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Abstract—Hysteresis and resonance dynamics are typical ad-

verse effects associated with the piezoelectric (PZT) actuators. To
eliminate the loss of positioning accuracy due to these effects, we

propose a simple two degree-of-freedom (2DOF) control scheme
for the PZT actuators, which consists of a feedforward and a

feedback compensator for hysteresis and resonance compensation

and for robust step reference tracking. Despite the proposed
controller is on par with the existing 2DOF control methods,

its specific structure offers significant design simplicity. The
experimental results on an actual PZT nanopositioner show that

the designed controller can be easily implemented and achieve
superior performance for hysteresis and resonance compensation.

I. INTRODUCTION

The piezoelectric (PZT) actuator is a well-known device

for precision positioning and motion control. It is fabricated

using piezoelectric materials which have the property of con-

verting electrical energy to mechanical energy. By applying

an electric potential to the piezoelectric material, the PZT

actuator can produce extremely small displacements in the

range of subnanometer to a few hundreds micrometers. PZT

actuators have been widely used in a variety of applica-

tions such as optical trapping [1], biotechnology [2], high

precision dual-stage actuation [3]–[5], and nanomanipulation

[6]. Particularly, in atomic force microscope (AFM) [7], [8]

and scanning probe microscopy (SPM) [9] nowadays, PZT

actuators have been an indispensable component to displace

the sensor probe over a sample surface to collect the surface

property information at the nanometer resolution. Moreover,

the PZT actuated nanopositioning systems [10], [11] are also

needed in semiconductor test equipment for the positioning of

wafers and mask alignments.

When feedback control and an accurate PZT model for

feedforward control are unavailable, the PZT actuator can

only be used for applications that require moderate precision.

The resulting displacement roughly corresponds to the drive

voltage. However, for long-range operations the positioning

precision can be significantly degraded due to the nonlinear

hysteresis and creep effects that are common properties with

PZT actuators. It has been reported that hysteresis effect can

be reduced by the use of charge or current sources to drive

the PZT actuators (see e.g., [12], [13]). However, the main

difficulty is the existence of offset voltages in the charge or

current source circuit and the uncontrolled nature of the output

voltage, which results in the capacitive load being charged up

[14]. Alternatively, the use of voltage amplifier combined with

servo control is a popular approach for its easy implementation

and its capability of virtual elimination of the hysteresis and

creep effects. Furthermore, a well-designed controller can

provide extra benefits such as vibration compensation and

maintaining robustness. In this paper, we also use a voltage

power amplifier and aim to design an effective controller

for the PZT actuator to compensate for the hysteresis and

vibrations and to achieve fast tracking response.

A thorough literature review on control approaches for

PZT actuators is reported in [14] and [15]. In particular,

for hysteresis and vibration compensations there are three

main approaches: inversion-based feedforward [16], high-gain

feedback [17], and combined feedforward-feedback control

[18]. In the inversion-based feedforward approach, an accurate

hysteresis and vibrational dynamic model is crucial for the

effectiveness of the compensation because the desired output is

fed through the inverse model to generate feedforward signals

to cancel the hysteresis and vibrations. For this reason, a

variety of hysteresis models are reported (see e.g., [19]–[21])

to capture the static and even the dynamic (rate-dependent)

hysteresis behavior. However, such feedforward-based methods

are essentially open-loop control systems and thus the per-

formance is sensitive to modeling error. Moreover, inversion

of the high-order hysteresis nonlinear model generally results

in computational complexity [14]. On the contrary, the high-

gain feedback approach avoids the need for an accurate model.

In such methods [22], [23], hysteresis and vibrations are

essentially regarded as input disturbances and the induced

position error is detected by the position sensor and fed back

to the controller to generate PZT control signals to correct

for position errors. Generally, the high-gain feedback control

provides an effective and more robust method to suppress

the hysteresis and vibrations and thus, is commonly used for

positioning tasks which require high precision, repeatability,

and long-term stability. To obtain the advantages of both

feedforward and feedback control, a combined feedforward-

feedback control approach has also been proposed, where the

high-gain feedback control is used to linearize the nonlinear

hysteresis and creep, and a feedforward input is found to ac-
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Fig. 1. Experimental setup of the PZT actuated nanopositioner (The PZT
actuator and position sensor are attached to the moving stage and embedded
into the base).

count vibration [18], [24]. This design method is demonstrated

to achieve high-precision high-speed positioning with robust

performance and easy implementation.

In this paper, we develop a controller which combines the

feedforward inversion and high-gain feedback control structure

to cope with the hysteresis and resonance vibrations. We note

that our controller is essentially another form of two degree-

of-freedom (2DOF) control structures. However, our controller

is parameterized by a unique Q-filter which characterizes

the closed-loop transfer function. This provides advantages

in design simplicity and easy implementation. This paper is

organized as follows. Section II introduces the experimental

setup and plant modeling of the PZT actuator nanopositioning

system. Section III develops the controller for hysteresis and

resonance compensation. Robust analysis of the closed-loop

system is also given. Section IV shows the experimental

results to demonstrate the effectiveness of the proposed design.

Section V concludes the paper.

II. PLANT MODELING

Fig. 1 shows the experimental setup of the PZT actuated

nanopositioner (P-752, Polytec PI) studied in this paper. The

nanopositioner comprises a flexure-guided moving stage that

is driven by a PZT microactuator with a travel range of ±12.5
µm, and a capacitive position sensor with a practical resolution

of 14 nm to measure the displacement of the moving stage

along the axis. The position sensor output is fedback to a real-

time DSP system (dSPACE-DS1103) on which the feedback

controller is implemented with the sampling frequency of 20
kHz. Subsequently, the control signal is passed through the

power amplifier to output control voltage for the PZT actuator.

To clarify the associated dynamics and gains of the system,

a block diagram is presented in Fig. 2. The power amplifier

used is essentially a voltage amplifier that has a static gain of

10 V/V. The control input to the power amplifier denoted by u p

K
v
=10 V/V

u
p

M(s)
y

Power amplifier

Position sensor

PZT-flexure
dynamics

Σ
+
+

d

K
c
=0.35 V/  m

q

µ
y
m

Fig. 2. Block diagram of the PZT actuated nanopositioner plant model, where
up is the applied voltage input, d indicates the input disturbances including

the hysteresis effects, q is the charge between the PZT electrodes, y is the
actual displacement of the PZT positioner, and ym is the capacitive position

sensor output.
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Fig. 3. Frequency responses of the PZT nanopositioner model P (s).

is limited to have an amplitude within ±4.4 V corresponding

to the travel range of the PZT actuator. The capacitive position

sensor has a static gain of 0.35 V/µm. The nonlinear hysteresis
effect of the PZT is modeled as a bounded input disturbance

d [17] between the applied actuator-voltage and the PZT-

flexure dynamic model. Although a mathematical model of

the hysteresis can be obtained through experimental data [21],

it is considered trivial for the control design in our study

since a feedback control scheme will be used for hysteresis

compensation rather than model inversion-based approaches

such as [16]. The PZT-flexure dynamics include the PZT

electromechanical model [25] and the flexure vibration model.

More specifically, it can be expressed as a sum of a number

of resonance modes as follows

M(s) =

N
∑

i=1

Bis + Ai

s2 + 2ζiωis + ω2

i

+ D, (1)

where D is a feed-through term related to the zero locations

of the system and it is found useful to better match the

high-frequency roll-off characteristics. N is the total number

of resonance modes that sufficiently describe the structure

properties in the frequency of interest. ζi, ωi and Ai are the



TABLE I
MODAL PARAMETERS OF M (s)

Mode (i) ωi ζi Ai Bi

1 2π1018 0.883 9.138× 106 −736.62

2 2π2721 0.051 −4.623 × 106 459.0

D = 5.140 × 10−3

damping ratio, the resonance frequency and the modal constant

of mode i, respectively. Bi is the resonance coupling parameter

of mode i, which is used to match the non-minimum phase

(NMP) characteristics.

The plant modal parameters are identified from experimen-

tal frequency response data. A dynamic signal analyzer (HP

35670A) is used to generate the swept-sinusoidal excitation

signals and collect the frequency response data from the PZT

control input signal up to the displacement output y that is

scaled from the sensor output ym. Hence, we can obtain the

measured frequency response data for the plant model P (s)
expressed by

P (s) =
y

up

= KvM(s). (2)

The dashed lines in Fig. 3 show the measured frequency

responses of P (s) in the frequency range of interest. We can

see that the system dynamics are dominated by two resonance

modes whose resonance frequencies are 1018 and 2721 Hz,

respectively. The first mode denotes the PZT electromechanical

effect, whose resonance frequency typically decreases with a

larger PZT capacitive load. Interested readers can refer to [25]

for a detailed parameter electromechanical model. The second

mode, caused by the flexibility of the flexure hinge, has a

relatively large resonance peak (10 dB) and is thus expected

to induce significant vibrations to the stage motion. From the

point of view of control design, the first mode is generally

the principal mode that limits the servo bandwidth; and the

second mode should be actively damped for fast and smooth

settling performance. Note that from the phase plot in Fig. 3,

we also observe that the phase angle exhibits extra lag (e.g.,

within 3− 5 kHz) in addition to the phase lag associated with

the resonance modes. This implies that the plant has strong

non-minimum phase (NMP) antiresonance modes (i.e., NMP

zeroes) within the frequency range.

The modal parameters in (1) can be identified from the

measured frequency responses data by using the least square

estimation method [26]. Table I lists the modal parameters

obtained for M(s). The solid lines in Fig. 3 indicate that

the identified model has a close match with the measured

model. In particular, the NMP characteristics of the plant is

well captured by the identified model. Table II lists the poles

and zeros pairs of the plant model P (s) from which we can see

that the plant model contains two pairs of complex NMP zeros

whose resonance frequencies are located at 3151 and 5660 Hz,
respectively. It should be emphasized that these NMP zeros

will substantially degrade the achievable control bandwidth as

will be clarified from the control analysis in the next section.

TABLE II
POLES AND ZEROS OF PLANT MODEL P (s)

Poles (×104) Zeros (×104)

−0.5645± 0.2997j 1.4834± 1.3092j

−0.0865± 1.7063j 0.5690± 3.5087j
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Fig. 4. Block diagram of combined feedforward/feedback control system for
hysteresis and resonance compensation.

III. HYSTERESIS AND RESONANCE COMPENSATION

In this section, we study a combined feedforward/feedback

control structure for hysteresis and resonance compensation to

achieve the goal of fast and robust step tracking for the PZT

nanopositioner.

A. Control Structure

Fig. 4 shows the block diagram of the combined feedfor-

ward/feedback control structure [27], where Q is the filter to

be designed and we rewrite the real plant model P (s) as

P = Pn(1 + W1∆). (3)

In the above, the nominal plant Pn represents the stable and

minimum phase part of P and should satisfy

Pn ≈ P (4)

in low frequencies within 0-200 Hz. ‖∆‖∞ < 1 denotes a

stable unstructured disk-like uncertainty; and W1 represents a

proper stable weighting function. The NMP behavior of the

plant is treated as model uncertainty and described by W1.

Moreover, the magnitude of W1 increases due to changes in

the operating conditions such as PZT offset, reference input,

and load variations. The model ofW1 due to these uncertainties

can be experimentally measured. More specifically, we collect

10 frequency responses data of Pi(jωk), i = 1 . . .10; k =
1 . . .800. Each measurement is carried out under a different

operation condition. The frequency responses of the perturbed

plants are show in Fig. 5a. Then, the magnitude of W1 can be

derived by

|W1(jωk)| = max
i=1...10

(

|Pi(jωk) − Pn(jωk)|

|Pn(jωk)|

)

, (5)

which is plotted in Fig. 5b. We can see that W1 increases with

frequency due to the relative uncertainty to the nominal plant

model.

The control structure as shown in Fig. 4 is essentially a

2DOF control structure with a unique design parameter Q. It
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Fig. 5. (a) Frequency response of nominal plant model P n (solid thick
line) and perturbed plant models (dashed lines). (b) Magnitude of the relative

uncertainty W1 used for design and analysis.

unifies high-gain feedback idea (through Q) and the feedfor-

ward inversion principle (through P −1
n ) to yield a closed-loop

dynamics as specified by Q. To see this, the transfer functions

from respectively, the reference r and the disturbance d to the

position output y can be easily obtained as follows

Tyr =
QPP−1

n

1 − Q(1 − PP−1
n )

, (6)

Tyd =
(1 − Q)P

1 − Q(1 − PP−1
n )

. (7)

According to (3), Pn can be obtained by removing the NMP

zeros of P . We find that the resultant Pn satisfies (4) within

0–200 Hz. Note that the mismatch part is treated as plant

uncertainty and will be compensated by the high-gain feedback

control. Then, we summarize the design conditions of Q filter

to meet our desired performance:

i) ‖W1Q‖∞ < 1;
ii) Q filter is with low-pass characteristics and specifically

has

Q(jω) ≈ 1, ∀ω ∈ [0, ωb], (8)

where ωb denotes the frequency bandwidth of Q;

iii) Q(jωi) < −30 dB, where ωi (i = 1, 2) equals the PZT
resonance frequencies as listed in Table I;

iv) Υ(Q) ≥ Υ(Pn), where Υ denotes the relative degree

(excess of poles over zeros).

The following remarks are given with regard to the design

conditions above:

1) Condition i) is compulsory to guarantee the robust sta-

bility of the closed-loop system in Fig. 4. This can be

seen by transforming Fig. 4 equivalent to Fig. 6, where

r̃ = P−1
n r, d̃ = (1 − Q)W1d. Now, according to the

well-known small gain theorem [28], the interconnected

Σ
+

+

Σ

_

W1Q

∆
d%

+ r%

Fig. 6. Equivalent block diagram of Fig. 4 for robust stability analysis.

system as shown in Fig. 6 is stable for all stable ∆ with

‖∆‖∞ ≤ 1 if and only if ‖W1Q‖∞ < 1 holds.

2) Substituting (4) and (8) into (6)–(7), respectively yields

Tyr ≈ Q, (9)

Tyd ≈ 0 (10)

for any ω ∈ [0, ωb]. Now it is clear that the closed-loop

dynamics can be easily specified by Q and is capable

of rejecting those disturbances at low frequency range

such as hysteresis. However, note that the maximum ωb

obtainable is generally subject to other conditions and

particularly the sensing noise in practice.

3) Provided conditions i) and ii) hold, the ratio of resonance

compensation is specified by condition iii). Typically, a

larger ratio of resonance compensation is at the expense

of reduced frequency bandwidth of Q(s). Due to this,

the frequency bandwidth of Q(s) has be to selected

substantially lower than the first resonance frequency.

4) Condition iv) is posed to ensure the controller QP −1

n

proper at least for practical implementation.

B. Controller Design

From the analysis above, the controller design is simply

reduced to the design of the Q filter only, which in our

particular application is chosen as

Q =
1

(τ0s + 1)2(τ1s + 1)3
, (11)

where τ0 = 8.0×10−4 and τ1 = 3.2×10−5. For more details

of general low-pass filters design, interested readers can refer

to [29] and the references therein.

To verify the validity of the designed Q filter, Fig. 7

plots the magnitude of Q and W −1

1
, which indicates that

the magnitudes of Q all lie below that of W −1

1
implying

‖W1Q‖∞ < 1. In general, the magnitude of W−1

1
rolls off at

high frequencies due to the plant uncertainty, thus constraining

the achievable frequency bandwidth of Q filter. It is also

straightforward to verify the satisfaction of the other design

conditions in ii)-iv).

IV. EXPERIMENTAL RESULTS

The designed controller is implemented on the actual PZT

nanopositioner to demonstrate the performance of the control

system for hysteresis and vibration compensation. First, we set

the reference input r as sinusoidal signal with the amplitude

sufficiently large to drive the PZT actuator to approach to its

maximum range. Moreover, the sinusoidal frequency is chosen
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is applied.

sufficiently low (e.g. 0.1 Hz), at which the phase lag associated
with the control loop is insignificant such that the input-output

measurement reflects only the PZT hysteresis effect. This

setting excites the worst hysteresis effects for a given input

frequency and therefore is regarded as an effective approach to

evaluate the designed controller. Fig. 8 shows the experimental

results of the relationship between the PZT displacement and

the reference input. We can see that with open-loop control

the maximum gap between the hysteresis loop is 3612 nm

(see Fig. 8a) and it is significantly reduced to 28 nm with the

2DOF controller (see Fig. 8b).

Next, Fig. 9 shows the measured frequency response of the

10
1

10
2

10
3

−70

−60

−50

−40

−30

−20

−10

0

10

G
a
in

 [
d
B

]

Frequency [Hz]

T
yr

Q

Fig. 9. Measured frequency responses of the closed-loop system. The

magnitude of the resonant peak at 2.7 kHz is greatly damped, which is
consistent with the design.

closed-loop system Tyr in comparison with its approximation

Q. We can see that the resonance peaks at 1018 and 2721
Hz are highly damped by more than 30 dB. Furthermore, the

experimental results of step tracking are shown in Fig. 10.

We can clearly see that with open-loop control, the output

displacement exhibits significant oscillations due to the reso-

nant vibrations. With the 2DOF controller, the oscillations are

almost removed from the output displacement. However, this

benefit has to compromise with the relatively slow transient

response because the closed-loop bandwidth has to be reduced

to tolerate such uncertainties as hysteresis, NMP zeros and

resonance modes.

Finally, we show a series of repeated step responses in

Fig. 11, which indicates that the dynamic step responses are

almost the same at various initial conditions. This verifies the

robust performance of the controller against the hysteresis and

resonant vibrations across the PZT work range.

V. CONCLUSION

We have developed a simple design method for hysteresis

and resonance compensation. The designed controller is pa-

rameterized by a unique Q-filter based on which the robust

stability condition is easily checked on the Bode plot (see Fig.

7) and the closed-loop dynamics is easily specified [see (9)].

The experimental results demonstrate that the control scheme

can offer sufficient capability of hysteresis and resonance

compensation and accurate step tracking control robustly.
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