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Abstract

This thesis is devoted to the study of a three-dimensional weakly interacting Bose

gas with one-dimensional Raman-type spin-orbit coupling. The spin-orbit coupling

(SOC) arising from the interaction of a particle’s spin with its motion plays a crucial

role in various fields of physics. Plenty of studies are intrigued and give rise to many

fascinating phenomena, such as quantum spin Hall effect, topological superfluidity

and exotic bosonic phases of matter. Over the past few years, the SOC effects have

been simulated and studied extensively in alkali-metal atomic quantum gases, owing

to the high controllability of cold-atom platforms.

In this thesis, by employing a generalized Hartree-Fock-Bogoliubov theory with

Popov approximation, we determine a finite-temperature phase diagram of three ex-

otic condensation phases, i.e., the stripe (ST), plane-wave (PW) and zero-momentum

(ZM) phases, against both quantum and thermal fluctuations. We find that the

plane-wave phase is significantly broadened by thermal fluctuations. The phonon

mode and sound velocity near the PW-ZM phase transition are thoughtfully ana-

lyzed. At zero temperature, we find that quantum fluctuations open an unexpected

gap in sound velocity at the phase transition, in stark contrast to the previous

theoretical prediction of a vanishing sound velocity. At finite temperature, ther-

mal fluctuations continue to enlarge the gap and simultaneously shift the critical

minimum of the sound velocity. For a Bose gas of 87Rb atoms at the typical experi-

mental temperature, T = 0.3T0, where T0 is the critical temperature of an ideal Bose

gas without spin-orbit coupling, our results of gap opening and critical minimum

shifting in sound velocity, are qualitatively consistent with the recent experimental

observation [Ji et al., Phys. Rev. Lett. 114, 105301 (2015)].

We also give an investigation of the exotic supersolid stripe phase at zero tem-
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perature. By employing an improved ansatz, including high-order harmonics in the

stripe phase, we show that the critical transition point from ST to PW phases is

shifted to a relatively larger Rabi frequency compared to the prediction by the ear-

lier work [Li et al., Phys. Rev. Lett. 108, 225301 (2012)] using a first-order stripe

ansatz. We also determine the quantum depletion and superfluid density over a large

range of Rabi frequency in different phases. The depletion exhibits an intriguing

behaviour with a discontinuous jump at the ST-PW phase transition and a maxi-

mum at the PW-ZM phase transition. The superfluid density is derived through a

phase-twist method. In the plane-wave and zero-momentum phases, it is remarkably

suppressed along the SOC direction and vanishes at the transition, consistent with a

recent work [Zhang et al., Phys. Rev. A 94, 033635 (2016)]. In the stripe phase, it

decreases smoothly with increasing Rabi frequency. Our predictions would be useful

for further theoretical and experimental studies of this intriguing supersolid stripe

phase.
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(b) Scheme of 87Rb BEC hyperfine states in F = 1 ground state in

Ref. [7]. ωZ , ωq and δ = (∆ωL−ωZ) are the linear, quadratic Zeeman

shifts, and the detuning from Raman resonance, respectively. . . . . . 16

2.1 (a) The experimental setup of NIST scheme. (b) Energy level of 87Rb

BEC hyperfine states in F = 1 ground state. . . . . . . . . . . . . . . 22

2.2 Single-particle dispersion in Eq. (2.9) when Raman lasers are turned

off with Ω = 0Er and δ = 0Er. . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Single-particle dispersion for various values of Ω/Er = 0.1, 0.5 and

0.9 at δ = 0Er. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Single-particle dispersion for various values of Ω/Er = 2, 4 and 6 at

δ = 0Er. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Single-particle dispersion for δ/Er = −1, 0 and +1 (from left to right)

at various values of Ω/Er = 2, 4 and 6 (from upper to lower). . . . . . 29

2.6 Phase diagram of three generic phases in a Raman-type spin-orbit-

coupled BEC. Image from Ref. [8]. . . . . . . . . . . . . . . . . . . . 33

2.7 Typical density profile along the x-direction in the stripe phase at

Ω = 0.1 (left), and 0.6Er (right). Parameters are the same as in

Fig. 2.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.8 Condensation momentum, spin polarization along the x- and z-axis

as a function of the coupling strength Ω across three generic phases.

Here g = 1.2Er/k
3
r , g↑↓ = 0.8Er/k

3
r and n̄ = 1.0k3

r . . . . . . . . . . . . 36



3.1 Excitation spectrum of a uniform single-component Bose gas at fi-

nite temperature. Energy and momentum are in units of the zero-

temperature chemical potential µ = gn ≡ ~2k2
0

2m
and k0, respectively.

T0 is the BEC temperature of an ideal Bose gas. . . . . . . . . . . . . 46

3.2 Condensate fraction nc/n at different values of the gas parameter

n1/3a. The solid line indicates nc/n = 1− (T/T0)3/2 in Eq. (1.12) for

an ideal gas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 (left) condensate fraction nc/n (i.e., dashed black) and quantum de-

pletion fraction nd/n (i.e., dotted blue). The inset zooms in on nd/n.

(right) the fraction of the condensate nc/n, and of the superfluid ns/n.

Here the gas parameter is n1/3a = 0.01. . . . . . . . . . . . . . . . . 48

3.4 Excitation spectra at various values of the coherent strength h in the

limit T → 0, obtained by the HFBP approximation in solid lines, and

from Eqs. (3.49) denoted by the symbols. The interaction strengths

are g = g↑↓ = 0 (upper) and g/g↑↓ = 0.8/0.5 (lower). . . . . . . . . . 53

3.5 Density profiles in the mean-field regime (a) and in the Tonks-Girardeau

regime (b), where the effective interaction parameter γ
eff

= 10−2 and

10 have been used, respectively. The results are calculated with N = 8

(black solid lines), N = 17 (red dashed lines) and N = 25 (blue dot-

ted lines). The density n(x) and position x are taken in units of

harmonic oscillator length a
ho

=
√

~/(mωho) and a−1
ho , respectively. . . 66

3.6 Density profile: at T = 0 predicted by the generalized Gross-Pitaevskii

theory (black circles); at T = 0 (red dashed lines) and finite temper-

atures (other colorful lines) calculated by the HFBP theory. The

results are shown at the effective interaction parameter γ
eff

= 10−2 in

the mean-field regime. The particle number N is fixed at 25. T 0
c is the

critical temperature for a 1D ideal Bose gas, which can be estimated

as kBT
0
c = ~ωhoN/ ln(2N) [9, 10]. . . . . . . . . . . . . . . . . . . . . 67

3.7 The ratio of the squared breathing mode frequency ω2
m/ω

2
ho as a func-

tion of the particle number N . Our numerical calculation is shown

by the black solid line, and the analytic result Eq. (3.89) is shown

by the red dashed line. All results are near the non-interacting limit

with an interaction strength g
1D

= 10−3 in the trap units. . . . . . . . 69



3.8 The ratio of the squared breathing mode frequency ω2
m/ω

2
ho as a func-

tion of C
N

√
N (black squares), compared with the analytic prediction

(Eq. (3.90)) that is shown by the red dashed line. The inset shows

the same ratio as a function of the particle number N . Here, we take

an interaction strength g
1D

= 102. . . . . . . . . . . . . . . . . . . . . 70

3.9 The ratio of the squared breathing mode frequency ω2
m/ω

2
ho at N = 25

in the weakly-interacting regime. We have shown the results at T = 0

predicted by the generalized Bogoliubov theory (black squares) and

by the HFBP theory (red dashed line) and the results at T = 0.8T 0
c

given by the HFBP theory (blue dotted line). Here T 0
c is the BEC

transition temperature for an ideal Bose gas confined in a harmonic

trap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.10 The ratio of the squared breathing mode frequency ω2
m/ω

2
ho as a func-

tion of the effective interaction parameter γ
eff

. γ
eff

covers all inter-

action regimes and varies from 2.2 × 10−3 to 2.9 × 102. We con-

sider three particle numbers: N = 8 (black solid line), N = 17 (red

dashed line) and N = 25 (blue dotted line). We have compared

our result with a previous theoretical prediction obtained by using

time-dependent modified nonlinear Schrödinger equation (m-NLSE)

(yellow dot-dashed line) [11] and the experimental data (green squares

with error bars) [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.11 The ratio of the squared breathing mode frequency ω2
m/ω

2
ho as a func-

tion of log10 γeff
. The plot is the same as Fig. 3.10, but is shown here as

a function of the interaction parameter in a logarithmic scale, in order

to emphasize the particle number dependence in the non-interacting

limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.12 The frequency of higher order compressional modes, ω3rd/ωho (a) and

ω4th/ωho (b), as a function of log10 γeff
, at different particle numbers:

N = 8 (black solid line), N = 17 (red dashed line) and N = 25 (blue

dotted line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



3.13 Contour plot of the squared breathing mode frequency (ωb/ωho)2 as

functions of the dimensionless interaction parameters γ2 and γ1γ2/(4π
2)

(see the text for their definitions) in the logarithmic scale. The

black dashed line is the zero-temperature analytic result given in Eq.

(3.105) [13], indicating the transition into the super-fTG regime, ei-

ther from the weakly interacting limit or the strongly interacting fTG

limit. We have taken a typical temperature T = 0.1TF. . . . . . . . . 80

3.14 Local sound velocity c/v
l
(n) as a function of the local density n/n

F
for

three sets of effective ranges ξp = 10−4aho [(a), (d)], 0.5aho [(b), (e)],

and 1.58aho [(c), (f)] at low temperature T = 0.1TF (upper panel) and

high temperature T = TF (lower panel). In each subplot, the four

curves at different interaction parameters −w1/a
3
⊥ correspond to the

four highlighted points in the curves of the squared breathing mode

frequency, as shown in the insets of Fig. 3.15. Here, v
l
(n) = π~n/m

is the local Fermi velocity and TF = N~ωho is the Fermi temperature. 82

3.15 Density profiles at different effective ranges: (a) ξp = 10−4aho, (b)

0.5aho, and (c) 1.58aho, at T = 0.1TF. The inset shows the squared

breathing mode frequency as a function of the interaction parameter

−w1/a
3
⊥. In each subplot, the interaction parameters of colored curves

can be read from the highlighted points with the same color. They

are also explicitly indicated in Fig 3.14. Here, xF =
√

2Naho is the

radius of an ideal trapped Fermi gas at zero temperature. . . . . . . . 83

3.16 The squared breathing mode frequencies (ωb/ωho)2 as a function of

the interaction parameter −w1/a
3
⊥, at different effective ranges (upper

panel (a)-(c)) or at different temperatures (lower panel, (d)-(e)), as

indicated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1 Condensation momentum Px as a function of Raman coupling strength

Ω at various values of temperatures, T = 0 (solid black), T → 0 with

quantum fluctuation (blue curve with circles), T = 0.2T0 (red curve

with crosses) and T = 0.4T0 (yellow curve with diamonds). Here,

Ωc1 ' 2.33Er and Ωc2 ' 3.7Er indicate the first-order ST-PW and

second-order PW-ZM transitions at T = 0 respectively. . . . . . . . . 91



4.2 Phase diagram of a two-component Bose gas with Raman-induced

spin-orbit coupling in the plane of temperature T and Raman coupling

strength Ω. The empty circles show a low bound for the first-order

ST-PW transition, determined from the vanishing roton gap, while

the empty diamonds give the second-order PW-ZW transition. The

temperature is measured in units of the critical Bose-Einstein con-

densate temperature of an ideal spinless Bose gas with density n̄/2,

i.e., T0 = 2π~2[(n̄/2)/ζ(3/2)]2/3/(mkB). We take the total density of

our SOC Bose gas, n̄ = 1.0k3
r , the intra-species interaction energy,

gn̄ = 0.8Er, and the inter-species interaction energy g↑↓n̄ = 0.5Er.

Here, kr and Er = ~2k2
r /(2m) are Raman wave vector and the recoil

energy, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 The effective Rabi frequency δΩeff (a) and thermal fraction nt/n̄ as a

function of temperature T . Here we take Ω = 4.0Er. The parameters

are the same as in Fig. 4.2. . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 (a) The Bogoliubov excitation spectra εq,τ=− at temperature T =

0.4T0 and at various Rabi frequencies Ω, 2.5Er, 3.0Er and 3.5Er.

Here, we set qy = qz = 0. The roton gap at Ω = 2.5Er is explicitly

indicated. (b) The roton gap ∆ as a function of Rabi frequency Ω

at different temperatures, fitted with second-order polynomials (solid

curves). The parameters are the same as in Fig. 4.2. . . . . . . . . . . 94

4.5 (a) The contour plot of the condensate momentum Px, in units of

kr,as functions of T and Ω. The boundary Px = 0 between PW

and ZM phases is highlighted by the white dashed curve. (b) The

Bogoliubov excitation spectra εq,τ=− at various temperatures T , with

qy = qz = 0. Here we take Ω = 4.0Er. The parameters are the same

as in Fig. 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



4.6 (a) Sound velocities c+ and c− as a function of Rabi frequency Ω

at T = 0 (black lines: without quantum fluctuations; blue lines

with crosses: with quantum fluctuations), T = 0.2T0 (yellow lines

with squares), and T = 0.4T0 (purple lines with triangles). The

sound velocities at T = 0 near the transition is highlighted in the

inset. (b) The sound velocities in a 87Rb SOC gas at T = 0 (black

lines) and T = 0.3T0 (purple dotted lines). The symbols are the ex-

perimental data [14]. To simulate the experiment, we take a total

density n̄ = 0.46k3
r , interaction energy strengths gn̄ = 0.38Er and

g↑↓/g = 100.99/101.20. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.7 Sound velocities (solid lines) and Landau critical velocity (dashed

lines with crosses) as a function of Rabi frequency Ω. The parameters

are the same as in Fig. 4.6 (a). . . . . . . . . . . . . . . . . . . . . . . 99

4.8 The contour plot of the magnetization for the condensate (a), non-

condensate (b) and total density (c) respectively, as functions of T

and Ω. Here, we set gn̄ = 0.32Er and g↑↓ = 0.86g with the total

density n̄ = 1.0k3
r . Correspondingly two critical Rabi frequencies

become Ωc1 ≈ 1.50Er and Ωc2 ≈ 3.96Er. . . . . . . . . . . . . . . . . . 100

5.1 The high-order stripe density profile n for spin-up atoms, spin-down

atoms, and total atoms along the SOC direction at two Rabi frequen-

cies Ω = 0.1Er (a) and Ω = 1.0Er (b). Here, we take G1 = 0.5Er

and G2 = 0.1Er. d = π/Px is the spatial periodicity of stripes. The

two dashed lines in (c) show the phonon dispersion of a conventional

two-component Bose gas in the limit of Ω = 0. . . . . . . . . . . . . 109

5.2 The momentum Px/kr of the condensate as a function of the Rabi

frequency Ω, from Eq. (5.11) (solid black curves), and high-order

calculations with NL = 1 (blue circles), NL = 16 (dashed red curves).

Here, we take G1 = 0.5Er, G2 = 0.01Er (a) and G2 = 0.1Er (b). The

dashed lines show the corresponding critical Rabi frequency of the

ST-PW transition Ωc1 in Eq. (2.25). . . . . . . . . . . . . . . . . . . 110



5.3 The Bogoliubov excitation spectrum εj for the lowest five branches

in the SOC direction. Here, G1 = 0.5Er and G2 = 0.1Er at the

respective Rabi frequency Ω = 0.1Er (a) and 1.0Er (b). . . . . . . . 111

5.4 (a) The lowest five excitation spectra ε⊥ in yz plane (q⊥ =
√
q2
y + q2

z)

at Ω = 0.1Er. (b) Sound velocity of the lowest (red) and second-lowest

(black) excitation branches in x direction (solid) and in yz plane

(dashed), as a function of Ω. The dashed vertical line indicates the

critical Rabi frequency Ωc1 for the ST-PW transition. The interaction

parameters are the same as in Fig. 5.3. . . . . . . . . . . . . . . . . . 112

5.5 The ground-state energy as a function of the Rabi frequency in the

first-order (dashed-blue), high-order (solid-black) stripe ansatz and

the plane-wave ansatz (dotted-red). The interaction parameters are

the same as in Fig. 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.6 (a) Contour plot of the shift δΩ1 = Ω
(new)
c1 − Ωc1 for the ST-PW

transition as functions of the interaction energy strengths G1 and G2.

(b) The dependence of δΩ1 on G2 at G1 = 0.5Er. . . . . . . . . . . . 115

5.7 Quantum depletion nqd/n̄ as a function of the Rabi frequency Ω in

the ST phase (red dotted line) and in the PW and ZM phases (blue

dashed line). The blue diamonds show the depletion of a uniform

single-component weakly-interacting Bose gas with the same inter-

action parameters, while the red circles give the depletion of a two-

component Bose gas. The vertical dashed and dotted curves indicate

the critical Ω
(new)
c1 and Ωc2, respectively. Here, we take the interaction

energies G1 = 0.5Er and G2 = 0.01Er (a), 0.04Er (b) and 0.07Er (c). . 116

5.8 Superfluid fraction n
(x)
s /n̄ as a function of the Rabi frequency Ω in

the ST phase (red dashed line - 1st order ansatz; green dotted line

- high order ansatz), the PW and ZM phases (blue dashed line).

The solid-black lines are the component n
(⊥)
s /n̄ in the perpendicular

plane. The two vertical lines indicate the critical Rabi frequency of

phase transition. The interaction parameters are the same as in Fig. 5.7.119

B.1 BEC temperature Tc/Er as a function of the Rabi frequency Ω/Er at

two sets of density n = 0.5k3
r (a) and n = 1.0k3

r (b). . . . . . . . . . . 132



C.1 Superfluid fraction as a function of the Rabi frequency Ω, compared

with Ref. [15]. Here G2/Er is given by 2.4× 10−4 and 0.1, respectively.137

D.1 Quantum depletion in the limit of Ω→ 0, as a function of NL = NM.

The anticipated result of a two-component Bose gas is shown by a

dashed line. The interaction parameters are the same as in Fig. 5.1. . 140



List of Tables

1.1 Typical density n in various materials. . . . . . . . . . . . . . . . . . 7

1.2 Typical cooling stages to BEC in the laboratory. Here T , v, n are the

average temperature, velocity and density of cold atoms, respectively.

D is the phase-space density. The atomic velocity corresponds to the

average speed of the objects in the parenthesis. Part of the data is

from Ref. [16]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

xviii



Chapter 1

Introduction

1.1 Historical overview

The heart of ultracold atomic physics lies in low-temperature regime, which was

mainly developed in the context of liquid helium for many years. In 1908 H. K.

Onnes first liquefied helium successfully reaching the Kelvin-scale temperature. Af-

ter Onnes’s seminal work, P. Kapitza [17], J. F. Allen and A. D. Misener [18] indepen-

dently discovered in 1938 that below the λ-point (Tλ = 2.17 K at saturated vapour

pressure) liquid 4He exhibits remarkable superfluid properties flowing without vis-

cosity, which opened the door of understanding superfluidity and superconductivity

in electron gas in a metal.

Meanwhile, in 1924, S. N. Bose tried to clarify the statistical behaviours of light

quanta (photons) [19]. Soon in 1925, A. Einstein applied the statistical approach

to an ideal non-interacting bosonic gas of N indistinguishable particles of mass

m, and surprisingly found that below a critical temperature particles start to con-

dense macroscopically into the lowest-energy, single-particle state at the order of

O(N) [20]. This exotic phenomenon is the well-known Bose-Einstein condensation

(BEC), which is a consequence of purely statistical effects[21, 22].

This unique phenomenon doesn’t attract too much attention until 1938 when F.

London found the close relation between the λ-point and the critical BEC transition

temperature T0 = 3.1K of an ideal Bose gas at the same density, and suggested to

understand the superfluidity in liquid helium in terms of Bose-Einstein condensa-

1
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tion [23]. Thereafter intense theoretical studies were developed by researchers based

on the concept of Bose-Einstein condensation. In 1938, an important two-fluid

model was developed by Tisza [24] and was used by Landau in 1941 to successfully

describe many properties of the superfluid 4He [25, 26]. Later in 1947 Bogoliubov

first studied microscopically the weakly interacting Bose gas [27], followed by re-

lated predictions made by Landau and Lifshitz [28], Penrose [29], Penrose and On-

sager [30]. On the experimental side, the investigations are focused on liquid helium

to better understand its relationship to BEC. In 1956 Hall and Vinen experimen-

tally verify the existence of quantized vortices in liquid helium [31], predicted by

Onsager (1949) [32] and Feynman (1955) [33]. The great breakthrough comes after

scientists overcome the temperature-limit in quantum gases by developing ingenious

trapping and cooling techniques during the 1980s and 1990s [34–36]. Soon in 1995

physicists from JILA group, MIT group and Rice group successfully reached the

ultracold Nano-Kelvin temperature regime in trapped Bose gases, and immediately

realized the unique Bose-Einstein condensation using ultracold dilute alkali metal

vapors, i.e., rubidium [37], sodium [38] and lithium [39], respectively (see Fig. 1.1).

The successful achievements in the laboratory intrigue extensive studies both theo-

retically and experimentally, and the research of ultracold dilute atoms experiences

a flourishing era in the following decades [10, 40, 41].

Figure 1.1: Figure of velocity-distribution of a gas of 87Rb (left) and 23Na (right)

atoms in the experiment taken by means of the expansion method, 3 sets of

temperature-data, leading to the first view of emergence of novel quantum phe-

nomenon - Bose-Einstein condensation. Images from JILA and MIT webpages [1, 2].
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1.1.1 Quantum statistics and ultracold atomic gases

Theoretical prediction

In nature, elementary particles can be classified into two categories, bosons and

fermions, according to their quantum spin number. The first have integer spin and

the latter have half-integer spin. They obey distinct quantum statistics in thermal

equilibrium at low temperatures [10, 42].

In a system of identical ideal bosons, the corresponding wavefunction will be

symmetric under the exchange of any pair of particles. The average number of

particles in a single-particle state i satisfies the Bose-Einstein statistics given by

fB(εi) =
1

e(εi−µB)/kBT − 1
, (1.1)

with the energy εi of the single-particle state, the chemical potential µB ≤ 0 and

the equilibrium temperature T . Here kB is the Boltzmann constant and we do not

consider the degeneracy of energy levels. In the sufficiently low-temperature regime,

there will be a large fraction of particles occupying the same lowest-energy quantum

state. The fraction increases as the temperature continues to decrease (see the left

in Fig. 1.2), until all particles populate the lowest level at zero temperature (see the

left in Fig. 1.3).
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Figure 1.2: Quantum statistics in the energy level of (left) cold bosons; (right) cold

fermions, when the temperature continues to decrease.
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Fermions instead have the antisymmetric wavefunction under the interchange of

a pair, and satisfy the so-called Fermi-Dirac statistics in thermodynamic equilibrium

as

fF(εi) =
1

e(εi−µF)/kBT + 1
, (1.2)

where the chemical potential is µF ≤ EF with the Fermi energy EF = (3π2n)2/3/(2m)

and the average density n. Due to the Pauli exclusion principle, two identical

fermions can not occupy the same quantum state but instead need to be arranged

in different low-energy quantum states until all fermions filling the Fermi level, see

the right plots in Figs. 1.2 and 1.3.

Figure 1.3: The populations at zero temperature in the energy level of (left) cold

bosons: a Bose-Einstein condensate; (right) cold fermions: a Fermi sea.

It’s obvious to find that, at sufficiently high temperature, the factor of quantum

effect ”±1” is negligible and the statistics of bosons and fermions become the same

classic Maxwell-Boltzmann statistics

fMB(εi) =
1

e(εi−µ)/kBT
. (1.3)

Unless specifically stated, we will consider only the homogeneous Bose gases in

three dimensions throughout the most of the thesis. For a free particle in three

dimensional system with a volume V , there is one quantum state per volume (2π~)3

of phase space. The momentum space has the volume 4πp3/3 of a momentum less

than p with the corresponding energy of a particle εp = p2/(2m). Thus the total

number of states G(ε) with energy less than ε is

G(ε) =
V

(2π~)3

4π(2mε)3/2

3
=

√
2V

3π2

(mε)3/2

~3
, (1.4)
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and the density of states is given by

g(ε) =
dG(ε)

dε
=

V m3/2

√
2π2~3

ε1/2. (1.5)

It’s worth noting that, the density of states is g(ε) ∝ ε(d/2−1) in d dimensions, which

becomes a constant in two dimensions (d = 2). The density of states plays an

significant role when determining the existence of the condensate in low dimensions.

This can be determined by calculating the excited particle number instead [42].

Integrating over the energy space, one can calculate the number of the excited

particles given by

Nex =

∫ ∞
0

dεg(ε)fB(ε). (1.6)

The BEC transition temperature T0 can be determined by the condition that all

the particles are populating the excited states as

N = Nex(T0, µ = 0) =

∫ ∞
0

dεg(ε)
1

eε/kBT0 − 1
, (1.7)

with the chemical potential reaching zero µ = 0. This equality can be rewritten in

terms of a dimensionless variable x ≡ ε/(kBT0) by

N =
V m3/2

√
2π2~3

(kBT0)3/2

∫ ∞
0

dx
x1/2

ex − 1
=

V m3/2

√
2π2~3

Γ(
3

2
)ζ(

3

2
)(kBT0)3/2. (1.8)

Here we evaluate the integral in Eq. (1.8) using the relation∫ ∞
0

dx
xα−1

ex − 1
= Γ(α)ζ(α), (1.9)

with the gamma function Γ(α) and the Riemann zeta function ζ(α) =
∑∞

l=1 l
−α.

Then the critical temperature of the BEC transition is written by

kBT0 =

[√
2π2~3

V m3/2

N

Γ(3/2)ζ(3/2)

]2/3

=
2π

[ζ(3/2)]2/3
~2n2/3

m

≈3.31
~2n2/3

m
,

(1.10)
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where we have used the fact Γ(3/2) ≈ 0.886 and ζ(3/2) ≈ 2.612 with the average

density n = N/V in the thermodynamic limit. In terms of the critical temperature

T0, we can calculate the number of excited particles at a temperature T < T0 by

Nex(T, µ = 0) =

∫ ∞
0

dεg(ε)
1

eε/kBT − 1

=
V m3/2

√
2π2~3

Γ(3/2)ζ(3/2)(kBT )3/2

=N

(
T

T0

)3/2

.

(1.11)

Therefore, the particle number of the condensate in a uniform Bose gas is given by

the well-known form,

N0(T ) =N −Nex(T )

=N

[
1−

(
T

T0

)3/2
]
. (T < T0)

(1.12)

In order to characterize the BEC transition, it’s convenient to introduce the

phase-space density, defined as

D(T ) ≡ nλ3
T, (1.13)

with the thermal de Broglie wavelength λT = (2π~2/mkBT )3/2. At the transition

temperature T0, one may easily calculate the phase-space density using Eq. (1.10)

as

DBEC(T0) =n

[
2π~2

mkBT0

]3/2

=ζ(3/2)

≈2.612.

(1.14)

In the classical temperature regime, the de Broglie wavelength λT is much smaller

than the average distance between particles d ≡ n−1/3, which means that the phase-

space density is tiny and the behaviour of the system exhibits a classical behaviour.

As the temperature decreases into the quantum regime, the de Broglie wavelength

continues to increase and starts to be comparable with the average distance between

particles. Meanwhile the phase-space density becomes at the order of unity and the
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system consists of overlapped matter-waves characterized by typical quantum effects.

This is significantly different from the classical one, see also in Fig. 1.4.

Figure 1.4: The de Broglie wavelength as temperature decreases. Image from MIT

webpage [2].

Experimental realization

In the last section, we know from the phase-space density that the occurrence of a

Bose-Einstein condensation needs low temperatures and/or high particle densities.

The typical particle density at the trap centre of a harmonically trapped atomic BEC

cloud is about 1014 cm−3 (see Tab. 1.1), and it needs an extremely low temperature

of order 10−6K (i.e., µK) or less [see Eq. (1.14)] to achieve the condensation, which

was one of the biggest challenges in the laboratory.

BEC air (room T ) liquids &solids nucleons in atomic nuclei

n (cm−3) 1013-1015 1019 1022 1038

Table 1.1: Typical density n in various materials.

In order to reach the ultracold temperature scale and realize the Bose-Einstein

condensation, one needs to employ step by step several advanced techniques, which
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have been developed by experimental physicists in various fields of physics, such

as magnetic trapping, laser cooling and trapping, evaporative cooling, etc. In the

following, we will simply illustrate the important processes and their corresponding

achieved temperature-scale, velocity and density (see Ref. [16] for a review). Initially

the alkali metal atoms in the source chamber, i.e., Li, Na, K, Rb, Cs, are heated

by oven to a temperature about 500K, and then the gaseous vapors escape into

the ultrahigh vacuum chambers where they will be trapped by magnetic or optical

fields. This process isolates the atoms from the classical material walls, and Ketterle

et al. stated that such traps can store atoms for seconds or even minutes, which

is long enough for cooling process [16]. The atomic beams can be then decelerated

and cooled to a temperature about 1K by Zeeman slower using an inhomogeneous

magnetic field. After that, the atoms is slow enough to be loaded into the so-

called magneto-optical trap (MOT) where the atoms are confined and cooled using

laser-cooling technique to reach µK temperature-scale. The next and very important

procedure is evaporative cooling, which continuously removes the high-energy atoms

from the trap and continuously decreases the temperature of the remaining atoms to

nK-scale. The typical temperature, velocity, density and phase-space density after

each cooling stage are approximately summarized in Tab. 1.2, respectively. With

all the techniques and procedures described above, one can successfully achieve the

temperature regime needed and immediately realize the Bose-Einstein condensation

(see Fig. 1.1) in various alkali atoms, i.e., 87Rb [43], 23Na [38] and 7Li [44], and later

in atomic hydrogen [45].

Instinctively, theoretical and experimental physicists started to think about sim-

ilar quantum degeneracy in fermionic atoms as Bose-Einstein condensation in dilute

Bose gases. Unlike bosonic atoms, fermionic atoms can not totally populate the

same lowest state but form a Fermi sea in the energy level, see Fig. 1.3. Because

of the Pauli exclusion principle, it has been a challenge to cool the temperature of

fermions down in the laboratory. A few years after the observation of BEC, quantum

degenerate Fermi gases were first achieved in a trapped atomic 40K gas by D. S. Jin’s

group in 1999 [46], and then the first strongly interacting Fermi gas was observed

in 2002 by J. E. Thomas’s group [47]. Later in 2004, D. S. Jin and cooperators

continued to realize the Fermi condensate of fermionic pairs for the first time [48].

In the meantime, quantum fermionic degeneracy was also observed later by other
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T v (objects’ average speed) n D
Oven 500 K 300m/s (bullet) 1014cm−3 10−13

Zeeman slower 1 K 50m/s (train) 1014cm−3 10−8

Laser cooling 50 µK 1cm/s (ant) 1011cm−3 10−6

Evaporative cooling 500 nK 1mm/s (snail) 1014cm−3 1

BEC ∼nK 107

Table 1.2: Typical cooling stages to BEC in the laboratory. Here T , v, n are the

average temperature, velocity and density of cold atoms, respectively. D is the

phase-space density. The atomic velocity corresponds to the average speed of the

objects in the parenthesis. Part of the data is from Ref. [16].

groups with 40K [49] and with 6Li [50–53], as well as the condensation of molecules of

paired fermions [54–56]. In recent decades, the great achievements in the laboratory

have intrigued comprehensive theoretical studies and provided an ideal platform to

test and verify the predictions on ultracold Bose and Fermi gases.

Advantages with ultracold atomic gases

At ultracold temperatures (T < 1mK), weakly interacting atomic gases can be well

described by the so-called mean-field theories, which have been developed in 1950s

and 1960s by Bogoliubov, Gross, Pitaevskii and others [10, 21, 22]. The gaseous

condensates are usually described as dilute since they have an extremely low density

even less than the one of air at room temperature, see Tab. 1.1. Thus when one moves

to many-body picture, the range of interparticle interactions r0 is much smaller than

the average distance between particles d = n−1/3. This implies that one can consider

only two-body interactions and safely neglect three (or more)-particles interactions

in these dilute systems. Besides, in ultralow-temperature regime, the relative kinetic

energy and corresponding momenta of the atoms are strongly suppressed. At such

small momenta, the scattering amplitude characterizing the two-body interaction is

independent of energy or the scattering angle. And it depends only on a constant

in the low-energy limit, which is called the s-wave scattering length ”a” [21].

Therefore in ultracold dilute weakly interacting Bose gases, the effects of inter-

action can be characterized with a single parameter–scattering length a, satisfying
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the diluteness condition |a| � n−1/3 [21, 57]. One can introduce a relevant s-wave

interaction strength

g =
4π~2a

m
, (1.15)

which plays a crucial role in the familiar Gross-Pitaevskii (GP) equation, or the

nonlinear Schrödinger equation

i~
∂

∂t
Ψ̂(r, t) =

(
−~2∇2

2m
+ Vext(r, t) + g|Ψ̂(r, t)|2

)
Ψ̂(r, t). (1.16)

Here Ψ̂(r, t) is the time-dependent Bose field operator in real space with atomic

mass m, satisfying the Bose commutation relations [Ψ̂(r), Ψ̂†(r′)] = δ(r− r′) and

[Ψ̂(r), Ψ̂(r′)] = 0. The relevant external trapping potentials are mostly harmonic

traps Vext(r, t) =
∑

i=x,y,zmω
2
i r

2
i /2 with trapping frequency ωi in realistic experi-

ments. The GP theory in Eq. (1.16) is one of the most important approaches for

physicists to study static and dynamic properties in dilute uniform or trapped Bose

gases at low temperatures.

Over the last few years, many more techniques have been developed in the lab-

oratory, such as Feshbach resonance [4, 58], optical lattices [41, 59, 60], absorption

imaging [61, 62]. They bring obviously the systems of ultracold atoms remark-

able advantages with high degrees of control and versatility, for instance, flexible

tunability of interaction strength, easy access to the strongly correlated systems,

Figure 1.5: Tools and techniques applied in an ultracold atoms systems, such as

optical lattices, Feshbach resonance, absorption imaging. Reproduced from Ref. [3].
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Figure 1.6: (left) Two-channel formalism for a magnetic Feshbach resonance. In

ultracold gases, the colliding energy E of two atoms approach near zero (E → 0), and

one can tune the bound state energy Ec to around 0 via an external magnetic field B,

to achieve the resonant coupling between the scattering state and molecular bound

state if the magnetic moments of two channels are different. (right) s-wave scattering

length a(B) in unit of background scattering length abg near a magnetically tuned

Feshbach resonance. Particularly a(B) can be very large, positive or negative near

the magnetic field B0 of resonance. Reproduced from Ref. [4].

ideal platform for quantum simulations of many model systems in condensed mat-

ter physics or in nuclear physics etc., see Fig. 1.5. All these developments lead to

intense studies of intriguing topics in various fields to better understand many-body

physics in nature.

Feshbach resonance has become a widely-used tool recently in the experiments

and can be understood from a two-channel model as shown in Fig. 1.6, where Vbg(R)

is the background potential of two free atoms in the open channel and the potential

Vc(R) in the closed channel supports molecular bound states. The resonance occurs

when the scattering state of two atoms with colliding energy E in the open channel

resonantly couples to a molecular bound state with energy Ec in the closed channel,

where the energy shift ∆E can be controlled via an external magnetic field B.

By means of Feshbach resonance technique via varying the external magnetic field,

experimentalists can successfully control the interatomic interactions. Hence the

two-body s-wave scattering length can be tuned as a function of magnetic field

as(B) = abg

(
1− ∆

B − B0

)
. (1.17)
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Here abg is the off-resonant background scattering length associated with Vbg(R),

while ∆ is the resonance width and B0 describes magnetic field position of the

resonance where the scattering length diverges [as(B0)→ ±∞], see Fig. 1.6.

The great tunability of scattering length can help to achieve a wide range of

interaction strength in dilute Bose gases, from ideal non-interacting, weak coupling

regime to strongly interacting regime. It is powerful that one can achieve strong cor-

Figure 1.7: Pairs dissociation temperature T ∗ and superfluidity critical tempera-

ture Tc as a function of dimensionless parameter 1/(kFas). The range of 1/(kFas)

successively describes from overlapped Cooper pairs in the BCS limit to tightly

bound molecules in BEC limit. The unitary regime lies in the range (−1, 1), where

fermionic pairs correlate strongly. Reproduced from Ref. [5]
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relations in experiments of dilute atomic gases. Particularly, one-dimensional (1D)

ultracold Bose gases with strong repulsive interactions attract great interest theoret-

ically and experimentally. In a 1D geometry, bosonic atoms can not pass each other

or exchange places, and they are expected to exhibit a ”fermionic” behaviour. Thus

one-dimensional bosons and fermions share the identical energy spectra as well as

probability distributions in real configurations, except that their momentum distri-

butions are quite different. These one-dimensional bosons with strong repulsive in-

teractions are often called impenetrable bosons or Tonks-Girardeau bosons [63], col-

lective properties of which have been studied in this thesis and our recent works [64,

65].

Another interesting and fascinating subject under intense experimental studies

via Feshbach resonance in the recent years is the so-called BCS-BEC crossover [66],

which describes a smooth crossover from the BCS ground state of loosely bound

Cooper pairs in the weak interaction limit to the BEC ground state of tightly bound

molecules in the strong interaction limit, see Fig. 1.7. One of the exciting advantages

of the crossover is the unitary regime, where the scattering length can be positive

or negative infinitely large (as → ±∞). The study of the unitary regime in ultra-

cold atomic experiments can easily get access to the strongly correlated Fermi sys-

tems, while they are rather difficult to achieve in condensed matter and high-energy

physics. Especially after experimental realization of unitary regime in ultracold

Fermi gases [67], there are more and more motivations on theoretically and exper-

imentally studying several novel quantum phenomena in the BCS-BEC crossover.

For instance, the study of high transition temperature in the unitary regime may

give valuable insights to the long-sought high-Tc superconductivity [68]. Universal

behaviours has attracted significant attention in the unitary limit [69], Feshbach

resonance induced molecules [70], Efimov effects due to three-body physics [71–73],

or the pseudogap state and critical pair-formation temperature [74, 75].

1.1.2 Synthetic gauge fields and spin-orbit coupling with

ultracold atoms

Nowadays one of the greatest developments in dilute ultracold gases is the experi-

mental realization of synthetic (artificial) gauge fields with neutral atoms [76, 77].
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In gauge theories, gauge fields or gauge potentials play an important role in the

understanding of fundamental interactions between elementary particles in nature.

One of the typical examples is classical electromagnetism, where the electromagnetic

(EM) fields are described by vector and scalar potentials, A and φ. In detail, from

Maxwells equations, the electric fields are induced by spatial gradient of the scalar

potentials and/or the gradient of the vector potentials with respect to time, while

the magnetic fields are generated by the curl of the vector potentials in space,

E =−∇φ− ∂A

∂t
,

B =−∇×A.
(1.18)

In the relevant electromagnetic fields, the dynamic behaviour of a particle with

electric charge q and mass m can be characterized by the Hamiltonian

H =
(p̂− qA)2

2m
+ qφ, (1.19)

with the canonical momentum operator p̂ = −i~∇. By coupling with the vector

potential A, the physical momentum of the charged particle changes to (p̂ − qA)

with a significantly modified dispersion relation (p̂− qA)2/(2m). This Hamiltonian

can well describe the motion of a charged particle in a classical electromagnetic field

and help us understand many underlying phenomena.

Synthetic gauge fields

Owing to excellent control of degrees of freedom in experiments, ultracold atomic

gases have become one of the ideal platforms for physicists to design a similar Hamil-

tonian with these gauge fields, and to explore relevant dynamics in the presence of

gauge potentials. However, the utilized atoms are neutral and can not experience

a Lorentz force as charged particles do in EM fields. This difficulty prevents the

investigations in versatile cold atomic systems on many exotic phenomena, such as

quantum Hall effect, topological insulator and superfluid [76]. One typical way to

overcome the problem of neutrality is by rotating the Bose condensates [78–80],

which can induce an effective Lorentz force, or Coriolis force, to further simulate

the dynamics in gauge fields. However, the fragile stability of the Bose condensates
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restricts rapid rotations in quantum gases. Another choice is by employing suitable

laser fields via light-atom interaction [76, 77], which has been most widely used both

theoretically and experimentally, and will be emphasized throughout this thesis.

In 2003 and 2004, P. Zoller et al. and G. Juzeliūnas et al. independently sug-

gested to manipulate atomic internal states via two laser beams to create effective

magnetism in optical lattices [81] and in degenerate Fermi gases [82], respectively.

Following these influential proposals, two individual groups, X.-J. Liu et al. [83]

and S. Zhu et al. [84], theoretically introduced the experimental scheme in 2006 to

investigate the spin Hall effects in ultracold atomic systems. Meanwhile in 2005, ex-

perimental schemes to realize effective non-Abelian gauge fields were also proposed

in optical lattices [85] and in continuous ultracold Bose or Fermi gases [86].

Nevertheless, the schemes proposed at the early stage were of many difficulties,

and were too tough to achieve in the laboratory. In 2008, a more feasible scheme

was developed by X.-J. Liu et al. [87]. They argued that, the effect of spin-orbit

coupling can be observed in a simple Lambda-configuration, by coupling the in-

ternal electronic states (pseudospins) of atoms via two Raman laser beams. This

accessible scheme was widely employed later and led to several breakthroughs in the

laboratory [88]. Soon by means of laser beams in ultracold atomic gases, I. Spiel-

man’s group from NIST first realized synthetic Abelian gauge fields, i.e., magnetic

fields in 2009 [6, 89] and electric fields in 2011 [90]. These achievements provided a

new opportunity to reproduce and study classical electromagnetism between charged

particles and electromagnetic fields in ultracold neutral atomic gases. For instance,

one can mimic and investigate the dynamics of charged electrons in crystals (i.e.,

metals and semiconductors) as in condensed matter physics.

Non-Abelian gauge field: Spin-orbit coupling

Soon after artificially realizing the Abelian gauge fields, the NIST group extended

the developed scheme to generate versatile non-Abelian gauge potentials. In 2011,

they successfully simulated the effect of spin-orbit coupling (SOC) using Raman

lasers in ultracold alkali gases [7]. In detail, by coupling the internal degrees of

freedom of neutral atomic 87Rb (spins) to the center-of-mass degrees of freedom

(orbital motions) with two counterpropagating Raman laser beams via two-photon
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Figure 1.8: (a) The NIST experimental setup in Ref. [6] with 87Rb BEC in a dipole

trap created by two laser beams in a bias field B0êy. A pair of Raman laser beams are

counterpropagating along êx with frequencies ωL and (ωL+ ∆ωL), linearly polarized

along êz and êy, respectively. (b) Scheme of 87Rb BEC hyperfine states in F = 1

ground state in Ref. [7]. ωZ , ωq and δ = (∆ωL − ωZ) are the linear, quadratic

Zeeman shifts, and the detuning from Raman resonance, respectively.

process as shown in Fig. 1.8, I. Spielman and co-workers first realized the so-called

Raman-induced spin-orbit coupling.

Here we revisit the NIST scheme using the F = 1 ground state manifold of 87Rb

Bose-Einstein condensates and make a simple illustration of the synthetic SOC. In

Fig. 1.8, adjusted Bias field B0 gives rise to a large quadratic Zeeman shift ωq much

larger than the recoil energy Er = ~2k2
r /(2m) of the lasers. Hence the third hyperfine

state |F = 1,mF = 1〉 is split far away from the other two states in the energy level,

i.e, |1, 0〉 and |1,−1〉, and can be effectively decoupled. Thus the corresponding

system can be described by an effective two-level Hamiltonian

HSOC =
~2(kx − krσz)

2

2m
+ ~

δ

2
σz + ~

Ω

2
σx. (1.20)

on the basis of the other two hyperfine states |↑〉 = |1, 0〉 and |↓〉 = |1,−1〉. Here δ is

the detuning from Raman resonance, Ω is the strength of Raman coupling. σx and

σz are 2× 2 Pauli matrices. In contrast to classical electromagnetic Hamiltonian in

Eq. (1.19), the vector potential krσz here is of a matrix form. It’s easy to find that

after a spin rotation (σz → −σy and σy → σz), the SOC term is of a one-dimensional

(1D) form ∝ kxσy which is the equal mixture of Rashba SOC form (kxσy − kyσx)
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and Dresselhaus SOC form (kxσy +kyσx) in condensed matter physics. The seminal

breakthroughs of realizing non-Abelian gauge fields in the laboratory, i.e., spin-

orbit coupling, lead to fruitful theoretical research on SOC in quantum gases both

theoretically [91–103] and experimentally [14, 104–106]. The effects of SOC give rise

to exotic phase diagrams and many fascinating phenomena [91–95, 102], which will

be discussed in detail in Chap. 2.

Meanwhile in 2012 by utilizing the same scheme, two independent groups from

Shanxi university and MIT achieved the experimental realization of spin-orbit cou-

pling in quantum degenerate Fermi gases (40K and 6Li, respectively) [107, 108].

Furthermore, the group in Shanxi continued to create Feshbach molecules in spin-

orbit coupled Fermi gases using Feshbach resonance technique [109]. To date, sev-

eral groups have already realized this one-dimensional Raman-type SOC in atomic

Bose [104, 106, 110, 111] and Fermi [112–114] gases.

On the theoretical side, several proposals are generated and developed to achieve

high-dimensional spin-orbit couplings in atomic gases, such as the tripod scheme [115],

ring-coupling scheme [116, 117], magnetic-field-gradient pulses scheme [118] and op-

tical Raman lattices scheme [119, 120], etc. Very recently in 2016, two-dimensional

(2D) spin-orbit coupling are successively achieved in Fermi gases by co-workers from

Shanxi University and CUHK [121], and in Bose gases by co-workers from USTC

and Peking University [122]. The USTC group and collaborators continued to re-

alize a long-lived 2D SOC Bose gas with intriguing topological features [123], by

employing an improved scheme [120].

Nowadays, the investigations of synthetic gauge fields and spin-orbit effects

strongly appeal to both theoretical and experimental researchers, due to a splen-

did novel quantum world behind it. In condensed matter physics, the spin-orbit

couplings can obviously affect electron transport and may give rise to new kinds

of exotic quantum matters [41, 124–127]. Ultracold atomic gases have been proven

to be a versatile platform to study these intriguing phenomena in the presence of

SOC [77, 128, 129], such as spin Hall effects [83, 84, 130], integer (fractional) quan-

tum Hall effect [131–133], quantum anomalous Hall effect in magnetic topological

insulators [134, 135], topological superfluidity and Majorana fermions [119, 136–141].

With the help of optical lattices, synthetic gauge fields correspond to staggered or

uniform magnetic fluxes, which provides a good testbed for quantum simulation of
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model Hamiltonians in condensed matter physics and can help reveal the nature of

the exotic supersolid using cold atoms [106, 142–144].
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1.2 Thesis outline

Here we give briefly the outline of this thesis. In the current chapter 1, we have be-

gun with a historical review of ultracold atomic gases from the theoretical prediction

to the successful experimental realization. They exhibit an extremely high control-

lability of degrees of freedom in the laboratory with the help of several developed

techniques, such as optical lattices and Feshbach resonance. After a quick review

of classical electromagnetism, we provide a short introduction of gauge fields syn-

thesized in quantum gases by employing light-matter interaction. In particular, we

have explicitly reviewed the backgrounds and developments of simulating spin-orbit

coupling using neutral ultracold atoms with many fascinating phenomena.

The specific system we concentrate on throughout this thesis is a weakly interact-

ing Bose gas in three dimensions with a one-dimensional Raman-induced spin-orbit

coupling (SOC) [7]. In chapter 2, we will revisit in detail the NIST scheme realiz-

ing this Raman-type SOC and derive the corresponding effective Hamiltonian. The

single-particle dispersion is studied in the parameter spaces of the Rabi frequency

and the laser detuning. By including many-body interactions, we characterize three

generic phases over the range of the Rabi frequency, i.e., the stripe, plane-wave and

zero-momentum phases, within a variational approach. We continue to study the

phase diagram and the relevant properties of three phases, such as density profile,

condensation momentum and spin polarization. The contents in Chaps. 1 and 2 are

written to have a general review based on previous works.

In chapter 3, we introduce the theoretical method employed, Hartree-Fock-

Bogoliubov theory within Popov approximation, which can well describe a weakly

interacting Bose gas at zero and/or nonzero temperature. We first apply the method

to investigate trivially single-component and two-component Bose gases, followed

by an application of a generalized formalism to the system in the presence of the

Raman-type SOC. We make an application of the approach to study carefully a one-

dimensional weakly interacting Bose gas concentrating on the effect of finite particle

number and finite temperature. We then map the system to a spin-polarized inter-

acting Fermi gas using Bose-Fermi duality to explore the role of effective range. The

last two applications are mainly from our recent publications in Refs. [64] and [65].

In the next chapters 4 &5, we thoroughly investigate this weakly interact-
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ing Bose gas with the Raman-type SOC, by using the generalized Hartree-Fock-

Bogoliubov method with Popov approximation described in the last chapter.

In chapter 4, emphasizing the quantum and thermal fluctuations at finite tem-

perature, we determine a complete finite-temperature phase diagram of three exotic

condensation phases. By minimizing the free energy of the system with a plane-

wave ansatz for condensate wavefunction, we obtain the momentum in the partially

condensed phase at finite temperature and compare it with the analytic one at

zero temperature. The Bogoliubov excitation spectrum in the plane-wave and the

zero-momentum phases are under intensive and careful studies, which straightfor-

wardly help us determine the phase boundaries. Accordingly we explore thoughtfully

phonon mode and calculate sound velocity, which shows an excellent agreement with

the recent experiment [14]. The Landau critical velocity is further calculated and

differs largely from the sound velocity in the plane-wave phase due to an intriguing

roton-maxon structure in the elementary excitation spectrum. Besides, we also dis-

cuss the behaviour of other physical observables, such as the magnetization of the

gas. This chapter is mostly from our recent publication in Ref. [103].

In chapter 5, we focus on the exotic stripe phase at zero temperature. By

considering high-order harmonics in the trivial ansatz for ground-state wavefunc-

tion, we explore successively the density profile, the momentum of the condensate,

the Bogoliubov excitation spectrum and the relevant sound velocity in the stripe

phase. In particular, we show that the critical Rabi frequency between the stripe

and plane-wave phases is revised after taking high-order harmonics into account at

certain interaction strengths. The quantum depletion of total density is numerically

calculated as a function of the Rabi frequency across all three phases. In the limit of

zero Rabi frequency, it reproduces the analytic result of uniform Bose gases without

SOC. We then derive an analytic expression of superfluid density for all three phases

via a phase-twist method using a first-order ansatz. Meanwhile we compare the an-

alytic prediction in the stripe phase with a more accurate numerical result using a

high-order ansatz, and their difference is closely related to the interaction strengths.

The results in this chapter are mainly from our recent publication in Ref. [145].

Finally, conclusions and outlooks are present in chapter 6. The appendix and

bibliography are given at the end of the thesis, along with a list of publications

co-authored during the PhD period.



Chapter 2

Three-dimensional Bose gases with

Raman-type spin-orbit coupling

In this Chapter, we will review in detail the spin-orbit coupling in ultracold Bose

gases first realized by I. Spielman’s group from NIST in 2011, i.e., Raman-type spin-

orbit coupling [7]. The NIST scheme will be illustrated thoroughly, and an effective

Hamiltonian is derived. We will describe the single-particle behaviour in the presence

of SOC, and introduce the generic phases when taking into account intra- and inter-

species atomic interactions later. Various physical observables across distinct phases

will be further studied.

2.1 Backgrounds and motivations

In Sec. 1.1.2, we have shown that spin-orbit interactions are ubiquitous in nature

giving rise to many exotic phenomena. The successful realization of spin-orbit ef-

fect using ultracold atoms in 2011 has stimulated fruitful research. Considering the

Raman-type spin-orbit coupling, several theoretical studies have been done on the

low-energy properties [91–102, 146], including for instance fascinating ground states

and phase diagram, BEC transition temperature, depletion of the Bose condensate,

and collective modes and response functions. On the other hand, extensive experi-

mental investigations have been carried out on spin-orbit coupled systems, including

collective excitations [104], finite-temperature phase diagram [105], Bogoliubov exci-

21
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tation spectrum [14] and the exotic bosonic supersolidity [106]. Therefore, aiming to

study synthetic gauge fields in ultracold atoms and to reveal the underlying physics

of novel states of matter and exotic phase diagrams, we focus on a weakly interact-

ing Bose gas with the Raman-type spin-orbit coupling and study the relevant static

and/or dynamic properties in the following chapters.

In the experiments of NIST [6, 7, 89, 90], a 87Rb Bose-Einstein condensates is

prepared in |F = 1〉 ground state manifold in an optical dipole trap. An extra uni-

form magnetic biased field B0 along the y-direction, i.e., B0êy, leads to three-sublevel

hyperfine structure |mF = 0,±1〉 (pseudospins) with the linear and quadratic Zee-

man shifts ωZ and ε respectively. The Bose condensates are optically dressed by a

pair of intersecting Raman laser beams in the êx-êy plane at an angle θ, and hence

the internal states |mF 〉 are coupled with a strength Ω controlled by the intensity

of the lasers. Thus the effective recoil momentum from a single photon is written as

kr = 2π
λ

sin (θ/2) with the laser wavelength λ, and the corresponding recoil energy

acquired by rubidium atoms is Er = ~2k2
r /(2m). These two laser beams have differ-

ent frequencies ωL and (ωL + ∆ωL), and δ = (∆ωL − ωZ) is the laser detuning from

Raman resonance. The detailed experimental setup can be seen in Fig. 2.1.

Figure 2.1: (a) The experimental setup of NIST scheme. (b) Energy level of 87Rb

BEC hyperfine states in F = 1 ground state.

In a frame rotating at the frequency ∆ωL, within the rotating wave approxi-

mation, the corresponding system can be described in the basis of the pseudospin
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states {|+1〉 , |0〉 , |−1〉} in the figure by a three-level Hamiltonian

H3−level =


~2k̂2

2m
+ 3~δ

2
+ ~ε ~Ω

2
ei2krx 0

~Ω
2
e−i2krx ~2k̂2

2m
+ ~δ

2
~Ω
2
ei2krx

0 ~Ω
2
e−i2krx ~2k̂2

2m
− ~δ

2

 . (2.1)

In Ref. [6], the quadratic Zeeman shift ε is sufficiently large, i.e., ε > 4Er in the

experiment, and thus the contribution of state |mF = +1〉 can be safely neglected.

The lower-energy dispersion relation can be well described with the other two hy-

perfine states |↑〉 = |F = 1,mF = 0〉 and |↓〉 = |1,−1〉 in Fig. 2.1 by an effective

two-level Hamiltonian

H2−level =

(
~2k̂2

2m
+ ~δ

2
~Ω
2
ei2krx

~Ω
2
e−i2krx ~2k̂2

2m
− ~δ

2

)
. (2.2)

The off-diagonal phase can be straightforwardly gauged away under a unitary trans-

formation to the wave function Φ = UΨ with

U =

(
eikrx 0

0 e−ikrx

)
, (2.3)

and the effective Hamiltonian becomes

HSOC = UH2−levelU † =

(
~2(k̂−krêx)2

2m
+ ~δ

2
~Ω
2

~Ω
2

~2(k̂+krêx)2

2m
− ~δ

2

)
, (2.4)

or the familiar expression as

HSOC =
~2(k̂− krêxσz)

2

2m
+ ~

δ

2
σz + ~

Ω

2
σx, (2.5)

with 2 × 2 Pauli matrices σx, σz and the canonical momentum operator k̂ = −i∇.

Hence, the internal degrees of freedom of neutral atom (pseudospins) are coupled to

the atomic orbital momentum kx along the SOC-direction, i.e., êx, via Raman laser

beams. This Raman-induced SOC is of one-dimensional nature as ∝ kxσz, which is

an equal combination of the familiar two-dimensional Rashba SOC and Dresselhaus

SOC in condensed matter physics.
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Before we move to single-particle physics, it’s easy to see that such a Bose conden-

sate with the Raman-type SOC lacks Galilean invariance. By applying the unitary

Galilean transformation along the SOC direction [57, 101, 147]

G = e−imvx/~, (2.6)

the spin-orbit Hamiltonian in Eq. (2.5) reads

(HSOC)′ =GHSOCG†

=
~2(k2

y + k2
z)

2m
+

~2(kx + krσz +mv/~)2

2m
+ ~

δ

2
σz + ~

Ω

2
σx

=HSOC +
1

2
mv2 + ~v(kx + krσz).

(2.7)

The transformed Hamiltonian has an extra velocity-dependent term ~vkrσz which

can not be gauged away and the physical momentum kx + krσz does not commute

with the Hamiltonian. Thus this system is proven to break Galilean invariance along

the direction of the Raman-type SOC. We will see many interesting properties of this

spin-orbit coupled Bose gas due to the lack of Galilean invariance in the following

chapters.
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2.2 Single-particle picture

Let’s recall the usual form of the spin-orbit coupled Hamiltonian for the Raman-type

SOC along x axis as

HSOC =
~2(k̂− krêxσz)

2

2m
+ ~

δ

2
σz + ~

Ω

2
σx, (2.8)

with the physical momentum being k̂ ∓ krêx for spin-up and spin-down particles,

respectively. Ω is the Raman coupling strength or the Rabi frequency, and δ is the

detuning of the Raman lasers.

The momentum k is a good quantum number since the Hamiltonian is spatial

translational invariant. Thus, by diagonalizing the matrix Hamiltonian, the eigenen-

ergies of the system can be obtained analytically as [101]

εk,± =
~2k2

2m
+ Er ± ~

√(
kxkr

m
− δ

2

)2

+

(
Ω

2

)2

(2.9)

with the respective eigenstates of two branches as

Φk,+ = eik·r

(
sin θ

cos θ

)
and Φk,− = eik·r

(
cos θ

− sin θ

)
. (2.10)

Here, the variable θ is defined by

θ(kx) = arcsin

[
1

2

(
1− kxkr/m− δ/2√

(kxkr/m− δ/2)2 + Ω2/4

)]2

. (2.11)

The helicity of the eigenenergies clearly reveals the spinor nature of the system.

Without the dressing of two Raman laser beams, i.e., zero coupling strength Ω = 0Er

and zero detuning δ = 0Er, the single-particle dispersion relation in Eq. (2.9) are

two parabolas intersecting at zero condensation momentum kx = 0, see Fig. 2.2. In

realistic condition of no dressing lasers, the coupling term kxkr disappears, and the

dispersion relation recovers the conventional expression ~2k2/(2m) of free particles.

Nevertheless, after switching on the Raman lasers and tuning the coupling strength

Ω and the laser detuning δ, the dispersion will experience dramatic changes.
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Figure 2.2: Single-particle dispersion in Eq. (2.9) when Raman lasers are turned off

with Ω = 0Er and δ = 0Er.

Under the condition of zero detuning δ = 0, when we continue to increase the

coupling strength Ω from 0.1Er, 0.5Er to 0.9Er as shown in Fig. 2.3, the two branches

in the energy dispersion start to separate. The opening energy gap between them

continues to enlarge as the coupling strength rises. The higher branches indicated

by blue curves are approximately parabola, while the lower-energy branches exhibit

a usual structure with an energy barrier at zero momentum and two degenerate

minima at ±kx0. The condensation occurs at two minima, and the corresponding

momentum is a function of the SOC coupling strength as

kx0 = kr

√
1−

(
Ω

4Er

)2

, (2.12)

calculated by minimizing the lower branch in Eq. (2.9).

Furthermore, when the coupling strength Ω continues to increase towards a crit-

ical value Ωc = 4Er, the double-minimum structure will be softened with the central

barrier being lowered and vanishing, as shown in Fig. 2.4. Meanwhile the positions

of two minima ±kx0 will counter move, and eventually merge to be zero when the
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Figure 2.3: Single-particle dispersion for various values of Ω/Er = 0.1, 0.5 and 0.9

at δ = 0Er.
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Figure 2.4: Single-particle dispersion for various values of Ω/Er = 2, 4 and 6 at

δ = 0Er.

coupling strength reaches the critical point Ωc. At Ω = Ωc, the lower branch of the

dispersion behaves approximately as ∝ k4
x with the central part very flat, and the

condensation locates only at zero momentum kx0 = 0. When Ω exceeds the critical

value 4Er, the lower branch becomes parabola-like and the condensates remain at

zero momentum.

On the other hand, the variation of laser detuning δ at fixed coupling strength will

also give rise to dramatic changes on single-particle dispersion. In Fig. 2.5, we have
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presented the dependence of dispersion relation on various values of detuning δ =

−1Er (left column), 0Er (middle column) and 1Er (right column). From upper panel

to lower panel in the figure, the Raman coupling strength are subsequently fixed at

Ω = 2Er, 4Er and 6Er. At zero detuning δ = 0 as shown in Fig. 2.4, the dispersion

relations are symmetric in momentum space, and the lower branch corresponds to a

double-minimum structure with nonzero kx0, center-flat-like and parabola-like with

zero condensation momentum, respectively. However when the detuning δ becomes

nonzero, all the dispersion at various Ω deform to be asymmetric. Meanwhile there

is a global minimum in the lower branch locating at a finite momentum, whose sign

is intimately related to the sign of δ, see the left and right columns in Fig. 2.5.

In this thesis, aiming to explore the properties of exotic Bose superfluidity due

to the degenerate double-minimum structure, and to carry out both qualitative and

quantitative comparisons with recent experiments, we will focus on the case of zero

detuning δ = 0 in the rest of this manuscript.
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Figure 2.5: Single-particle dispersion for δ/Er = −1, 0 and +1 (from left to right)

at various values of Ω/Er = 2, 4 and 6 (from upper to lower).
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2.3 The generic phases of a SOC Bose gas

We have shown the single-particle dispersion as functions of the SOC coupling

strength Ω and laser detuning δ in the last section. We will introduce interac-

tions in this section and study their remarkable effects on the phases of matter,

ground-state phase diagram and other thermodynamic properties. The following

discussions are first given by Li et al. at the Gross-Pitaevskii level in Ref. [95].

The interaction Hamiltonian of a spinor Bose gas can be expressed by

Ĥint =
1

2

∫
d3r

∑
σ,σ′=↑,↓

gσσ′Φ̂
†
σΦ̂†σ′Φ̂σ′Φ̂σ(r), (2.13)

or explicitly by

Ĥint =
1

2

∫
d3r
[
g↑↑Φ̂

†
↑Φ̂
†
↑Φ̂↑Φ̂↑ + g↓↓Φ̂

†
↓Φ̂
†
↓Φ̂↓Φ̂↓ + 2g↑↓Φ̂

†
↑Φ̂
†
↓Φ̂↓Φ̂↑

]
. (2.14)

Here Φ̂σ(r) is the Bose field operator for spin-component σ =↑, ↓. The interaction

strengths are denoted by gσσ′ = 4π~2aσσ′/m between the same components (σ = σ′)

or different components (σ 6= σ′), with the corresponding s-wave scattering lengths

aσσ′ . In the following we consider the usual spin symmetric interaction strengths

g↑↑ = g↓↓ = g > g↑↓ , which corresponds effectively to the experiment in Ref. [7].

In the single-particle picture in Sec. 2.2, the dispersion relation is of a double-

minimum structure for Ω < 4Er, and of a single-minimum structure for Ω ≥ 4Er.

Due to the exotic degenerate double minima, the condensate can locate at either

one of ±kx0 or their linear combinations. The corresponding wave function of the

condensate with single momentum takes a form of

Φ−kx0 = e−ikx0·x

(
sin θ0

− cos θ0

)
or Φ+kx0 = e+ikx0·x

(
cos θ0

− sin θ0

)
, (2.15)

with the angle variable θ0 ≡ θ(kx0) given in Eq. (2.11), while the condensation

momentum is given in Eq. (2.12) as

kx0 =

{
kr

√
1−

(
Ω

4Er

)2

, Ω < 4Er

0. Ω ≥ 4Er

(2.16)
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Therefore in the presence of interactions, without any loss of generality, one can

start with a trial ansatz for the wave function of the condensate as

Φ(r) ≡

(
Φ↑

Φ↓

)
=
√
n̄

[
C1

(
sin θ

− cos θ

)
e−ikx0x + C2

(
cos θ

− sin θ

)
eikx0x

]
, (2.17)

in terms of four variational parameters kx0, θ, C1 and C2. n̄ = N/V is the average

density with total particle number N and volume V . The normalization condition

is then written as∫
d3r
(
|Φ↑|2 + |Φ↑|2

)
= N, or |C1|2 + |C2|2 = 1. (2.18)

The trial wave function in Eq. (2.17) will be substituted into the total Hamilto-

nian

Ĥ =

∫
d3r
(

Φ†↑,Φ
†
↓

)
HSOC

(
Φ↑

Φ↓

)
+ Ĥint, (2.19)

with the single-particle Hamiltonian HSOC in Eq. (2.8) and the interaction energy

Ĥint in Eq. (2.13). It’s clear that the interaction energy is independent of θ, and the

minimization of the total energy with respect to θ gives straightforwardly to

kx0 = kr cos (2θ). (2.20)

Thus we can replace terms with the variable θ and obtain the mean-field energy per

particle ε ≡ E/N in a new form as [95]

ε = Er −
Ω

2

√
k2

r − k2
x0

kr

− F (β)
k2
x0

2k2
r

+G1(1 + 2β) (2.21)

with only two variational parameters now, i.e., kx0 and β ≡ |C1|2|C2|2. Here an

extra term ~2k2
⊥/(2m) is absorbed in the equation, and the function F (β) is defined

as

F (β) = 2Er − 2G2 + 4(G1 + 2G2)β (2.22)

with two interaction energies

G1 =
(g + g↑↓)n̄

4
and G2 =

(g − g↑↓)n̄
4

. (2.23)
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We continue to minimize the mean-field energy functional with respect to the

parameter kx0, which gives the extremum in terms of β as

kx0(β) =

{
kr

√
1− Ω2

4F (β)2 , Ω < 2F (β)

0, Ω ≥ 2F (β)
(2.24)

which can be seen as the extension of the single-particle result in Eq. (2.16) to the

many-body case with interactions. The last variational parameter β is in the range

of [0, 1/4] obtained from the normalization condition in Eq. (2.18). We can replace

kx0 = kx0(β) and the corresponding energy per particle is then a function of only

one parameter β. In the case G2 < 0, the energy is monotonically increasing with

the energy minimum at the left end β = 0. When G2 > 0, the energy is instead a

non-monotonic function with the minima now at two ends of the range, i.e., β = 0

or β = 1/4.

According to the variational process described above, the ground-state wave

functions or phases can be divided into three classifications:

1. The stripe phase (ST), with β = 1/4, i.e., finite |C1| and |C2|. The wave

function in Eq. (2.17) thus becomes the superposition of two plane waves with

nonzero wave vectors ±kx0 respectively.

2. The plane-wave phase (PW), with β = 0, i.e., either |C1| = 0 or |C2| = 0. The

wave function is a single plane wave located at a nonzero momentum −kx0 or

+kx0.

3. The zero-momentum phase (ZM), with kx0 = 0. All of the atoms condense at

zero momentum.

We focus on the case G2 > 0, i.e., g↑↑ = g↓↓ = g > g↑↓ , where all the generic

phases above are present in the parameter space of Ω, and the positions of three

phase transitions can be then determined in a variational method. In detail, there

are two different cases:

• When the condition Er > 2G2 +
2G2

2

G1
, i.e., n̄ < n̄(c) ≡ g+g↑↓

g(g−g↑↓)
Er, is satisfied,

all the three phases are spanning one by one over the range of the coupling
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Figure 2.6: Phase diagram of three generic phases in a Raman-type spin-orbit-

coupled BEC. Image from Ref. [8].

strength Ω. The phase boundaries are

Ω(ST−PW) = 2

[
(2Er +G1)(2Er − 2G2)

2G2

G1 + 2G2

]1/2

(2.25)

for the ST-PW phase transition, and

Ω(PW−ZM) = 4Er − 4G2 (2.26)

for the PW-ZM phase transition.

• In the opposite condition Er < 2G2 +
2G2

2

G1
or n̄ >

g+g↑↓
g(g−g↑↓)

Er, only two phases,

i.e., ST and ZM phases, exist. And the corresponding transition occurs at

Ω(ST−ZM) = 2(2Er +G1)− 2 [(2Er +G1)G1]1/2 . (2.27)

The phase diagram in the parameter spaces of the average density n̄ and the Raman

coupling strength Ω is shown explicitly in Fig. 2.6. The details of the above deriva-

tions in the variational formalism can be seen in Appendix A.1. We will discuss

thoroughly the general properties of three distinct phases in the following.
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2.3.1 The plane-wave and zero-momentum phases

Let us start with the plane-wave and zero-momentum phases, which can be expressed

with the same wave function as

Φ(r) =
√
n̄

(
cos θ

− sin θ

)
eikx0x, (2.28)

for either zero or finite wave vector kx0. Hence, the wave function in the plane-wave

phase is spatially dependent, while the one of the zero-momentum phase is homo-

geneous. However, the density distributions in both phases are uniform, possessing

transnational-invariant symmetry.

We focus on all three phases in the region n̄ < n̄(c), where the plane-wave and

zero momentum phases are separated at Ωc2 ≡ Ω(PW−ZM) in Eq. (2.26). The Bose

condensates occupy a single plane-wave state with the condensation momentum

kx0/kr =

{ √
1− Ω2/Ω2

c2, (Ω < Ωc2 in PW)

0. (Ω ≥ Ωc2 in ZM)
(2.29)

The spin polarization of the condensates along SOC-direction (i.e., x) and in the

perpendicular plane can be calculated using Eq. (2.20) by

〈σx〉 =− sin (2θ) = −
√

1− cos2 (2θ) = −
√

1− k2
x0/k

2
r ,

〈σz〉 = cos (2θ) = kx0/kr.
(2.30)

With the result in Eq. (2.29), the spin polarization in two respective phases can be

straightforwardly rewritten as

〈σx〉 =

{
−Ω/Ωc2, (Ω < Ωc2 in PW)

−1. (Ω ≥ Ωc2 in ZM)
(2.31)

and

〈σz〉 =

{ √
1− Ω2/Ω2

c2, (Ω < Ωc2 in PW)

0. (Ω ≥ Ωc2 in ZM)
(2.32)

It’s obvious that the spin polarizations of both phases along the z-direction are the

same with the expression of the condensation momentum in Eq. (2.29) as shown in

Fig. 2.6. It depends on the Raman coupling strength in the PW phase, and is zero in
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Figure 2.7: Typical density profile along the x-direction in the stripe phase at Ω =

0.1 (left), and 0.6Er (right). Parameters are the same as in Fig. 2.8.

the ZM phase, indicating an equal mixture of two spin components. Along the x axis

or SOC direction, the spin polarization in the PW phase depends linearly on Ω, while

in the ZM phase it is −1, indicating fully polarization along the direction of the SOC.

In the following section, we will further study the exotic stripe phase, and illustrate

the relevant properties, i.e., condensation momentum and spin polarizations, of all

three phases together (see Fig. 2.8).

2.3.2 The supersolid stripe phase

The third generic ground-state phase in a Bose gas with the Raman-type spin-

orbit coupling is called the stripe phase, because the density distribution is spatially

modulated by the SOC strength, as shown in Fig. 2.7. In the stripe phase, β =

|C1|2|C2|2 = 1/4, which means that |C1| = |C2| = 1/
√

2. Hence the corresponding

wave function of a stripe phase can be simplified as

Φ(r) =

√
n̄

2

[(
sin θ

− cos θ

)
e−ikx0x +

(
cos θ

− sin θ

)
eikx0x

]
, (2.33)

with θ = arccos (kx0/kr)/2 and the condensation momentum kx0 calculated from

Eq. (2.24) as

k
(ST)
x0

kr

=

√
1− Ω2

(4Er + 2G1)2
. (Ω < Ωc1) (2.34)
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Figure 2.8: Condensation momentum, spin polarization along the x- and z-axis as a

function of the coupling strength Ω across three generic phases. Here g = 1.2Er/k
3
r ,

g↑↓ = 0.8Er/k
3
r and n̄ = 1.0k3

r .

Here Ωc1 ≡ Ω(ST−PW) is the transition position between the stripe and the plane-

wave phases given in Eq. (2.25). In the stripe phase Ω < Ωc1, the condensation

momentum is smoothly decreasing with the coupling strength Ω, which is different

from the one in Eq. (2.29) for the PW and ZM phases. Using Eqs. (2.34), the

corresponding spin polarizations in the stripe phase are given by

〈σx〉(ST) =− Ω

4Er + 2G1

,

〈σz〉(ST) = cos (2θ)
(
|C2|2 − |C1|2

)
= 0.

(2.35)

In Fig. 2.8, we take a typical set of parameters with intra-species interaction

strength g = 1.2Er/k
3
r , inter-species interaction strength g↑↓ = 0.8Er/k

3
r and the

average density n̄ = 1.0k3
r . This gives rise to two phase transitions in Eqs. (2.25)

and (2.26) as

Ωc1 = 2.27Er, and Ωc2 = 3.60Er. (2.36)

In these parameters, the condensation momentum kx0, the spin polarizations along

the SOC direction and z-direction derived above are illustrated as a function of the

coupling strength Ω across all three exotic phases. Two critical Rabi frequencies Ωc1

and Ωc2 are denoted by the dashed and dotted lines in the figure respectively.

In general, the findings reveal the first-order nature of the transition at Ωc1

between the stripe and the plane-wave phases, and the second-order nature of the

transition at Ωc2 between the plane-wave and zero-momentum phases. Specifically,
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the momentum and two spin polarizations exhibit a discontinuous jump at the ST-

PW transition Ωc1, while at the PW-ZM transition position Ωc2 they are instead

continuous. When we increase the coupling strength in the stripe phase (i.e., blue

lines with diamonds), the momentum kx0/kr is smoothly decreasing from 1, and the

spin polarization 〈σx〉 along the x-axis is linearly reducing while the polarization

〈σz〉 along the z-axis remains zero. In the plane-wave and zero-momentum phases

denoted by the red and green lines respectively, the momentum kx0/kr and the

polarization 〈σz〉 are the same, monotonically dropping towards zero at and beyond

the transition Ωc2. Meanwhile the spin polarization 〈σx〉 decreases linearly with Ω

and reaches zero at and beyond Ωc2, implying the non-magnetic character in the

zero-momentum phase.

In summary, we have reviewed previous studies of a weakly-interacting Bose gas

with the Raman-lasers-induced spin-orbit coupling. The single-particle physics are

studied, and the typical grounds-state phases in the presence of interactions are well

classified. In the next Chapter, we will thoroughly introduced a theoretical approach

mostly used in the remaining of this thesis.
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Chapter 3

Hartree-Fock-Bogoliubov theory

with the Popov approximation

This chapter is mostly devoted to reviewing the Hartree-Fock-Bogoliubov theory

within the Popov approximation, which can well describe a weakly interacting Bose

gas at zero and/or nonzero temperature. In Secs. 3.1 and 3.2, we will briefly review

the Hartree-Fock-Bogoliubov theory within the Popov approximation in ultracold

Bose gases with single component or two components, and then generalize to the

system in the presence of Raman-type spin-orbit coupling. In the last two sections,

we make a trial application to discuss the effects of finite particle number and tem-

perature in an interacting one-dimensional Bose gas (Sec. 3.3), and then map the

system to a spin-polarized interacting Fermi gas using Bose-Fermi duality to ex-

plore the role of effective range (Sec. 3.4). The last two sections are mainly from

our recent publications in Refs. [64] and [65].

39
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3.1 Introduction

In quantum many-body systems, at zero temperature or extremely low tempera-

ture, the Gross-Pitaevskii (GP) formalism introduced in Sec. 1.1.1 and the famous

Bogoliubov approximation can provide a good description of the ground-state wave-

function and energy at weak couplings [10]. Nevertheless, at finite temperature

thermal atoms are non-negligible and the interactions between excited atoms start

to play an important role in studying relevant thermodynamic properties, which

makes the GP theory and Bogoliubov model invalid. The effect of thermal excited

atoms was first taken into account by Popov in 1965 in the self-consistent Hartree-

Fock-Bogoliubov approximation. This leads to the so-called Popov approximation,

which is applicable to a weakly interacting Bose gas at much higher temperature

regime. For a three-dimensional (3D) weakly interacting Bose gas, Shi and Griffin

have shown that the Hartree-Fock-Bogoliubov-Popov theory is useful and valid in

a large range of finite temperature except a small critical area near the transition

temperature [148, 149].

3.2 Theoretical framework

3.2.1 Single-component Bose gases

In this section, we revisit Hartree-Fock-Bogoliubov method within Popov approx-

imation (HFBP) in a three-dimensional homogeneous single-component Bose gas

with weak interactions. We apply the theory to investigate the excitation spectrum

in the zero-temperature limit, and compare it with the analytic result obtained

from the Bogoliubov theory. Afterwards, we numerically study the behaviour of el-

ementary excitation spectrum, condensate fraction and quantum depletion at finite

temperature, particularly at the regime near the critical BEC transition. It’s worth

to mention that, we have recently studied collective modes and dynamical proper-

ties in a spherical Bose condensate [150], by means of the time-dependent HFBP

formalism described in the following.

In a 3D weakly interacting Bose gas, the grand-canonical Hamiltonian takes the
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form [151, 152]

ĤGC =

∫
d3rΦ̂†(r, t)(H0 − µ)Φ̂(r, t)

+
1

2

∫∫
d3rd3r′Φ̂†(r, t)Φ̂†(r′, t)U(r− r′)Φ̂(r′, t)Φ̂(r, t),

(3.1)

where Φ̂(r, t) is the bosonic field operator, µ is the chemical potential and the single-

particle Hamiltonian is

H0 = − ~2

2m
∇2 + Vext(r), (3.2)

with an external trapping potential Vext(r). By taking a δ-function interaction U(r−
r′) = gδ(r − r′) between bosons with the s-wave interaction strength g given in

Eq. (1.15), the Heisenberg equation of motion is written as

i~
∂Φ̂(r, t)

∂t
=
[
Φ̂(r, t), ĤGC

]
= (H0 − µ)Φ̂(r, t) + gΦ̂†Φ̂Φ̂(r, t).

(3.3)

In the usual procedure, the field operator Φ̂(r, t) can be separated into a classical

field φ of the condensate and a non-condensate fluctuation operator η̂ [153–156]:

Φ̂(r, t) ≡ φ(r, t) + η̂(r, t), (3.4)

which leads to the expectation 〈Φ̂〉 = φ and 〈η̂〉 = 0. Thus, we obtain straightfor-

wardly 〈Φ̂†Φ̂〉 = |φ|2 + 〈η̂†η̂〉 and 〈Φ̂Φ̂〉 = φ2 + 〈η̂η̂〉.
Within the mean-field approximation, we can decouple the three-operator term

Φ̂†Φ̂Φ̂ and its average as [157]

Φ̂†Φ̂Φ̂ =|φ|2φ+ 2(|φ|2 + |η̂|2)η̂ + (φ2 + 〈η̂η̂〉)η̂† + 2φη̂†η̂ + φ†η̂η̂,

〈Φ̂†Φ̂Φ̂〉 =(|φ|2 + 2〈η̂†η̂〉)φ+ 〈η̂η̂〉φ†,
Φ̂†Φ̂Φ̂− 〈Φ̂†Φ̂Φ̂〉 =2(|φ|2 + 〈η̂†η̂〉)η̂ + (φ2 + 〈η̂η̂〉)η̂† = 2〈Φ̂†Φ̂〉η̂ + 〈Φ̂Φ̂〉η̂†,

(3.5)

with η̂†η̂η̂ ' 2〈η̂†η̂〉η̂ + 〈η̂η̂〉η̂†.
By taking an average on both sides of Eq. (3.3) and making use of Eq. (3.5), we

then find that

i~
∂φ

∂t
= (H0 − µ)φ+ g [(nc + 2nt)φ+ naφ

∗] , (3.6)
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where nc ≡ |φ(r, t)|2 is the time-dependent density of the condensate, nt ≡ 〈η̂†η̂〉 is

the non-condensate thermal density and na ≡ 〈η̂η̂〉 is the anomalous thermal density.

The equation of motion for the non-condensate operator η̂ can be similarly ob-

tained by i~∂tη̂ = i~∂t(Φ̂− φ) as

i~
∂η̂

∂t
= (H0 − µ)η̂ + g

[
2(nc + nt)η̂ + (φ2 + na)η̂

†] . (3.7)

To solve this equation, we then use the Bogoliubov transformation to expand the

non-condensate operator η̂(r, t) and its conjugate as

η̂(r, t) =
∑
j

[
uj(r)e−iεjtα̂j + v∗j (r)eiεjtα̂†j

]
,

η̂†(r, t) =
∑
j

[
vj(r)e−iεjtα̂j + u∗j(r)eiεjtα̂†j

]
,

(3.8)

i.e., the non-condensate operator η̂(r, t) is rewritten in a quasi-particle basis. The

operators α̂†j and α̂j are the creation and annihilation operators for quasi-particles

respectively. uj and vj are the corresponding amplitudes in the excited state j.

Bogoliubov quasi-particles are assumed to be non-interacting, and their operators

α̂† and α̂ satisfy the bosonic commutation relations[
α̂i, α̂

†
j

]
= δij,

[
α̂†i , α̂

†
j

]
= [α̂i, α̂j] = 0, (3.9)

leading to the normalization condition
∫
d3r(u2

i (r) − v2
i (r)) = 1 of the Bogoliubov

wave-functions ui(r) and vi(r).

In the Popov approximation, the anomalous densities (i.e., 〈η̂†η̂†〉 and 〈η̂η̂〉)
are omitted to ensure the theory is gapless [64, 157, 158]. We finally obtain the

time-dependent Hartree-Fock-Bogoliubov equation (HFBP) [156, 157, 159], which

consists of two parts:

(A) a modified Gross-Pitaevskii equation

i~
∂φ

∂t
= [H0 − µ+ g(nc + 2nt)]φ, (3.10)

which, in the case of a static condensate wave function φ = φ(r), takes the form,

[H0 − µ+ gn0(r) + 2gnt(r)]φ(r) = 0. (3.11)
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The static density of the condensate is n0 ≡ |φ(r)|2 and the thermal density is

nt(r) ≡ 〈η̂†η̂〉.
(B) the coupled Bogoliubov equations[

L M
M∗ L

][
uj(r)

vj(r)

]
= εj

[
+uj(r)

−vj(r)

]
, (3.12)

which are obtained by substituting Eq. (3.8) back into the equation of motion for the

non-condensate operator η̂ in Eq. (3.7). In the coupled equations, we have defined

L ≡ H0 − µ+ 2g (n0(r) + nt(r)) , (3.13)

and

M≡ gφ2(r). (3.14)

In the modified Gross-Pitaevskii equation, there are condensate and non-condensate

densities in the interaction energy term, both of which have to be solved self-

consistently. For the quasi-particle occupation number Nj of the j-th excited state,

we have,

Nj ≡ 〈α̂†jα̂j〉 =
1

eβεj − 1
, (3.15)

with the inverse temperature β = 1/kBT .

Therefore, using Eq. (3.8), the thermal density is given by

nt(r) ≡ 〈η̂†η̂〉

=
∑
j

[
u2
j(r) + v2

j (r)
]
〈α̂†jα̂j〉+

∑
j

v2
j (r)

=
∑
j

[
u2
j(r) + v2

j (r)
]
Nj +

∑
j

v2
j (r).

(3.16)

It’s worth noting that at zero temperature, the last term in the equation of nt is the

so-called quantum depletion of the condensate as [21, 22]

nqd(r) =
∑
j

v2
j (r). (3.17)

The chemical potential of the system, µ, is to be determined by the number

equation for the total number of atoms N = N0 + NT , where N0 =
∫
d3rn0(r) and

NT =
∫
d3rnt(r).



44 Hartree-Fock-Bogoliubov theory with the Popov approximation

In the uniform case (Vext = 0), the Bogoliubov amplitudes of the quasiparticles

in Eqs. (3.8) can be written as a plane-wave basis

uj(r) = uq
eiqr√
V

and vj(r) = vq
eiqr√
V
, (3.18)

with the quantum number j becoming q here, and Eqs. (3.12) read in momentum

space [
L(q) M
M∗ L(q)

][
uq

vq

]
= ε(q)

[
+uq

−vq

]
, (3.19)

with

L(q) =
~2q2

2m
− µ+ 2g (n0 + nt) , (3.20)

and

M = gφ2. (3.21)

We can numerically calculate the excitation spectrum at various values of tem-

peratures using Eq. (3.19). It’s worth noting that, there will two sets of solution for

the excitation energies, i.e., positive ε+(q) and negative ε−(q), with respect to the

quasiparticle momentum q, since the Bogoliubov transformation doubles the size of

Hilbert space for quasi-particles. The eigenstates with negative eigenvalues are also

a group of mathematical solution but not physical. Hence in our calculations, we

should physically take only the non-negative excitation energies. (see Fig. 3.1).

At zero temperature

At zero temperature, the HFBP theory recovers the Bogoliubov theory. We start

with the trivial uniform case, where the total atoms are condensate excluding quan-

tum depletion (n = n0 = |φ|2, nt = 0), then Eq. (3.11) becomes

µφ = gnφ, (3.22)

and the corresponding matrix on the left of Eqs. (3.19) becomes[
~2q2

2m
− µ+ 2gn gn

gn ~2q2

2m
− µ+ 2gn

]
=

[
~2q2

2m
+ gn gn

gn ~2q2

2m
+ gn

]
.
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We can directly derive the analytic eigenvalue or excitation spectrum of the matrix,

recovering the classic Bogoliubov form as

ε(q) =

√
~2q2

2m

[
~2q2

2m
+ 2gn

]
, (3.23)

with the squared Bogoliubov amplitudes

u2
q =

~2q2/(2m) + gn

2ε(q)
+

1

2
, v2

q =
~2q2/(2m) + gn

2ε(q)
− 1

2
. (3.24)

Thus the quantum depletion in Eq. (3.17) can be calculated analytically as [21]

n
(analytic)
qd =

1

V

∑
q

v2
q = n

8

3
√
π

(na3)1/2, (3.25)

in terms of the s-wave scattering length a.

At finite temperature

At finite temperature, in the uniform case, the Eq. (3.11) reads

µφ = g (nc + 2nt)φ, (3.26)

and the corresponding matrix in Eqs. (3.19) becomes[
~2q2

2m
− µ+ 2g(nc + nt) gnc

gnc
~2q2

2m
− µ+ 2g(nc + nt)

]
=

[
~2q2

2m
+ gnc gnc

gnc
~2q2

2m
+ gnc

]
.

Here nc = |φ|2 is the density of the condensate, and the non-condensate density

nt ≡ 〈η̂†η̂〉 can be calculated from Eq. (3.16) as nt = (1/V )
∑
q

[
u2
q + v2

q

]
〈α̂†qα̂q〉 +

(1/V )
∑
q

v2
q, where the occupation number of the quasiparticle at quasimomentum

q takes the form 〈α̂†qα̂q〉 = 1/(eβεq − 1). Similar to the zero-temperature case, the

analytic dispersion relation of excitation can be obtained as

ε(q) =

√
~2q2

2m

[
~2q2

2m
+ 2gnc

]
, (3.27)
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Figure 3.1: Excitation spectrum of a uniform single-component Bose gas at finite

temperature. Energy and momentum are in units of the zero-temperature chemical

potential µ = gn ≡ ~2k2
0

2m
and k0, respectively. T0 is the BEC temperature of an ideal

Bose gas.

except that the density of the condensate nc and non-condensate density nt need to

be calculated self-consistently using the coupled equations derived above. In Fig. 3.1,

we show the excitation spectrum at finite temperatures calculated numerically using

Eq. (3.19), denoted by ε+(q) in dotted curves. The analytic results, i.e., Eq. (3.27),

are present in dashed lines, and coincide with the numerical ones.

By employing the above Hartree-Fock Bogoliubov method within Popov approx-

imation for an ideal Bose gas, one recovers the BEC transition temperature T0 in

Eq. (1.10) derived in Sec. 1.1.1 as [10, 21]

kBT0 =
2π~2

m

(
n

ζ(3/2)

)2/3

, (3.28)

as a function of the uniform density n with ζ(3/2) ≈ 2.612. Nevertheless, in the

presence of weak interactions, the transition temperature changes to

T ∗c = T0 + ∆Tc, (3.29)

with a positive shift ∆Tc [10, 21, 160]. The leading-order shift in the limit a→ 0 is

proportional to the gas parameter n1/3a as

∆Tc/T0 ≈ 1.3
(
n1/3a

)
, (3.30)
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Figure 3.2: Condensate fraction nc/n at different values of the gas parameter n1/3a.

The solid line indicates nc/n = 1− (T/T0)3/2 in Eq. (1.12) for an ideal gas.

according to the most precise Monte Carlo calculations [161, 162].

The method we employed here, HFB theory with Popov approximation, is of first-

order character. Hence it’s not accurate enough to predict the second-order Bose-

Einstein condensation for a weakly-interacting Bose gas [148, 149, 157]. Besides,

the HFBP approximation gives rise to a discontinuity on the order parameter
√
nc

and the density of the condensate at the transition position T0, as shown in Fig. 3.2.

The finite density fraction of the condensate at T0 is given by [148]

δn
jump

(T0)/n =
4π

ζ(3/2)4/3
· (n1/3a) (3.31)

as a function of the gas parameter n1/3a. This finite gap or fraction in the density of

the condensate indicates the break down of the first-order Popov approximation on

the calculation of Bose-Einstein condensation temperature, due to the lack of non-

negligible terms of the order (gnc)
1/2 at sufficiently high temperature. The critical

region is, or in another words the HFBP approximation is valid when,[148, 149]

T/T0 � 1− (n1/3a). (3.32)

In a dilute weakly-interacting Bose gas the typical density fraction δn
jump

(T0)/n is

very small due to the tiny n1/3a � 1, implying a large applicable region for the

HFBP approximation.
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Figure 3.3: (left) condensate fraction nc/n (i.e., dashed black) and quantum de-

pletion fraction nd/n (i.e., dotted blue). The inset zooms in on nd/n. (right) the

fraction of the condensate nc/n, and of the superfluid ns/n. Here the gas parameter

is n1/3a = 0.01.

In Fig. 3.2, by using HFBP approximation, we calculate the fraction nc(T )/n of

the condensate as a function of finite temperature T at various values of the gas pa-

rameter n1/3a. As the gas parameter decreases, the finite gap at T0 reduces towards

zero and the condensate fraction approaches the curve of an ideal Bose gas. It’s

worth to mention here that, as the temperature decreases towards zero, the conden-

sate fraction approaches to a value relatively lower than 1. This is because in the

self-consistent calculations, we include the quantum depletion given in Eq. (3.25),

which plays an important role at relatively low temperatures. To be explicit, for rel-

atively smaller density n/k3
0 or larger gas parameter n1/3a, the quantum fluctuations

deplete the condensate and the fraction becomes nc(T = 0)/n = 1−8/(3
√
π)(na3)1/2

at zero temperature.

Furthermore, in Fig. 3.3, we take a sufficiently small n1/3a = 0.01 of a typical

dilute alkali gas, which implies a high validity of the HFBP method. Hence the

quantum depletion denoted by dotted-blue line is tiny about ∼ 1%, leading to

the negligible deviation between the condensate and superfluid fractions at finite

temperature as shown in the right figure. Here the superfluid density is calculated

using a phase-twist method described in Appendix C.
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3.2.2 Two-component Bose gases

In order to generalize the HFBP approach to a two-pseudospin Raman-type spin-

orbit coupled Bose gas, we can first extend the formalism described in the last section

to a two-species Bose gas with a coherent coupling h.

The total Hamiltonian has a form of

ĤGC =

∫
d3r

∑
σ=↑,↓

Φ̂†σ(r, t)(H0 − µ)Φ̂σ(r, t)

+
1

2

∫
d3r
(
gΦ̂†↑Φ̂

†
↑Φ̂↑Φ̂↑ + gΦ̂†↓Φ̂

†
↓Φ̂↓Φ̂↓ + 2g↑↓Φ̂

†
↑Φ̂
†
↓Φ̂↓Φ̂↑

)
+

∫
d3r
(
hΦ̂†↑Φ̂↓ + hΦ̂†↓Φ̂↑

)
,

(3.33)

with the same intra-spin interaction strength g↑↑ = g↓↓ = g.

The Heisenberg equations of motion i~∂Φ̂(r,t)
∂t

=
[
Φ̂(r, t), ĤGC

]
for the Bose op-

erator fields thus give rise to

i~∂tΦ̂↑ = (H0 − µ)Φ̂↑ + gΦ̂†↑Φ̂↑Φ̂↑ + g↑↓Φ̂
†
↓Φ̂↓Φ̂↑ + hΦ̂↓,

i~∂tΦ̂↓ = (H0 − µ)Φ̂↓ + gΦ̂†↓Φ̂↓Φ̂↓ + g↑↓Φ̂
†
↑Φ̂↑Φ̂↓ + hΦ̂↑.

(3.34)

Following the usual routine, we separate the field operator for spin-component

σ to a classic condensate field φσ and a fluctuation operator η̂σ as

Φ̂σ(r, t) = φσ(r, t) + η̂σ(r, t). (3.35)

The fluctuation operator and its conjugate can be then expanded in a quasiparticle

basis (α̂†, α̂) via the Bogoliubov transformation given in Eqs. (3.8) as

η̂σ(r, t) =
∑
j

(
ujσ(r)e−iεjtα̂j + v∗jσ(r)eiεjtα̂†j

)
,

η̂†σ(r, t) =
∑
j

(
vjσ(r)e−iεjtα̂j + u∗jσ(r)eiεjtα̂†j

)
,

(3.36)

for the spin-component σ =↑ or ↓.
Similarly, we have the mean-field approximations of decoupling the three-operator
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terms in Eq. (3.34) as

〈Φ̂†Φ̂〉 =|φ|2 + 〈η̂†η̂〉, 〈Φ̂Φ̂〉 = φ2 + 〈η̂η̂〉,
Φ̂†Φ̂Φ̂σ =|φ|2φ+ 2(|φ|2 + |η̂|2)η̂ + (φ2 + 〈η̂η̂〉)η̂† + 2φη̂†η̂ + φ†η̂η̂,

〈Φ̂†Φ̂Φ̂〉σ =(|φ|2 + 2〈η̂†η̂〉)φ+ 〈η̂η̂〉φ†,
Φ̂†σΦ̂σΦ̂σ′ =|φσ|2φσ′ + (|φσ|2 + |η̂σ|2)η̂σ′ + (φ†σφσ′ + 〈η̂†ση̂σ′〉)η̂σ

+ (φσφσ′ + 〈η̂ση̂σ′〉)η̂†σ + φσ′ η̂
†
ση̂σ + φ†ση̂ση̂σ′ + φση̂

†
ση̂σ′ ,

〈Φ̂†σΦ̂σΦ̂σ′〉 =|φσ|2φσ′ + φσ′ |η̂σ|2 + φ†σ〈η̂ση̂σ′〉+ φσ〈η̂†ση̂σ′〉,
Φ̂†Φ̂Φ̂σ − 〈Φ̂†Φ̂Φ̂〉σ =2(|φ|2 + 〈η̂†η̂〉)η̂ + (φ2 + 〈η̂η̂〉)η̂† = 2〈Φ̂†Φ̂〉η̂ + 〈Φ̂Φ̂〉η̂†,

Φ̂†σΦ̂σΦ̂σ′ − 〈Φ̂†σΦ̂σΦ̂σ′〉 =(|φσ|2 + 〈η̂†ση̂σ〉)η̂σ′ + (φ†σφσ′ + 〈η̂†ση̂σ′〉)η̂σ + (φσφσ′ + 〈η̂ση̂σ′〉)η̂†σ
=〈Φ̂†σΦ̂σ〉η̂σ′ + 〈Φ̂†σΦ̂σ′〉η̂σ + 〈Φ̂σΦ̂σ′〉η̂†σ,

(3.37)

with the approximations η̂†ση̂ση̂σ ' 2〈η̂†ση̂σ〉η̂σ + 〈η̂ση̂σ〉η̂†σ and η̂†ση̂ση̂σ′ ' 〈η̂†ση̂σ〉η̂σ′ +
〈η̂†ση̂σ′〉η̂σ + 〈η̂ση̂σ′〉η̂†σ.

We then sort out the equations of motion i~∂t〈Φ̂σ(r, t)〉 = i~∂tφσ(r, t) for the

condensate and i~∂tη̂σ(r, t) = i~∂t(Φ̂σ(r, t) − φσ(r)) for the quasi-particle with the

decoupling approximations given in Eqs. (3.37). By omitting the anomalous density

terms 〈η̂ση̂σ′〉 and 〈η̂†ση̂
†
σ′〉, we obtain again two sets of coupled equations:

(A) a coupled Gross-Pitaevskii equation

i~∂tφ↑(r, t) = (H0 − µ)φ↑ + g(nc↑ + 2nt↑)φ↑ + g↑↓(nc↓ + nt↓)φ↑ + g↑↓〈η̂
†
↓η̂↑〉φ↓ + hφ↓,

i~∂tφ↓(r, t) = (H0 − µ)φ↓ + g(nc↓ + 2nt↓)φ↓ + g↑↓(nc↑ + nt↑)φ↓ + g↑↓〈η̂
†
↑η̂↓〉φ↑ + hφ↑.

(3.38)

Here, the condensates occupy the zero-momentum state with real wave functions

φσ = φ∗σ. Thus the coupled equations can be rewritten as

µ

(
φ↑

φ↓

)
=

[
H0 + g(nc↑ + 2nt↑) + g↑↓n↓ h+ g↑↓nsf

h+ g↑↓nsf H0 + g(nc↓ + 2nt↓) + g↑↓n↑

](
φ↑

φ↓

)
,

(3.39)

(B) a coupled Bogoliubov equations similar to Eq. (3.12)[
L M
M∗ L

][
Uj(r)

Vj(r)

]
= εj

[
+Uj(r)

−Vj(r)

]
, (3.40)
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but with different elements defined as

L =

(
H0 − µ+ 2gn↑ + g↑↓n↓ h+ g↑↓(φ

∗
↓φ↑ + nsf)

h+ g↑↓(φ
∗
↑φ↓ + nsf) H0 − µ+ 2gn↓ + g↑↓n↑

)
, (3.41)

M =

(
gφ2
↑ g↑↓φ↓φ↑

g↑↓φ↑φ↓ gφ2
↓

)
, (3.42)

Uj(r) = (uj↑(r), uj↓(r))T and Vj(r) = (vj↑(r), vj↓(r))T . (3.43)

In the equations, we have introduced the relevant densities ncσ = 〈φ†σφσ〉, ntσ =

〈η̂†ση̂σ〉 and nσ = ncσ + ntσ as the density of the condensate, non-condensate density

and the total density for spin-component σ, respectively. Besides, nsf = 〈η̂†↑η̂↓〉 is

the spin-flip density of the fluctuation operator, which becomes non-negligible and

plays an important role at large enough temperatures.

The coupled equations described above are self-consistent and can be calculated

numerically as shown in the single-component case. In a uniform gas (Vext = 0), the

Bogoliubov amplitudes of the quasiparticles for spin σ in Eq. (3.35) can be written

again in a plane-wave basis as

ujσ(r) = uσq
eiqr√
V

and vjσ(r) = vσq
eiqr√
V
. (3.44)

We can define

Uq = (u↑q, u↓q)T and Vq = (v↑q, v↓q)T , (3.45)

and Eqs. (3.40) read in momentum space[
L(q) M
M∗ L(q)

][
Uq

Vq

]
= ε(q)

[
+Uq

−Vq

]
, (3.46)

with the same M and

L(q) =

(
~2q2

2m
− µ+ 2gn↑ + g↑↓n↓ h+ g↑↓(φ

∗
↓φ↑ + nsf)

h+ g↑↓(φ
∗
↑φ↓ + nsf)

~2q2

2m
− µ+ 2gn↓ + g↑↓n↑

)
. (3.47)

We can numerically diagonalize the new matrix on the left of Eq. (3.46), and

obtain two physical branches of excitation energy ε±(q) (see Fig. 3.4) with the cor-

responding Bogoliubov wave functions uσq and vσq at the quasiparticle momentum

q.
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At zero temperature

At zero temperature, the excitation spectrum of the system with the Hamiltonian

given in Eq. (3.33) can be obtained analytically, as shown in Ref. [163]. If the

condition of the interaction strengths1

g↑↓ < g + 2h/n (3.48)

is satisfied, the corresponding excitation spectrum exhibits the helicity in a form of

ω1 =

√
~2q2

2m

[
~2q2

2m
+ (g + g↑↓)n

]
,

ω2 =

√
~2q2

2m

[
~2q2

2m
+ (g − g↑↓)n+ 4h

]
+ 2h

[
(g − g↑↓)n+ 2h

]
.

(3.49)

It’s straightforward to see that, in the limit of zero coherent coupling h→ 0, ω2

becomes the usual expression as

ω
(h→0)
2 =

√
~2q2

2m

[
~2q2

2m
+ (g − g↑↓)n

]
. (3.50)

By employing the HFBP formalism in the limit of zero temperature T → 0, we

self-consistently calculate the excitation energy ε± using Eq. (3.46) at various values

of the coherent coupling strength h. The energy spectra are shown in Fig. 3.4, where

we set T = 10−4T0 in the realistic calculations. The numerical results are depicted

in solid blue and red curves, and agree exactly with the corresponding analytic

expressions ω1,2 at zero temperature given in Eqs. (3.49) denoted by the colorful

symbols ’+’ and ’o’ respectively.

In detail, the intra-species and inter-species interaction strength are set to be

zero in the upper panel. The lower branch ε− of the spectra is independent of

h and exhibits the parabolic behaviour of a free particle, while the higher ε+ has

a finite energy gap increasing with the coupling strength h. In the lower panel,

the interaction strengths are nonzero, i.e., g/g↑↓ = 0.8/0.5. In the presence of

1This is the regime we concentrate in the case with spin-orbit coupling where all three generic

phases exist.
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Figure 3.4: Excitation spectra at various values of the coherent strength h in the limit

T → 0, obtained by the HFBP approximation in solid lines, and from Eqs. (3.49)

denoted by the symbols. The interaction strengths are g = g↑↓ = 0 (upper) and

g/g↑↓ = 0.8/0.5 (lower).

interactions, the lower branch ε− becomes distinct to the one without interactions,

and it exhibits the linear phonon mode in the long-wavelength limit (q → 0) as in

usual weakly interacting Bose gases. The higher branch ε+ remains parabola-like

with a increasing energy gap with h, similar to the one in the upper panel.

3.2.3 In the presence of spin-orbit coupling

It’s straightforward to generalize the two-component case to the Bose gas with

Raman-type spin-orbit coupling (SOC), except that the condensates can occupy a

finite-momentum state due to the unique double-minimum single-particle dispersion,

see in Sec. 2.2. We recall the Hamiltonian of a three-dimensional weakly interacting
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Bose gas with the Raman-type SOC as

Ĥ =

∫
d3rΨ̂†(r̂)HSOCΨ̂(r) + Ĥint, (3.51)

with the spinor function Ψ̂(r) ≡
(

Φ̂↑(r), Φ̂↓(r)
)T

. The single-particle Hamiltonian

HSOC in Eq. (2.8) and the interaction Ĥint in Eq. (2.13) are written as

HSOC =
~2(p̂− krêxσz)

2

2m
+ ~

δ

2
σz + ~

Ω

2
σx,

Ĥint =
1

2

∫
d3r

∑
σ,σ′=↑,↓

gσσ′Φ̂
†
σΦ̂†σ′Φ̂σ′Φ̂σ(r),

(3.52)

with the canonical momentum operator p̂ = −i∇ and Pauli matrices σx, σz. It’s

worth noting that, due to the SOC, the physical momentum are modulated to p̂∓
krêx for pseudospin-up and pseudospin-down atoms, respectively. gσσ′ = 4π~2aσσ′/m

are interaction strengths for intra- (σ = σ′) and inter-species (σ 6= σ′), and aσσ′ are

the corresponding s-wave scattering lengths. krêx is the recoil momentum of the Ra-

man lasers along the x-axis, with the corresponding recoil energy Er = ~2k2
r /(2m).

The detuning of the Raman lasers is assumed to be zero δ = 0 and the Rabi frequency

Ω can be flexibly tuned over a range, in accord with the recent experiments [14, 105].

We have shown in Sec. 2.3 that the inequality of intra-spin and inter-spin interac-

tions G2 > 0, is essential to the emergence of all three generic phases, particularly

the spin-mixed stripe phase [95, 164]. Hence we will set g↑↑ = g↓↓ = g > g↑↓ in the

following investigations.

In the zero-temperature limit, the quasiparticle formalism in the Bogoliubov ap-

proximation level can be well applied to study the system with SOC, which can

well describe the weakly-interacting dilute Bose gases at extremely low tempera-

tures [10, 21]. To study the related physical properties of these systems at relatively

high temperature, we generalize a Hartree-Fock-Bogoliubov theory [156, 157, 159]

with Popov approximation [158] (HFBP) from the last section.

Following the conventional procedures described in the subsections 3.2.1 and 3.2.2,

the Bose field operator Φ̂σ(r, t) for spin component σ =↑, ↓ can be rewritten as a

combination of condensate wave function φσ and the non-condensate fluctuation
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operator η̂σ as

Φ̂σ(r, t) =φσ(r, t) + η̂σ(r, t)

=φσ +
∑
j

(
ujσ(r)e−iεjtα̂j + v∗jσ(r)eiεjtα̂†j

)
,

(3.53)

where the fluctuation is expanded in a quasiparticle basis (α̂†, α̂) with the quasipar-

ticle amplitudes u(u∗), v(v∗) and the quasiparticle frequency εj.

After substituting the new Bose field operators, Eqs. (3.53), into the equations

of motion i∂tΦ̂σ(r, t) =
[
Φ̂σ, Ĥ

]
, and then applying the mean-field decoupling of

three operators [157], we recover two coupled equations similar to the usual two-

component case in Sec. 3.2.2.

(A) The first is the modified Gross-Pitaevskii equation for the condensate[
HSOC + g↑↓nsfσx + diag(L↑,L↓)

]
φ = µφ (3.54)

with the spinor φ ≡ (φ↑(r), φ↓(r))T , the chemical potential µ, the spin-flip terms nsf

and the diagonal element (here σ̄ indicates a spin index different with σ.)

Lσ ≡ g(ncσ + 2ntσ) + g↑↓nσ̄. (3.55)

(B) The other is the coupled Bogoliubov equation for the quasiparticles,[
HSOC − µ+A↑

]
Uj + BVj = εjUj, (3.56a)

−BU∗j −
[
HSOC − µ+A↓

]
V ∗j = εjV

∗
j , (3.56b)

where Uj ≡ (uj↑(r), uj↓(r))T , Vj ≡ (vj↑(r), vj↓(r))T , and

Aσ ≡

[
2gn↑ + g↑↓n↓ g↑↓ (φσφ

∗
σ̄ + nsf)

g↑↓ (φσ̄φ
∗
σ + nsf) 2gn↓ + g↑↓n↑

]
, (3.57a)

B ≡

[
gφ2
↑ g↑↓φ↑φ↓

g↑↓φ↑φ↓ gφ2
↓

]
. (3.57b)

We have introduced again the corresponding density of the condensate ncσ ≡
〈φ†σφσ〉, fluctuation density ntσ ≡ 〈η̂†ση̂σ〉 and total density nσ = ncσ + ntσ for spin-

component σ. In terms of the Bogoliubov wavefunctions u(v), the non-condensate
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density ntσ of spin σ and the spin-flip term nsf can be written explicitly as

ntσ ≡〈η̂†ση̂σ〉 =
∑
j

[
(|ujσ|2 + |vjσ|2)〈α̂†jα̂j〉+ |vjσ|2

]
nsf ≡〈η̂†ση̂σ̄〉 =

∑
j,σ 6=σ̄

[
(u∗jσujσ̄ + v∗jσ̄vjσ)〈α̂†jα̂j〉+ v∗jσ̄vjσ

]
,

(3.58)

where Nj ≡ 〈α̂†jα̂j〉 is occupation number of the quasiparticles in j-th excited state,

taking Bose-Einstein statistics as a function of the excitation energy εj as Nj =

1/(eβεj − 1).

At zero temperature T = 0, after solving the relevant GP and Bogoliubov equa-

tions self-consistently, Eqs. (3.54) and (3.56), one can obtain straightforwardly the

ground-state wave function φ(r) with respect to the Rabi frequency Ω, as well as

the corresponding Bogoliubov excitation spectrum εj. When we introduce thermal

fluctuations at a nonzero temperature T 6= 0, the condensation phase and the cor-

responding excitation spectrum can be determined using the same approach. The

properties of this system with the Raman-type SOC will be studied in detail at zero

and nonzero temperatures in the next two chapters, Chaps. 4 and 5.
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3.3 Application to one-dimensional Bose gases in

harmonic traps

Many-particle systems in one dimension (1D) with a short-range interparticle in-

teraction play an important role in understanding fascinating quantum many-body

physics [165, 166]. For instance, a 1D interacting Bose gas is theoretically anticipated

to experience different phases by changing interaction strength and temperature, and

to exhibit a number of intriguing phenomena, such as effective fermionization and

nontrivial quench dynamics [165, 166]. Since the realization of Bose-Einstein con-

densation in 1995, more and more experiments have dealt with 1D atomic bosons in

a harmonic trap at ultra-cold temperature, which can help test theoretical predic-

tions and understand all these unusual phenomena. At present, many experiments

have been conducted and controlled by means of Feshbach resonances [12] or directly

heating 1D quantum degenerate Bose gases [167], which measured and character-

ized various physical quantities, including momentum distribution [168], pair corre-

lation [169] and quenching rate [170, 171]. Motivated by these rapid experimental

advances, there are numerous theoretical studies based on sum-rule approach [172],

variational method [173], local density approximation [11] and diffusion Monte Carlo

simulations [174]. Experimental measured quantities, particularly momentum dis-

tribution [175] and pair correlation [176–178], have been predicted and compared

with experimental data.

In the recent experiment [12], the Feshbach resonance technique is used to tune

the interatomic interaction of a 1D Bose gas in a harmonic trap at extremely low

temperature. The measured ratio of squared breathing mode frequency ω2
m/ω

2
ho ex-

hibits a reentrant behaviour, from 4 in the non-interacting regime to 3 in the weakly

interacting regime, and then back to 4 in the Tonks-Girardeau regime [63]. Most

recently, this interesting reentrant behaviour was addressed by two theoretical works

based on simulations at zero temperature [11, 174]. Choi and coworkers used a time-

dependent modified nonlinear Schrödinger equation (m-NLSE) with a local chemical

potential replacing the conventional nonlinear term [11]. Gudyma and collaborators

combined a sum-rule approach in the mean-field regime and the local density ap-

proximation in the Tonks-Girardeau regime to describe the breathing mode [174].
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Diffusion Monte Carlo simulations for few particle numbers were performed, in or-

der to obtain density profiles as inputs to the sum-rule approach. Comparing all

results together, we find that there are still deviations between experimental data

and theoretical predictions, particularly in the deep weakly-interacting regime.

By considering finite particle number (i.e., varying in a range of 8 ∼ 25) and un-

avoidable nonzero temperature in the realistic experiment [12], we therefore would

like to address in a more systematic way their effects on collective mode frequencies

of a 1D trapped Bose gas. We note that, at large number of particles, the tem-

perature dependence of mode frequencies has been recently investigated by using a

hydrodynamic theory [173].

In this section, we investigate an interacting Bose gas confined in a 1D har-

monic trap and study the low-lying collective-mode frequencies for a wide range of

effective interaction parameter γeff , covering all interaction regimes from the ideal

noninteracting regime to the mean-field Thomas-Fermi regime and to the strongly

interacting Tonks-Girardeau regime, by developing a generalized Bogoliubov theory

at T = 0 and a Hartree-Fock-Bogoliubov theory with Popov approximation at finite

temperature T 6= 0 depicted in Sec. 3.2.1.

The former theory concentrates on the zero-temperature case, where we follow

the idea of the density-functional approach, use a generalized Gross-Pitaevskii equa-

tion, and take the local chemical potential for uniform density obtained from the

Lieb-Liniger model as the exchange energy (i.e., the nonlinear term) [179, 180]. In

the latter theory, the finite-temperature effect is taken into account through the self-

consistent Hartree-Fock-Bogoliubov equations in the weakly interacting regime. By

emphasizing the effects of finite particle number and nonzero temperature collective-

mode frequencies, we compare our results with the experimental measurement [12]

and the previous theoretical prediction [11].
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3.3.1 Theoretical Framework: 1D atomic Bose gases

T = 0 : A density functional method with Lieb-Liniger integrals

We start with a 1D atomic Bose gas with a repulsive zero-range potential. The

system of N particles can be described with the Lieb-Liniger Hamiltonian [181, 182],

H = − ~2

2m

N∑
i=1

∂2

∂x2
i

+ g
1D

N∑
i<j

δ(xi − xj), (3.59)

where m is the mass of atom and g
1D

is the 1D interaction strength of form

g
1D

=
2~2

ma
1D

, (3.60)

characterizing the interaction between bosons. a
1D

is the 1D scattering length cal-

culated by [183]

a
1D

= − a2
⊥

2a
3D

[
1− C a3D

a⊥

]
, (3.61)

where a
3D

is the three-dimensional (3D) scattering length, a⊥ = [~/(mω⊥)]1/2 is a

two-dimensional (2D) harmonic oscillator characteristic length (see below) and the

constant C ' 1.4603. Experimentally, systems of 1D Bose gases are usually trapped

in a cylindrically symmetric potential with strong transverse confinement and weak

longitudinal confinement (i.e., with trapping frequencies ω⊥ � ωx). Transverse

excitations are not taken into account if the transverse vibrational energy ~ω⊥ is

much greater than the chemical potential or the energy scale of the thermal cloud

(~ω⊥ � µ, kBT ) [12, 167–170]. However, the scattering of two atoms in the lowest

transverse mode could strongly be affected by high transverse excitations, when the

3D scattering length a
3D

is close to the 2D harmonic oscillator length a⊥. This leads

to a confinement-induced Feshbach resonance, as can be seen in Eq. (3.61).

Lieb-Liniger model Lieb and Liniger investigated this 1D system at T = 0 and

solved it exactly in 1960s. They dealt with the Hamiltonian (3.59) and the associated

Schrödinger equation by means of Bethe ansatz [184], and obtained exactly the

ground state as well as low-lying excited states in a uniform gas with a constant

density n = N/V [181, 182].
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In the Lieb-Liniger model, they defined a dimensionless interaction parameter

γ(n) as a function of g
1D

, which is

γ(n) ≡ mg
1D

~2n
=

2

na
1D

. (3.62)

By solving exactly the Hamiltonian, they got a group of integral equations (i.e.,

Lieb-Liniger integrals), including the normalization condition and the equation of

the ground state energy. The ground state energy has the form

E0 =
N~2n2

2m
e(γ), (3.63)

where e(γ) is a dimensionless function of γ, which can be obtained by solving the

following Lieb-Liniger integrals,

g(x) =
1

2π
+

1

2π

∫ 1

−1

2λ

(x− x′)2 + λ2
g(x′)dx′,

λ = γ

∫ 1

−1

g(x)dx,

e(γ) = (
γ

λ
)3

∫ 1

−1

x2g(x)dx.

(3.64)

In the integrals, g(x) is the distribution function of the quasi-momentum, which is

represented by the variable x after a rescaling [181]. Thus, the variables x, x′ are all

bounded in the range [−1, 1], as shown in the upper and lower limits of the integrals.

Variable λ is proportional to γ since the remaining integral part in λ is fixed. Hence,

λ is also proportional to the interaction strength g
1D

for a fixed uniform density n.

By numerically solving the integrals, it can be shown that e(γ) is a monotonically

increasing function of γ [181]. In the limit of γ = 0, e(0) = 0 and the ground

state energy is E0 = 0, corresponding to the case that all free bosons occupy the

zero-momentum state. When γ is sufficiently large, the asymptotic value of e(γ)

is π2/3, which exactly coincides the predicted value for impenetrable bosons in

1D by Girardeau [63]. All the information of the ground state of 1D Bose gas

can then be calculated from e(γ). The energy per particle at the ground state is

ε(n) = E0/N = ~2n2e(γ)/(2m), and the corresponding chemical potential µ(n) is

given by

µ(n) =
∂(nε(n))

∂n
=

~2n2

2m
µ(γ). (3.65)
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It is straightforward to see that the dimensionless chemical potential µ(γ) can be

calculated by

µ(γ) = 3e(γ)− γe′(γ). (3.66)

In Ref. [11], Choi and coworkers proposed the following analytic expression for the

chemical potential at large γ,

µ(n) ≈ π2

2

~2n2

m

[
γ2(n)(2 + 3γ(n))

3(2 + γ(n))3

]
, (3.67)

near the Tonks-Girardeau limit. Compared with the numerical results of Lieb-

Liniger integrals, this expression turns out to be very accurate, as long as γ is larger

than 10.

Generalized Gross-Pitaevskii theory The Gross-Pitaevskii theory provides a

good description of weakly-interacting atomic Bose-Einstein condensates at T = 0.

However, it is known that the theory fails in low dimensions (d ≤ 2) and therefore

needs appropriate modifications. In Ref. [185], Kolomeisky and coworkers suggested

an interesting modification in the Tonks-Girardeau limit for 1D trapped Bose gases.

Here, we generalize their idea to all interaction strengths, following the procedure

of using an improved exchange energy in the density-function approach.

Recall that the standard Gross-Pitaevskii equation with a condensate order pa-

rameter (wavefunction) Ψ(x, t) is given by

i~
∂Ψ(x, t)

∂t
= [H0 + g

1D
n(x, t)] Ψ(x, t) (3.68)

with the single particle Hamiltonian

H0 = − ~2

2m

∂2

∂x2
+ Vext(x), (3.69)

where Vext(x) = 1
2
mω2

hox
2 is the harmonic trapping potential and n(x, t) = |Ψ(x, t)|2

is the particle density. The Hartree term g
1D
n(x, t) in Eq. (3.68) is only applicable

in the weak coupling regime.

Away from the weak coupling regime (na
1D
� 1 or γ � 1), we may use local

density approximation (LDA) to determine the ground state of a trapped system.

The LDA amounts to setting,

µ = µloc(n(x)) + Vext(x), (3.70)
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with µ being the global chemical potential. Once we know the local chemical µloc(n)

for a uniform Bose gas from the Lieb-Liniger model, we can then determine the

density profile n(x) by inversely solving Eq. (3.70). The important observation

made by Kolomeisky and coworkers is that in the Tonks-Girardeau limit, one may

simply obtain a modified Gross-Pitaevskii equation by using µloc(n) = π2~2n2/2m

to replace the Hartree term g
1D
n [185]. Motivated by this work, one can use µloc(n)

calculated numerically in the Lieb-Liniger model, to obtain the corresponding result

in the intermediate regime between the mean-field limit and the Tonks-Girardeau

limit.

Modifying the interaction term g
1D
n to the local chemical potential µloc(n), the

generalized Gross-Pitaevskii equation reads,

i~
∂Ψ(x, t)

∂t
= [H0 + µloc (n(x, t))] Ψ(x, t), (3.71)

which has the same form as the m-NLSE equation adopted by Choi and cowork-

ers [11].

The idea of directly modifying the exchange-energy-like term at zero temperature

is supported by the following derivation of the hydrodynamic equation. That is, we

rewrite the order parameter as

Ψ(x, t) = n
1
2 (x, t)eiθ(x,t), (3.72)

where n(x, t) is now interpreted as the time-dependent superfluid density of the sys-

tem and θ(x, t) is the associated phase. We therefore introduce a superfluid velocity

field v(x, t) = ~
m
∂θ(x,t)
∂x

ex and rewrite the generalized Gross-Pitaevskii equation in

terms of the superfluid density n(x, t) and superfluid velocity v(x, t):

m
∂v

∂t
+

∂

∂x
(µloc(n) + Vext(x) +

1

2
mv2) = 0,

∂n

∂t
+

∂

∂x
(nv) = 0.

(3.73)

Here we have neglected a quantum pressure term, which is small in the long wave-

length limit. Thus, it is clear that our generalized Gross-Pitaevskii equation is

identical to the standard 1D time-dependent hydrodynamic equations in the long

wave-length limit. For a finite particle number system, it is preferable to use the
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generalized Gross-Pitaevskii equation to understand the dynamics of interacting 1D

Bose gases. The effect of finite particle number is taken into account by the quantum

pressure term that is neglected in the hydrodynamic equations.

Generalized Bogoliubov theory We now consider excited states of 1D Bose

gases, which can be treated as small oscillations around the superfluid density at

the ground state (i.e., φ0(x)) with frequencies ωj. Their wavefunctions, uj and vj,

are given by [10],

Ψ(x, t) = e−iµt/~
[
φ0(x) + uj(x)e−iωjt/~ + v∗j (x)eiωjt/~

]
. (3.74)

The corresponding density n = |Ψ(x, t)|2 is

n = |φ0|2 +
[
φ∗0(uje

−iωjt/~ + v∗j e
iωjt/~) + H.c.

]
, (3.75)

where we keep only the linear terms in the complex functions uj and vj. Accordingly,

the local chemical potential µloc(n) can be written as

µloc(n) = µloc(n0) +
∂µloc

∂n

[
e−iωjt/~(φ∗0uj + φ0vj) + H.c.

]
(3.76)

in the Taylor expansion with n0(x) = |φ0(x)|2, where higher orders are neglected.

Taking Eqs. (3.74) and (3.76) back into Eq. (3.71) and sorting out the terms in

e−iµt/~, e−i(µ+~ωj)t/~, e−i(µ−~ωj)t/~, one obtains respectively the static generalized

Gross-Pitaevskii equation,

µφ0(x) = [H0 + µloc(n0)]φ0(x), (3.77)

as well as the coupled Bogoliubov equations

Luj(x) +Mvj(x) = + ~ωjuj(x),

Lvj(x) +Muj(x) =− ~ωjvj(x),
(3.78)

where we have defined the operators

L = H0 − µ+ µloc(n0) +

[
∂µloc(n)

∂n

]
n=n0

n0, (3.79)
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and

M =

[
∂µloc(n)

∂n

]
n=n0

n0. (3.80)

The Bogoliubov wave-functions uj(x) and vj(x) satisfy the normalization condition,∫ ∞
−∞

dx(u∗i (x)uj(x)− v∗i (x)vj(x)) = δij. (3.81)

The above formalism (with µloc(n) = g
1D
n) was first introduced by Pitaevskii,

in order to investigate excitations of a vortex line in a uniform Bose gas. One can

get the same result if one diagonalizes the Hamiltonian with Bogoliubov transforma-

tion [10]. In 1996, Burnett and colleagues used the coupled equations (3.78) to study

the properties of excited states in 3D weakly-interacting trapped Bose gases [154].

After numerically solving the static Gross-Pitaevskii equation (3.77) and the

coupled equations (3.78), one can obtain directly the profile of the ground state,

as well as excited states with energies εj = ~ωj and hence the frequency ωm of the

breathing or compressional monopole mode.

T ≥ 0 : Hartree-Fock-Bogoliubov method with Popov approximation

In order to take into account the effects of finite temperature and particle number

in the trapped one-dimensional Bose gas, we employ the HFBP approximation de-

scribed in Sec. 3.2.1. The interaction strength now takes a one-dimensional form

given in Eq. (3.60). Besides, we need to introduce a small chemical potential dif-

ference ∆µ to allow a finite particle number of condensate (see Eq. (3.85) below),

which leads to

µ̃φ(x) = [H0 + g
1D

(n0(x) + 2nt(x))]φ(x). (3.82)

Here Φ(x, t) = e−i∆µt/~φ(x) and µ̃ = ∆µ + µ. The matrix elements in Eq. (3.12)

become

L = H0 − µ̃+ 2g
1D

(n0(x) + nt(x)) , (3.83)

and

M = g
1D
n0(x). (3.84)
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For the density of the condensate, because our bosonic system has a finite particle

number, we calculate the finite condensate particle number as N0 =
∫
dxn0(x), i.e.,

N0 =
1

eβ∆µ − 1
, (3.85)

with the inverse temperature β = 1/kBT . The quasi-particle occupation number is

affected by the finite condensate number as well. The j-th quasi-particle occupation

number Nj ≡ 〈α̂†jα̂j〉 reads

Nj =
1

eβ(~ωj+∆µ) − 1
=

1

(1 + 1
N0

)eβ~ωj − 1
, (3.86)

and the thermal density is then given by

nt(x) ≡ 〈η̂†η̂〉 =
∑
j

[
u2
j(x) + v2

j (x)
]
Nj +

∑
j

v2
j (x). (3.87)

The chemical potential of the system µ, is fixed by the number equation for the

total number of atoms N = N0 +NT , where NT =
∫
dxnt(x).

Results and Discussions

We perform numerical calculations of the above mentioned approaches and com-

pare our results with the experiment data [12] and the previous theoretical predic-

tions [11]. In the experiment, a 2D optical lattice is used to trap about (1 ∼ 4)×104

Cs atoms in (3 ∼ 6) × 103 1D tubes with 8 ∼ 25 atoms in the center tube. Choi

et al. dealt with the case of a particle number N = 25 and introduced an effective

dimensionless interaction parameter γ
eff

, which is defined as

γ
eff
≡ 2

n
TG

(0)|a
1D
|

=
g

1D
π√

2N
. (3.88)

Here, n
TG

(0) =
√

2Nmωho/~/π is the peak density in the Tonks-Girardeau regime

at the tube center [186].

In our calculations, harmonic oscillator units are used with ~ = ωho = m = 1 and

kB = 1. Length and energy are written in the units of harmonic oscillator length

aho = [~/(mωho)]1/2 and harmonic oscillator energy ~ωho = [~2/(ma2
ho)], respectively.
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Figure 3.5: Density profiles in the mean-field regime (a) and in the Tonks-Girardeau

regime (b), where the effective interaction parameter γ
eff

= 10−2 and 10 have been

used, respectively. The results are calculated with N = 8 (black solid lines), N = 17

(red dashed lines) and N = 25 (blue dotted lines). The density n(x) and posi-

tion x are taken in units of harmonic oscillator length a
ho

=
√

~/(mωho) and a−1
ho ,

respectively.

We fix the particle number at N = 8, 17, 25, and vary the effective interaction pa-

rameter γ
eff

. The ground state and collective modes of the 1D harmonically trapped

Bose gas at T = 0 are obtained, by numerically solving the generalized Gross-

Pitaevskii equation (3.77), and the generalized Bogoliubov equations (3.78), where

the local chemical potential is obtained with Lieb-Liniger integrals [181, 182]. Then

we introduce the non-condensate thermal density nt by means of the HFBP theory,

and compare the ground states and collective behaviours at finite temperature with

the result at T = 0.

3.3.2 Density profile

In this subsection, we study the density profile of the ground states. In particular,

at zero temperature we compare the results obtained by the generalized Gross-

Pitaevskii theory with those predicted by the HFBP theory.
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Figure 3.6: Density profile: at T = 0 predicted by the generalized Gross-Pitaevskii

theory (black circles); at T = 0 (red dashed lines) and finite temperatures (other

colorful lines) calculated by the HFBP theory. The results are shown at the effective

interaction parameter γ
eff

= 10−2 in the mean-field regime. The particle number N

is fixed at 25. T 0
c is the critical temperature for a 1D ideal Bose gas, which can be

estimated as kBT
0
c = ~ωhoN/ ln(2N) [9, 10].

T = 0 case: the generalized Gross-Pitaevskii theory

The ground states for different particle number N = 8, 17, 25 at T = 0 are shown in

Fig. 3.5, obtained by solving the generalized Gross-Pitaevskii theory. In the figure,

we focus on the mean-field regime (with γ
eff

= 10−2, the left panel) and the Tonks-

Girardeau regime (with γ
eff

= 10, the right panel). At γ
eff

= 10−2, the density profile

is roughly a Gaussian curve, while at γ
eff

= 10 it tends to be a semicircle. In both

regimes, for a given γ
eff

, the height of density profiles is enhanced with increasing

particle number.

Finite T at weak couplings: the HFBP theory

The 1D HFBP theory is valid only in the weak coupling regime. The corresponding

density profiles at different temperatures are shown in Fig. 3.6. For T = 0, the

density profile predicted by the generalized Gross-Pitaevskii theory (indicated as

gGP in the figure) is also presented by black circle for comparison. It agrees well
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with the prediction of the HFBP theory (i.e., the red dashed line). With increasing

temperature, the condensate fraction decreases, as well as the condensate occupation

number, leading to the decreasing of the height of density profiles.

3.3.3 Breathing mode

In this subsection, collective modes, especially the breathing mode, are investigated

with the generalized Bogoliubov theory and the HFBP theory. The dipole mode

frequency should precisely be the trapping frequency ωho, according to the Kohn

theorem. We recover the result with a relative error about 0.1% ∼ 0.2% with

respect to ωho.

Particle number effect in two limits

The experiment on the breathing mode frequency was conducted for particle num-

bers in the range of 8 ∼ 25. There is a deviation between the experimental re-

sults [12] and one of previous numerical simulations at N = 25 in the weak coupling

regime [11]. In order to check whether this is due to the effect of different particle

number, we calculate the breathing mode frequency with different N .

In the deep weak coupling limit, it is convenient to define a Hartree parameter

λ = |a
1D
|/(Naho) � 1. The sum-rule approach predicts that in the limit of λ � 1,

the correction of a finite particle number on the squared breathing mode frequency

is [187]
ω2

m

ω2
ho

' 4(1− c
N
λ−1)

= 4− g
1D√
2π
N, λ→∞

(3.89)

where c
N

= 1/
√

8π for all N ≥ 2. This analytic prediction indicates that the squared

breathing mode frequency ratio ω2
m/ω

2
ho is proportional to the particle number N at

a fixed g
1D

.

In Fig. 3.7, we show our numerical results (solid line) at λ = |a
1D
|/(Naho)� 1,

with the effective interaction parameter γ
eff

varying from 4.4× 10−4 to 1.6× 10−3 at

a constant g
1D

= 10−3. The analytic results Eq. (3.89) are also shown by the dashed

line. There is a very good agreement, within a relative error 0.1%. Presumably, this
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Figure 3.7: The ratio of the squared breathing mode frequency ω2
m/ω

2
ho as a function

of the particle number N . Our numerical calculation is shown by the black solid

line, and the analytic result Eq. (3.89) is shown by the red dashed line. All results

are near the non-interacting limit with an interaction strength g
1D

= 10−3 in the

trap units.

small discrepancy is due to the over-estimation of the mode frequency in the sum-

rule approach, which predicts only an upper bound for the mode frequency [188].

In the opposite limit of strong couplings, which is characterized by the parameter

Λ = Na2
1D
/a2

ho � 1, the correction on the breathing mode frequency due to a finite

N is also known [189]:

ω2
m

ω2
ho

' 4(1− C
N

√
Λ)

= 4− 8

g
1D

C
N

√
N,Λ→ 0

(3.90)

where C
N

is given for all N ≥ 2 by

C
N

=
3
√

2N

π
√
π

Γ(N − 5
2
)Γ(N + 1

2
)

Γ(N)Γ(N + 2)

×3 F2

(
3

2
, 1−N,−N ;

7

2
−N, 1

2
−N ; 1

)
.

(3.91)

The N -dependence of C
N

is very weak and its value varies from C2 ≈ 0.282 to

C∞ ≈ 0.306, and to C25 ≈ 0.305 in our case. It is clear from Eq. (3.90) that for a
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Figure 3.8: The ratio of the squared breathing mode frequency ω2
m/ω

2
ho as a function

of C
N

√
N (black squares), compared with the analytic prediction (Eq. (3.90)) that

is shown by the red dashed line. The inset shows the same ratio as a function of the

particle number N . Here, we take an interaction strength g
1D

= 102.

fixed g
1D

, the ratio of the squared breathing mode frequency ω2
m/ω

2
ho has a linear

dependence on the combined variable C
N

√
N .

In Fig. 3.8, we verify this linear behaviour by taking a fixed g
1D

= 102 in the

Tonks-Girardeau regime, for which the effective interaction parameter γ
eff

varies

from 44 to 157.

Finite temperature effect in the weak coupling limit

Here we consider the finite temperature effect in the weakly interacting limit, by

calculating collective mode frequencies using the weak-coupling HFBP theory. It

is known that at sufficiently low temperature, this effect is small since the thermal

fraction of the system is negligible. For example, Debbie Jin’s group has shown

that the measured collective oscillating frequencies of a 3D Bose gas at temperature

T < 0.48T 0
c have a good agreement with the theoretical predictions at T = 0 [190],

where T 0
c is the BEC transition temperature of an ideal Bose gas confined in a

harmonic trap. To emphasize the effect of finite temperature on the collective mode,

we consider here T > 0.48T 0
c .

In Fig. 3.9, we compare the ratios of the squared breathing mode frequency at

T = 0 and T = 0.8T 0
c . The mode frequency becomes larger at finite temperature. At
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Figure 3.9: The ratio of the squared breathing mode frequency ω2
m/ω

2
ho at N = 25

in the weakly-interacting regime. We have shown the results at T = 0 predicted

by the generalized Bogoliubov theory (black squares) and by the HFBP theory (red

dashed line) and the results at T = 0.8T 0
c given by the HFBP theory (blue dotted

line). Here T 0
c is the BEC transition temperature for an ideal Bose gas confined in

a harmonic trap.

sufficiently large temperature, actually we anticipate that the ratio approaches the

ideal gas limit, i.e., ω2
m/ω

2
ho = 4. We also compare the zero temperature ratios, pre-

dicted by the generalized Bogoliubov theory (symbols, indicated as gB in the figure)

and the HFBP theory (dashed line). There is a good agreement, as anticipated.

Comparisons with the experiment and previous theory

We now address the breathing mode frequency in all interaction regimes, empha-

sizing its dependence on finite particle number and nonzero temperature. We vary

the effective interaction parameter γ
eff

from 2.2× 10−3 to 2.9× 102, and thus cover

all the regimes from the non-interacting limit, the mean-field regime to the Tonks-

Girardeau limit. The results are presented as a function of the interaction parameter

shown in the linear (Fig. 3.10) and logarithmic scales (Fig. 3.11), in comparison with

the experimental data [12] and a previous theoretical prediction [11].

In general, in these figures the squared frequency ratio ω2
m/ω

2
ho of the breathing

mode decreases from 4 in the non-interacting limit to 3 in the weakly-interacting

mean-field regime, and then increase back to 4 again in the strongly-interacting
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Figure 3.10: The ratio of the squared breathing mode frequency ω2
m/ω

2
ho as a function

of the effective interaction parameter γ
eff

. γ
eff

covers all interaction regimes and

varies from 2.2 × 10−3 to 2.9 × 102. We consider three particle numbers: N = 8

(black solid line), N = 17 (red dashed line) and N = 25 (blue dotted line). We have

compared our result with a previous theoretical prediction obtained by using time-

dependent modified nonlinear Schrödinger equation (m-NLSE) (yellow dot-dashed

line) [11] and the experimental data (green squares with error bars) [12].

Tonks-Girardeau regime.

In greater detail, the previous theoretical work (see the results indicated as m-

NLSE in the figures) considered a particle number N = 25 [11]. Here we have

performed numerical calculations with the same number of particles. We have also

considered two other particle numbers, N = 8 and N = 17, since in the exper-

iment the range of the particle number N is 8 ∼ 25 [12]. For the case with a

particle number N = 25, our results agree very well with the m-NLSE predictions.

The good agreement is easy to understand, as both theories start from the same

generalized Gross-Pitaevskii equation. The different numerical treatments, i.e., the

time-dependent simulations in Ref. [11] and our solution of the generalized Bogoli-

ubov equations, only lead to a negligible difference. By further comparing both

theoretical predictions at N = 25 with the experimental data, we find a good agree-

ment in the mean-field and Tonks-Girardeau regimes, where the breathing mode

frequency essentially does not depend on the particle number. However, near the

non-interacting limit, the discrepancy between experiment and theory becomes evi-
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Figure 3.11: The ratio of the squared breathing mode frequency ω2
m/ω

2
ho as a function

of log10 γeff
. The plot is the same as Fig. 3.10, but is shown here as a function of

the interaction parameter in a logarithmic scale, in order to emphasize the particle

number dependence in the non-interacting limit.

dent: the experimental data lie systematically below the theory curves. In this limit,

the particle number dependence of the breathing mode frequency is significant.

The particle number dependence is particularly clearly seen in Fig. 3.11. The

decreasing of the particle number N from 25 to 8 increases the ratio of the squared

breathing mode frequency. Thus, taking into account the possibility of a smaller

particle number (i.e., N < 25) in the real experiment will even enlarge the discrep-

ancy between experiment and theory. On the other hand, this discrepancy cannot be

resolved as a finite temperature effect, as in the previous subsection we have already

examined that a nonzero temperature generally leads to a larger mode frequency.

3.3.4 Higher order collective modes

One of the advantages of our generalized Bogoliubov theory is that we can directly

obtain higher order collective mode frequencies from numerical calculations. In

Fig. 3.12, we present the mode frequency of the 3-rd (lower panel) and 4-th modes

(upper panel) for all interaction regimes at T = 0, as a function of the effective

interaction parameter log10 γeff
. Similarly, the frequencies of higher modes exhibit

the same reentrant behaviour as the breathing mode frequency.
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Figure 3.12: The frequency of higher order compressional modes, ω3rd/ωho (a) and

ω4th/ωho (b), as a function of log10 γeff
, at different particle numbers: N = 8 (black

solid line), N = 17 (red dashed line) and N = 25 (blue dotted line).

Three analytic results can be used to understand the reentrant behaviour. In

the non-interacting limit, the mode frequency of the n-th mode is simply nωho.

In the mean-field regime with sufficiently large number of particles, the collective

mode frequency can be analytically determined from a hydrodynamic theory, which

predicts ωn =
√
n(n+ 1)/2ωho [172, 188]. Therefore, we have ω3 ∼ 2.45ωho and

ω4 ∼ 3.16ωho if N → ∞. With increasing number of particles, the minimum mode

frequencies shown in Fig. 3.12 seem to approach these limiting values. Finally, in

the Tonks-Girardeau limit, the mode frequency of the n-th mode again approach

nωho, due to the effective fermionization of the system [191].

It is interesting to note that for high-lying collective modes, the effect of a finite

particle number also becomes significant in the Tonks-Girardeau regime as well as

in the mean-field regime. This is particularly evident for the 4-th mode, as shown

in the upper panel of Fig. 3.12.
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3.4 Application to one-dimensional spin-polarized

Fermi gases

The beautiful exactly-solvable models in one dimensional (1D) systems provide us a

better understanding of fascinating low-dimensional quantum many-body systems in

nature [192]. Recently, remarkable experimental progresses in ultracold atoms make

it possible to realize the quasi-1D geometry in laboratory [12, 167, 168, 193–197],

and therefore pave the way to test a number of exact theoretical predictions and to

confirm the predicted intriguing many-body phenomena [165, 166]. A well-known

example is a 1D Bose gas with strongly repulsive interparticle interactions, where

bosons can not penetrate each other and therefore their many-body wavefunction

resembles that of free spinless fermions and vanishes whenever two bosons coincide

at the same position [63]. This so-called Tonks-Girardeau (TG) gas has attracted

enormous attention over the past few decades, both experimentally and theoreti-

cally [12, 64, 165, 166, 168, 173, 194, 198, 199]. To date, evidences of a TG gas

have been clearly identified in a number of experimental observables, including the

density profile, momentum distribution, and collective oscillations [12, 168, 194] (see

also Sec. 3.3). A highly-excited super-TG Bose gas, which was predicted to occur

by rapidly switching the sign of the interaction strength [200, 201], has also been

experimentally confirmed [12].

In this subsection, we theoretically investigate an ultracold spin-polarized atomic

Fermi gas with resonant odd-channel (p-wave) interactions trapped in 1D har-

monic traps. The experimental observation of another fascinating many-body phe-

nomenon, a super fermionic Tonks-Girardeau (super-fTG) gas, is discussed. It was

predicted to emerge in a spin-polarized Fermi gas with resonant odd-channel or p-

wave interactions [13]. In sharp contrast to the Tonks-Girardeau (TG) or super-TG

Bose gas, where the strongly correlated state is driven by a large scattering length,

the super-fTG gas is caused by a non-negligible effective range of the interparticle

interactions [13], which is rare in cold-atom experiments. To explore the realistic

parameter space for observing the super-fTG gas at finite temperature, we exactly

solve the Yang-Yang thermodynamic equations for the thermodynamics of the 1D

p-wave Fermi gas based on the Bethe ansatz solution [202]. By taking into account
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the external harmonic potential with a trapping frequency ωho via the local density

approximation (LDA) [203], we calculate the finite-temperature density distribution

of the Fermi cloud and discuss the fermion-boson duality [204]. By further using

the two-fluid hydrodynamic theory [173, 205, 206], we determine the sound veloc-

ity and the breathing mode frequency of the low-lying collective oscillations. Clear

signatures of the appearance of a super-fTG gas in these two observables have been

predicted [13, 65].

3.4.1 Theoretical Framework: 1D p-wave atomic Fermi gases

We start by briefly reviewing the two-particle scattering property in a spin-polarized

Fermi gas. Due to the Pauli exclusion principle, only odd-channel scatterings are

possible, and at the low-energy limit, the p-wave scattering in three-dimensions

(3D) is the strongest [4, 207]. Unlike the s-wave case, the p-wave scattering be-

comes energy-dependent, and an effective range of the interaction potential has to

be included in order to regularize the contact interactions. The 3D p-wave scattering

is then described by a phase shift δp(k):

k3 cot δp(k) = −1/w1 − α1k
2 +O(k4), (3.92)

where k is the relative momentum of two colliding atoms, and w1 and α1 are the

scattering volume and effective range, respectively [4, 207]. For 6Li (40K) atoms,

where the p-wave resonance occurs near B0 = 215.0 (198.8) G, the effective range

α1 is about 0.088 (0.021), in unit of inverse of Bohr radius (a−1
0 ) [208–211]. In

the quasi-1D geometry considered here, where the transverse motion is completely

suppressed by the strong transverse confinement potential using a two-dimensional

optical lattice [12, 167, 194, 195], it is known that the 1D scattering amplitude in the

odd channel (denoted as p-wave as well for convenience) takes the form [212, 213],

f odd
p (k) =

−ik
1/lp + ξpk2 + ik

, (3.93)

where lp ≈ 3a⊥
[
a3
⊥/w1 − 3

√
2ζ(−1/2)

]−1
and ξp = α1a

2
⊥/3 > 0 are the 1D scatter-

ing length and effective range, respectively [13, 212, 213]. A confinement induced
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resonance appears when the 3D scattering length w
1/3
1 is comparable to the trans-

verse length a⊥ =
√

~/(mω⊥), where m is the atomic mass and ω⊥ is the trapping

frequency of the transverse confinement [212–215].

Bethe ansatz solution

Ignoring the 1D effective range ξp, a 1D spin-polarized Fermi gas of N atoms is

exactly solvable, owing to the fermion-boson duality [204, 216], which maps the

system into a 1D interacting Bose gas. The latter at T = 0 was exactly solved by

Lieb and Liniger in 1963 by using the celebrated Bethe ansatz solution [179, 180].

The finite-temperature thermodynamics of a 1D Bose gas was also solved a few years

later by Yang and Yang, using an approach that is now commonly referred to as

the Yang-Yang thermodynamic equations [217]. In the presence of a non-negligible

effective range ξp 6= 0, a similar Bethe ansatz for all the many-body wave-functions

Ψ can be constructed, by imposing a Bethe-Peierls boundary condition,

lim
x→0+

(
1

lp
+ ∂x − ξp∂2

x)Ψ(x = |xi − xj| ;X) = 0 (3.94)

whenever two particles at xi and xj approach each other [13], which leads to a set

of coupled equations,

eikL =
∏
q

ξp (k − q)2 − 1/|lp|+ i (k − q)
ξp (k − q)2 − 1/|lp| − i (k − q)

. (3.95)

Here, the quasi-momenta k and q take N discrete values, and L is the length of the

system under a periodic boundary condition. We consider only the attractive case

lp < 0, since otherwise the energy does not have a proper thermodynamic limit [13].

At T = 0, the ground state of the system has been solved by Imambekov et al., by

seeking the lowest energy state of Eq. (3.95) [13].

Yang-Yang thermodynamic equations

At finite temperature, the Yang-Yang thermodynamic equations of a polarized Fermi

gas with a finite ξp can also be similarly derived [202]. In the thermodynamic limit

(N →∞ and L→∞), they take the exactly same form as that of bosons [13, 202],
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except a new kernel function,

K(k, q) =
2|lp|

[
1 + |lp|ξp (k − q)2][

1− |lp|ξp (k − q)2]2 + l2p (k − q)2
. (3.96)

To be more explicit, the Yang-Yang thermodynamic equations are given by (kB = 1)

[217],

ε (k) =
~2k2

2m
− µ− T

2π

∫ ∞
−∞
K (k, q) ln

[
1 + e−

ε(q)
T

]
dq

2πρ (k)
[
1 + e

ε(k)
T

]
= 1 +

∫ ∞
−∞
K (k, q) ρ (q) dq, (3.97)

where ε (k) may be interpreted as the quasi-particle excitation energy relative to

the chemical potential µ, and ρ(k) is the quasi-momentum distribution function

normalized according to n = N/L =
∫
ρ(k)dk. Once the Yang-Yang equations are

solved, all the thermodynamic variables, for example, the total energy and pressure

of the system can be calculated straightforwardly, by using

E =
~2L

(2m)

∫
k2ρ(k)dk (3.98)

and

P =
T

2π

∫
ln[1 + exp(−ε(k)/T )]dk, (3.99)

respectively [217].

To take into account the slowly-varying harmonic trapping potential in the lon-

gitudinal x-direction VT (x) = mω2
hox

2/2, which is necessary to keep atoms from

escaping [167, 193], we apply the LDA approximation [203]. This amounts to set-

ting

µ[n(x)] = µ0 − VT (x), (3.100)

where n(x) is the local density that is to be inversely solved once we know the

relation µ(n) from the Yang-Yang equations and µ0 is a global chemical potential

to be determined by using
∫
n(x)dx = N [203]. In our numerical calculations, two

dimensionless interaction parameters related to the 1D scattering length |lp| and

effective range ξp are needed. Therefore, we define respectively

γ1 ≡
1

nF|lp|
and γ2 ≡

1

nFξp
, (3.101)
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using the peak density of a zero-temperature ideal Fermi gas at the same trap,

nF =
√

2N/(πaho), where aho =
√
~/(mωho) is the characteristic length along the

x-axis. To be specific, we consider a polarized Fermi gas of N = 100 6Li atoms

under the quasi-1D confinement with ω⊥ = 2π × 200 kHz and ωho = 2π × 200 Hz,

leading to a 1D effective range ξp = 1.58aho and γ2 ' 0.14.

Two-fluid hydrodynamics

We are particularly interested in the low-lying collective oscillations of the Fermi

cloud, which are well described by a two-fluid hydrodynamic theory. At finite tem-

perature, it takes the following form [173, 205, 206],

m
(
ω2 − ω2

ho

)
nu (x) +

∂

∂x

[
n

(
∂P

∂n

)
s̄

∂u (x)

∂x

]
= 0, (3.102)

where u(x) is a displacement field characterizing the oscillation at frequency ω, and

the derivative of the local pressure P with respect to the density n should be taken

at the constant local entropy per particle s̄ = s/n. In free space, the displacement

field u(x) takes a plane-wave solution with the dispersion ω = cq, with a sound

velocity

c =
√

(∂P/∂n)s̄/m. (3.103)

In the presence of the confining harmonic traps, the low-lying collective modes can

be solved by using a polynomial ansatz and to a good approximation, the breathing

mode frequency ωb is given by [173],

ω2
b = ω2

ho +

∫∞
−∞ [(∂P/∂n)s̄ /m]n (x) dx∫∞

−∞ x
2n (x) dx

, (3.104)

which can be regarded as a finite-temperature generalization of the well-known sum-

rule approach [10, 21].

3.4.2 Characterization of the exotic super-fTG regime

Our main result is summarized in Fig. 3.13, where we report the dependence of

the breathing mode frequency on the 1D scattering length (the horizontal axis) and

effective range (the vertical axis) of the p-wave interaction, at a temperature 0.1TF
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Figure 3.13: Contour plot of the squared breathing mode frequency (ωb/ωho)2 as

functions of the dimensionless interaction parameters γ2 and γ1γ2/(4π
2) (see the

text for their definitions) in the logarithmic scale. The black dashed line is the

zero-temperature analytic result given in Eq. (3.105) [13], indicating the transition

into the super-fTG regime, either from the weakly interacting limit or the strongly

interacting fTG limit. We have taken a typical temperature T = 0.1TF.

that is typically available in cold-atom experiments. Three distinct regimes could be

clearly identified: a weakly or strongly interacting Fermi gas with a mode frequency

ωb ' 2ωho and a super-fTG characterized by a much smaller mode frequency at

large effective ranges (i.e., γ2 → 0). At large enough γ2 (i.e. negligible effective

range), the squared frequency (ωb/ωho)2 of the system shows a reentrant behaviour,

valuing about 4 in the weakly-interacting limit, changing to 3 at the intermediate

regime and finally returning back to 4 in the fTG limit, as a result of the duality to

a 1D Bose gas. In contrast, at sufficiently small γ2 (i.e. sizable effective range), with

increasing |lp| or decreasing γ1, the frequency ratio loses the reentrant behaviour

and drops sharply to a much lower value at a critical interaction parameter, thereby

signifying the phase transition to the super-fTG phase. At low temperature, the

critical interaction parameter may be estimated from the ground-state energy [13],

[γ1γ2

4π2

]
super−fTG

' 1 +
ζ (−1/2) aho

4π
√
Na⊥

γ2, (3.105)
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This estimation - illustrated by a black dashed line in the figure - agrees qualitatively

well with our results and encloses the blue super-fTG area with small breathing

mode frequencies. While the underlying quasiparticles in both weakly and strongly

interacting regimes can be well interpreted in terms of fermions or bosons [218, 219],

the behaviour of the compressible super-fTG state is more subtle to figure out.

Therefore, the experimental observation of a super-fTG gas should provide a new

opportunity to understand the challenging quantum many-body physics. For a
6Li polarized Fermi gas near the p-wave Feshbach resonance at B0 = 215.0 G,

where γ2 ' 0.14, we find that (γ1)super-fTG ' 275 or (a3
⊥/w1)super-fTG ' −118. This

corresponds to a detuning from the resonance at about 0.05 G.

3.4.3 Sound speed in free space

In Fig. 3.14, we present the density dependence of the local sound velocity at some

selected interaction parameters and at a typical experimental temperature (upper

panel, T = 0.1TF ) as well as at a high temperature (lower panel, T = TF ). We

note that, while the 1D effective range is directly measured in units of the harmonic

oscillator length aho, the 1D scattering length is indirectly characterized using the 3D

scattering volume −w1/a
3
⊥ for the convenience to make contact with experiments,

where the magnetic field dependence of w1(B) is known [208–211].

In the case of a negligible effective range (i.e., Figs. 3.14(a) and 3.14(d)), the

sound velocity in units of the Fermi velocity, c/vl(n), decreases monotonically with

increasing local density n. The sharp decrease at low density can be understood

from the fermion-boson duality [204]. At sufficient small density n� n
F
, the Fermi

cloud lies in the fTG regime of 1D strongly interacting fermions and is equivalent

to a weakly interacting Bose gas [204], in which the sound velocity c ∼ n1/2 [10, 21].

As a result, we find that c/v
l
(n) ∼ (|lp|n)−1/2, which quantitatively accounts for

the observed rapid decrease. Instead, at large density (n� n
F
), the sound velocity

saturates to a value that strongly depends on the scattering volume.

The density dependence of the sound velocity changes qualitatively, when the

effective range comes into play (see Figs. 3.14(b) and 3.14(c)). At low temperature,

in addition to the rapid decrease at low density, a plateau develops at the moderate

density n ∼ n
F
, whose structure sensitively relies on the scattering volume w1. By
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Figure 3.14: Local sound velocity c/v
l
(n) as a function of the local density n/n

F
for

three sets of effective ranges ξp = 10−4aho [(a), (d)], 0.5aho [(b), (e)], and 1.58aho

[(c), (f)] at low temperature T = 0.1TF (upper panel) and high temperature T = TF

(lower panel). In each subplot, the four curves at different interaction parameters

−w1/a
3
⊥ correspond to the four highlighted points in the curves of the squared

breathing mode frequency, as shown in the insets of Fig. 3.15. Here, v
l
(n) = π~n/m

is the local Fermi velocity and TF = N~ωho is the Fermi temperature.

further increasing density, there is another rapid decrease. The sound velocity finally

approach an asymptotically value that seems less sensitive to the scattering volume.

At non-negligible effective ranges, a plateau emerges in c/v
l
(n) which might be the

non-trivial behaviour in the exotic super-fTG phase. Although the plateau is washed

out at sufficiently large temperature, as shown in Fig. 3.14(e) and 3.14(f), it could

be measured experimentally by creating a density dip at the trap center and then

observing its propagation, following the routine established for a unitary Fermi gas
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[220].

3.4.4 Density profile at nonzero temperature

Fig. 3.15 reports the finite-temperature density distributions at different effective

ranges, and at certain values of the interaction parameter −w1/a
3
⊥ as illustrated

by differently colored curves. The results at a negligible effective range in Fig.

3.15(a) may again be understood from the fermion-boson duality [204]. At a weak

interaction parameter (i.e., the blue line), the profile is simply an ideal Fermi gas

distribution. When the interaction becomes more attractive, as described by the

Cheon-Shigehara (CS) model [204], the Fermi cloud is dual to an interacting Bose
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Figure 3.15: Density profiles at different effective ranges: (a) ξp = 10−4aho, (b)

0.5aho, and (c) 1.58aho, at T = 0.1TF. The inset shows the squared breathing mode

frequency as a function of the interaction parameter −w1/a
3
⊥. In each subplot, the

interaction parameters of colored curves can be read from the highlighted points with

the same color. They are also explicitly indicated in Fig 3.14. Here, xF =
√

2Naho

is the radius of an ideal trapped Fermi gas at zero temperature.
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gas with an appropriate repulsion strength ∝ |lp|−1 ∝ |w1|−1. Thus, the profile

becomes narrower and the peak density is higher, behaving exactly the same as a

1D Bose gas [203].

In the presence of sizable effective ranges, as shown in Figs. 3.15(b) and 3.15(c)

for ξp = 0.5aho (γ2 ' 0.44) and ξp = 1.58aho (γ2 ' 0.14), the shape of the density

profile is greatly altered, even by a small increase in the interaction parameter

−w1/a
3
⊥. The peak density increases significantly, probably due to the enhanced

attraction by the finite effective-range. Furthermore, the profile at large effective

range clearly shows a bimodal distribution. The dramatic change in the density

distribution comes along with a sharp decrease in the breathing mode frequency, as

reported in the two insets, which we shall now discuss in greater detail. We note

that, at zero temperature, similar changes have been observed by Imambekov and

co-workers [13].

3.4.5 Breathing mode at nonzero temperature

With the sound velocity c(x) and density distribution n(x) at hand, we calculate

straightforwardly the finite-temperature breathing mode frequency using the gener-

alized sum-rule approximation Eq. (3.104). The measurement of collective excita-

tions proved to be a powerful and convenient way to characterize possible new quan-

tum states of matter arising from the intriguing effects of interatomic interactions

[10, 221]. In an interacting 1D Bose gas, the transition from the weakly-interacting

regime to the TG regime for impenetrable bosons is characterized by a nontrivial but

smooth evolution of the squared breathing mode frequency, which starts at about

4 in the ideal gas limit, decreases to 3 at the mean-field Gross-Pitaevskii regime,

and then increases back to 4 in the TG limit [12, 64]. At a sufficiently small effec-

tive range, we have checked the above smooth evolution of the mode frequency, as

anticipated from the fermion-boson mapping [204].

Fig. 3.16 presents the breathing mode frequency at some finite effective ranges

and finite temperatures. Typically, we find that the mode frequency experiences a

sudden drop at a certain critical value of −w1/a
3
⊥, after which the frequency slowly

increases. This sudden change could be viewed as a clear signature of the appearance

of the super-fTG phase. It is readily seen that this sudden-drop feature is enhanced



3.4 Application to one-dimensional spin-polarized Fermi gases 85

0 0.05 0.1

(ω
b
/ω

h
o
)2

1.5

2

2.5

3

3.5

4

T/T
F
=0.2

0.5
1.0

0 0.05 0.1 0 0.05 0.1

-w
1
/a
⊥

3
0 0.05 0.1

(ω
b
/ω

h
o
)2

1.5

2

2.5

3

3.5

4

-w
1
/a
⊥

3
0 0.05 0.1

-w
1
/a
⊥

3
0 0.05 0.1

ξ
p
/a

ho
=0.1

0.2
0.3

T/T
F
=1.0T/T

F
=0.5T/T

F
=0.2

(a) (b) (c)

(f)(e)(d)

ξ
p
/a

ho
=0.1 ξ

p
/a

ho
=0.2 ξ

p
/a

ho
=0.3

Figure 3.16: The squared breathing mode frequencies (ωb/ωho)2 as a function of the

interaction parameter −w1/a
3
⊥, at different effective ranges (upper panel (a)-(c)) or

at different temperatures (lower panel, (d)-(e)), as indicated.

by a large effective range, which also leads to a minimum squared frequency as small

as 2ω2
ho. A finite temperature tends to significantly lift the minimum frequency.

However, the sudden-drop structure is merely unchanged.

We have investigated the thermodynamics and dynamics of spin-polarized fermions

with a resonant p-wave interaction under a one-dimensional harmonic confinement

at finite temperature, by solving the exact Yang-Yang thermodynamic equations and

two-fluid hydrodynamic equation. We have shown that there are distinct features

in the density distribution and collective mode frequency for identifying an exotic

effective-range-induced super fermionic Tonks-Girardeau state. These features are

not sensitive to the presence of a finite temperature. As a result, our predictions are

readily testable with ultracold 6Li or 40K atoms near a p-wave Feshbach resonance

at an experimental achievable temperature T ' 0.1TF .
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Chapter 4

The plane-wave and

zero-momentum phases at nonzero

temperature

In this chapter, we theoretically study a three-dimensional weakly interacting Bose

gas with a one-dimensional Raman-induced spin-orbit coupling introduced in Sec. 2

at finite temperature, by employing a generalized Hartree-Fock-Bogoliubov theory

with Popov approximation in Sec. 3.2.3. After a short introduction and motiva-

tion in Sec. 4.1, we first study the ground-state properties considering the quantum

fluctuations at zero temperature in Sec. 4.2. We then determine a complete finite-

temperature phase diagram in Sec. 4.3 of three exotic condensation phases (i.e., the

stripe, plane-wave and zero-momentum phases), against both quantum and ther-

mal fluctuations. In Secs. 4.4 and 4.5, the Bogoliubov excitation spectrum in the

plane-wave and the zero-momentum phases are under intensive and careful studies,

while the corresponding phonon mode and sound velocity are thoughtfully analyzed

together with Landau critical velocity characterizing the superfluidity of the system.

We report the behaviour of other physical observables, such as the magnetization of

the gas in Sec. 4.6. Part of this chapter has been summarized in the publication [103].

87
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4.1 Introduction and motivation

In this thesis, we are interested in a Bose gas with the specific Raman-type SOC, see

Sec. 2 for details. At zero temperature, there are typically three exotic phases in such

a Bose gas by tuning the Rabi frequency of the two Raman beams (see Fig. 4.2 at

T = 0): the stripe (ST) phase, the plane-wave (PW) phase and the zero-momentum

(ZM) phase [7, 93]. The zero-temperature phase diagram and relevant thermody-

namic properties were explored in detail in last few years [7, 93, 95, 98, 100, 101],

by using the Gross-Pitaevskii (GP) equation and the Bogoliubov theory. Only a

handful of theoretical investigations have addressed the finite-temperature effects so

far [97, 222], which are however unavoidable in realistic experiments [14, 105]. The-

oretically, Ozawa and Baym discussed the stability of condensates against quantum

and thermal fluctuations [97]. Experimentally, by measuring the magnetization of

the condensate of 87Rb atoms, Ji et al. determined a qualitative finite-temperature

phase diagram of the ST-PW transition [105]. A follow-up theoretical study by

Yu perturbatively calculated the ST-PW boundary at finite temperature in terms

of small Rabi frequency, and obtained a good agreement [222]. Unfortunately, this

perturbation approach fails at relatively high temperature, and also is not applicable

for a large difference in intra- and inter-species interaction strengths, which leads to

a large critical Rabi frequency [95, 106]. Furthermore, the phase transition from the

PW phase to the ZM phase in the presence of quantum and thermal fluctuations

has not been explored both theoretically and experimentally. Therefore, we aim to

present a solid calculation of a SOC Bose gas at finite temperature, by developing

a self-consistent Hartree-Fock-Bogoliubov theory within Popov approximation. In

this way, we address the quantum and thermal effects on different condensation

phases.

Following our previous derivations in Sec. 3.2.3, for simplicity, we start with a

plane-wave ansatz (see Eq. (2.28) in Sec. 2.3.1)

φ(r) =
√
nc

(
cos θ

− sin θ

)
eiPxx, (4.1)

for the condensate wave function φ(r) in Eq. (3.53) with two variational parameters:

a positive momentum Pxêx and θ in a range [0, π/4]. nc = Nc/V is the uniform
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density of the condensate which becomes nc = n̄ at zero temperature except for a

negligible fraction of depletion induced by the quantum fluctuations.

In the homogeneous case, the Bogoliubov amplitudes u(r), v(r) in Eq. (3.53) can

be properly written as

ujσ(r) = u(τ)
qσ

eiqr√
V
, and vjσ(r) = v(τ)

qσ

eiqr√
V
, (4.2)

and the coupled equations in Sec. 3.2.3 remain the same except that the canonical

momentum operator p̂ becomes p̂±q for U and V ∗ respectively in Eq. (3.56). Once

the generalized GP and Bogoliubov equations are self-consistently solved at finite

temperature for a given set of variational parameters (θ, Px), we obtain the excitation

energy εqτ for the quasimomentum q with the branch index τ = ±. Thus we

calculate straightforwardly the free energy of the system, F(θ, Px)/V = µn̄+ΩG/V ,

where the grand thermodynamic potential per volume V is given by [21, 151]

ΩG

V
= (E0 − µ)nc +

kBT

V

∑
q,τ=±

ln
(
1− e−βεqτ

)
(4.3)

with the ground-state energy per particle of the condensate at zero temperature

E0 =
P 2
x + k2

r − 2Pxkr cos 2θ

2m
+
gnc − Ω sin 2θ

2
−

(g − g↑↓)nc sin2 2θ

4
. (4.4)

The two variational parameters θ and Px are then determined by minimizing the

free energy F , (
∂F
∂θ

)
N

= 0,

(
∂F
∂Px

)
N

= 0. (4.5)

For 87Rb atoms in recent experiment [14] with the interaction energies gn̄ =

0.38Er and g↑↓/g = 100.99/101.20 at typical center density of the trapping potential

n(r = 0) = 0.46k3
r , this minimization leads to two critical Rabi frequencies, Ωc1 '

0.2Er and Ωc2 ' 4.0Er, which locate the first-order ST-PW and second-order PW-

ZM transitions at zero temperature, respectively [7, 14, 105]. The phase space for

the stripe phase is therefore very narrow [105]. To amplify the interaction effects on

the phase diagram, unless specifically stated, we use a total density n̄ = 1.0k3
r , the

interaction energies gn̄ = 0.8Er and g↑↓n̄ = 0.5Er. The relatively large difference in

the intra- and inter-species interaction strengths gives rise to a more experimentally
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accessible critical Rabi frequency Ωc1 ' 2.4Er at T = 0. We note that, in the latest

experiment on SOC Bose gases, where the two spin components are realized by two

low-lying bands in a superlattice, the interaction energy g↑↓n̄ can be tuned at will by

controlling the overlap in wave functions of the two bands, leading to a large phase

space for the stripe phase with Ωc1 ' 1.5Er [106].

In the following sections, we will present several fundamental observables of

such a Bose gas against the quantum and thermal fluctuations, such as ground-state

properties, finite-temperature phase diagram, excitation spectrum, sound velocity,

critical velocity and so on.

4.2 Condensation momentum

At zero temperature, three exotic condensation phases, i.e., the stripe (ST), plane-

wave (PW), and zero-momentum (ZM) phases, sequentially locate in regimes (0, Ωc1),

[Ωc1, Ωc2] and (Ωc2, +∞) over the range of the Rabi frequency Ω of the Raman

laser beams, see Sec. 2.3. The momentum of the condensate in the last two phases

is given as P
(PW)
x /kr =

√
1− Ω2/Ω2

c2 and P
(ZM)
x /kr = 0 from Eq. (2.29) respectively,

monotonically decreasing towards zero after exceeding Ωc2. The behaviour of the

momentum is denoted by the solid black curve in Fig. 4.1.

However, when including the quantum fluctuations using the HFBP method,

there is a qualitative change on the momentum of the condensate in the zero-

temperature limit (T = 10−4T0 in the calculations, denoted by the blue curve with

circles). At relatively small Rabi frequency, the momentum Px recovers the one

without quantum fluctuations. As the Rabi frequency continues to increase, these

two momentum start to slightly deviate from each other and the deviation is signifi-

cantly enhanced near the PW-ZM transition. Meanwhile, the corresponding critical

Rabi frequency Ωc2 of the PW-ZM transition has a small shift towards a larger value.

All these qualitative changes are closely related to the quantum fluctuations and its

behaviour near the critical transition will be discussed together with the quantum

depletion in Sec. 5.5.

Furthermore, once we take into account the thermal fluctuations at nonzero tem-

peratures, more dramatic changes happen on the momentum of the condensation
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Figure 4.1: Condensation momentum Px as a function of Raman coupling strength

Ω at various values of temperatures, T = 0 (solid black), T → 0 with quantum

fluctuation (blue curve with circles), T = 0.2T0 (red curve with crosses) and T =

0.4T0 (yellow curve with diamonds). Here, Ωc1 ' 2.33Er and Ωc2 ' 3.7Er indicate

the first-order ST-PW and second-order PW-ZM transitions at T = 0 respectively.

phase and the critical Rabi frequency Ωc2. In Fig. 4.1, we present the calculations of

the condensation momentum Px at two different temperatures, T = 0.2T0 (i.e., red

curve with crosses) and T = 0.4T0 (i.e., yellow curve with diamonds). Together with

the quantum fluctuations, nonzero temperatures lift the condensation momentum

even at relatively small Rabi frequency, and the difference of the condensation mo-

mentum becomes remarkable near the critical Rabi frequency when the temperature

increases. Besides, it’s easy to find that thermal fluctuations significantly move the

critical PW-ZM transition towards to relatively larger Rabi frequency, which will be

discussed explicitly in the following section.

4.3 Finite-temperature phase diagram

In Fig. 4.2, we delineate a finite-temperature phase diagram on Raman Rabi fre-

quency (the horizontal axis) and nonzero temperature (the vertical axis). Four

distinct regimes could be clearly identified: the ST phase (red), the PW phase
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Figure 4.2: Phase diagram of a two-component Bose gas with Raman-induced spin-

orbit coupling in the plane of temperature T and Raman coupling strength Ω. The

empty circles show a low bound for the first-order ST-PW transition, determined

from the vanishing roton gap, while the empty diamonds give the second-order

PW-ZW transition. The temperature is measured in units of the critical Bose-

Einstein condensate temperature of an ideal spinless Bose gas with density n̄/2, i.e.,

T0 = 2π~2[(n̄/2)/ζ(3/2)]2/3/(mkB). We take the total density of our SOC Bose gas,

n̄ = 1.0k3
r , the intra-species interaction energy, gn̄ = 0.8Er, and the inter-species

interaction energy g↑↓n̄ = 0.5Er. Here, kr and Er = ~2k2
r /(2m) are Raman wave

vector and the recoil energy, respectively.

(blue), the ZM phase (green) and normal phase (yellow). From the phase diagram,

it is evident that the phase space of the PW phase is greatly enlarged by increasing

temperature or thermal fluctuations before reaching the superfluid-to-normal phase

transition. The stripe phase is not energetically favorable at relatively large tem-

perature. As mentioned earlier, the stripe phase is driven by the difference in the

intra- and inter-species interaction energies, i.e., gnc and g↑↓nc. This difference de-

creases with increasing temperature, since the density of the condensate decreases.

Hence, the stripe phase shrinks. Our HFBP finding is consistent with the previous

experimental determination of the ST-PW boundary with 87Rb atoms at nonzero
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Figure 4.3: The effective Rabi frequency δΩeff (a) and thermal fraction nt/n̄ as a

function of temperature T . Here we take Ω = 4.0Er. The parameters are the same

as in Fig. 4.2.

temperature [105], and it also provides a useful microscopic confirmation of the per-

turbative theory by Yu [222]. In contrast, the significant shrinkage of the ZM phase

at finite temperature-observed as well with parameters for 87Rb atoms-is entirely

not expected (see, for example, the naive phase diagram sketched in Ref. [105]).

Our results clearly reveal that the PW-ZM boundary is significantly shifted towards

relatively larger Rabi frequency by nonzero temperature, which is also found in the

sound velocity, exhibiting a minimum at the PW-ZM transition (see Sec. 4.5). Recall

that the PW-ZM transition is largely due to the change of the single-particle dis-

persion with increasing Rabi frequency [7, 95]. From the mean-field point of view,

therefore, the notable shift of the PW-ZM boundary suggests a strong tempera-

ture dependence of the effective Rabi frequency δΩeff ≡ 2g↑↓φ↑φ↓ = −g↑↓nc sin (2θ),

which is resulted from the inter-species interaction in Eqs. (3.57). Indeed, as shown

in Fig. 4.3, such a sensitive temperature dependence of δΩeff and thermal faction

nt/n̄ is confirmed at a typical Rabi frequency Ω = 4.0Er.

At high temperature, the SOC Bose gas becomes normal. Unfortunately, suffi-

ciently close to the superfluid-normal phase transition, our HFBP theory becomes

less accurate [157]. To determine the transition temperature, we follow the previ-
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Figure 4.4: (a) The Bogoliubov excitation spectra εq,τ=− at temperature T = 0.4T0

and at various Rabi frequencies Ω, 2.5Er, 3.0Er and 3.5Er. Here, we set qy = qz = 0.

The roton gap at Ω = 2.5Er is explicitly indicated. (b) The roton gap ∆ as a

function of Rabi frequency Ω at different temperatures, fitted with second-order

polynomials (solid curves). The parameters are the same as in Fig. 4.2.

ous work by Zheng et al. and adopt the Hartree-Fock approximation [101], see the

details in Appendix B. The resulting critical temperature Tc is shown at the top of

Fig. 4.2 by a solid curve with asterisks. At small Rabi frequency, the predicted Tc dif-

fers slightly from the classical Monte Carlo simulation [161, 162] (red cross), which

confirmed a linear shift of Tc in the s-wave scattering length ∆Tc/T0 ≈ 1.3n̄1/3a

given in Eq. (3.30). At large Rabi frequency (i.e., Ω > 4.0Er), it is interesting that

the Hartree-Fock transition temperature matches reasonably well with the PW-ZM

boundary.

4.4 Bogoliubov excitation spectrum

We discuss the Bogoliubov excitation spectrum in this subsection, with which we

determine the ST-PW and PW-ZM phase transitions with the finite-temperature

effects. An intriguing feature of the PW phase is the emergence of the roton-maxon

structure in the lowest-lying Bogoliubov excitation spectrum[98, 99, 101], as re-
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Figure 4.5: (a) The contour plot of the condensate momentum Px, in units of kr,as

functions of T and Ω. The boundary Px = 0 between PW and ZM phases is

highlighted by the white dashed curve. (b) The Bogoliubov excitation spectra εq,τ=−

at various temperatures T , with qy = qz = 0. Here we take Ω = 4.0Er. The

parameters are the same as in Fig. 4.2.

ported in Fig. 4.4(a) at a nonzero temperature T = 0.4T0, where T0 is the critical

BEC temperature of an ideal Bose gas defined in Eq. (1.10) with a density n̄/2 in

the absence of SOC. This structure becomes much more pronounced with decreas-

ing Rabi frequency Ω and can be quantitatively characterized by a roton gap ∆,

as indicated in Fig. 4.4(a) with Ω from 3.5Er, to 3.0Er and to 2.5Er. Toward the

first-order ST-PW transition, the roton gap is gradually softened and approaches

zero slightly after the transition [98, 223]. Therefore, as shown in Fig. 4.4(b), we

may determine a low bound of the critical Rabi frequency Ωc1 from the Ω dependence

of the roton gap for various values of temperature T . As the accuracy of our nu-

merical calculations becomes worse at small roton gap, we typically fit the data by

using a second-order polynomial [14] and then calculate Ωc1 from the fitting curve.

By repeating this procedure at different temperatures, we obtain the temperature

dependence of the low bound of the ST-PW boundary, as shown in Fig. 4.2 by the

empty circles. We note that a rigorous determination of Ωc1 requires the solution of

the HFBP equations for the stripe phase and the comparison of the thermodynamic
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potentials of the stripe and plane-wave phases, which is much more involved and is

to be considered in the next chapter in Sec. 5.4.

On the other hand, we can straightforwardly determine the second-order PW-ZM

transition by identifying the critical Rabi frequency Ωc2, at which the condensate

momentum Px approaches zero. This is illustrated in the contour plot Fig. 4.5(a) of

Px on the T -Ω plane, where the transition is highlighted by the white dashed line

(see also the empty diamonds in Fig. 4.2). Furthermore, in Fig. 4.5(b), we check

the temperature dependence of the lowest-lying Bogoliubov excitation spectrum at

Ω = 4.0Er. By increasing temperature from 0.2T0 to 0.4T0, to 0.6T0, and then

to 0.8T0, the spectrum changes from a symmetric shape (with respect to qx = 0)

to an asymmetric one. An asymmetric phonon dispersion near qx = 0 is another

characteristic feature of the PW phase. It leads to different sound velocities when

a density fluctuation propagates along or opposite to the positive x axis, which we

shall discuss in the following subsection.

4.5 Sound velocity and critical velocity

In this subsection, we discuss the behaviour of the sound velocity and Landau critical

velocity in the plane-wave and zero-momentum phases. In the Bogoliubov theory

of a weakly interacting Bose gas, in long-wavelength limit (q → 0), the excita-

tion spectrum exhibits a linear dependence on the quasimomentum q (i.e. phonon

mode εexi(q) = cq), where the slope coefficient is the corresponding sound veloc-

ity c [21, 27]. In the PW phase the anisotropic phonon dispersion at small qx and

the resulting two sound velocities c+ > c− along the x-direction and the opposite

direction respectively [95, 98, 101], which have been measured experimentally to

characterize the PW-ZM transition [14]. Note that, turning into the ZM phase the

two velocities would merge into one, i.e., c+ = c− ≡ c [95, 98, 101], see Fig. 4.4 (a)

and 4.5 (b).

In Fig. 4.6(a), we report the behaviour of sound velocities across the PW-ZM

transition as a function of Rabi frequency at various temperatures. At zero tem-

perature, all the previous studies predicted a vanishing velocity right at the transi-

tion point Ωc2. Physically, since the sound velocity may be well approximated by
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Figure 4.6: (a) Sound velocities c+ and c− as a function of Rabi frequency Ω at T = 0

(black lines: without quantum fluctuations; blue lines with crosses: with quantum

fluctuations), T = 0.2T0 (yellow lines with squares), and T = 0.4T0 (purple lines

with triangles). The sound velocities at T = 0 near the transition is highlighted

in the inset. (b) The sound velocities in a 87Rb SOC gas at T = 0 (black lines)

and T = 0.3T0 (purple dotted lines). The symbols are the experimental data [14].

To simulate the experiment, we take a total density n̄ = 0.46k3
r , interaction energy

strengths gn̄ = 0.38Er and g↑↓/g = 100.99/101.20.

ceff =
√
gn̄/meff , the vanishing sound velocity is a consequence of the flatness of

the single-particle spectrum at the transition and hence a divergent effective mass

meff →∞ [98, 101]. This interesting feature is exactly produced by our numerical

calculation if we do not account for the feedback of quantum fluctuations to the total

density (see the black solid curve). However, once we take into account quantum

fluctuations, there is a qualitative change. Although the sound velocities still exhibit

a minimum at the transition, the minimum becomes nonzero. This unexpected gap

in sound velocity opened by the enhanced quantum depletion at Ωc2 is typically

about 0.03kr/m indicated in the blue curves with crosses (see also the inset). A

nonzero temperature brings even more dramatic changes. As temperature increases

to T = 0.2T0 (the yellow curves with squares) and to T = 0.4T0 (the purple curves

with triangles), we find that the minimum point of sound velocity is progressively

shifted toward larger Rabi frequency, along with the shifted phase boundary Ωc2. At

the same time, the opening gap at the minimum is significantly enlarged by thermal
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fluctuations.

To connect with the recent measurement for 87Rb atoms, we perform a calcula-

tion by taking the peak density of the trapped cloud n̄ = n(r = 0) = 0.46k3
r , which

leads to gn̄ = 0.38Er and g↑↓n̄ = 0.998 × 0.38Er [14]. As shown in Fig. 4.6(b),

our result at a realistic experimental temperature T = 0.3T0 (purple dotted curves)

agrees reasonably well with the measured sound velocities (open symbols). The ex-

perimental data show a nonzero minimum or gap at Ωc2 ' 4.3Er [14]. The previous

theoretical studies at zero temperature instead predict a vanishing sound velocity

at Ωc2 ' 4.0Er (see the black solid curves) and therefore fail to explain the observed

shift of the minimum, ∆Ωc2 ∼ 0.3Er, and the gap opening. It was suggested that

the suppressed third spin state of 87Rb atoms in the experiment may be responsible

for the shift and the gap opening [14]. The opening of the gap was also predicted in

the case of a nonzero laser detuning δ 6= 0 [224]. The good agreement between our

theory and experiment indicates that actually the nonzero temperature in the ex-

periment plays a crucial role near the PW-ZM transition and it has to be accounted

for in future experimental investigations.

In the well-known Landau criterion to understand the mechanism of the super-

fluidity [25, 26], a critical velocity is defined as [21, 22, 225], vc ≡ min [εexi(q)/q],

related to the elementary excitation spectrum εexi(q) at quasimomentum q. In the

conventional Bose gases with weak couplings, the elementary excitation spectrum is

isotropic and the Landau critical velocity vc equals the sound velocity c.

However, a Bose gas with the Raman-induced SOC has remarkably different

excitation spectrum along the SOC direction and in the perpendicular plane, which

gives rise to anisotropic critical velocity (see also Ref. [226]). In the PW phase,

the excitation spectrum becomes asymmetric along x axis due to the exotic single-

particle dispersion relation, and it exhibits a roton-maxon structure in the negative

quasimomentum regime in our case as the Rabi frequency decreases toward the ST-

PW transition. In Fig. 4.7, we present the critical velocities (dashed curves with

crosses) along with the sound velocities (solid curves) in the x and −x directions

at different temperatures. In the ZM phase, the symmetric spectrum leads to two

identical velocities. However below a certain Rabi frequency in the PW phase,

the roton starts to emerge and significantly softens the minimum of the ratio of

excitation energy over quasimomentum (i.e. the critical velocity). The important
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Figure 4.7: Sound velocities (solid lines) and Landau critical velocity (dashed lines

with crosses) as a function of Rabi frequency Ω. The parameters are the same as in

Fig. 4.6 (a).

roton structure makes the critical velocity deviating from the sound velocity in

the −x direction. The corresponding critical velocity continues to decrease toward

zero as the Rabi frequency decreases or the roton energy gap reduces, see also

Sec. 4.4. This implies that it is easy to create the excitations, which will destroy the

superfluidity of the system. The intriguing behaviour of the critical velocity is in

sharp contrast to the conventional Bose gases without SOC. A similar behaviour also

exists in the anisotropic atomic system with a dipole-dipole interaction, where the

elementary excitation spectrum also exhibits an exotic roton structure [226–228].

4.6 Other observables

Another interesting physical property of such a spinor Bose gas with SOC is the

magnetization of the gas, which is a useful observable that can be measured explicitly

in the experiments [7, 105]. It is defined as

Mi =
ni↑ − ni↓
ni↑ + ni↓

, (4.6)
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Figure 4.8: The contour plot of the magnetization for the condensate (a), non-

condensate (b) and total density (c) respectively, as functions of T and Ω. Here, we

set gn̄ = 0.32Er and g↑↓ = 0.86g with the total density n̄ = 1.0k3
r . Correspondingly

two critical Rabi frequencies become Ωc1 ≈ 1.50Er and Ωc2 ≈ 3.96Er.

where the index label i = ”0”, ”t” and ”tot” denotes the one of the condensate M0,

of thermal gas Mt and of total atoms Mtot, respectively. At zero temperature, the

condensate density equals the total density when excluding the negligible quantum

depletion. The analytic expression of the corresponding magnetization is [95], M0 =

cos 2θ =
√

1− Ω2/Ω2
c2 for Ωc1 < Ω < Ωc2 in the PW phase, and M0 = 0 for Ω ≤ Ωc2

in the ZM phase (see Eq. (2.30)). To evaluate the relevant magnetization, we set

gn̄ = 0.32Er and g↑↓ = 0.86g with the total density n̄ = 1.0k3
r . Correspondingly two

critical Rabi frequencies become Ωc1 ≈ 1.50Er and Ωc2 ≈ 3.96Er.

In Fig. 4.8, we depict sequentially the contour plot of the magnetization for the

condensate, non-condensate and total atoms of the Bose gas. At zero temperature,

as the Rabi frequency increases, the magnetization of the condensate M0 in the figure

will reduce monotonically in the PW phase, and becomes zero at the critical position

and further in the ZM phase phase, as anticipated from the analytic prediction. At

a nonzero temperature, M0 and/or the magnetization of the total atoms Mtot reach

zero at the PW-ZM transition position Ωc2 and the critical position shifts to a larger

Ω as the temperature increases (see also the PW-ZM phase boundary in Sec. 4.3).

These magnetizations are measurable in the experiment [105], which can be used to

determine the finite-temperature phase diagram in the PW and ZM phases in future

experimental investigations.
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The thermal magnetization Mt is shown in the middle figure as functions of

nonzero temperature and Rabi frequency. At sufficiently high temperature near

the BEC temperature T0 of an ideal gas, the large blue region over the total Rabi

frequency range implies the non-magnetic character of the non-condensate atoms.

The result shows a good agreement with the measurement in recent experiment[105].

Furthermore, it’s interesting to turn to the low-temperature regime, where Mt is

remarkably distinct in the PW and ZM phases. The reason is that, below the critical

Rabi frequency Ωc2, the single-particle dispersion shows double degenerate minima.

In the PW phase, the condensation locates at the positive momentum Px, and Mt is

positive which comes dominantly from the phonon mode in the excitation spectrum.

As the Rabi frequency continues to decrease towards the ST-PW transition position

Ωc1 or the temperature continues to increase, the roton-maxon structure emerges at

qx = −2Px in the excitation spectrum and becomes more and more pronounced (see

Fig. 4.4). The roton starts to make a non-negligible negative contribution, which

competes with the positive one from the phonon mode, giving rise to a smoothly

reducing Mt as Ω decreases or T increases.
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Chapter 5

The supersolid stripe phase at

zero temperature

In this chapter, by emphasizing the exotic stripe phase at zero temperature, the

same three-dimensional weakly interacting Bose gas with Raman-type spin-orbit

coupling are investigated via the generalized Hartree-Fock-Bogoliubov theory with

Popov approximation developed in Sec. 3.2.3. We provide a short introduction and

motivation first, along with a brief theoretical framework in Sec. 5.1. In Secs. 5.2

and 5.3, we present the density profile, the momentum of the condensate, the exotic

Bogoliubov excitation spectrum and the corresponding sound velocities in the stripe

phase. We then predict an improved critical ST-PW transition by taking high-order

harmonics in the ansatz in Secs. 5.4. The quantum depletion is calculated as a

function of Rabi frequency across three phases in Sec. 5.5 (Fig. 5.7). In Sec. 5.6,

the analytic expression of the superfluid density is derived for all the three phases

using a first-order ansatz for the ground-state wavefunction. Particularly in the

stripe phase, the analytic prediction is compared with the more accurate numerical

result after considering a high-order ansatz (see Fig. 5.8). Part of this chapter are

summarized in the publication [145].

103
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5.1 Introduction and motivation

We have introduced the three-dimensional weakly interacting Bose gases with one-

dimensional Raman-type spin-orbit coupling in Secs. 2 and 4. The system exhibits

sequentially three exotic condensation phases at zero temperature, i.e., the stripe

(ST), plane-wave (PW), and zero-momentum (ZM) phases as the Rabi frequency

of the Raman laser beams gradually increases [7, 96, 98, 101]. Previous investiga-

tions mainly focus on the last two phases. Several properties have been addressed,

including the ground-state phase diagram [95, 101], quantum and thermal fluctua-

tions [100, 103, 229, 230], collective excitations [146, 231], superfluidity and critical

velocities [226, 232, 233]. However, only a handful of works involved the stripe

phase, which attracts greater attention after being observed in recent experiments

with ultra-cold atomic gases [106, 234].

Theoretically, the existence of a stripe phase in a spin-orbit coupled Bose gas was

first predicted in Refs. [91, 93, 95] with a first-order stripe ansatz for the ground-state

wavefunction. Later, by employing an improved high-order ansatz and calculating

the static structure factor, Y. Li and her collaborators characterized the spin and

density responses of the stripe phase, and found two gapless modes in the elementary

excitation spectrum [144]. This calculation clearly indicates the importance of high-

order harmonics in the trial ansatz, for the purpose of quantitatively characterizing

the stripe phase. Unfortunately, apart from the elementary excitation spectrum,

none of the other physical properties of the stripe phase has so far been investigated

with taking into account high-order harmonics. Experimentally, in a SOC Bose gas

of 87Rb atoms, the phase space for the stripe phase is small. G. I. Martone et al.

tried to enhance the stripe contrast to make it visible and stable under realistic

experimental conditions, by theoretically considering the loading of atoms into a

two-dimensional bilayer configuration [164]. Most recently, J.-R. Li and coworkers

achieved effective SOC in optical superlattices, and observed for the first time the

exotic stripe phase with supersolid properties using Bragg spectroscopy [106, 235].

This experimental breakthrough provides a great opportunity to test and verify the

theoretical predictions on the stripe phase.

In this chapter, motivated by previous theoretical studies and recent experiments,

we explore the fascinating stripe phase and aim to make quantitative predictions
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on several fundamental properties of this phase using the high-order stripe ansatz.

Within the Bogoliubov approximation, we first consider the dependence of the den-

sity distribution and the excitation spectrum on the tunable Rabi frequency. By

introducing high-order harmonics and comparing the free energy in different trial

ansatz, we then obtain an improved critical Rabi frequency for the transition be-

tween the stripe and plane-wave phases. The depletion of the condensate induced

by quantum fluctuations is numerically calculated, with which we can characterize

straightforwardly the first-order ST-PW transition and the second-order PW-ZM

transition. Finally, by employing a phase-twist method, we discuss the superfluidity

of a SOC Bose gas via calculating the superfluid density in all three phases.

The details of the employed HFBP method are described in Sec. 3.2.3 in the

presence of Raman-type SOC. By starting with a trial ansatz for the ground-state

wave function φ(r) and then solving the GP and Bogoliubov equations, Eqs. (3.54)

and (3.56), one obtains straightforwardly the ground state φ(r) and the elementary

excitation spectrum εj, as a function of Rabi frequency Ω. At zero temperature, the

total energy of the system can be written in terms of wavefunctions φ(r) as [95]

E =

∫
d3r

[(
φ†↑(r), φ†↓(r)

)
HSOC

(
φ↑(r)

φ↓(r)

)

+
1

2
g
(
|φ↑(r)|4 + |φ↓(r)|4

)
+ g↑↓|φ↑(r)|2|φ↓(r)|2

]
.

(5.1)

with the single-particle Hamiltonian HSOC given in Eq. (3.52). We set the density

of the condensate to be the total density, nc = n̄. We note that, even at zero

temperature, the condensate is still depleted by a small fraction of the total density,

due to quantum fluctuations. This is the so-called quantum depletion defined in

Eq. (3.17),

nqd =
∑
j,σ=↑,↓

|vjσ|2, (5.2)

involving typically about one per-cent of the total density, i.e., nqd ∼ 0.01n. Here,

the index j indicates the quasiparticle energy level and σ =↑ or ↓ is the spin compo-

nent label. The quantum depletion will be explored thoroughly in Sec. 5.5. Quantum

fluctuations also lead to the well-known Lee-Huang-Yang (LHY) correction to the

total energy, beyond the mean-field approximation. In our calculations, for the self-
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consistency of the theory, we do not include the LHY correction to the energy, which

is at the order of the square root of the gas parameter (n̄a3)1/2 [101]. Otherwise,

the energy correction at the same order due to the anomalous densities may have

to be taken into account on an equal footing, which is clearly beyond the scope of

our work.

The plane-wave ansatz

The magnetic plane-wave phase and the non-magnetic zero-momentum phase have

been extensively investigated in previous works [15, 98, 101, 103], by using a plane-

wave ansatz given in Eq. (3.53) with a momentum Px

φ(r) =
√
n̄

(
cos θ

− sin θ

)
eiPxx. (5.3)

Here, n̄ = N/V is the uniform average density and the variational angle θ in the

range [0, π/4] describes the spin components of the condensate. In free space, the

quasiparticle amplitudes ujσ(r), vjσ(r) with index j = (q, τ) for spin component

σ can be written as ujσ(r) = uτqσe
iqr/
√
V and vjσ(r) = vτqσe

iqr/
√
V , where the

normalization condition for each branch of two physical solutions (τ = ±) is given

by, ∑
qσ

(|uτqσ|2 − |vτqσ|2) = 1. (5.4)

In this case, the ground-state energy per particle in Eq. (5.1) becomes [95, 103] (see

also Eq. (4.4))

E(PW)

N
=
P 2
x + k2

r − 2Pxkr cos 2θ

2m
− 1

2
Ω sin 2θ +

2gn̄− (g − g↑↓)n̄ sin2 2θ

4
. (5.5)

The minimization of the energy gives rise to two solutions: the plane-wave phase

where the condensates occur at the momentum Px = ±kr

√
1− Ω2/(4Er − (g − g↑↓)n̄)2

for Ω ≤ 4Er − (g − g↑↓)n̄ and the zero-momentum phase with zero momentum

Px = 0 for Ω > 4Er − (g − g↑↓)n̄ [95, 103], see also Sec. 2. In the lowest-lying exci-

tation spectrum, a typical feature of the plane-wave phase is the emergence of the

roton-maxon structure. The zero-momentum phase exhibits only the linear phonon

mode [98, 101, 103].
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The stripe ansatz

Instead of the well-studied plane-wave phase and zero-momentum phase, we are

concentrating on the exotic stripe phase in this work, which was recently observed

in ultra-cold atomic systems [106, 234]. To understand the key properties of the

stripe phase, a first-order stripe ansatz is often adopted [95, 105, 164, 222],

φ(r) =

√
n̄

2

[(
sin θ

− cos θ

)
e−iPxx +

(
cos θ

− sin θ

)
eiPxx

]
. (5.6)

This ansatz is an equal superposition of two plane-wave with momentum ±Px, in

contrast to the single-plane-wave ansatz given in Eq. (5.3).

By substituting this trial wave function, Eq. (5.6), into the model Hamiltonian

and minimizing the ground-state energy per particle, which takes the form [95],

E(1st)

N
=
P 2
x + k2

r − 2Pxkr cos 2θ

2m
− 1

2
Ω sin 2θ +

(g + g↑↓)n̄

4
(1 +

1

2
sin2 2θ), (5.7)

one can straightforwardly determine the critical Rabi frequency Ω of three exotic

phases in the appropriate interaction regimes (i.e., G2 > 0 1), which are respectively

given by [95], Ωc1 = 4 [(2Er +G1)(Er −G2)G2/(G1 + 2G2)]1/2 for the ST-PW phase

transition in Eq. (2.25), and Ωc2 = 4Er − 4G2 for the PW-ZM phase transition

in Eq. (2.26). Here, the two interaction parameters are G1 = (g + g↑↓)n̄/4 and

G2 = (g − g↑↓)n̄/4. It is worth mentioning that, in the last chapter [103], we

have determined the ST-PW transition at zero temperature using the criterion of a

vanishing roton energy gap (see Sec. 4.4). The determined critical Rabi frequency

is exactly the same as Ωc1, if we neglect quantum fluctuations.

The critical Rabi frequency in Eq. (2.25) for the ST-PW boundary is accurate

at the sufficiently weak interaction strengths (i.e., G1/Er, G2/Er → 0). However,

when the interactions become stronger, a high-order stripe ansatz with high-order

harmonics (i.e., the plane waves with wave vectors ±3Px, ±5Px, etc.) may have to

be considered [144]. In this work, we take the following stripe ansatz that includes

1The condition is necessary for the existence of the exotic stripe phase, where the more strict

one is Er > 2G2 + 2G2
2/G1 in Ref. [95].
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high-order terms [144]

φ(r) =

√
n̄

2

∑
γ=±

NL∑
α=1

(
φ

(γα)
↑

φ
(γα)
↓

)
eiγ(2α−1)Pxx, (5.8)

which possesses a symmetry, φ
(α)
↑ = −[φ

(−α)
↓ ]∗, and is periodically-repeating in real

space. Here, α is the index of the stripe order and is smaller or equal to a cut-off

integer NL. After solving the wave function φ(r), the ground-state energy E(NL) can

be numerically calculated using Eq. (5.1). At NL = 1, the energy E(NL=1) recovers

the analytic expression for the first-order stripe ansatz, E(1st) in Eq. (5.7).

To investigate the low-energy excitations, the Bogoliubov quasiparticle ampli-

tudes u, v for the index j = (q, τ) and spin σ can be simply expanded in a Bloch

form as [144]

ujσ(r) = eiqr
∑
γ=±

NM∑
β=1

u(γβ,τ)
σ eiγ(2β−1)Pxx, (5.9a)

vjσ(r) = eiqr
∑
γ=±

NM∑
β=1

v(γβ,τ)
σ eiγ(2β−1)Pxx, (5.9b)

where q is the quasi-momentum and β is the expansion order index and is smaller

or equal to the cut-off integer NM. We substitute Eqs. (5.9) into the Bogoliubov

equations Eqs. (3.56), to determine the expansion coefficients u
(γβ,τ)
σ and v

(γβ,τ)
σ .

In the recent experiments [7, 14, 105], 87Rb atoms are used. The typical inter-

action energy is gn = 0.38Er with the peak density n = 0.46k3
r in harmonic traps,

and the ratio between the inter-species interaction and intra-species interaction is

very close to unity, i.e., g↑↓/g = 100.99/101.20 [14]. With these parameters, the

two critical Rabi frequencies are respectively given by, Ωc1 = 0.2Er and Ωc2 = 4.0Er

(see Eqs. (2.25) and (2.26)), characterizing the first-order ST-PW and second-order

PW-ZM phase transitions at zero temperature. The stripe phase is energetically

favored at only a small region Ω ≤ 0.2Er of the Rabi frequency. The contrast in the

stripe density is not large enough to be resolved in the laboratories [7, 105, 164].

In our calculations, we will consider a relatively large ratio of inter- intra-species

interaction strengths (i.e., large G1 and G2), in order to enlarge the window for the

stripe phase in the phase diagram.
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It’s worth noting that, in our numerical calculations, we take the cut-offs NL =

NM ≥ 14, to ensure that our results are cut-off independent (see Appendix D for

the check on the cut-off dependence).

5.2 Ground-state property and condensate mo-

mentum

In this subsection, we study the density profile and corresponding condensate mo-

mentum in the stripe phase. At zero temperature, we assume the typical interaction

energies G1 = 0.5Er and G2 = 0.1Er with the average density n̄ = 1.0k3
r . It gives

rise to the critical Rabi frequencies, Ωc1 = 2.27Er and Ωc2 = 3.60Er in Eqs. (2.25)

and (2.26), with the first-order stripe ansatz.

In Fig. 5.1, by setting two different Rabi frequencies Ω = 0.1Er and 1.0Er, we

present the respective density distributions in different colors. In contrast to the

plane-wave and zero-momentum phases, the density of the condensate is modulated

by the SOC strength in the stripe regime with a spatially periodic order. The total

density contrast of the stripe can be estimated using the first-order stripe ansatz
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Figure 5.1: The high-order stripe density profile n for spin-up atoms, spin-down

atoms, and total atoms along the SOC direction at two Rabi frequencies Ω = 0.1Er

(a) and Ω = 1.0Er (b). Here, we take G1 = 0.5Er and G2 = 0.1Er. d = π/Px

is the spatial periodicity of stripes. The two dashed lines in (c) show the phonon

dispersion of a conventional two-component Bose gas in the limit of Ω = 0.
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Figure 5.2: The momentum Px/kr of the condensate as a function of the Rabi

frequency Ω, from Eq. (5.11) (solid black curves), and high-order calculations with

NL = 1 (blue circles), NL = 16 (dashed red curves). Here, we take G1 = 0.5Er,

G2 = 0.01Er (a) and G2 = 0.1Er (b). The dashed lines show the corresponding

critical Rabi frequency of the ST-PW transition Ωc1 in Eq. (2.25).

and is given by [95, 164]

C ≡ nmax − nmin

nmax + nmin

=
Ω

2(2Er +G1)
. (5.10)

At Ω = 0.1Er and 1.0Er, the modulation amplitude C is about 0.02 and 0.2 of

the total average density n̄, respectively. These estimations agree well with the

high-order density profiles illustrated in Fig. 5.1(a) and 5.1(b).

In Fig. 5.2, we calculate the momentum Px of the condensate in the stripe phase

as a function of the Rabi frequency Ω at two sets of interaction strengths, G1 = 0.5Er,

G2 = 0.01Er and 0.1Er. Starting from a first-order stripe ansatz in Eq. (5.6), the

analytic expression for the condensate momentum Px of the stripe phase is given

from Eq. (2.34) as

P (ST)
x = kr

√
1− Ω2

(4Er + 2G1)2
, (5.11)

denoted by the solid black curves. Meanwhile, the condensate momentum can be

calculated numerically by minimizing the mean-field energy of the high-order stripe

ansatz in Eq. (5.8). When NL = 1, the momentum in blue circles recovers exactly

the analytic one from the first-order stripe ansatz. After including high-order terms,
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i.e., NL sufficiently large, the condensate momentum Px starts to be different with

the first-order result at the relatively large Rabi frequency. The difference becomes

significant near the ST-PW transition Ωc1 when the interaction strength G2 be-

comes relatively large. This behaviour implies the non-negligible role of high-order

harmonics in the relatively large space of G2. The important role of high-order

harmonics can be also seen in Sec. 5.4.

5.3 Bogoliubov excitation spectrum and sound ve-

locity

In this subsection, we study the low-energy Bogoliubov excitation spectrum in the

stripe phase, and explore the anisotropic behaviour of sound velocity over a range

of Rabi frequency.

The previous investigations in Sec. 4.4 have shown that the lowest-lying excita-

tion spectrum in the plane-wave phase exhibits an intriguing roton-maxon structure,

due to the degenerate double-minimum in the single-particle dispersion [98, 101, 103,

236]. As the Rabi frequency decreases towards the ST-PW transition, the roton

structure becomes much more clear and the roton energy gap is gradually approach-
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Figure 5.3: The Bogoliubov excitation spectrum εj for the lowest five branches in the

SOC direction. Here, G1 = 0.5Er and G2 = 0.1Er at the respective Rabi frequency

Ω = 0.1Er (a) and 1.0Er (b).
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Figure 5.4: (a) The lowest five excitation spectra ε⊥ in yz plane (q⊥ =
√
q2
y + q2

z)

at Ω = 0.1Er. (b) Sound velocity of the lowest (red) and second-lowest (black)

excitation branches in x direction (solid) and in yz plane (dashed), as a function of

Ω. The dashed vertical line indicates the critical Rabi frequency Ωc1 for the ST-PW

transition. The interaction parameters are the same as in Fig. 5.3.

ing zero, indicating a critical ST-PW Rabi frequency [103]. However, in the stripe

phase, the density modulation spontaneously breaks the spatial translational sym-

metry, giving rise to infinite gapped branches as a function of the quasi-momentum

qx ∈ [0, 2Px]. The lowest two branches are gapless [144], as indicated by two linear

phonon modes, i.e., the red and blue curves in Fig. 5.3(a) and 5.3(b). As we decrease

the Rabi frequency towards the limit Ω → 0, the gap between different excitation

branches vanishes and one recovers the Bogoliubov excitation spectrum [163]

ω±(k) =

√
~2k2

2m

[
~2k2

2m
+ (g ± g↑↓)n̄

]
, (5.12)

anticipated for a conventional two-component Bose gas [see the two dashed black

curves in Fig. 5.3(a)]. Furthermore, the Bogoliubov excitation spectrum in the

perpendicular direction (i.e., yz plane) is shown in Fig. 5.4(a). In the absence of

SOC, the spectrum ε⊥ exhibits two gapless branches, the same as in the conventional

two-component Bose gas.

In Fig. 5.4(b), we compare the sound velocities of two gapless modes in the x

and yz directions, i.e., c
(±)
x and c

(±)
⊥ , respectively. As the Rabi frequency increases

towards the transition Ωc1 to the plane-wave phase, c
(±)
x (solid curves) start to



5.4 Critical Rabi frequency for the ST-PW phase transition 113

be lower than c
(±)
⊥ (dashed curves) for both branches and the difference becomes

big at relatively large Ω, revealing the remarkable density modulation of stripes

along the direction of SOC. It’s worth noting that, in the limit Ω → 0, the sound

velocities in two directions merge to one, and the sound velocities of two branches

reproduce the analytic expression
√

(g ± g↑↓)n̄/2m from the Bogoliubov theory with

c(+) ≈ 0.7071kr/m and c(−) ≈ 0.3162kr/m, respectively. The similar results are first

reported in Ref. [144].

5.4 Critical Rabi frequency for the ST-PW phase

transition

Generally the two critical Rabi frequencies for the ST-PW and PW-ZM phase tran-

sitions, i.e., Ωc1 and Ωc2, are determined by comparing the total energy E(1st) of the

first-order stripe and E(PW) of the plane-wave ansatz, (see Eqs. (5.7) and (5.5) or

Sec. 2.3). By taking into account high-order harmonics in Eq. (5.8), the stripe phase

may become energetically more favorable and as a consequence the first-order ST-

PW transition position may shift to a relatively larger Rabi frequency Ω
(new)
c1 . This is

indeed confirmed in Fig. 5.5. At the same interaction parameters, the ground-state

energy of the stripe phase becomes lower with the inclusion of high-order harmonics,

i.e. E(NL) ≤ E(1st). The window for the stripe phase is therefore enlarged, with a

larger critical Rabi frequency Ω
(new)
c1 = 2.47Er > Ωc1 = 2.27Er for the first order

ST-PW transition.

In Fig. 5.6(a), we show the dependence of the relative shift of the ST-PW transi-

tion, δΩ1 ≡ Ω
(new)
c1 −Ωc1, on the interaction parameters G1 (the vertical axis) and G2

(the horizontal axis). Fig. 5.6(b) reports the shift as a function of G2 at G1 = 0.5Er.

In general, at sufficiently small G2 (i.e., � 0.01Er), the stripe phase locates at

a very small range of the Rabi frequency, where the density is slightly modulated

with negligible contrast. We find that the difference δΩ1, as shown in deep blue

color in Fig. 5.6(b), is close to zero. This implies a negligible contribution of high-

order harmonics, and the state of the system can be well described by the dominant

first-order stripe trial wave function. When the interaction energy G2 becomes

relatively larger, the density modulation becomes significant and the difference δΩ1
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is sizable, as shown by the yellow and red regions in Fig. 5.6(a). Meanwhile, as G1

increases, δΩ1 becomes much more pronounced. The significant shift of the ST-PW

phase transition position determines an improved Rabi frequency of the critical ST-

PW transition, i.e., Ω
(new)
c1 . It indicates the crucial role played by the high-order

harmonics in Eq. (5.8). Our results suggest that they have to be accounted for in

future theoretical investigations, particularly at relatively large values of interaction

parameters.

5.5 Quantum depletion at zero temperature

In the last subsection we determine an improved critical Rabi frequency Ω
(new)
c1 for the

ST-PW phase transition at zero temperature. In this subsection, we will calculate

the quantum depletion of the total density in different ground-state phases. Within

the Bogoliubov theory, it is straightforward to obtain the quantum depletion using

Eq. (5.2). For a single-component Bose gas, the quantum depletion was recently

measured in the laboratory [237]. In Fig. 5.7, we present the Ω-dependence of the

quantum depletion at zero temperature across all three phases, at G1 = 0.5Er and

1 1.4 1.8 2.2 2.6

0.1

0.2

0.3

0.4

0.5

Figure 5.5: The ground-state energy as a function of the Rabi frequency in the

first-order (dashed-blue), high-order (solid-black) stripe ansatz and the plane-wave

ansatz (dotted-red). The interaction parameters are the same as in Fig. 5.1.
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Figure 5.6: (a) Contour plot of the shift δΩ1 = Ω
(new)
c1 −Ωc1 for the ST-PW transition

as functions of the interaction energy strengths G1 and G2. (b) The dependence of

δΩ1 on G2 at G1 = 0.5Er.

at three different values of G2 (i.e., 0.01Er, 0.04Er and 0.07Er).

The quantum depletion in the plane-wave and zero-momentum phases has been

studied in Ref. [15]. We show their behaviour in great detail in Fig. 5.7(a)-(c) (i.e.,

the dashed-blue curves). It is a non-monotonic function of the Rabi frequency. In the

plane-wave phase, the contribution to quantum depletion comes from both phonons

and rotons in the lowest-lying excitation spectrum [14]. As one increases Ω, the

roton energy gap becomes larger and the phonon mode dominates the contribution.

This leads to a maximum in the depletion at the PW-ZM transition Ωc2 (i.e., dotted-

black vertical curve) [101]. As Ω continues to increase in the zero-momentum phase,

the depletion decreases, since the roton contribution to the depletion disappears

and the only contribution is from the phonon mode in the elementary excitation

spectrum.

The behaviour of depletion in the stripe regime (i.e., the dotted-red curves) has

not been studied before. It increases slowly and monotonically, as Ω increases up to

the ST-PW transition Ω
(new)
c1 . This can be understood from the smooth softening of

the two phonon modes, as illustrated in Fig. 5.3(a) and 5.3(b). It is worth noting

that the depletion at Ω
(new)
c1 experiences a jump due to the first-order character of

the transition [95, 98, 103]. The size of the discontinuity becomes significant as we

increase G2.
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Figure 5.7: Quantum depletion nqd/n̄ as a function of the Rabi frequency Ω in the ST

phase (red dotted line) and in the PW and ZM phases (blue dashed line). The blue

diamonds show the depletion of a uniform single-component weakly-interacting Bose

gas with the same interaction parameters, while the red circles give the depletion of a

two-component Bose gas. The vertical dashed and dotted curves indicate the critical

Ω
(new)
c1 and Ωc2, respectively. Here, we take the interaction energies G1 = 0.5Er and

G2 = 0.01Er (a), 0.04Er (b) and 0.07Er (c).

The behaviour of the quantum depletion can be further understood with two

analytic results. In the absence of SOC, the quantum depletion of a conventional

homogeneous single-component Bose gas is of the order of
√
n̄a3 and can be analyt-

ically written as [21, 22]

n
(1c)
qd

n̄
=

8

3
√
π

(n̄a3)1/2. (5.13)

This result can be extended to the two-component case with equal spin density as

n
(2c)
qd

n̄
=

8

3
√
π

[
(n̄a3

+)1/2 + (n̄a3
−)1/2

]
, (5.14)

where the scattering length a± = (a ± a↑↓)/2 and a ≡ a↑↑ = a↓↓. In Fig. 5.7, we

have checked that, by starting with the plane-wave ansatz in Eq. (5.3), towards the

limit Ω → 0, the depletion coincides with the single-component n
(1c)
qd (see blue dia-

monds), as the plane-wave phase tends to be fully spin-polarized, see also Fig. 4.8(a).
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Similarly, the depletion predicted using the stripe ansatz in Eq. (5.8) (i.e., equal com-

bination of two spins) recovers the two-component n
(2c)
qd (see red circles) in the limit

Ω→ 0.

5.6 Superfluid density fraction at zero tempera-

ture

In this section, we turn to discuss the superfluidity of the system in the presence of

SOC, which can be characterized by the superfluid density. We will first derive the

analytic expression of the superfluid density for all three phases with a first-order

stripe ansatz and plane-wave ansatz, by applying the phase-twist method introduced

in Appendix C. After including high-order harmonics in Eq. (5.8), a more accurate

superfluid density in the stripe phase is calculated numerically and compared the

analytic prediction.

In the presence of SOC in x axis, the superfluid density can be written by a

tensor form [15]

n̂s = n(x)
s êxêx + n(⊥)

s (êyêy + êzêz), (5.15)

where the tensor elements at i 6= j vanish due to the reflection symmetry of the

Hamiltonian, and n
(i=x,⊥)
s indicates the superfluid component along x-direction or

in the perpendicular direction, respectively. At zero temperature, without losing the

generality, we start with the first-order ansatz in Eq. (5.6), and the corresponding

energy per particle ε(θ, Px) ≡ E/N is a function of two variational parameters (θ, Px)

(see also Ref. [95]). By fixing the total particle number N and imposing a phase-

twist Qi at the equilibrium (θ0, P0 → θ(Qi), P0(Qi))
2, after some straightforward

derivations on Eq. (C.3), the fraction of superfluid component can be explicitly

expressed by [238]

n
(i=x,⊥)
s

n̄
=
m

N

[
∂2F
∂Q2

i

−
(

∂2F
∂θ∂Qi

)2

/

(
∂2F
∂θ2

)]
Qi→0

. (5.16)

2In this work, the phase-twist is along the direction of SOC, i.e., x-direction, or in the perpen-

dicular yz-plane
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This expression is also applicable for the plane-wave and zero-momentum phases.

To be specific, by substituting Eq. (5.7) of the ground-state energy for the stripe

phase and Eq. (5.5) for the plane-wave and zero-momentum phases into Eq. (5.16),

we obtain the analytic fraction of the superfluid component in the respective regimes

as (
n

(x)
s

n̄

)
ST

= 1− 2Er

(2Er +G1)(4Er + 2G1)2/Ω2 −G1

, (5.17)(
n

(x)
s

n̄

)
PW

= 1− Er

(Er −G2)Ω2
c2/Ω

2 +G2

, (5.18)(
n

(x)
s

n̄

)
ZM

= 1− 4Er

Ω + 4G2

, (5.19)

in the direction of SOC, i.e., x axis, and(
n

(⊥)
s

n̄

)
ST

=

(
n

(⊥)
s

n̄

)
PW

=

(
n

(⊥)
s

n̄

)
ZM

= 1, (5.20)

in the perpendicular plane. The expression in Eq. (5.17) should be understood as

an approximate result for the superfluid fraction in the stripe phase along SOC

direction. It can be improved by taking high-order harmonics in the stripe ansatz.

The next two expressions, Eq. (5.18) and Eq. (5.19), were first obtained in Ref. [15].

It’s worth noting that, the variational parameters (θ, Px) are independent of the

perpendicular twist Q⊥ in Eq. (5.16), giving rise to the unaffected superfluid fraction

n
(⊥)
s /n̄ = 1 in the perpendicular direction, the same as in a usual Bose gas [15]. The

explicit derivations can be seen in Appendix C.

In Fig. 5.8, we report the behaviour of the superfluid density n
(x)
s along the SOC-

direction as a function of Rabi frequency in all the three ground-state phases. It

is apparent from the figure that the superfluid density in the plane-wave and zero-

momentum regimes (i.e., the dashed-blue curves), calculated by using Eqs. (5.18)

and (5.19), exhibits an intriguing behaviour. It goes down monotonically in the

plane-wave phase, touches zero at the PW-ZM transition Ωc2, and then bounces

back in the zero-momentum phase. This behaviour exactly recovers the result in

Ref. [15], where the normal density of the system was calculated using the transverse
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Figure 5.8: Superfluid fraction n
(x)
s /n̄ as a function of the Rabi frequency Ω in the

ST phase (red dashed line - 1st order ansatz; green dotted line - high order ansatz),

the PW and ZM phases (blue dashed line). The solid-black lines are the component

n
(⊥)
s /n̄ in the perpendicular plane. The two vertical lines indicate the critical Rabi

frequency of phase transition. The interaction parameters are the same as in Fig. 5.7.

current response function at zero temperature and the nonzero normal density was

explained using a sum-rule together with a gapped branch in the elementary excita-

tion spectrum [15]. Analogous to the remarkable absence of superfluid component

at Ωc2, there are several physical observables exhibiting exotic behaviours due to

the significant effect of SOC, such as the divergent spin polarizability [96, 104] and

effective mass [101], the vanishing behaviour of the sound velocity [14, 103].

On the contrary, in the stripe phase the superfluid density can be evaluated

using the first-order stripe ansatz. The resulting analytic prediction (see Eq. (5.17))

is shown by the red dotted-dashed curves in Fig. 5.8. Using the same phase-twist

method with instead the high-order stripe ansatz in Eq. (5.8), we obtain the dotted-

green curves in the figure. The difference between the two results (i.e., first-order vs

high-order) increases with increasing Ω. The difference also becomes significant if

we use a large interaction parameter G2 (see also in Fig. 5.6). The suppression of the

superfluid density at nonzero Ω may be understood from the softening of the lowest

two phonon modes in the low-energy excitation spectrum (see Fig. 5.3(a) and 5.3(b)).

The critical velocity decreases as the phonon modes become soft. This means that
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physically it is more favorable to create excitations to destroy the superfluidity of

the system [21]. As anticipated, the superfluid density also exhibits a discontinuity

at Ω
(new)
c1 , because of the first-order ST-PW transition.

It is worth noting that in the perpendicular plane, there is no density modulation

due to the absence of the spin-orbit coupling. As a result, the superfluid fraction

n
(⊥)
s /n̄ is 100% (see the solid-black curves), the same as in a conventional spinless

Bose gas.



Chapter 6

Conclusions and Perspectives

In Chap. 1 and Chap. 2, we have introduced the backgrounds and recent develop-

ments in quantum gases, in particular the synthetic spin-orbit coupling simulated

using neutral atoms in dilute ultracold systems. In Chaps. 3, 4 and 5, we have

provided a systematical study of a weakly interacting Bose gas in the presence of

a Raman-type spin-orbit coupling, by generalizing the Hartree-Fock-Bogoliubov-

Popov (HFBP) theory.

The main achievements contained in the thesis are summarized below:

In chapter 3, we have made detailed investigations of the HFBP theory in the

interacting one-dimensional (1D) Bose and Fermi gases. We have first studied col-

lective modes of a 1D harmonically trapped Bose gas, by developing two numerical

approaches: (a) a generalized Bogoliubov theory at zero temperature following the

idea of the density-functional approach, where we have taken the local chemical

potential calculated from the Lieb-Liniger model as the exchange energy; (b) a de-

veloped HFBP theory at finite temperature, where the thermal density is included to

make the theory self-consistent. By using these two approaches and by emphasizing

the effects of finite particle number and nonzero temperature, we have presented a

systematical investigation of the breathing mode frequency in all interaction regimes

and have explained the reentrant behaviour of the squared mode frequency, which

varies from 4 in the non-interacting limit, to 3 in the mean-field regime and then back

to 4 again in the Tonks-Girardeau limit. The frequency of higher order collective

modes exhibits a similar reentrant behaviour.

121
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We have compared our result with the recent experimental measurement [12] and

a previous theoretical prediction [11]. While our result agrees well with the previous

theoretical prediction, we have found that both theories cannot explain the measured

mode frequency in the non-interacting limit. The discrepancy between experiment

and theory becomes even larger when we take a small number of particles or a non-

zero temperature. Therefore, we believe more theoretical investigations should be

committed in the future in order to fully solve the discrepancy. Those works could

focus on the issues such as the inter-tube tunneling and the confinement-induced

three-body interparticle interaction.

On the other hand, we have studied the role of a non-negligible effective range

in the interacting 1D Bose gas, by mapping to a 1D spin-polarized Fermi gas via

Bose-Fermi duality. We have investigated the thermodynamics and dynamics of

spin-polarized fermions with a resonant p-wave interaction under a 1D harmonic

confinement at finite temperature, by solving the exact Yang-Yang thermodynamic

equations and two-fluid hydrodynamic equation. We have shown that there are

distinct features in the density distribution, sound velocity and collective mode

frequency for identifying an exotic effective-range-induced super fermionic Tonks-

Girardeau state. These features are not sensitive to the presence of a finite tem-

perature. As a result, our predictions are readily testable with ultracold 6Li or 40K

atoms near a p-wave Feshbach resonance at an experimental achievable temperature

T ' 0.1TF .

In chapter 4, we have discussed the effects of quantum and thermal fluctuations

in a weakly interacting spin-orbit coupled Bose gas in three dimensions. We have

determined a finite-temperature phase diagram for three generic phases, where quan-

tum and thermal fluctuations play a significant role in enlarging the phase space for

the plane-wave phase. These fluctuations also change the momentum in the conden-

sation phase to a relatively larger value, particularly near the transition from the

plane-wave phase to the zero-momentum phase. We have also studied the lowest

elementary excitation spectrum, and it shows an exotic roton-maxon structure in

the plane-wave phase.

We have explored the behaviour of sound velocity against the fluctuations, which

is qualitatively changed near the transition, with a shifted velocity minimum and a

finite gap. For 87Rb atoms, our prediction on sound velocity at finite temperature
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agrees qualitative well with the recent experimental measurement, and therefore

provides a reasonable explanation for the puzzling observation of gap opening [14].

We have also calculated the Landau critical velocity, which exhibits a difference

with the sound velocity in the plane-wave phase, due to the intriguing roton-maxon

structure in the elementary excitation spectrum. Besides, we also discuss the be-

haviour of other physical observables such as the magnetization of the condensate

or of thermal atoms.

In chapter 5, we have thoroughly investigated the stripe phase of a Raman-

type spin-orbit-coupled Bose gas at zero temperature, by employing an improved

stripe ansatz including high-order harmonics. We find that the stripe density of the

condensate is significantly modulated by the strength of spin-orbit coupling, and

the inclusion of high-order harmonics reduces the momentum value of the finite-

momentum condensate. Meanwhile, the low-lying elementary excitation spectra

exhibit intriguing structure with two gapless Goldstone modes. The modes will be

gradually softened with two reduced sound velocities as the Rabi frequency increases.

We have shown that, the critical transition from the stripe to the plane-wave phases

is shifted to a relatively larger Rabi frequency compared to the prediction by previous

work [95] using a first-order stripe ansatz.

We have also calculated the quantum depletion and superfluid density over a large

range of Rabi frequency in different phases. The depletion exhibits an intriguing

behaviour with a discontinuous jump at the transition between the stripe and plane-

wave phases, and a maximum at the transition between the plane-wave and zero-

momentum phases. The analytic approximate expression of the superfluid density

has been derived via a phase-twist approach using a first-order trial wave function,

and has been compared with the more accurate numerical calculations in the stripe

phase using the improved ansatz with high-order harmonics. In the plane-wave and

zero-momentum phases, it is significantly suppressed along the spin-orbit-coupling

direction and vanishes at the transition, consistent with a recent work [15], while

in the stripe phase, it smoothly decreases with increasing Rabi frequency. The

difference between the first-order and high-order results depends on the interaction

energy strengths.

Further questions remain to be investigated to thoroughly understand this spin-

orbit coupled Bose gas. For instance, one may explore the finite-temperature effects
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on other physical observables such as anisotropic superfluid density and the moment

of inertia [239]. It is also interesting to investigate the relevant dynamic properties,

such as the damping behaviour due to interactions between quasiparticles, or the

dynamic structure factor which can be measured in the experiment. Moreover, with

respect to the coupling of linear momentum and atomic spin discussed in this thesis,

there is a so-called spin-orbital-angular-momentum coupling, which couples the spin

to another degrees of freedom–the orbital angular momentum. This new type of spin-

orbit coupling gives rise to several intriguing phenomena [240–244], and will attract

plenty of interests especially after its recent realization in the laboratory [245, 246].



Appendix A

Some details of the derivations in

the thesis

A.1 Derivations in the variational formalism

In this section, we present the details of the variational formalism in Sec. 2.3 starting

with the trail wavefunction ansatz in Eq. (2.17) with four variational parameters (C1,

C2, kx0, θ).

The normalization condition is written as∑
i=↑,↓

∫
d3r|Φi(r)|2 = N (A.1)

with the total particle number N , and we substitute the wavefunction of the con-

densate, which gives rise to

N =

∫
d3r
[√

n̄(C∗1 cos θe−ikx0x + C∗2 sin θeikx0x)
√
n̄(C1 cos θeikx0x + C2 sin θe−ikx0x)

+
√
n̄(−C∗1 sin θe−ikx0x − C∗2 cos θeikx0x)

√
n̄(−C1 sin θeikx0x − C2 cos θe−ikx0x)

]
=

∫
d3r
[
n̄(|C1|2 cos2 θ + |C2|2 sin2 θ + C∗1C2 sin θ cos θe−i2kx0x + C∗2C1 sin θ cos θei2kx0x)

+ n̄(|C1|2 sin2 θ + |C2|2 cos2 θ + C∗1C2 sin θ cos θe−i2kx0x + C∗2C1 sin θ cos θei2kx0x)
]

=

∫
d3rn̄

[
|C1|2 + |C2|2 + sin (2θ)(C∗1C2e

−i2kx0x + C∗2C1e
i2kx0x)

]
,

(A.2)
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where n̄ = N/V is the average particle density. If we define C1 = |C1|eiφ1 , C2 =

|C2|eiφ2 and φ = φ1 − φ2, the last term of the sine function in the above integral

equation becomes

terms = sin (2θ)(C∗1C2e
−i2kx0x + C∗2C1e

i2kx0x)

= sin (2θ)|C1C2|(e−i(2kx0x+φ) + ei(2kx0x+φ))

=2|C1C2| sin (2θ) cos (2kx0x+ φ).

(A.3)

Thus in the calculations one may take the interval in x axis integer times of the

spatial period d ≡ π/kx0 and eliminate the above term in the integral of the nor-

malization condition, which leads to

|C1|2 + |C2|2 = 1. (A.4)

The single-particle energy in Eq. (2.19) can be calculated as (set ~ = 1)

E0 =

∫
d3rΦ(r)†

[
(k− krêxσz)

2

2m
+

Ω

2
σx

]
Φ(r)

=

∫
d3rn̄ · k

2
x0 + k2

⊥ + k2
r

2m
· (|C1|2 + |C2|2)

−
∫
d3r

n̄

2m

[
cos (2θ)(|C1|2 + |C2|2)

]
· 2kx0kr +

∫
d3r

Ω

2
n̄ sin (2θ)(|C1|2 + |C2|2)

=N ·
[
k2
x0 + k2

⊥ + k2
r

2m
− kx0

m
kr cos (2θ)− Ω

2
sin (2θ)

]
.

(A.5)

It’s worth noting that, the parameter kx0 only appears in the single-particle energy.

Hence, one can minimize straightforwardly with respect to kx0

∂E0

∂kx0

= kx0 − kr cos (2θ) = 0, (A.6)

giving rise to

kx0 = kr cos (2θ). (A.7)

Thus, by substituting kx0 we can rewrite the single-particle energy as

E0 =N ·
[
k2
⊥ + k2

r + k2
r cos2 (2θ)

2m
− k2

r cos2 (2θ)

m
− Ω

2
sin (2θ)

]
=N ·

[
k2
⊥ + k2

r sin2 (2θ)

2m
− Ω

2
sin (2θ)

]
.

(A.8)
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On the other hand, the interaction energy in Eq. (2.13) is given by

Eint =
1

2

∫
d3r
[
g(|Φ↑(r)|4 + |Φ↓(r)|4) + 2g↑↓ |Φ↑(r)|2|Φ↓(r)|2

]
=G1 ·

∫
d3rn̄ ·

[
(|C1|2 + |C2|2)2 + 2|C1|2|C2|2(1− cos2 (2θ))

]
+G2 ·

∫
d3rn̄ ·

[
(|C1|2 + |C2|2)2 − 4|C1|2|C2|2

]
· cos2 (2θ)

=N · {G1 ·
[
1 + 2|C1|2|C2|2

(
1− cos2 (2θ)

)]
+G2 cos2 (2θ) ·

[
1− 4|C1|2|C2|2

]
},

(A.9)

with two interaction energies G1 = (g + g↑↓)n̄/4 and G2 = (g − g↑↓)n̄/4.

The total energy per particle can be written as ε = (E0 + Eint)/N . It’s ap-

parent that, the energy now depends on only two parameters, θ ∈ [0, π/4] and

β ≡ |C1|2|C2|2 ∈ [0, 1/4] introduced in Ref. [95]. Thus the mean-field energy per

particle reads

ε(θ, β) =
k2
⊥ + k2

r sin2 (2θ)

2m
− Ω

2
sin (2θ)

+G1(1 + 2β) + [G2 − 2β(G1 + 2G2)] cos2 (2θ).

(A.10)

It’s convenient to minimize ε(θ, β) with respect to θ as

∂ε

∂θ
=
k2

r · 2 sin (2θ) · 2 cos (2θ)

2m
− Ω

2
· 2 cos θ

− [G2 − 2β(G1 + 2G2)] · 2 cos (2θ) · 2 sin (2θ)

= cos (2θ) ·
[

2k2
r

m
sin (2θ)− Ω− 4 [G2 − 2β(G1 + 2G2)] sin (2θ)

]
= 0.

(A.11)

The above implies two conditions:

• The first is 2k2
r

m
sin (2θ)−Ω− 4 [G2 − 2β(G1 + 2G2)] sin (2θ) = 0. This leads to

a solution

sin (2θ) =
Ω

2k2
r

m
− 4 [G2 − 2β(G1 + 2G2)]

, (A.12)

which restricts the Rabi frequency Ω to be Ω ≤ Ωc with

Ωc = 4Er − 4 [G2 − 2β(G1 + 2G2)] . (A.13)
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• For Ω > Ωc, the minimum occurs at cos (2θ) = 0. It indicates that the

momentum of the condensate kx0 is zero.

After substituting the solutions, the energy becomes dependent only on β. We

first consider the simpler case Ω > Ωc, where the minimization of the energy ∂βε(β)

is a positive number 2G1, indicating the minimum at β = 0 and corresponding to the

zero-momentum (ZM) phase. On the other hand for the other solution, the energy

is concave down function with a negative value of the second-order derivative. This

means that the minimum locates at the boundaries of β, i.e., β = 0 or β = 1/4, which

correspond to the so-called plane-wave (PW) and stripe (ST) phases, respectively.

By comparing two energy terms with two wavefunctions of the condensate

ε(ST)(θ, β =
1

4
,Ωc1) = ε(PW)(θ, β = 0,Ωc1), (A.14)

the critical Rabi frequency Ωc1 of the ST-PW transition are obtained as

Ωc1 = 2

[
(2Er +G1)(2Er − 2G2)

2G2

G1 + 2G2

]1/2

. (A.15)

The critical Rabi frequency Ωc2 of the PW-ZM phase transition is then obtained

from Eq. (A.13) by

Ωc2 = 4Er − 4G2. (A.16)



Appendix B

SOC BEC transition temperature

at the Hartree-Fock level

In this appendix, following the formalism in Ref. [101] at the Hartree-Fock (HF)

level, we aim to calculate the BEC transition temperature Tc as a function of the

Rabi frequency Ω, in the presence of spin-orbit coupling with a density n.

Non-interacting system The critical temperature for BEC of ideal Bose

gases in the box with a density n, which is of form

T0 = 2π~2[n/ζ(3/2)]2/3/(mkB), (B.1)

see also Eq. (1.10).The condensation transition temperature of a uniform system is

then determined by

n =

∫ ∞
−∞

dε
D(ε)

e(ε−µ)/T0 − 1
. (B.2)

Here, D(ε) is the density of state and µ takes the bottom of single-particle spectrum

by µ = εmin.

In the presence of Raman coupling strength Ω and detuning δ, the single-particle

spectrum takes a form of (set ~ = 1)

εp,± =
p2

2m
+

k2
r

2m
±
√

(
pxkr

m
− δ

2
)2 + (

Ω

2
)2. (B.3)
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By defining Ω = aEr and setting δ = 0, we have the chemical potential in Eq. (B.2)

as

µ = εmin =

{
−a2

16
Er; with px0 = ±kr

√
1− ( Ω

4Er
)2 at 0 ≤ Ω ≤ 4Er

(1− a
2
)Er. with px0 = 0 at Ω > 4Er

(B.4)

Weak interaction If we take into account the weak interactions, it’s well

known that the contact interaction does not affect the transition temperature Tc at

the mean-field level. However, in the presence of spin-orbit coupling, the interactions

start to provide a non-trivial effect even at mean-field level.

In Hartree-Fock theory, the average density for spin component σ can be con-

structed as

nσ =
1

V

∑
p

〈Φ̂†p,σΦ̂p,σ〉, (B.5)

and another parameter related to the spin-flip term induced by SOC is written as

ξ =
1

V

∑
p

〈Φ̂†p,↑Φ̂p,↓〉. (B.6)

Taking into account the interaction term∫
dr3 1

2

(
g↑↑Φ̂

†
↑Φ̂
†
↑Φ̂↑Φ̂↑ + g↓↓Φ̂

†
↓Φ̂
†
↓Φ̂↓Φ̂↓ + 2g↑↓Φ̂

†
↑Φ̂
†
↓Φ̂↓Φ̂↑

)
, (B.7)

and consider the HF approximation, we have

1

2
gΦ̂†Φ̂†Φ̂Φ̂ = g

[
〈Φ̂†Φ̂〉Φ̂†Φ̂ + Φ̂†Φ̂〈Φ̂†Φ̂〉 − 〈Φ̂†Φ̂〉〈Φ̂†Φ̂〉

]
= g

[
2nΦ̂†Φ̂− n2

]
(B.8)

and

g↑↓Φ̂
†
↑Φ̂
†
↓Φ̂↓Φ̂↑ =g↑↓

[
〈Φ̂†↑Φ̂↑〉Φ̂

†
↓Φ̂↓ + Φ̂†↑Φ̂↑〈Φ̂

†
↓Φ̂↓〉 − 〈Φ̂

†
↑Φ̂↑〉〈Φ̂

†
↓Φ̂↓〉+ 〈Φ̂†↑Φ̂↓〉Φ̂

†
↓Φ̂↑

+ Φ̂†↑Φ̂↓〈Φ̂
†
↓Φ̂↑〉 − 〈Φ̂

†
↓Φ̂↑〉〈Φ̂

†
↑Φ̂↓〉

]
=g↑↓

[
n↑Φ̂

†
↓Φ̂↓ + n↓Φ̂

†
↑Φ̂↑ − n↑n↓ + ξΦ̂†↓Φ̂↑ + ξΦ̂†↓Φ̂↑ − ξ

2
]
.

(B.9)
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Hence the mean-field interaction Ĥint = 1
2

∑
σ,σ′ gσσ′Φ̂

†
σΦ̂†σ′Φ̂σΦ̂σ′ becomes

Ĥint =g
[
2n↑Φ̂

†
↑Φ̂↑ − n

2
↑ + 2n↓Φ̂

†
↓Φ̂↓ − n

2
↓

]
+ g↑↓

[
n↑Φ̂

†
↓Φ̂↓ + n↓Φ̂

†
↑Φ̂↑ − n↑n↓ + ξΦ̂†↓Φ̂↑ + ξΦ̂†↓Φ̂↑ − ξ

2
]

=(2gn↑ + g↑↓n↓)Φ̂
†
↑Φ̂↑ + (2gn↓ + g↑↓n↑)Φ̂

†
↓Φ̂↓

+ g↑↓ξ(Φ̂
†
↓Φ̂↑ + Φ̂†↓Φ̂↑)− gn

2
↑ − gn2

↓ − g↑↓n↑n↓ − g↑↓ξ2.

(B.10)

Now the mean-field Hamiltonian can be rewritten as

HHF =H0 +
∑
p

[(2gn↑ + g↑↓n↓)Φ̂
†
↑Φ̂↑ + (2gn↓ + g↑↓n↑)Φ̂

†
↓Φ̂↓ + g↑↓ξ(Φ̂

†
↑Φ̂↓ + Φ̂†↓Φ̂↑)]

+ constant,

(B.11)

with single-particle Hamiltonian H0 in Eq. 2.8. The normal state above Tc is unpo-

larized with n↑ = n↓ = n/2, and the HF Hamiltonian has the same structure with

H0 except for a effective Raman coupling strength Ωeff = Ω + 2g↑↓ξ.

Similarly with non-interacting calculations, in the presence of the effective Ra-

man coupling strength Ωeff and detuning δ, the dispersion spectrum takes a form

of

εp,± =
p2

2m
+

k2
r

2m
+ (gn+

1

2
g↑↓n)±

√
(
pxkr

m
− δ

2
)2 + (

Ωeff

2
)2. (B.12)

By defining Ωeff = aEr and setting δ = 0, we have the chemical potential in Eq. (B.2)

as

µ = εmin =

{
−a2

16
Er + (gn+ 1

2
g↑↓n); px0 = ±kr

√
1− (Ωeff

4Er
)2 at 0 ≤ Ωeff ≤ 4Er

(1− a
2
)Er + (gn+ 1

2
g↑↓n). px0 = 0 at Ωeff > 4Er

(B.13)

When the temperature T rises, the chemical potential lowers and once T reaches

Tc, the total density n get the value of our initially-setted value nin.

n =

∫∫∫
d3p

(2π)3

[
1

e(εp,+−µ)/Tc − 1
+

1

e(εp,−−µ)/Tc − 1

]
. (B.14)

By calculating Eqs. (B.13) and (B.14), we obtain the relation of critical temper-

ature Tc as a function of effective Raman coupling stregth Ωeff , and after calculating
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spin-flip term [101]

ξ =
1

V

∑
p

sin θp cos θp(np,+ − np,−), (B.15)

with θp = arcsin

[
1
2

(
1− pxkr−δ/2√

(pxkr−δ/2)2+Ω2
eff/4

)]1/2

and np,± are the Bose distribution

functions with the dispersions εp,± in Eq. (B.12). And then the transition tempera-

ture of a interacting gas with density n as a function of real Raman coupling stregth

Ω = Ωeff − 2g↑↓ξ in the semi-classical approximation can be obtained, as shown in

Fig. B.1.
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Figure B.1: BEC temperature Tc/Er as a function of the Rabi frequency Ω/Er at

two sets of density n = 0.5k3
r (a) and n = 1.0k3

r (b).



Appendix C

The phase-twist method in a SOC

Bose gas

In Ref. [247], M. E. Fisher et al. have constructed a microscopic description of

superfluid density ns related to the response of free energy with respect to a phase

twist.

Microscopically, by imposing a phase-twist Q, i.e., a supercurrent, on the order

parameter

φ(r)→ eiQ·rφ(r), (C.1)

the superfluid will flow with a velocity vs = ~Q/m. In the limit Q→ 0, the variation

of free energy ∆F(Q) ≡ F(Q) − F(0) is approximately given by the extra kinetic

energy of the imposed supercurrent,

∆F(Q) ≈ Q2

2
lim
Q→0

d2F(Q)

dQ2
≡ 1

2
nsmv2

sV. (C.2)

Therefore, the ratio of the superfluid density ns over the total density n = N/V can

be expressed by [238, 247, 248]

ns

n
≡ m

~2N
lim
Q→0

d2F(Q)

dQ2
. (C.3)

In the presence of SOC at zero temperature, without losing the generality, we

start with the first-order ansatz in Eq. (5.6), and the corresponding energy per

particle ε(θ, Px) ≡ E/N is a function of two variational parameters (θ, Px) (see also

133
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Ref. [95]). By fixing the total particle number N and imposing a phase-twist Q at

the equilibrium (θ0, P0 → θ(Q), P0(Q)), after some straightforward derivations on

Eq. (C.3), the superfluid fraction can be explicitly expressed by [238] (set ~ = 1)

ns

n
=
m

N

[
∂2F
∂Q2

−
(
∂2F
∂θ∂Q

)2

/

(
∂2F
∂θ2

)]
Q→0

. (C.4)

Stripe ansatz

Analytically we start with a 1st-order stripe ansatz with the condensation momen-

tum Pxêx, which takes a form of [95]

φ(r) =

√
n

2

[(
sin θ

− cos θ

)
e−iPxx +

(
cos θ

− sin θ

)
eiPxx

]
. (C.5)

Here θ varies in the range [0, π/4] and n = N/V is the average density.

At zero temperature, by substituting the stripe ansatz φ(r) back to the Hamil-

tonian and calculate the total energy E, we obtain the corresponding energy per

volume ε(θ, Px) ≡ E/V as

ε = 2φ2
1↑

(−P− krêx)
2

2m
+ 2φ2

1↓
(P− krêx)

2

2m
+ 2Ωφ1↑φ1↓ +

g + g↑↓
n

[
(φ2

1↑ + φ2
1↓)

2 + 2φ2
1↑φ

2
1↓
]

= n

[
P 2
x + P 2

⊥ + k2
r

2m
− Pxkr

m
cos 2θ − Ω

2
sin 2θ +G1(1 +

1

2
sin2 2θ)

]
, (C.6a)

with the interaction parameter G1 ≡ (g + g↑↓)n/4. It’s worth noting that here we

consider a sufficiently large box, and along x-axis we take the integer times of the

spatial period of density oscillation as x ∈ [−n, n] · π/Px so that ε is independent of

spatial coordinates.

Then the first-order derivatives of the energy with respect to the variables are

given as

∂ε

∂Px
= n

Px − kr cos 2θ

m
, (C.7a)

∂ε

∂θ
= n

[
2Pxkr sin 2θ

m
− Ω cos 2θ +G1 sin 4θ

]
, (C.7b)
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which lead to the corresponding second-order derivatives as

∂2ε

∂P 2
x

=
n

m
, (C.8a)

∂2ε

∂θ2
= n

[
4Pxkr cos 2θ

m
+ 2Ω sin 2θ + 4G1 cos 4θ

]
, (C.8b)

∂2ε

∂Px∂θ
= n

2kr sin 2θ

m
. (C.8c)

Now we can write the superfluid density in Eq. (C.4) as

ns = m

[
∂2(εV )

∂Q2
x

−
(
∂2(εV )

∂θ∂Qx

)2

/

(
∂2(εV )

∂θ2

)]
P0,θ0

, (C.9)

leading to

ns/n = m

[
1

m
−
(

2kr sin 2θ

m

)2

/

(
4Pxkr cos 2θ

m
+ 2Ω sin 2θ + 4G1 cos 4θ

)]
P0,θ0

.

(C.10)

In the stripe phase (i.e. Ω ≤ Ωc1), the condensation exhibits a double minimum

with momentum P0 = ±kr cos 2θ0 with cos 2θ0 =
√

1− Ω2/Ω2
0 with Ω0 ≡ 4Er +2G1.

We substitute them back to Eq. (C.10) and obtain

ns/n = m

[
1

m
− 1

m
· 4k2

r /m · Ω2/Ω2
0

4k2
r /m · (1− Ω2/Ω2

0) + 2Ω2/Ω0 + 4G1(1− 2Ω2/Ω2
0)

]
,

= 1− 2Er

(2Er +G1)(4Er + 2G1)2/Ω2 −G1

. (C.11)

Plane-wave ansatz

Recall the plane-wave ansatz of the condensate, which lies at a positive momentum

Pxêx, taking a form of [98, 101]

φ(r) =
√
n

(
cos θ

− sin θ

)
eiPxx, (C.12)

with θ varying in the range [0, π/4] and a uniform density n = N/V .
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At zero temperature, by substituting the plane-wave ansatz φ(r) back to the

total energy E, we obtain the corresponding energy per particle ε(θ, Px) ≡ E/N as

ε =
P 2
x + k2

r

2m
− Pxkr

m
cos 2θ − Ω

2
sin 2θ +

1

2
gn−G2 sin2 2θ, (C.13)

with the interaction parameter G2 ≡ (g − g↑↓)n/4.

Similarly the first-order derivatives of the energy are given as

∂ε

∂Px
=

Px − kr cos 2θ

m
, (C.14a)

∂ε

∂θ
=

2Pxkr sin 2θ

m
− Ω cos 2θ − 4G2 sin 2θ cos 2θ, (C.14b)

which lead to the second-order derivatives as

∂2ε

∂P 2
x

=
1

m
, (C.15a)

∂2ε

∂θ2
=

4Pxkr cos 2θ

m
+ 2Ω sin 2θ − 8G2 cos 4θ, (C.15b)

∂2ε

∂Px∂θ
=

2kr sin 2θ

m
. (C.15c)

And then the superfluid density reads

ns =
m

V

[
∂2(εN)

∂Q2
x

−
(
∂2(εN)

∂θ∂Qx

)2

/

(
∂2(εN)

∂θ2

)]
P0,θ0

, (C.16)

leading to

ns/n = m

[
1

m
−
(

2kr sin 2θ

m

)2

/

(
4Pxkr cos 2θ

m
+ 2Ω sin 2θ − 8G2 cos 4θ

)]
P0,θ0

.

(C.17)

In the PW phase (i.e. Ωc1 < Ω ≤ Ωc2), the condensation takes a nonzero

momentum at P0 = ±kr

√
1− Ω2/Ω2

c2 with P0 = kr cos 2θ0 and Ωc2 = 4Er− 4G2 [95,

101]. We substitute them back to Eq. (C.17), and obtain

ns/n = m

[
1

m
− 1

m
· 2k2

r /m

Ωc2 + (2k2
r /m− 4G2)Ω2

c2/Ω
2 − 2k2

r /m+ 8G2

]
,

= 1− Er

(Er −G2)Ω2
c2/Ω

2 +G2

. (C.18)
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Figure C.1: Superfluid fraction as a function of the Rabi frequency Ω, compared

with Ref. [15]. Here G2/Er is given by 2.4× 10−4 and 0.1, respectively.

In the ZM phase (i.e. Ω > Ωc2), we have zero momentum P0 and sin 2θ0 = 1 in

the ZM condensation phase. Eq. (C.17) becomes then

ns/n = m

[
1

m
− 1

m
· 2k2

r /m

Ω + 4G2

]
,

= 1− 4Er

Ω + 4G2

. (C.19)

In the descriptions above, we have derived the analytic expression for three

generic ground-state phases, by using a first-order stripe ansatz and a plane-wave

ansatz. In Fig. C.1, we show that our analytic result in the PW and ZM phases

at zero temperature, which recovers the one in previous work [15]. In particular,

at the PW-ZM transition Ω = Ωc2, our previous studies show that there will be

finite condensate fraction nc/n ≈ 1 at zero temperature, with a negligible quantum

depletion less than 1%. However, it’s worth noting that there will be no superfluid

density ns/n = 0 at Ωc2, and the total atoms are normal component as shown in

Fig. C.1.
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Appendix D

The choice of the cut-offs NL and

NM

In this Appendix, we check the convergence of our numerical calculations with re-
spect to the cut-offs NL and NM, by calculating the quantum depletion. In principle,
NL and NM should be infinitely large to include all high-order terms. However, in
practice we have to use finite cutoffs to ensure the computational efficiency. In
Fig. D.1, we show the depletion (blue crosses) at different sets of cutoffs NL and
NM in the zero Rabi frequency limit Ω→ 0. In this limit, the quantum depletion is
analytically known (see the dashed line), as the system reduces to a uniform two-
component Bose gas without spin-orbit coupling. At NL = NM = 14, we find that
the relative deviation of the calculated depletion is less than 1%. Therefore, we use
NL ≥ 14 and NM ≥ 14 in our numerical calculations.
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Figure D.1: Quantum depletion in the limit of Ω → 0, as a function of NL = NM.

The anticipated result of a two-component Bose gas is shown by a dashed line. The

interaction parameters are the same as in Fig. 5.1.
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