AN ORIENTATION MODULE FOR ONLINE MARKETING EDUCATION

Peter Wagstaff, Jan Brace-Govan and Sandra Luxton
Monash University

Abstract

Universities and higher education institutions are rapidly implementing online teaching systems as both a primary platform for distance education, and as a supporting element for on-campus Marketing courses. In order to maximise the confidence, and subsequent activity levels, of learners using these systems, an online orientation module was developed, based on the first two stages of Salmon’s five-step model. It was shown that students involved in the orientation module commenced active participation in their live subject sites sooner than non-orientated students and their initial levels of input into their online discussion forum were higher. However it remains unclear whether the initial impetus of an orientation module has long-lasting positive effects on the online learning experience.

Background

Higher education worldwide is undergoing considerable and rapid change. Students are seeking more convenient modes of study to fit in with the demands of their busy lifestyles, and rapidly advancing technology is providing universities with the tools to deliver courses in ways that meet the needs of these busy students.

Many authors have discussed the observed changes in marketing education worldwide. A recent study (Smart, Kelly and Conant) surveyed marketing educators to identify the changes and challenges facing the discipline in the new millennium, and found that there are increasing numbers of “non-traditional” students who “are faced with severe time constraints as they attempt to work and raise families while matriculating for degrees” (Smart, Kelley and Conant 1999 p206). Turoff also found that “the typical college student is older, working, may have a family and will likely be a part time student” (1997). These “time-impoverished” students are now actively seeking alternative modes of study that fit in with their other responsibilities. Another identified trend is that students are now becoming more technically competent and their use of computers is now part of their everyday lives (Smart, Kelley and Conant 1999). As technology is now an expected tool in the education process, it has been argued that “students today require more multimedia and technology-based tools to remain interested and motivated” (Smart, Kelley and Conant 1999 p.210). However, the technology alone is not sufficient. Eastman and Swift (2001, p33) found that “quality education comes from the content, design and preparation, not from the delivery technology.”

Universities have embraced technology in the delivery of distance education courses, and also in the support of on-campus courses, a trend which was predicted by Turoff a number of years ago: “A majority of the course work at universities and colleges will be done remotely and the distinction between distance and on campus student will disappear” (Turoff 1997). Like students, teaching staff are also embracing computers and the Internet in education. “A common theme … is that marketing faculty are making increased use of emerging technologies” (Smart, Kelley and Conant, 1999).
Despite the fact that many students and staff use technology in education, the medium is not without its critics. Warner, Christie and Sarojini (1998) found that more than 70% of Australian adult learners lack the disposition and skills for self-directed learning. This shortfall in skills for independent learning is compounded by the fact that online learning systems have often been created with insufficient pedagogical focus. Mitchell found that “in many cases in the mid-late 1990s in Australia, online learning systems were driven by technology enthusiasts and nationalists and not by a consideration of educational outcomes and the needs and learning styles of the users” (2000 p.173). Therefore, in spite of student and staff interest in using computers both for personal and educational reasons, there remains a need to facilitate the initial stages by showing the students how to communicate in an online learning environment.

A model for online education

Over recent years we have seen many types of systems implemented to deliver online education. WebCT, Blackboard and First Class are three of the more popular off-the-shelf learning platforms adopted by Australian universities. Each of these systems is based around the need for group communication: “Electronic mail is no longer considered sufficient … some sort of group communication processes will evidently be required” (Turoff 1997). This is also required by the Laurillard conversational learning process, which underpins the rationale for independent learning (Laurillard 1993). The interaction between students and other participants (staff and other students) has been defined as “Computer Mediated Conferencing” (CMC), and is the basis of all interactive online learning environments.

Salmon (1998) proposed a framework for new users of CMC which models the stages a learner must pass through as they learn to learn online. This five-stage model is shown in figure 1.

Figure 1: Model of teaching and learning online through CMC (Salmon 2000 p.26)
Monash University’s Department of Marketing has been offering courses online since 1998 at both undergraduate and postgraduate levels. During that time, Salmon’s model has been utilised to maximise the success of each subject.

Implementation

An orientation module was developed in order to assimilate students to the interactive learning environment in a focussed and dynamic way, and in particular to familiarise them with the “tools” of CMC on which their learning will rely quite heavily. The orientation module was designed to address the first two stages of Salmon’s five stage model (2000 p.26). It was Salmon’s intention that the later three stages are concerned with the processes of learning subject content, so they were not integrated directly into the orientation module.

The online courses are delivered via the WebCT platform, so this was the natural choice of platform for the orientation module. Aspects such as graphics and screen colour, icon design and navigation menus were replicated from the actual subjects the students would be moving to after completion of the orientation module, thus providing a feeling of familiarity with the learning space when making this transition.

A member of staff experienced in online teaching (moderator) engaged the students in a number of relevant online activities, which allowed the students to become familiar with their virtual learning space. These activities included: postgraduate support services; library facilities; learning support services; and navigating through the various areas within the online learning space. The orientation module ran for only three weeks, and aimed to complete Salmon’s stage one “Access and Motivation”, and to begin stage two “Online Socialisation”. Through this process student technical issues are resolved and appropriate online behaviour is modelled by the moderator. The purposes of the activities were either technical or social in nature, however many of them aimed to combine both aspects.

The technological objective of the orientation module was primarily to allow the student to successfully connect their computer to the University’s network. Once this connection was made, the student was then given an introduction to the functions within WebCT, through both experiencing the functions directly, and via a number of “hints and tips” in response to technical difficulties that the students were experiencing. The social objective of the module was to facilitate students’ social interaction with each other. This was achieved by offering a forum in which to practise where it was clear that all of the other participants were also inexperienced. The absence of any grading or assessment of performance in the module encouraged active participation with minimal risk.

Although the orientation module was offered to all online students, only 19 accepted the offer to participate. Of those 19, only 15 actually participated, and only 10 of those students completed all of the activities. One group of 8 students from the orientation module was tracked through the semester because they all went to the same subject (MKX9160); others had gone in smaller numbers to other subjects, where discussion forum activity levels differed from MKX9160.
Hypotheses

Based on Salmon’s 5-stage model (2000), it can be expected that those students who have participated in the orientation module will be more active learners in their online study. It is expected that this activity would manifest itself in three ways: (a) reduction in technical access problems, thereby allowing the student to commence online study sooner; (b) reduced fear of the online system, thereby increasing the student’s activity on the site early in the study period; and (c) ongoing confidence in the medium, thereby increasing the student’s activity on the site later in the study period.

The following three hypotheses are proposed:

H1: Orientation Module participants access their live subject site sooner than non-orientation students.
H2: Orientation Module participants’ activity on their live subject site is greater than non-orientation students in the first 30 days of online study.
H3: Orientation Module participants’ activity on their live subject site is greater than non-orientation students later in the study period.

Findings

Hypothesis 1 required a comparison of orientation students’ against non-orientation students’ time taken to first access their “live” subject forum. As this data is independent of the style and volume of discussion taking place in the subject forum once discussion commences, we were able to use the larger sample of all online students. Table 1 shows that students who participated in the Orientation Module accessed their subject forum sooner than those students who did not participate in the Orientation Module (p<0.001). Hypothesis 1 is therefore substantiated.

<table>
<thead>
<tr>
<th></th>
<th>No. of cases</th>
<th>Mean</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-orientation students</td>
<td>15</td>
<td>10.7</td>
<td>4.1</td>
</tr>
<tr>
<td>Orientation students</td>
<td>16</td>
<td>2.4</td>
<td>2.5</td>
</tr>
<tr>
<td>p-value < 0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

However it is important that students not only access their subject forum, but also that they participate in discussions. As student activity within their subject forum is dependent on many factors outside the control of this study (for example, different online teachers will offer varying levels of encouragement), hypotheses 2 and 3 will be tested by using only those students who went into a single subject (MKX9160). Table 2 shows that students who participated in the Orientation Module were more active in the first 30 days in their subject forum than those students who did not participate in the Orientation Module. This was supported by three different measures of activity, namely (i) number of pages viewed by the students - “hits”; (ii) number of discussion forum messages read - “readings”; and (iii) number of discussion forum messages posted – “postings”. Hypothesis 2 is therefore substantiated.
Table 2: Student activity on live subject site during first 30 days

<table>
<thead>
<tr>
<th></th>
<th>No. of cases</th>
<th>Mean no. of “hits”</th>
<th>Mean no. of “readings”</th>
<th>Mean no. of “postings”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-orientation students</td>
<td>14</td>
<td>138.1</td>
<td>109.4</td>
<td>5.4</td>
</tr>
<tr>
<td>Orientation students</td>
<td>8</td>
<td>220.8</td>
<td>175.3</td>
<td>12.8</td>
</tr>
<tr>
<td>p-values</td>
<td></td>
<td>0.024</td>
<td>0.022</td>
<td>0.028</td>
</tr>
</tbody>
</table>

In order to test hypothesis 3, we looked at the number of discussion forum postings made by each student during a two-week period, two months into the semester. Although the mean number of postings for orientation students was greater than non-orientation students (see Table 3), the small sample size, combined with the low activity levels during this period of time led to a p-value greater than 0.05. Therefore hypothesis 3 is rejected – the earlier high levels of activity by students who have participated in an Orientation Module do not appear to be maintained at a level substantially higher than non-orientation students throughout the semester.

Table 3: Student activity on live subject site during weeks 8 and 9 of semester

<table>
<thead>
<tr>
<th></th>
<th>No. of cases</th>
<th>Mean no. of “postings”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-orientation students</td>
<td>14</td>
<td>0.4</td>
</tr>
<tr>
<td>Orientation students</td>
<td>8</td>
<td>1.4</td>
</tr>
<tr>
<td>p-value</td>
<td></td>
<td>0.276</td>
</tr>
</tbody>
</table>

Conclusions and Continuing Research

Although we recommend maximising the number of students who participate in an orientation program prior to commencing online study, the benefits gained by participating students appear to be transferable to students who do not participate in the program. We have observed instances of non-orientation students “imitating” the online behaviour of orientation students in their subject discussion forum. For example, the initial activity of introducing oneself in the discussion forum, although not explicitly requested by the e-moderator, was completed by both orientation and non-orientation students in the live subject site. This phenomenon provides an insight into online socialisation, and further research should be encouraged in this area to better understand the reasons behind it and the resulting implications for e-moderators.

An online orientation module provides students with a dynamic way to become familiar with both the technical and social skills necessary to succeed as an online learner. A well-structured module will ensure that the students commence their online studies sooner, and with fewer problems. It could be reasonably expected that, as the use of technology becomes more prominent in other areas of our daily lives, there will be reduced need for online orientation. Of course, there are many opportunities for further research here to identify whether the use of other computer-based systems (such as online shopping) increases the proficiency of an online learner.

Intuitively, it would seem that non-orientation students fall into two groups. Firstly, there are those who are conscientious and go to great trouble to “catch-up” for lost time when they finally overcome any social or technical difficulties they experience as a result of their lack of orientation. Then there are those who, possibly due to being time-poor, accept that their late
commencement of online study means that they will just have to “skim over” the earlier discussion material they have missed. It would be worthwhile undertaking further research to gain a better understanding of the types of students, with the aim of proposing strategies to maximise the learning opportunities for each.

In conclusion then, this research gives us a glimpse of the value of this kind of process and indicates that, in the short term at least, students benefit from being introduced to the specific skills, both technical and social, of learning online.

References

