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Preface

The Border Gateway Protocol (BGP) is the de-facto inter-domain routing protocol responsi-

ble for exchanging Network Reachability Information (NRI) between Autonomous Systems

(ASes). Unfortunately, BGP was developed at a time when the information exchanged be-

tween its participants could be assumed to be accurate and therefore it is vulnerable to dif-

ferent types of attacks. Detecting BGP anomalies has attracted many researchers to identify

and/or mitigate anomalous BGP traffic that can affect business relationships between Internet

Service Providers (ISPs) as well as its effect on the Internet stability and reliability. However,

the characteristics of BGP traffic have not well understood. For example, what are the char-

acteristics of normal and anomalous BGP traffic? What are the characteristics of BGP routers

when forwarding normal traffic and when forwarding anomalous BGP traffic?

The research of this thesis arose from the above questions. In this thesis, I introduce a

novel scheme that can differentiate between normal background BGP traffic and anomalous

traffic. My scheme is based on using Recurrence Quantification Analysis (RQA), an advanced

non-linear statistical analysis technique which uses the concepts of phase plane trajectory.

This scheme can rapidly detect BGP anomalies as well as other hidden anomalous periods in

the underlying system behaviour.

The research described in this thesis has attracted considerable industry support:

• I was awarded a grant of $AUD 28,518 from Information Society Innovation Fund

(ISIF) under the category of the Asia-Pacific Network Information Center (APNIC)

Internet Operations Research Grants for the project titled “Rapid detection of BGP

anomalies” [1]. The selection process was very competitive where only 10 projects

were selected from more than 300 submissions. The grant is being used for the devel-

opment of a new version of the BGP Replay Tool (BRT) v0.1 [2], a tool to replay past

BGP updates with time stamps, and software that makes use of my RQA scheme. The

BRT v0.2 is available on [3] and the software is available on [4].

• I was awarded a Student Travel Grant (STG) for 5th PhD School on Traffic Monitoring

and Analysis 2015 (TMA2015) in Barcelona, Spain during April 21-22, 2015.
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• I have been granted access to Virtual Internet Routing Lab (VIRL) under academic

license [5]. I used this extensively for my experimental work and development of the

software for the ISIF funded project.

• Cisco Systems have supported my research work with a substantial grant to support me

during my candidature which I gratefully acknowledge.

• I have been granted all registration and travel costs, under an ISIF grant, to introduce

the RQA scheme and BRT v0.2 at APNIC 44, technical operations II session, that was

held in Taichung, Taiwan 12-14 September 2017 [6].

Much of the material of the thesis has been published in a refereed journal and presented at

refereed conferences:

• The material in Chapter 2 is based on the IEEE COMST article (B. Al-Musawi, P.

Branch, and G. Armitage, “BGP Anomaly Detection Techniques: A Survey,” IEEE

Communications Surveys Tutorials, vol. 19, no. 1, pp. 377–396, First quarter 2017) [7]

where we1 introduce our definition of anomalous BGP traffic and unstable BGP traffic.

This paper discusses and classifies BGP anomalies and reviews the 20 most significant

techniques used to identify them. Our classification is based on the broad category

of approaches, BGP features used to identify the anomaly, effectiveness in identifying

the anomaly and effectiveness in identifying which AS was the location of the event

that caused the anomaly. We also discuss a number of key requirements for the next

generation of BGP anomaly detection techniques.

• A paper based on modelling BGP speakers as a dynamic system and introducing the

RQA approach to detecting BGP anomalies forms the basis of Chapter 4. This work

was presented at the IEEE International Performance Computing and Communications

Conference (IPCCC) in Nanjing, China 2015 (B. Al-Musawi, P. Branch, and G. Ar-

mitage, “Detecting BGP instability using Recurrence Quantification Analysis (RQA))

[8]. We were delighted when one of the founders of RQA (Dr. Norbert Marwan) re-

quested a copy of this paper whose comment on it was “Great! Thank you very much

for this interesting paper! Nice work!”.

• A paper based on using linear and non-linear statistical analysis showing that BGP traf-

fic has recurrent behaviour caused by unsynchronised periodic behaviour from a set

of ASes. This paper was presented at International Telecommunication Networks and

1Although the author uses “we” and “our” rather than “I” and “my”, the work described is the author’s own

except where noted.
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Applications Conference ITNAC 2017, Melbourne, Australia 2017 (B. Al-Musawi, P.

Branch, and G. Armitage, “Recurrence Behaviour of BGP Traffic”) [9].

During the research work for this thesis and as part of the concurrent ISIF supported project I

have developed or contributed the following open source software:

• BRT v0.1, a tool to replay past BGP updates and events. BRT v0.1 is described in the

technical report (B. Al-Musawi, P. Branch, and G. Armitage, “BGP Replay Tool (BRT)

v0.1,” Centre for Advanced Internet Architectures, Swinburne University of Technol-

ogy, Melbourne, Australia, Tech. Rep. 160304A, 04 March 2016.) [2].

• BRT v0.2 was developed using the ISIF grant to support peering with different BGP

speakers operating systems such as Quagga and real Cisco routers. BRT v0.2 also sup-

ports IPV6 [10].

• The material of Appendix A is based on the content of the technical report that describes

BRT v0.2 (B. Al-Musawi, R. Al-Saadi, P. Branch, and G. Armitage, "BGP Replay Tool

(BRT) v0.2", I4TRL Technical report 170606A, 06 June 2017).

The contributions of this thesis can be summarised as:

• Define unstable BGP traffic and anomalous BGP traffic;

• Classify BGP anomalies into four main categories, these being direct intended anomaly,

direct unintended anomaly, indirect anomaly, and link failure;

• Discuss key requirements for the next generation of BGP anomaly detection techniques;

• Demonstrate that unstable BGP traffic from a single BGP speaker has the characteristics

of a periodic behaviour;

• Show that BGP routers generate traffic that has the characteristics of being non-linear,

determinism, and stable;

• Show that the aggregate BGP traffic for a set of unstable ASes has the characteristic of

a recurrence behaviour;

• Demonstrate that the RQA approach is able to differentiate between normal but unstable

BGP traffic and anomalous BGP traffic;

• Introduce BRT, a new tool that can help researchers and operators replay past BGP

updates with time stamp;
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Abstract

The Border Gateway Protocol (BGP) is the Internet’s default inter-domain routing protocol

that manages connectivity among Autonomous Systems (ASes). BGP is an incremental pro-

tocol where, after the initial transfer of a full routing table, BGP traffic to peers should only

reflect underlying topology or traffic engineering changes. Unfortunately, most BGP traf-

fic consists of announcements, updates and withdrawals unrelated to any underlying network

management goals. We define such BGP traffic as unstable BGP traffic as long as it does not

disseminate the business relationship between Internet Service Providers (ISPs) or threaten

BGP operation. We define ASes that originate unstable BGP traffic as unstable ASes.

BGP was developed at a time when information provided by an AS was assumed to be

accurate. Although many attempts have been made to improve its security, BGP is still vul-

nerable to different types of anomalous events. BGP anomalies are rare but can cause great

damage when they occur. The consequences of these anomalies can range from a single to

thousands of anomalous BGP updates. These consequences have threatened Internet perfor-

mance and reliability. Identifying BGP anomalies is a challenging task where BGP traffic has

been characterised to be noisy, voluminous, and complex. Furthermore, unstable BGP traffic

has the effect of masking anomalous traffic.

Recent statistics and trends of BGP anomalies show approximately 20% of BGP anoma-

lies lasted less than 10 minutes but were able to pollute 90% of the Internet in less than 2

minutes. These statistics demonstrate the need for rapid detection of BGP anomalies. Early

detection of BGP anomalies enables network operators to protect their network from the worst

consequence of the anomalous behaviour and helps to improve Internet stability. Current ap-

proaches tend to be slow and require substantial historical data.

To overcome these challenges, this thesis proposes a novel scheme to detect BGP anoma-

lies based on Recurrence Quantification Analysis (RQA). RQA is an advanced non-linear

statistical analysis technique using phase space concepts. RQA can identify BGP anomalies

rapidly. RQA can also identify abnormal hidden behaviour in the underlying BGP traffic that

may otherwise pass without observation. Using the past and emulated BGP anomalies, we

demonstrate that RQA can detect BGP anomalies within 62 seconds using 1200 seconds of

historical BGP updates.
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The main contribution of this thesis is to demonstrate that RQA can be used to detect

anomalous BGP events rapidly. We apply RQA to well known BGP events and also to con-

trolled experiments which we carried out on our network testbed.

We also demonstrate that background BGP traffic can be well described as the aggregation

of unsynchronised periodic traffic with different frequencies. This behaviour is widespread

and can last for months or even years.

Finally, we model BGP speakers (a router or a device that runs BGP) as dynamic systems

using the concepts of phase space trajectory. Our modelling shows that BGP speakers generate

traffic that have the characteristics of being non-linear, deterministic, and stable.
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Chapter 1

Introduction

Today the Internet provides the communication infrastructure for modern commerce, educa-

tion, entertainment and health services. Because of society’s increasing reliance on the Inter-

net, its reliability and security are of critical concern. The Internet has been subjected to many

types of attacks such as Denial of Service (DoS), hijacking of hosts and servers, and threats

to routing protocols [11]. Internet routing is divided into two levels. These are intra-domain

routing and inter-domain routing. Intra-domain routing protocols refer to Interior Gateway

Protocols (IGP) such as Open Shortest Path First (OSPF) to ensure traffic exchange within an

Autonomous System (AS), a set of routers under a single technical administration unit. Inter-

domain routing protocols include Exterior Gateway Protocols (EGPs) such as Border Gateway

Protocol (BGP) to ensure Network Reachability Information (NRI) between Autonomous Sys-

tems (ASes).

BGP is the Internet’s default inter-domain routing protocol that manages connectivity

among ASes. It was developed at a time when information provided by an AS could be

assumed to be accurate. Consequently, BGP did not provide any authentication measures for

advertising routes [12–14]. Several methods and proposals have since been introduced to im-

prove the security of BGP. These can be classified into four broad categories: cryptographic

based prevention, anomaly mitigation, mitigation of unstable route propagation, and anomaly

detection. Cryptographic approaches [15, 16] use Public Key Infrastructure (PKI) to ensure

the authentication of routing announcements to minimise the risk of hijacking. Anomaly miti-

gation approaches [17, 18] propose ignoring or delaying suspicious route updates by the oper-

ators after detecting them. None of these approaches, however, offer a combination of suitable

performance, adequate security, and deployable support infrastructure [14]. Moreover, these

proposals are not able to mitigate BGP misconfiguration and some forms of BGP hijacking

[19, 20]. Mitigating propagation of unstable routes such as described in [21] and [22] has been

proposed as a way of limiting the propagation of unstable BGP routing information. Finally,
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anomaly detection approaches such as [8, 23, 24] aim to discover anomalous information or

behaviour in BGP traffic and raise an alarm or take other action. Rapid detection of BGP

anomalies is the topic of this thesis.

BGP is vulnerable to anomalies such as hijacking, misconfiguration and DoS attacks. The

consequences of these anomalies can range from a single to thousands of anomalous BGP

updates. These consequences have threatened Internet performance and reliability [8]. Recent

statistics on BGP performance show approximately 20% of the hijacking and misconfigura-

tions lasted less than 10 minutes but were able to pollute 90% of the Internet in less than 2

minutes [23]. These statistics demonstrate the need for a new technique that can detect BGP

anomalies in real-time. Real-time detection of BGP anomalies enables network operators to

protect their network from the worst consequence of the anomalous behaviour and mitigates

the propagation of BGP anomalies that threaten Internet stability. In this thesis, we introduce

a new detection scheme that can detect BGP anomalies quickly. It can also detect hidden

anomalous behaviour in the underlying system behaviour that may pass without observation.

The rest of this chapter is organised as follows. In Section 1.1, we discuss the challenges of

detecting BGP anomalies and introduce our definitions of unstable BGP traffic and anomalous

BGP traffic. In Section 1.2, we discuss the need for a technique that can differentiate be-

tween unstable and anomalous BGP traffic. We also discuss our contributions in more details.

Finally, we present the organisation of this thesis in Section 1.3.

1.1 Research motivations and objectives

BGP is a path vector protocol responsible for managing NRI between ASes with guarantees of

avoiding routing loops [25]. ASes are not bound by physical relationships but reflect business

and organizational relationships. BGP is a routing policy protocol where ISPs configure their

BGP routers to apply business relationships. ISPs may also apply traffic engineering to control

the direction and load balance of traffic through path prepending [26]. In this environment, it

can be difficult to define what is meant by an anomaly. To obtain a satisfactory definition, it

is necessary to consider the purpose of BGP and how specific BGP activity does or does not

contribute to that purpose. BGP’s purpose is to further the business goals of an organisation in

providing its NRI to other organisations. Any BGP activity that does not contribute to those

business goals or undermines them can be considered anomalous. Unfortunately, It can be

very difficult to determine whether or not a particular activity is or is not furthering those

goals. For example, BGP updates that do not reflect underlying topology changes may be

anomalous. They might be the consequence of route flapping where routes are repeatedly

announced and then soon after withdrawn. Such activity is anomalous. However, changes that
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do not reflect underlying topology changes might also be a consequence of traffic engineering

where some routes are preferred over others because they use under-utilized link capacity.

Such activity is not anomalous even though it may not reflect underlying topology changes.

Even when BGP activity does not contribute to the business goals of the AS not all such

activity can be regarded as being of equal significance. There is a spectrum of anomalous

behaviour from relatively harmless to highly harmful. For example, route flapping, although

it consumes router and link resources, is relatively harmless. Further along the harm spectrum

might be path announcements that add unnecessary delay to routed packets. Further still

might be path announcements whose purpose is directing traffic via nodes where it can be

collected and exploited for surveillance or intelligence purposes. At the far end of the spectrum

might be where routes are announced that direct the traffic to a destination where it is dropped

(“blackhole-ing”).

We differentiate between anomalous behaviour that does not threaten BGP’s ability to dis-

seminate accurate NRI and harmful anomalies that do. We define BGP traffic generated by the

first type as an instability. We refer to the second type as an anomaly and its consequences of

BGP traffic as anomalous traffic. For example, route flapping may cause long term instabili-

ties while traffic engineering may result in short term instabilities. Neither is a direct threat to

the ability of BGP to communicate reachability information. However, a misconfiguration by

BGP router operators can result in announcing used and/or unused prefixes which is a threat.

The process of differentiating between unstable and anomalous BGP traffic is a challenge.

In the years since it was widely deployed, many types of anomalies have been recorded,

including hijacking, misconfiguration by operators, link failure and DoS attacks. It is worth

noting that it is not just direct attacks on BGP that can cause anomalies and instability. Al-

though malware such as Nimda and Slammer were directed at web servers, BGP routing was

also affected during these attacks [27, 28]. An example of misconfiguration is the Pakistan

Telecom incident. In response to a censorship order from its government, the major ISP in

Pakistan advertised an unauthorised YouTube prefix causing many ASes to lose access to the

site [29]. The panix.com domain incident is an example of hijacking. On 22 January 2006

AS27506 hijacked the panix.com domain causing loss of connectivity for several hours [30].

Other hijacks have continued for long periods without detection. An example is the Link Tele-

com incident when an attacker obtained control of the company’s prefixes for approximately

6 months and used them to send spam e-mails [31].

In addition to reported events, many events are unreported or even unnoticed [32]. A recent

statistical analysis on BGP performance for a period of 10 years beginning from 2001 shows

that the huge growth in the size of the Internet was leading towards increased instability [33].

Shi et al. [23] presented statistics and trends of bogus routes in the Internet over a period
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of 1 year from May 2012. During this period, around 40k bogus routes (routes that should

not appear on the Internet) were detected. Among the causes of these bogus routes, there

were 193 BGP hijacks and 27 misconfigurations. These statistics demonstrate the need for

rapid (within seconds) detection of anomalous BGP traffic caused by different types of BGP

anomalies. Rapid detection of BGP anomalies helps ISPs protect their networks and mitigate

the propagation of anomalous BGP traffic. In the next section, we introduce our contributions

into BGP anomaly detection research.

1.2 Contributions

Although unstable BGP traffic is relatively harmless, it has the effect of masking anomalous

traffic that indicates potentially harmful accidental or deliberate anomalies. A technique is

needed that can rapidly distinguish between normal background and potentially harmful BGP

traffic. For that purpose, we focus on finding the characteristics of normal-but-unstable BGP

traffic and the characteristics of anomalous BGP traffic. We also focus on finding the charac-

teristics of BGP speakers when forwarding normal-but-unstable traffic and when forwarding

anomalous BGP traffic. Identifying these characteristics helps to choose a suitable technique

that can differentiate between anomalous and unstable BGP traffic. These characteristics help,

in addition, to understand BGP behaviour over time. In this thesis, we provide the following

contributions:

First, we show that the complex and noisy BGP traffic can be understood as an aggregation

of oscillations of different frequencies from different ASes. Using linear statistical analysis,

we show that unstable ASes show a significant level of periodic behaviour in terms of sending

BGP updates. We also investigate BGP traffic related to unstable ASes and show that although

some unstable AS behaviour lasted for many years and others for a short time, the characteris-

tic of periodicity in BGP traffic is persistent and can be seen in BGP traffic at least since 2005.

However, although BGP traffic related to individual unstable ASes shows reasonably periodic

behaviour, the aggregated BGP traffic for a set of unstable ASes does not show a structure of

periodicity.

Second, we model a BGP speaker as a dynamic system sending BGP updates and path

lengths depending on BGP messages received from neighbours and local routing policies.

Our modelling is based on using phase plane trajectory. Modelling BGP speakers as dynamic

systems helps to understand and predict BGP speaker behaviour over time. The outcome of

our modelling shows that BGP traffic sent by BGP speakers has the characteristics of being

stable, deterministic, and non-linear.

Third, using the outcome of our modelling we use Recurrence Plot (RP), an advanced non-
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linear statistical analysis technique. RP is used to visualise the time-dependent behaviour of

the dynamics of a system as a square matrix where each element corresponds to a point in time

states. Using RPs enables us to identify the structure of the aggregated BGP traffic. By using

RPs, we can see that the aggregated BGP traffic has the characteristic of recurrent behaviour.

The source of this characteristic is the unsynchronised periodic traffic sent by unstable ASes.

Fourth, we introduce a novel scheme to detect BGP anomalies based on Recurrence Quan-

tification Analysis (RQA), a non-linear data analysis method to quantify the number and du-

ration of recurrent behaviour in dynamic systems. We show that RQA is able to differentiate

between normal-but-unstable BGP traffic and anomalous traffic that identifies anomalies. In

addition to the ability of RQA to rapidly (within 62 seconds) detect BGP anomalies, RQA

scheme can also identify hidden anomalous behaviour that may pass without detection. Us-

ing well-known and emulated BGP events, our RQA scheme can detect all well-known BGP

anomalies as well as hidden unobserved anomalies.

Figure 1.1 shows the design of RQA scheme for detecting BGP anomalies. The input of

our scheme is BGP traffic sent by a BGP speaker which is intended to be monitored while the

output is an alarm identifying detection of BGP anomalies. This RQA scheme is comprised

of four stages. The first stage is simply extracting BGP features from the input BGP traffic.

The second stage represents the process of calculating RQA measurements for each BGP

feature. At the third stage, we identify significant changes in RQA measurements, which

reflect behaviour changes in the underlying BGP traffic, based on past RQA measurements.

The output of this stage is an alarm for each RQA measurement. The last stage of RQA

scheme is a logical OR for all RQA measurements alarms.
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1.3 Thesis organisation

This thesis is organised into six chapters. In Chapter 2, we provide an overview of BGP, BGP

anomalies, BGP data sources, and discuss the most significant techniques used to identify

BGP anomalies. We classify BGP anomalies into four main categories, these being direct

intended anomaly, direct unintended anomaly, indirect anomaly, and link failure. We also

classify BGP data sources for detecting BGP anomalies into three main categories: BGP raw

data and route registry database as well as other less commonly used sources. We then explore

BGP anomaly detection techniques in terms of their approaches, type of BGP data and features

used, ability to identify different types of anomalies and their source causes, the network from

which the anomaly originated. Finally, we discuss a number of key requirements for the next

generation of BGP anomaly detection techniques, these being real-time (in seconds) detection,

differentiation between types of BGP anomalies, and identification of the source network of

the BGP anomaly.

In Chapter 3, we present the concepts of phase plane trajectory, RPs and RQA. Interpret-

ing phase trajectories and RPs is explored and discussed. We also explore RQA measurements

and how these measurements change to reflect changes in the input data. To understand how

RQA measurements change based on the input data and determine the most suitable RQA

measurements to detect anomalous behaviour, we do an experimental analysis of RQA mea-

surements. Finally, we summarise the effectiveness of each RQA measurements ability to

detect anomalies.

In Chapter 4, we make three contributions. Firstly, we investigate the characteristics of

unstable BGP traffic using linear statistical analysis. We show that BGP traffic is dominated

by unsynchronised periodic updates. The characteristic of periodicity in BGP traffic is part of

underlying BGP traffic. Our statistics for ten years of BGP traffic shows that although for some

active ASes instability lasted for many years and others lasted for a short time, we still can

see the periodic behaviour for BGP traffic sent by these ASes. Secondly, we use the concepts

of phase plane trajectory to model BGP speakers as dynamic systems sending BGP traffic

based on local routing policies and receiving BGP traffic from neighbours. Modelling BGP

speakers as dynamical systems helps to understand their behaviour over time. The outcomes

of our investigations show that BGP traffic sent by BGP speakers has the characteristics of

stability, determinism, and non-linearity. Third, built on the characteristics obtained from our

modelling, we use RP to investigate the characteristics of the aggregated BGP traffic. Here we

see that the aggregated BGP traffic has the characteristic of recurrent behaviour. We also show

that RQA is able to differentiate between unstable and anomalous BGP traffic during TMnet

event, one of the most recent well-known BGP events.

In Chapter 5, we introduce our novel scheme to detect BGP anomalies and describe its
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design in detail. As a result of a lack of ground truth time stamps for the BGP events, we in-

troduce our control testbed where we synthesize unstable BGP traffic and introduce anomalies.

Then, we use BGP traffic from our control testbed to select optimal values of our scheme’s

parameters and choose the most effective RQA measurements to detect BGP anomalies. The

evaluation of our scheme is based on using past well-known BGP events as well as BGP traffic

collected from our testbed. RQA scheme is able to detect all BGP anomalies as well as other

periods of anomalous behaviour that have not been observed before.

Finally, we present our conclusions and outline possible future research work in Chapter

6.





Chapter 2

BGP anomalies

2.1 Introduction

BGP is the Internet’s default inter-domain routing protocol. It enables the exchange and main-

tenance of NRI between ASes which are organized in a hierarchical fashion. It was developed

at a time when information provided by an AS was assumed to be accurate. Consequently, it

includes few security mechanisms and so is vulnerable to different types of events such as hi-

jacking, misconfiguration, and link failure. These events have threatened Internet performance

and reliability.

In this chapter, we provide an overview of BGP. This includes BGP architecture, BGP

messages, BGP attributes and BGP policies. We also overview prior research works on BGP

anomalies in four areas. Firstly, we classify BGP data sources for detection BGP anomaly into

three main categories: BGP raw data and route registry database as well as other less com-

monly used sources. Secondly, we classify BGP anomalies into four main categories, these

being direct intended anomaly, direct unintended anomaly, indirect anomaly, and link failure.

Thirdly, we explore BGP anomaly detection techniques in term of their approaches, type of

BGP data and features used, ability to identify different types of anomalies, and their ability to

identify network from which the anomaly originated. Finally, we discuss a number of key re-

quirements for a next generation of BGP anomaly detection techniques, these being real-time

(in seconds) detection, differentiation between types of BGP anomalies, and identification of

the source network of the BGP anomaly.

The rest of this chapter is organized as follows. Section 2.2 presents a brief overview

of BGP, BGP messages, BGP policies, and BGP attributes. We also explore different data

sources and BGP features that can be used as an input to detect BGP anomalies. Section 2.3

provides a detailed summary of different types of BGP anomalies while section 2.4 reviews

the major approaches to detecting BGP anomalies. In section 2.5, we discuss a number of key
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requirements for the next generation of BGP anomaly detection techniques and summarise

strengths and weakness of current BGP anomaly detection techniques. The chapter concludes

with section 2.6.

2.2 BGP overview

2.2.1 Introduction to BGP

The Internet is a decentralized global network comprised of tens of thousands of ASes. An

AS is a set of routers under a single technical administration using an IGP such as OSPF to

communicate with other routers within the AS and an EGP such as BGP to communicate with

other ASes. Routing protocols are classified into three main types based on their algorithm:

link state such as OSPF, distance vector such as Routing Information Protocol (RIP), and path

vector such as BGP. BGP has two forms: Internal BGP (IBGP), running between BGP routers

within an AS and External BGP (EBGP), running between BGP routers within different ASes.

ASes are often peered together through a dedicated connection between peers or by a third

party such as an Internet Exchange Point (IXP). BGP has undergone a number of revisions and

refinements over the years, starting with RFC1105 [34] (version 1), RFC1163 [35] (version 2),

RFC1267 [36] (version 3) and the current BGP version 4 (BGP-4) documented in RFC4271

[25].

BGP is the Internet’s default EGP. It maintains and exchanges NRI between ASes which

are organized in a hierarchical fashion. As with IP addresses, each AS has a unique identifier

called the AS number, taken from either public or private AS number space [37]. Original

AS numbers were 2-bytes and ranged from 0 to 65535. Due to growth in demand, 4-byte

AS numbers were subsequently introduced ranging from 0 to 4294967295 [38]. The Internet

Assigned Number Authority (IANA) has reserved, for private use, the last 1023 numbers of

2-byte AS numbers, namely 64512-65534, and the last 94967295 numbers of 4-byte AS num-

bers, namely 4200000000-4294967294 [39]. Each AS has a range of IP addresses identified

by a prefix. For example, the IPv4 address prefix 192.2.2.0/24 refers to all addresses in the

range 192.2.2.0-192.2.2.255 while the IPv6 address prefix 2001::/19 refers to all addresses in

the range 2001:: to 2001:1fff:ffff:ffff:ffff:ffff:ffff:ffff. BGP provides a set of mechanisms for

supporting Classless Inter-Domain Routing (CIDR) described in RFC4632 [40]. These mech-

anisms include aggregation support of routes with their AS-PATH (a BGP’s attribute described

later in Section 2.2.4) and advertising support for a set of destinations as a prefix. Aggregation

is the process of combining the characteristics of several routes with common addresses into

a single route. This helps reduce the number of routing messages as well as the number of
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IANA

NIR2NIR1ISP2ISP1

APNICLACNIC AfriNICRIPEARIN

Figure 2.1: Address distribution hierarchy for the Internet

advertised routes.

IANA manages a variety of activities such as domain names, prefixes and AS numbers.

IANA delegates allocation of prefixes and AS numbers to five Regional Internet Registries

(RIRs). These are Réseaux IP Européens (RIPE) for assigning prefixes and AS numbers for

Europe, the American Registry for Internet Numbers (ARIN) manages the IP addresses as-

signments for North America, the Asia-Pacific Network Information Center (APNIC) assigns

IP addresses in Asia and the Pacific Rim, Latin America and Caribbean Network Information

Centre (LACNIC) manages address space through the Latin American and Caribbean regions,

and the African Network Information Center (AfriNIC) serves the African region. In some

cases, RIRs provide services such as domain names, prefixes, and AS numbers through Na-

tional Internet Registries (NIR). Figure 2.1 shows the structure of IANA where RIR such as

APNIC assigns blocks of IP addresses and AS numbers to NIRs and ISPs.

2.2.2 BGP messages

BGP is an incremental protocol where after a complete exchange of routing table or Routing

Information Base (RIB), only changes to the routing table information are exchanged through

announcement messages, withdrawal messages or an update of existing route attributes. RIB

for a BGP speaker (a router or a device that runs BGP) consists of Adj-RIBs-In, Adj-RIBs-

Out, and Loc-RIB. Adj-RIBs-In refers to routing information that is learned from (adjacent)

neighbours. Adj-RIBs-Out refers to routing information that is ready for advertisement to

(adjacent) peers while Loc-RIB refers to the routes that will be used by the local BGP speaker

based on its local policies and Adj-RIBs-In received [25].

BGP uses the Transmission Control Protocol (TCP) with TCP port number 179 [25]. Using

TCP as a transport protocol avoids the need for BGP to manage message delivery and flow

control between its peers and eliminates extra data used to confirm connection reliability. The

size of BGP messages ranges from 19 octets, containing only a BGP header, to 4096 octets.

Regardless of type, each message has a fixed size header as shown in Figure 2.2.
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Marker (16 Octets)

Length (2 Octets) Type (1 Octet)

1- OPEN
2- UPDATE
3- NOTIFICATION
4- KEEPALIVE

Figure 2.2: BGP common message header format

Marker (16 Octets)

Length (2 Octets) Type
(1 Octet)

Version
(1 Octet)

My Autonomous System
(2 Octets)

Hold Time (2 Octets)

BGP Identifier (4 Octets)

Opt Length
(1 Octet)

Optional Parameters  ...

Figure 2.3: BGP open message format

The first 16 octets are all ones to mark the start of a message. While the length field

represents the total message length, the type field refers to one of four possibilities: OPEN,

UPDATE, NOTIFICATION, and KEEPALIVE. OPEN message is the first message sent after

establishing a TCP connection between two peers. When the other side accepts this mes-

sage, KEEPALIVEs are periodically transmitted to confirm the connection. Figure 2.3 shows

BGP OPEN message format for a 2-byte AS number. A NOTIFICATION message supplies

information regarding a terminated session.

The most important message is the UPDATE message which is used to announce a new

route, withdraw a route that was advertised previously, or update an existing route with new

parameters. An AS can withdraw an announced route if and only if that AS previously ad-

vertised it. Also, an AS can announce or withdraw multiple routes that have the same path

attributes.
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Two identities for BGP speaker are represented in the OPEN message: “My Autonomous

System” refers to AS number of the sender and BGP identifier described in [41], a unique

identifier within an AS where its value is determined on startup and is the same for every local

interface and BGP peer.

2.2.3 BGP policies

Routing policy can be defined as how routing decisions are made. It is the exchange of rout-

ing information between ASes, where ASes are the unit of routing policy in BGP as stated

in RFC1930 [42]. ASes interconnect with each other by different relationships. In general,

there are three types of relationships: customer-provider, peer-to-peer, and sibling-to-sibling

[43, 44]. In customer-provider relationships customers pay a fee to their providers for tran-

siting traffic. ASes in peer-to-peer relationships exchange traffic without paying each other.

Nevertheless, only traffic originating to or from the peered AS or their downstream customers

is accepted. Traffic from their providers or other peers is not accepted. The sibling-to-sibling

relationships, which is a rare case, refers to the relationship between two ASes belonging to the

same organization. None of these three relationships are restricted by a physical relationship;

they are business and organizational relationships.

BGP routing policies are classified into four main classes: business relationship, traffic en-

gineering, scalability, and security-related policies [45]. ISP operators need to configure their

BGP routers taking into consideration the four types of policies to enforce their relationships

with other ASes. For example, an AS may need to configure its policy so that it does not

provide transit services between its providers.

BGP routing policies are based on different BGP attributes; where there is no BGP policy

specified, BGP will select a route with a minimum AS-PATH length. However, configuring

BGP policies is not an easy task since the number of configuration lines in a single BGP

router can range from hundreds to thousands [46]. A fault in configuration of a BGP router

could produce a local impact or even a global impact. For example, TTNet, an ISP in Turkey,

announced more than 100,000 incorrect routes to its peers causing a large number of Internet

users to lose connectivity to a large number of domains for several hours [47].

Changing BGP policies can lead to route flapping [48], the situation in which BGP speaker

sends an excessive number of BGP updates related to a single prefix or a set of prefixes [49]. To

improve Internet stability at Internet edges, Minimum Route Advertisement Interval (MRAI)

and Route Flap Damping (RFD) mechanisms have been developed to limit propagation of un-

stable routes. MRAI specifies a minimum time between which the speaker can send successive

update messages. If an announcement is withdrawn within the MRAI neither is forwarded.

RFD works on the receiving side using a larger time scale than MRAI. For each peer, RFD
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monitors the frequency of BGP updates for a given prefix. When the update rate between two

BGP peers exceeds a set threshold, the update related to this prefix is suppressed. RFD was

introduced in [49] and [50] to improve Internet stability by reducing sustained routing oscil-

lation on network edges. RFD is a technique that has been widely implemented. However,

in 2006 RIPE’s routing working group recommended against using RFD [51]. Recently there

are recommendations to use it but with adjustments to algorithm constants [52, 53]. It is worth

noting that between the dates of RFD being introduced and it being mostly deactivated (1998-

2006), RFD was not able to mitigate the propagation of unstable routes caused by indirect

anomalies (described in Section 2.3.3).

2.2.4 BGP attributes

BGP attributes are a set of properties carried in a BGP update and used to determine the best

route among many possible paths to a specific destination. These attributes are mainly clas-

sified into four types: well-known mandatory (should be included in all BGP updates and all

BGP speakers can recognise them), well-known discretionary (could be included in a BGP

update and all BGP speakers can recognise them), optional transitive (can be recognised by

some BGP speakers. They should be accepted and sent to peers even if it is not recognized

by BGP peers) and optional non-transitive attributes (can be recognised by some BGP speak-

ers. They can be ignored and not advertised to peers). The most well-known and widely used

attributes are: Origin, AS-PATH, LOCAL-PREF, AGGREGATOR, and Multi Exit Discrimi-

nator (MED) [25, 54].

Origin is a well-known mandatory attribute created by the BGP speaker that generates the

related routing information. It refers to the type of an originated update with three possibilities:

0 refers to an update originating from IGP, 1 refers to an update originating from EGP, and

2 for INCOMPLETE, when a route originates from another routing protocol instead of BGP

such as static route.

AS-PATH is a well-known mandatory attribute which identifies a list of ASes that have had

an update message passing through their prefixes. The components of this list can be AS-SETs

or AS-SEQUENCEs. AS-SET refers to an unordered set of ASes while AS-SEQUENCE

refers to an ordered set of ASes. BGP is a path vector protocol where each BGP speaker adds

its own AS number in the path of a BGP update before passing it to an EBGP peer. This

attribute prevents routing loops between BGP speakers. Figure 2.4 shows an example of how

the AS-PATH attribute works. When AS1000 sends a route to AS4000, it adds its own AS

number to the beginning of the path. AS2000 receives the update and appends its AS number

before passing it to AS3000. Finally, AS3000 receives the update, and inserts its own AS

number to send it to AS4000. BGP is a path vector protocol where [3000,2000,1000] shows
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AS 1000 AS 2000

AS 3000

AS 4000

AS-PATH[1000]

AS-PATH[2000, 1000]

AS-PATH[3000, 2000, 1000]

Figure 2.4: An example of BGP AS-PATH attribute

the full path for an update sent by AS1000 to AS4000.

LOCAL-PREF is a well-known discretionary attribute. LOCAL-PREF represents a degree

of preference on a scale of 0 to 4294967295 for a network operator for a route between multi-

ple routes within an AS. A high value of this attribute shows a strong preference for a particular

route. For example, in a business relationship ISPs will usually prefer routes learned from their

customers over routes learned from a peer; therefore, a value of LOCAL-PREF in range 99-90

could be assigned for customers, 89-80 for peers, and 79-70 for providers [45]. This attribute

was used by PGBGP [18] to mitigate the propagation of suspicious routes through assigning

them with low LOCAL-PREF. This attribute, however, should not be used with external peers

except for the BGP confederation case described in RFC5065 [55].

AGGREGATOR is an optional transitive attribute. It contains information about the BGP

speaker that aggregates the route. Although the aggregation helps to reduce the number of

advertising routes, it can hide AS-PATH and other attributes of the aggregated prefixes. Fig-

ure 2.5 shows an example for route aggregation. In this example, AS1 and AS2 advertise

10.10.3.0/24 and 10.10.4.0/24 respectively to AS3. AS3 aggregates these prefixes by send-

ing the single prefix 10.10.2.0/23. The value of AS-PATH for the single prefix is based on

the aggregation configuration at AS3. AS3 can hide the paths to AS1 and AS2 and send the

prefix 10.10.2.0/23 with AS-PATH=[3], this can cause a blackhole if any of the advertised

prefix by AS1 or AS2 withdrawal. AS3 can also configure the aggregation to include both

of the originating ASes as AS-SET, in this case AS4 will receive the prefix 10.10.2.0/23 with
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AS1

AS2

AS3 AS4

10.10.3.0/24
path:1

10.10.4.0/24
path:2

10.10.2.0/23
path:??

Figure 2.5: An example of BGP route aggregation

Table 2.1: BGP path selection priority

Priority Policy Attribute

1. Highest LOCAL-PREF value

2. Lowest AS-PATH length

3. Lowest Origin Type

4. Lowest MED value

5. EBGP learned over IBGP learned

6. Lowest IGP cost

7. Lowest Router ID

AS-PATH=[3,{1,2}].

MED is an optional non-transitive attribute which provides a mechanism to influence ex-

ternal neighbours about the preferred path into an AS that has multiple entry points. The MED

with the lower metric is preferred as an exit point.

Among these attributes, a BGP router follows a sequence of comparisons to find its best

route among various routes based on their attributes. Table 2.1 shows the sequence of com-

parisons.

BGP messages are sent to reflect changes in ASes topology and policy. When a BGP

router receives a BGP message that changes its routing table it will propagate that message

to all or a group of its neighbours based on its local policies. Otherwise, the message will be

terminated. Figure 2.6 shows the stages of convergence to a new prefix announced by AS1.

Firstly, AS1 announces the new prefix with its AS number (10.10.0.0/16 and path:1). When

AS2 receives the new announcement, it will check the announcement with its entire RIB table

and because this entry is new, AS2 will add and send it to all its neighbours1. Secondly, AS3

and AS4 will receive the new announcement with path [2,1] and add it to their RIB as it does

1Routes are chosen based on the AS-PATH attribute only where other attributes such as MED and LOCAL-

PREF are not considered in our examples.
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not exist in their RIB. In this stage, AS3 and AS4 will propagate the new announcements

to their neighbours. BGP can guarantee routes are loop free. Therefore, any BGP updates

received by an AS which contains its own AS number will be ignored.

At the third stage, AS5 will receive the full path to the new prefix from AS4. Meanwhile,

AS4 and AS3 receive new updates from AS3 and AS4 for the new prefix with paths [3,2,1]

and [4,2,1] respectively but these updates will not be forwarded because they are not the best

routes. The highlighted path [2,1] at AS3 and AS4 represents the best route.

AS4

AS5
AS1

AS2

AS3

Advertise

10.10.0.0/16

10.10.0.0/16
path:1

10.10.0.0/16
path:2,1

10.10.0.0/16
path:2,1

10.10.0.0/16
path:3,2,1

10.10.0.0/16

path:4,2,1

Prefix Path

10.10.0.0/16 1

Prefix Path

10.10.0.0/16 2,1

10.10.0.0/16 4,2,1

Prefix Path

10.10.0.0/16 4,2,1

10.10.0.0/16

path:4,2,1

Prefix Path

10.10.0.0/16 2,1

10.10.0.0/16 3,2,1

Figure 2.6: Announcing a new prefix

2.2.5 BGP data sources

BGP anomaly detection techniques use various sources of BGP data for detection of BGP

anomalies. Usually, extracting significant information from BGP data is done during a pre-

liminary stage of anomaly detection. These data sources include BGP raw data, route registries

database as well as other types of BGP data sources [56]. Below, we describe each of these

types of data.
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2.2.5.1 BGP raw data

There are two types of BGP raw data: control plane, which refers to RIB and/or BGP update

messages exchanged between BGP speakers, and data plane, based on the routes that packets

use between an observer and the source [57].

Control plane Control plane data can be obtained from free download repositories such as

RouteViews project [58] and Réseaux IP Européens Network Coordinate Centre (RIPE NCC)

[59] or monitored in a real-time from BGP speakers such as BGPmon [60] in the RouteViews

project. The RouteViews and RIPE NCC are the most well-known repositories that provide

free download for BGP updates and RIB. RouteViews peers with many sites in north America

and had provided BGP data since 2001, while RIPE peers with many sites in Europe and

provides BGP data since 1999. The total numbers of collectors and peers change over time as

a result of adding/removing some vantage points2. The RouteViews repository provides BGP

updates every 15 minutes and BGP routing tables every 2 hours. Until June 2003, RIPE was

providing offline BGP updates every 15 minutes with BGP routing tables every eight hours.

From 2003 it offers BGP updates every 5 minutes. The RouteViews and RIPE have been used

in many research efforts such as [24, 61] and [62]. These two well-known repositories provide

data in Multi-Threaded Routing Toolkit (MRT) format described in [63]. The MRT format

is not a human readable. Software such as bgpdump [64] and pybgpdump [65] are used to

convert it to a readable format.

The BGP speakers generate up to a gigabyte of control plane data a day [66]. Unfor-

tunately, as well as being large, there is no direct information to identify the network that

triggered the BGP messages [67]. Many tools have been introduced to extract significant in-

formation such as [68], speed up processing such as [69], and replay past BGP events such

as [2]. A first step in building a scalable BGP tool that enables users querying BGP archived

data with some simple analysis and statistics for a given period of time was presented in BGP-

Inspect [70]. Although this tool provides much significant information such as shortest and

longest path, it does not provide necessary information for operators and researchers such as

the cause of shortest and longest path. Other tools with a visualization capability were pre-

sented to help diagnosis BGP anomalies such as BGPlay [71] and VisTracer [72]. Biersack

et al. presented a short survey of BGP visualization tools for monitoring BGP messages and

particularly for the identification of prefix hijacks [57].

In contrast to the two offline BGP repositories, BGPmon represents the next step for the

RouteViews Project in term of real-time data [58]. The capability of the new monitoring

2For example, as at the 18th of January 2016 there are 18 collectors for the RouteViews project with 588 peers

in different locations around the world while RIPE peers with 14 collectors around the world with 566 peers.
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system is not limited to providing real-time monitoring but also uses Extensible Markup Lan-

guage (XML) format, which is supported by many applications and is human readable [60].

BGPmon, however, does not provide data processing. Where this processing is needed, tools

such as Cyclops [73] can be used for this purpose.

Data plane Data plane is based on the way that packets actually flow between two nodes.

This data can be obtained through active probing of available live hosts in the monitored net-

works. Different techniques of obtaining BGP data plane have been introduced. For example,

Schlamp et al. used archived netflow data of Munich’s Scientific network [31]. Biersack et at.

developed a tool called Spamtracer to monitor routes toward malicious hosts [57]. Others used

different types of fingerprints such as host OS properties, IP identifier, TCP time stamp, and

the Internet Control Message Protocol (ICMP) time stamp as an indicator to detect suspicious

prefixes [74].

Control plane and data plane sources each have advantages and drawbacks. In general,

techniques that use the control plane such as [75] and [73] are easy to deploy, but can be

inaccurate while techniques that use the data plane such as [76], [72], and [77] have a better

detection accuracy, but suffer from vantage point limitations [23, 76, 77]. Techniques that use

a combination of control and data plane can be both accurate and have good vantage points,

but their deployment is not easy [23, 31, 57].

2.2.5.2 Route registries database

To ensure stability and consistency of Internet-wide routing, the Internet Routing Registry

(IRR) was established to share information between network operators [78]. The IRR is a

distributed routing database where ASes store their routing policies expressed in the Routing

Policy Specification Language (RPSL) described in [79]. This data may be used by anyone

worldwide to help debug routing problems, configure backbone routers, and engineer Internet

routing and addressing. It also enables validation of linkage between a BGP speaker and

the networks it announces, such as APNIC’s whois database [80]. Each RIR has its own

network information database, part of which is used for routing information. IRR has been

used by many researchers to test whether BGP updates originated from valid BGP speakers.

For example, Nemecis [81] is a tool to extract and infer information from an IRR database and

validate it against a BGP routing table. In addition to IRR databases, there are other sources

that provide IP to AS number mapping such as team Cymru [82].

Unfortunately IRR information is incomplete because of lack of maintenance [44, 83].

Siganos and Faloutsos in [81] show that just 28% of IRR information is consistent. Further-

more, using this information is limited to detecting the two direct types of anomalies, described



20 BGP anomalies

in Section 2.3. In spite of these limitations, route registries database can be used with BGP

raw data sources to produce quite robust anomaly detection [23, 56].

2.2.5.3 Other sources of BGP data

In addition to the first two types of BGP data sources, there are other sources such as bogon

prefixes, the mailing list archive of North American Network Operator’s Group (NANOG),

and IP geolocation databases. Bogon prefixes are IP addresses that should not appear on the

Internet. These are either within private address space [84], in a range of space reserved

by IANA, or not allocated by any RIRs [85]. Bogon prefixes are not a static list where IP

addresses are regularly added/removed from bogon lists. These lists are regularly updated and

published by different sources. For example, CIDR report offers a daily list of bogon prefixes

based on the IANA registry files, the RIR stats files, and the RIR whois data [86]. The team

Cymru also offers a list of bogon prefixes [87] which is periodically updated. ISP operators

do not need only to filter these prefixes and mitigate their propagation, they need a plan for

keeping their filters up-to-date. Observation of bogon prefixes may be used as an indicator to

detect BGP anomaly [12]. For example, BGP misconfiguration can produce large number of

bogus routes (unused prefixes) as well as used prefixes [83]. Bogon prefixes may also be used

as an identifier to differentiate hijacking toward intended prefix from misconfiguration [76].

The archives of NANOG mailing list have also been used as a source of BGP data in

BGP anomaly detection techniques. The NANOG contains technical information, discussion,

operational issues exchanged by network operators. Feamster and Balakrishnan in [46] use the

archive of NANOG to identify challenges and common problems of configuring a BGP router

to build rrc, a tool that detect BGP configuration faults based on static analysis. However, the

archives of NANOG mailing list cannot be used for automated detection or real-time analysis.

IP geolocation databases map an IP address to its geographical location such as MaxMind’s

and IP2location [88, 89]. MaxMind and IRR databases were used in [90] map prefixes to a

particular country. In addition to the described sources, looking glass has also been used [23].

Looking glass are computers on the Internet that provide information relative to backbone

routing and network efficiency.

Adoption of different types of BGP data can produce a more reliable BGP anomaly de-

tection approach. For example, various types of data such as RouteViews and RIPE NCC,

public route servers, looking glass, and routing registry databases have been used to detect

BGP anomalies in [23]. In [90], control plane, data plane, IRR, MaxMind, and active tracer-

oute probing from Ark [91] were used to analyse episodes of BGP anomalies in Egypt and

Libya caused by service providers implementing government censorship orders.
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Figure 2.7: An example for the effect of a link failure

2.2.6 BGP features

Extracting relevant information from BGP data source produces different numbers and types

of BGP features which are then used as an input to a BGP anomaly detection technique. In

general, these features can be classified into two types related to deviations in number of BGP

updates and in the path data contained within the update field AS-PATH.

BGP messages are complex structures and detecting abnormal data in a series of BGP

messages is a challenge [92]. Although individual BGP messages that constitute an anomaly

provide no direct indication of why and where they originated, analysing a series of BGP

messages can give such information. Some researchers have successfully used a single BGP

feature to detect BGP anomalies such as [62], where BGP message volume was used as a

single BGP feature. BGP message volume refers to the number of announcements and with-

drawals sent from an AS or a prefix during a selected time interval. Other researchers have

used more than a single BGP feature. For example, [93] and [24] used BGP volume, AS-

PATH length, and observation of rare ASes in the AS-PATH to detect BGP anomalies. During

instability periods caused by anomalies such as hardware or link failure, BGP path exploration

attempts to find possible alternative paths for the unreachable destination. As a result, a large

number of long and rare AS-PATHs appear. The topology in Figure 2.7 explains the effect of

link failure on AS-PATH length and how different lengths of AS-PATH and rare ASes appear

in alternative paths. In this topology, each node represents a different AS with a single BGP

router. When the path between AS3 and AS4 fails, AS3 will send a withdrawal message to

its neighbours. AS1 receives notification of alternative paths from its neighbours as a result

of lose the connection between AS3 and AS4 such as (2,3,5,7,4) and (2,3,6,8,4). Observ-
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Table 2.2: Possible BGP features from number of BGP update

ID Features

1 Total number of announcements/withdrawals/updates per AS

2 Number of announcements/withdrawals/updates per prefix

3 Maximum/Average announcements per prefix

4 Number of duplicate announcements/withdrawals

5 Number of new announcements

6 Number of IGP, EGP, and INCOMPLETE in the Origin attribute

7 Number of re-announcements after a withdrawal

8 Number of withdrawals transmitted to unreachable prefix

9 Number of withdrawals after announcing the same path

10 Number of unique prefixes originated by an AS

11 Concentration ratio (first, second, and third)

ing different AS-PATH lengths and rare AS numbers can help to detect such types of BGP

anomalies.

Other researchers have used more specific features extracted from the two main features

(deviation in number of BGP updates and AS-PATH) such as number of announced and with-

drawn prefixes, average AS-PATH length, and maximum AS-PATH length, and then adopted

an algorithm or a technique to find the most-important features which produce highest detec-

tion performance. Al-Rousan and Trajkovic extracted 37 features from BGP updates calcu-

lated on a 1 minute sliding window [61], then used Fisher score [94] and minimum Redun-

dancy Maximum Relevance (mRMR) [95] to select the most-important features for detection.

For this they identified 10 features that they adopted as input for detecting BGP anomaly. de

Urbina Cazenave et al. presented new features related to BGP volume called concentration

ratios. These features refer to the observation that the update volume is not equally distributed

between all ASes and prefixes [96]. Table 2.2 and Table 2.3 show possible features used by

different BGP anomaly detection techniques related to number of BGP updates and AS-PATH

respectively. We will discuss these in more detail later in the next section.

2.3 BGP anomalies

In our survey paper [7] and this thesis, we define BGP updates that threaten BGP operation

or undermines business relationships between ISPs as anomalies. The consequences of BGP

anomalies can range from single to thousands of anomalous BGP updates. A single BGP

update is classified as an anomaly if it contains an invalid AS number, invalid or reserved IP

prefixes, a prefix announced by an illegitimate AS, AS-PATH without a physical equivalent or
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Table 2.3: Possible BGP features from AS-PATH attribute

ID Feature

1 AS-PATH length

2 Maximum/Average AS-PATH length

3 Maximum/Average unique AS-PATH length

4 Announcement to longer/shorter path

5 Observation of rare ASes in the path

6 Maximum/Average of rare ASes in the path

7 AS-PATH change according to geographic location

8 Prefix origin change

9 Number of new paths announced after withdrawing an old path

10 Number of new-path announcements

which does not match a common routing policy [97]. A set of BGP updates can be classified as

an anomaly if its characteristics show a rapid change in the number of BGP updates, containing

longest and shortest paths, or changes in the behaviour of total BGP traffic over time [8, 24].

Detecting BGP anomalies enables network operators to protect their network from the

worst consequence of the anomalous behaviour. We construct a taxonomy of BGP anomalies

with four main categories as follows [7]:

1. Direct intended anomaly.

2. Direct unintended anomaly.

3. Indirect anomaly.

4. Link failure.

These categories can be further classified into subcategories as shown in Figure 2.8 and dis-

cussed in the next section. Each type of anomaly can produce different consequences. For

example, a misconfiguration by an ISP can result in announcement of used and/or unused pre-

fixes with a consequent significant increase in BGP volume and a significant change in number

of hops in paths to specific prefixes. Table 2.4 shows possible consequences for different types

of BGP anomalies.

2.3.1 Direct intended BGP anomaly

This type of anomaly refers to all types of BGP hijacking which can appear in different sce-

narios such as prefix hijack and sub-prefix hijack. Hijacking occurs when an attacker claims
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Figure 2.8: Taxonomy of BGP anomalies

Table 2.4: Possible consequences of BGP anomalies

ID Observed Case Possible BGP Anomaly

1 A significant change in volume of BGP updates All types of anomaly except direct intended

2 Observing rare ASes and long paths in the AS-PATH Link failure

3 A significant change in number of hops between

attended prefixes and monitoring points

Direct intended and unintended anomaly

4 Geographic deviation of intermediate ASes between

attended prefixes and monitoring points

Direct intended and unintended anomaly

5 Reachability issues to attended prefixes All types of anomaly

to own a prefix or sub-prefix that belongs to another AS causing redirection of routes from

the AS to the attacker. Attackers hijack prefixes to produce different malicious activities. For

example, the hijacker can blackhole all traffic to the victim causing a DoS for that network. In

another scenario, the attacker becomes a man-in-the-middle, intercepting the traffic without

affecting victim reachability. Phishing attacks can also be done by hijacking a prefix through

redirecting traffic to an incorrect destination. Additionally, the attacker can use stolen IP ad-

dresses to send spam [98].

Since BGP was created, many hijacking events have been observed. Notable examples

include the following. On the seventh of May 2005 AS174 hijacked one of Google’s prefixes

causing it to lose connectivity to the google.com domain for nearly an hour [99]. Other events

have continued for longer periods of time. For example, in the Link Telecom (AS12812)

incident an attacker obtained control of the company’s prefixes and AS ownership for approx-

imately 6 months and used them to send spam e-mails. The attacker took advantage of a

financial crisis experienced by Link Telecom to send a forged letter of authorization for the

AS12812, then started to advertise routes with the hijacked AS and its prefixes [31]. While

these incidents are notable as a result of their size and scale, many similar but smaller scale

incidents are unreported or not even noticed [32].

In addition to illegitimate announcements, some Distributed Denial of Service (DDoS)

mitigation services will legitimately advertise sub-prefixes of a particular AS for short peri-
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ods of time in order to redirect, clean (remove suspicious traffic) and reinject traffic heading

towards their customer such as in [100].

The direct intended anomalies are classified into five subtypes: hijacking a prefix, a prefix

and its AS, a sub-prefix, a sub-prefix and its AS, and hijacking a legitimate path [74]. To

demonstrate these types of hijacking, we use the topology shown in Figure 2.6.

2.3.1.1 Prefix hijack

In this type of hijack, an attacker configures its BGP router to announce a prefix belonging to

another AS. BGP allows any BGP speaker to announce any route regardless of whether the

route actually exists or not [19]; therefore, the attacker’s neighbours will adopt it as a new

route. Figure 2.9 shows an example of prefix hijacking. AS4 hijacks the prefix 10.10.0.0/16

belonging to AS1 causing a Multiple Origin AS (MOAS) conflict for other ASes. A MOAS

conflict occurs when a particular prefix appears to originate from more than one AS. MOAS

conflicts occur legitimately in many cases such as IXP, multi-homing, and anycast. However,

identifying a valid MOAS from an attack is difficult [101].
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Figure 2.9: Prefix hijacking

When AS2, AS3 and AS5 receive the AS4 advertisement, they compare the new pre-

fix with their RIB. While AS3 and AS5 update the entry (10.10.0.0/16 with path 4,2,1) to
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Figure 2.10: Prefix and its AS hijacking

(10.10.0.0/16 with path 4) as they previously received this prefix by AS4 (as discussed in Fig-

ure 2.6), AS2 will add it as a new entry. AS2 will not use it as a best route as it has the same

path length. However, in this example, AS5 and AS3 will send all packets that relate to prefix

10.10.0.0/16 to AS4 instead of AS1.

2.3.1.2 Prefix and its AS hijack

In this scenario an attacker announces that there is a direct connection between its AS and

a victim AS causing redirection of routes from the AS to the attacker instead. The attacker

tries to avoid a MOAS conflict by sending a fake path with the hijacked prefix. Figure 2.10

shows an example of hijacking an AS and its prefix. AS4 sends an announcement that it has

a connection with AS1. AS2, AS3 and AS5 will receive this update and compare it with their

RIB table. While AS5 will use the new announcement as a best route, AS2 and AS3 will not.

In this example, only AS5 is affected by the hijack of AS4. AS4 can now carry out malicious

activities such as DoS against AS1 and tampering with packets that are sent from AS5 to AS1.
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Figure 2.11: Sub-prefix hijacking

2.3.1.3 Sub-prefix hijack

In this scenario an attacker announces a sub-prefix that belongs to a victim AS. BGP selects

the most specific address or longest address match. For example, a BGP router will select a

specific address such as 10.10.0.0/24 over a more general address such as 10.10.0.0/16. Figure

2.11 shows an example of this type of hijack where AS4 announces a prefix 10.10.0.0/24

which is a part of the prefix 10.10.0.0/16 owned by AS1. AS2, AS3 and AS5 receive this

update and add it as a new entry. Although there is a direct connection between AS1 and AS2,

AS2 will send all packets that belong to the prefix 10.10.0.0/24 toward AS4 instead of AS1.

This is the most widely propagated type of hijacking since all ASes between the attacker and

the victim are affected. Moreover, this type of hijacking can be globally propagated when

there is no other advertisement or filtering for this route [74].

2.3.1.4 Sub-prefix and its AS hijack

In this scenario, the attacker announces a fake path to a subnet of a target prefix. Using a fake

path with sub-prefix hijack represents a critical challenge for detection as the attacker does not

claim to own a full prefix length which can be detected using control plane data [77]. Hu and
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Mao in [74] claim that this type of hijacking is the most difficult to detect.
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Figure 2.12: Sub-prefix and its AS hijacking

Figure 2.12 shows an example of this type of hijacking. AS4 announces it has a path to

the prefix 10.10.0.0/24 which is a part of 10.10.0.0/16 owned by AS1. AS2, AS3, and AS5

will add it as a new entry. Although the path length to the address 10.10.0.10 at AS2 is just 1,

AS2 uses the longer path [4,1] as the prefix 10.10.0.0/24 is more specific than 10.10.0.0/16.

2.3.1.5 Hijack a legitimate path

This type of hijacking does not require any announcements by the attacker. The attacker

simply manipulates received updates before propagating them. Figure 2.13 shows how to

accomplish this type of hijacking. AS4 received the update 10.10.0.0/16 with the path [2,1].

It will propagate the update 10.10.0.0/16 with the path [4,1] instead of the full path [4,2,1]. In

this example, only AS5 adopts the manipulated route as a default route. This hijack is similar

to the prefix and its AS hijacks but the attacker violates propagation instead of announcing

an attractive path. This type of hijacking is one of the key security issues considered by the
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Internet Engineering Task Force (IETF) [102], but it has received little research attention [23].
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Figure 2.13: Hijacking a legitimate path

2.3.2 Direct unintended BGP anomaly

This type of anomaly refers to BGP misconfiguration by BGP router operators. Faulty config-

uration of BGP routers can result in announcing used and/or unused prefixes. While announc-

ing used prefixes causes hijacking since the prefixes belong to other ASes, unused prefixes

cause leaked routes which may result in an overload or blackhole to other ASes. The effect

of announcing used prefixes is similar to ’Prefix Hijack’ described earlier but is unintended

and can be corrected as soon as the operator discovers it. However, the misconfiguration may

cause packet loss, unintended paths between hosts, and forwarding loops [46].

Configuring BGP policies is not an easy task as there are many factors that need to be

considered such as business relationships, traffic engineering, scalability, and security-related

policy [45]. Consequently, this type of anomaly can occur easily. An example is a route

leak incident by Dodo, an ISP in Australia, on 23 February 2012. One of Dodo’s routers

accidentally announced all its internal routes to Telstra, one of the major ISPs in Australia.
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As Dodo is a Telstra customer, Telstra used the announced routes as its best routes causing

loss of internet connectivity in most of Australia for around 45 minutes [103]. Although some

tools have been developed to help operators eliminate faults, such as router configuration

checker [46], rancid [104], and BGP Visibility Scanner [105], faults in BGP configuration

are still frequently seen. Some of these faults have global effects such as two recent incidents

observed on March 2014 by Indosat and Turk Telecom. Indosat, an Indonesian ISP, propagated

over 320,000 incorrect routes for more than two hours [106]. Turk Telekom, the major ISP

in Turkey, in response to instructions from the government of Turkey to censor twitter.com,

accidentally hijacked IP addresses of popular DNS such as 8.8.8.8 and 4.2.2.2 [107].

BGP misconfiguration can be classified into origin misconfiguration and export misconfig-

uration. Origin misconfiguration occurs when the operator accidentally announces prefix/pre-

fixes that they do not own or fail to filter private ASes. Export misconfiguration occurs when

the operators accidentally configure BGP policies, for example, by blocking some authorized

routes causing DoS to the blocked prefixes [83, 93]. Each type of misconfigurations has dif-

ferent effects. Deshpande et al. in [93] show that origin misconfiguration causes dangerous

fluctuations in BGP routes while export misconfiguration threatens BGP routing convergence.

Direct unintended anomaly also refers to AS number space attribution overlaps between

RIRs. In November 2009, it was noted that AS1712 has been used by both Twilight Commu-

nications (an organization in Texas assigned by ARIN) and Ecole Nationale Superieure des

Telecommunications (an organization in Paris assigned by RIPE) [108]. According to IANA,

AS1712 should be assigned by ARIN, not RIPE. This overlap occurred because AS numbers

in the 1700’s were assigned by RIPE in 1993, before the existence of ARIN, and consequently

AS1712 was used by both RIPE and ARIN [109].

2.3.3 Indirect anomaly

This type of anomaly refers to malicious activities directed at Internet components such as

web servers. Although BGP is a routing protocol for managing Internet reachability informa-

tion between ASes, it experienced periods of instability during the Nimda, Code Red II, and

Slammer worm attacks. These attacks caused routing overload to the entire Internet through

causing some ASes to send significant numbers of BGP messages [27, 28, 110].

Nimda and Code Red II, two well-known computer worm attacks observed during 2001,

were directed at hosts and servers running Microsoft Operating Systems [111]. However, large

spikes of BGP messages were also observed during these attacks. During the Nimda attack

around 30 times the normal number of BGP updates were observed [28]. Another example

of indirect attacks is the Slammer worm attack. Slammer is the fastest computer worm yet

seen, infecting more than 90% of vulnerable hosts in around 10 minutes. Although it was not
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directed at any routing protocol, BGP experienced critical instability during this attack. Lad

et al. in [27] show the effect of the Slammer attack on BGP stability. They show a dramatic

increasing in BGP update announcements during the attack. The average BGP announcement

on some ASes exceeded 4500 updates per prefix compared to an average of 47 updates per

prefix on the day before of the Slammer event. The problem was that no differentiation of

BGP routing traffic and normal data traffic was made so that a congested data path led to

BGP peer failures since KEEPALIVEs were choked. Today providers usually differentiate

between routing/control/management traffic and data traffic to reduce the impact of this class

of problem.

2.3.4 Link failure

ASes are peered together by either a private peering, through a dedicated connection between

peers, or a public peering by a third party such as an IXP. Failure in one of these connection

links (private or public) or one of the Internet core ASes could cause national or global insta-

bility for many ASes. The last twenty years have recorded many BGP events caused by link

failure. For example, on 25 May 2005 there was a blackout in Moscow causing the MSK-IX,

an organization operating Internet Exchange and providing Internet businesses in Moscow and

many Russian cities, to be shutdown for several hours. This blackout affected many ISPs in

Russia [112]. Other failures have a global effect. For example, in January 2008 a Mediter-

ranean cable break incident caused thousands of networks in more than 20 countries to be

unreachable. This outage caused BGP rerouting3 as a result of losing reachability to these

networks [114]. Consequently, thousands of networks were in the situation of sending a high

volume of BGP updates to find alternative paths.

2.4 A review of BGP anomaly detection approaches

Many methods, systems, and approaches have been presented to detect BGP anomalies such

as in [74] and [23] or locate the source cause of anomaly after detection such as in [92] and

[115]. To simplify the comparison between BGP anomaly detection approaches and tech-

niques, we build a taxonomy of algorithms, methods, and techniques into five main classes.

These classes are: time series analysis, machine learning, statistical pattern recognition, val-

idation of BGP updates based on historical BGP data, and reachability checks. Figure 2.14

shows our taxonomy of BGP anomaly detection in term of approaches, BGP data sources and

features.

3Rerouting can be triggered by different causes such as network faults, misconfiguration, and hijack [113].
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Figure 2.14: Taxonomy of BGP anomaly detection

In this section, we explore approaches of BGP anomaly detection based on five aspects.

1. Technique used for detection.

2. Ability to identify different types of anomalies.

3. Used data sources.

4. Observed BGP features.

5. Ability to identify the source cause of anomalies.

We now discuss BGP anomaly detection approaches in more detail.

2.4.1 Time series analysis approaches

One of the earliest efforts of identifying BGP anomalies was by Labovitz et al. [116]. The

authors applied the Fast Fourier Transform (FFT) [117] to routing update rates. They used

BGP data collected from five IXPs in the USA for a period of 9 months. The authors adopted

five BGP features to detect BGP instability as listed in Table 2.5. Although the technique did

not provide a way to identify the cause or source of routing instability, it demonstrated that

rapid changes in routing updates are correlated with instability.

Another time series analysis method to detect BGP anomalies made use of the Wavelet

Transform [118]. Mai et al. introduced a new framework to detect BGP anomalies called

BAlet [62], an extension to the work described in [119]. The BAlet uses Daubchies5 (db5)

Wavelet transform to detect BGP anomaly and Single-Linkage [120] as a clustering algorithm

to identify possible networks that originate anomaly. The BAlet is based on the BGP control

plane where RouteViews and RIPE NCC is used to extract BGP message volume as a single

BGP feature. To evaluate the BAlet, BGP traffic during the Slammer attack and 6 months of
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monitoring BGP log files at the AS12 were used to detect BGP anomalies. Although the BAlet

is able to identify possible location from which the anomaly originated, it is slow, typically

requiring 20 minutes of data.

The Wavelet transform was also adopted in the BGP-lens [121], a tool to analyze BGP data

and detect anomalies. The BGP-lens is based on using the Haar Wavelet transform and median

filtering approach [122]. Its goal was to identify what characterized normal BGP data and how

to detect BGP anomalies. This tool was evaluated with Abilene data (an academic research

network) for a period of two years through investigation of BGP updates (announcements and

withdrawals) per prefix. The BGP-lens offers three levels of alarm and a range of periods

to check. However, this work did not address detection delay and appears unable to detect

anomalies in real-time (in seconds).

Al-Musawi et al. in [8] showed that BGP updates sent from BGP routers have the charac-

teristics of determinism, recurrence, and non-linearity. We used these characteristics to present

an approach to BGP anomaly detection based on RQA. RQA is an advanced non-linear anal-

ysis technique based on a phase plane trajectory [123]. The approach uses BGP volume and

average length of AS-PATH as BGP features extracted every second. We evaluated our ap-

proach using one of the recent BGP incidents caused by Telekom Malaysia (TMnet) which

caused significant network problems for the global routing system [124]. RQA is able to

rapidly detect BGP anomalies caused by a high volume of BGP updates as well as hidden ab-

normal behaviour that may otherwise pass without observation. Further evaluation of different

types of BGP anomalies will be discussed in Chapter 5.

Table 2.5 shows a summary of BGP anomaly detection techniques based on time series

analysis. It is noted that all approaches based on time series analysis in [62, 116, 121] and [8]

has not been tested to detect direct intended anomalies.

2.4.2 Machine learning based approaches

Li et al. presented an Internet Routing Forensic (IRF) framework to detect BGP anomalies

based on using a machine learning algorithm [66]. The IRF framework was based on the

control plane where the RouteViews and RIPE NCC were used to extract 35 features every 1

minute. The framework applies the C4.5 algorithm [125] to build a decision tree. The authors

evaluated their framework by using two different cases: worm attacks (indirect BGP anoma-

lies), comprising the CodeRed and Nimda, and electricity failure, East Coast and Florida

blackout [126]. The IRF is able to detect BGP events based on learned rules of past BGP

events. For example, using the rules learned from CodeRed and Nimda worms attack to detect

Slammer. However, the framework did not address the problem of identifying the location

which caused the anomaly and appears not capable of doing so. The IRF, furthermore, was
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Table 2.5: Summary of approaches based on time series analysis

N1= Addressed and capable, N2= Addressed but not capable, N3= Not addressed but

possibly capable, N4= Not addressed and appears not capable

Work Used

Data

Source

Observed BGP Features Technique Types of

Anomaly

Identify

Source

Cause

Labovitz

et al.

[116]

Control

plane

Number of new paths announced

after withdrawing an old path;

Number of new-path announcements;

Number of re-announcements after

withdrawing the same path; Number

of duplicate announcements; Number

of withdrawals transmitted to

unreachable prefix

FFT Tested with 9

months of BGP

data

N2

Mai et al.

[62]

Control

plane

BGP message volume db5 Wavelet

transform and

Single-

Linkage

Tested with

indirect

anomaly and 6

months of BGP

data

N1

Prakash et

al. [121]

Control

plane

Number of announcements and

withdrawals per a prefix

Haar Wavelet

transform and

Median

filtering

Tested with 2

years of BGP

data

N1

Al-

Musawi et

al. [8]

Control

plane

BGP volume and average length of

AS-PATH

RQA Tested with

direct

unintended

anomaly

N3
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not evaluated to detect direct types of BGP anomalies. A similar approach to IRF framework

was introduced by de Urbina Cazenave et al. [96]. This framework has the ability of using dif-

ferent data mining algorithms such as decision tree, Naive Bayes, and Support Vector Machine

(SVM) [125]. This framework consists of two main parts: an advanced feature extraction for

15 BGP features extracted every 30 seconds from BGP raw data downloaded from the Route-

Views and RIPE NCC and data mining algorithms to classify BGP events. The authors show

that SVM produces better performance than decision tree and Naive Bayes. Although the new

proposal shows its ability to detect a wide range of BGP anomalies such as misconfiguration,

blackout, and worm attacks, it was not tested to detect direct intended anomalies and did not

address the problem of identifying the location that caused the anomalies and appears not

capable of doing so.

Al-Rousan et al. presented another example of using machine learning to detect BGP

anomalies is [61]. This mechanism consists of two main phases, an advanced feature extrac-

tion from BGP updates and a classifier to classify BGP updates as normal or abnormal. In

the first phase, 37 features are extracted every 1 minute from BGP raw data downloaded from

the two well-known BGP control plane repositories, then Fisher [94] and mRMR [95] scoring

algorithms are used to select the 10 most-important features that have highest performance

for detection. However, the authors show that volume features are more effective in detect-

ing anomaly behavior than AS-PATH features. The second phase uses the SVM and Hidden

Markov Models (HMMs) [127] to detect BGP anomalies. The suggested mechanism was eval-

uated using three indirect anomaly events: Slammer, Nimda, and Code Red I. Other types of

BGP anomalies such as direct and indirect anomalies have also been tested. This mechanism,

however, did not address how to identify the location which caused the anomalies and appears

not capable of doing so.

Lutu et al. in [128] presented a system to detect BGP anomalies at an early stage based

on prefix visibility at the inter-domain level. Prefix visibility is the occurrence of a prefix

in the global routing table at every sampling moment. They classified prefix visibility into

Limited-Visibility Prefix (LVP) and High-visibility prefix (HVP), where LVP is a stable long-

lived internet route with a prefix visibility less than 95% of all routing table extracted from the

RouteViews and RIPE NCC. HVP refers to prefix visibility with more than 95% of all the ex-

tracted routing table. The authors used the BGP Visibility Scanner [105], a tool for identifying

limited visibility for stable prefixes in the Internet, to detect LVP and HVP. They also used a

machine learning winnowing algorithm to classify whether LVP resulted from a misconfigu-

ration by a BGP router operator or was a natural expression of global routing policies in the

Internet. "Winnowing" is based on boosted classification trees described in [129]. Among 9

features based on visibility of prefixes, the 7 most important features were selected using clas-
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sification and regression trees [125]. Although the proposal is able to detect anomalies which

are still undetected by many other tools, it is limited to detect direct unintended anomaly. In

addition, it does not show its ability to identify the location which caused the anomaly and

appears not capable of doing so.

Table 2.6 shows a summary of BGP anomaly detection techniques based on machine learn-

ing. It is noted that none of these approaches [61, 66, 96, 128] address detecting BGP hijacking

(direct intended anomaly) or are able to identify the source cause of anomaly.

2.4.3 Statistical pattern recognition based approaches

Huang et al. [130] introduced a technique to detect BGP node, link, and peer failure. This

technique uses a Principal Component Analysis (PCA) based subspace method [125] to detect

and differentiate between the three failures. They used three types of data source: BGP up-

dates, operational mailing list, and routing configuration for the Abilene network, where BGP

update volume was used as a single BGP feature extracted every 10 minutes with window

size of 200 minutes. The authors used the NANOG operational mailing list to validate the

ground truth of detection. Although the approach is able to detect, identify, and differentiate

between BGP node, link, and peer failure, it requires information of router configuration and

is unsuitable for real-time detection since it takes from 9-96 minutes.

Deshpande et al. in [24] presented a BGP anomaly detection approach based on the Gener-

alized Likelihood Ratio Test (GLRT), a standard statistical technique used in hypothesis test-

ing, deployed on a single BGP router. Three BGP features (BGP volume, AS-PATH length,

and rare ASes) were extracted every 5 minutes from BGP updates downloaded from the RIPE

NCC. The most relevant features among the three features were selected using Fisher score

[94]. The authors showed that using AS-PATH and rare AS in AS-PATH features with mes-

sage volume improved the False Positive (FP) rate compared with using message volume

alone. FP refers to normal events that are classified as anomalous while False Negative (FN)

refers to anomalous events that are classified as normal. The authors compared their proposal

with the adaptive Exponentially Weighted Moving Average (EWMA) scheme in [131], PCA

based scheme used in [130], and Wavelet based scheme used in [119]. The new approach was

evaluated with ten well-known events (such as worm attacks, misconfiguration, equipment

failure, and hijacking) and produced a high level of detection accuracy and low computation

cost compared with the other mechanisms. However, this detection system is slow, typically

needing around an hour to detect anomalies.

Ganiz et al. [132] presented a Higher-order Path Analysis (HOPA) to detect BGP anoma-

lies and able to differentiate between indirect BGP anomaly and link failure. HOPA is a



2.4 A review of BGP anomaly detection approaches 37

Table 2.6: Summary of approaches based on machine learning

N1= Addressed and capable, N2= Addressed but not capable, N3= Not addressed but possibly

capable, N4= Not addressed and appears not capable

Work Used

Data

Source

Observed BGP Features Technique Types of

Anomaly

Identify

Source

Cause

Li et al.

[66]

Control

plane

Number of announcements and updates for an AS

and prefix; Number of new-path announcements;

Re-announcements after withdrawing the same

path; Number of paths announced after

withdrawing an old path; Number of withdrawals

after announcing the same path

Selected from 35 features extracted every 1

minute

C4.5 Tested with

indirect

anomaly and

link failure

N4

de

Urbina

Cazenave

et al.

[96]

Control

plane

Number of announcements, withdrawals, and

updates for an AS and prefix; Maximum and

average announcements for a prefix; Maximum

and average AS-PATH length; Maximum and

average unique AS-PATH length;

Announcements to longer and shorter path;

Concentration ratio (first, second, and third) order

Extracted every 30 and 60 seconds

Decision

tree, Naive

Bayes, and

SVM (best

results)

Tested with

direct

unintended

anomaly,

indirect

anomaly,

and link

failure

N4

Al-

Rousan

and Tra-

jkovic

[61]

Control

plane

Average rare ASes in an AS-PATH; Maximum

AS-PATH length; Number of duplicate

withdrawals

Number of withdrawals, incomplete packets and

duplicate announcements; Packet size

Selected from 37 features extracted every 1

minute using Fisher and mRMR

SVM and

HMMs

Tested with

indirect

anomaly

N4

Lutu et

al. [128]

Control

plane

Average number and its standard deviation for

LVP generated by same origin AS; Average

proportion and its standard deviation of active

monitors detecting the LVP; Average and

standard deviation of absolute visibility degree

for the LVP; Prefix length of the LVP

Selected from 9 features extracted every two

weeks using classification and regression trees

Winnowing

algorithm

Tested with

direct

unintended

anomaly

N4
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data-mining approach used to produce relevant information from BGP updates, downloaded

from the RouteViews project, every 6 minutes, then classify them using Student’s t-test [125],

a statistical hypothesis analysis. Although their approach is able to differentiate between two

types of BGP anomalies in 360 seconds, it was not evaluated with the most common types of

BGP anomalies (the two direct anomalies). In addition, HOPA did not address how to identify

the location which caused the anomalies but it is possibly capable of doing so.

Theodoridis et al. [133] introduced an unsupervised learning mechanism to detect BGP

hijacking using control plane BGP raw data. This mechanism is based on observing the ge-

ographic changes of intermediate AS in the AS-PATH between the competing routes. Fre-

quency of AS appearance in the path and geographic deviation of intermediate AS were in-

troduced as a two BGP features. These two features have also been used by BGPfuse [134],

a visualization tool to detect BGP hijacking. The unsupervised proposal uses Z-score calcu-

lation, a statistical measure for a particular value of the number of standard deviations [125],

to rank how much the intermediate AS are suspicious. The authors assumed that the attackers

usually carried out their activity on remote locations to avoid any legal actions and reduce the

possibility of identification. This mechanism was evaluated using the Link Telecom incident

and showed it was able to detect the deviation of intermediate AS during the hijack. This

mechanism did not address how to identify the location which caused the anomaly nor real

time detection but it is possibly capable of doing so. However, the authors did not evaluate the

ability of their mechanism to detect other types of BGP anomalies such as direct unintended

and indirect anomalies.

Table 2.7 shows a summary of techniques based on statistical pattern recognition to detect

BGP anomalies. It is noted that approaches based on statistical pattern recognition show their

ability to detect different types of BGP anomaly and identify the source cause.

2.4.4 Validation of BGP updates based on historical BGP data

This approach to BGP anomaly detection uses a history of RIB table and/or BGP updates

to validate new BGP updates, assuming that Internet topology does not frequently change.

Pretty Good BGP (PGBGP) is a detection and mitigation system against BGP attacks [18].

PGBGP uses history of both RIB and BGP updates downloaded from the RouteViews project

to validate new updates. It uses a prefix and origin AS pair (prefix origin change feature) from

both RIB and update history over the previous 10 days. It also eliminates routes that are no

longer active and older than 10 days. When a new route is received and its pair (prefix and

origin AS) is not recorded in the history period, it considers the update suspicious and will be

propagated with a low LOCAL-PREF. PGBGP did not address the problem of identifying the
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Table 2.7: Summary of approaches based on statistical pattern recognition

N1= Addressed and capable, N2= Addressed but not capable, N3= Not addressed but possibly

capable, N4= Not addressed and appears not capable

Work Used Data

Source

Observed BGP Features Technique Types of

Anomaly

Identify

Source

Cause

Huang et

al. [130]

Control plane,

operational

mailing list, and

routing

configuration

BGP volume extracted

every 10 minutes with a

window size of 200 minutes

PCA-based on

subspace

method

Tested with

link failure

N1

Deshpande

et al. [24]

Control plane BGP volume; AS-PATH

length; Rare AS in a path

Extracted every 5 minutes

EWMA, PCA,

and GLRT

(better

performance)

Tested with all

types of

anomalies

N1

Ganiz et al.

[132]

Control plane Number of announcements,

withdrawals, and updates

for an AS and prefix

HOPA Tested with

indirect

anomaly and

link failure

N3

Theodoridis

et al. [133]

Control plane Frequency of AS

appearance in the path;

Geographic deviation of

intermediate AS

Z-score

calculation

Tested with

direct intended

anomaly

N3
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location which caused the anomaly but it possibly capable of doing so. Although PGBGP is

able to detect prefix and sub-prefix hijacking, it has some limitation related to using the history

period (10 days). For example, MOAS may last for a few days and may not be observed for

months. An enhanced history-based algorithm was introduced by Sriram et al. [56] that

successfully overcame PGBGP drawbacks through using a longer period (e.g, months).

Lad et al. [75] presented PHAS, a prefix hijacking detecting system with the capability of

sending alarms to the real prefix owners. PHAS analyzes BGP data in real-time to detect when

a prefix hijacking event occurred or was resolved. PHAS requires a registration process from

prefix owners who want to use it. The registration is used as a base point to monitor origin

changes of that prefix. The system uses an adaptive window scheme with 1 hour as the initial

size window. The adaptive scheme increases the window size when there are many changes

in the origin of a prefix and decreases it in case of a small number of changes. The authors

believe that only the prefix owners can distinguish between legitimate changes and hijacking

changes for their prefixes; therefore, this approach offers a filter facility to prefix owners to

add which AS may use a specified prefix. PHAS uses the RouteViews repository as a BGP

control plane and prefix origin changes as a single BGP feature. Although the system does not

require any router reconfiguration, it requires registration and has consequent issues related to

authenticating legitimate ownership as there is no secure mechanism to differentiate between

a legitimate owner and an attacker.

Haeberlen et al. [19] presented a prototype to detect BGP faults at the AS level called

NetReview. This prototype uses a tamper-evident log, containing BGP messages to and from

AS neighbours, to detect BGP faults, where BGP faults include BGP router and link failure,

misconfiguration, policy violations, and attacks. NetReview requires each BGP speaker to

maintain a history log file of around one year of data and a set of rules that describe its best

practices and routing polices, then other ASes can use this information to audit how the rules

are followed. NetReview requires each AS to log a public pledge to show its ownership of AS

numbers and prefixes. NetReview has been tested under a control testbed to detect different

types of BGP anomalies. Although NetReview can detect in real-time different types of BGP

anomalies and identify their source cause, it requires each AS to reveal information related to

its policy configuration and suffers from scalability problems related to the size of storing log

files especially for large ISPs.

Argus [23, 135] is a system to detect prefix hijacking and identify the attacker in real-time.

Argus uses the control plane to detect bogus routes and the data plane to verify anomalies

through checking their reachability. This system uses more than 2 months of historical BGP

data to classify new BGP updates as normal or suspicious, then checks the reachability of

prefixes to verify the suspicious updates through using tools such as iplane [136] and CAIDA’s
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Ark [91]. In addition, the IRR data is also used to improve the false positive rate. Although

Argus can detect BGP hijacking and identify the source cause in real-time, it cannot detect

sub-prefix hijacking nor other types of anomalies such as indirect anomaly and link failure.

Table 2.8 shows a summary of work in detecting BGP anomalies based on historical RIB

and/or BGP updates. It is noted that all approaches based on historical BGP data use prefix

origin change as a single BGP feature.

Table 2.8: Summary of approaches based on using historical BGP data

N1= Addressed and capable, N2= Addressed but not capable, N3= Not addressed but possibly

capable, N4= Not addressed and appears not capable

Work Used Data

Source

Observed

BGP

Features

Technique Types of Anomaly Identify

Source

Cause

Karlin et

al. [18]

control

plane

Prefix origin

change

Validate new BGP update

based on 10 days of BGP

history

Tested with direct

intended anomaly

N3

Lad et al.

[75]

control

plane

Prefix origin

change

Validate new BGP updates

based on prefix

registration by owners

Tested with direct

intended anomaly

N3

Haeberlen

et al. [19]

control

plane

Prefix origin

change

Validate new BGP updates

based on 1 years of BGP

and set of rules

Tested with a

control testbed

N1

Shi et al.

[23]

control

plane, data

plane, and

IRR

Prefix origin

change

Classify new BGP updates

based on 2 months of BGP

history

Tested with direct

intended and

unintended

anomalies

N1

2.4.5 Reachability check

This type of technique uses the BGP data plane to check reachability to a certain prefix using

different types of tools such as hping [137], Nmap [138], traceroute [139], iTraceroute [140],

and Paris traceroute [141]. One of the earliest works to detect BGP hijacking based on data

plane was by Zheng et al. [76]. The authors assumed that the network location for a prefix

remains unchanged over time so a significant change in network distance (hop count between

source and destination) from a selected vantage point to a certain IP may be used as an indi-

cator of hijacking. They used a combination of ping, traceroute, and iplane [136] to count the

number of hops towards a certain prefix. This proposal can detect prefix hijacking in real-time,
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but it is not able to detect sub-prefix hijacking. Furthermore, it was not tested to detect other

types of anomalies.

In [74], the control plane is used to detect suspicious BGP messages, then data plane

probing is launched to verify if the suspicious data is an anomaly or not. In general, attackers

use dissimilar OS or configure OS to open some ports when compared with legitimate users;

thus, tools such as Nmap [138] can identify the OS fingerprint of the attacker. The authors

used a set of fingerprints such as host OS properties, IP identifier, TCP time stamp, and ICMP

time stamp to identify the attackers. For example, the IP identifier is designed to be unique

for each IP datagram to help IP fragment reassembly. The identifier is incremented for every

outgoing packet regardless of its destination. The authors used this identifier to send probe

packets simultaneously to the same suspicious IP from two locations to check if they arrived

at the same destination. The authors did not address the problem of identifying the location

which caused the anomaly but it is possibly capable of doing so. However, this system is

difficult to deploy as it relies on complicated probing and requires installation of customized

software at its vantage points [23].

Tahara et al. [142] proposed a method to detect prefix hijacking based on data plane by

using a ping test. When an attacker hijacks a prefix, packets traverse toward the attacker

instead of the real prefix owner. However, during a hijacking attack, not all AS experience the

effect of the attackers (as shown in Figure 2.9); therefore, checking reachability to a suspicious

prefix from different vantage points can be used by an observer to detect a prefix hijack. The

authors, however, did not address detection delay nor identification of the location which

caused the anomalies but the method is possibly capable of doing so.

Zhang et al. presented iSPY [77], a tool for detecting prefix hijack in real-time based on

the observation that connectivity to victim hosts is lost during hijacking attempts. iSPY is able

to distinguish between a real attack and a link failure or network congestion. It uses the BGP

data plane where a combination of iTraceroute, ping, and TCP ping, a ping over TCP port

such as that available in Nmap [138], are used to check the reachability to a certain prefix.

Deploying iSPY on a network requires collecting in advance a set of live IPs using active

probing, an IP-to-AS mapping, and a continuous update to its database. However, iSPY’s

ability is limited to detecting regular prefix hijacking only. Other types of hijacking such as

sub-prefix hijacking cannot be detected.

Table 2.9 shows a summary of work for detecting BGP anomalies based on reachability

check. This table shows that all approached based on reachability check use data plane to

detect or verify the exist of anomaly. However, none of these approaches were tested to detect

indirect BGP anomaly.
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Table 2.9: Summary of approaches based on reachability check

N1= Addressed and capable, N2= Addressed but not capable, N3= Not addressed but possibly

capable, N4= Not addressed and appears not capable

Work Used Data

Source

Observed BGP Features Technique Types of Anomaly Identify

Source

Cause

Zheng et

al. [76]

Data plane Number of hops toward a

suspicious prefix

Combination of

ping, traceroute,

and iplane

Tested with direct

intended anomaly

N1

Hu and

Mao [74]

Control

plane and

data plane

Set of fingerprints such

as OS properties, IP

identifier, TCP time

stamp, and ICMP time

stamp

Combination of

hping and Nmap

Tested with direct

intended anomaly

N3

Tahara et

al. [142]

Data plane Reachability from

different vantage points

Ping test Tested with direct

intended anomaly

N3

Zhang et

al. [77]

Data plane Reachability of a prefix

from transit ASes

Combination of

iTraceroute, ping,

and TCP ping

Tested with direct

intended anomaly

and link failure

N2

2.5 Key requirements for next generation of BGP anomaly

detection

We have presented many systems, approaches, and tools with different capabilities for detect-

ing BGP anomalies. A summary comparison between BGP anomalies detection techniques

in term of real-time detection, ability to detect different types of BGP anomalies, differenti-

ate between types of BGP anomalies, and identify the location which caused the anomaly is

shown in Table 2.10. This table shows that none of these works offers a combination of ade-

quate real-time detection and identification for all types of anomalies as well as locating the

cause of anomalies. A recent analysis [23] shows that some hijackings proceed in less than ten

minutes and can affect 90% of the Internet within less than two minutes. Thus, detection of

BGP anomalies in real-time (less than two minutes) is required to mitigate their propagation

between BGP speakers. However, detecting BGP anomaly in real-time is not enough to stop

propagation of anomalies without requiring action from the operators. To accomplish that,

the operators need extra information to ensure that an alarm is raised by serious threats. This
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Table 2.10: Reviewed works in light of four characteristics properties

C1=Has not been tested with a specific type of anomaly, C2= Direct intended anomaly,

C3=Direct unintended anomaly, C4= Indirect anomaly, C5=Link failure, N1= Addressed and

capable, N2= Addressed but not capable, N3= Not addressed but possibly capable, N4= Not

addressed and appears not capable

Work Real-time

Detection

BGP Detected

Anomalies

Differentiate

Between Anomalies

Identify

Source Cause

Labovitz et al. [116] N4 C1 N4 N2

Mai et al. [62] N2 C4 N4 N1

Prakash et al. [121] N4 C1 N4 N1

Al-Musawi et al. [8] N1 C3 N4 N3

Li et al. [66] N2 C4 and C5 N4 N4

de Urbina Cazenave et al.

[96]

N1 C3, C4, and C5 N4 N4

Al-Rousan and Trajkovic

[61]

N4 C4 N4 N4

Lutu et al. [128] N4 C3 N4 N4

Huang et al. [130] N2 C5 N4 N1

Deshpande et al. in [24] N2 C2, C3, C4, and C5 N4 N1

Ganiz et al. [132] N1 C4 and C5 between C4 and C5 N3

Theodoridis et al. [133] N3 C2 N4 N3

Karlin et al. [18] N2 C2 N4 N3

Lad et al. [75] N2 C2 N4 N3

Haeberlen et al. [19] N1 C1 N4 N1

Shi et al. [23] N1 C2 and C3 N4 N1

Zheng et al. [76] N1 C2 N4 N1

Hu and Mao [74] N1 C2 N4 N3

Tahara et al. [142] N3 C2 N4 N3

Zhang et al. [77] N1 C2 and C5 between C2 and C5 N2
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can be done through identifying the type of anomaly as well as the location which caused the

anomaly. For example, the action taken by an operator when dealing with a direct intended

anomaly is different from that taken when dealing with direct unintended anomaly, where the

unintended anomaly may stop as soon as the operator discovers the fault or is informed of it

by its neighbours. However, distinguishing direct and intended from unintended anomaly has

not been resolved [32]. The ability to locate the attackers is critical for mitigating anomaly

effects through introducing an early recognition mechanism to stop the propagation of attacks.

2.6 Conclusions

BGP is the Internet’s default inter-domain routing protocol. It was developed at a time when

information provided by an AS could be assumed to be accurate. BGP has been threatened by

different types of anomalies that affect its stability and performance. During the past twenty

years many different types of anomalies have affected BGP stability and performance. These

can be mainly classified into four main categories: direct intended anomaly, direct unintended

anomaly, indirect anomaly, and link failure. We also classify BGP data sources into three main

categories: raw data (control plane and data plane) and route registry database as well as other

types of BGP data sources.

This chapter surveys 20 significant works in the field of BGP anomaly detection during

the period of 1998 to late 2015. It examines these works in terms of BGP data sources and

features, detection technique, ability to detect different type of BGP anomalies and locate the

source cause of anomalies. Time series analysis, machine learning, statistical pattern recog-

nition, validation of BGP updates based on history log, and reachability check are the main

techniques that have been used to detect BGP anomalies.

There is still much to be done in the field. None of these significant works offers a combi-

nation of detecting in real-time for all types of anomalies, differentiating between them, and

identifying the source cause of the anomaly. This combination is needed to enable operators

to mitigate the propagation of anomalies, protect their network, and help to understand the

inter-domain routing protocol.





Chapter 3

Recurrence quantification analysis

3.1 Introduction

We are familiar with many situations in daily life where we can predict with reasonable cer-

tainty, how they will evolve. For example, parents can predict if their children are straying

into danger if they are playing too near a road. We can predict that a thunderstorm is likely by

observing the sky on a hot and humid summer’s day. These types of predictions are not based

on complex analysis but on having seen the progression evolve in the past. The prediction

makes use of the fact that many situations evolve in a similar way. In other words, they exhibit

some degree of determinism.

Deterministic systems have attracted much attention in recent decades [123]. Many sys-

tems that in the past were thought to be random are now thought to be chaotic. That is, they

are deterministic but very sensitive to small changes in initial conditions. Many systems may

not be strictly deterministic, but the progress of some sequence of behavior may well be de-

terministic. We cannot predict the weather more than a few days ahead, but when we see a

particular sequence of weather events we can be confident (as in the example above) that a

thunderstorm is in the offing.

We describe such systems as recurrent. The system may exhibit some predictable sequence

of behavior for a period of time, before switching to another sequence of predictable behavior.

Each sequence is broadly predictable but transitions from one sequence to another may not

be. These systems were originally analysed using a graphical method called a RP. RPs enable

the visualization of the evolution of potentially non-stationary dynamical systems [143]. The

essential idea is that the system has a trajectory within an m-dimensional phase space. A phase

space is constructed by mapping the system behavior against a time shifted version of itself.

An RP is a two dimensional representation of the phase space trajectory. The power of such

analysis is that it uncovers time correlations between data regardless of whether the system is
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linear or non-linear, stationary or non-stationary1. Thus it is able to uncover patterns that may

not be apparent from simply analysing a one dimensional series of values. RP has been used

in many disciplines such as astrophysics and geosciences to characterize time series behavior

[123].

Although it is a powerful tool for visualizing system behavior, RPs are essentially quali-

tative and require considerable expertise to interpret. RQA was introduced to deal with these

shortcomings. It provides quantitative measures of recurrence from the RP and simplifies

interpretation of recurrent data. In RQA the density of recurrence points, histograms of the

lengths of diagonal and vertical lines and other characteristics of the RP are quantified to pro-

vide useful measures of complexity. RQA has been used to detect anomalous behavior in

network traffic [144] and computer programs [145].

In this chapter we introduce the concepts of the phase space trajectory, RPs and RQA. We

also demonstrate how RQA measurements are related to typical time series. Furthermore, we

show how RQA can be used to detect anomalies within the underlying time series that may

not be apparent using conventional techniques.

This chapter is organized as follows: Section 3.2 introduces the phase space trajectory of

a system, estimates type of motion, identifies determinism and linearity for dynamic systems.

Section 3.3 illustrates how RP can be used to visualize the time dependent behavior of the

dynamic behavior of a system. Section 3.4 introduces RQA and shows how RQA can be

used to simplify interpretation of an RP through the introduction of a number of recurrence

measures. In Section 3.5, we demonstrate how RQA measurements change when there is a

change in the underlying time series. Finally, in Section 3.6 we summarise the chapter.

3.2 Phase space trajectory

The states of systems in nature and engineering typically change over time. The study of

transitions of these states is an important task in many disciplines. It provides a way of under-

standing these systems and predicting their behaviour [123, 146]. Such systems can be defined

as dynamical systems consisting of a set of variables that describes their current state and a

law that describes how their state changes with time. Formally, a dynamical system is defined

by a phase space, a time evolution law and continuous or discrete time.

In phase space, each point corresponds to a definite system state and as the system propa-

gates through time a trajectory is formed. The state of a system at time t can be specified by d

variables to form a vector x(t) in d -dimensional phase space. That is

1Stationary time series is a characteristic of having a distribution that is independent of time shifts. Most

often, the values of mean, variance and auto-correlation structure are constant over time.
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~x(t) = (x1 (t) , x2 (t) , . . . , xd (t))
T . (3.1)

The time evolution law allows determination of the system at time t based on previous

states. In a continuous time system this can be described by a set of differential equations.

~̇x(t) =
d~x (t)

dt
= ~F (~x(t)) , F : Rd → R

d, (3.2)

where vector x(t) is a trajectory in phase space.

The time evolution of the trajectory describes the dynamics of the system. In particular

the trajectory shape can indicate whether the system is periodic, chaotic, stochastic or some

combination of all three. However, in practice not all components can be measured. More

commonly we have a scalar and discrete time series (ui) where ui = u(i△t), i = 1, . . . , N and

△t is a sample interval. A frequently used technique for reconstructing phase space from a

time series is the time delay embedding method. This is used to determine the time delay and

dimension of the phase space. From the time series, the phase space trajectory can be then

reconstructed by

~̂ ix =
m

∑
j=1

ui+( j−1)τ~e j, (3.3)

where m is the embedding dimension, τ is the time delay,~e j are the unit vectors.

To reconstruct phase space trajectories using time embedding method, embedding dimen-

sion and time delay parameters need to be selected carefully. Different algorithms can be used

to determine these parameters. The Auto-correlation function (ACF) and Mutual Information

(MI) are the most well-known methods to determine time delay. Unlike ACF which measures

linear correlation, MI measures both linear and non-linear correlation. Therefore, we will use

the MI method to determine the time delay parameter. Although the estimation of time delay

needs careful attention [123], Webber and Zbilut in [147] argue there is no need to find the op-

timal time delay. They show that it is not necessary to find the optimal value as system features

tend to be stable over different time delays but they recommend choosing a large enough value

so that each trajectory in the phase plane adds new information to the phase plane trajecto-

ries. To estimate the embedding dimension parameter, False Nearest Neighbour (FNN), a tool

for determining the proper embedding dimension in dynamic systems, can be used. The first

minimum values of MI and FNN represent the values of time delay and embedding dimension

respectively.

We now illustrate these concepts with some simple examples. Figure 3.1b shows phase
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space representation for a simple discrete time series input data shown in Figure 3.1a with

time delay=60 (τ = 60) and embedding dimension=3 (m=3) calculated by MI and FNN re-

spectively. In this figure, we can see that phase space can detect the changes in the input data

at times 1, 61, and 121 seconds. These three changes reflect the transition of the system repre-

sented in its underlying time series shown in Figure 3.1a. The first change represents the first

state of the system at time 1 second, then a new state appears at time 61 seconds and finally

the system returns to its initial state at time 121 seconds.
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(b) Phase space representation with τ =60 and m=3

Figure 3.1: Simple example of underlying time series and its corresponding representation of

phase space

Figure 3.2 demonstrates how the characteristics of a more complex system can be deter-

mined. The time series in Figure 3.2a shows a periodic discrete time series input data while

its corresponding phase space representation shown in Figure 3.2b where we can see multiple

triangles parallel to each other. Within phase space, periodic behaviour typically appears as

cycles.
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Figure 3.2: An example of a periodic data and its corresponding representation of phase space

However, identifying the type of motion in dynamic systems using phase plane trajecto-

ries is difficult. Different techniques have been introduced to estimate the type of motion in

dynamic systems which will be discussed in the next subsection.

3.2.1 Type of motion

In dynamical systems, there are different types of motion such as stable, where a system’s

behaviour appears stable around a point in the phase space, and noisy, where the behaviour is
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fully random. Identifying the type of motion for a dynamical system can help us understand

system behaviour.

While estimating the type of motion in a dynamical system is comparatively easy if the

equation of motion in the phase space is available, it is a difficult task when only a series

of data is available. With a lack of knowledge about the underlying dynamics, the maximal

Lyapunov exponent is a good measure to estimate the type of motion in dynamical systems

[148, 149].

The Lyapunov exponent is a measure of the speed with which two points in close proximity

separate as the system evolves. To identify type of motion in dynamic systems, maximal Lya-

punov exponents is used. The maximal Lyapunov exponents refers to the slope of Lyapunov

exponents where a positive slope indicate a chaotic system, a zero slope indicate a possible

stable limit cycle system, and an infinite slope indicates a noisy system.

Different methods have been proposed to find the maximum Lyapunov exponents. The

most well-known methods are described in [148] and [149]. While the method described

in [149] does not depend on the correct embedding dimension, the method in [148] does.

TISEAN [150], a software package for analysis of time series with methods based on the

theory of nonlinear deterministic dynamical systems, can be used to estimate maximum Lya-

punov exponents based on methods described in [148] and [149] respectively. If sn1 and sn2

are two points in phase space with distance sn1 − sn2 = △0 ≪ 1, distance after a time ∆l is

δ∆l = sn1+∆l − sn2+∆l . The maximal Lyapunov exponents represents the slope of the equation

defined in (3.4), where a positive value is an indication of a chaotic system and a zero slope

corresponds to a possible stable system.

δ (e,m,τ) =

〈

ln

(

1

| υn |
∑

sn2∈υn

| sn1+τ − sn2+τ |

)〉

n

, (3.4)

where m is the embedding dimension, τ is time delay, υn is the e−neighborhood of sn [150].

Figure 3.3 shows an example for an input time series and its corresponding Lyapunov ex-

ponents where we can see that Lyapunov exponent exhibits a flat line which indicates possible

stable behaviour.

In addition to identifying types of motion in dynamic systems, identifying determinism

and linearity helps to select an appropriate method to predict system behaviour. In the next

subsection, we discuss different techniques to identify the properties of determinism and lin-

earity in dynamic systems.
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Figure 3.3: Sample of time series data and its corresponding Lyapunov exponents indicating

a stable system behaviour

3.2.2 Determinism and linearity

Different methods for detecting the existence of determinism and/or non-linearity in time se-

ries are available such as Kaplan’s test [151] and Delay Vector Variance (DVV) [152]. Ka-

plan’s test [151] is a technique that uses the linearised versions of the original data which

is called surrogate data (or surrogate for short) to examine linearity for an input time series.

DVV is a method based on the concepts of FNN and Kaplan’s test [151] to examine an input

data for determinism and non-linearity. DVV uses an approach for comparing the characteris-

tics of time series based on its predictability against surrogate data. We use DVV to estimate

determinism and linearity of dynamic systems.

DVV requires the proper selection of time delay and embedding dimension. The exami-

nation of determinism and non-linearity can be interpreted using a DVV plot and DVV scatter

diagram respectively. The examination of determinism can be observed in a DVV plot by

observing DVV plots converging to unity while non-linearity can be examined in DVV scatter

by deviation from the bisector line.

For example, the corresponding DVV plot and DVV scatter diagram for the input data of

Figure 3.3a are shown in Figures 3.4a and 3.4b respectively. In this example, we can see the

variance converges to a value of 1 in the first diagram which indicates determinism while there

is a deviation from the bisector line indicating non-linearity in the second diagram.

In this section, we have discussed the concept of phase space and shown how it can be
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used for modelling deterministic systems. For a purely deterministic system, all future states

can be determined when its current state is known. But phase space is also useful for un-

derstanding non-deterministic systems when they are described as a set of states that specify

system transitions. However, investigating dynamics of systems in phase space trajectory is a

complex task particularly for an m-dimensional phase space trajectory (when m ≥ 3) as shown

in Figure 3.2. RPs enable users to investigate m-dimensional phase space trajectory using a

two-dimensional representation of its recurrences. In the next section, we introduce RPs and

show how to interpret their structure.

3.3 Recurrence plot

Recurrence Plot (RP) is an advanced nonlinear analysis technique introduced by Eckmann

et al. [143]. The RP was initially produced to graphically display recurring patterns and

non-stationarity in time series. RP was introduced as a tool to visualise the time-dependent

behaviour of the dynamics of a system as a square matrix where each element corresponds to

a point in time states. With enough data, structural patterns in the RP can reveal information

about the time evolution of the phase space. RP is not limited to long data sets. It can be

used for short, noisy, and non-stationary data sets [153]. RPs can be formally expressed by

the matrix R

Ri,j (ε) = Θ
(

ε −‖−→xi −
−→x j ‖
)

, i, j = 1 , . . . , N, (3.5)

where Ri, j is an element of the recurrence matrix R, N is the number of measure points, E is a

threshold distance, Θ(·) the Heaviside function and (‖ · ‖) is a normalization operation.

To construct an RP, three parameters have to be carefully selected. These are the two used

in reconstructing phase space: time delay (τ) and embedding dimension (m), and a new one,

the threshold (ε) which refers to the distance between a pair of states in the phase plane. If a

pair of states fulfils the threshold condition, their corresponding value of recurrence point is

assigned with the value 1; otherwise, the pair is considered dissimilar and assigned with the

value of 0. Selecting non-optimal values for RP’s parameters can produce different structures

for the same input data. For example, non-optimal values of embedding parameters can cause

many interruptions to the Line of Identity (LOI), a black main diagonal line with an angle π
4 in

the RP. As noted in our discussion on phase space reconstruction, time delay and embedding

dimension can be estimated using the MI and FNN algorithms. Although there is not a well-

established method to determine the optimal values of the threshold, the value of threshold has

to be selected to be as small as possible. Generally, optimal selection of recurrence threshold
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Figure 3.4: Estimation of determinism and non-linearity using DVV method
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depends on the application and experiment. In classification and signal detection, for example,

a good choice of the threshold ranges is 20-40% of the signal’s standard deviation while a

recommendation from [123] suggests that the threshold has to be selected less than 10% of

the maximum phase space diameter.

From the RP structure, we can infer system characteristics from large and small scale

patterns. In large scale patterns, we can infer the characteristics of a system such as whether

it is periodic, homogeneous or disrupted. For example, diagonal lines are long for periodic

systems and short for chaotic systems. Small scale patterns consist of a combination of isolated

dots and dots that form diagonal and vertical lines. These points are structured in different

forms reflecting the behaviour of the system at that time. For example, periodic patterns in

the small scale structure of an RP are characteristic of a system that is cyclical with periods

corresponding to the time distance between periodic structures. Single isolation points in

an RP refer to heavy fluctuations. Diagonal lines which are parallel to the LOI indicate a

deterministic process while lines that are orthogonal to LOI indicate to the evolution of a

system states is similar but they move in the opposite time direction. An example of a periodic

time series data and its corresponding RP representation are shown in Figure 3.5. The most

striking feature in Figure 3.5b is the long diagonal lines structures parallel to LOI identifying

the characteristics of deterministic and periodic behaviour. In this example, we can see two

types of diagonal lines. The discontinuous lines related to the amplitude values of 260 with

periodicity of 15 seconds and continuous diagonal lines related to the amplitude of 460 with

periodicity of 45 seconds.

Changing values of amplitude are reflected in the structure of RP. For example, modifying

the amplitude of time 46 seconds from 460 to 5500 shows a notable change in the structure

of RP as shown in Figure 3.6. The RP in Figure 3.6 shows a small banding disruption caus-

ing discontinues for the diagonal lines which refers to some states that are rare or that some

transitions may have occurred. In this case, it refers to a transition state resulting from a large

amplitude at time 46 seconds. RP can indicate the time of this transition. In addition to de-

tecting amplitude change, the RP also shows a notable change when there is a change in the

signal periodicity. For example, when the value of 460 occurs at times 44, 45, and 46 seconds

instead of only 46 seconds the RP shows a noteworthy alteration in its structure as depicted in

Figure 3.7. Although it is quite difficult to distinguish periodicity changes in the underlying

time series shown in Figure 3.7a, it is obvious to distinguish it in RP as shown in Figure 3.7b

where the diagonal lines discontinuous indicate periodicity change.

However, interpreting an RP requires a high level of experience especially for complex

data. To reduce the difficulty of RP interpretation, RQA has been introduced. In addition,
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Figure 3.5: An Example of RP to identify periodicity in the underlying time series
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Figure 3.6: An example of RP to detect a high amplitude transition in the input data
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RP cannot be directly used for automated detection of system behaviour changes or real-time

anomaly detection. In the next section, we discuss RQA in detail.
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(a) Underlying time series

(b) Recurrence plot with τ =5 and m=9

Figure 3.7: An example of RP to detect periodicity changes

3.4 Recurrence quantification analysis

Recurrence Quantification Analysis (RQA) was introduced by Zbilut and Webber [154] to pro-

vide several measures of complexity which quantify the small scale structures in RPs. These

measurements are called RQA measurements. They introduced five measurements based on

diagonal line structure of RPs including Recurrence Rate (RR), Determinism (DET), and the

Shannon entropy (ENT) of the frequency distribution of the LOI. These RQA measurements

are mainly based on the number, lengths and distribution of the diagonal lines in RPs. How-

ever, additional measurements have been presented by Marwan et al. [153]. These additional
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measurements are mainly based on both vertical and horizontal elements in RPs. In total, there

are eight well-known RQA measurements. These measurements can be classified into three

types: based on the recurrence density, based on diagonal lines, and measurements based on

vertical lines. Now, we discuss the eight most useful measurements in more detail.

Recurrence Rate (RR) refers to the probability that a system recurs after a number of time

states. RR is based on the recurrence density in the RP. It measures the density of recurrence

points in the RP which simply counts the number of black dots in the RP excluding the LOI.

RR can be calculated as

RR =
1

N2

N

∑
i, j=1

Ri, j, (3.6)

where Ri, j is an element of the recurrence matrix R.

Determinism (DET) can be interpreted as the predictability of a system. DET is a measure

based on diagonal lines of the RP. The length of the diagonal lines differ from one system to

another. They are long for periodic signals, short for chaotic signals, and absent for stochastic

signals. DET can be calculated as the ratio of recurrence points that form diagonal structures

to all recurrence points.

DET =
∑

N
l=lmin lP(l)

∑
N
i, j Ri, j

, (3.7)

where lmin is a threshold which excludes the diagonal lines formed by the tangential motion

of the phase space trajectory, lmin is typically set to two. Setting lmin to one will result in

DET and RR being identical. P(l) is the histogram of the lengths l of the diagonal lines [123].

Laminarity (LAM) is a measure of whether the system is in a stable state or if it is tran-

sitioning from one state to another. LAM refers to the percentage of recurrence points which

form vertical lines in the RP. LAM can be calculated as

LAM =
∑

N
v=vmin vP(v)

∑
N
v=1 vP(v)

, (3.8)

where P(v) is the histogram of the lengths v of the vertical lines and the typical value for vmin

is set to two.

Trapping Time (TT) can be used to measure how long the system remains in a specific

state. It contains information about the vertical structures in the RP. The computation of TT

uses the minimal length vmin as in Theorem 3.8 [123].

T T =
∑

N
v=vmin vP(v)

∑
N
v=vmin P(v)

(3.9)
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T2 is a measure of time taken to move from one state to another. It is the mean of transit

time between stable states. For example, T2 can be used to estimate periodicity for a peri-

odic signal. It represents the average lengths of the white vertical lines in the RP. T2 can be

calculated as

T 2
j = |

{

i, j :~xi,~x j ∈ Ri;~x j−1 /∈ Ri

}

|. (3.10)

Entropy (ENTR) can be used to measure system’s predictability. For example, the value of

ENTR is small for uncorrelated data. It is the Shannon entropy of the frequency distribution of

the diagonal line lengths. ENTR reflects RP complexity in term of the diagonal lines. ENTR

can be calculated as

ENT R =
N

∑
l=lmin

p(l)ln p(l). (3.11)

This measurement has been extended to L-entr, W-entr, and V-entr that refer to entropy of

diagonal line length distribution, entropy of the distribution of line lengths, and entropy of

vertical line length distribution respectively.

L-MAX is a RQA measurement that is based on diagonal lines of the RP. L-MAX refers

to the longest diagonal line found in the RP which can be calculated as

L−MAX = max({li; i = 1} ...Nl) . (3.12)

L-MEAN is the average diagonal line length in the RP which represents the mean predic-

tion time. It is the average time that two segments of the trajectory are close to each other.

L-MEAN is calculated as

L−MEAN =
∑

N
l=lmin lP(l)

∑
N
l=lmin P(l)

. (3.13)

To provide a better understanding of RQA measurements, we show how RQA measure-

ments change based on changes of the input data. Doing this enables us to identify the most

suitable RQA measurements for detecting system transitions. In particular, what are the most-

significant RQA measurements for detection anomalous behaviour in the input data? For

example, which RQA measurements change when there is a small change in the input data

and which RQA measurements change when there is a large change in the input data?
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3.5 Effect of amplitude and periodicity changes on RQA

measurements

In this section, we demonstrate the effect of changes in amplitude and periodicity within a time

series on RQA measurements. We first change amplitude, then periodicity then both and show

how RQA measurements are affected. For all cases, we use an input signal with a periodicity

equal to 31 seconds and the amplitude value of 10 as an illustrative example. The values of

amplitude and periodicity have been chosen to reflect the average value of BGP updates per

second and periodicity respectively. For example, the average value of the total number of

BGP updates per second during the period 19th to 25th of July 2016 is 10 updates per sec-

ond. Further discussion about analysing BGP traffic during this period will be covered later in

Section 4.3. The value of 31 seconds has been chosen based on the MRAI timer, the default

value of MRAI in Cisco routers is 28-32 seconds. The input data and its corresponding RQA

measurements are shown in Figure 3.8 where all RQA measurements show similar behaviour

over time. Second, we show the effect of changing behaviour for a non-periodic input data

but which has the characteristic of recurrence and show the effectiveness of RQA measure-

ments in detecting recurrence changes. In all our calculation of RQA measurements, RQA

measurements are calculated every second using the past 300 seconds of data as a window

size2.

3.5.1 Changing amplitude

In this subsection, we investigate the effect of changing the amplitude of the input data on

RQA measurements. RQA measurements show different behaviour based on changing the

value of the amplitude. For example, in Figure 3.9 when we change the amplitude at time

992 seconds from 10 to 20, a notable change in values of L-MAX and W-entr measurements

can be seen. The value of L-MAX measurement starts to decrease after one second and this

change continues during the window size (300 seconds).

We continue changing the value of the amplitude at time 992 seconds by increasing its

value 10 as a step (20, 30, ..., 260) and note that many extra RQA measurements (in addition

to L-MAX and W-entr) start to change. Figure 3.10 shows RQA measurements when the

amplitude is 260 where we can see that the values of RQA measurements W-entr, V-entr, and

T2 drop to zero after one second of the significant change in the amplitude. This behaviour can

be used to identify different levels of amplitude change. This change can visually be identified

2The window size has the effect on the values of FP and FN as well as its effect to avoid missing the detection

of multiple anomalies within a short time. Further investigation for the effect of the window size will be covered

in chapter 5.
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Figure 3.8: An example of periodic time series input data and its corresponding RQA mea-

surements
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Figure 3.9: The effect of changing the amplitude at time 992 seconds from 10 to 20 on RQA

measurements
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Table 3.1: Summary for the effect of increasing the amplitude on RQA measurements

Amplitude TT T2 RR DET L-entr W-entr V-entr L-MEAN L-MAX LAM

20 % % % % % ! % % ! %

60 % % % % % ! % % ! %

100 % % % % % ! % % ! %

140 % % % % % ! % % ! %

180 ! ! ! % ! ! ! ! ! %

200 ! ! ! % ! ! ! ! ! %

260 ! ! ! % ! ! ! ! ! %

using phase space representation and RP (as discussed before and shown in Figure 3.6) and

qualitatively identified using RQA.

Table 3.1 shows a summary of the effect of increasing the value of amplitude on RQA mea-

surements. RQA measurements show different behaviours in response to amplitude changes.

For example, W-entr and L-MAX show a notable change when there are small or large changes

in the amplitude. On the other hand, RQA measurements such as TT and T2 can detect only

large changes in the amplitude, when the amplitude jumps to >17 times relative to the long

term average (change from 10 to 170). However, the effect of amplitude change on RQA mea-

surements shows that LAM and DET do not show a notable change in response to amplitude

changes.

We also investigate RQA measurements when the amplitude decreases instead of in-

creases. Figure 3.11 shows RQA measurements when the amplitude decreases from 260 to 10.

Although the TT measurement shows a notable change when there is a large increase in the

amplitude of the input data, it does not show any changes to reflect a corresponding decrease

in the amplitude. Table 3.2 shows a summary of the effect of decreasing the amplitude values

on the RQA measurements. Once again, W-entr and L-MAX respond to a high and a small

decrease in the amplitude while LAM and DET do not respond to amplitude decrease.

In a summary, we can classify RQA measurements based on their response to amplitude

changes of the input data into four categories. First, RQA measurements that are not able to

detect amplitude changes are LAM and DET. Second, RQA measurements that are able to

detect a small increase/decrease in the amplitudes change are L-MAX and W-entr. W-entr is

also able to detect different levels of amplitude change as shown in Figure 3.10 which can be

used to measure fluctuations of the amplitude of the input data. Third, RQA measurements that

are able to detect amplitude spikes are TT, L-MEAN, and L-entr. Finally, RQA measurements

T2, RR, V-entr are able to detect spikes and dips in the amplitude.
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Figure 3.10: The effect of changing the amplitude at time 992 seconds from 10 to 260 on RQA

measurements
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Figure 3.11: The effect of changing the amplitude at time 992 seconds from 260 to 10 on RQA

measurements
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Table 3.2: Summary for the effect of decreasing the amplitude on RQA measurements

Amplitude TT T2 RR DET L-entr W-entr V-entr L-MEAN L-MAX LAM

240 % % % % % ! % % ! %

200 % % % % % ! % % ! %

160 % % % % % ! % % ! %

120 % % % % % ! % % ! %

80 % % % % % ! % % ! %

40 % ! ! % % ! ! % ! %

10 % ! ! % % ! ! % ! %

3.5.2 Changing periodicity

We now demonstrate the effect of changing periodicity on RQA measurements. In this anal-

ysis, we phase shift the signal at time 930 by ±10 seconds as an illustrative example to inves-

tigate the effect of periodicity shift on RQA measurements. In other words, we shift the time

that we should see the amplitude at 930 seconds by ±10 seconds to see different cases from

920-940 seconds. We see a notable change in the values of RQA measurements of TT, T2,

entropy measurements, L-MAX, and L-MEAN. However, other RQA measurements DET and

LAM do not show a notable change in term of periodicity shift; therefore, we eliminate these

two RQA measurements in our figures. Figure 3.12 shows the effect of shifting the periodicity

with value -2 seconds (the amplitude occurs at time 928 seconds instead of 930 seconds) on

RQA measurements while Figure 3.13 shows the effect of shifting the periodicity +10 seconds

(the amplitude occurs at time 940 seconds instead of 930 seconds) on RQA measurements. In

these two figures, RQA measurements respond to phase shift with different values. For ex-

ample, the value of TT is 21.42 when the phase shift is -2 seconds and 17.83 when the phase

shift is +10 seconds. Table 3.3 shows a summary of RQA measurements in term of periodicity

shift.

We also show the effect of higher frequency impulses superimposed on a lower frequency

signal. In Figure 3.14, there are seven consecutive amplitudes around time 929 seconds. This

figure describes a system that changes its behaviour of sending an output every 31 seconds to

seven consecutive outputs every one second during the period 926-932 seconds. Figure 3.14

and Figure 3.15 show changing RQA measurements when seven and nine consecutive ampli-

tudes (three and four extra amplitudes on each side) around time 929 seconds respectively.

As a result of changing the behaviour of the input data around the time 929 seconds, RQA

measurements TT, RR, and V-entr show a change in their value during this period. However,
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Figure 3.12: The effect of phase shift -2 seconds on RQA measurements
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Figure 3.13: The effect of phase shifts +10 seconds on RQA measurements
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Table 3.3: Summary for the effect of phase shifts on RQA measurements

Amplitude TT T2 RR DET L-entr W-entr V-entr L-MEAN L-MAX LAM

920 ! ! % % ! ! ! ! ! %

923 ! ! % % ! ! ! ! ! %

925 ! ! % % ! ! ! ! ! %

927 ! ! % % ! ! ! ! ! %

929 % ! % % % ! ! % ! %

930 % % % % % % % % % %

933 ! ! % % ! ! ! ! ! %

937 ! ! % % ! ! ! ! ! %

940 ! ! % % ! ! ! ! ! %

among all RQA measurements, a significant change in RR values can be used as an identi-

fier to detect periodicity changes. The minimum value of RR measurements occurs after 61

seconds of last amplitude in the abnormal behaviour for the above three cases. In the next

subsection, we investigate the effect of changing both the amplitude and periodicity for the

periodic input data on RQA measurements.

3.5.3 Changing amplitude and periodicity

In this subsection, we show the effect of changing both the amplitude and periodicity on

RQA measurements. Figure 3.16 shows RQA measurements when there are 8 consecutive

amplitudes of value 20 around time 929 seconds. The effect of this change is similar to the

periodicity change shown in Figure 3.15 where there are seven consecutive amplitudes of

value 10. In other words, small changes in amplitude with large change in periodicity has an

effect demonstrated by the periodicity change.

By comparison, this behaviour changes when we have a large amplitude change. For

example, Figure 3.17 shows the effect of changing the behaviour of the input data when 8

consecutive amplitudes of value 260 occur around time 929 seconds. Here, we can see the

behaviour of RQA measurements TT, T2, and L-MEAN is similar to the effect of changing

the amplitude only to 260. However, RQA measurements RR and W-entr show different be-

haviour when there is only change in the amplitude or periodicity and when there are changes

in both the amplitude and periodicity. For example, there is a single change in the amplitude

or periodicity and when there is a change in both amplitude and periodicity. For example,

the value of W-entr when only the amplitude value changed (Figure 3.10) is dropped to zero,

increased to 1.19 (Figure 3.14) when only the periodicity change, and increased to 0.92 when

both the amplitude and periodicity change (Figure 3.16).
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Figure 3.14: The effect of occurring seven consecutive amplitudes around time 929 seconds

on RQA measurements
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Figure 3.15: The effect of occurring nine consecutive amplitudes around time 929 seconds on

RQA measurements
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Figure 3.16: The effect of occurring seven consecutive amplitudes of value 20 RQA measure-

ments around time 929 seconds
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Figure 3.17: The effect of occurring seven consecutive amplitudes of value 260 RQA mea-

surements around time 929 seconds
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3.5.4 Changing recurrence behaviour

In the previous subsections, we have investigated the impact on RQA measurements of chang-

ing amplitude and/or periodicity for a simple periodic time series input. In this subsection,

we show the impact of changing recurrence patterns for a recurrent data sequence on RQA

measurements. Figure 3.18 shows an example of a recurrent input that exhibit changing of

values 1,2,3, and 4 in such a way that recurs over time and its corresponding values of RQA

measurements. As before the calculation of RQA measurements is calculated every second

based on using the past 300 seconds of data as a window size. The values of RQA measure-

ments do not show a large change during the period of the input data. However, changing

the value of amplitude during the period 1012-1017 seconds from 1 to 10 causes many RQA

measurements such as TT and T2 to change reflecting the change in the input data as shown

in Figure 3.19.

So far, we have demonstrated the ability of RQA to identify changes in behaviour where

the change is readily apparent in the underlying time series. Now, we show the power of

RQA in identifying changes that are not readily apparent from simple observation of the time

series. In this example, we change the recurrent behaviour of data during the period 1040-1060

seconds where we expect to see values of 1 instead of 3 as a recurrent behaviour reflecting on

multiple RQA measurements during this period. As shown in Figure 3.20, we see that RR

and W-entr respond quickly during the period 1022-1372 seconds. RR values dropped from

the range 0.6-0.65 to 0.54-.065 while W-entr increased from the range 1.8-2 to 1.8-2.4 during

the period 1022-1372 seconds. This ability to detect recurrence changes is a powerful tool

in detecting anomalous behaviour change in deterministic systems using only a short past

window of data, 300 seconds in this case.

To summarise our experimental analysis of the effect of changing amplitude and/or peri-

odicity for the input data as well as changes in recurrence behaviour on RQA measurements

RQA measurements show different behaviour for the input data changes as follows:

DET and LAM do not show a notable change for amplitude and/or periodicity changes.

RR shows a decrease in value when there is a change in system recurrence behaviour.

For example, there is a significant change in RR values when there is a change in periodicity

(Figure 3.15) or when there is a change in recurrence patterns for an input data (Figure 3.20).

The minimum value of RR measurements occurs after 61 seconds of the last amplitude when

there is a change in periodicity or recurrence patterns. However, RR shows a notable increase

when a large amplitude change occurs.
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Figure 3.18: An example of a recurrent data and its corresponding RQA measurements
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Figure 3.19: The effect of changing the amplitude from 1 to 10 during the period 1012-1017

seconds on RQA measurements
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Figure 3.20: The effect of changing recurrence behaviour during the period 1040-1060 sec-

onds on RQA measurements

TT, L-MEAN, and L-entr measurements have shown their ability to rapidly detect a sudden

increase in the amplitude values. Although they can detect amplitude change after only one

second, TT and L-MEAN are not able to detect small changes in amplitude which help to avoid

high FP rates to detect anomalous periods. TT and L-MEAN values change based on variations

of amplitude values. For example, maximum value of TT is equal to 141 when the rapid

change in amplitude is 180 and it is 238 when the amplitude is 260. These measurements can

be used to detect anomalous behaviour based on changing in amplitude of the input data. For

example, they can be used to detect BGP anomaly based on BGP features that identify number
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of BGP updates such as number of BGP announcements, withdrawals, and BGP volume.

However, in all our analysis, L-MEAN and TT show similar behaviour for changing amplitude

and or periodicity thus we can eliminate one of these measurements to decrease complexity of

an anomaly detection technique.

The ability of the T2 measurement is similar to TT and L-MEAN in being able to rapidly

detect a sudden increase in the amplitude of the input data. T2 can also rapidly detect a

sudden large decrease in the amplitude. This measurement can be used beside TT to measure

anomalous behaviour based on amplitude changes.

L-MAX can detect any changes in the input data. Although L-MAX can detect small-

/large changes in the amplitude and periodicity of the input data, it shows the same behaviour

for all changes. This behaviour can produce high FP rates in a noisy signal thus it is not

recommended for anomaly detection.

Like L-MAX, W-entr can detect any changes in the input data. However, the value of W-

entr changes based on changing in the input data. For example, there is a small change in the

W-entr values when there is a small change in the amplitude (Figure 3.9) and a large change

when there is a large change in the amplitude (Figures 3.10). This behaviour can be used

to detect different levels of amplitude changes. Furthermore, W-entr can detect periodicity

change. This measurement can be used beside TT, T2, L-MEAN, and RR to detect BGP

anomalies.

V-entr measurements increase when there is a large change in the amplitude. However, it

values shows rapid decrease to zero and sudden increase when there is a very large amplitude

change such as when the amplitude value more than 250. This measurement can be used to

detect different levels of amplitude change. At the end of this section, five RQA measurements

can be used to detect anomalous behaviour. These are: TT, T2, RR, W-entr, and V-entr.

3.6 Conclusions

We have presented the concepts of phase plane trajectory, RPs, and RQA. Phase plane is a

method of visualising the states of dynamical systems over time, it has been used to mea-

sure recurrent behaviour of systems. However, phase plane is very difficult to visualise high-

dimensional dynamical systems. RP was introduced to enable the investigation of a high-

dimensional phase plane into a two-dimensional representation of its recurrence. The process

of quantifying RP structure offers a more objective way for evaluating system under investiga-

tion. RQA is a method to quantify RP structure that provides several measures of complexity

which quantify RP structure such as TT, T2, RR, and Entropy measurements. RQA measure-

ments changes to reflect changes in system behaviour over time through measuring data read
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from the system.

We have investigated RQA measurements using a computer-generated time series data

and shown how RQA measurements can change based on changing of the input data. RQA

measurements show different behaviour in response to changes in the input data. Some RQA

measurements such as L-MAX can detect a small change in the input data which can produce

many false alarms in a noisy data. Other RQA measurements such as TT, T2, RR, W-entr, and

V-entr show their ability to detect significant change in the input. These measurements can be

used to detect anomalous behaviour in the input data.

In the next chapter, we use the concepts of phase plane trajectory to model BGP speakers

as dynamic systems and characterise BGP traffic sent by BGP speakers. We also use RP to

identify recurrence behaviour in the underlying time series BGP traffic.





Chapter 4

Modelling BGP Traffic as a Recurrent

System

4.1 Introduction

BGP is an incremental protocol where, after the initial transfer of a full routing table, traffic be-

tween peers should only reflect underlying topology or BGP policies changes. Unfortunately,

that is not what we see [8]. Most BGP traffic consists of announcements, updates and with-

drawals unrelated to any underlying network management goals [26]. This traffic, although

consuming resources, is relatively harmless as long as it does not threaten BGP’s ability to

disseminate accurate NRI or violate business goals of ISPs. We define this type of BGP traffic

as unstable traffic while BGP traffic that does threaten BGP operation or undermines ISPs

business goals we define as anomalous traffic.

Unstable BGP traffic is generated by a set of ASes that we define as unstable ASes. There

has been some speculation that the source of the unstable traffic is caused by misconfiguration

such as prefix overlapping and wide use of the MED attribute [155]. However, locating causes

of such routing events is still unknown [67]. Although unstable BGP traffic does not threaten

BGP operation or prevent achievement of business goals, it has the effect of masking anoma-

lous traffic that indicates potentially harmful accidental or deliberate anomalies. A technique

is needed that can rapidly distinguish between unstable BGP traffic and potentially harmful

anomalous traffic.

Although BGP operation has been well described and discussed [25, 156], understanding

BGP behaviour over time is still poorly understood. In particular, what are the characteristics

of normal-but-unstable BGP traffic and what are the characteristics of anomalous BGP traf-

fic? Does the source of anomalous traffic change rapidly or remain stable? In order to detect
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anomalous traffic that may indicate a serious event, we need to understand the nature of unsta-

ble traffic. To answer these questions, we carry out two investigations. Firstly, we show that

apparently complex but voluminous, BGP speakers generate up to a gigabyte of BGP traffic

data a day [66], unstable BGP traffic can be understood as an aggregation of oscillations of

different frequencies from different ASes. Periodicity can be seen in the most unstable ASes.

These ASes show reasonably periodic behaviour in terms of sending BGP updates. We anal-

yse unstable BGP traffic to see how long this periodicity continues. Is it a short or a long term

characteristic of normal BGP operation? Secondly, we model a BGP speaker as a dynamic

system sending BGP updates based on local routing policies and updates received from neigh-

bours. The goal of the modelling is to study BGP speaker’s states over time. For example,

what are the characteristics of BGP speakers when forwarding unstable BGP traffic and what

are the characteristics of BGP speakers during an anomaly period? Modelling a BGP speaker

as a dynamical system helps to understand and predict its behaviour over time. We use the

concept of phase plane trajectories to characterise BGP speakers. The outcome of our mod-

elling shows that BGP traffic sent by BGP speakers has the characteristics of being recurrent,

non-linear, deterministic, and stable1.

Building on the outcomes of our investigations, we demonstrate that RQA can distinguish

between harmless unstable BGP traffic and harmful anomalous BGP traffic. We show that

RQA can indicate anomalous periods in series of unstable BGP traffic using only 200 seconds

of past BGP updates. RQA can also indicate hidden anomalous behaviour that may other-

wise pass without observation. To illustrate it capability, we apply RQA to one of the most

recent BGP events and show it can effectively indicate BGP anomalies as well as some hidden

anomalies that have not been observed before. We examine other BGP events in Chapter 5.

The rest of this chapter is organised as follows: Section 4.2 describes BGP datasets that

we used in our analysis for BGP periodicity and modelling. In Section 4.3 and 4.4, we analyse

BGP traffic volume and BGP route flapping using linear and non-linear statistical analysis.

We also model BGP speaker as a dynamic system. Section 4.5 describes our investigation of

BGP periodicity and shows that periodic behaviour in BGP traffic can last for at least a decade.

In Section 4.6, we evaluate the capability of RQA to detect BGP anomalies using one of the

most recent BGP events. We conclude our chapter in Section 4.7.

1In this thesis, we use the term “stable” in different contexts. We refer to the dynamic system as stable if its

behaviour is stable, not chaotic or random. We also refer to BGP traffic originated by unstable ASes as unstable

BGP traffic.
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4.2 BGP traffic

In this section, we describe data analysis of BGP updates downloaded from publicly available

BGP control plane repositories such as [58, 59] which we use to model BGP speakers and

investigate the characteristics of periodicity or recurrence in BGP traffic2. The RouteViews

[58] and RIPE NNC [59] are the most well-known repositories of BGP control plane data.

Each of these repositories has multiple Vantage Points (VPs) which run BGP sessions with

several routers, referred to as monitors, in many networks.
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Figure 4.1: Simple BGP topology of the VP rrc03 at RIPE NCC

Figure 4.1 shows an example of BGP topology of the VP rrc03 at RIPE NCC which was

peered with 56 peers as observed during the period from 19th to 25th of July 2016. In this ex-

ample AS12859 and AS8283 represent peers, AS28573 is a source AS, and AS4230, AS174,

AS3356, AS2914, and AS5580 are intermediate ASes. When AS28573 sends a BGP up-

date, AS12859 may receive multiple copies of this update via different paths. For example,

when AS28573 announces the IPv6 prefix 2804:14d:908a::/48, AS12859 will receive this pre-

fix with three paths [2914, 4230, 28573], [2914, 3356, 4230, 28573], and [2914, 174, 4230,

28573] while the VP rrc03 will receive only one BGP update which is the best route for

AS2914 (the path [12859, 2914, 4230, 28573] when no routing policies applied). However, if

AS28573 periodically announces then withdraws a prefix every few seconds because of mis-

configuration or some other cause, the VP rrc03 may not receive the withdrawn message but

update messages with alternative paths. As noted, we have defined these types of BGP updates

as unstable traffic [7] which may have the effect of masking anomalous traffic.

2We refer to BGP updates traffic as BGP traffic
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BGP4MP|1468886448|A|2001:7f8:1::a501:2859:2|12859|2804:14d:2a00::/40|12859 2914 4230 28573|IGP|2001:7f8:1::a501:2859:2|0|0|12859:1200|NAG||

BGP4MP|1468886448|A|2001:7f8:1::a501:2859:1|12859|2804:14d:2a00::/40|12859 2914 4230 28573|IGP|2001:7f8:1::a501:2859:1|0|5|12859:1200|NAG||

BGP4MP|1468886448|A|2001:7f8:1::a501:2859:2|12859|2804:14d:90a1::/48|12859 2914 4230 28573|IGP|2001:7f8:1::a501:2859:2|0|0|12859:1200|NAG||

BGP4MP|1468886450|A|2001:7f8:1::a501:2859:2|12859|2804:14d:90a1::/48|12859 2914 3356 4230 28573|IGP|2001:7f8:1::a501:2859:2|0|0|12859:1200|NAG||

BGP4MP|1468886451|A|2001:7f8:1::a501:2859:2|12859|2804:14d:90a1::/48|12859 2914 4230 28573|IGP|2001:7f8:1::a501:2859:2|0|0|12859:1200|NAG||

BGP4MP|1468886452|A|2001:7f8:1::a501:2859:2|12859|2804:14d:9086::/48|12859 2914 3356 4230 28573|IGP|2001:7f8:1::a501:2859:2|0|0|12859:1200|NAG||

BGP4MP|1468886452|A|2001:7f8:1::a501:2859:2|12859|2804:14d:9088::/48|12859 2914 3356 4230 28573|IGP|2001:7f8:1::a501:2859:2|0|0|12859:1200|NAG||

BGP4MP|1468886452|A|80.249.208.200|12859|177.143.0.0/18|12859 2914 4230 28573|IGP|80.249.208.200|0|0|2914:410 2914:1002 2914:2000 12859:1200|NAG||

BGP4MP|1468886455|A|80.249.208.200|12859|179.154.192.0/19|12859 2914 4230 28573|IGP|80.249.208.200|0|0|2914:410 2914:1002 2914:2000 12859:1200|NAG||

BGP4MP|1468886455|A|80.249.208.200|12859|187.66.224.0/20|12859 2914 4230 28573|IGP|80.249.208.200|0|0|2914:410 2914:1002 2914:2000 12859:1200|NAG||

BGP4MP|1468886455|A|2001:7f8:1::a501:2859:2|12859|2804:14d:908d::/48|12859 2914 3356 4230 28573|IGP|2001:7f8:1::a501:2859:2|0|0|12859:1200|NAG||

Figure 4.2: An example of BGP updates originated by unstable AS28573 and sent by the peer

AS12859

There are two characteristics of BGP update traffic we are interested in. First is BGP traffic

volume made up of BGP announcements and withdrawals calculated each second. Second is

route flapping measured as BGP update per AS-PATH. Figure 4.2 shows an example of BGP

traffic originated by AS28573 and seen by the peer AS12859. In this example, there are

11 BGP updates related to 8 prefixes originated by AS28573. These updates sent during 8

seconds (Unix time stamp 1468886448 to 1468886455) through 2 different AS-PATHs. We

represent each path by a number. In this example, the AS-PATH [12859 2914 4230 28573] is

assigned with number 1 and the AS-PATH [12859 2914 3356 4230 28573] is assigned with

2. The corresponding representation of BGP traffic volume is [3, 0, 1, 1, 3, 0, 0, 3] while the

corresponding representation of BGP route flapping is [1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2]. In the

following sections, we investigate these two characteristics of BGP traffic starting with BGP

traffic volume.

4.3 BGP traffic volume

In this section, we investigate the characteristics of BGP traffic volume. BGP traffic has been

characterised as voluminous, noisy, and bursty [130]. Using linear and non-linear statistical

analysis, we show that BGP traffic has a structure of a recurrent behaviour. The source of this

behaviour is unsynchronised periodic traffic with different frequencies by a set of unstable

ASes.

Our investigation includes analysing BGP traffic at different levels. These levels are ag-

gregated BGP traffic originated by a set of unstable ASes and sent by a peer AS, BGP traffic

related to individual unstable ASes, and BGP traffic related to individual prefixes associated

with a single unstable AS. We also use the concepts of phase space trajectories to model BGP

speaker as a dynamic system.

During the period 19th to 25th of July 2016, there were 56 peers connected to the VP

rrc03 at RIPE NCC. We use BGP traffic sent by the peer AS1289 in our analysis as it sent

the largest number of BGP updates during the period. We start our investigation by exploring

the distribution of BGP updates per second sent by AS12859. We also use FFT and ACF, the
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most well-known techniques to identify periodicity in time series data [157], to explore the

characteristics of periodicity in the underlying BGP traffic.

4.3.1 Analysis of BGP traffic volume

In this subsection, we explore the characteristics of total BGP updates calculated every second

originated by a set of unstable ASes and sent by the peer AS12859. We also analyse BGP

traffic related to individual unstable ASes and BGP traffic related to individual prefixes asso-

ciated with a single unstable AS. Our analysis shows although total BGP traffic sent by BGP

speakers does not show a periodic behaviour, it does for BGP traffic originated by individual

unstable ASes. These ASes periodically send BGP updates with different frequencies. The pe-

riodic behaviour is even more apparent for BGP traffic related to individual prefixes belonging

to single unstable ASes. For example, Figure 4.3 shows values of histogram, FFT, and ACF

for a sample of BGP traffic sent by the peer AS12859 at VP rrc03 during the period 19th to

25th of July 2016. Although the distribution of the numbers of BGP updates sent by the peer

AS12859 shows that most numbers of BGP updates are in a range 0-30 updates per second as

shown in Figure 4.3b, the calculations of FFT and ACF do not show a clear indication for pe-

riodicity as shown in Figures 4.3c and 4.3d. However, BGP traffic sent by the peer AS12859

represents an aggregation of BGP traffic for a set of unstable ASes. The top-ten unstable

ASes during the observation period and seen by the peer AS12859 are AS28573, AS56237,

AS45292, AS36943, AS17908, AS16652, AS4755, AS9829, AS55430 and AS198171. We

now examine the characteristic of periodicity for BGP traffic sent by some unstable ASes.

The histogram, FFT, and ACF of BGP updates related to a single unstable AS show a

better observation for the characteristic of periodicity than the aggregated BGP traffic sent by

all unstable ASes. For example, Figure 4.4 shows values of histogram, FFT, and ACF for

the total number of BGP updates per second originated by the unstable AS28573 (the most

active unstable AS during the observed period) as observed by the peer AS12859. Figure 4.4b

shows the occurrence of numbers of BGP updates per second sent by the unstable AS28573

and observed by the peer AS12859. Excluding value of zero which represents no BGP updates

sent, we can see that most numbers of BGP updates per second are in ranges 1-6 and 10-12. On

the other side, our investigation for detecting periodicity shows there is a periodic behaviour

of sending BGP updates by the unstable AS28573 in both time and frequency domains as

shown in Figures 4.4c and 4.4d. In these figures, we can see that the unstable AS28573 sends

BGP updates with a period of 60 seconds or 0.015 hertz. Periodicity is even clearer when we

analyse BGP updates related to a single prefix generated by the unstable AS28573. We see

evidence that BGP traffic volume is periodic when considering single prefixes, but it is not

synchronised periodic behaviour becomes less obvious.
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Although BGP traffic related to IPv4 seems to be the prominent part of BGP traffic as a

result of the number of IPV4 prefixes used [158], BGP updates related to IPv6 represents an

important part of unstable BGP traffic. During the period of analysis, there were 2820997

IPv6 BGP updates and 5083818 IPv4 BGP updates as observed by the peer AS12859. The

unstable AS28573 announced 3584258 BGP updates related to 104 IPv6 prefixes and 22121

BGP updates related to 343 IPv4 prefixes. The prefix 2804:14d:9083::/48 was the most un-

stable prefix announced by the AS28573 during the period of analysis. BGP traffic related to

the prefix 2804:14d:9083::/48 shows a notable observation for the distribution of BGP updates

and a stronger periodicity than BGP updates related to all prefixes belonged to the AS28573

as shown in Figure 4.5.

Further investigation of BGP traffic shown in Figure 4.5a shows there is consistent be-

haviour of sending two updates per second for the same prefix and AS-PATH but with differ-

ent values of the MED attribute. MED is a BGP attribute provides a mechanism to influence

neighbours ASes to reach a certain route when there are multiple entry for that AS. This ob-

servation supports the analysis by [159] that shows the MED attribute can lead to persistent

oscillatory behaviour in BGP traffic.

The unstable AS17908 is another example of unstable ASes that shows periodic behaviour.

During the period of the analysis, the unstable AS17908 announced 409499 BGP updates

related to 48 IPv4 prefixes and 1 IPv6 prefix. Figure 4.6 shows values of the histogram, FFT,

and ACF for BGP updates originated by the unstable AS17908 as seen by the peer AS12859

where we can see clear periodic behaviour with value of 10 seconds as shown in Figure 4.6d.

Almost all BGP updates originated by the unstable AS17908, 409447 updates out of 409499

BGP updates, belong to IPv4 prefixes 61.11.80.0/21 and 61.11.90.0/24. Figure 4.7 shows

values of the histogram, FFT, and ACF for BGP updates related to IPv4 prefix 61.11.90.0/24

where can see, once again, periodic BGP updates with period of 10 seconds. Nevertheless,

not all unstable ASes exhibit such clear periodic behaviour. Among the top-ten unstable ASes

during the observation period, 19th to 25th of July 2016, the unstable AS9829 and AS198171

do not shows a clear observation of periodicity.

Using linear statistical analysis we can find that although BGP traffic has been charac-

terised as a complex, noisy, and bursty [130], it can be understood as an aggregation of unsyn-

chronised periodic traffic with different frequencies with additional noise. For example, Fig-

ure 4.8 shows a sample of the aggregated BGP traffic related to unstable AS28573, AS56237,

AS36943, and AS45292 where we can see periodic change in volume at different frequencies

and unsynchronised. In this example, the periodicity of AS45292 and AS56237 is 15 seconds

and 60 seconds for AS36943 and AS28573.

Identifying the characteristic of periodicity for unstable prefixes is a step toward identi-

fying BGP anomalies. For example, a sudden change in the characteristic of periodicity for
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Figure 4.6: Histogram, FFT, and ACF for BGP traffic volume originated by the unstable

AS17908
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Figure 4.7: Histogram, FFT, and ACF for BGP traffic volume related to 61.11.90.0/24



94 Modelling BGP Traffic as a Recurrent System

individual unstable prefixes might be an indication to detect anomalies for unstable ASes.

However, this indication cannot be used easily to detect anomalies for peer ASes. This is

due to the number of BGP updates related to a single unstable prefix represents only a small

portion of the total number of BGP updates sent by a peer AS. For example, BGP updates re-

lated to unstable prefix 2804:14d:9083::/48 represents only 1.6% of the total number of BGP

updates sent by the peer AS12859.

Linear statistical analysis cannot easily identify an apparent structure for the aggregate

BGP traffic of a set of unstable ASes as we saw in Figure 4.3. Our next step is to identify

the characteristic of the aggregated BGP traffic using non-linear statistical techniques. Fur-

thermore, we identify the characteristic of BGP speakers through modelling BGP speakers as

dynamic systems.
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Figure 4.8: Sample of unsynchronised periodic behaviour for the unstable AS28573,

AS56237, AS36943, and AS45292

4.3.2 Recurrence modelling of BGP update volume

We have shown in the previous subsection that although BGP traffic originated by individual

unstable ASes shows approximately periodic behaviour, the aggregated BGP traffic for mul-

tiple unstable ASes does not. In this section, we use non-linear statistical analysis to show

that the aggregated BGP traffic has the characteristic of recurrent behaviour. Furthermore, we

show that BGP speakers have the characteristics of determinism, stability, and non-linear.

To determine the characteristics of traffic generated by BGP speakers over time, we model

BGP speakers as dynamic systems using BGP traffic per second sent by BGP speakers. Our

modelling is based on the concept of phase space trajectory described in Section 3.2. BGP

speakers send BGP updates and path lengths depending on BGP messages received from

neighbours and local routing policies. When a BGP speaker receives a BGP message that
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changes its routing table it will propagate that message to all or a group of its neighbours

based on its local policies. Otherwise, the message will be terminated. The properties of the

phase space are used to categorise dynamical systems. For example, a system can be cate-

gorised as a deterministic if its future states are uniquely determined by its current states.
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(b) Estimation of embedding dimension using FNN method indicating the value of 12

Figure 4.9: Estimation of time delay and embedding dimension for BGP traffic sent by the

peer AS12859

As discussed in Chapter 3, the best-known method for reconstructing phase space trajec-

tories from a time series is the time delay embedding reconstruction method. We use MI and

FNN to estimate the value of time delay and embedding dimension respectively. For example,

Figures 4.9 shows the calculation of MI and FNN for BGP traffic sent by the peer AS12859

(shown in Figure 4.3a). In this example, the estimation values of time delay and embedding

dimension are 6 and 12 respectively which represent the first minimum values of MI and FNN.

Figure 4.10 shows the underlying time series for the total number of BGP updates per

second sent by peer AS12859 and collected at VP rrc03 in the RIPE NCC and its correspond-

ing representation of phase space. Although there are some trajectories that deviate from the

origin point as a result of some high BGP volume such as at time 525 seconds, most of the

phase plane information shows that the BGP speaker (the BGP router that sent BGP traffic,
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Figure 4.10: Underlying time series for BGP traffic sent by AS12859 and its corresponding

representation of phase space identifying stable system behaviour



4.3 BGP traffic volume 97

AS12859 in this case) has the characteristics of a stable system. However, as discussed before

in Chapter 3, identifying the type of motion in dynamic systems using phase plane trajectories

is difficult. We use the concept of maximal Lyapunov exponents [150] to identify the type of

motion and DVV [152] method to estimate the properties of determinism and non-linearity.
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Figure 4.11: Lyapunov exponents for BGP traffic volume sent by the peer AS12859 indicating

stable system behaviour

The value of maximal Lyapunov exponent can be estimated through calculating the slope

of Lyapunov exponents while determinism and non-linearity can be estimated through DVV

plot and scatter diagram respectively. Figure 4.11 shows Lyapunov exponents for BGP traffic

sent by the peer AS12859 where we can see the slope value of Lyapunov exponents equal to

zero indicating possible stable behaviour. In terms of determinism and non-linearity, the values

of variance shown in Figure 4.12a converge to one indicating possible deterministic system

behaviour. Figure 4.12b shows a scatter diagram for BGP traffic volume per second sent by

the peer AS12859 where we can see a deviation from the bisector line indicating possible

non-linear system behaviour. The outcome of our modelling suggests that BGP speakers have

the characteristics of being non-linear, stable, and deterministic. These characteristics are

important properties to select an appropriate technique to differentiate between unstable and

anomalous BGP traffic. For example, there are limitations for analysing BGP traffic using

the Autoregressive Integrated Moving Average (ARIMA) model. The ARIMA model has two

significant limitations: (1) future values are assumed to be a linear function of past values

and (2) a large amount of historical data is required to obtain reliable predictions. We have

characterised BGP traffic as non-linear which motivates us to look for another approach [8].

Based on our analysis, we use an RP to visualize the time dependent behaviour of BGP

traffic volume. Figure 4.13 shows RP and underlying BGP updates per second sent by the

peer AS12859. In the large scale of the RP we can see long diagonal lines that indicate

long range periodicity in the underlying system behaviour. The source of this periodicity

is caused by unstable ASes that periodically send BGP updates with different frequencies. In

addition, there are orthogonal lines to the LOI indicating that the evolution of the BGP speaker



98 Modelling BGP Traffic as a Recurrent System

�� 0 2 4 � � 10 12

�
�
��
�
�
�
�

���

����

���

����

���

����

���

����

1

���� �¡¢£¤   ¢£���¥¤

(a) DVV plot indicating deterministic system behaviour

0 ¦§¨ ¦§© ¦§ª ¦§« 1

S
u
rr
o
g
at
es

0

¦§¨

¦§©

¦§ª

¦§«

1

Original

(b) Scatter diagram indicating non-linear system behaviour

Figure 4.12: Estimation of determinism and linearity for BGP traffic sent by the peer AS12859
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Figure 4.13: Identifying recurrence behaviour for BGP traffic sent by the peer AS12859
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states is similar at different times but they move in the opposite time direction [147]. At the

small scale, single isolated points indicate a fluctuation of system behaviour while vertical and

horizontal lines forming rectangles indicate some states that do not change or change slowly.

This behaviour is expected as BGP speakers do not continually send BGP updates. Most BGP

speakers send updates based on the MRAI timer, the minimum amount of time to wait before

sending an advertisement to a particular destination.

To summarise our RP demonstration, the aggregated BGP traffic has the characteristic of

recurrent behaviour where the rectangular boxes (constructed by vertical and horizontal lines)

are repeated at different time scales.

We can summarise our analysis and modelling for BGP traffic volume sent by BGP speak-

ers as follows. Although BGP traffic generated by individual unstable ASes shows a notable

behaviour of periodicity with different frequencies, the aggregated BGP traffic does not show a

clear observation of periodic behaviour. However, it shows recurrent behaviour. We have also

shown that aggregated BGP traffic has the characteristics of determinism and non-linearity. In

the next chapter we show how these characteristics can be used to detect BGP anomalies. In

the next section, we carry out a similar analysis to model BGP route flapping.

4.4 BGP route flapping

In this section, we analyse BGP route flapping generated by unstable ASes. Using linear

statistical analysis such as ACF and FFT we show although the aggregated BGP route flapping

of all prefixes related to unstable AS does not show an observation of periodicity, it does

for individual prefixes related to a single unstable AS. However, using non-linear statistical

analysis, we now show that the aggregated BGP route flapping of unstable ASes has recurrent

behaviour. It also has the characteristic of determinism and non-linearity. We start our analysis

for BGP route flapping by demonstrating that traditional techniques suggest route flapping is

random. We then show that it appears to have recurrent behaviour. We present the histogram,

FFT, and ACF for aggregated BGP traffic originated by an unstable AS and for BGP route

flapping related to individual prefixes of an unstable AS.

4.4.1 Analysis of BGP route flapping

Analysing BGP route flapping for all BGP updates sent by a peer AS and related to all unsta-

ble ASes is a challenge. For example, there were 99668 AS-PATHs for 7904815 BGP updates

during the period 19th to 25th July 2016. This large number of AS-PATHs leads to an un-

correlated relationship among these AS-PATHs. For example, some AS-PATHs may appear
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every 5000 updates while other AS-PATHs appear every 200 updates which may lead to un-

correlated sequence of data. Therefore, we do our analysis on BGP route flapping associated

with an unstable AS and per individual prefixes related to the unstable AS.

During the period of the analysis, 19th to 25th July 2016, there were 603243 BGP updates

originated by the unstable AS28573, the most active unstable AS, as observed by the peer

AS12859 in the VP rrc03 through 32 AS-PATHs. Figure 4.14 shows a sample of BGP up-

dates versus top five AS-PATHs between the unstable AS28573 and the peer AS12859. These

are AS-PATH1=[12859, 2914, 4230, 28573], AS-PATH2=[12859, 6939, 4230, 28573], AS-

PATH3=[12859, 6939, 3356, 4230, 28573], AS-PATH4=[12859, 2914, 3356, 4230, 28573],

and AS-PATH5=[12859, 6939, 6453, 4230, 28573]. Although distribution of BGP updates per

AS-PATHs shows most updates were passed through AS-PATH1 as shown in Figure 4.14b,

BGP updates versus top five AS-PATHs, once again, does not show a structure of a periodic

behaviour as shown in Figures 4.14c and 4.14d. However, going beyond total BGP traffic ver-

sus AS-PATHs to BGP updates belonging to one prefix per AS-PATH we can see periodicity

for BGP path updates.

The unstable AS28573 announced 447 prefixes (104 IPv6 prefixes and 343 IPv4 pre-

fixes) during the period of the analysis. Although these prefixes were generated by one AS

(AS28573) and collected by one peer (AS12859), there are different AS-PATHs for these

prefixes. For example, BGP traffic related to 2804:14d:9083::/48 (the most unstable prefix

announced by AS28573) was passed through three different AS-PATHs while BGP traffic

related to 2804:14d:908b::/48 was passed through 12 different AS-PATHs. A probable expla-

nation for this variety of AS-PATHs is because they reflected different business relationship

policies between ASes. However, our analysis for BGP traffic related to the most active five

prefixes shows there is a periodic behaviour. For example, BGP traffic belonging to the pre-

fix 2804:14d:9083::/48 was sent via three AS-PATHs. Analysing this traffic shows there is

periodic behaviour with period of 8 updates as shown in Figure 4.15.

These statistics suggest that periodicity is characteristic of BGP traffic behaviour related to

individual prefixes of unstable ASes. Whatever the representation of BGP traffic per second or

per AS-PATH, we still see a strong periodic behaviour as shown in Figures 4.5 and 4.15. In the

next subsection, we show, once again, although the aggregated BGP route flapping associated

with an unstable AS does not show a periodic behaviour, it has a recurrent behaviour.

4.4.2 Recurrence modelling of BGP route flapping

We have shown in the previous subsection using linear statistical analysis that BGP route

flapping does not show a clear structure of periodicity for total BGP routes belonging to all

prefixes of an unstable AS. In this subsection, we investigate BGP route flapping through
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Figure 4.14: Histogram, FFT, and ACF for BGP route flapping originated by AS28573
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Figure 4.15: Histogram, FFT, and ACF for 2804:14d:9083::/48
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modelling BGP speaker as a dynamic system based on phase space trajectory. As before we

use the underlying time series to calculate time delay and embedding dimension. Based on

values of MI and FNN shown in Figure 4.16, we use the value of 12 and 3, the first minimum

values of MI and FNN, for time delay and embedding dimension respectively.
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(b) Estimation of embedding dimension using FNN indicating the value of 3

Figure 4.16: Time delay and embedding dimension for BGP route flapping of AS28573

The phase space trajectories for BGP route flapping originated by unstable AS28573 and

collected from the peer AS12859 are shown in Figure 4.17 where we can see the system

exhibits different cycles that recur repeatedly. Once again, we use Lyapunov exponents to

estimate type of motion. Figure 4.18 shows Lyapunov exponents for BGP route flapping orig-

inated by the unstable AS28573 where the slope value around zero indicates a stable system.

In addition to characterising the behaviour of stability for BGP route flapping, we estimate

the characteristics of determinism and non-linearity using DVV as shown in Figure 4.19. The

interpretation of scatter diagram and DVV plot shows the system has, once again, the charac-

teristics of determinism and non-linearity.

We have shown that BGP route flapping sent by a BGP speaker appears to have the charac-

teristics of stability, determinism, and non-linearity. Based on these observations, we can use

an RP to visualise the time-dependent behaviour of the route flapping. Figure 4.20 shows a
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sample of BGP route flapping originated by the BGP speaker AS28573 and its corresponding

representation of RP.
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(b) Phase plane representation for BGP route flapping by AS28573 using time

delay=12

Figure 4.17: BGP route flapping originated by AS28573 and its corresponding representation

of phase space
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Figure 4.18: Lyapunov exponents for BGP route flapping originated by AS28573

In the RP shown in Figure 4.20b we can see short diagonal lines indicating brief or tran-

sient periodicity. This representation supports our analysis of a periodic behaviour for BGP

route flapping associated with individual prefixes of unstable ASes. Rectangular boxes formed

by vertical and horizontal lines recur with different scales. For example, looking at rectangular

highlighted boxes along the LOI in Figure 4.21 we can see how recurrence behaviour is ex-

hibited with time. In this example, the highlighted boxes represent RP for BGP updates 0-200

and 330-530 for the underlying BGP route flapping shown in Figure 4.20a. The outcome of

our demonstration for RP representation of BGP route flapping shows, once again, although

BGP route flapping appears random, it has the characteristics of recurrent behaviour. This

behaviour was not apparent using linear statistical analysis such as ACF and FFT.

Our analysis shows that much of the background traffic of BGP sent by the peer AS which

collected that largest volume of BGP traffic, whether it is calculated per second or per AS-

PATH, is made of unsynchronised oscillations from different ASes of different frequencies.

Our analysis shows unstable ASes generate approximately periodic updates but with different

frequencies. The unsynchronised aggregation of different periodic updates leads to recurrent

behaviour in the underlying system.

In addition to the recurrent behaviour, the volume of data to be analysed in BGP updates

per AS-PATH form is very large compared to total number of BGP updates per second. For

example, for the same BGP updates sent by the peer AS12859 during the period 18th to 25th

of July 2016, the length of the data in BGP update per AS-PATH is 7904815 updates while it is

604800 seconds in the BGP updates per second form, more than 13 times larger. Therefore, we

will use the form of BGP updates calculated every second as a default representation for our

analysis on BGP traffic. In the next section, we will explore the characteristic of periodicity

for BGP traffic calculated each second in more detail. This includes examining BGP traffic for

multiple unstable ASes on different dates and discussing different sources of periodicity. Our

interest is the characteristic of periodicity due to a small number of specific unstable ASes or

is it a persistent behaviour for all unstable ASes?
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(b) Scatter diagram indicating non-linear system behaviour

Figure 4.19: Estimation of determinism and linearity for BGP route flapping originated by

AS28573
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Figure 4.20: Identifying recurrence behaviour for BGP route flapping originated by AS28573

4.5 Persistence of BGP activity

We have shown in Section 4.3.1 and [8] that BGP traffic for unstable ASes is approximately

periodic with unsynchronised oscillations as seen from the peer AS that sent the largest volume

of traffic in one VP. In this section, we go further to investigate if we can still see this behaviour

from multiple VPs, how long this periodicity continues, is this behaviour persistent as a part

of BGP behaviour or has it appeared recently for some reasons? To answer these questions,

we analyse BGP traffic collected from different VPs at different times as will be discussed in

the next subsections.
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Figure 4.21: Exhibition of recurrence behaviour for BGP route flapping of AS28573

4.5.1 Investigating periodicity for one week of BGP traffic

In this subsection, we investigate the periodicity in BGP traffic collected from all VPs at the

RIPE NCC during one week. The aim of this analysis is to explore whether we can still see

the periodic behaviour at multiple VPs or just limited to the VP rrc03. The RIPE NCC has 14

active VPs as observed during the period of 19-25 July 2016. Each of these VPs has a different

number of peers. For example, VP rrc03 had 30 peers on July 19th 2016. Table 4.1 shows

the location of VPs, total number of peers, and total number of BGP updates collected per

VP between July 19th and 25th 2016. Most BGP updates collected at RIPE NCC VPs share

BGP updates sent from the same active ASes as highlighted in the bold font shown in Table

4.1. This outcome supports the conclusions by [67] where the authors show that most of BGP

traffic contain BGP updates related to a few number ASes. For example, AS28573 has been

seen among the most active ASes in all VPs except the VP rrc15 which is located in Brazil.

Although the VP rrc15 does not have the largest number of peers as shown in Table 4.1,

it collected the largest number of BGP updates. The analysis on this VP shows that some

active ASes sent a significant volume of BGP messages consisting of an announcement fol-

lowed soon by another announcement for the prefix but with a different path. For example,

AS6598 and AS24427 sent 172814690 (20 GB of BGP updates) and 139360416 (17 GB of
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Table 4.1: Top ten active ASes during 19/7/2016 to 25/7/2016 at RIPE NCC

ID VP Location No. of

Peers

No. of

Updates

Top Ten Active ASes

1 rrc00 RIPE NCC, Amsterdam,

Netherlands

117 56607624 9829, 28573, 17908, 29084, 38841,

23911, 56237, 4755, 45820, 45292

2 rrc01 LINX, London, UK 91 49691008 28573, 1132, 9829, 29084, 4755, 17908,

45292, 56237, 45271, 23911

3 rrc03 AMS-IX, Amsterdam,

Netherlands

154 61387387 28573, 9829,55430, 56237, 17908,

45292, 46652, 4755, 198171, 36943

4 rrc04 CIXP, Geneva, Switzerland 85 309426550 9829, 28573, 11664, 18196, 29084,

15964, 23487, 23911, 12252, 19429

5 rrc05 VIX, Vienna, Austria 118 33125632 28573, 9829, 18403, 56237, 29084,

45292, 198171, 174, 3651, 22394

6 rrc06 JPIX, Otemachi, Japan 77 10537831 11139, 28573, 9829, 4755, 29084,

17908, 23911, 52145, 45820, 45194

7 rrc07 NETNOD, Stockholm,

Sweden

80 44990945 28573, 17908, 4755, 9829, 56237,

45292, 11139, 45820, 38841, 46573

8 rrc10 MIX, Milan, Italy 85 55015019 28573, 9829, 29084, 55430, 4755,

17908, 45292, 56237, 23911, 45194

9 rrc11 NYIIX, New York, USA 86 63104404 28573, 18403, 17908, 9829, 29084,

56237, 4755, 38841, 45292, 52145

10 rrc12 DE-CIX, Frankfurt,

Germany

127 115294534 28573, 9829, 45292, 4755, 56237,

17908, 16652, 198171, 23911, 46044

11 rrc13 MSK-IX, Moscow, Russia 75 53865912 28573, 9829, 17908, 4755, 38841,

45292, 23911, 56237, 45820, 45194

12 rrc14 PAIX, Palo Alto, USA 102 46854297 28573, 4755, 9829, 17908, 18196,

45820, 29084, 23911, 46573, 16652

13 rrc15 PTTMetro-SP, Sao Paulo,

Brazil

80 714338144 6598, 24427, 1118, 29337, 35894,

62638, 45177, 59891, 62943, 35908

14 rrc16 NOTA, Miami, USA 54 23496781 28573, 9829, 38841, 4755, 17908,

29084, 45820, 56237, 45292, 46573
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BGP updates) of BGP updates respectively during one week. This significant volume of BGP

messages is an announcement followed soon by an update message for only 35 prefixes (all

IPv4 prefixes) owned by AS6598 and 33 prefixes (all IPV4 prefixes) owned by AS24427.

Figure 4.22 shows total number of BGP updates calculated every second sent by AS6598 as

observed by peer AS16735 at VP rrc15 and its corresponding values of FFT and ACF where

we can see a very strong periodicity in BGP traffic sent by the active noisy AS6598.
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Figure 4.22: BGP traffic volume sent by AS6598 and its corresponding values of FFT and
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Figure 4.23: BGP traffic originated by AS28573 and its corresponding ACF and FFT
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Figure 4.23 shows a sample of BGP traffic originated by the unstable AS28573 and col-

lected by the VP rrc03 and its corresponding of the FFT and ACF. In this figure, we can see

multiple scales of periodicity with the smallest period 60 seconds and the largest 960 sec-

onds3. In this example, we can see periodicity is less pronounced than what we can see in

Figure 4.22. This is due to the number of AS-PATHs between unstable AS and the vantage

point. BGP traffic of unstable AS28573 travelled through 32 different AS-PATHs while BGP

traffic related to unstable AS6598 traveled through only two AS-PATHs.

In total, we have analysed 1.638 billion BGP updates collected at all active VPs of RIPE

NCC during the period of 19-25 July 2016. During the analysis period, we can still see

periodic behaviour at multiple VPs ranging from very strong to weak or unclear depending

on the length of paths between the active ASes and the VPs.

4.5.2 Investigating active ASes for past ten years

In this subsection, we carry out further investigations on BGP updates by analysing collected

BGP traffic for the past ten years. Our interest in this investigation is to explore the active

noisy ASes. Are these active ASes continuing with their behaviour or do they stop and other

ASes appear? In other words, is the characteristic of periodicity due to a small number of

specific unstable ASes or is it a persistent behaviour for all unstable ASes?

We sample data by examining the most active ASes on the 1st of June of every year during

the period 2006-2015. The top ten active ASes during this period have been calculated based

on VPs that collected the largest number of BGP updates compared to other VPs on that

date. For example, the VP rrc03 has been selected as it collected the largest number of BGP

updates during the 1st of June 2006 compared to other VPs. Table 4.2 shows the selected VP,

the number of collected BGP updates and top ten active ASes during the period 2006-2015.

This table shows that some of these active ASes which are highlighted in bold continued for

multiple years such as AS9829 and AS8402 while other ASes appeared in a short period of

time such as AS15491 and AS9121. Our analysis to the top ten unstable ASes during the

period 2006-2015 shows although there are many unstable ASes lasted for a short period of

time, many showed a periodic behaviour. For example, BGP traffic sent by the active AS28573

during the 1st of June 2015 shows a clear periodic behaviour as shown in Figure 4.24.

3The value of 960 seconds is a result of configuring Route Flap Damping (RFD) mechanisms in one of ASes

in the AS-PATH to limit propagation of unstable routes.
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Figure 4.24: BGP updates sent by AS28573 and its corresponding of FFT and ACF
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Table 4.2: Top ten active ASes during 2006-2015

Year VP No. of

Updates

Top Ten Active ASes

2006 rrc03 14193568 15270, 15105, 4134, 9121, 6983, 20141, 26407, 17785, 25994, and 4193

2007 rrc12 6495115 16322, 9583, 25306, 8151, 2697, 13311, 7018, 23966, 24326, and 5800

2008 rrc03 8125184 6389, 8866, 4323, 9583, 2386, 4755, 9498, 11492, 7018, and 31003

2009 rrc12 3071880 9198, 8103, 9829, 21491, 47408, 14846, 7753, 1221, 4802, and 17676

2010 rrc01 5209999 9829, 32528, 8865, 8452, 13193, 35805, 17974, 34337, 37204, and 28052

2011 rrc12 6445955 9430, 9829, 27738, 11492, 6389, 24560, 19743, 3462, 27065, and 17974

2012 rrc13 6159786 8926, 3549, 8452, 9482, 18101, 9829, 1257, 29049, 8402, and 17813

2013 rrc01 5688131 36998, 9304, 33920, 4538, 8402, 18403, 27738, 31148, 27884, and 24835

2014 rrc12 7349238 7545, 9829, 23752, 262287, 7579, 8402, 45899, 28573, 41691, and 9808

2015 rrc12 12615410 28709, 28573, 9829, 23752, 45899, 61570, 54169, 15491, 39891, and 22059

Our statistics for ten years of BGP traffic suggests the characteristic of periodicity in BGP

traffic is part of underlying BGP traffic. Although some active noisy ASes persisted for many

years and others lasted for a short time, we still can see the periodic behaviour for BGP traffic

sent by these ASes. BGP traffic generated by active ASes has the effect of masking anoma-

lous traffic that indicates potentially harmful accidental or deliberate anomalies. A technique

is needed that can rapidly distinguish between normal background and potentially harmful

traffic. We have shown in Section 4.3.2 that RP can be used to identify the characteristic of re-

currence behaviour in the underlying BGP traffic volume. However, as highlighted in Section

3.4 that RP cannot be directly used in real-time anomaly detection. RQA can be used for that

purpose. In the next section, we use RQA to detect anomalous periods that identify anoma-

lies in a series of unstable BGP traffic. In the next section, we use RQA to detect anomalous

periods that identify anomalies in a series of unstable BGP traffic.

4.6 Identifying BGP anomalies during the TMnet incident

In this section, we show how RQA can be used to differentiate between unstable BGP traffic

generated by active ASes and anomalous BGP traffic generated by different types of BGP

anomalies. Our approach makes use of RQA by first extracting BGP features and then cal-

culating RQA measurements based on those features. Significant variations in the RQA mea-

surements indicate a change in normal behaviour that represents BGP anomaly. As discussed

before in Section 2.2.6, there are many BGP features can be extracted from a series of BGP

updates. However, we have modelled BGP speakers as dynamic systems send BGP updates

and path lengths based on BGP updates received from neighbours and local routing policies.
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Changes in BGP speaker behaviour of sending a number of BGP updates and path lengths can

be used as an indicator to detect anomalous behaviour. Therefore, we use BGP volume (total

number of announcements and withdrawals) and average AS-PATH length calculated every

second as BGP features in our approach.

To evaluate RQA capability to indicate BGP anomalies, we use BGP updates related to

BGP events. TMnet is one of the most recent incidents of BGP anomalies was observed on the

12th of June 2015 by Telekom Malaysia (TMnet). It is an example of direct unintended BGP

anomalies which caused significant network problems for the global routing system. TMnet

(AS4788) accidentally announced approximately 179,000 prefixes to Level3, the global cross-

ing AS, leading to significant packet loss and slow Internet service around the world [124].

In the next chapter we look at other events and evaluate the effectiveness of RQA in greater

depth.
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(b) Average AS-PATH length for BGP traffic sent by the peer AS10102 over 24 hours

Figure 4.25: BGP features sent by the peer AS10102 during TMnet event

Figure 4.25 shows BGP volume and average AS-PATH length features calculated every

second where we can see a significant increase in number of BGP updates during the event.

The peer AS10102 sent multiple high volume of BGP updates such as during the periods 3750-

5600 seconds and 15100-15700 seconds before continued to sent a significant volume of BGP

updates during the period 30000-40000 seconds. TT and T2 measurements can identify these

periods of anomalous behaviour in term of BGP volume traffic using only 200 seconds of
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past BGP updates as shown in Figure 4.264. RQA can also detect other types of anomalous

behaviour which cannot be observed from a simple observation. For example, during the

period 33700-33900 seconds there is no significant change in the BGP volume neither average

AS-PATH length as shown in Figure 4.27 but RQA measurements show a significant change.

The source of this change is abnormal behaviour in term of the interval for sending BGP

updates or the behaviour of MRAI starting after time 33000 seconds as shown in Figure 4.27a.
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Figure 4.26: RQA measurements during TMnet event

In this section, we introduced our RQA approach to indicate BGP anomalies using one

of the most recent BGP events. RQA is able to differentiate between unstable BGP traffic

and anomalous traffic that identifies anomalies. RQA is also able to disclose otherwise hidden

4More analysis for selected the period of past BGP updates and optimal RQA measurements to detect BGP

anomlies with low rates of FP and FN will be discussed later in Chapter 5.
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information related to the anomaly such as changes in the frequency of updates. Further details

about detection delay and FP and FN rates will be discussed in the next chapter.
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Figure 4.27: Hidden anomalous behaviour during TMnet event

4.7 Conclusions

BGP updates are sent to reflect changes in network topology or policies change. Any BGP

activity that does not contribute to business goals of an organisation or undermines them can be

considered anomalous. However, real-world BGP update traffic is of a substantial volume that

is much larger than might be expected. There is a set of unstable ASes that send BGP traffic

consisting of route announcements followed soon after by withdrawals that do not appear

related to underlying network management decisions or events. The process of identifying

anomalous BGP traffic in the presence of unstable BGP traffic is difficult because the unstable

BGP traffic has the effect of masking anomalous traffic.

In this chapter, we have shown that unstable BGP traffic has the characteristics of a peri-

odic behaviour with different frequencies. The characteristic of periodicity in BGP traffic is

part of BGP behaviour. Although some unstable ASes persisted for years and other for months,

we still can see this periodicity in BGP traffic. However, the aggregated BGP traffic for all
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unstable ASes does not show a structure of a periodic behaviour. Using the concepts of phase

plane trajectories, we show the aggregated BGP traffic has the characteristics of recurrence,

determinism, non-linearity, and stable behaviour. Built on this insight, we demonstrate that

RQA, an advanced non-linear analysis technique based on a phase plane trajectory, may be

able to differentiate between unstable traffic and anomalous traffic that identifies BGP anoma-

lies. Using one of the most recent BGP anomalies, we showed that RQA is able to detect

anomalous behaviour that indicates BGP anomalies as well as hidden anomalous behaviour

that may otherwise pass without observation, as shown in Figure 4.27. In the next chapter, we

will evaluate RQA’s ability to detect BGP anomalies. We will also identify the most effective

RQA measurements and investigate the selection of the optimal values of the window size that

can produce low rates of FP and FN.





Chapter 5

Detecting BGP anomalies using RQA

5.1 Introduction

When BGP was developed, trust between its participants was assumed. Consequently, it in-

cludes few security mechanisms and so is vulnerable to different types of events. In the years

since it was deployed, many types of these have been recorded such as BGP misconfigura-

tion and link or node failure. The consequences of these events can range from a single to

thousands of anomalous BGP updates. As highlighted in Section 2.3, a single BGP update is

categorised as anomalous if it originated from an illegitimate or invalid AS while a set of BGP

updates are categorised as anomalous if there is a significant change in the number of BGP

updates, a significant change in the AS-PATH length or changes in the behaviour of total BGP

updates over time. Our interest is in the later. In particular, we detect BGP anomaly at BGP

speaker level using a series of BGP updates sent by the BGP speaker.

We have shown in the previous chapter that RQA can differentiate between normal but

unstable BGP traffic and anomalous traffic. Using one of the most recent well-known BGP

events as an example, we showed how RQA can distinguish BGP anomalies from unstable

BGP traffic and indicate hidden anomalous behaviour that may otherwise pass without obser-

vation. In this chapter, we introduce an RQA based scheme to detect BGP anomalies and we

then discuss our scheme’s design in detail. We also investigate the most effective RQA mea-

surements and the optimal values for RQA scheme parameters that produce a high detection

rate and low detection delay.

In the years since it was deployed, many types of anomalies have threatened BGP sta-

bility such as TTNet misconfiguration, Nimda, and the Moscow blackout. Although many

researchers have analysed these events such as [62] and [66] using BGP data from the events

to evaluate their approaches, there is still a lack of ground truth data for these events. This

issue represents a challenge to almost all network anomaly detection work [160]. In BGP,
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there is a lack of time stamps for these events. For example, what time in seconds did an

event start? Furthermore, there might be other BGP anomalies that have not been reported or

noticed [32]. Our approach is to use a network testbed in which synthetic anomalies are gen-

erated and then confirming against well-known BGP events. Nevertheless, we acknowledge

that synthetic events are an approximation only to the ground truth. Our BGP testbed uses the

Virtual Internet Routing Lab (VIRL) [5], a powerful network emulation platform developed by

Cisco, and BGP Replay Tool (BRT) [2], a tool that we developed to replay past BGP updates.

We use the results obtained from the testbed to evaluate and choose our scheme parameters

and select the most effective RQA measurements that best identify BGP anomalies.

We run our RQA scheme using 1233790 seconds (14.28 days or 342.72 hours) of BGP

traffic collected from our controlled testbed and different types of well-known BGP events.

These include Nimda as an example of indirect BGP anomaly, Moscow blackout as an example

of link failure, and TTNet and TMnet as examples of direct unintended BGP anomaly. Our

detection scheme can detect all the introduced BGP anomalies in our testbed (12 emulated

BGP anomalies) and the well-known BGP events as well as hidden anomalous behaviour

in the underlying BGP traffic. This hidden anomalous behaviour represents an early stage

of BGP anomalies which the RQA scheme can identify. To evaluate our RQA scheme for

detecting BGP anomalies, four main metrics have been used. These are True Positive (TP),

True Negative (TN), False Positive (FP), and False Negative (FN). TP refers to numbers of

anomalies that are classified as anomalies while TN refers to numbers of normal events that

are classified as normal. FP refers to normal events that are classified as anomalous while FN

refers to anomalous events that are classified as normal. The evaluation of RQA scheme using

14.28 days of BGP traffic shows its ability to detect 46 TP alarms with 5 FP alarms detected

within 62 seconds as a detection delay.

The rest of this chapter is organised as follows: in Section 5.2, we introduce our controlled

testbed where we synthesise unstable BGP traffic and introduce anomalies. Section 5.3 de-

scribes the design of our RQA based scheme for detecting BGP anomalies. In Section 5.4, we

discuss the selection of the optimal values of our detection scheme and the most effective RQA

measurements to produce high accuracy detection. We evaluate the accuracy of our scheme

using the past and emulated BGP anomalies in Section 5.5. Finally, we conclude our chapter

in Section 5.6.

5.2 Indicating BGP anomalies using RQA-testbed

In this section, we address the problem of obtaining ground truth of anomalous BGP events.

Such information is necessary for an evaluation of our approach to detecting BGP anomalies.
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For that purpose, we introduce a controlled BGP testbed using the VIRL [5] and BRT [2].

VIRL is a network emulation system uses Linux KVM hypervisor, OpenStack, and a set of

virtual machines running real Cisco network operating systems [5]. BRT is a tool to replay

past BGP updates [2], described in Appendix A.

We use the topology shown in Figure 5.1, which has been used in previous work to emulate

a small Internet [161], to evaluate our scheme. This topology enables all BGP routers, except

as200r1, to receive the injected BGP traffic via different AS-PATHs. For example, as30r1 can

receive the injected BGP traffic via as1r1, as300r1, and as20r1. In this topology, each router

runs Cisco IOSv 15.2(2)T. We also use two virtual machines running Ubuntu 14.04.2 LTS

operating system. The first virtual machine is used to feed BGP updates into as40r1 using

BRT while the second virtual machine works as a Remote Route Collector (RRC) to collect

BGP data from several VPs. RRC requires Quagga, a routing software package that provides

TCP/IP based routing services for different protocols such as OSPF, RIP, and BGP [162]. In

the topology shown in Figure 5.1, we do not use any BGP policies except at the collecting

points to avoid these collectors from working as a transit between ASes. To collect BGP

updates from different VPs, RRC is peered with as20r1, as30r1 and as300r1. RRC also runs

our scheme to detect BGP anomalies.

as1r1

as20r1
as20r2

as20r3
as40r1

as200r1

as100r1

as300r1

as300r2

as300r3 as300r4

as100r2

as100r3

AS100

AS20

AS40

AS30

AS200

AS300

AS1

as30r1

RRC

R

Figure 5.1: Testbed topology

We have shown in Section 4.3 that unstable BGP traffic appears to be an aggregation of

oscillations of different frequencies from a set of unstable ASes. In our testbed, we synthesise

this traffic by generating a series of prefixes belonging to different ASes that periodically
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announce then withdraw updates at regular time intervals. We then introduce an anomaly by

shutting down an AS as an example of node failure.

We carry out two types of experiments using our controlled testbed. In the first experiment,

we start running RRC to collect BGP traffic at different vantage points before injecting a

low volume of synthesised BGP traffic then introducing an emulated node failure. In the

second experiment, we start running RRC after injecting a high volume of synthesised BGP

traffic then introducing multiple emulated node failures at different times. The reason for

using different volumes of synthesised BGP traffic is to evaluate the capability of RQA to

identify BGP anomalies in a series of low and high volume of unstable BGP traffic. In both

experiments, RQA is able to distinguish anomalous behaviour from a series of unstable BGP

traffic.

5.2.1 Injecting low volume of synthesised BGP traffic

In this experiment we generate a series of prefixes 182.7.x.0/24 to 182.29.x.0/24 that period-

ically announce then withdraw updates after a specific time. For example, 182.7.x.0/24 in-

cludes all prefixes in the range 182.10.1.0/24 to 182.10.20.0/24 that announce then withdraw

networks after 10 seconds while 182.15.x.0/24 refers to all prefixes in the range 182.15.1.0/24

to 182.15.20.0/24 that announces then withdraw it after 15 seconds1.

We inject the generated series of BGP updates using BRT and introduce an emulated node

failure by shutting down all interfaces of AS1 after 2950 seconds from the start of the injection.

The first 200 seconds of BGP updates represent the start of our experiment during which

transient behaviour occurs. Therefore, we will ignore any significant changes in the RQA

measurements during this period. As a result of the node failure, there is a notable decrease

followed by an increase in the number of BGP updates during the period 2950-3200 seconds.

This is because when as1r1 was shut down, its neighbours as40r1, as30r1, and as20r3 do

not become aware of this event until the BGP hold timer expires, the default value of which

is 180 seconds. Figure 5.2 shows the total number of BGP updates (BGP volume) and the

average length of AS-PATH features calculated every second for BGP traffic sent by as20r3

and collected at RRC. The calculation of RQA measurements for BGP volume and average

AS-PATH length features shows a significant change in RQA measurements during the node

failure as well as at time 201 seconds (the start of our experiment which TT and T2 can identify

the start of the injection traffic) as shown in Figure 5.3. In this figure we can see a significant

change in the values of TT, T2 and RR values for BGP volume features and RR values for

average AS-PATH length feature after the failure, a further discussion for the most effective

1We have shown in Section 4.3.1 that 10 and 15 second periods are typical of unstable ASes.
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RQA measurements to detecting BGP anomalies will be covered in Section 5.4.
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Figure 5.2: Experiment-1 BGP volume and average AS-PATH length features collected by

as20r3

The period 2950-3185 seconds represents the start of the node failure followed by the

period of the hold time and then the response of the as20r3 to the failure. In other words, the

interval 2950-3185 seconds can be described as three periods. First, during the period 2950-

3139 seconds, the as20r3 sent small number of BGP updates which did not exceed 500 BGP

updates per second. This is because as20r3 did not recognise the node failure where the hold

timer was not yet expired. Second, there was an increase in the number of BGP updates during

the period 3140-3150 seconds, the hold timer expired, where the as20r3 sent BGP updates with

alternative AS-PATHs. Although the maximum number of BGP updates during this period is

1682 BGP updates, it does not represent a high volume increase compared to previous periods

such as 938 seconds (1579 BGP updates) and 1667 seconds (1614 BGP updates). Third, the

as20r3 sent 2502 BGP updates at time 3185 seconds which represents the highest volume of

BGP updates per second sent by as20r3 during the period of the experiment.

Figure 5.4 shows BGP volume and average AS-PATH length features and their corre-

sponding values of TT, T2, and RR measurements during the period 3100-3190 seconds. In

this figure, we can see there is a significant change in the values of TT, T2, and RR at time

3145 seconds. In this period, RQA measurements indicate anomalous behaviour in the BGP
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Figure 5.3: Experiment-1 RQA measurements for BGP features
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speaker as20r3 before a significant volume of BGP updates is sent. The maximum values of

TT and T2 measurements can be seen at time 3151 seconds while the minimum value of RR

measurement can be seen at time 3220 seconds. It is worth noting that there is a substantial

change in the volume around times 600 and 1600 seconds which do not affect RQA measure-

ments at all (Figure 5.2a). RQA measurements are not simply responding to changes in the

number of BGP updates per second. Rather RQA measurements are responding to a change

in the frequency of updates sent by AS20r3 which sent multiple BGP updates in the period of

a few seconds rather the default value (28 to 32 seconds).

The evaluation of our scheme to indicate BGP anomalies using a low volume of synthe-

sised BGP traffic shows that RQA measurements can indicate anomalous but hidden behaviour

in BGP traffic, during the period 3140-3340 seconds, which represents an early indication of

BGP anomalies before starting to send a significant volume of BGP updates.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  5000  10000  15000  20000  25000  30000  35000  40000

B
G

P
 v

o
lu

m
e

Time in seconds

(a) BGP volume feature

 0

 2

 4

 6

 8

 10

 12

 0  5000  10000  15000  20000  25000  30000  35000  40000

A
v
e

ra
g

e
 A

S
-P

A
T

H
 l
e

n
g

th

Time in seconds

(b) Average AS-PATH length feature

Figure 5.5: Experiment-2 BGP features of BGP traffic collected by as20r3

5.2.2 Injecting high volume of synthesised BGP traffic

In this experiment, we use our topology shown in Figure 5.1 and inject a high volume of

synthesised BGP traffic for a period of 12 hours. We also extend the number of anomalies to

six hardware failures, one failure every 2 hours. We introduce a hardware failure after 3600

seconds (1 hour) which is the first failure then reconnect AS1 by enabling all interfaces after

another 3600 seconds. We continue in this sequence to obtain, in total, six hardware failures

and five re-connections for AS1. In other words, we introduce 11 emulated BGP anomalies



5.2 Indicating BGP anomalies using RQA-testbed 129

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  5000  10000  15000  20000  25000  30000  35000  40000

B
G

P
 v

o
lu

m
e

Time in seconds

(a) RR measurement for average AS-PATH length feature

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  5000  10000  15000  20000  25000  30000  35000  40000

B
G

P
 v

o
lu

m
e

Time in seconds

(b) RR measurement for BGP volume feature

 0

 20

 40

 60

 80

 100

 120

 140

 0  5000  10000  15000  20000  25000  30000  35000  40000

B
G

P
 v

o
lu

m
e

Time in seconds

(c) TT measurement for BGP volume feature

 0

 20

 40

 60

 80

 100

 120

 140

 0  5000  10000  15000  20000  25000  30000  35000  40000

B
G

P
 v

o
lu

m
e

Time in seconds

(d) T2 measurement for BGP volume feature

Figure 5.6: Experiment-2 RQA measurements for BGP features
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(6 hardware failures and 5 reconnects) every 3600 seconds. We use 3600 seconds as a period

between emulated anomalies to ensure the all routers received the BGP rerouting (as a result of

disconnecting and reconnecting AS1) and to avoid overlapping between transient behaviours

of emulated BGP anomalies. Figures 5.5 show BGP features for the collected BGP traffic sent

by the peer as20r3. Although we use the same injected BGP updates and the same period

of time between node failures and reconnects, we can see different values of BGP volume at

different times. For example, the value of BGP volume at the first failure 3842 seconds is

6260, 7098 for the second failure at time 11039 seconds, and 10984 for the third failure at

time 18243 seconds. The difference in the values of volume depends on the content of RIB

and BGP updates received from neighbours at times of the node failures.
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Figure 5.7: Early indication of anomalous BGP behavior during first node failure for

experiment-2

Figure 5.6 shows the corresponding values of RQA measurements of the two BGP features.

Figure 5.7 shows BGP volume feature during the first node failure and its corresponding values
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of T2 and TT where we can see that these RQA measurements, once again, indicate an early

stage of BGP anomalies. In this example, the peer as20r3 did not send any BGP updates during

the period 3617-3804 seconds then sent multiple BGP updates with values 1003, 3729, and

6260 BGP updates during the time stamp 3840, 3841, and 3842 seconds respectively. TT and

T2 measurements responded to this hidden anomalous behaviour (stop sending BGP updates

during period 3617-3804 seconds) at time 3718 seconds and 3806 seconds respectively, the

first notable changes in the values of TT and T2. In this example, TT and T2 measurements

can indicate the anomalous behaviour within 122 seconds and 34 seconds respectively before

peer as20r3 sent multiple BGP updates.

In this section, we have used our controlled testbed to synthesise low and high volume

unstable BGP traffic and then introduce node failures. In both experiments, RQA can dif-

ferentiate between normal-but-unstable BGP traffic and anomalous BGP traffic that identifies

anomalies. In the next section, we will use the results obtained from our controlled testbed as

a ground truth data to select optimal values of our scheme parameters.

5.3 RQA scheme design

We now describe our RQA based detection scheme for detecting BGP anomalies. Our scheme

is comprised of four stages as shown in Figure 5.8. The input of our scheme are BGP updates

received from the monitored BGP speaker while the output is an alarm that indicates the

detection of BGP anomalies. Now, we describe our scheme in more detail.
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5.3.1 Calculating BGP features

At this first stage, we calculate BGP features from BGP updates sent by the BGP speaker.

The output of this stage are BGP features in time series representation as shown in Figure 5.8.

There are multiple BGP features that can be used. As discussed in Section 2.2.6 and listed in

Table 2.3, BGP features can be mainly classified into deviations in the number of BGP updates

and in the path data contained within the update field AS-PATH. We use these two main BGP

features to identify behaviour changes of the monitored BGP speaker. In particular, we use

BGP volume (V ) (total number of announcements and withdrawals) and average length of

AS-PATH (AV ) in our scheme to detect BGP anomalies. The AV feature is calculated as

follows:

AV =

[

TA

A

]

, (5.1)

where TA is total AS-PATH lengths for the announcements, A is total number of announce-

ments , and [] is the nearest integer function. These BGP features are calculated every second

based on time stamp of BGP updates. For example, there are 5 announcements and 3 with-

drawals at time stamp 1469490900 in Unix format for BGP updates shown in Figure 5.9. In

this time stamp, the value of TA is 19, A is 5, and then the value of AV is 4 (the nearest integer

value of
[

19
5

]

is 4). The calculation of the two BGP features for the whole BGP updates of

Figures 5.9 is:

V = [7,0,8]

AV = [4,0,4]

5.3.2 Calculating RQA measurements

This stage represents the calculation of RQA measurements for each BGP feature calculated

during the previous stage. Before calculating RQA measurements for BGP features, we nor-

malise the input time series data (BGP features) by subtracting the mean value to smooth

noisy traces. Calculation of RQA measurements is based on many parameters. These include

time delay (τ), embedding dimension (m), recurrence threshold (ε), and window size (W ).

As discussed in Chapter 3, the values of (τ) and (m) can be calculated using MI and FNN

respectively while the value of (ε) can be calculated using the recommendation from [123] by

choosing the threshold value less than 10% of the maximum phase space diameter. We use

TISEAN package [150] to calculate the values of (τ) and (m) and Matlab toolbox available in

[163] to calculate the value of (ε).
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Figure 5.9: Example of BGP updates in a human readable format

The size of the window (W ) needs to be chosen carefully. A large window may fail to identify

some transitions in system behaviour while a small window can generate spurious fluctuations

in RQA measurements. We use TT and T2 as illustrative examples to show the effect of

the window size on RQA measurements. Figures 5.10 and 5.11 show values of T2 and RR

calculated with different window sizes for BGP traffic obtained from our experiment described

early in Section 5.2.1. For example during the node failure of the first experiment (Section

5.2.1), the maximum T2 value during the failure is 33 when the window size is 200 seconds

while it is 17 when the window size is 500 seconds as shown in Figures 5.10b and 5.10c.

In addition to the effect of window size on the values of RQA measurements, the window

size has an effect on the delay for RQA measurement changes to reflect the change in the

input data. For example, the detection period of RR measurements is 500 seconds when the

window size is 500 seconds and it is 200 seconds when the window is 200 seconds as shown

in Figures 5.11b and 5.11c. The process of selecting the optimal value of the window (W )

will be discussed in detail in Section 5.4 where we investigate the accuracy of our detection

scheme.

5.3.3 Moving average

The aim of this stage is to smooth the values of RQA measurements to enable detection of

notable changes. A notable change in values of RQA measurements in term of increment

or decrement indicates anomalous behaviour as discussed in Section 3.5. To identify RQA
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Figure 5.10: The effect of window size on T2 measurement
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Figure 5.11: The effect of window size on RR measurement
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measurement’s changes that indicate an anomaly, we apply moving average technique based

on the following format:

RQAalarm = Mean(M)± sd(M)∗X , (5.2)

where (M) is the length of the window size for the detection, (sd) is the standard deviation

of data with length (M) seconds and (X) is the threshold value which represents number of

times for the standard deviation. For example, X = 5 represents 5 standard deviations of data

with length (M) seconds. The process of selecting values of (M) and (X) as well as (W ) will

also be discussed in detail in Section 5.4 where we adjust the detection parameters for better

detection accuracy. The output of this stage is potentially multiple RQA alarms.

5.3.4 Detection

Finally in this stage, the detection decision is made. The input of this stage are multiple RQA

alarms calculated by the moving average stage while the output is an alarm that identifies

detection of a BGP anomaly. Integration of multiple RQA alarms (from the moving average

stage) is an area of further research. But for the purpose of illustration, we use all logical

ORs. Our decision is based on the need to minimise FPs. Further discussion of the ability of

individual RQA measurements to produce a high detection rate and low detection delay will

be introduced in Section 5.4.22.

In this section, we have presented the design of our RQA scheme for detecting BGP

anomalies. In the next section, we use BGP updates collected from our controlled testbed

as ground truth data to select optimal values of our RQA scheme parameters that generate

high detection accuracy.

5.4 Estimating parameters and selecting measurements

In this section, we discuss the process of selecting optimal values for our RQA scheme’s pa-

rameters that produce high detection accuracy. These parameters are the window size (W ) for

calculating RQA measurements, the window size (M) for detecting notable changes of RQA

measurements values at moving average stage and the threshold value (X) of moving average

stage. We also investigate the selection of the most effective RQA measurements to detect

BGP anomalies in term of detection accuracy and detection delay. These measurements and

2We note that only TT measurement is able to detect BGP anomalies with zero value of FN and FP rates.

However, in some cases TT measurements can detect BGP anomalies faster than T2. Consequently, we use a

logical OR function
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parameters can affect the performance of our detection scheme in term of classifying normal

and anomalous events. We use FP and FN to estimate these measurements and parameters.

These values are important for network operators. High rates of FN means anomalous events

are rarely detected. High FN rates may have a serious consequence on business relationships

between ISPs and on Internet stability. However, high rates of FP can overwhelm the network

operator since positive results require further investigation to identify whether or not an alarm

represents a real anomaly which if it is an FP, means wasted time and hence additional cost.

We start our investigation by selecting the optimal values of windows (W) and (M) that

can produce low rates of FN and FP. Based on selected values of these, we investigate the

process of selection of the most effective RQA measurements to detect BGP anomalies. For

our investigation, we use our results obtained from the two experiments described earlier in

Section 5.2 which contains 12 BGP anomalies (1 BGP anomaly from experiment-1 and 11

anomalies from experiment-2) during 46952 seconds (3653 seconds for experiment-1 and

43299 experiment-2).

5.4.1 Selecting window size

In this subsection, we explore different sizes of the windows (W and M) for calculating RQA

measurements and moving average stage and discuss the optimal values that can be used to

produce low rates of FP and FN. We evaluate window sizes from 200 seconds to 1200 seconds

with an increment of 50 seconds. Figures 5.12 and 5.13 show the effect of changing windows

size on FP and FN for RQA measurements TT and T2 calculated for BGP volume feature

which we use as examples for RQA measurements. Our selection of the window size is based

on low rates of both FP and FN. For example, the window size of 1200 seconds for both

(W ) and (M) is the best window size in term of FP rates of TT measurement but it is not in

terms of FN as shown in Figure 5.12d. Regardless of the value of the threshold which will

be discussed later, we can see the lower values of FP and FN are when the value of RQA

window (W ) is smaller than 300 seconds and the value of moving average window (M) is

larger than 1000 seconds. In addition to its effect on FP and FN, the size of the window (W )

has to be chosen to be as small as possible to avoid missing the detection of multiple anomalies

within a short time. For example, choosing the value of (W ) of 1200 seconds leads to missing

multiple anomalies that may occur during 1200 seconds as highlighted before in Figure 5.11.

Consequently, for successive experiments, we will adopt the values of windows size W=200

seconds and M=1200 seconds as optimal values to be used in our detection scheme.
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(a) FP and FN for TT measurements when the threshold value(X)=3

(b) FP and FN for TT measurements when the threshold value(X)=4

(c) FP and FN for TT measurements when the threshold value(X)=5

(d) FP and FN for TT measurements when the threshold value(X)=6

Figure 5.12: Effect of changing windows (W and M) on FP and FN rates using TT measure-

ment for BGP volume feature
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(a) FP and FN for T2 measurements when the threshold value(X)=3

(b) FP and FN for T2 measurements when the threshold value(X)=4

(c) FP and FN for T2 measurements when the threshold value(X)=5

(d) FP and FN for T2 measurements when the threshold value(X)=6

Figure 5.13: Effect of changing windows (W and M) on FP and FN rates using T2 measure-

ment for BGP volume feature
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5.4.2 Selecting RQA measurements

We have shown in Section 3.5 that RQA measurements TT, T2, RR, W-entr, and V-entr can

be used effectively to detect anomalous behaviour of systems. We now use BGP volume and

average AS-PATH length features to detect BGP anomalies. Calculating RQA measurements

for these two BGP features produces ten RQA measurements (five RQA measurements for

each BGP feature). In this subsection, we investigate the selection of the most effective RQA

measurements that can detect BGP anomalies. This is necessary to avoid using sparse RQA

measurements that can be irrelevant to detect anomalies. Once again, we use our ground truth

data obtained from our testbed described in Section 5.2 where we synthesised normal-but-

unstable BGP traffic and introduced anomalies.

We use values of (W = 200)seconds and (M = 1200)seconds that represent optimal val-

ues for our detection scheme as discussed earlier. Figures 5.14 and 5.15 show the number of

FP and FN with different values of the threshold (number of standard deviations in the moving

average stage) for the five RQA measurements (TT, T2, RR, V-entr and W-entr) calculated for

both BGP volume and average AS-PATH length features respectively. The calculation of FP

and FN shows that all RQA measurements except T2 for BGP volume feature are not able

to produce zero values of FP and FN for any value of the threshold. T2 can detect the 12

emulated BGP anomalies with zero values of FP and FN when the threshold value≥ 5.

However, in some cases, TT can detect BGP anomalies more quickly than T2. This is

based on the patterns changing during an anomalous period. For example, Figure 5.16 shows

the detection delay for TT and T2 alarms (outputs of the moving average stage) for BGP

traffic related to the first emulated BGP anomaly of experiment-2. Therefore, we carry out

more investigation on RQA measurements to determine which RQA measurements can detect

BGP anomalies faster than T2 taking into consideration that a zero value of FP and a low value

of FN are wanted. We accept that missing some BGP anomalies for other RQA measurements

can be used as long as T2 for BGP volume feature can detect all possible BGP anomalies.

This can help to detect BGP anomalies as quickly as possible while avoiding high FP rates.

Our further investigation includes detection delay of RQA measurements T2 and TT re-

lated to BGP volume and average AS-PATH length features. We eliminate RR, V-entr and

W-entr measurements from our investigation for detection delay as those measurements can-

not produce a low value of FN when FP=0. For example, RR measurement produces FN=11

when the FP=0 as shown in Figures 5.14c and 5.15c. Although we eliminate RR, V-entr and

W-entr measurements from these experiments, we note that they may well be able to be used

if more sophisticated techniques were used for integrating RQA measurements. However, that

is an area for future research.
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(b) FP and FN for T2 measurement calculated for BGP volume feature
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(c) FP and FN for RR measurement calculated for BGP volume feature
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(d) FP and FN for W-entr measurement calculated for BGP volume feature
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(e) FP and FN for V-entr measurement calculated for BGP volume feature

Figure 5.14: FP and FN of RQA measurements for BGP volume feature
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(a) FP and FN for TT measurement calculated for average AS-PATH length feature
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(b) FP and FN for T2 measurement calculated for average AS-PATH length feature
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(c) FP and FN for RR measurement calculated for average AS-PATH length feature
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(d) FP and FN for W-entr measurement calculated for average AS-PATH length feature
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Figure 5.15: FP and FN of RQA measurements for average AS-PATH length feature
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Figures 5.16 and 5.17 show the detection delay in seconds in detecting BGP anomalies for

RQA measurements. In these figures we can see that TT detects BGP anomalies more quickly

than T2. Our experiments suggest that TT and T2 measurements are the most effective RQA

measurements for detecting BGP anomalies.
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Figure 5.16: RQA measurements delay to detect BGP anomalies using BGP volume feature

In this section, we have discussed the process of selecting the optimal values of window

sizes and choosing the most effective RQA measurements to detect BGP anomalies. We have

shown that RQA window size W = 200 and moving average window M = 1200 are effective

values that can be used in our RQA scheme so our detection scheme requires 1200 seconds of

history data. We have also shown that using our simple logical OR for integrating RQA mea-

surements TT and T2 are effective for anomaly detection. In terms of selecting optimal values

of threshold, our experiments suggest using T2 threshold value=7 while TT with threshold

value=9 for both BGP features gives low FP and FN. In the next section, we will use these
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Figure 5.17: RQA measurements delay to detect BGP anomalies using average AS-PATH

length feature
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values and RQA measurements to evaluate the accuracy and detection delay for our RQA

scheme.

5.5 Evaluation

The evaluation of our RQA scheme is based on the numbers of TP, TN, FP and FN. The last

two parameters (FP and FN) are the most important due to their effect on network operators.

However, there are other metrics based on these that can be used to evaluate our RQA scheme.

These metrics are accuracy, F-score, precision, and sensitivity which are derived from TP,

TN, FP and FN. Accuracy regards normal events as being as important as anomalous events

while F-score reflects the success of detecting anomalies rather than detecting both anomalies

and normal events. Precision measures the ability of the system to identify classified and

unclassified anomalies while sensitivity measures the ability of the system to correctly classify

anomalies in the data set. These evaluation metrics are calculated as follows:

accuracy =
T P+T N

T P+T N +FP+FN
(5.3)

F − score = 2×
precision× sensitivity

precision+ sensitivity
(5.4)

where

precision =
T P

T P+FP
(5.5)

sensitivity =
T P

T P+FN
(5.6)

In addition to the above metrics, we evaluate the detection delay of our RQA scheme. Our

evaluation includes BGP traffic obtained from our controlled testbed discussed in Section 5.2

and different types of well-known BGP events, starting with BGP traffic collected from the

controlled testbed.

5.5.1 Detecting BGP anomalies using the controlled testbed

In this subsection, we use BGP traffic obtained from our testbed for the two experiments

described in Section 5.2 to evaluate the accuracy of our scheme. In total, we analyse 45952

seconds of BGP traffic, 3653 seconds of BGP traffic obtained from experiment-1 and 42299

seconds of BGP traffic obtained from experiment-2. Our detection scheme requires 1200



146 Detecting BGP anomalies using RQA

Table 5.1: Detection accuracy for BGP traffic obtained from our testbed

Experiment TP TN FP FN Precision Sensitivity Accuracy F-score

1 1 2453 0 0 1 1 1 1

2 11 41099 0 0 1 1 1 1

seconds of past data so we subtract 1200 seconds from TN values. The values of TP, TN, FP,

and FN for both experiments are listed in Table 5.1.

In terms of detection delay, our scheme detects BGP anomalies within 5 seconds. In

experiment-1, our scheme raises an alarm at time 3146 seconds so it detects BGP anomalies

after 5 seconds since the anomaly started at time 3141 seconds (Figure 5.4). It is worth noth-

ing that the RQA scheme detected BGP anomalies before a BGP speaker started to send a

significant volume of BGP traffic. For example, Figure 5.18 shows BGP volume and average

AS-PATH length features for BGP updates related to the first node failure of experiment-2

where we can see our scheme can detect BGP anomalies before the as20r3 started to send

a significant volume of BGP traffic. It also detects hidden behaviour in the underlying BGP

traffic where the as20r3 stopped sending BGP updates for 2 minutes before responding to the

hardware failure and sending a significant volume of BGP updates.

5.5.2 Applying RQA to notable BGP events

We now apply our scheme to notable BGP events. Table 5.2 shows some well-known BGP

events and the selected RRCs that have been chosen based on peers that sent a significant

number of BGP updates during the events. Now, we describe each of these events in detail

and evaluate the effectiveness of using RQA scheme to detect them.

Table 5.2: List of notable BGP events

Event Date Peers RRC

Nimda September 2001 AS6893, AS513, and AS559 rrc04, RIPE

TTNet December 2004 AS13237, AS12793, and AS1853 rrc05, RIPE

Moscow May 2005 AS12793, AS13237, and AS1853 rrc05, RIPE

TMnet June 2015 AS1299, AS10102, and AS38726 route-views4

5.5.2.1 Nimda event

Nimda is an example of an indirect BGP anomaly. On 18 September 2001, the computer

worm "Nimda" attacked a large number of web servers. Although Nimda was directed at web
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Figure 5.18: Early detection of BGP anomalies using RQA scheme
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servers, it caused significant instability in BGP behaviour [28]. We download BGP updates

from rr04 at RIPE repository during the period 17-22 September 2001.

Figure 5.19 shows BGP volume and average AS-PATH length features for BGP updates

sent by the peer AS6893 during the period 17-22 September 2001 and the output or our detec-

tion scheme. During the Nimda event 160000-165000 seconds, we can see that BGP volume

traffic increased around 30 times from normal of BGP updates which is observed before in

[28]. Our RQA scheme can detect anomalous behaviour during Nimda attacks as well as

other anomalous periods. In total, there are 13 alarms raised by RQA detection scheme during

the period 17-22 September 2001. In particular, there are 2 alarms raised during the event day,

6 alarms before the event, and 5 alarms after the event.
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Figure 5.19: BGP features sent by AS6893 during Nimda event and its corresponding detec-

tion by RQA scheme
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We now do a manual investigation on those 13 alarms to see if they are TP or FP. De-

termining if an event is an TP or FP is a challenge, nevertheless we believe it a worthwhile

exercise. Our investigation includes checking the number of BGP updates and recurrence be-

haviour change for both BGP features. Our manual investigation for the 13 alarms shows that

10 alarms (including two alarms during the event date) are TP while it is unclear if the re-

maining 3 alarms represent FP alarms or an early detection for an anomaly. Figure 5.20 shows

BGP volume feature for the three possible FP alarms raised by RQA scheme before and after

the BGP event. For example, the RQA scheme raised an alarm at time 416615 seconds be-

fore the peer AS6893 showed abnormal behaviour in sending BGP updates in some seconds

at periods 416732- 416733 seconds, 417271-417282 seconds, 417363-417364 seconds, and

417392-417393 seconds rather than every 28-32 seconds (MRAI timer). Although these pos-

sible FP alarms were raised due to changes in the recurrent behaviour, it is not really clear if

they represent harmful anomalies or not. However, we consider them as FP alarms as a worst

case. The evaluation metrics of our scheme during the period 17-22 September 2001 is shown

in the Table 5.3.

Table 5.3: Detection accuracy for Nimda event

TP TN FP FN Precision Sensitivity Accuracy F-score

10 421405 3 0 0.7692 1 0.9999 0.8695

In term of detection delay, 2 out of 10 alarms require more than 5 seconds as a detection

delay. Figure 5.21 shows BGP volume, average AS-PATH length features and RQA scheme’s

alarm where we can see that our RQA scheme detected BGP anomalies after 62 seconds if

we consider the start of the anomaly at time 52891, the longest detection delay among the 8

alarms. In this example, the peer AS6893 started to send a high volume of BGP updates at

times 52890-52891 seconds, 52920-52922 seconds and 52948-52952 seconds. RQA scheme

raises an alarm at time 52952 seconds, 62 seconds after the start of abnormal behaviour. The

evaluation of RQA scheme on the Nimda event shows that RQA generates 10 TP alarms and

3 FP alarms with 62 seconds as the longest detection delay. Once again, this evaluation is a

worst cases assuming the 3 early alarms are FP.

5.5.2.2 TTNet event

TTNet is an example of a direct unintended BGP anomaly. On Christmas Eve morning 2004,

TTNet (an ISP in Turkey) announced more than 100,000 incorrect entries to its peers. As a

result, a large number of Internet users were unable to access a large number of domains for

several hours [47].
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Figure 5.20: Three possible FP alarms raised before and after Nimda event
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We run our RQA scheme on the day of the TTNet event. Our scheme detects 6 BGP

anomalies. Figure 5.22 shows the number of alarms generated by RQA scheme using BGP

volume and average length of AS-PATH features calculated every second for BGP traffic

sent by the peer AS12793 at rrc05. During this event, AS12793 sent a significant volume

of BGP updates during the period 46645-49309 seconds which our RQA scheme rapidly de-

tects. In addition to the high volume detection, RQA scheme detects some hidden anomalies

that have not been observed before. For example, during the period 3267-3388 seconds, the

peer AS12793 stopped sending any BGP updates as shown in Figure 5.23a which our scheme

detect.
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Figure 5.22: BGP features sent by the peer AS12793 during TTNet event and its corresponding

detection by RQA scheme
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In total, there are 6 alarms raised by RQA scheme during the period of analysis (86401

seconds). Once again, we do a manual investigation to see if the these alarms are TP or FP. Our

investigation shows that all alarms are TP. They are either as a result of a significant change in

the volume of BGP updates or recurrent change in BGP traffic behaviour. Figure 5.23a shows

that the peer AS12793 stopped sending BGP traffic for two minutes while Figures 5.23b and

5.23c shows changing recurrent behaviour in average AS-PATH length feature which our RQA

scheme detects them. In particular, there were changes in MRAI timers during these periods.

The evaluation metrics of our scheme for TTNet event is shown in the Table 5.4. The longest

detection delay for the 6 raised alarms is 31 seconds.
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Figure 5.23: Examples of manual investigation for alarms detected before and after TTNet

event

Table 5.4: Detection accuracy for TTNet event

TP TN FP FN Precision Sensitivity Accuracy F-score

6 85201 0 0 1 1 1 1
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5.5.2.3 Moscow blackout

Around 25 May 2005, there was a power outage that led to the shutdown of the Moscow

Internet Exchange Point (MSK-IX) for several hours. Although the shutdown did not produce

a global effect on BGP routing stability, many ISPs connected to this exchange point lost

their connectivity for several hours [112]. We use BGP updates downloaded from the VP

rrc05 at RIPE during the period 22-28 May 2005. Figure 5.24 shows the number of alarms

generated by RQA scheme using BGP updates sent by the peer AS12793 (the peer that sent

BGP updates). As a result of the event, AS12793 sent a high volume of BGP traffic during

the period 273000-283200 seconds. Our scheme flagged 12 alarms over the period of 597376

seconds of BGP updates. Among the 12 raised alarms, the alarm raised at time 272398 seconds

is an interesting detection. RQA scheme raised an alarm at time 272398 seconds, 730 seconds

before the peer AS12793 started to send a significant volume of BGP traffic at time 273128

seconds and continued sending high volume of BGP traffic for two hours. Figure 5.25 shows

an early detection of detecting BGP anomalies. In this case, RQA detected BGP anomalies

730 seconds before the peer AS12793 started to send a significant volume of BGP traffic.

Once again, we do a manual investigation for the 12 raised alarms to see if they represent

TP or FP alarms. Among the 12 alarms, 2 alarms there are for which it is not clear if they

represent a threat. Although they were raised as a result of changing recurrent behaviour in

the underlying BGP traffic sent by the peer AS12793, it is unclear if they represent a threat to

BGP operation or not. Consequently, we consider them as FP alarms. Furthermore, the longest

detection delay for the 10 raised alarms is 28 seconds. Table 5.5 shows accuracy metrics of

our RQA scheme.

Table 5.5: Detection accuracy for Moscow event

TP TN FP FN Precision Sensitivity Accuracy F-score

10 597376 2 0 0.8333 1 0.9999 0.9090

5.5.2.4 TMnet event

On the 12th of June 2015, ISP Telekom of Malaysia advertised 179,000 prefixes with prefer-

able paths to the Level 3 which in turn accepted and propagated causing a significant instability

to the global routing system. We run our RQA scheme to detect BGP anomalies during the

event. Figure 5.26 shows BGP volume, average AS-PATH length, and number of alarms raised

by our scheme using BGP traffic sent by AS10102 during 12th of June 2015. As a result of

the route leak, the peer AS10102 sent a significant number of BGP updates during the event.
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Figure 5.24: BGP features sent by the peer AS12793 during Moscow blackout and its corre-

sponding detection by RQA scheme
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Figure 5.25: Detecting BGP anomaly before 730 seconds of sending high volume of BGP

traffic

Our RQA scheme raised 8 alarms during the day of the event. Once again, we do a manual

investigation of these alarms, to see if they represent TP or FP alarms, and find they all repre-

sent TP alarms. Furthermore, our investigation of delay for the 8 detected alarms shows that

although RQA scheme can detect 6 BGP anomalies within 1 second, two anomalies were de-

tected within 199 seconds. Figure 5.27a shows that at time 51388 seconds the peer AS10102

sent a high volume of BGP traffic which RQA scheme does not detect at the start of the win-

dow size (W ) but can detect at the end of the W . Table 5.6 shows the accuracy metrics during

TMnet event.

We have used RQA scheme to detect different types of BGP anomalies using our con-

trolled testbed with emulated BGP anomalies and well-known BGP events. RQA scheme

demonstrates the ability to detect BGP anomalies including anomalies that have not been

recorded before. A summary of our RQA scheme accuracy is shown in Table 5.7 where we

can see that RQA scheme detects 46 BGP anomalies with 5 possible FP alarms. Although FPs

are often accepted as a fact of life with anomaly detection techniques, identifying FP alarms

requires a further investigation by the operators which represents a waste of time and cost3.

On the other hand, FNs may cause serious consequences to an organisation’s reputation and

to Internet stability. Dodo [103], Indosat [106], and Turk Telekom [107] events are examples

3The average wage rate of supervisory level IT security in the US-based organisations is USD 62.0 per hour

[164].
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Figure 5.26: BGP features sent by the peer AS10102 during TMnet event and its correspond-

ing detection by RQA scheme
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Figure 5.27: Detecting BGP anomalies within 199 seconds as a longest detection delay

of direct unintended BGP anomalies which threatened BGP stability.

In terms of detection delay, RQA scheme detected 46 TP alarms with different delays.

RQA scheme detected 22 BGP anomalies within 5 seconds, 18 BGP anomalies within 62

seconds, and only 3 BGP anomalies within 199 seconds as a worst case. Furthermore, RQA

can detect hidden anomalous behaviour which may represent an early stage of BGP anomalies

as shown in Figures 5.18, 5.23a and 5.25.

Table 5.6: Detection accuracy for TMnet event

TP TN FP FN Precision Sensitivity Accuracy F-score

8 85205 0 0 1 1 1 1

Table 5.7: Summary of detection accuracy of RQA scheme

TP TN FP FN Precision Sensitivity Accuracy F-score

46 1233739 5 0 0.9012 1 0.9999 0.9484

5.6 Conclusions

Accidental or deliberate abnormal BGP events such as misconfiguration by ISPs or link fail-

ures can affect global routing stability. Recent statistics show some types of BGP anomalies
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lasted less than 10 minutes but affected 90% of the Internet in less than 2 minutes [23]. These

statistics demonstrate the need for real-time BGP anomaly detection that can mitigate the

propagation of anomalous BGP traffic. We have introduced our detection scheme to detect

BGP anomalies. Our scheme is based on using RQA, an advanced non-linear technique based

on using phase plane trajectory, to detect BGP anomalies. RQA scheme is able to differentiate

between normal-but-unstable BGP traffic and potentially harmful BGP traffic that can lead to

serious BGP events.

We have evaluated our scheme by using BGP traffic collected from our controlled testbed

and BGP traffic related to well-know BGP events. RQA scheme can detect these anomalies

as well as other hidden anomalous behaviour that has not been observed before. In our ex-

periments, RQA scheme can detect BGP anomalies with 90.12% precision, 99.99% detection

accuracy and 94.84% of F-score values. Furthermore, RQA demonstrates an ability to detect

early stage anomalous behaviour. In the final chapter, we summarise our research work and

outline possible future research directions.





Chapter 6

Conclusions and future work

In this thesis we have analysed BGP traffic and have observed that BGP traffic can be under-

stood as an aggregation of oscillations of different frequencies from different ASes. Using

linear and nonlinear statistical analysis, we have shown that BGP traffic has recurrent be-

haviour. The source of this behaviour is unsynchronised periodic behaviour from a set of

ASes that we define as unstable ASes. We also define BGP traffic sent by unstable ASes as

unstable traffic. Although unstable BGP traffic does not threaten BGP operations, it has the

effect of masking anomalous updates that might lead to serious consequences. A technique is

required to distinguish between unstable BGP traffic and harmful BGP traffic.

Traffic of this nature is amenable to analysis using recurrence methods. We have applied

RQA to notable BGP events and have found that RQA is able to differentiate between normal-

but-unstable BGP traffic and potentially harmful BGP traffic that can lead to serious BGP

events. As well as examining notable BGP events we have conducted experiments on a con-

trolled testbed to analyse the effectiveness of RQA in detecting BGP anomalies in terms of

standard measures of precision, detection accuracy and F-score. We have been able to show

that an RQA based scheme can detect BGP anomalies within 62 seconds with 90.12% preci-

sion, 99.99% detection accuracy and 94.84% of F-score values.

The research work in this thesis has shown that RQA can give us a better understanding

of BGP traffic than has been the case. It allows faster detection of anomalies than other

techniques. Nevertheless, there are some weaknesses in the approach. Although RQA detects

different types of BGP anomalies within 62 seconds, in some rare cases our RQA scheme

requires 199 seconds. Furthermore, RQA scheme requires pre-calculation of RQA parameters

(time delay, embedding dimension and RQA threshold) which requires some experience with

techniques.

The insight that BGP traffic has recurrent characteristics is perhaps the most important

contribution of this thesis. It enables potentially harmful traffic to be identified amongst the
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large amount of harmless BGP traffic. Future work that this thesis has opened up includes

the application of the technique to other protocols. Where a protocol’s behaviour has a strong

deterministic component RQA may well be of use in detecting anomalous behaviour. In par-

ticular other routing protocols and attacks upon them may be detectable using RQA based

techniques. Future work may also include fulfilling the remaining requirements for the next

generation of BGP anomaly detection discussed in Section 2.5. As well as detecting in real-

time for all types of anomalies, it will include differentiating between them, and identifying

the source of the anomaly. A further investigation in terms of differentiating between types of

BGP anomalies can be done through using other RQA measurements and BGP features and

replaying different types of past BGP events under the controlled testbed. The use of RQA

for identifying BGP anomalies based on individual unstable prefixes appears to have some

potential and is an obvious extension of the work discussed in this thesis.

Other contributions of the thesis include modelling BGP speakers as dynamic systems

using the concepts of phase plane trajectories. The outcomes of the modelling show that BGP

traffic sent by BGP speakers has the characteristics of being non-linear, deterministic, and

stable. We have also classified BGP anomalies into four main categories, direct intended and

unintended anomaly, indirect anomaly, and link failure, and have highlighted key requirements

for the next generation of BGP anomaly detection techniques.

Ultimately, the purpose of this thesis is to help those responsible for managing networks

do so more effectively. Perhaps the most important future work is to translate the insights

obtained through this work into software and systems that further that aim.
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Appendix A

BGP replay tool

A.1 Introduction

This chapter describes the operation of BGP replay tool v0.2 (BRT v0.2) [3], a tool for UNIX

and Windows operating systems providing the ability to replay previously BGP updates down-

loaded from the public route repositories or local log files to test variety of operations. Reply-

ing past BGP incidents into a control testbed helps to classify BGP traffic, understand BGP

behaviour at BGP speakers level and finally investigating BGP behaviour with different routers

Operating Systems (OSs) such as Cisco, Juniper, and Quagga. BRT v0.2 extends the ability

BRT v0.1 [2] to peer with different BGP speakers operating systems such as Quagga [162]

and real Cisco routers. It is also supporting IPV6 and connecting to multiple peers. The eval-

uation of the BRT v0.2 has been made using three different types of testbeds. These include

real Cisco routers, VIRL [5], an emulation platform by Cisco, and Quagga using generated

BGP updates and past BGP anomalies incidents. Comparing with other BGP replay and inject

tools, BRT v0.2 does not require kernel modification at host’s OS, supports different BGP

attributes, supports sending IPv6 BGP updates and peering over IPv6. The evaluation of this

tool has been done using real Cisco routers, Quagga and VIRL as controlled testbeds.

BRT v0.2 uses Net::BGP, a module of Perl software, to implement BGP. Net::BGP pro-

vides the required functionality to establish BGP peering and exchanging BGP updates. How-

ever, Net::BGP does not support BGP updates for IPv6 neither BGP connection over IPv6.

Therefore, we develop a patch that supports BGP updates for IPv6 based on using Multi-

protocol Reachable Network Layer Reachability Information (NLRI) and Multi-protocol Un-

reachable NLRI, BGP attributes described in [? ]. We also provide a script to calculate nine

BGP features for comparing injected and collected BGP updates. These features are total

number of IPV4 and IPv6 announcements, IPv4 and IPv6 withdrawals, maximum and aver-

age length of AS-PATH, total number of announcements, total number of withdrawals, and
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BGP4MP|1456214400|A|213.144.128.203|13030|179.125.45.0/24|13030 4230 263629|IGP|213.144.128.203|0|1|13030:1 13030:1013 13030:51904 13030:7184|NAG|| 

BGP4MP|1456214400|A|213.144.128.203|13030|179.125.46.0/24|13030 4230 263629|IGP|213.144.128.203|0|1|13030:1 13030:1013 13030:51904 13030:7184|NAG|| 

BGP4MP|1456214444|W|137.164.16.84|2152|95.85.96.0/19 

BGP4MP|1456214444|W|137.164.16.84|2152|103.193.104.0/22 

BGP4MP|1456214444|W|137.164.16.84|2152|205.71.208.0/20 

Figure A.1: Example of bgpdump tool with [-m] option

total number of announcements and withdrawals.

This rest of this chapter is organised as follows: Section A.2 shows the operation of BGP

replay tool. Section A.3 contains detailed information about configuration setup for the em-

ulator while in section A.4 represents our evaluation using different controlled testbeds. In

section A.5, we conclude our work and outline future directions.

A.2 BGP replay tool

BRT v0.2 is a Perl script that allows to setup a BGP adjacency with BGP peer. BRT v0.2

enables users to send out BGP updates from a predefined BGP update file. This tool can

help researchers and operators to understand BGP behaviour in different circumstances. BGP

session and message handling are done by Net::BGP v0.16, a Perl module that implements

BGP inter-domain routing protocol. Officially, Net::BGP v0.16 does not support IPv6 BGP

updates neither IPv6 BGP peer connection. The Center for Applied Internet Data Analysis

(CAIDA) [? ] has developed a patch for Net::BGP that allows BGP speaker to send IPv6

announcements through Multi-protocol Reachable NLRI, an optional attribute supported as

part of Multi-protocol Extensions for BGP described in [? ]. However, this patch does not

support IPv6 prefix withdrawn and required BGP speakers with ADD-PATH capability, an

extension to BGP protocol described in [? ] to allow advertisement of multiple paths for the

same prefix. Therefore, we implemented IPv6 route withdrawn through Multi-protocol Un-

reachable NLRI optional attribute, and removed ADD-PATH BGP capability for compatibility

purposes. The BRT v0.2 and the patch are tested on Perl 5.20.2 and Net::BGP 0.16, and it is

publicly available at [3].

The input of the BRT v0.2 tool is a human readable BGP updates with Unix time stamps.

Tools such as bgpdump [64] and pybgpdump [65] are used to convert BGP updates format

(MRT), non readable format, to readable format. For example, the bgpdump tool provides

three options of conversion, this include [-H], [-m], and [-M] options. The [-H] option is the

default option and used to convert MRT file to multi-line human readable. The [-m] option

is used to produce one-line per entry with Unix time stamps while [-M] produce one-line per

entry with human readable time stamps. The input of the BRT v0.2 tool is a human readable
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BGP updates with Unix time stamps, bgpdump with [-m] can be used for this purpose. BRT

V0.2 provides and option to check that none of the AS numbers in the implemented topology

are existing in any AS-PATHs of announced routes for the injected file. This is important

to ensure that all injected BGP updates are forwarded between ASes as BGP guarantees of

avoiding routing loops through preventing routes that contain its local AS number in the AS-

PATH.

TIME: 02/23/16 08:00:00 

TYPE: BGP4MP/MESSAGE/Update 

FROM: 213.144.128.203 AS13030 

TO: 128.223.51.102 AS6447 

ORIGIN: IGP 

ASPATH: 13030 4230 263629 

NEXT_HOP: 213.144.128.203 

MULTI_EXIT_DISC: 1 

COMMUNITY: 13030:1 13030:1013 13030:51904 13030:7184 

ANNOUNCE 

  179.125.45.0/24 

  179.125.46.0/24 

TIME: 02/23/16 08:00:44 

TYPE: BGP4MP/MESSAGE/Update 

FROM: 137.164.16.84 AS2152 

TO: 128.223.51.102 AS6447 

WITHDRAW 

  95.85.96.0/19 

  103.193.104.0/22 

  205.71.208.0/20 

Figure A.2: Example of bgpdump tool with [-H] option

BRT v0.2 tool has optional and mandatory command line arguments as shown in Table

A.1. It is worth noting that IPv6 options should be specified if bgpdump update files contains

IPv6 prefixes or when the BGP connection is made over IPv6 protocol.

A simple example for using the BRT for a simple BGP topology shown in Figure A.3 is:

$ perl brt -0.2.pl -brtas 65001 -brtip 172.16.2.2 -peeras 65002 -peerip

172.16.2.1 -f BGP_updates

BRT v0.2 also supports replay BGP updates to multiple BGP peers at once by storing BRT

v0.2 tool arguments (command line arguments) for each peer as a line in a text file and specify

that file to the tool after ’-m’ argument. In this case, we only need two arguments. That is, <-f>

to specify BGP updates file and <-m> to specify all other mandatory and optional attributes.

For example, the content of <-m> file for the topology shown in Figure A.4 is:
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Table A.1: BRT v0.2 tool command line arguments

Argument Value Optional Description

-brtas <AS number> No BRT AS number

-brtip <IP address> No BRT IPv4 address

-brtipv6 <IPv6 address> Yes BRT IPv6 address

-peeras <AS number> No Peer AS number

-peerip <IP address> No Peer IPv4 address

-peeripv6 <IPv6 address> Yes Peer IPv6 address

-ipv6 Yes Connect to a peer using IPv6. This is necessary if the

connection via IPV6 not IPV4; otherwise, it can be

ignored

-f <filename> No BGP update file in human readable with Unix format

-m <filename> Yes Connect to multiple peers specified in <filename>

-s <filename> Yes Check that none of the ASes in the implemented topology

are existing in any AS-PATHs of announced routes for the

injected file

-v Yes Verbose mode

-help Yes Display BRT tool help

-brtas 65001 -brtip 172.16.1.100 -brtipv6 f00:3::1 -peeras 65002 -

peerip 172.16.1.200 -peeripv6 f00:3::2

-brtas 65001 -brtip 172.16.1.100 -brtipv6 f00:3::1 -peeras 65003 -

peerip 172.16.1.201 -peeripv6 f00:3::3

BRT v0.2 is highly experimental, and could be improved and extended in many ways. BRT

v0.2 has been used and tested on IPV4 and IPv6 peers with Quagga, real Cisco routers and

VIRL as peer BGP speakers but it may also work with other BGP speakers such as Juniper

routers.

Table A.2: Comparison among BGP tools

Feature MDFMT bgpsimple BRT v0.2

Replay BGP update with time stamp Yes No Yes

Require modification in the Kernel Yes No No

Supporting multiple attributes No No Yes

Supporting IPV6 No No Yes

Supporting connection to multiple peers No No Yes

Checking AS number with the implemented topology No No Yes

Table A.2 shows a comparison of techniques described in [69, 165] as well as our tool.
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Figure A.3: Simple topology with only RRC

Figure A.4: An example of peering BRT with two peers

MRT Dump File Manipulation Toolkit (MDFMT) [69] is a pseudo BGP speaker. It requires

kernel modification at host’s OS to replay past BGP updates. MDFMT does not support IPv6

peer connection neither IPv6 BGP updates. It also does not support many BGP attributes such

as the community attribute. bgpsimple is a tool to inject BGP updates from a selected file. This

tool does not send BGP updates based on time stamp. bgpsimple does not also support IPv6

for BGP updates and peering. In contrast, the BRT v0.2 tool does not require modification in

the kernel of host’s OS and support many attributes. Furthermore, BRT v0.2 supports sending

IPv6 BGP updates and supports BGP peering over IPv6. It also supports many BGP attributes

such as the community, aggregation, and MED.

A.3 Emulator setup

To emulate past BGP updates with a controlled testbed network, we use BRT v0.2 to inject

past BGP updates and RRC to collect BGP updates. Figure A.3 shows a simple topology to

replay BGP updates and check the received data. RRC needs Quagga to be installed. Quagga
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Table A.3: Quagga BGP configuration at RRC

dump bgp updates updates.dump

debug bgp

debug bgp events

debug bgp updates

router bgp 65002

bgp router-id 172.16.2.1

bgp log-neighbor-changes

neighbor 172.16.2.2 remote-as 65001

neighbor 172.16.2.2 filter-list 20 out

address-family ipv6

neighbor 172.16.2.2 activate

exit-address-family

ip as-path access-list 20 deny .*

Dump BGP updates to file updates.dump in the current directory. It is

necessary that the output directory exists and is writable by Quagga.

Enable logging

Enable logging of BGP events

Enable logging of BGP advertisements

Set AS number 65002 for the RRC

Set router ID 172.16.2.1 to the RRC

Enable logging of BGP neighbor status changes (up or down)

Set 172.16.2.2 as a peer AS65002

Do not send back BGP updates to BRT.

Configure IPv6 BGP

Activate172.16.2.2 peer to use IPv6 updates

Finish IPv6 BGP configurations

Applies the filter-list 20 to all addresses

is a routing software package that provides TCP/IP based routing services for different proto-

cols such as OSPF, IS-IS, and BGP [162]. Quagga is made from several daemons that work

together to build the routing table. These daemons include ospfd, ripd, bgpd, and zebra where

zebra represents the kernel routing manager. Figure A.5 shows Quagga system architecture.

Figure A.5: Quagga system architecture

RRC runs Ubuntu 14.04 LTS and Quagga version 0.99.23.1. The configuration files

for Quagga installed in Ubuntu OS is under /etc/quagga where /etc/quagga/Quagga.conf is

the configuration file of configuring routing. Table A.3 shows an example of /etc/quag-

ga/Quagga.conf to establish a peer connection between RRC and AS65001 for the topology

shown in Figure A.3.

BRT v0.2 requires using Net::BGP, a module of Perl software. Additionally,

IO::Socket::INET6 module should be installed to add support for IPv6 BGP connection for

the patched Net::BGP module. These modules can be installed as follows:

#perl -MCPAN -e shell

pan[1℄> install Net::BGP

pan[1℄> install IO:: Soket:: INET6
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To apply IPv6 support patch to Net::BGP module, we provide a patch installation script

that simplifies the process. This can be done using the following command:

# tar xzfv ipv6_bgpnet -0.1.tgz

# d ipv6_bgpnet -0.1

# ./path.sh

A.4 Evaluation

We evaluate the functionality of BRT v0.2 with three different types of testbeds. These include

Quagga, VIRL, and real Cisco routers. VIRL is a powerful network emulation system uses

Linux KVM hypervisor, OpenStack, and a set of virtual machines running real Cisco network

operating systems to emulate complex network [5]. We conduct two experiments in the eval-

uation. In the first experiment we inject a simple series of generated BGP updates into the

three types of testbed while in the second experiment we use one of the past well-know BGP

incident.

as40r1

    BRT

AS65001

    RRC

AS65002

172.16.1.29

172.16.1.129
172.16.2.19

172.16.2.119

Figure A.6: Simple topology with a Cisco router

A.4.1 Replay a generated series of BGP updates

In this experiment, we inject a simple set of generated BGP updates that represents a series of

announcements and withdrawals of IPv4 and IPv6 prefixes for a period of 100 seconds. In this

experiment, we use three different types of testbed. That is, Quagga testbed for the topology

shown in Figure A.3, VIRL and real Cisco routers for the topology shown in Figure A.6. Both

BRT v0.2 and RRC are running Ubuntu 14.04.2 LTS operating system.

In all our experiments, we use Quagga version 0.99.23.1, VIRL BGP routers run Cisco

IOSv 15.2(2)T and real Cisco BGP routers run Cisco IOSv 15.1(4)M10. For a simple inves-

tigation and monitoring, we set the value of MRAI to zero for VIRL and real Cisco routers

for both IPv4 and IPv6. The MRAI refers to the minimum amount of time between two
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subsequent advertisements to a particular destination, the default value in Cisco routers is 30

seconds while it is zero in Quagga. For example, setting the value of MRAI to zero in Cisco

routers can be done as following:

en

onf t

router bgp 40

neighbor 172.16.2.19 advertisement-interval 0

neighbor 172.16.1.29 advertisement-interval 0

address-family ipv6

neighbor 172.16.2.19 advertisement-interval 0

neighbor 172.16.1.29 advertisement-interval 0

exit -address -family

Figure A.7 shows BGP features for the injected and collected BGP updates using real

Cisco routers. These include BGP volume (total number of announcements and withdrawals),

total number of announcements, total number of withdrawals, IPv4 announcements and with-

drawals, IPv4 announcements and withdrawals, maximum and average length of AS-PATH.

These BGP features are extracted using bgp-features-0.2.pl, a Perl script available within BRT

v0.2 package. All the calculated features for the injected and collected BGP updates are iden-

tical except those related to AS-PATH as a result of increasing the number of hops (AS65001

and AS40).

A.4.2 Replay past BGP event

In this experiment we emulate TMnet event, an example of BGP instability incident observed

on the 12th of June 2015 by Telekom Malaysia (TMnet) which caused significant network

problems for the global routing system [8]. We use BGP updates downloaded from route-

views4 in the RouteViews during TMnet event. During the events, there were 31 peers con-

nected to route-views4 in the RouteViews. We recall our simple topology shown in Figure A.3

to replay 9001 seconds (around 2.5 hours) of BGP updates collected from the peer AS2914,

one of the most peers that sent BGP updates during the event. Figure A.8 shows BGP features

for injected and collected BGP updates related to TMnet event. As shown in the figure, we

can find a difference in the value of amplitudes for many BGP features. We do investigation

to find if this difference as a result of unsynchronised clock, or time skew, between the two

nodes [? ] or a bug in the BRT. For that purpose, we enable a debugging message which notify

users if BRT spends more than one second for a series of BGP updates with same time stamp.

During the period of injected TMnet data (9001 seconds), BRT shows its ability to send all

BGP updates with same time stamp within less than one second. Furthermore, RRC collected

the same number of BGP updates which are by the BRT.
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Figure A.7: BGP features for the injected and collected data of experiment-1 using real Cisco

routers



188 BGP replay tool

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

N
o

. 
o

f 
a

n
n

o
u

n
c
e

m
e

n
ts

Time in seconds

(a) BGP announcements for the injected updates

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

N
o

. 
o

f 
a

n
n

o
u

n
c
e

m
e

n
ts

Time in seconds

(b) BGP announcements for the collected updates

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

N
o

. 
o

f 
w

it
h

d
ra

w
a

ls

Time in seconds

(c) BGP withdrawals for the injected updates

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

N
o

. 
o

f 
w

it
h

d
ra

w
a

ls

Time in seconds

(d) BGP withdrawals for the collected updates

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000N
o

. 
o

f 
IP

V
4

 a
n

n
o

u
n

c
e

m
e

n
ts

Time in seconds

(e) IPv4 announcements for the injected updates

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000N
o

. 
o

f 
IP

V
4

 a
n

n
o

u
n

c
e

m
e

n
ts

Time in seconds

(f) IPv4 announcements for the collected updates

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000N
o

. 
o

f 
IP

V
6

 a
n

n
o

u
n

c
e

m
e

n
ts

Time in seconds

(g) IPv6 announcements for the injected updates

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000N
o

. 
o

f 
IP

V
6

 a
n

n
o

u
n

c
e

m
e

n
ts

Time in seconds

(h) IPv6 announcements for the collected updates

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

N
o

. 
o

f 
IP

V
4

 w
it
h

d
ra

w
a

ls

Time in seconds

(i) IPv4 withdrawals for the injected updates

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

N
o

. 
o

f 
IP

V
4

 w
it
h

d
ra

w
a

ls

Time in seconds

(j) IPv4 withdrawals for the collected updates

 0

 5

 10

 15

 20

 25

 30

 35

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

N
o

. 
o

f 
IP

V
6

 w
it
h

d
ra

w
a

ls

Time in seconds

(k) IPv6 withdrawals for the injected updates

 0

 5

 10

 15

 20

 25

 30

 35

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

N
o

. 
o

f 
IP

V
6

 w
it
h

d
ra

w
a

ls

Time in seconds

(l) IPv6 withdrawals for the collected updates

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

M
a

x
. 

A
S

-P
A

T
H

 l
e

n
g

th

Time in seconds

(m) Maximum AS-PATH length for the injected updates

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

M
a

x
. 

A
S

-P
A

T
H

 l
e

n
g

th

Time in seconds

(n) Maximum AS-PATH length for the collected updates

 0

 5

 10

 15

 20

 25

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

A
v
e

ra
g

e
 A

S
-P

A
T

H
 l
e

n
g

th

Time in seconds

(o) Average AS-PATH length for the injected updates

 0

 5

 10

 15

 20

 25

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

A
v
e

ra
g

e
 A

S
-P

A
T

H
 l
e

n
g

th

Time in seconds

(p) Average AS-PATH length for the collected updates

Figure A.8: BGP features for the injected and collected for the TMnet incident
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A.4.3 Known issues

Although BRT v0.2 tool has been tested with Windows OS, we have occasionally experienced

unknown error during the implementation. However, BRT v0.2 shows very reliable and stable

performance with Unix OS such as Debian, Ubuntu and FreeBSD.

BRT v0.2 has been tested to send different types and numbers of BGP updates using a

desktop computer with 3 GHz Intel Core2 Duo CPU processor, 4GB memory, and 1Gpbs of

network interface card. BRT v0.2 can send >15000 updates per second. However, this number

may vary based on computer specification that uses BRT v0.2 and types of information in the

BGP updates.

A.5 Conclusions

BRT is a tool to replay BGP updates with time stamps. This tool can be used to inject a

list of BGP updates and replay BGP updates based on time stamps. It helps operators and

researchers to understand BGP behaviour at BGP speaker level, classify BGP updates, and

investigate BGP behaviour at different routers OS such as Quagga, Cisco and Juniper IOS.

BRT v0.2 supports many BGP attributes such as community, AGGREGATOR, LOCAL-

PREF, and MED. It also supports sending BGP updates of IPv6 and peering over IPv6. Fur-

thermore, it supports connection to multiple peers. The evaluation of the BRT v0.2 has been

implemented using Quagga, real Cisco routers, and VIRL as a testbed. Our future work will

involve developing Net::BGP patch that supports IPv6 for listener mode. This help to avoid

using RRC and enable real-time monitoring.
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