preferences or utility functions of Web service providers.

In this paper we propose a Fuzzy DisCSP-based technique to

solve the QoS composition problem. Our algorithm models

providers’ preferences as fuzzy constraints and supports the

notions of preference priorities, i.e different providers may

have different priorities of being satisfied. The rest of the

paper is organized as follows. A literature review on Web

service compositions and DisCSP are presented in the next

section. In Section 3, we model the QoS composition problem

as a DisCSP. Section 4 proposes an algorithm to construct

constraints from a Web service composition structure. An

enhancement of the Asynchronous Aggregate Search (AAS)

algorithm, which can handle multiple variables in each agent

with a new heuristic developed to exploit QoS parameters’

characteristics, is presented in Section 5. Section 6 discusses

our initial experiment in building a prototypical system as a

proof of concept for our proposal. Finally, conclusions and

future work are discussed in Section 7.

II. RELATED WORK

There have been several studies on Web service composi-

tions. A survey of various studies on functionality composi-

tions can be found in [17]. QoS compositions are discussed

in [9], [1], [7], [5]. In [12], numeric calculations of execution

time and cost of a composite service are presented. In [7], the

authors discuss a method for QoS aggregation based on Web

service composition patterns [19]. More related work on QoS

planning can be found in [9], in which the authors propose

an approach for selecting optimal sub-providers from a list

of service providers. While these research focus on functional

and QoS compositions at the same time, they solve the compo-

sition problems at each provider independently. Consequently,

the real complexity of composing Web services which lead

to many nested compositions or have may dependencies is

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 15,2010 at 05:46:27 EDT from IEEE Xplore. Restrictions apply.

overlooked. Also, these works do not make use of possible

collaborations between different providers in a composition.

This collaboration is proven to be important as the new Web

service choreography stardard of WS-CDL [21] become more

matured.

To overcome this limitation, we propose to use Fuzzy

DisCSP techniques in which service providers from different

nested levels in a composition can collaborate to solve the

QoS composition problem together. To our best knowledge,

there has been no application of DisCSP in this area so far.

DisCSP is a major technique for coordination and conflict

resolutions in a distributed and collaborative environment.

A DisCSP is a constraint satisfaction problem in which the

variables and constraints on these variables are distributed

among independent but communicating agents. One important

motivation behind the DisCSP paradigm is that it allows agents

to keep their constraints privately while permits the solution to

be solved globally. Many studies have been done in propos-

ing algorithms for solving DisCSPs, such as Asynchronous

Backtracking (ABT) [23], Asynchronous Weak-Commitment

(AWC) search [22], and lately Asynchronous Distributed con-

straint Optimization with quality guarantees (ADOPT) [13],

[2] to name a few. ABT is normally considered as the base

algorithm for others.

Fuzzy DisCSP has lately captured the interest of MAS com-

munity in the context of negotiation. In [8], utility theory

and fuzzy constraint-based are employed for the negotiation

process. These works focus on bilateral negotiations and when

many agents take part, a central coordinating agent may be

required. The work in [10] is interesting as it promotes a

framework for multi-lateral negotiation with a rotating central

coordinating agent. However it does not take advantage of

the current advancement of DisCSP. Also, even though there

has been substantial research on different levels of importance

of constraints in the Priority Fuzzy Constraint Satisfaction

Problem(PFCSP) framework [11], little work has been done on

priorities of agents in terms of satisfaction levels. In practice,

different Web service providers may have different priorities

for their satisfaction levels to be honored. For example,

a composite Web service provider (main contractor) would

naturally has higher priority than a component Web service

providers (sub contractors). In [6], an iterative approach is

used to solve a Fuzzy DisCSP through as a series of DisCSP

is presented. This algorithm shares some similarity with our

work. This algorithm is one among a few available algorithms

for solving Fuzzy DisCSP. However the algorithm also does

not address the satisfaction priorities. Because the algorithm

can be extended to multivariables and n-ary constraints, we

will use it to compare against our algorithm.

Util now, two popular problems in the DisCSP application

domain are Meeting Scheduling and SensorCSP [3]. In the

Meeting Scheduling problem, multiple agents negotiate to find

a meeting time that can satisfy all agents’ personal constraints.

In the SensorCSP there are a number of sensors modeled as

agents and targets where a target is tracked if k sensors are

tracking it at the same time. The sensors have to cooperate to

track all the targets with their own constraints that a sensor

can only track one target at a time. In this paper, we introduce

another problem that can be modeled and solved with DisCSP

- the problem of QoS composition. This problem is of a great

interest to the agent community.

III. MODELING QOS COMPOSITION PROBLEM AS DISCSP

The DisCSP and Fuzzy DisCSP can be formally defined as

follows.

Definition 1: A Distributed Constraint Satisfaction Problem P=

〈X,D,C,N〉 is a problem defined on a set of variables

X={X1,...,Xn}, a discrete finite domains for each of the vari-

ables D={D1,...,Dn}, and a set of constraints C={C1,...,Cm}
on possible values of variables. These variables and constraints

are distributed among a set of agent A={A1,...,Ak}. If an

agent Al holds a constraint Cq, it also must hold all variables

contained in Cq. A solution for P is an assignment of variables

in X from their domains so that all constraints in C are

satisfied.

In some DisCSP framework like the one introduced with ABT

[23], the definition goes further by assigning owners (agents)

to variables. Proposals on a variable can be made only by

the owner of that variable. Slightly different frameworks have

been used in the literature [16] where agent owns problems

and shares variables. In this paper, we use the second approach

as it is more flexible to model and solve problems with multi

variables.

Definition 2: A Fuzzy Distributed Constraint Satisfaction

Pf is an extension of a DisCSP P = 〈X,D,Cf ,N〉 in which a

constraint C
f
j , j=1,...,m on a subset of the

variables {Xj1, ..., Xjk}⊆ X represents a fuzzy relation

defined on the Cartesian product space Dj1 × ...×Djk

characterized by a membership function μCf
j

. That is

μCf
j

:
∏

k
p=1Djp → [0,1], j=1,...,m.

The global satisfaction degree of an assignment xS of all

variable in X is defined as:

sat(xS) = ⊕{ μCf
j
(xS↓Cf

j) | Cf
j ∈ Cf}

in which xS↓Cf
j is the projection of xS into variable space

of Cf
j or the part of assignment in xS for variables of Cf

j . ⊕
is a T-norm operator and commonly used as the min fuction.

In general, xS is a solution of Pf if it maximinzes the global

satisfaction degree, or it has the global satisfaction degree

greater than or equal to a predefined threshold value. For

each assignment, we define the agent satisfaction level for an

agent An is the satisfaction degree of the assignment on the

constraints known by An, i.e.

satAn
(xS) = ⊕{ μCf

j
(xS↓Cf

j) | Cf
j ∈ Cf , Cf

j held by An}

In the QoS composition problem, multiple service providers

participate in the service composition process. Each provider

has its own constraints on QoS levels of some parameters. The

QoS levels may be continuous but in most cases the service

providers and consumers are only interested in discrete values

of the QoS levels; for example, discrete values of cost, disk

space and response time. Some constraints of the providers

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 15,2010 at 05:46:27 EDT from IEEE Xplore. Restrictions apply.

can be revealed, for examples through different advertised

classes of service and others must be completely private such

as resource limitations, business rules, organizational policies

and service composition structures. The goal of the QoS

composition problem is to find a solution to all providers so

that every providers’ constraints are satisfied. In addition, each

provider has a different level of satisfaction on a solution.

Therefore, it is desireable to maximize the global satisfaction

level for all providers.

Essentially, a QoS service composition problem is a combi-

natoral problem and can be modeled in DisCSP framework. In

this model each service provider can be considered as an agent

(an autonomously processing entity) in a constraint network.

Each QoS parameter is mapped into a variable in the constraint

network; and the set of providers’ constraints is mapped into

the network’s constraint set. The problem of maximizing the

global satisfaction level is equivalent to the constraint network

with fuzzified constraints.

To facilitate the discussion, we start by a simple example

without preferences. Figure 1 shows an example of five agents

A1, A2, A3, A4, A5 together forming an Attraction Service

composite service. Each agent has its own constraints on QoS.

Fig. 1. A scenario of a composite Attraction Service which has a nested
composition structure with the Book Attraction service offered by A3.

In Figure 2, c(S) and t(S) define the total cost and response

time of a composite service S while ci:own and ti:own define

the cost and response time introduced by the agent Ai itself.

The c variable can take a price between $1 and $100 (USD)

and the t variable can take an integer value between 1 and 100

(ms) for all services. In a more complex example, to negotiate

on the values of cost and response time, A3 and A4 may need

to negotiate on other variables as well. In other words, the

set of variables at each agent may not represent the same set

of QoS parameters. Also, the example in Figure 1 gives an

impression of a tree structure. However, this is not always

true as many consumers can use the same session of a Web

service.

To show the differences between not applying and applying

DisCSP techniques, we consider the two most commonly used

approaches for QoS composition problems [9], [1], [7], [5]:

• In the first approach, QoS composition is solved in-

crementally. Firstly, A1 negotiates with A2 and A3 for

attraction finding and booking. A2 agrees to provide a

FindAttraction service with, for example, {1ms, $10} for

{response time, cost}. A3 agrees to provide its BookAt-
traction service with, for example, {4 ms, $10} because it

is confident to find sub-providers to support these values.

After that, A3 contacts and negotiates with A4 and A5. If

A4 agrees on {1ms, $5} and A5 agrees on {3ms, $5} for

their services respectively, a solution is found. Otherwise,

A3 have to find a substitute of A4 and A5.

• In the second approach, synchronous backtracking is used

to solve the QoS composition problem. A1 proposes

some cost and response time values to A2 and A3. For

example, it proposes {1ms, $15} to A2 and {4ms, $5}
to A3. A2 accepts the proposal while A3 subsequently

negotiates with A4 and A5 before responding to A1. In

the negotiation, if A4 and A5 cannot satisfy with any

proposals from A3; A3 backtracks to A1 with a refusal

on {4ms, 5 USD} values. A1 then has to negotiate for

another value with A2 and A3. The above steps are

repeated until A4 and A5 can agree on some proposals

from A3.

A1: Attraction Service

c(AttractionService) =

c(FindAttraction) + c(BookAttraction)+ c1:own

t(AttractionService) =

t(FindAttraction) + t(BookAttraction)+t1:own

c(AttractionService) < $20

t(AttractionService) < 5ms

A2: Find Attraction

c2:own > $5

t2:own > 1ms

c2:own = $5 + (4ms -t2:own) x $1/ms

A3: Book Attraction

c(BookAttraction)=

c(OnlinePayment) +c(TicketReservation) +c3:own

t(BookAttraction)=

t(OnlinePayment) +t(TicketReservation) +t3:own

A4: Online Payment

c4:own > $2

t4:own > 1ms

A5: Ticket Reservation

c5:own > $3

t5:own > 1 ms

Fig. 2. Illustration of different constraints held by each agent

It can be seen that both approaches are synchronous, i.e.

each agent has to wait for responses from other agents before

it can proceed. Also, each agent is only aware of its local

composition problem which is formed whenever a request

from a client arrives. For example, A3 is only aware of a

composition problem when it receives a proposal from A1. To

address this limitation, our approach allows every agent to be

aware of the global QoS requirement, and encourages them

to take part in the solving process asynchronously as soon as

possible after a conceptual functional composition is formed

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 15,2010 at 05:46:27 EDT from IEEE Xplore. Restrictions apply.

and before and contracts are singed. In the functionality

composition phase, when an agent receives a problem id from

its consumers, it generates a new problem id if necessary, and

then forwards this to its providers to inform them that there is

a global QoS problem which needs to be solved. In particular,

a problem id received in combination with the sender address

creates a unique context to identify a particular global QoS

problem.

IV. CONSTRAINT DEDUCTION FROM COMPOSITION

STRUCTURE

As stated in the previous part, constraints can be formed

from different items such as business rules, organizational

policies, or composition structures. Translations from business

rules and organizational policies into QoS constraints may

vary from organizations to another since these rules and

policies can be represented and interpreted differently. In

No. Workflow Pattern (BPEL pattern)
QoS
Composition
Pattern

Basic Control Flow Patterns
1 Sequence (Sequence) Sequence

2 Parallel Split (Flow/Link) AND Split

3 Synchronization (Flow/Link) AND Join

4 Exclusive Choice (Switch/Link) XOR Split

5 Simple Merge (Switch/Link) XOR Join

Advanced Branching and Synchronization Patterns
6 Multi-choice (Link) OR Split

Structural Patterns
7 Implicit Termination (By Default)

Patterns Involving Multiple Instances

8 M.I. Without Synchronization(Flow)
AND Split and
AND Join

State Based Patterns
9 Deferred Choice(Pick) XOR Split

10 Interleaved Parallel (Serializable Scope) Sequence

11 Cancel Activity (Terminate)

TABLE I

WORKFLOW PATTERNS TO QOS COMPOSITION PATTERNS

Sequence
AND
Split/Join

OR
Split/Join

Cost Sum Sum Max

Response Time Sum Max Min

TABLE II

FORMULAS OF CONSTRAINTS FOR SIMPLE COMPOSITION PATTERNS OF

SEQUENCE, AND AND OR

this section, we show how constraints can be formulated from

the composite structures of services offered at each agent.

For examples, how the first two constraints in A1 and A3

in Figure 2 were constructed. These constraints represent the

relationships among QoS parameters of a composite service

and of its component services. Such constraint formations

and deductions are useful if new QoS compositions need to

be done on an existing functional composition. In practice,

this happens because a Web service may expect to have new

CONSTRUCT-CONSTRAINT(qos-name, activity)

as XPath

1 activity-type ←get type of the activity
2 if activity-type ∈
{“assign”, “throw”, “wait”,

“empty”, “scope”, “compensate”, “terminate”}
3 return null

4 if activity type ∈{ “invoke”, “receive”}
5 service-name ← get name of the service

invoked by activity

6 return Xpath(service-name)

7 sub-activities←get component activities from activity

8 qos-pattern-name←get the QoS

composition pattern equivalent to activity

9 Xpath-array ← {CONSTRUCT-CONSTRAINT(

qos-name, sub-activities[i])}
10 return F(qos-name, qos-pattern-name, Xpath-array)

Fig. 3. Constraint formation algorithm

customers and hence can have requests of new QoS classes.

In this paper, we use the term “QoS constraint formulation” to

describe the process of finding these constraints/relationships

from a composition input. The composition is presented in

BPEL4WS (the Business Process Execution Language for Web

services) format. BPEL4WS is selected because it is a popular

Web service composition language supported by different Web

service vendors. Our approach bases on important work in

[19], [18], [7]. In [19] and [18], the authors conduct a survey

and collect a set of workflow patterns which have been used in

workflow languages today, including Web service composition

languages. In [7] the authors map these workflow patterns into

QoS composition patterns. We combine these results to form

a mapping from BPEL4WS into QoS composition patterns

as shown in Table 1. It is worth noting that Table 1 only

presents composition patterns supported by BPEL4WS. Our

QoS constraint formulation process consists of the following

three main steps:

1) Construct constraint formulas for QoS composition pat-

terns: Sequence, AND (Split/Join), XOR (Split/Join) and

OR (Split/Join).

2) Iteratively decompose the composite structure through

BPEL workflow patterns into smaller sub-compositions

until this cannot be done any further.

3) Iteratively re-construct the constraints in a composition

from constraints of its sub-compositions. The recon-

struction uses formulas available in step 1 above.

In reference to other efforts on QoS aggregation [7], [9],

[5], [12], our constraints can be considered as means to

compute the QoS aggregations. The difference is that we

construct the formulas to aggregate QoS instead of compute

a value. Formulas for simple composition patterns in step 1

with different QoS attributes can be found in [7]. Table 2

presents a partial list of these. It is important to know that our

algorithm does not restrict to the forumals presented in [7].

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 15,2010 at 05:46:27 EDT from IEEE Xplore. Restrictions apply.

<flow name= ”Shipping”>
<sequence>
<invoke name= ”ShipmentAir”/>
</sequence>
<sequence>
<invoke name= ”ShipmentWater”/>
</sequence>
<sequence>
<invoke name= ”ShipmentLand”/>
</sequence>
</flow>

Fig. 4. An example of BPEL activity

These formulas can be customized to suit particular scenarios

and QoS characteristics.

For a more detailed explanation, the pseudo-code for our

constraint formulation process is listed in Figure 3. In our

algorithm, the BPEL4WS composition is represented as a Pro-
cessDef object which has a base Activity object. The Activity
class represents all possible activities available in BPEL4WS

processes such as “receive”, “reply”, “invoke”, “sequence”

and “switch”. Hence, an Activity object is composed of other

Activity objects. XPath class represents an XPATH expression.

The main idea behinds the Construct-Constraint algorithm

in Figure 3 is to iteratively decompose a BPEL activity

and apply equivalent QoS composition formulas (table 2) at

each iteration. New variables are added whenever “invoke”

and “receive” activities are encountered. In the line 10, F
is a constraint function (constructed from Table 2) for QoS

composition patterns. For an example, a composite service

with a structure listed in Figure IV after passing through the

Construct-Constraint function will produce t(Shipping)= max(

t(ShipmentAir), t(ShipmentWater), t(ShipmentLand)) for the

input of qos-name as response time.

V. SOLVING THE QOS COMPOSITION PROBLEM WITH

DISCSP ALGORITHMS

A. The ADE algorithm

There have recently been many publications on DisCSP

algorithms. Traditionally these algorithms are developed and

demonstrated in the context of the Meeting Scheduling and

Sensor Network problems as discussed at the beginning of this

paper. Often the techniques used in these algorithms combine

tree-search with backtracking, look-ahead, and back-jumping.

However, there are some characteristics that make the QoS

composition problem different from the Meeting Scheduling

and Sensor Network problems:

• Each agent holds more than one variable.

• Each agent holds a set of interested QoS parameters and

the variables that represent these parameters.

• Local constraints in QoS problem can be very complex.

• Provider agents are not willing to reveal their consumer

agents’ addresses to others.

process-ok(<xj ,sj ,hj>) do
1. if(history(xj) invalidates hj) return;

2. add <xj ,sj ,hj> to agent-view

3. update nogood list store

4. check-agent-view

process-nogood(Aj ,¬N) do
1. update agent-view for any new assignments in ¬N

2. send setup channel request to Aj

not connected agents in A− which

hold unknown variables in ¬N

3. if ¬N is invalid return;

4. insert ¬N into the nogood list

5. update nogood list store

6. check-agent-view

process-channel(<Aj , xj ,paj>) do
1. setup relay-channel for Aj

Fig. 5. AAS ok?, nogood and channel processing

• Agents may want to hide private information from others

as much as possible.

In searching for a suitable DisCSP algorithm, those above

characteristics are the most important criteria for us. Whilst

most algorithms such as ADOPT and IDIBT can be extended

so that one agent can hold more than one variable, substantial

effort is required for this and for handling complex private

constraints. In addition, the back-jumping technique in some

algorithms require undesirable revelations of agent consumers’

addresses to others. Asynchronous Aggregate Search (AAS)

[16] is a good candidate since it allows one agent to maintain

a set of variables and these variables can be shared. AAS

differs from most of existing methods in that it exchanges

aggregated consistent values (in contrast to a single value

in ABT) of partial solutions. This reduces the number of

backtracks. However, private information is revealed more in

AAS than in ABT because of the aggregation,. Using trusted

servers where critical information of organizations is hosted to

prevent privacy loss is not very practical for Web services. In

this work, we rate privacy as the most important issue. Also,

our goal is to develope a simple but effective algorithm in

which agents can exploit special characteristics of the QoS

composition problem. As such, we propose an extension of

AAS with three following enhancements and modifications:

• Incorporating local CSP solvers into agents to solve

complex private constraints.

• Making use of common characteristics of QoS parameters

to speed up the solving process.

• Reducing the aggregation in AAS into one value per

variable to reduce privacy loss.

Similar to AAS, in our algorithm called constraint satis-

faction Algorithm for Distributed Environment (ADE), agents

are assigned with priorities so that they can be arranged in

order. A composite Web service provider always has higher

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 15,2010 at 05:46:27 EDT from IEEE Xplore. Restrictions apply.

priority than the providers of its components. Every agent

proceeds with a similar process. Information about the outside

world learnt by each agent is stored in an agent view and

a nogood list. An agent view is a set of values that the

agent believes to be assigned to the variables belonging to

the higher priority agents. Agents exchange assignments and

nogoods. An assignment has the form {∧i=1
m (xi=ai),hj ,pak}

which indicates that the variable xi is assigned a value ai. hj

is the message history [16], pak is the pseudo-agent address

and will be explained later. The assignment is an AAS aggre-

gation of single value. A nogood list holds the assignments

of values to the variables during the solving process which

cause inconsistency. ‘ok?’, or ’nogood’ messages are used

as in AAS. The ‘ok?’ message is used to inform the lower

priority agents of new value assignments. A nogood is used

to backtrack the assignment that causes inconsistency between

constraints. In Figure 6, we use A+ to denote the set of agents

that are linked to A and have priorities higher than the priority

of A. Similarly, A− is denoted as the set of agents that are

linked to A and have priorities are lower than the priority of

A. V+ is the set of variables the agent share with A+, and

V− is with A−. As illustrated in Figure 6, when an agent

receives an ‘ok?’ message, it validates the message and adds

the assignment in the message into its local view. It then

checks the local view consistency. To handle the complexity of

local constraints, we use a local CSP solver inside each agent.

In the check-local-view procedure, first the agent updates any

new assignment. It detects if there is any unknown variable

in the assignment. If there is such a variable then the agent

asks the message sender to setup a relay channel so that it can

communicate to the agents who hold this variable. In addition,

it generates a pseudo-agent address for each of those agents.

These pseudo-agent addresses will be mapped to the actual

agent addresses at the sender. In essence, the relay channel
is equivalent to the add-link mechanism in ABT. However it

protects an agent from revealing its address to unknown agents

by relaying all messages through a known agent. In the check-
local-view, if the agent view is inconsistent then the agent’s

local CSP solver is invoked to find new value assignments for

this agent’s variables. If a solution is found, the agent sends

new ’ok?’ messages with the assignments to the lower priority

agents; otherwise, it sends a nogood message back to the ’ok?’
message sender. The detailed description of the extended AAS

algorithm and performance analysis is a subject of another

paper (under review).

In the context of Web service composition, QoS parameters

have particular characteristics that normal constraint variables

have not. Agents (service providers) often have had their con-

straint preference as a monotonic function over a QoS value. In

other words, there is a preference operator
 defined between

any two values a(1) and a(2) in the domain of variable x. If a(1)

 a(2) then we say that the agent prefers a(2) to a(1) for x. In

addition, this operator can also be defined in the aggregation

of assignments as following:
∧

i=1
m (xi=a1

i)

∧

i=1
m (xi=a2

i)

if ∀i=1..m a1
i
a2

i. Note that this relation defines only on

a subset of the Catersian products of aggregatations. The

check-agent-view do
1. when agent-view and current-aggregate

are inconsistent

2. V =localCSP.solve(agent-view,

nogood-list, local-constraints)

3. if V is null

4. backtrack

5. else
6. reset current-aggregate

7. for ∀ a∈ V do

8. if a is new for A+
k

9. append new history and send ok message

to A+
k

10. current-aggregate = current-aggregate∩a

11. else
12. if a is needed

13. current-aggregate=current-aggregate∩a

Fig. 6. AAS check-agent-view

preference for A2 in Figure 2, for example, can be that

t(FindAttraction)=1
∧

c(FindAttraction)=5

t(FindAttraction)=2

∧
c(FindAttraction)=4

While the ADE algorithm follows the principles of AAS, the

local CSP solver uses a new heuristic for selecting new values.

When a new assignment is generated a heuristic criterion

could be to choose the value with not less preference (if it is

comparable to the previous rejected assignments) to the lower

priority agent. This preference is further exploited in our Fuzzy

DisCSP algorithm in the next section.

B. FADE algorithm

Our Fuzzy constraint satisfaction Algorithm for Distributed

Environment (FADE) algorithm is an extension of ADE for

Web service providers with preferences. As pointed out in

[8], a FCSP can be modelled as a collection of crisp CSPs

at different levels of constraint satisfaction. Using the well-

known principle of the resolution identiy [20,21] in fuzzy

set theory each fuzzy constraint C
f
j in definition 2 can be

decomposed into a union of non-fuzzy (crisp) constraints that

are its α-cuts as follows:

C
f
j (x)=

∑
αCf,α

j (x)

in which Cf,α
j (x) is an α-cut of C

f
j defined as

Cα(x) ={x | μCf
j

(x) ≥α, 0 ≤α ≤ 1},∑ is the union of Cf,α
j .

Figure 8 shows an example of four α-cut levels at 0.25, 0.50,

0.75, and 1.0 for fuzzy constraints on three different agents.

Following the resolution identity principle, all operations on

fuzzy constraints can be performed on the collection of crisp

constraints corresponding to the same α-cut levels. A Fuzzy

DisCSP in general can be considered as a union of crips

DisCSPs at different levels of constraint satisfactions:

DFCSP =
∑

αDisCSPα

where any solution of a DisCSPα has a satisfaction degree

greater or equal α. The solution of the Fuzzy DisCSP in

definition 2 is to find a solution at the highest α-cut level.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 15,2010 at 05:46:27 EDT from IEEE Xplore. Restrictions apply.

Fig. 7. Searching on different α-cut levels for agents with different
satisfaction priorities

This hints us to start searching from the highest α-cut level

and move down rather than solving all DisCSPα. This is also

the principle of our algorithm.

FADE models the Fuzzy DisCSP as a set of crisp DisCSPs

at different α-cut levels. It solves a crisp DisCSP by using

the ADE algorithm. The solving process starts by having on

agents agree on a set of α-cut levels. At each agent, the search

begins from the highest level. If a solution in this level can not

be found, the search then concedes to the next α-cut level. It is

important to know that at the begining every agent start with

their highest α-cut levels of 1.0. However during the search,

these α-cut levels can become different. Figure 8 illustrates

this. Assuming that the satisfaction priorities of agents in the

figure decrease from left to right. The figure depicts a search

running on the shaded areas: at the α-cut level of 0.75 for the

left-hand side agent, 0.5 for the middle agent, and 0.25 for the

right-hand side agent. Agents with higher satisfaction priority

have higher α-cut level at any instance of time if possible. In

more details, the solving process of Fuzzy DisCSP happens

in three phases: α-cut level forwarding, DisCSP solving, and

level conceding. The second and third phases can be iterative.

In the level forwarding phase, every agent forward their α-

cut levels of preference to others and together they assemble

a global set of α-cut levels. In the DisCSP solving phase,

the agents use asynchronous backtracking technique (ADE

algorithm) to solve the crisp DisCSP at assigned α-cut levels.

The third phase is triggered by the second phase when no

solution can be found. Agents which causes no solution,

starting from the ones with lowest satisfaction priority, are

asked to move to the next α-cut level. The second and third

phases are iterated util the time that a solution is found.

In FADE, in addition to the nogood content in a nogood

message. The sender also creates the explanation for this

nogood and sends along with the nogood message. The expla-

nation is created as follows. An agent during the search for a

new solution in check-local-view procedure, it takes the union

of violated constraints. If the union set is not empty, then all

α-cut constraints in this set forms the explanation. Otherwise,

the set of α-cut constraints in every recorded nogoods plus the

current α-cut constraint make up the explanation. The receiver

of the nogood message records this explation in assocation

with the nogood and remove any nogood with have the α-

cut level greater than the current searching α-cut level. These

Fig. 8. Different J4WSM system components

Fig. 9. FADE improvements over Iterative DisCSP algorithm [6] for agents
with the same satisfaction priorities

remove possible duplicated searches at different α-cut levels

and hence increase the efficiency of the overall search.

VI. IMPLEMENTATION

In this part, we describe our initial agent-based implemen-

tation of a framework for DisCSP with our toolkit J4WSM

(Jade for Web Services Management) to support our proposal.

J4WSM is a re-factor of our previous toolkit called WS2JADE

that integrates Jade agents with Web services [14], towards WS

management. J4WSM, which consists of a Jade agent platform

and other utilities including WS4JADE, runs as a service

inside a J2EE container. In this initial version, J4WSM runs

under JBoss. J4WSM is similar to Blue-Jade [4] but targets

Web Services Management particularly. J4WSM is designed

to use services instead of making API calls.

A. FADE algorithm

The main components in J4WSM consists of three main

modules: constraint formations, local CSP solver and DisCSP

protocols. The constraint formation module is to construct and

keep the constraints available at each provider. Constraints in

J4WSM are presented in XPath expressions. At this version,

constraints are created from composite service structures (in

BPEL format) by using the algorithm specified in Section

3. In J4WSM, we do not specify any particular CSP solver

engines. Different CSP solver engines can be used as long

as there is an adapter which can translate XPath expressions

into the CSP solver languages. For our experiment, we use

NSolver [15] for the local CSP solver. Whenever a provider

needs to solve the local constraints, it invokes NSolver to

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 15,2010 at 05:46:27 EDT from IEEE Xplore. Restrictions apply.

find a solution. We have developed an adapter to translate

XPath expression into NSolver on the fly. This adapter can be

downloaded from [20]. In this version, J4WSM only supports

one Fuzzy DisCSP protocol which corresponds to the FADE

specified in the previous part. This protocol is developed as an

interaction protocol in Jade. Each provider in the DisCSP is

represented by a Jade agent. These agents must understand

a protocol and agree to use it before the solving process

can start. Different components in J4WSM are presented in

figure 8. Figure 9 shows the improvement of FADE over the

interative DisCSP algorithm in [6]. The graph shows the aver-

age improvement of 10 trials for each value in the horizonal

axis. The improvement is measured in term of processing

cycles which has been poplular used to compare performance

between different DisCSP algorithms. For each agent, one

cycle consists of reading all incoming messages, invoking its

CSP solver to find a solution and sending messages [23]. It

can be seen that the reduction of cycle increases with the

number of agents and reaches around 90% for 15 agents.

The structure of the composition in this experiment is built

incrementally by adding one agent each time from the first

agent A1 until a balanced binary tree with depth =4 (i.e there

are 15 agents in total) is formed. The experiment is carried out

for two parameters: cost and response time. Each agent Ak has

a business rule: c(Ak) ≥ max{T 0−t(Ak),0}
T 0

CT in addition to the

constraints deduced from the structure of its own composite

service: t(Ak)=town(Ak)+
∑

∀Aq∈A+
k
t(Aq),c(Ak)=cown(Ak)

+
∑

∀Aq∈A+
k
c(Aq) in which t(Ak)and c(Ak)are response time

and cost of the composite service at Ak, town(Ak) and

cown(Ak)are response time and cost introduced by Ak’s own

service respectively. In the experiment, the domain of the

cost variable for an agent with depth=i is [1..25−i] and the

domain of this agent’s time response variable is also [1..25−i].

T0=4ms and CT =1$. Each provider has a reference function

described by a fuzzy membership function with four crisp

numbers at the levels of 1.0, 0.75, 0.5 and 0.25. The purpose

of this experiment setup is to mimic a real scenario of

Web service composition and demonstrate the applicability of

DisCSP technique into the QoS composition problem. Figure

10 shows a debug trace for 4 agents with J4WSM in which the

agent performative PROPOSE is used for ok? and REJECT-

PROPOSAL is for nogood.

VII. CONCLUSIONS

This paper proposes a new approach of Fuzzy DisCSP

application into the QoS composition problem. An algorithm

to construct constraints from the composition topology is

proposed. We also develop an enhanced version of AAS for

multiple variables with a new heuristic for distributed agents

to exploit QoS parameters’ characteristics. In addition, the

iterative algorithm to solve the QoS composition problems

with different Web service providers’ preferences - FADE is

described. Our future work will concentrate on a framework

which allows agents to exchange not only assignments but

also possible constraints during the solving process, as a part

of J4WSM toolkit. We believe that this is beneficial for the

QoS composition problem and useful in developing new Fuzzy

DisCSP algorithms for the solving process.

REFERENCES

[1] V. Agarwal, K. Dasgupta, N. Karnik, A. Kumar, A. Kundu, S. Mittal,
and B. Srivastava. A service creation environment based on end to
end composition of web services. In WWW ’05: Proceedings of the
14th international conference on World Wide Web, pages 128–137, New
York, NY, USA, 2005. ACM Press.

[2] S. Ali, S. Koenig, and M. Tambe. Preprocessing techniques for
accelerating the dcop algorithm adopt. In AAMAS ’05: Proceedings
of the fourth international joint conference on Autonomous agents and
multiagent systems, pages 1041–1048, New York, NY, USA, 2005. ACM
Press.

[3] R. Bejar, B. Krishnamachari, C. Gomes, and B. Selman. Distributed
constraint satisfaction in a wireless sensor tracking system. In Workshop
on Distributed Constraints, IJCAI, 2001.

[4] G. M. Cowan, D. and B. B. BlueJade-A service for managing software
agents. Hp technical report, HP, Murray Hill, New Jersey, 2002.

[5] X. Gu, K. Nahrstedt, R. Chang, and C. Ward. Qos-assured service
composition in managed service overlay networks, 2003.

[6] K. Hirayama and M. Yokoo. An approach to overconstrained distributed
constraint satisfaction problems: Distributed hierarchical constraint sat-
isfaction, 2000.

[7] M. C. Jaeger, G. Rojec-Goldmann, and Mühl. QoS aggregation for
service composition using workflow patterns. In Proceedings of the
8th International Enterprise Distributed Object Computing Conference
(EDOC 2004), pages 149–159, Monterey, California, USA, 2004. IEEE
CS Press.

[8] R. Kowalczyk. On negotiation as a distributed fuzzy constraint satisfac-
tion problem. In Proceedings of the Third International Symposium on
Soft Computing for Industry of the World Automation Congress, pages
631–637, 2000.

[9] Y. Liu, A. H. Ngu, and L. Z. Zeng. Qos computation and policing in
dynamic web service selection. In WWW Alt. ’04: Proceedings of the
13th international World Wide Web conference on Alternate track papers
& posters, pages 66–73, New York, NY, USA, 2004. ACM Press.

[10] X. Luo, N. Jennings, N. Shadbolt, H. Leung, and J. Lee. A fuzzy
constraint based model for bilateral multi-issue negotiations in semi-
competitive environments.

[11] X. Luo, J. H. man Lee, H. fung Leung, and N. R. Jennings. Priori-
tised fuzzy constraint satisfaction problems: axioms, instantiation and
validation. Fuzzy Sets Syst., 136(2):151–188, 2003.

[12] D. A. Menasce. Composing web services: A qos view. IEEE Internet
Computing, 8(6):88–90, 2004.

[13] P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo. Adopt: Asyn-
chronous distributed constraint optimization with quality guarantees.

[14] X. T. Nguyen. Demonstration of ws2jade. In AAMAS ’05: Proceedings
of the fourth international joint conference on Autonomous agents and
multiagent systems, pages 135–136, New York, NY, USA, 2005. ACM
Press.

[15] NSolver home page. www.cs.cityu.edu.hk/ hwchun/nsolver/, 2005.
[16] M. C. Silaghi and B. Faltings. Asynchronous aggregation and con-

sistency in distributed constraint satisfaction. In Artificial Intelligence
Journal Vol.161, pages 25–53, New York, NY, USA, 2005. ACM Press.

[17] B. Srivastava and J. Koehler. Web service composition - current solutions
and open problems. In ICAPS 2003 Workshop on Planning for Web
Services, 2003.

[18] W. M. P. van der Aalst. Don’t go with the flow: web services composition
standards exposed. IEEE Intelligent Systems, 18(1):72–76, 2003.

[19] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and
A. P. Barros. Workflow patterns. Distrib. Parallel Databases, 14(1):5–
51, 2003.

[20] XPath Adapter for NSolver. www.it.swin.edu.au/centres/ciamas/tiki-
index.php?page=xpath2nsolver, 2005.

[21] Web Services Choreography Description Language Version 1.0.
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/, 2006.

[22] M. Yokoo. Asynchronous weak-commitment search for solving dis-
tributed constraint satisfaction problems. In Proc. 1st Intrnat. Conf. on
Const. Progr., pages 88–102, Cassis, France, 1995.

[23] M. Yokoo and K. Hirayama. Algorithms for distributed constraint
satisfaction: A review. Autonomous Agents and Multi-Agent Systems,
3(2):185–207, 2000.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 15,2010 at 05:46:27 EDT from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

