
sensors

Article

Building a Relationship between Robot
Characteristics and Teleoperation User Interfaces

Michael Mortimer *, Ben Horan and Mehdi Seyedmahmoudian

School of Engineering, Deakin University, Pigdons Rd, Waurn Ponds, Victoria 3216, Australia;
ben.horan@deakin.edu.au (B.H.); mehdis@deakin.edu.au (M.S.)
* Correspondence: mamort@deakin.edu.au; Tel.: +61-3-5227-2907

Academic Editor: Dan Zhang
Received: 2 January 2017; Accepted: 7 March 2017; Published: 14 March 2017

Abstract: The Robot Operating System (ROS) provides roboticists with a standardized and distributed
framework for real-time communication between robotic systems using a microkernel environment.
This paper looks at how ROS metadata, Unified Robot Description Format (URDF), Semantic Robot
Description Format (SRDF), and its message description language, can be used to identify key robot
characteristics to inform User Interface (UI) design for the teleoperation of heterogeneous robot
teams. Logical relationships between UI components and robot characteristics are defined by a set of
relationship rules created using relevant and available information including developer expertise
and ROS metadata. This provides a significant opportunity to move towards a rule-driven approach
for generating the designs of teleoperation UIs; in particular the reduction of the number of different
UI configurations required to teleoperate each individual robot within a heterogeneous robot team.
This approach is based on using an underlying rule set identifying robots that can be teleoperated
using the same UI configuration due to having the same or similar robot characteristics. Aside
from reducing the number of different UI configurations an operator needs to be familiar with, this
approach also supports consistency in UI configurations when a teleoperator is periodically switching
between different robots. To achieve this aim, a Matlab toolbox is developed providing users with the
ability to define rules specifying the relationship between robot characteristics and UI components.
Once rules are defined, selections that best describe the characteristics of the robot type within a
particular heterogeneous robot team can be made. A main advantage of this approach is that rather
than specifying discrete robots comprising the team, the user can specify characteristics of the team
more generally allowing the system to deal with slight variations that may occur in the future. In fact,
by using the defined relationship rules and characteristic selections, the toolbox can automatically
identify a reduced set of UI configurations required to control possible robot team configurations, as
opposed to the traditional ad-hoc approach to teleoperation UI design. In the results section, three
test cases are presented to demonstrate how the selection of different robot characteristics builds a
number of robot characteristic combinations, and how the relationship rules are used to determine a
reduced set of required UI configurations needed to control each individual robot in the robot team.

Keywords: teleoperation; User Interface; Robot Operating System (ROS); Matlab; Unified Robotic
Description Format (URDF); Sematic Robotic Description Format (SRDF)

1. Introduction

Robots provide a range of benefits for today’s society, including important applications such as
Urban Search and Rescue (USAR) [1], medical [2], environmental [3], transportation [4], and smart
agriculture [5]. The Robot Operating System (ROS) was developed to provide roboticists with a
large scale, open-source research platform to help simplify the integration of robotic systems [6].
Arguably the biggest advantage over other robotic frameworks is the implementation of a peer-to-peer

Sensors 2017, 17, 587; doi:10.3390/s17030587 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2017, 17, 587 2 of 19

network topology and microkernel environment. This peer-to-peer approach, based on the TCP/IP
protocol, allows systems to be interconnected within heterogeneous networks. This, combined with
the built-in message description language used to describe common data types, creates a simple
protocol for robotic systems to communicate through topics using a simple publish and subscribe
method. ROS supports a large number of different robots [7–11] and includes a variety of important
robot independent packages [12–16]. This provides developers with a wide range of support and
functionality, able to be easily deployed to a ROS supported robot.

While autonomous robots commonly provide a robust solution for structured environments
and well-defined tasks, human-in-the-loop control is typically deployed for non-deterministic
and unstructured environments. In robotics, teleoperation refers to the control of a robot over a
telecommunication medium, typically at distance, and the effectiveness of the User Interface (UI) is
integral to teleoperation success. UI design is crucial in any application requiring Human Computer
Interaction (HCI), and is particularly important in teleoperation, where the teleoperator is required to
perceive the robot’s operating environment and control the robot appropriately. There are a range of
technical challenges which need to be overcome to develop teleoperation functionality and [17] lists
many of these, including the limited Field of View (FoV) of camera feeds, lack of depth perception,
difficulty inferring the orientation of a remote robot, ability to control multiple cameras and sensors,
poor frame rates, time delays, and challenges in motion control.

The increasing capability of robot semi-autonomy can lessen the extent to which such issues
impact on purely teleoperated robots, i.e., those controlled only by the teleoperator with no supporting
autonomy. Employing robots with some degree of autonomy, known as semi-autonomous robots, in
teleoperation tasks can be beneficial. An example of this is the ability to accept high-level waypoints
from the teleoperator, but where the robot can autonomously navigate an environment while avoiding
obstacles. In such a scenario it may also be desirable to allow the teleoperator to intervene and override
the autonomous behavior of the robot; however, considerations such as time delay may not make
this possible. Where certain semi-autonomous robot functions can be relied on, semi-autonomous
teleoperation can lessen the demand on the teleoperator for low-level tasks and free them up for
higher-level decision making tasks such as managing a team of robots [18]. Supervising a team of
semi-autonomous robots, which can be considered supervisory control, presents the teleoperator
with different challenges to those of lower-level tasks like the motion control of a single mobile robot.
One such challenge when performing supervisory control of a robotic team is maintaining situational
awareness when switching between different teleoperation controls [19].

ROS has the ability to cater for a large number of supported robots using custom packages [20];
however, it doesn’t provide a single or standard approach to teleoperating different robots or
heterogeneous robot teams. Instead, distinct packages such as those presented in [12,13,21] provide
dedicated interfaces for achieving a particular type of teleoperation control for certain robots. RViz [22]
is a popular ROS package that provides an interface for viewing different sensory information such as
camera vision, laser scan, and other point cloud data from different robots using the common message
types available in ROS. While such packages have been widely used, they don’t provide a single
teleoperation system able to support the teleoperation of different robots, or even robot teams as would
be required for applications such as USAR [19]. In order to achieve such a teleoperation interface, and
in particular one dynamic and responsive to switching between controlling different robots within a
team, a different approach to teleoperation UI design is required.

A list of works evaluating the teleoperation of robot teams is outlined in [19]. Based on the findings
and those of previous works, it is suggested that a single teleoperator typically shouldn’t control more
than 8–12 semi-autonomous robots. Unfortunately, much of the work dealt with homogenous robot
teams or heterogeneous robot teams comprised mainly of the same robot type, e.g., only Unmanned
Ground Vehicles (UGV). In [23], real-world teleoperated robot team experiments were undertaken and
the work discusses how human-robot interaction is the current barrier to more successful human-robot
teaming. While trust in autonomy, as one consideration in human-robot interaction, is listed as a major

Sensors 2017, 17, 587 3 of 19

challenge to successful teleoperation of robot teams, it should be noted that specific UIs were required
for different robot types, such as in the third trial for UAV and UGV robots. This type of situation
requires teleoperators to adapt to different UIs and presents the opportunity to develop a different
approach. Such an approach could provide less variability in the UI and provide transferable skills
through the reuse of UI components which perform similar teleoperation functions for the same or
similar robot types, such as two different UAVs. Robot specific UIs for each different robot model of
the same type is likely to affect a teleoperator’s situational awareness and increase the risk of operator
overload by exposing the teleoperator to a large amount of information. Operator overload could be
reduced by the reduction of the number of different UI configurations the teleoperator needs to be
familiar with in order to contribute to improving interoperability across robots that have the same or
similar functionality, such as might be encountered if an operator was required to teleoperate different
UGVs. In [24] robots are connected through the internet so as to share information and complete
tasks through autonomous collaboration. The work details a “skill abstraction layer” which attempts to
identify the common robot functions that are hardware-independent, providing a standard approach
to the autonomous operation of heterogeneous robots.

To summarize, a gap in the literature is identified as: (a) the ability for the teleoperation
system to identify robots within a particular team with similar capabilities in order to potentially
allow the same UI configuration to be used for the similar robots, thereby reducing the number of
different UI configurations the teleoperator needs to be familiar with; (b) provision of a single or
systematic approach to teleoperation UI design for individual robots within heterogeneous robot
teams; (c) improve approaches for swapping teleoperational control between different robots within
a heterogeneous robot team; and (d) a systematic approach to generating teleoperation interfaces
including motion control, sensor presentation methods, and UI components, for controlling individual
robots consisting of similar or the same functionality. To take a step towards addressing these
challenges, as well as more generally towards a standard approach to systematically identifying
a minimal set of UI configurations able to control the different robots in a heterogeneous robot team,
this paper introduces the concept of relating robot characteristics to required components of the
teleoperation UI. Throughout this paper, a UI configuration refers to the components required to be
part of the UI in order for the teleoperator to control the necessary functions (such a motion control)
and to receive the necessary information from the required sensory of the individual robot. An example
could be where a UI configuration for teleoperating a UAV may include flight controls and display of
2D camera feed. Given that UAVs often have similar functionality it is worthwhile to consider that
another UAV in the team may be identical or share many of the same characteristics as the above
mentioned UAV. In this case it is worthwhile considering if the same UI configuration could be used for
teleoperation of each UAV respectively. This is considered with the view that by not having different
UI configurations for the two same or similar UAVs, the number of different UI configurations the
operator needs to be familiar with can be reduced. Because the commonality across robots is most
apparent across robots of the same type (i.e., UAV), this paper considers reducing the different UIs
across the same robot type, but lays the foundations for later work to consider common characteristics
across different robot types such as humanoid and UAV.

While the layout and physical setup of the UI extend beyond the scope of this work, the process
for generating UI configurations provide the necessary information regarding what needs to be present
in the UI. The approach presented in this paper identifies the common robot characteristics across
different robots of the same kinematic type using ROS metadata, and in doing so attempts to reduce
the number of different UIs configurations required to control similar robots. Because the approach
uses ROS metadata, it can be later applied during teleoperation to simplify the determination of UI
configurations for the teleoperator’s current situation.

The approach presented in this paper is implemented as a Matlab toolbox, and involves a three
step process. The first step of the process requires users to specify a set of rules relating common robot
characteristics (the robot characteristics informed by ROS metadata) and teleoperation UI components.

Sensors 2017, 17, 587 4 of 19

This first step is only required for initial setup or where rules need updating; once relationship rules are
created, they are reused for different robot teams. Given a defined relationship rule set, the second step
is where selections of robot characteristic for each robot type, e.g., UAV, are made. The third and final
step is where, using the relationship rules and robot characteristic selections for the given robot team,
the toolbox automatically determines the number of different teleoperation UI configurations required
to be designed for each robot type to teleoperate individual robots within the particular robot team.

The remainder of the paper is structured as follows: The background to ROS and the relationship
to teleoperation UIs are presented in Section 2. The design and development of the proposed approach,
including the Matlab toolbox, are presented in Section 3. In Section 4, three test cases are selected in
order to evaluate the performance of the developed Matlab toolbox in determining the number of UI
configurations. Finally, the Conclusion and Future Works will be presented in Section 5.

2. Background

2.1. The Robot Operating System

A powerful feature of ROS is the ability to describe individual robots using description languages
and represent sensory information with its standard message types. In particular, this includes the
Unified Robot Description Format (URDF), Sematic Robotic Description Format (SRDF), and sensor
message definitions. The URDF, SRDF and sensor messages contain a large amount of information
about robot characteristics able to be exploited for different applications including teleoperation.
In ROS, robots are commonly described using the URDF standard [25].

The URDF is an Extensible Markup Language (XML) specification, and in ROS is used to provide
information about the dynamics, kinematics, sensor descriptions, visual representation data, and
collision models for a given robot. To describe a robot in ROS, the URDF descriptor contains seven
XML elements: link, joint, transmission, sensor, model, model state, and Gazebo properties. The first
six elements contain descriptive information able to be used by any package within ROS. The last
element, Gazebo, relates to properties specific to simulation, such as damping and friction, for use in
the Gazebo simulator [26].

The URDF has some limitations, such as the inability to describe a serial chain of joints, commonly
used to represent a robotic arm or manipulator. The SRDF is similar to the URDF but overcomes such
limitations, and contains nine XML elements; robot, group, group state, link, joint, chain, end effector,
virtual joint, disable collisions, passive joint, sphere, and link sphere approximation. A well-known
example using the SRDF is the MoveIt! mobile manipulation package introduced in [12]. In MoveIt!, the
setup wizard allows the creation of an SRDF formatted file for a given robot where one doesn’t already
exist. MoveIt! then uses a robot’s SRDF description to provide interactive teleoperation manipulator
control. Just like in MoveIt!, the SRDF information can be utilized in a range of teleoperation packages.
Aside from the URDF and SRDF description formats, ROS also utilizes a message description language
based on common data types for communicating relevant information. In the ROS message description
language, each line represents a data field and corresponding name as shown below (1).

datatype1 (e.g., int8, uint32, string) ...name1 (e.g., x)
datatype2 (e.g., float, time, bool) ...name1 (e.g., y)

(1)

In ROS, single ROS messages are stored in separate files denoted by “.msg” file extension. The
ROS “sensor_msgs” package contains a range of ROS messages each describing data for a particular
sensor, such as a camera, laser scanner, joystick, or Inertial Measurement Unit (IMU). An application
using these ROS sensor messages is discussed in [21] where this information is used to visualize
different sensor information.

Sensors 2017, 17, 587 5 of 19

2.2. ROS Metadata and Teleoperation User Interface

When designing an interface for the teleoperation of robots, it is important to consider the
relationship between robot capabilities; in particular those relevant to the required task, and the
configuration of the teleoperation UI. It is also important that the teleoperator is provided with
enough sensory information, in an intuitive manner where possible, such that adequate telepresence
is achieved without overloading the teleoperator with too much information. Sensory information
about the remote environment obtained by a robot is commonly presented to the teleoperator visually;
however, interaction with other sensory modalities such as haptic and auditory is less common but
still possible if available hardware permits.

Figure 1 depicts a high-level overview illustrating the typical flow of information between the
human and robot during teleoperation. As shown, sensory information obtained by the robot is
presented to the teleoperator by way of the UI, and control commands are sent to the robot by the
teleoperator through their interaction with the UI. As is apparent, the UI is a critical component of the
teleoperation process. The UI needs to provide the teleoperator with necessary information regarding
the robot and its environment, as well as the ability to provide commands to the robot. This work
proposes an approach allowing users to specify rules representing relationships between certain robot
characteristics (both relating to sensors and control commands) and components of the UI used by
the teleoperator to command the robot team. The developed toolbox then determines the number of
different UI configurations required to teleoperate each individual robot within a team. It is suggested
that such work is a step towards providing a systematic approach to teleoperation UI design by
identifying a reduced set of UI configurations. Additionally, because different robots of the same robot
type can share the same or similar robot characteristics, the number of different UI designs required
to teleoperate a robot team can be reduced. For example, consider a robot team comprising of three
different UAVs, each from a different manufacturer, and each having a single 2D camera and a specific
set of direct flight controls for basic teleoperation. Currently it is likely that the three UAVs each have
different teleoperation UIs, despite having similar capabilities, i.e., all providing the teleoperator with
a view of the remote environment by a robot-mounted 2D camera, and being controlled using direct
flight control. Currently, in order for a teleoperator to control this team of three UAVs they would
need to be familiar with the three different teleoperation UIs. Given the similarities between a team
of different robots of the same type, i.e., the team of three UAVs, it is possible to provide a single
teleoperation UI configuration that could be used for all three UAVs which supports the teleoperator
to transfer their skills between different robots, improving interoperability.

Sensors 2017, 17, 587 5 of 18

configuration of the teleoperation UI. It is also important that the teleoperator is provided with
enough sensory information, in an intuitive manner where possible, such that adequate telepresence
is achieved without overloading the teleoperator with too much information. Sensory information
about the remote environment obtained by a robot is commonly presented to the teleoperator
visually; however, interaction with other sensory modalities such as haptic and auditory is less
common but still possible if available hardware permits.

Figure 1 depicts a high-level overview illustrating the typical flow of information between the
human and robot during teleoperation. As shown, sensory information obtained by the robot is
presented to the teleoperator by way of the UI, and control commands are sent to the robot by the
teleoperator through their interaction with the UI. As is apparent, the UI is a critical component of
the teleoperation process. The UI needs to provide the teleoperator with necessary information
regarding the robot and its environment, as well as the ability to provide commands to the robot.
This work proposes an approach allowing users to specify rules representing relationships between
certain robot characteristics (both relating to sensors and control commands) and components of the
UI used by the teleoperator to command the robot team. The developed toolbox then determines the
number of different UI configurations required to teleoperate each individual robot within a team. It
is suggested that such work is a step towards providing a systematic approach to teleoperation UI
design by identifying a reduced set of UI configurations. Additionally, because different robots of the
same robot type can share the same or similar robot characteristics, the number of different UI designs
required to teleoperate a robot team can be reduced. For example, consider a robot team comprising
of three different UAVs, each from a different manufacturer, and each having a single 2D camera and
a specific set of direct flight controls for basic teleoperation. Currently it is likely that the three UAVs
each have different teleoperation UIs, despite having similar capabilities, i.e., all providing the
teleoperator with a view of the remote environment by a robot-mounted 2D camera, and being
controlled using direct flight control. Currently, in order for a teleoperator to control this team of
three UAVs they would need to be familiar with the three different teleoperation UIs. Given the
similarities between a team of different robots of the same type, i.e., the team of three UAVs, it is
possible to provide a single teleoperation UI configuration that could be used for all three UAVs
which supports the teleoperator to transfer their skills between different robots, improving
interoperability.

Figure 1. High-level information flow for teleoperation applications.

Virtual Reality (VR) and other immersive technologies, while not a focus of this work, may
provide benefits when teleoperating robot teams using traditional peripherals such as monitors,
keyboards, and joysticks. Consider a UAVs having three 2D cameras onboard, and each camera
would commonly be viewed using an individual monitor, or a single monitor by either swapping
camera displays using devices such as keyboard and mice or by tiling video feeds. A VR system
including a tracked Head Mount Display (HMD), and hand controllers such as the HTC Vive or
Oculus Rift, could provide a 360° reconfigurable virtual environment consisting of virtual displays
of any size and orientation for each of the cameras and able to be easily moved or adjusted. Doing so
could overcome limitations associated with physical workspaces such as a control room which may
not be able to be quickly reconfigured as required.

Figure 1. High-level information flow for teleoperation applications.

Virtual Reality (VR) and other immersive technologies, while not a focus of this work, may provide
benefits when teleoperating robot teams using traditional peripherals such as monitors, keyboards,
and joysticks. Consider a UAVs having three 2D cameras onboard, and each camera would commonly
be viewed using an individual monitor, or a single monitor by either swapping camera displays using
devices such as keyboard and mice or by tiling video feeds. A VR system including a tracked Head
Mount Display (HMD), and hand controllers such as the HTC Vive or Oculus Rift, could provide a
360◦ reconfigurable virtual environment consisting of virtual displays of any size and orientation for

Sensors 2017, 17, 587 6 of 19

each of the cameras and able to be easily moved or adjusted. Doing so could overcome limitations
associated with physical workspaces such as a control room which may not be able to be quickly
reconfigured as required.

2.3. Relationship between ROS Metadata and Teleoperation User Interface

In robotics, a robot type is typically described using terminology well-known in the robotics field
and assigned using knowledge and human intuition. Through knowing a robot’s type, a teleoperator
can make educated assumptions about the robot’s capabilities, sensory information, and motion control
options. This allows teleoperators to mentally prepare for teleoperating the selected robot and for the
type of task it would normally perform. Examples of such tasks for a particular robot type include
UAVs, which often provide teleoperators with bird’s eye view of a remote environment and mobile
manipulators which have the ability to traverse ground terrain and interact with objects in the remote
environment [27].

A teleoperation UI able to automatically identify a robot’s type can provide teleoperators with
valuable information aiding them in determining the robot’s capabilities. This determination of robot
type requires type definitions allowing robots to be grouped based on known terminology, as explained
above. As discussed in the previous section, ROS provides kinematic information within the URDF
describing individual robots, in particular the robot’s joint and link tree. Patterns within URDF joint
and link trees, such as that shown in Figure 2, can be used to determine a robot’s type based on
their kinematic configuration. For example, a humanoid robot consists of two arms, two legs, and a
head. A torso robot has similar characteristics to that of a humanoid, with the main difference being
not having legs. In the approach presented in this paper, Robot Kinematic Type is one of the four
robot characteristics able to be selected using the toolbox and is used to group robots with similar
kinematic types.

Sensors 2017, 17, 587 6 of 18

2.3. Relationship between ROS Metadata and Teleoperation User Interface

In robotics, a robot type is typically described using terminology well-known in the robotics
field and assigned using knowledge and human intuition. Through knowing a robot’s type, a
teleoperator can make educated assumptions about the robot’s capabilities, sensory information, and
motion control options. This allows teleoperators to mentally prepare for teleoperating the selected
robot and for the type of task it would normally perform. Examples of such tasks for a particular
robot type include UAVs, which often provide teleoperators with bird’s eye view of a remote
environment and mobile manipulators which have the ability to traverse ground terrain and interact
with objects in the remote environment [27].

A teleoperation UI able to automatically identify a robot’s type can provide teleoperators with
valuable information aiding them in determining the robot’s capabilities. This determination of robot
type requires type definitions allowing robots to be grouped based on known terminology, as
explained above. As discussed in the previous section, ROS provides kinematic information within
the URDF describing individual robots, in particular the robot’s joint and link tree. Patterns within
URDF joint and link trees, such as that shown in Figure 2, can be used to determine a robot’s type
based on their kinematic configuration. For example, a humanoid robot consists of two arms, two
legs, and a head. A torso robot has similar characteristics to that of a humanoid, with the main
difference being not having legs. In the approach presented in this paper, Robot Kinematic Type is
one of the four robot characteristics able to be selected using the toolbox and is used to group robots
with similar kinematic types.

Figure 2. Torso robot joint and link tree using Motoman SDA20D URDF in RViz [22]. represents
joints, 	represents end effectors.

To complete tasks effectively, the teleoperator requires information about the remote
environment obtained through sensors on the robot. A single robot can consist of a vast array of
onboard sensors, and these are typically presented within a UI using visual [28,29], audio [30], and
sometimes force feedback [31] presentation methods. If the type of sensor is known in advance, then
the best suited presentation method for that sensor can be determined and remote information
effectively communicated to the teleoperator in a consistent manner.

In ROS, information about a robot’s onboard sensors is generally contained within two different
forms of metadata: the URDF and sensor messages. The URDF uses the XML sensor element to define
the location of sensors within the robot’s kinematic tree, and also provides basic descriptive
information about each listed sensor. A ROS-supported robot typically provides a list of topics that
publish messages containing information about the robot including sensors. Looking at a robot’s
topic list shows its messages currently being published in ROS, and by searching these topics for a
particular robot, the number and sensor types for an individual robot can be ascertained. Once the

Figure 2. Torso robot joint and link tree using Motoman SDA20D URDF in RViz [22]. Ji represents
joints, ei represents end effectors.

To complete tasks effectively, the teleoperator requires information about the remote environment
obtained through sensors on the robot. A single robot can consist of a vast array of onboard sensors,
and these are typically presented within a UI using visual [28,29], audio [30], and sometimes force
feedback [31] presentation methods. If the type of sensor is known in advance, then the best
suited presentation method for that sensor can be determined and remote information effectively
communicated to the teleoperator in a consistent manner.

In ROS, information about a robot’s onboard sensors is generally contained within two different
forms of metadata: the URDF and sensor messages. The URDF uses the XML sensor element to

Sensors 2017, 17, 587 7 of 19

define the location of sensors within the robot’s kinematic tree, and also provides basic descriptive
information about each listed sensor. A ROS-supported robot typically provides a list of topics that
publish messages containing information about the robot including sensors. Looking at a robot’s
topic list shows its messages currently being published in ROS, and by searching these topics for
a particular robot, the number and sensor types for an individual robot can be ascertained. Once
the sensor information is known, then the method to present the data to the teleoperator can be
assigned. Figure 3 shows an example of how point cloud data can be visualized. We obtained this
data from a simulated Kinect device on a virtual TurtleBot and by using a published “PointCloud2”
message definition described in the ROS “sensor_msgs” package. The point cloud data was then
post-processed using the OctoMap method from [15] available in the OctoMap ROS package to create
a stable voxelized representation of the simulated remote environment. This was conducted as part of
this paper’s exploration into sensors able to share the same visual presentation methods.

Sensors 2017, 17, 587 7 of 18

sensor information is known, then the method to present the data to the teleoperator can be assigned.
Figure 3 shows an example of how point cloud data can be visualized. We obtained this data from a
simulated Kinect device on a virtual TurtleBot and by using a published “PointCloud2” message
definition described in the ROS “sensor_msgs” package. The point cloud data was then post-processed
using the OctoMap method from [15] available in the OctoMap ROS package to create a stable
voxelized representation of the simulated remote environment. This was conducted as part of this
paper’s exploration into sensors able to share the same visual presentation methods.

Figure 3. Visualisation of simulated TurtleBot Kinect sensor point cloud in RViz [22], post-processed
using OctoMap [15] method available in ROS OctoMap package.

Teleoperation requires the teleoperator to communicate the required commands to the remote
robot. Depending on the requirements of a given task and the robot’s capabilities, the teleoperator
can either control the robot through pure teleoperation or with the robot exercising some degree of
autonomy. Regardless of the level of autonomy, with the exception of a fully autonomous robot, the
teleoperation UI is used to communicate with the remote robot so that required tasks can be
completed.

ROS-supported robots are able to be teleoperated using their respective teleoperation packages
that can commonly be identified by a “teleop” postfix. These packages are typically created by the
developers and researchers responsible for the robot’s implementation into ROS. Teleoperation
packages typically comprise information about the different teleoperation strategies such as driving,
flying, or waypoint control used for teleoperating the specific robot. Unfortunately, there is currently
no standard approach to representing teleoperation information for different robots within ROS. As
such, in order to gain an understanding of typical teleoperation approaches for different types of
robots, a survey on currently supported ROS robots and other common teleoperation techniques was
conducted and listed in Table 1.

3. Materials and Methods

Matlab Toolbox

The previous section discusses how ROS metadata contains different robot information
including kinematics, the number and types of sensors, and motion control strategies. This section
explores how this metadata is used to develop a Matlab toolbox for automatically determining and
reducing the number of different teleoperation UI configurations required to control individual
robots within a robot team. This process considers each separate robot type one at a time, and
identifies the number of different teleoperation UI configurations required. As discussed earlier, the

Figure 3. Visualisation of simulated TurtleBot Kinect sensor point cloud in RViz [22], post-processed
using OctoMap [15] method available in ROS OctoMap package.

Teleoperation requires the teleoperator to communicate the required commands to the remote
robot. Depending on the requirements of a given task and the robot’s capabilities, the teleoperator
can either control the robot through pure teleoperation or with the robot exercising some degree of
autonomy. Regardless of the level of autonomy, with the exception of a fully autonomous robot, the
teleoperation UI is used to communicate with the remote robot so that required tasks can be completed.

ROS-supported robots are able to be teleoperated using their respective teleoperation packages
that can commonly be identified by a “teleop” postfix. These packages are typically created by
the developers and researchers responsible for the robot’s implementation into ROS. Teleoperation
packages typically comprise information about the different teleoperation strategies such as driving,
flying, or waypoint control used for teleoperating the specific robot. Unfortunately, there is currently
no standard approach to representing teleoperation information for different robots within ROS.
As such, in order to gain an understanding of typical teleoperation approaches for different types of
robots, a survey on currently supported ROS robots and other common teleoperation techniques was
conducted and listed in Table 1.

Sensors 2017, 17, 587 8 of 19

3. Materials and Methods

Matlab Toolbox

The previous section discusses how ROS metadata contains different robot information including
kinematics, the number and types of sensors, and motion control strategies. This section explores how
this metadata is used to develop a Matlab toolbox for automatically determining and reducing the
number of different teleoperation UI configurations required to control individual robots within a
robot team. This process considers each separate robot type one at a time, and identifies the number
of different teleoperation UI configurations required. As discussed earlier, the similarity in function
of individual robot types is considered to look for opportunity to provide the same UI configuration
for similar robots, and this is based on the relationship rules and selected robot characteristics as
defined by the user. ROS metadata is used in two different ways, the first being to inform the choice of
different robot characteristics able to be selected when using the toolbox, and the second is to identify
a teleoperated robot’s currently selected characteristics so that the required UI configuration can be
provided during teleoperation. The former occurs during use of the Matlab toolbox, and the latter
in real-time. Real-time use extends beyond the scope of this particular paper, but would be where
ROS-supported robots are connected to a teleoperation system, and different UI configurations are
automatically assigned using the robot’s ROS metadata. The layout and physical orientation of the UI
is outside of the scope of this paper, but the UI configuration provides essential information about the
components needed within the UI.

The toolbox determines the number of different UI configurations required to operate the robot
team, considered type-by-type, as determined using rules defining the relationship between robot
characteristics (informed by ROS metadata) and UI components. The number of UI configurations
determined by the toolbox provide at least one UI configuration to be used by each individual robot
within the team. By assigning the same UI configurations to the same or similar robots, the number
of overall UI configurations can be reduced for each robot type where appropriate, and the overall
robot team.

An example of where the same UI configuration cannot be used for two robots of the same type
would be where a robot team comprises both a UGV with direct driving control and 2D camera vision,
and another a UGV that has waypoint control and 2D camera vision. Because they require different
motion control inputs, i.e., have different Robot Motion Control Characteristics, using the same UI
configuration is not possible.

Information regarding the types of sensors onboard a robot, and consequently the components
required in a UI configuration can be obtained from ROS metadata. For instance, 2D and 3D cameras
could both use a visual display as the necessary UI component to present the camera vision, whereas a
360◦ camera would likely be better served by an appropriate geometry such as a sphere to display the
360◦ vision correctly. Using the same visual presentation methods for similar sensors across different
robots is another example of how the same or similar robot characteristics can be presented by the
same UI configurations. These relationship rules are updatable, allowing for future changes to the
type of sensors and motion control strategies that may be introduced by the ROS open-source and
robotics’ communities.

Once relationship rules are defined, selections specifying the characteristics of robots and those
that describe a particular robot team can be made using the Graphical User Interface (GUI) shown in
Figure 8. These selections define robot characteristic combinations, referred to as valid robots, which
dictate the required number of different teleoperation UI configurations that need to be determined to
represent each different robot characteristic combination within the team. When different robots of the
same Robot Kinematic Type share the same or similar robot characteristics, the system can reduce the
number of teleoperation UI configuration designs required using previous determined relationship
rules by assigning the same teleoperation UI configuration. There are four robot characteristics to be

Sensors 2017, 17, 587 9 of 19

specified, as shown in Figure 4, and the choice of these four characteristics and their constituents were
informed through surveying ROS supported robots and other available data.

Sensors 2017, 17, 587 8 of 18

similarity in function of individual robot types is considered to look for opportunity to provide the
same UI configuration for similar robots, and this is based on the relationship rules and selected robot
characteristics as defined by the user. ROS metadata is used in two different ways, the first being to
inform the choice of different robot characteristics able to be selected when using the toolbox, and the
second is to identify a teleoperated robot’s currently selected characteristics so that the required UI
configuration can be provided during teleoperation. The former occurs during use of the Matlab
toolbox, and the latter in real-time. Real-time use extends beyond the scope of this particular paper,
but would be where ROS-supported robots are connected to a teleoperation system, and different UI
configurations are automatically assigned using the robot’s ROS metadata. The layout and physical
orientation of the UI is outside of the scope of this paper, but the UI configuration provides essential
information about the components needed within the UI.

The toolbox determines the number of different UI configurations required to operate the robot
team, considered type-by-type, as determined using rules defining the relationship between robot
characteristics (informed by ROS metadata) and UI components. The number of UI configurations
determined by the toolbox provide at least one UI configuration to be used by each individual robot
within the team. By assigning the same UI configurations to the same or similar robots, the number
of overall UI configurations can be reduced for each robot type where appropriate, and the overall
robot team.

An example of where the same UI configuration cannot be used for two robots of the same type
would be where a robot team comprises both a UGV with direct driving control and 2D camera
vision, and another a UGV that has waypoint control and 2D camera vision. Because they require
different motion control inputs, i.e., have different Robot Motion Control Characteristics, using the
same UI configuration is not possible.

Information regarding the types of sensors onboard a robot, and consequently the components
required in a UI configuration can be obtained from ROS metadata. For instance, 2D and 3D cameras
could both use a visual display as the necessary UI component to present the camera vision, whereas
a 360° camera would likely be better served by an appropriate geometry such as a sphere to display
the 360° vision correctly. Using the same visual presentation methods for similar sensors across
different robots is another example of how the same or similar robot characteristics can be presented
by the same UI configurations. These relationship rules are updatable, allowing for future changes to
the type of sensors and motion control strategies that may be introduced by the ROS open-source and
robotics’ communities.

Once relationship rules are defined, selections specifying the characteristics of robots and those
that describe a particular robot team can be made using the Graphical User Interface (GUI) shown in
Figure 8. These selections define robot characteristic combinations, referred to as valid robots, which
dictate the required number of different teleoperation UI configurations that need to be determined
to represent each different robot characteristic combination within the team. When different robots
of the same Robot Kinematic Type share the same or similar robot characteristics, the system can
reduce the number of teleoperation UI configuration designs required using previous determined
relationship rules by assigning the same teleoperation UI configuration. There are four robot
characteristics to be specified, as shown in Figure 4, and the choice of these four characteristics and
their constituents were informed through surveying ROS supported robots and other available data.

Figure 4. Flowchart overviewing the Matlab toolbox teleoperation UI configuration assignment based
on robot characteristic.
Figure 4. Flowchart overviewing the Matlab toolbox teleoperation UI configuration assignment based
on robot characteristic.

When the selections specifying the robot characteristics have been made, a list containing all valid
robot combinations matching these characteristics is defined. Figure 4 shows how all valid robots are
assigned a UI configuration. This assignment is based on the rules describing the relationship between
robot characteristics and components of the UI. For example, all robots that are of a manipulator
Robot Kinematic Type a 2D camera Sensor Type and end effector Robot Motion Control with less than
5 sensors can be assigned with the same UI configuration. The default UI configuration is assigned
when an invalid robot configuration is encountered. An invalid robot occurs when the system is
presented with a robot that has an unknown characteristic combination, and therefore is unable to
assign a known UI configuration. The default UI configuration contains all possible UI components
that the system has the ability to provide, but is unable to assign an appropriate UI configuration as
opposed to a valid robot. An example would be presenting the system with characteristic definitions
described in Table 2 with a quadruped that had 360 camera vision. This system described in Table 2
would not be able to determine a quadruped Robot Kinematic Type, so therefore it can’t assign a known
UI configuration; in this case a default UI configuration would be assigned. This UI configuration
would search the invalid robot for known characteristics such as the 360 camera vision or other
characteristics in Table 2, and provide relevant UI components. It is intended that in future work,
when a teleoperator is switching between robots or even characteristics within the same robot during
teleoperation, that the system can assign the required UI configuration if the robot is considered valid.
These individual UI configurations for the connected robots will be based on the robot’s characteristics
identified by its ROS metadata as presented in this paper.

Each UI configuration is associated with a whole number value in consecutive order with the
default UI configuration assigned last. The data representing each robot characteristic needs to be
formatted appropriately so that it can be represented numerically, with the numerical representation
of each characteristic providing the required range. The input and output formats for each of the
four robot characteristic types are shown in Figure 5 where rn represents Robot Kinematic Type, rmax

the maximum number of Robot Kinematic Types, mn the method for Robot Motion Control, mmax

the maximum number of methods for Robot Motion Control, sn the Sensor Type, smax the maximum
number of Sensor Types, in the No. of Sensors, imax the maximum number of No. of Sensors, uii
appropriate UI configuration, uimax the maximum number of appropriate UI configurations, and
uidefault represents a default UI configuration assigned to invalid robot characteristic combinations.

Sensors 2017, 17, 587 10 of 19

Sensors 2017, 17, 587 9 of 18

When the selections specifying the robot characteristics have been made, a list containing all
valid robot combinations matching these characteristics is defined. Figure 4 shows how all valid
robots are assigned a UI configuration. This assignment is based on the rules describing the
relationship between robot characteristics and components of the UI. For example, all robots that are
of a manipulator Robot Kinematic Type a 2D camera Sensor Type and end effector Robot Motion
Control with less than 5 sensors can be assigned with the same UI configuration. The default UI
configuration is assigned when an invalid robot configuration is encountered. An invalid robot
occurs when the system is presented with a robot that has an unknown characteristic combination,
and therefore is unable to assign a known UI configuration. The default UI configuration contains all
possible UI components that the system has the ability to provide, but is unable to assign an
appropriate UI configuration as opposed to a valid robot. An example would be presenting the
system with characteristic definitions described in Table 2 with a quadruped that had 360 camera
vision. This system described in Table 2 would not be able to determine a quadruped Robot
Kinematic Type, so therefore it can’t assign a known UI configuration; in this case a default UI
configuration would be assigned. This UI configuration would search the invalid robot for known
characteristics such as the 360 camera vision or other characteristics in Table 2, and provide relevant
UI components. It is intended that in future work, when a teleoperator is switching between robots
or even characteristics within the same robot during teleoperation, that the system can assign the
required UI configuration if the robot is considered valid. These individual UI configurations for the
connected robots will be based on the robot’s characteristics identified by its ROS metadata as
presented in this paper.

Each UI configuration is associated with a whole number value in consecutive order with the
default UI configuration assigned last. The data representing each robot characteristic needs to be
formatted appropriately so that it can be represented numerically, with the numerical representation
of each characteristic providing the required range. The input and output formats for each of the four
robot characteristic types are shown in Figure 5 where rn represents Robot Kinematic Type, rmax the
maximum number of Robot Kinematic Types, mn the method for Robot Motion Control, mmax the
maximum number of methods for Robot Motion Control, sn	the Sensor Type, smax the maximum
number of Sensor Types, in the No. of Sensors, imax the maximum number of No. of Sensors,
appropriate UI configuration, uimax the maximum number of appropriate UI configurations, and uidefault represents a default UI configuration assigned to invalid robot characteristic combinations.

Robot Kinematic Type Robot Motion Control Sensor Types No. of Sensors r1,	rn…rmax	 	 m1,	mn…mmax s1,	sn…smax i1,	in…imax	

User Interface uii,	uin…uimax,	uidefault

Figure 5. Matlab toolbox input and output formats.

In this work, the Robot Kinematic Type characteristic has six possible selections: UAV, UGV,
Manipulator, Mobile manipulator, Torso, and Humanoid. These Robot Kinematic Types were chosen
based on surveying common robots and considering common terminology used, listed in Table 1 (in
results section below). It is important to note that this list is not fixed and could be adjusted to include
different Robot Kinematic Types, such as quadruped robots. The specified Robot Kinematic Type is
used by the relationship rule base to configure a smaller set of corresponding UI configurations for a
particular Robot Kinematic Type due to their kinematic similarities. For example, all UI
configurations assigned for robots that are of the UAV Robot Kinematic Type may include a virtual
cockpit, while for a UGV’s the UI configuration might include a virtual driver’s seat. The Robot
Kinematic Type choices are determined using kinematic information and robot type definitions that

Figure 5. Matlab toolbox input and output formats.

In this work, the Robot Kinematic Type characteristic has six possible selections: UAV, UGV,
Manipulator, Mobile manipulator, Torso, and Humanoid. These Robot Kinematic Types were chosen
based on surveying common robots and considering common terminology used, listed in Table 1 (in
results section below). It is important to note that this list is not fixed and could be adjusted to include
different Robot Kinematic Types, such as quadruped robots. The specified Robot Kinematic Type is
used by the relationship rule base to configure a smaller set of corresponding UI configurations for a
particular Robot Kinematic Type due to their kinematic similarities. For example, all UI configurations
assigned for robots that are of the UAV Robot Kinematic Type may include a virtual cockpit, while
for a UGV’s the UI configuration might include a virtual driver’s seat. The Robot Kinematic Type
choices are determined using kinematic information and robot type definitions that are then formatted
into a numerical range using an associative array as depicted in Figure 6. While this list currently
includes six different Robot Kinematic Types, it could be reconfigured to include extra Robot Kinematic
Types through changing the robot definition types. For example, if a particular robot team included
quadruped robots then its unique kinematic structure could be defined within the robot type definitions
and listed as a possible Robot Kinematic Type.

Sensors 2017, 17, 587 10 of 18

are then formatted into a numerical range using an associative array as depicted in Figure 6. While
this list currently includes six different Robot Kinematic Types, it could be reconfigured to include
extra Robot Kinematic Types through changing the robot definition types. For example, if a particular
robot team included quadruped robots then its unique kinematic structure could be defined within
the robot type definitions and listed as a possible Robot Kinematic Type.

Figure 6. Formatting Robot Kinematic Type data, ji 	 represents robot joints, x,	y,	z represent joint
locations, and α,	β,	γ represent robot joint rotations.

The Robot Motion Control characteristic represents different motion control methods such as
direct flight or waypoint controls, defined such that each method requires a component within the
UI. Robot Motion Control may be applicable across different Robot Kinematic Types, such as
individual joint control which could be used for controlling both Humanoid and Torso Robot
Kinematic Types. Similar to the Robot Kinematic Type, the Robot Motion Control characteristic is
also represented by an associative array after being converted to numerical values of an appropriate
numerical range.

As part of defining the rules representing the relationship between robot characteristics and
components of the UI, Sensor Types requiring similar presentation methods can be grouped together
(Figure 7). The presentation mode (right hand side of Figure 7) for sensor groupings represents the
UI component which will be provided if a particular Sensor Type is specified in the robot
characteristics. An example is 2D and 3D cameras that require similar sensor presentation methods,
the mono and stereoscopic difference withstanding, and can both be displayed within a visual display
in the UI configuration.

Figure 7. Grouping Sensor Types into sensor presentation groups using rules determined in this work.

The relationship rules are used to implement logic based on the specified robot characteristics.
The No. of Sensors characteristic specifies the maximum number of sensors onboard any given robot
included in the selected Robot Kinematic Type. Considering the No. of Sensors characteristic, they
can be clustered where a large amount is present on an individual robot. Clustering the sensors into

Figure 6. Formatting Robot Kinematic Type data, ji represents robot joints, x, y, z represent joint
locations, and α, β, γ represent robot joint rotations.

The Robot Motion Control characteristic represents different motion control methods such as
direct flight or waypoint controls, defined such that each method requires a component within the UI.
Robot Motion Control may be applicable across different Robot Kinematic Types, such as individual
joint control which could be used for controlling both Humanoid and Torso Robot Kinematic Types.
Similar to the Robot Kinematic Type, the Robot Motion Control characteristic is also represented by an
associative array after being converted to numerical values of an appropriate numerical range.

As part of defining the rules representing the relationship between robot characteristics and
components of the UI, Sensor Types requiring similar presentation methods can be grouped together
(Figure 7). The presentation mode (right hand side of Figure 7) for sensor groupings represents the UI
component which will be provided if a particular Sensor Type is specified in the robot characteristics.

Sensors 2017, 17, 587 11 of 19

An example is 2D and 3D cameras that require similar sensor presentation methods, the mono
and stereoscopic difference withstanding, and can both be displayed within a visual display in the
UI configuration.

Sensors 2017, 17, 587 10 of 18

are then formatted into a numerical range using an associative array as depicted in Figure 6. While
this list currently includes six different Robot Kinematic Types, it could be reconfigured to include
extra Robot Kinematic Types through changing the robot definition types. For example, if a particular
robot team included quadruped robots then its unique kinematic structure could be defined within
the robot type definitions and listed as a possible Robot Kinematic Type.

Figure 6. Formatting Robot Kinematic Type data, ji 	 represents robot joints, x,	y,	z represent joint
locations, and α,	β,	γ represent robot joint rotations.

The Robot Motion Control characteristic represents different motion control methods such as
direct flight or waypoint controls, defined such that each method requires a component within the
UI. Robot Motion Control may be applicable across different Robot Kinematic Types, such as
individual joint control which could be used for controlling both Humanoid and Torso Robot
Kinematic Types. Similar to the Robot Kinematic Type, the Robot Motion Control characteristic is
also represented by an associative array after being converted to numerical values of an appropriate
numerical range.

As part of defining the rules representing the relationship between robot characteristics and
components of the UI, Sensor Types requiring similar presentation methods can be grouped together
(Figure 7). The presentation mode (right hand side of Figure 7) for sensor groupings represents the
UI component which will be provided if a particular Sensor Type is specified in the robot
characteristics. An example is 2D and 3D cameras that require similar sensor presentation methods,
the mono and stereoscopic difference withstanding, and can both be displayed within a visual display
in the UI configuration.

Figure 7. Grouping Sensor Types into sensor presentation groups using rules determined in this work.

The relationship rules are used to implement logic based on the specified robot characteristics.
The No. of Sensors characteristic specifies the maximum number of sensors onboard any given robot
included in the selected Robot Kinematic Type. Considering the No. of Sensors characteristic, they
can be clustered where a large amount is present on an individual robot. Clustering the sensors into

Figure 7. Grouping Sensor Types into sensor presentation groups using rules determined in this work.

The relationship rules are used to implement logic based on the specified robot characteristics.
The No. of Sensors characteristic specifies the maximum number of sensors onboard any given robot
included in the selected Robot Kinematic Type. Considering the No. of Sensors characteristic, they
can be clustered where a large amount is present on an individual robot. Clustering the sensors into
separate clusters, as detailed in Equation (2), can reduce the physical space required to represent the
UI components corresponding to the sensors. Doing this can be thought of as analogous to the use
of folders in Microsoft Windows to group files of a common theme to save UI space. Using (2), if an
individual robot is deemed to have no more than fifty sensors then there will always be five or less
components referencing them in the teleoperation UI, represented either individually or as clusters.
For example, if the No. of Sensors on a robot was three, they would be represented individually
within the UI; whereas for a robot containing ten sensors, they would be clustered into two individual
clusters. If a robot has more than the maximum No. of Sensors characteristic, then it is considered
invalid and a default UI configuration is assigned as per Figure 4. While the design of the number
of UI configurations determined using the Matlab toolbox is beyond the scope of this paper, future
work could include different techniques for the organization of clusters such as alphabetically, most
commonly used, or even by the amount of data needing to be transmitted. For example, a video UI
component could be differentiated from an auditory component based on the difference in the amount
of data required to be transmitted:

g(i) =

i 1 < i ≤ 5
i/2 6 < i ≤ 10
i/3 11 < i ≤ 15
i/5 16 < i ≤ 25
i/10 25 < imax

(2)

where g(i) represents the number of clusters rounded up to the nearest whole number, i represents the
No. of Sensors robot characteristic, and imax represents the maximum No. of Sensors.

Once the four robot characteristics have been specified using the toolbox GUI (Figure 8), the
toolbox determines all possible UI configurations based on the previously defined rules. For each
possible robot characteristic combination for all individual robots with the described robot team, this
UI configuration list can be searched to find the required UI configuration for a particular characteristic
combination, for example flying a UAV with waypoint control and viewing a 2D camera view. The
process of finding the corresponding UI configuration from the list and displaying it to the teleoperator
can be performed in real-time during teleoperation. In fact this is the main benefit of using ROS

Sensors 2017, 17, 587 12 of 19

metadata to identify different robot characteristics during teleoperation, as this allows the system to
identify these robot characteristic changes when switching between different robots within a team.
For example, consider a very small robot team that consists of two robots, a UAV and UGV. Now
let’s consider the UAV has flight and waypoint Robot Motion Controls and a single 2D camera as
Sensor Type, while the UGV consists of drive controls and a Red Green Blue-Depth (RGB-D) camera
Sensor Type. Using the proposed system, these robot characteristics would be represented by three
UI configurations; first configuration would be the UAV with flight control and 2D camera view,
then the UAV with waypoint control and 2D camera, and finally UGV with drive control and RGB-D
camera. Both robots in the team have less than five sensors, therefore sensor cluster is the same. Now
during real-time operation when the teleoperator switches between the robots, or even the Robot
Motion Controls on the UAV, the system will provide the corresponding UI configuration using the
current characteristic combination as selected by the teleoperator. While the process of finding the
corresponding UI configuration from the list and displaying it to the teleoperator can be in real-time,
the focus of this paper is on determining the number of different UI configurations required to be
designed for use by the teleoperator to teleoperate different robots within the team when using
the system.

Sensors 2017, 17, 587 12 of 18

a team by sharing the UI configurations, such as displaying 2D cameras, and to improve the
teleoperator’s overall situational awareness.

Figure 8. Matlab toolbox characteristic selections.

Figure 8 shows the toolbox GUI used to select robot characteristics and the selections shown are
for the UAV Robot Kinematic Type. The UAV characteristic selections shown include waypoint and
direct flight Robot Motion Controls. This selection was made based on the assumption that a UAV
may support waypoint and/or direct flight Robot Motion Control methods. In terms of Sensor Types,
all types except Sensor Group 4 (force feedback) have been selected, constituting four sensor
groupings as discussed earlier. The maximum No. of Sensors of five was specified, and given (2) this
means that they will be individually represented within the UI configurations.

As discussed earlier, once these selections are made for the selected Robot Kinematic Type, and
the save button pressed, the toolbox determines the number of UI configurations required. The
toolbox first determines all valid robot combinations based on robot characteristics selections, after
which the number of different UI configurations required to control individual robots within the
team is determined using relationship rules. In the case of Figure 8, the toolbox determined ninety
valid UAV combinations and requires eight different teleoperation UI configurations. The toolbox
keeps a system total of both valid robot combinations and different UI configurations as each Robot
Kinematic Type are defined and save button pressed. At the end of robot characteristic selections for
all required Robot Kinematic Types, the total number of UI configurations required are determined
for the particular robot team.

4. Results and Discussion

The relationship between UI components and robot characteristics in the Matlab toolbox needs
to be defined before the selection of characteristics defining the robot team, and is done by defining
the relationship rules. In order to provide logical definitions and inclusions for the definition of the
characteristics able to be selected (summarized in Table 1), previous research was surveyed and ROS
metadata analyzed. This list of selections is not fixed and can be adjusted to include different Robot
Kinematic Types, Sensor Types, and Robot Motion Control Methods. Using the definitions listed in

Figure 8. Matlab toolbox characteristic selections.

The number of different UI configurations are reduced using the same teleoperation UI
configuration for robots within the same Robot Kinematic Type that have the same or similar robot
characteristics. The degree to which the UI configurations can be used for different robot teams
depends on the way in which the relationship rules are specified; but by reducing the number of
different UI configurations required, it can contribute to reducing both teleoperation UI design and
development time, as well as providing transferable skills for interoperability of different robots.
This consistency aims to help improve switching teleoperational control between different robots
within a team by sharing the UI configurations, such as displaying 2D cameras, and to improve the
teleoperator’s overall situational awareness.

Sensors 2017, 17, 587 13 of 19

Figure 8 shows the toolbox GUI used to select robot characteristics and the selections shown are
for the UAV Robot Kinematic Type. The UAV characteristic selections shown include waypoint and
direct flight Robot Motion Controls. This selection was made based on the assumption that a UAV may
support waypoint and/or direct flight Robot Motion Control methods. In terms of Sensor Types, all
types except Sensor Group 4 (force feedback) have been selected, constituting four sensor groupings as
discussed earlier. The maximum No. of Sensors of five was specified, and given (2) this means that
they will be individually represented within the UI configurations.

As discussed earlier, once these selections are made for the selected Robot Kinematic Type, and
the save button pressed, the toolbox determines the number of UI configurations required. The toolbox
first determines all valid robot combinations based on robot characteristics selections, after which
the number of different UI configurations required to control individual robots within the team is
determined using relationship rules. In the case of Figure 8, the toolbox determined ninety valid UAV
combinations and requires eight different teleoperation UI configurations. The toolbox keeps a system
total of both valid robot combinations and different UI configurations as each Robot Kinematic Type
are defined and save button pressed. At the end of robot characteristic selections for all required Robot
Kinematic Types, the total number of UI configurations required are determined for the particular
robot team.

4. Results and Discussion

The relationship between UI components and robot characteristics in the Matlab toolbox needs
to be defined before the selection of characteristics defining the robot team, and is done by defining
the relationship rules. In order to provide logical definitions and inclusions for the definition of the
characteristics able to be selected (summarized in Table 1), previous research was surveyed and ROS
metadata analyzed. This list of selections is not fixed and can be adjusted to include different Robot
Kinematic Types, Sensor Types, and Robot Motion Control Methods. Using the definitions listed
in Table 1, ranges are assigned to the Robot Kinematic Types, Robot Motion Controls, and Type of
Sensors characteristics. The relationship rules assigned to the last robot characteristic, No. of Sensors,
align with the five possible cluster arrangements in (2). In relation to this paper, the total number of
possible teleoperation UI configurations can be determined using the following ranges: rmax = 6,
mmax = 6, smax = 5, and imax = 5, as shown in (3). This value will always be less than all valid
robot characteristic combinations due to the reduction obtained by similar robot characteristics of the
same Robot Kinematic Type, resulting in the same UI configuration used for more than one robot
characteristic combination:

T = rmax mmax smax imax = 900 (3)

where T represents all possible UI configurations, rmax the maximum number of Robot Kinematic
Types, mmax the maximum number of Robot Motion Controls, smax the maximum number of Sensor
Types groups, and imax the maximum number of No. of Sensor.

In order to show the benefits of the approach embedded in the Matlab toolbox, three test cases
are explored as described in Table 2. Each case successively increases the number of Robot Kinematic
Types included and corresponding Robot Motion Control methods, Sensor Types, and the No. of
Sensors characteristics selected. These characteristic selections were chosen to show an example of
how a user would use the toolbox to determine the number of different teleoperation UI configurations
required to be designed to teleoperate each individual robot within the robot team.

Sensors 2017, 17, 587 14 of 19

Table 1. Definitions defining the robot characteristics used in the Matlab toolbox.

Robot Kinematic Type (ri)

UAV Flying robot that includes quadcopters, hexacopters, and octocopters [32–34].

UGV Mobile robot that doesn’t contain any manipulators and uses either wheels or special tracks in
order to navigate their terrain [35,36].

Manipulator Replicates an arm represented by a chain of joints between its base and end effector [37].

Mobile Manipulator A mobile manipulator is any robot that has at least one manipulator and has the ability to
move around their environment using a mobile base [38,39].

Torso
A torso robot typically replicates the upper half of a human body; it includes more than one
manipulator, and doesn’t have the ability to navigate its environment through the likes of a
mobile base [40].

Humanoid A humanoid robot is one that contains at least two arms, two legs, and a head closely
replicating a human being; it may also consist of a waist joint [41].

Sensor Types (si)

2D and 3D Cameras Provides limited FoV, 3D cameras provide the added benefit of stereoscopic vision [28].

360◦ Camera Provides complete 360◦ FoV generally overlaid on spherical geometry best viewed using a
Head Mount Display (HMD) [29].

Speaker and
Microphone

Auditory sensors providing teleoperators the ability to listen and or communicate using
sound [30].

Force Sensor Provide teleoperators force feedback information using a haptic device for physical
interactions [31].

2D and 3D Scanning Provide visual representation of the remote environment using point clouds that can be
processed into solid objects and best viewed using a HMD similar to 360◦ cameras [15].

Robot Motion Control (mi)

Joint Pure teleoperation used for individual joint control [22].

Flight Used to fly UAVs as a pure teleoperation with yaw, pitch and roll controls.

Driving Used to control UGV, mobile bases, etc. typically has backward, forward and turning controls.

Walking Pure teleoperation method for a teleoperator to control the direction and pace of a given
humanoid [42].

End Effector Used to position the end effectors of manipulators; could be used in combination of object
identification to pick and place particular objects [12].

Waypoint
Waypoint provides the teleoperator the ability to select a particular location for example a GPS
coordinate on a map; the robot then has the ability to navigate to the point using its own path
finding techniques [43].

Case 1 consists of UAVs that may contain 2D, 360◦, or RGB-D cameras, direct flight and/or
waypoint Robot Motion Control methods, and have up to five onboard sensors. This results in thirty
valid robot characteristic combinations with six different UI configurations required to teleoperate
each individual robot in the team. As can be observed, for the specified relationship rules, the number
of different UI configurations is far less than the number of robot combinations. This is because
rather than providing an individual UI for each different valid robot that is represented by each
robot characteristic combination as determined by characteristic selections, characteristics are shared
as defined by the relationship rules and can therefore be teleoperated with a reduced set of six UI
configurations. Case 2 uses the same information as Case 1, with the addition of UGVs that may
contain a 2D camera, Light Detection and Ranging (LIDAR), speaker and microphones Sensor Types
with a maximum of ten sensors onboard with direct driving and/or waypoint Robot Motion Control
methods. This results in 110 valid robot combinations with eighteen different UI configurations.
The final case adds Mobile Manipulator and Humanoid Robot Kinematic Types with corresponding
characteristics detailed in Table 2, resulting in 820 valid robot combinations and nighty nine different
UI configurations. The results for each case are illustrated in Figure 9, with shaded areas representing
regions of numerically continuous robot characteristics selections. These results show a significant

Sensors 2017, 17, 587 15 of 19

difference between the number of robot characteristic combinations and UI configurations by sharing
common characteristics as discussed throughout this paper.

Table 2. Example test cases showing robot characteristic selections for each Robot Kinematic Type.

Case Robot Kinematic Type Robot Motion Control Sensor Types No. of Sensors

1 UAV Flight
Waypoint

2D Camera
360◦ Camera

RGB-D Camera
5

2
UAV Flight

Waypoint

2D Camera
360◦ Camera

RGB-D Camera
5

UGV Driving
Waypoint

2D Camera
LIDAR
Speaker

Microphone

10

3

UAV Flight
Waypoint

2D Camera
360◦ Camera

RGB-D Camera
5

UGV Driving
Waypoint

2D Camera
LIDAR
Speaker

Microphone

10

Mobile Manipulator

Joint
Driving

End Effector
Waypoint

2D Camera
RGD-D Camera

LIDAR
Speaker

Microphone
Force Sensor

13

Humanoid
Joint

Walking
Waypoint

2D Camera
3D Camera

LIDAR
RGB-D Camera

Speaker
Microphone

25

As demonstrated by these three Cases, the number of different teleoperation UI configurations
required to teleoperate the robot team can be determined based on selected robot characteristics
required to control possible robot team configurations. These UI configurations represent the number
of robot characteristic combinations within the team as reduced using relationship rules. These
relationship rules provide users an efficient way to define a systematic approach to teleoperation UI
design, reducing the number of teleoperation UI designs as opposed to providing a UI configuration
for each individual robot within a team that is typically the case. This approach also provides
teleoperators with consistent and familiar UI configurations for different robots from the same Robot
Kinematic Type by sharing similar characteristics. This approach improves the teleoperation systems
overall interoperability and increases the amount of transferable skills, improving robot switching
and situation awareness. Using the toolbox relationship rules also lends itself to later including
new robot characteristics that could be introduced by the ROS or robotics community, helping to
future-proof against the introduction of new Robot Motion Controls, Sensor Types, or even Robot
Kinematic Types characteristics.

Sensors 2017, 17, 587 16 of 19
Sensors 2017, 17, 587 15 of 18

(a) (b)

(c)

Figure 9. Radar plots for toolbox results for (a) Case 1, (b) Case 2, and (c) Case 3. Shaded areas
represent characteristic selections which are numerically continuous.

As demonstrated by these three Cases, the number of different teleoperation UI configurations
required to teleoperate the robot team can be determined based on selected robot characteristics
required to control possible robot team configurations. These UI configurations represent the number
of robot characteristic combinations within the team as reduced using relationship rules. These
relationship rules provide users an efficient way to define a systematic approach to teleoperation UI
design, reducing the number of teleoperation UI designs as opposed to providing a UI configuration
for each individual robot within a team that is typically the case. This approach also provides
teleoperators with consistent and familiar UI configurations for different robots from the same Robot
Kinematic Type by sharing similar characteristics. This approach improves the teleoperation systems
overall interoperability and increases the amount of transferable skills, improving robot switching
and situation awareness. Using the toolbox relationship rules also lends itself to later including new
robot characteristics that could be introduced by the ROS or robotics community, helping to future-
proof against the introduction of new Robot Motion Controls, Sensor Types, or even Robot Kinematic
Types characteristics.

Figure 9. Radar plots for toolbox results for (a) Case 1, (b) Case 2, and (c) Case 3. Shaded areas
represent characteristic selections which are numerically continuous.

5. Conclusions and Future Work

This paper proposes an approach relating robot characteristics and teleoperation UI design to
help develop a systematic approach to reduce the number of teleoperation UI configuration required
to teleoperate each individual robot within a heterogeneous robot teams. A Matlab toolbox was
developed allowing users to define relationship rules (informed by ROS metadata and teleoperator
experience) between robot characteristics and UI components. The toolbox then identifies a number
of different teleoperation UI configurations required for the given robot team based on characteristic
selections. The relationship rules reduce the number of teleoperation UI configurations required for a
particular team by identifying the same or similar robot characteristics for different robots within the
same Robot Kinematic Types. Three test cases are used to show an example of how the toolbox allows
users to select robot characteristic for each Robot Kinematic Type; results show the total number of

Sensors 2017, 17, 587 17 of 19

valid robot characteristic combinations and the number of different teleoperation UI configurations
required to teleoperate each individual robot within the team.

Proposed future work looks to explore the auto identification of Robot Kinematic Types using
ROS URDF metadata and soft computing techniques. Investigation into the representation of motion
controls supported by ROS robots is also required. The objective is to propose a standard approach
to obtaining robot motion control strategies available on supported ROS robots by using a similar
approach to the URDF and SRDF description formats. Other future work includes using common 3D
geometry, UI components, and common presentation techniques that could be procedurally generated
to automatically build the UI configuration designs required as determined by the Matlab toolbox. This
could be used in real-time to automatically assign a different UI configuration to the teleoperator based
on their current teleoperation requirements which are supported by the selected robot’s capabilities.

Acknowledgments: The authors would like to thank Deakin University, in particular the CADET VR Lab, School
of Engineering for supporting this work.

Author Contributions: M.M. and M.S. conceived and designed the experiments; M.M. performed the experiments;
M.M., M.S. and B.H. analyzed the data; M.M., M.S. and B.H. together wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Nagatani, K.; Kiribayashi, S.; Okada, Y.; Otake, K.; Yoshida, K.; Tadokoro, S.; Nishimura, T.; Yoshida, T.;
Koyanagi, E.; Fukushima, M. Emergency response to the nuclear accident at the Fukushima Daiichi Nuclear
Power Plants using mobile rescue robots. J. Field Robot. 2013, 30, 44–63. [CrossRef]

2. Gómez-de-Gabriel, J.; Harwin, W. Evaluation of Sensor Configurations for Robotic Surgical Instruments.
Sensors 2015, 15, 27341. [CrossRef] [PubMed]

3. Dunbabin, M.; Marques, L. Robots for environmental monitoring: Significant advancements and applications.
IEEE Robot. Autom. Mag. 2012, 19, 24–39. [CrossRef]

4. Dolgov, D.; Thrun, S.; Montemerlo, M.; Diebel, J. Path planning for autonomous vehicles in unknown
semi-structured environments. Int. J. Robot. Res. 2010, 29, 485–501. [CrossRef]

5. Barrientos, A.; Colorado, J.; del Cerro, J.; Martinez, A.; Rossi, C.; Sanz, D.; Valente, J. Aerial remote sensing
in agriculture: A practical approach to area coverage and path planning for fleets of mini aerial robots.
J. Field Robot. 2011, 28, 667–689. [CrossRef]

6. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An Open-Source
Robot Operating System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan,
12–17 May 2009; p. 5.

7. Cousins, S. ROS on the PR2 [ROS Topics]. IEEE Robot. Autom. Mag. 2010, 17, 23–25. [CrossRef]
8. Agravante, D.J.; Pages, J.; Chaumette, F. Visual servoing for the REEM humanoid robot’s upper body.

In Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe,
Germany, 6–10 May 2013; pp. 5253–5258.

9. Arumugam, R.; Enti, V.R.; Liu, B.; Wu, X.; Baskaran, K.; Kong, F.F.; Kumar, A.S.; Meng, K.D.; Kit, G.W.
DAvinCi: A cloud computing framework for service robots. In Proceedings of the 2010 IEEE International
Conference on Robotics and Automation (ICRA), Anchorage, AK, USA, 3–7 May 2010; pp. 3084–3089.

10. Cousins, S. Exponential Growth of ROS [ROS Topics]. IEEE Robot. Autom. Mag. 2011, 18, 19–20.
11. Badger, J.M.; Hart, S.W.; Yamokoski, J. Towards autonomous operation of robonaut 2. In Proceedings of the

NASA, AIAA Infotech@ Aerospace 2012, Garden Grove, CA, USA, 19–21 June 2012.
12. Chitta, S.; Sucan, I.; Cousins, S. MoveIt! [ROS TOPICS]. IEEE Robot. Autom. Mag. 2012, 19, 18–19. [CrossRef]
13. Alexander, B.; Hsiao, K.; Jenkins, C.; Suay, B.; Toris, R. Robot Web Tools [ROS Topics]. IEEE Robot. Autom. Mag.

2012, 19, 20–23. [CrossRef]
14. Crick, C.; Jay, G.; Osentoski, S.; Pitzer, B.; Jenkins, O.C. Rosbridge: Ros for non-ros users. In Proceedings of

the 15th International Symposium on Robotics Research (ISRR), Flagstaff, AZ, USA, 9–12 December 2011.
15. Hornung, A.; Wurm, K.M.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An efficient probabilistic 3D

mapping framework based on octrees. Auton. Robot. 2013, 34, 189–206. [CrossRef]

http://dx.doi.org/10.1002/rob.21439
http://dx.doi.org/10.3390/s151027341
http://www.ncbi.nlm.nih.gov/pubmed/26516863
http://dx.doi.org/10.1109/MRA.2011.2181683
http://dx.doi.org/10.1177/0278364909359210
http://dx.doi.org/10.1002/rob.20403
http://dx.doi.org/10.1109/MRA.2010.938502
http://dx.doi.org/10.1109/MRA.2011.2181749
http://dx.doi.org/10.1109/MRA.2012.2221235
http://dx.doi.org/10.1007/s10514-012-9321-0

Sensors 2017, 17, 587 18 of 19

16. Santos, J.M.; Portugal, D.; Rocha, R.P. An evaluation of 2D SLAM techniques available in robot operating
system. In Proceedings of the 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics
(SSRR), Linköping, Sweden, 21–26 October 2013; pp. 1–6.

17. Chen, J.Y.C.; Haas, E.C.; Barnes, M.J. Human Performance Issues and User Interface Design for Teleoperated
Robots. IEEE Trans. Syst. Man Cybern. 2007, 37, 1231–1245. [CrossRef]

18. Liu, Y.; Nejat, G. Robotic Urban Search and Rescue: A Survey from the Control Perspective. J. Intell.
Robot. Syst. 2013, 72, 147–165. [CrossRef]

19. Velagapudi, P.; Scerri, P.; Sycara, K.; Wang, H.; Lewis, M.; Wang, J. Scaling effects in multi-robot control.
In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice,
France, 22–26 September 2008; pp. 2121–2126.

20. Hunziker, D.; Gajamohan, M.; Waibel, M.; D’Andrea, R. Rapyuta: The roboearth cloud engine. In Proceedings
of the 2013 IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany,
6–10 May 2013; pp. 438–444.

21. Lazewatsky, D.A.; Smart, W.D. An inexpensive robot platform for teleoperation and experimentation.
In Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai,
China, 9–13 May 2011; pp. 1211–1216.

22. Gossow, D.; Leeper, A.; Hershberger, D.; Ciocarlie, M. Interactive Markers: 3-D User Interfaces for ROS
Applications [ROS Topics]. IEEE Robot. Autom. Mag. 2011, 18, 14–15. [CrossRef]

23. Kruijff, G.-J.M.; Janíček, M.; Keshavdas, S.; Larochelle, B.; Zender, H.; Smets, N.J.; Mioch, T.; Neerincx, M.A.;
Diggelen, J.; Colas, F. Experience in system design for human-robot teaming in urban search and rescue.
In Field and Service Robotics; Springer: Berlin/Heidelberg, Germany, 2014; pp. 111–125.

24. Waibel, M.; Beetz, M.; Civera, J.; d’Andrea, R.; Elfring, J.; Galvez-Lopez, D.; Haussermann, K.; Janssen, R.;
Montiel, J.; Perzylo, A. A world wide web for robots. IEEE Robot. Autom. Mag. 2011, 18, 69–82. [CrossRef]

25. Kunze, L.; Roehm, T.; Beetz, M. Towards semantic robot description languages. In Proceedings of the
2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011;
pp. 5589–5595.

26. Koenig, N.; Howard, A. Design and use paradigms for gazebo, an open-source multi-robot simulator.
In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2004), Sendai, Japan, 28 September–2 October 2004; pp. 2149–2154.

27. Boumghar, R.; Lacroix, S.; Lefebvre, O. An information-driven navigation strategy for autonomous navigation
in unknown environments. In Proceedings of the 2011 IEEE International Symposium on Safety, Security,
and Rescue Robotics, Kyoto, Japan, 1–5 November 2011; pp. 172–177.

28. Fung, W.; Lo, W.; Liu, Y.; Xi, N. A case study of 3D stereoscopic vs. 2D monoscopic tele-reality in real-time
dexterous teleoperation. In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Edmonton, AB, Canada, 2–6 August 2005; pp. 181–186.

29. Mekonnen, A.A.; Briand, C.; Lerasle, F.; Herbulot, A. Fast HOG based person detection devoted to a mobile
robot with a spherical camera. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 631–637.

30. Murphy, R.R.; Srinivasan, V.; Henkel, Z.; Suarez, J.; Minson, M.; Straus, J.C.; Hempstead, S.; Valdez, T.;
Egawa, S. Interacting with trapped victims using robots. In Proceedings of the 2013 IEEE International
Conference on Technologies for Homeland Security (HST), Waltham, MA, USA, 12–14 November 2013;
pp. 32–37.

31. Horan, B.; Nahavandi, S. Intuitive Haptic Control Surface for Mobile Robot Motion Control. In Proceedings of
the 2008 IEEE International Workshop on Safety, Security and Rescue Robotics, Sendai, Japan, 21–24 October
2008; pp. 121–127.

32. Saska, M.; Vonasek, V.; Krajnik, T.; Preucil, L. Coordination and navigation of heterogeneous UAVs-UGVs
teams localized by a hawk-eye approach. In Proceedings of the 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 2166–2171.

33. Er, M.J.; Yuan, S.; Wang, N. Development control and navigation of Octocopter. In Proceedings of the 2013
10th IEEE International Conference on Control and Automation (ICCA), Hangzhou, China, 12–14 June 2013;
pp. 1639–1643.

34. Omari, S.; Hua, M.-D.; Ducard, G.; Hamel, T. Hardware and software architecture for nonlinear control of
multirotor helicopters. IEEE/ASME Trans. Mechatron. 2013, 18, 1724–1736. [CrossRef]

http://dx.doi.org/10.1109/TSMCC.2007.905819
http://dx.doi.org/10.1007/s10846-013-9822-x
http://dx.doi.org/10.1109/MRA.2011.943230
http://dx.doi.org/10.1109/MRA.2011.941632
http://dx.doi.org/10.1109/TMECH.2013.2274558

Sensors 2017, 17, 587 19 of 19

35. Kruijff, G.J.M.; Tretyakov, V.; Linder, T.; Pirri, F.; Gianni, M.; Papadakis, P.; Pizzoli, M.; Sinha, A.; Pianese, E.;
Corrao, S.; et al. Rescue robots at earthquake-hit Mirandola, Italy: A field report. In Proceedings of the 2012
IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), College Station, TX, USA,
5–8 November 2012; pp. 1–8.

36. Kruckel, K.; Nolden, F.; Ferrein, A.; Scholl, I. Intuitive visual teleoperation for UGVs using free-look
augmented reality displays. In Proceedings of the 2015 IEEE International Conference on Robotics and
Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 4412–4417.

37. Kamali, K.; Joubair, A.; Bonev, I.A.; Bigras, P. Elasto-geometrical calibration of an industrial robot under
multidirectional external loads using a laser tracker. In Proceedings of the 2016 IEEE International Conference
on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 4320–4327.

38. Song, K.T.; Jiang, S.Y.; Lin, M.H. Interactive Teleoperation of a Mobile Manipulator Using a Shared-Control
Approach. IEEE Trans. Hum.-Mach. Syst. 2016, PP, 1–12. [CrossRef]

39. Aguilera-Marinovic, S.; Torres-Torriti, M.; Cheein, F.A. General Dynamic Model for Skid-Steer Mobile
Manipulators with Wheel-Ground Interactions. IEEE/ASME Trans. Mechatron. 2016, PP, 433–444. [CrossRef]

40. Mortimer, M.; Horan, B.; Joordens, M.; Stojcevski, A. Searching Baxter’s URDF robot joint and link tree
for active serial chains. In Proceedings of the 2015 10th System of Systems Engineering Conference (SoSE),
San Antonio, TX, USA, 17–20 May 2015; pp. 428–433.

41. Cela, A.; Yebes, J.; Arroyo, R.; Bergasa, L.; Barea, R.; López, E. Complete Low-Cost Implementation of a
Teleoperated Control System for a Humanoid Robot. Sensors 2013, 13, 1385–1401. [CrossRef] [PubMed]

42. Sian, N.E.; Yokoi, K.; Kajita, S.; Kanehiro, F.; Tanie, K. Whole body teleoperation of a humanoid
robot-development of a simple master device using joysticks. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, Lausanne, Switzerland, 30 September–4 October 2002;
pp. 2569–2574.

43. Shair, S.; Chandler, J.H.; Gonzalez-Villela, V.J.; Parkin, R.M.; Jackson, M.R. The Use of Aerial Images and
GPS for Mobile Robot Waypoint Navigation. IEEE/ASME Trans. Mechatron. 2008, 13, 692–699. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/THMS.2016.2586760
http://dx.doi.org/10.1109/TMECH.2016.2601308
http://dx.doi.org/10.3390/s130201385
http://www.ncbi.nlm.nih.gov/pubmed/23348029
http://dx.doi.org/10.1109/TMECH.2008.2005197
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	The Robot Operating System
	ROS Metadata and Teleoperation User Interface
	Relationship between ROS Metadata and Teleoperation User Interface

	Materials and Methods
	Results and Discussion
	Conclusions and Future Work

