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Introduction 
The pole-balancing problem is a pseudo-standard benchmark problem from the field 
of control theory and artificial neural networks for designing and testing controllers 
on complex and unstable nonlinear systems. The intention of this work is to provide a 
canonical definition and description of this well studied problem domain. Further, this 
work will provided sufficient detail to permit a novice to the problem to be able to 
implement the problem for a variety of techniques. It will be shown that the problem 
if flexible in that it can be represented and addressed in numerous ways from devising 
controller units for the problem online and offline, to finding coefficient constants for 
existing linear models. 

Pole Balancing 
Control theory or control systems engineering is a mathematical and engineering 
discipline that is primarily concerned with understanding and controlling the 
behaviour of dynamical systems over time [40]. A control system is a set of 
interrelated components that form a system configuration that provides a desired 
response.  
 
The pole-balancing problem is known by a number of common names; pole-cart 
problem, broom balancer, the inverted pendulum problem and the stick balancer 
problem. There are many variations on the pole-balancing problem, and the lack of 
uniform adoption of a standard problem definition is an issue that hinders useful 
benchmark comparison between reported results. Some seminal works have made 
efforts to standardise the problem [44] or in themselves have become de facto 
standards for the problem [1]. A concise somewhat canonical definition of the 
problem follows. 

Problem Definition 
The pole-balancing problem requires the proposal of a close-loop feedback control 
system with the desired behaviour of balancing a pole (an inverted pendulum) that is 
connected to a motor driven cart by a ball-baring pivot. The movement of the cart is 
restricted to the horizontal axis by a track, and the pole is free to move about the 
horizontal axis of the pivot. The state of the system is defined by four real values; the 
angle of the pole θ , the angular velocity of the pole θ� , the position of the cart relative 
to the centre of the track x and the velocity of the cart x� . The output of the control 
system is a forward or backward movement for the cart as a fixed force. 
 

 
Figure 1 - One pole balancing problem, taken from [4] 
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System Parameters 
This section describes the variables of the system, including both the state variables 
(inputs and outputs for a controller), as well as variables that govern the simulation of 
the system in a digital computer.   
 
Symbol Name Description 

θ  Pole Angle The angle of the pole in radians 
θ�  Pole Velocity The angular velocity of the pole in radians/second 
θ��  Pole Acceleration The acceleration of the pole in radians/second2 
x Cart Position Measured as a relative offset from the middle of the track 

(0.0) in meters 
x�  Cart Velocity The velocity of the cart in meters/second 
x��  Cart Acceleration The acceleration of the cart in meters/second2 
g Gravitational 

Acceleration  
The acceleration due to gravity -9.81 meters/second2 

(where up is positive) 

cm  Mass of cart 1.0 kilograms 

pm  Mass of pole 0.1 kilograms 
l Pole length The distance from the pivot to the poles centre of mass 

0.5 meters (thus pole length is 2l = 1.0 meters) 
t Time Measured in seconds 
F Force The magnitude of force applied to the centre of the carts 

mass at time t. Typically a constant of ±10 newtons or ±1 
newtons 

h Track Limit ±2.4 meters from the track centre (thus 2k = 4.8m) 
r Pole Failure 

Angle 
±12˚ from 0˚ (approximately  ±0.209 radians) 

�  Time Step The discrete integration time step for the simulation, 
conventionally �  = 0.02 seconds (50 Hertz) 

System Constraints 
 

1. The pole must remain upright within ±r the pole failure angle 
2. The cart must remain within ±h of origin  
3. The controller must always exert a non-zero force F 

 
The simulation of the cart ends when either the pole exceeds the failure angle or the 
cart exceeds the limit of the track. The objective is to devise a controller that can keep 
the pole balanced for a defined length of simulation time. The controller must always 
output a force at full magnitude in either direction (bang-bang control). The system 
must be initialised with an initial position for the cart on the track and an initial angle 
for the pole. These initial values are typically a centred cart and balanced pole or are 
randomly selected from a Gaussian distribution with a mean of zero (position and 
angle) with a small standard deviation.  
 
The problem definition is simplified with the following assumptions [41], which can 
be used when simulated in a digital computer: 
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1. The movement of cart and pivot is completely frictionless1  
2. The electrical system for response is instantaneous  
3. The wheels of cart do not slip 
4. The motor torque limit is not encountered 

Equations of Motion 
The following provides the most common form of the equations for motion for both 
the pole angle and cart position. 
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Equation 1 - Differential equation of motion of the pole 
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Equation 2 – Differential equation of motion of the cart 

 
The equations for motion are approximated numerically on a digital computer using 
Euler’s method2 with a time step �  of 0.02 seconds. The following provide the discrete 
time state equations for the pole and cart instantaneous positions and velocities.  
 

][][]1[
][][]1[

txtxtx

txtxtx

����

�

τ
τ

+=+
+=+

 

Equation 2 - Discrete time equations for  the car t position and velocity 
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Equation 3 - Discrete time equations for  the pole angle and angular  velocity 

Linear solution 
When the four inputs are provided as inputs for a controller, the system can be solved 
successfully with a linear artificial neural network with a single neuron called an 
ADALINE (Adaptive Linear Element) [7,8]. This solution can be expressed as a 
simple linear equation as follows. 
 

( )ttttmt kkxkxkFF θθ �� 4321sgn +++=  

Equation 4 - L inear equation for  solving the one-pole problem with four  inputs 
                                                
1 It should be noted that some work does include cart and pole friction coefficients, though work by 
Geva and Sitte [44] indicate that they are too small to have interesting effects or are cosmetic 
2 Given a differential equation, the derivative is replaced with a difference approximation, a time step 
size is selected and a series is calculated using a recursive scheme 
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Where Fm is a positive constant of the magnitude of the force F, sgn is a sign 
function3, and (k1, k2, k3, k4) are system constant coefficients derived from bang-bang4 
control theory. The specific coefficients used depend on the masses of the cart and 
pole as well as the friction coefficients used. It has been noted that this linear control 
law will fail when the cart is far enough away from the centre of the track, further that 
coefficients can be found for the linear model easily using a random search [44].  

Variations 
The one pole-balancing problem given above is the most common form. Given that 
the one pole-balancing problem can be addressed with a simple linear equation, 
variations of the problem have been employed for which it is harder to model 
controllers. The following lists some of the more prevalent variations from the 
literature.  
 

1. Reduced Inputs One Pole Balancing: The number of inputs can be reduced 
to just the current pole angle and cart position, requiring the controller to 
internally calculate the derivatives. The problem can be made more difficult 
by removing all inputs from the controller and using a consistent starting 
position (position 0 and vertical pole angle), the controller must then further 
estimate the cart position and pole angle.  

2. Two Poles Balancing: Two poles of differing length are balanced on the cart. 
The required differing length causes the poles to react differently to the forces 
applied to the cart.  

3. Hinged Pole Balancing: Also called the articulated pole, the joint pole 
problem and the pole on pole balance problem. The first pole is connected to 
the cart as described in the one pole problem; the second pole is attached to 
the top of the first pole by a second pivot. Like the two poles balancing 
problem, the poles must be of differing lengths. 

4. Changing Pole Lengths: For all variations of the pole-balancing problem, it is 
possible to dynamically adjust the poles length over time (perhaps 1% per 
discrete time step). This obviously causes the mass of the pole to fluctuate 
with time adding additional non-linear complexities for the controller to 
address. 

 
There are numerous other variations of the problem from adding friction coefficients, 
adding an additional dimension of freedom [32,34], and desiring the pole to balance 
toward a randomly moving particle [20].  

Applications 
The problem represents a useful prototypical laboratory idealisation of an unstable 
mechanical system [41]. It has been used as a simple case study in control theory for 
investigating controllers for unstable nonlinear problems as well as system recovery 
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4 Bang-bang control refers to all or nothing control as opposed to proportional control, in this case full 
magnitude of force in either direction (±) 
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from bad initial conditions (in this case from a bad initial pole tilt angle). Specific 
scenarios can be created with one or two poles in specific locations that requires a 
complex series of force adjustments to stabilise. There are many linear and nonlinear 
solutions to this problem and its variants, meaning that there is no single correct 
solution, rather there are a set of controllers that work within defined constraints. This 
makes the problem interesting from the standpoint of testing techniques and tools in 
the digital computer for devising such controllers. 
 
Perhaps there are three general approaches for a devising a controller for a dynamical 
system related to the amount of prior information available or accessible. 
 

1. Prior information about the dynamics is available; a controller model can be 
devised and applied. An example of this is the linear model with known 
constant coefficients.  

2. Prior information regarding the dynamics of the system is available though a 
complete model cannot be devised due to complexity or incomplete 
information. An example of this is devising a model, and letting a system tune 
the model. 

3. There is little or no prior information and the dynamics of the system must be 
learned as a solution controller is being devised.  

 
The dynamics of the pole-balancing problem and its variants is known a priori so that 
the problem can be simulated in a digital computer. The idea of using the problem as 
a test of an algorithm to devise a controller requires that specific prior knowledge be 
withheld. This is an important point, as the problem is sufficiently flexible to permit 
all three of the above approaches to be employed. The intent of this section is to 
highlight some of the seminal and more interesting controller applications to the pole-
balancing problem and its variants. 
 
Neural networks and reinforcement learning techniques have been the predominate 
application of this benchmark problem for control techniques [5,10,35,36,38,39,43]. 
A variation of the self organising neural network (SOM) was implemented by 
Hougen, Fischer, Johnam [22] in a real robot that addressed the one pole balancing 
problem in real time.  
 
The one-pole problem can be addressed by conventional control theoretic techniques 
and has been exhaustively examined [6,41]. These approaches were also employed by 
Widrow and Smith [8] and Widrow [7] where control theoretic techniques were used 
to devise a linear control model for the one pole balancing system. A linear artificial 
neural network (ADALINE) was then trained to reproduce the controller. This work 
was extended by Guez and Selinsky [2,3] who used a two layer neural network to 
control the system. Their approach used a number of different training (teacher) 
schemes including a linear control law, a non-linear control law and a human teacher.  
 
 
Miche and Chambers used an approach called BOXES [16] for controlling the cart. 
The systems state space was partitioned (pre-processed) into discrete regions called 
boxes to make the problem more manageable for the algorithm. Through experience 
with the dynamics of the problem, the algorithm updated force actions for each 
partition (box). Work by Barto, Sutton and Anderson [1] used an adaptive heuristic 



7 of 12 

critic (AHC) to train a neural network to predict when the system will fail. The state 
space was discreterised (quantised) like the BOXES approach into regions reducing 
the complexity of the problem when training the network.  
 
This work on the BOXES algorithm was extended by Anderson [11] using real valued 
inputs on two-layer neural networks. A reinforcement learning approach was used that 
involved two networks, the first for estimating the system state which was trained 
using state variables at t-1 (the critic), and the second as an action network which 
incorporated the estimation output to make a decision as to the force to apply to the 
cart. This reinforcement learning approach called temporal difference (TD) was used 
to train the evaluation network and was further refined in later work by Anderson 
[12]. This was revisited by Dominic et al [42] where the neural network architecture 
was reused, though was trained using a genetic algorithm. The results showed that the 
algorithm prepared a controller in approximately the same number of trials, though it 
produced a controller that was somewhat (10%) more successful. 
 
Fogel [18] applied a genetic algorithm to train a control system for the single pole 
balancer that operated in a to a similar manner to Barto et al’s adaptive critic. The 
system used a number if lag terms in an evolved control that provided both a model to 
estimate the stimulus-response sequence, as well as control the system simultaneously 
in real-time.  
 
An interesting approach to the pole balancing problem was taken by Tolat and 
Widrow [46] where a controller used input from a rough pixel image (5x11) of the 
systems current state. The approach used a supervised ADALINE neuron with the 
pixel inputs, which was successful at balancing a single pole. Troudet and Merrill [45] 
used a back-propagation neural network for the one pole problem where the system 
signals were made noisy or corrupted. The network controller was able to balance the 
pole and filter-out or manage the noise.   
 
Evolutionary algorithm approaches have been combined with neural networks and 
reinforcement learning techniques and used to address variants of the pole balancing 
problem [9,15,17,20,23,24,26]. 
 
Wieland [4] successfully employed genetic algorithms to evolve the network weights 
of a recurrent neural network on the one pole, two pole, the hinged pole problem as 
well as varying length poles. The genetic algorithm used a fitness function to 
maximise the simulation time that an evolved network controller could balance the 
pole. The function included prior knowledge by using a penalty for the system the 
further the cart displaced from the centre of the track. Pasemann and Dieckmann [29] 
and Pasemann [27,28] also successfully employed a genetic algorithm to evolve 
recurrent neural networks to address the one pole balancing problem. Using their 
developed ENS technique both the structure and weights of recurrent networks were 
evolved for the problem in scenarios that used the position and angular derivatives 
and scenarios that did not.  
Goldberg used an evolutionary technique called a learning classifier system (LCS) 
[19] on a variation of the one pole problem. The fitness function rewarded the 
controller for taking the cart from an initial starting position toward the centre of the 
track and bringing the cart to rest whilst keeping the pole balanced. Another 
interesting approach to controller design was by Koza [32], Koza and Keane [33,34] 
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where genetic programming (GP) was successfully applied to construct a controller 
for a two-dimensional and three-dimensional version of the pole balancing problem 
using LISP S-expressions (expression trees) .  
 
Fuzzy logic controllers have been devised for the problem, prepared using both 
genetic algorithms [13,30,37] and neural fuzzy techniques [31]. 
 
Sammut implemented a visual version of BOXES as a java applet with source code 
[14]. Gomez and Miikkulainen provide digital simulations videos [25] of their 
enforced sub-populations (ESP) neural evolution system [24,26]. Pardoe, Ryoo, 
Miikkulainen also provide a video of a digital simulation [21] of their NEAT 
controller [20]. 

Final World 
The problem represents an archetype credit-assignment problem when a controller 
must learn the dynamics of the problem. Given a sequence of force movements 
directed by a controller, the problem of determining which movements in the 
sequence caused a failure is a difficult and well-studied problem. As shown, a 
common approach to addressing this problem with neural network based controller is 
to use reinforcement-learning approaches to measure error between predicted state 
and historic measured state, such as the temporal difference method.  
 
A common alternative approach shown to learning the dynamics through derivatives 
in real time was to use a genetic algorithm to prepare and test once-off network 
controllers that were improved through an evolutionary directed process of generate-
and-test. This offline approach is typically less computationally efficient to the online 
training approach, though provides the same capabilities of learning the unknown 
complex dynamics and stabilising the system. 
 
A good controller is not necessarily a controller that is capable of balancing the pole 
for a specified time until failure. A detailed review of the problem by Geva and Sitte 
suggest that other measures such as the time to stabilisation, the amount of oscillation 
and cart position from centre and pole angle over time may provide more insight into 
the quality of controllers [44]. 
 
The pole-balancing problem is a well studied somewhat standardised and interesting 
control theory problem that provides a useful benchmark problem for testing 
techniques capable of addressing complex linear and nonlinear dynamics of inherently 
unstable systems. 

List of Equations 
Equation 1 - Differential equation of motion of the pole .............................................4 
Equation 2 - Discrete time equations for the cart position and velocity .......................4 
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Equation 4 - Linear equation for solving the one-pole problem with four inputs .........4 
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