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Abstract

The pragmatic use of Transmission Control Protocol (TCP) in high-speed, low-
latency clusters and data centres suffers from a throughput collapse pathology as-
sociated with a phenomenon known as incast congestion (incast). Incast presents
as Round Trip Time (RTT) timescale network congestion, caused by horizontally
scaled workloads inducing correlated, high fan-in communication patterns. The
timely completion of such workloads is positively linked with business competitive
advantage and revenue [1, 2], yet aspects of TCP are poorly tuned for such environ-
ments and can variably increase communication latency.

Experimental tools and methodologies for exploring and validating ideas in this
space also present a challenge for those without comprehensive access to an opera-
tional cluster or data centre – an uncommon luxury outside of large organisations
and service providers. To this end, I have designed and implemented the novel
CLUster nEtwork Simulation (CLUES) v1.0 hybrid simulation-emulation toolkit to
provide such a research platform in support of this thesis. CLUES combines the
ns-3 discrete event network simulator, new validated models, Network Simulation
Cradle (NSC) framework, and FreeBSD commodity open source operating system
network stack.

CLUES is used to investigate incast congestion and the TCP throughput collapse
pathology it induces, with a focus on application-layer transaction completion time.
The dynamics of a TCP-based, horizontally scaled synthetic workload are studied,
showing incast-induced Retransmit Time Outs (RTOs) to be pervasive, and their
impact increasingly undesirable as network bandwidth increases and/or latency de-
creases. The investigation demonstrates that increasing TCP’s RTT measurement
resolution allows TCP to better adapt to these environments, reducing both the
variance and upper bound of transaction completion times.

I have proposed the sender-side, backwards compatible and incrementally deploy-
able Adaptive Resolution RTT mEAsuRement (ARREAR) scheme for TCP, and
developed a FreeBSD-based implementation of it which I evaluated using CLUES.
ARREAR improves the completion times of RTO-affected transactions by enabling
the calculation of sub-millisecond, path-appropriate RTO intervals. The evaluation
of ARREAR also reveals that the standard RTO interval calculation specified in
RFC 6298 underestimates for such paths, thereby increasing the spurious retrans-
mit rate. An important causal factor in the underestimation is lack of consideration
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for serialisation delay bias in RTT measurement, which requires further investiga-
tion.
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1 INTRODUCTION

1 Introduction

From humble beginnings in the circuit-switching dominated 1960’s, best-effort
packet-switched networking and the TCP/IP protocol suite have respectively be-
come the dominant networking paradigm and instantiation thereof. The open and
collaborative process adopted to develop royalty-free specifications for the core tech-
nologies has contributed to the ubiquitous availability of the protocol suite in net-
work hosts.

The core layering and encapsulation concepts have fostered competition and
helped drive commoditisation of hardware and software. Moore’s law [3] has held
true until very recently, which together with transitor speed improvements have to
date delivered exponential growth in digital Integrated Circuit (IC) computational
power. This has directly underpinned many advances in networking technology
too. For example the Ethernet [4] physical layer has evolved from a few megabits
per second in the 1980’s to 100 gigabits per second in 2015, and modern Internet
Protocol (IP) routers are capable of forwarding more than a terabit (1012) of traffic
per second.

The economics resulting from this commoditisation and ubiquitous availability
compels us away from vertically integrated custom solutions, and towards generic
TCP/IP-based communication substrates. This has inevitably led to numerous
“growing pains” from using technologies in environments they were not designed
or optimised for. The TCP/IP suite of protocols were originally developed for wide
area communication, with typical connection speeds measured in kilobits per second
and end-to-end path latencies measured in hundreds of milliseconds.

The nature of interoperable standards and technologies being what they are
means that today, devices still only capable of kilobits per second can communicate
with those capable of gigabits per second. Similarly, end-to-end paths experienced
by the transport layer can be subject to a wide range of capacities and latencies. The
process of refining networking technologies to add features, optimise performance
and maintain interoperability across such a wide range of variables and use cases is
an ongoing challenge.

Cluster-based computing, especially in data centres, represents one such environ-
ment where growing pains are still being discovered and worked through. Economics
are particularly relevant at data centre scale, and many data centres including the
world’s largest have embraced the Ethernet/IP network-as-a-substrate world order
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1 INTRODUCTION

with open arms. Here the application of wide-area optimised protocols and the best-
effort packet-switched networking paradigm clashes head on with business critical
key performance indicators and return on investment.

With the sheer volume of traffic flowing around a data centre, non-trivial wins
can be had from minor improvements – shave a few milliseconds off your customer
response time here, or a few Central Processing Unit (CPU) cycles off the per-
packet processing overhead there and you could well have measurably improved
your bottom line. These factors have made the data centre an area of increasing
focus for systems and network research and development since the Dot-Com Boom.

The pragmatic use of TCP to provide reliable workload transport within clus-
ters and data centres came about from its required use to serve wide-area Internet
services from the same infrastructure. TCP’s robustness ensures that it functions
correctly in the data centre, but performance is an important consideration for work-
loads that demand timely completion. For example, client response times for web
search and e-commerce are directly linked to competitive advantage and revenue
[1, 2]. These demands, coupled with the disparity between high-speed, low-latency
data centre network paths and wide-area Internet paths, have led to a body of work
on optimising TCP/IP for the data centre with a focus on Flow Completion Time
(FCT) as a metric of interest.

A relevant issue that affects FCT and is rooted in the path disparity is a TCP
throughput collapse pathology associated with commonly used approaches to dis-
tributed computation such as “partition-aggregate” [5]. These computation schemes
prescribe how to decompose a problem into a well defined set of sub-problems, map
the set onto the available computational resources, and assemble a final result based
on what comes back. So called barrier-synchronised workloads [6], which require
all of the responses to complete before forward progress can be made, are partic-
ularly sensitive to differences between the response FCTs. Barrier-synchronisation
requirements are quite common for distributed operations where data consistency
and/or completeness is important.

Workloads using such schemes can induce correlated, high fan-in communica-
tion patterns which can lead to RTT timescale network congestion – a phenomenon
known as incast congestion (or simply incast). When incast drives switch buffers to
saturation, the situation is further exacerbated by TCP’s standardised congestion
control and loss recovery mechanisms being poorly tuned for (multi-) gigabit per
second, sub-millisecond latency paths. The timescale of loss events versus TCP’s
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1 INTRODUCTION

variable recovery time contributes to a long tail distribution of FCTs, and conse-
quently application layer transaction completion times as well [7]. This variability
of service is undesirable from both a user experience and business perspective, with
a nett effect that is quantifiable in monetary terms.

A tangential meta issue related to cluster and data centre networking problems
like incast is how to research, develop and validate ideas at operational scale. This
presents a challenge for those without comprehensive access to an operational cluster
or data centre – an uncommon luxury outside of large organisations and service
providers. Simulation-based approaches become an appealing option with which to
bridge the gap between small scale test bed experiments and the larger experiments
required to validate results at operational scale.

A non-trivial challenge with simulation is to ensure that relevant properties of
the system are captured in the models and interactions between them so as to
make experiments meaningful. Effort can be invested in improving models and
the interactions between them, integrating components of real software stacks, and
understanding relevant caveats. The improved experimental realism and relevance
from these endeavours, combined with the scalability properties of simulation-based
approaches, offer a plausible means with which to investigate cluster computing and
data centre network issues.

A growing body of literature is devoted to the incast phenomenon, the associ-
ated TCP throughput collapse pathology, and various performance metrics. The
predominant analytical and experimental focus is on metrics other than application
layer transaction completion times, and therefore user experience. Throughput and
goodput feature heavily because they are simple to measure and directly relate to
the collapse pathology.

Approaches to dealing with incast issues broadly fall into avoidance and/or mit-
igation categories. Avoidance approaches typically focus on making the network
fabric as lossless as possible. Mitigation approaches primarily focus on TCP and its
RTO mechanism. They target reducing the duration, prevalence and/or correlation
between RTO events, thereby reducing the degree of under utilisation and through-
put collapse. Given that many data centres operate under a single administrative
domain, a significant portion of work presumes a willingness and ability to have
end-hosts work in cooperation with the network.

The review of existing literature reveals a wide range of analysis and approaches
for avoiding and/or mitigating incast related issues. Approaches are varied in mech-
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1 INTRODUCTION

anism and the point(s) of insertion in the end-to-end communication path between
applications. The predominant analytical and experimental focus on metrics other
than application layer transaction completion times, and therefore user experience,
misses the forest for the trees. Experimental tools and methodologies for exploring
and validating approaches lack focus on the intersection between network protocols,
devices and hosts in representative scenarios.

Of the common themes present in the incast literature, there exists a clear ap-
petite for practical though imperfect approaches that target reduction of the FCT
distribution’s long tail. Keeping the forwarding plane as “dumb” as possible and
avoiding application customisation contributes towards practicality. Not being able
to utilise perfect knowledge about the end-to-end path therefore leads to a pragmatic
desire – adapting the transport protocol to the realities of best-effort Ethernet/IP
networks operating at cluster and data centre scale, speeds and latencies.

For TCP, adaptation requires overcoming the impedance mismatch between the
intrinsic properties of these networks and TCP’s ability to properly detect and react
to them. The foundational work of Vasudevan et al. [6] articulates and explores a
line of inquiry that is complementary to other work and which this thesis ultimately
follows on from – equipping TCP with the ability to measure sub-millisecond end-
to-end path RTTs.

This thesis makes contributions towards:

• The understanding of TCP incast congestion in the context of barrier-
synchronised workloads.

• Mitigation of the TCP throughput collapse pathology induced by incast con-
gestion.

• TCP RTT measurement, particularly for sub-millisecond latency paths.

• Simulation-based experimental tools and methodologies for cluster and data
centre network protocol exploration and validation.

These contributions stem from my pursuit of specific core work items. I have de-
signed and implemented the CLUES hybrid simulation-emulation toolkit to provide
a platform for research, development and validatation of cluster computing and data
centre network ideas at operational scale. I have conducted a CLUES-based investi-
gation of incast congestion and the TCP throughput collapse pathology it induces,
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1 INTRODUCTION

with a focus on application-layer transaction completion time. I have proposed AR-
REAR, a sender-side, backwards compatible and incrementally deployable adaptive
resolution RTT measurement scheme for TCP, which co-opts the TCP timestamp
option to faciliate measurements based on the quality of a sender’s local clock(s).
I have developed a FreeBSD-based implementation of ARREAR which I evaluated
using CLUES. Finally, I have shown that ARREAR improves the completion times
of RTO-affected transactions by enabling the calculation of sub-millisecond, path-
appropriate RTO intervals.

The remaining chapters present these contributions in the order now outlined.
Chapter 2 presents the historical and contemporary background context relevant to
this thesis, leading into a detailed review of relevant existing literature in Chapter
3. Chapter 4 introduces the CLUES v1.0 toolkit for network protocol research,
development and validation. Chapter 5 presents a CLUES-based investigation of
incast congestion, with a focus on application-layer transaction completion times
for barrier-synchronised workloads. Chapter 6 proposes the ARREAR scheme for
TCP and evaluates a FreeBSD-based implementation of it using CLUES. Chapters 7
and 8 conclude the thesis with a discussion of future work directions and a summary
of the key themes, findings and novel contributions.
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2 BACKGROUND

2 Background

The historical and contemporary context relevant to this thesis’ contributions is
ordered and related here to help make sense of the starting point for this work.

2.1 TCP/IP: Foundation of the Global Internet

By the 1960’s, advances in electronic computing technology and the evident potential
of computers prompted discussion about networking the machines to further increase
their utility [8, 9]. The Advanced Research Projects Agency NETwork (ARPANET)
emerged from this effort in 1969 as the first network of its kind [10], allowing a
disparate, geographically dispersed set of machines to connect in an ad hoc manner
and multiplex data transmission on an as needed basis across leased lines [11].

The best-effort, connectionless and packet-switched paradigm used by the
ARPANET was revolutionary in its simplicity [10]. The equipment complexity and
cost could be kept low, redundancy was therefore cheap to build into the network and
a lowest common denominator service could be provided. Reliability at the packet
level was a non-goal and was the responsibility of network protocols to provide if
required. All this was in stark contrast to the highly engineered, circuit-switched
telecommunication networks that held the majority mindshare at the time; rigid in
their structure and service offerings, providing guaranteed service by way of admis-
sion control coupled with complex signaling/scheduling.

What followed the ARPANET’s formation was a concerted research, engineering
and development effort to establish the discipline of data networking, from which
the building blocks for a global Internet emerged. The Internet Protocol (IP) [12]
rapidly became the convergence layer for packet networks, providing a best-effort
datagram delivery service between logically-addressed network hosts [13, 14, 15].

The formation of organisations such as the Internet Engineering Task Force
(IETF), Internet Research Task Force (IRTF), Internet Architecture Board (IAB)
and Internet SOCiety (ISOC), coupled with work undertaken within the exist-
ing International Telecommunication Union (ITU) and Institute of Electrical and
Electronics Engineers (IEEE) developed and refined the necessary building blocks
for data networking. Architectural aspects like layering/interoperability models
[16, 17, 18], key communications (Ethernet [4], ATM [19], X.25 [20], IP [12], UDP
[21], TCP [22]), routing (RIP [23], BGP [24]) and application protocols (DNS [25],
FTP [26], HTTP [27], TELNET [28]) together formed the standards for data net-
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2 BACKGROUND

works and network computing.

2.2 TCP/IP Networking Fundamentals

IP networks provide a packet-based, connectionless, statistically multiplexed and
unreliable (“best effort”) service, which in effect means that the fate of any given
packet is uncertain. Packets can be lost, variably delayed, duplicated, corrupted
and/or reordered to name a few possibilities. The simplicity and unreliability of
the IP layer stems in part from not allocating dedicated resources along the path(s)
between communication end points. Instead, the IP layer relies on statistical mul-
tiplexing – on-the-fly, localised resource allocation at each individual router (hop).
When a packet arrives to be forwarded, either the egress port is free and the packet
is forwarded immediately, or the port is busy and the packet is enqueued for eventual
transmission.

Statistical multiplexing requires no a priori coordination between the network
and end hosts, nor between routers inside the network. This greatly simplifies the
addition of new routers and links to expand a network. It does rely on two assump-
tions though: that the long term average arrival rate is less than the egress port’s
rate, and the local queues are large enough to absorb likely bursts of correlated
packet arrivals. These assumptions break down during periods of transient conges-
tion, or when end hosts sustain an offered load in excess of a path’s capacity [29].
Occurrences of either can grow queues to saturation, forcing some packets into the
proverbial bit bucket.

Burstiness is particularly troublesome for statistically multiplexed networks, as
impulse load builds instantaneous queue, increasing likelihood of packet drops and
thereby wasting resources along the path prior to the drop point. The simple act of
emitting packets from end hosts at a more even rate (pacing) can have very positive
effects on a flow’s impact to itself and other flows sharing the path.

When a queue grows beyond one packet, the policy of the scheduling process
driving the egress port will determine how the queue is serviced, potentially in an
order that differs from arrival. A large body of work exists on what are commonly
referred to as Active Queue Management (AQM) schemes, which add intelligence to
the process of queue management above that offered by a simple First In First Out
(FIFO) scheme.

The choice of egress port is determined by a router’s Forwarding Information
Base (FIB), which maps destination addresses to the port by which the next hop
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2 BACKGROUND

along the path should be reached. A router’s FIB is determined by its Routing
Information Base (RIB), which maps destination addresses to the address of the
next hop along the path that a packet should be forwarded to. The FIB can be
a mix of explicit forwarding policy programmed by a network administrator, and
dynamic routes determined with the aid of a routing protocol.

Routing protocols allow routers to learn about the logical topology of a network
by exchanging routing messages with their directly connected peers to share each
other’s knowledge of the network. By comparing notes with its neighbours, a router
can update its FIB so that it knows how to reach networks which may be many
degrees of separation away from it.

All devices forming an IP network rely on encapsulation – the practical instan-
tiation of layering at the network protocol level. It allows IP packets to traverse
various link technologies and to carry many different upper layer protocol payloads
in a programmatically standardised way. Layer-specific information required to ac-
company data on its journey is associated with the data as wrappers, lowest layer
wrapper on the outside.

The localised decision making and statistical multiplexing coupled with short/di-
urnal/extraordinary timescale variance of offered load means that communication
end points experience a channel that is in a constant state of flux. It is the role
of transport protocols layered atop IP networks to translate the IP service offering
into an offering between communication end points; a practical embodiment of the
so called “end-to-end” principle [30].

2.3 Transport Protocols

Transport protocols form an integral role in the layered TCP/IP architecture, pro-
viding at minimum an end-to-end (de)multiplexing service. The TCP/IP protocol
suite initially specified User Datagram Protocol (UDP) and TCP, but the set of
transports has since grown to provide a rich array of service offerings [31]. The
changing landscape is forcing us to revisit our assumptions [32, 33] and tweak exist-
ing protocols to address limitations [34, 35, 36, 37, 38]. We are also looking beyond
these protocols to take advantage of new offerings [39, 40, 41], less constrained by
entrenched thinking, assumptions and software Application Programming Interfaces
(APIs).

As an example, Stream Control Transmission Protocol (SCTP), with its native
multihoming and support for simultaneous data transfer streams [42], offers much
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sought after features to application developers and data networks. Efforts are be-
ing made to retrofit some of these desired features to TCP as well [43]. Research
into transport protocols has therefore intensified in line with Internet growth and
the corresponding emergence of issues that affect data transportation in modern
networks.

2.3.1 Transport Services

Transports offer consumers a form of contract in terms of the services provided.
Given that IP provides an address for data flow, it was obvious from the outset that
requiring an address per communication end point would be wasteful and unneces-
sary. The most basic service provided by all transport protocols is (de)multiplexing,
which in the TCP/IP model is achieved by the transport encapsulating a source and
destination port number in the packet payload.

The destination port number allows a host to demultiplex received packets into
flows, which can then be directed to the correct local end point. Any return commu-
nication is addressed to the flow’s source address and port number. The combination
of protocol, source address, source port, destination address and destination port,
commonly referred to as the 5-tuple, constitute the regular means by which packet
flows are differentiated.

The IETF TrAnsPort Services (TAPS) working group has categorised and doc-
umented the services provided by the set of IETF specified transport and “pseudo-
transport” protocols [31]. Only the services which are relevant to TCP will be
covered in detail here, and readers are encouraged to review the reference cited for
more context.

Reliability refers to a transport’s ability to deliver bytes from source to desti-
nation end point with some level of assurance as to completeness, correctness and
ordering compared to what was sent. It is typically provided by way of some form
of sequence number (to determine relative ordering), acknowledgement scheme (to
provide feedback to the peer) and checksum over the Protocol Data Unit (PDU)
bytes (to help determine if the bytes unintentionally changed along the way). For-
ward Error Correction (FEC) is a less common transport reliability method, relying
on network coding to generate a small stream of redundant bytes to send along with
the actual data. A receiver can then reconstruct the intended data in the face of
some amount of corruption or loss if some of the redundant bytes arrive instead.

Flow control allows a receiver to inform a sender of an appropriate transmis-
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sion rate, typically dynamically during the course of communication. This allows
end points without knowledge of each other’s capabilities to spontaneously initiate
communication without fear of needlessly wasting host and network resources by
overwhelming the peer.

Congestion control complements flow control by equiping the transport with a
mechanism to avoid overwhelming the network path between end points. Given the
almost non-existent direct interaction between end points and the network (schemes
like Explicit Congestion Notification (ECN) provide some ability for the network to
reliably signal congestion information to end points, though are yet to be widely
deployed on the public Internet), congestion control mechanisms to date rely mostly
on inference to detect and react to network congestion.

Finally, data boundary orientation refers to the way in which a transport frames
byte sequences. As a datagram based transport, UDP only deals in units of individ-
ual datagrams. Byte stream transports like TCP present a continuous, unframed
stream of bytes without any delineation. The somewhat hybrid message oriented
approach offered by SCTP allows for end point defined arbitrary length message
framing.

Transport protocols were originally envisaged and designed to operate end-to-end
within the TCP/IP architecture, meaning that only end points cared about trans-
port layer encapsulation, semantics and payload. This design philosophy gradually
eroded as networks grew in size and became critically important infrastructure.
In the name of security (firewalls), performance (Performance Enhancing Proxys
(PEPs)), scalability (load balancers) and other causes, networks began to subsume
some of the intelligence that was supposed to reside in end points. This gradual in-
telligence creep within networks has impaired the ability to innovate at the transport
layer (e.g., [44]).

2.4 TCP

TCP is a true workhorse, responsible for the vast majority of packets and bytes
flowing across the public Internet [45, 46]. Its ability to manufacture a reliable
connection between communication end points frees consumers from the need to
worry about most details of the underlying network. Together with its algorithms for
balancing overall network utility against the individual connection’s dynamics and
performance, TCP was an instrumental building block for the fledgling Internet’s
growth.
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2.4.1 From Program to Protocol

TCP as we know it today evolved from the “Internet Transmission Control Program”
[47, 48] published in 1974. At that time, it combined the network layer functionality
and transport layer functionality that we now separately associate with IP and TCP
respectively. It was not until 1977 that the architectural revision to functionally
separate the network and transport layers was proposed by Jon Postel in Internet
Experiment Note (IEN) 2 [49]. His opening discussion remarks bear repeating:

“We are screwing up in our design of internet protocols by violating the
principle of layering. Specifically we are trying to use TCP to do two
things: serve as a host level end to end protocol, and to serve as an
internet packaging and routing protocol.”

Jon’s potent observation set the agenda for further revisions of TCP [50, 51],
which culminated in the publication of the normative reference for TCP (the pro-
tocol), Request For Comments (RFC) 793 [22] in 1981. However, RFC 793 did not
contain any mention of two goals that would eventually come to be synonymous
with TCP: fair share network resource utilisation and network overload protection
(congestion control). These came about later in response to an early ARPANET
and Internet phenomenon known as congestion collapse [52, 53].

Computing and network resources were costly and at a significant premium in the
early days of TCP/IP networks, and therefore they were shared amongst a growing
user base. The amount of TCP traffic on the network grew as existing applications
switched to using it and new TCP based applications were created. TCP’s retrans-
mission mechanism would retransmit any segment for which an ACKnowledgement
(ACK) had not been received in a timely fashion, attempting further retransmissions
ad infinitum until the ACK was forthcoming or the connection was closed.

As network utilisation grew, the baseline operational state of the network
approached the point at which statistical multiplexing assumptions broke down.
Router queues would saturate which caused packet loss and increasing latency for
packets which were not dropped. The packet loss and increasing latency would trig-
ger legitimate or spurious retransmission timeouts at senders which further increased
the load on an already struggling network. The death spiral would eventually grind
the network to a halt after queuing induced latency and packet loss cascaded across
network routers and the network became saturated with retransmits.
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Congestion collapse set the stage for adding fair share resource utilisation and
protection against network overload to TCP. The first set of Congestion Control
(CC) algorithms to be specified and widely implemented were proposed in 1988 by
Van Jacobsen in collaboration with Mike Karels [34]. The work came out of their
investigation of the congestion collapse phenomenon that was affecting the network
between Lawrence Berkeley National Laboratory (LBL) and UC Berkeley where
Jacobsen and Karels respectively worked. Karels was part of the UC Berkeley Com-
puter Systems Research Group (CSRG) that was developing the de facto reference
implementation of TCP/IP as part of the 4BSD operating system. He therefore had
the ability to rapidly iterate the development and testing of ideas.

Their key insight was that sustained congestion eventually resulted in queue
saturation and packet loss, which a TCP sender could infer by way of the duplicate
ACKs returning from the peer. Packets are rarely lost in wired networks for any
other reason, so the likelihood of false positives was low. In response, the sender
could reduce its transmission rate and thereby reduce load on the point of congestion.
The proposed changes proved to be effective, incremental and fully contained within
the transport layer of end hosts which therefore placed no additional requirements
on the network, allowing it to remain as simple as possible. The proposed algorithms
were formally mandated for TCP in RFC 1122 [17].

Raj Jain proposed an alternate school of thought in 1989 [54], whereby congestion
could be inferred from increasing path latency caused by queue growth as the path
is driven in excess of capacity. The more timely and gradual nature of the feedback
allows for a more timely and measured response to congestion.

While the idea had significant merit, path delay was a more difficult and noisy
signal to measure accurately compared with the more explicit duplicate ACKs used
by Jacobsen and Karels. Additionally, the pragmatic loss-based work had already
won the deployment race and was seen to be good enough, though with the benefit of
hindsight this was arguably an unfortunate fait accompli. Standardising loss-based
CC made it difficult to experiment with delay-based CC at scale – as loss-based
flows busily drove queues to saturation, delay-based flows unwittingly reacted to
the increasing queue occupancy and relinquished their share of network resources.

The development of the world wide web technologies in 1989 [55] and their well
suited marriage with TCP’s service offering ultimately set the Internet on its tra-
jectory for explosive growth in the early 1990s and beyond.

Page 14 of 172



2 BACKGROUND

2.4.2 Operational Overview1

TCP’s job seems simple – take a stream of bytes from one end point, send them
across a network reliably and promptly, then present the same stream of bytes to a
peer end point. Doing so whilst adhering to all of its goals turns out to be rather
more complex.

TCP uses a positive acknowledgement and retransmission scheme to provide its
reliable data transmission service. Each byte to be reliably transmitted is logically
mapped into an unsigned 32-bit sequence number space in monotonically increasing
order. The lowest sequence number of all bytes that are part of the segment is
written into the TCP header sequence number field. A checksum is calculated over
any payload and portions of the IP and TCP headers (pseudo header) to include in
the TCP header for receiver verification.

The receiving peer verifies the checksum and explicitly acknowledges the data.
An ACK segment has the TCP header’s ACK flag set and acknowledgement field
set to the sequence number of the next byte it expects to receive. The acknowledged
sequence number is always set relative to cumulatively received bytes i.e. ACKs sent
in response to segments that create disorder in the received data stream (known as
duplicate ACKs) will all acknowledge the exact same sequence number – that of
the first missing byte. Disordered data is sidelined in a reassembly queue until the
gaps are filled. Once reassembled, the data can be delivered to the end point and
a cumulative acknowledgment covering the previously disordered data returned to
the sender. Delaying the delivery of data until it has been reassembled is commonly
referred to as head of line blocking, because any disorder in the stream delays delivery
of all subsequent data until the disorder is repaired.

TCP maps the SYN (synchronise sequence numbers) and FIN (no more data
from sender) control signalling into the sequence space alongside actual payload
data. This minimises the protocol’s wire footprint by using the acknowledgement
scheme to serve a dual purpose and provide reliability for both types of data. It is
therefore possible to transmit pseudo bytes, actual end point data, or a mix of both
in a single segment, requiring careful differentiation of the relevant bookkeeping.

Being a connection-oriented protocol, TCP will not exchange data until a syn-
chronised initialisation process known as the three-way handshake is completed by

1RFC 7414 [56] documents a wide range of standards, extensions, experimental proposals and
other informational notes relating to TCP and its evolution. This section covers the key subset of
TCP’s algorithm and protocol mechanics that are most relevant to incast congestion.
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both peers. The communication initiator (“active opener”) generates an arbitrary
initial sequence number, increments it and includes it in a segment with the SYN
(synchronise) flag set. The segment is sent to the address and port number of the
intended peer and communication end point. A willing peer (“passive opener”) will
respond to the unsolicited SYN segment with a SYN segment containing an arbi-
trary initial sequence number of its own that also ACKs the active opener’s SYN.
On receipt of the passive opener’s SYN/ACK segment, the active opener transi-
tions to the ESTABLISHED state and completes the handshake by returning an ACK
segment which acknowledges the passive opener’s SYN. The passive opener finally
transitions to the ESTABLISHED state on receipt of the final ACK.

The TCP finite state machine governs the formal lifecycle of a connection at
each end point, defining a number of states that represent the opening, established
and closing phases. It also specifies the events that trigger, and are triggered by,
transitions between them. Events take the form of explicit signalling between peers,
and local end point actions such as timers firing or a system call on a socket. For
example, the socket connect system call will trigger a SYN segment to be sent and
the active opener’s connection to transition from CLOSED to SYN_SENT.

Numerous algorithms and timers are also used to overcome various issues inher-
ent in TCP’s design/implementation, and to ensure that connections do not end
up deadlocked. The subtle intricacies involved in getting all these interactions right
are still a constant source of performance issues, bugs and security vulnerabilities in
spite of implementations maturing over decades.

TCP’s RTO timer mechanism in particular exists as a robust safety net that
facilitates recovery from a range of scenarios that would otherwise deadlock a con-
nection. RTOs are often discussed in the context of performance because the inten-
tionally conservative timeout interval causes significant gaps in transmission when
relied upon.

For example, transaction based workloads which incur loss(es) near the trans-
mission’s tail may not generate sufficient (or any) duplicate ACKs to trigger a fast
retransmit. In this scenario, the transaction has no choice but to wait for the re-
transmit timer to fire and trigger the retransmit of the missing data. The RTO
interval directly adds to the transaction completion time, and potentially reduces
overall network utilisation.

The conservatism with which the RTO interval is calculated was a deliberate
design choice to avoid unnecessary, or spurious, retransmissions from potentially
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exacerbating an already congested network. Consecutive RTOs are inferred to indi-
cate increasingly heavy congestion, and a binary exponential backoff scheme [34] is
employed to increase the interval between retransmissions.

Many algorithms and mechanisms have been proposed, and to a lesser extent
standardised, to reduce the number or frequency of situations in which a RTO is
required. Nevertheless, there is no comprehensive set of changes in existence that
completely negates the need for them, and so they remain a necessity, to be avoided
where possible.

Send Window Control

TCP allows a dynamically variable amount of data to be in flight (sent but un-
acknowledged) at any given time by way of its send window control mechanism.
TCP tracks the edges of the window per RFC 793 variables snd.max and snd.una.
snd.max tracks the sequence number of previously unsent data to send next i.e.
one above the highest in flight sequence number, and snd.una tracks the highest se-
quence number cumulatively ACKed by the peer. The difference between the edges
(snd.max− snd.una) represents the current in flight window size.

Returning ACKs for in flight data (i.e. which increment snd.una) reduce the in
flight window and can be used to trigger the transmission of new data to maintain
the same window. This mechanism of triggering the transmission of new data on
receipt of an ACK for old in flight data is known as ACK clocking, and serves an
important role in spreading the transmission of data to reduce burstiness.

Optimal throughput is achieved when the send window’s value for a given path
matches the path’s Bandwidth Delay Product (BDP) – the amount of data required
to drive the path at full utilisation. When equal, the last segment of the window
will be transmitted as the ACK for the window’s first segment arrives at the sender.
BDP is a function of the minimum (“bottleneck”) bandwidth along a path and the
RTT i.e. the cumulative One Way Delay (OWD) between peers.

A send window that is too small results in lost transmission opportunity while
the sender waits for returning ACKs. A send window that is too large drives the
path in excess of capacity which will build a standing queue at the bottleneck and
eventually saturate it. The challenge is therefore to ensure that the send window
promptly reaches, and then tracks, the path’s BDP throughout a connection’s life-
time. TCP does not have the luxury of knowing a path’s BDP, and therefore relies
on algorithmic inference and determination to dynamically adapt the send window
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over time.
TCP’s drive to maximise throughput is tempered by a desire to avoid counter-

productive overloading of the receiver and network. TCP’s flow control and CC
algorithms independently determine a send window limit based on their respective
goals, and the sender then caps the effective send window at the minimum of both
limits. The interplay between all these send window related factors gives rise to
complex micro and macro level intra- and inter-flow dynamic behaviour (dynamics).

Peers advertise a receiving window (rwnd) to each other in the header of all
segments they send, and it is this information that sender side flow control utilises
as its determined send window limit. A receiving peer therefore has overriding
control of the sender’s send window upper bound given that the sender uses the
minimum of the flow control and CC determined limits.

Unlike flow control and the explicit information it uses to determine its limit, CC
must attempt to divine relevant information about the path when nothing explicit
(the common case) is known. Complicating matters is the expectation that TCP
connections will share network capacity with other traffic, and adapt well to all
the conditions a modern network path may present (such as latencies fluctuating
from sub-millisecond to hundreds of milliseconds, and bandwidths from kilobits to
gigabits per second).

Furthermore, a TCP connection is expected to cope in a fair manner (for some
notion of fairness) with an unknown but potentially large number of other TCP con-
nections all independently seeking their optimal operating point. Given the intrinsic
potential for significant variance over a range of timescales of network load, path
characteristics or even the path itself, CC poses a non trivial distributed systems
problem. Add to this a desire to optimise for different use cases, and an under-
standing of the detrimental impact a poorly chosen technique can have on all traffic
sharing a network [57, 58]. It is clear why CC remains an active area of research
and development to this day.

Congestion Control Algorithms and Dynamics

Standardised CC [34, 59] specifies the algorithms responsible for dynamically de-
termining the send window limit cwnd. CC strives to share network bandwidth
between like-minded flows and protect the network from being overwhelmed. Three
distinct modes of operation with different limit calculations are defined, two of which
relate to actively probing a path’s capacity, and the other governing recovery from
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inferred congestion
Slow start (SS) mode is used to cautiously yet promptly probe the capacity of

a path when no meaningful knowledge about the path exists (e.g., on entering the
ESTABLISHED state or after an extended period of no data transmission). Conges-
tion avoidance (CA) mode is used to maintain reasonable throughput somewhere
in the vicinity of the path’s capacity over the long term. The ssthresh (slow start
threshold) variable delimits the cwnd size at which the connection transitions from
SS to CA mode.

On connection start, ssthresh is initialised to the maximum possible window,
cwnd is set to a finite initial window (IW) value between two and four segments,
and the sender operates in SS mode. The IW limits the initial burst of packets
transmitted into the network at the sender’s full line rate. This is useful because
there is no in flight data, ACK clocking is not yet in effect and the connection is
typically not flow control limited. In this mode cwnd is incremented for every byte
of in flight data ACKed, effectively doubling cwnd each RTT and resulting in expo-
nential window growth. This continues until either rwnd becomes the effective send
window limit, or congestion is inferred after receiving three back-to-back duplicate
ACKs.

Detecting congestion transitions the sender to fast recovery (FR) mode, which
upon entering sets ssthresh = cwnd

2 , followed by cwnd = 3 × SMSS and finally
performs a fast (compared to waiting for a RTO) retransmit of the presumed lost
segment. cwnd is presumed to represent the send window at which the path is
driven to saturation, thus half that figure would make an appropriate cutover point
to switch to CA after exiting FR. Setting cwnd to a value that is equivalent to three
segments accounts for the three duplicate ACKs that triggered entry to FR mode.
Each subsequent duplicate ACK received increases cwnd by a Sender Maximum
Segment Size (SMSS) to account for another disordered segment arriving at the
receiver.

Transmission of new data may continue while waiting for the ACK of the retrans-
mitted segment if the send window allows for it. Receipt of an ACK for snd.una
triggers the transition out of FR, which sets cwnd = ssthresh and therefore transi-
tions the connection to CA. In the event that the duplicate ACKs are triggered by
network induced segment reordering rather than loss, the fast retransmit will have
been unnecessary – a so called spurious retransmit.

During CA, cwnd linearly increases at the rate of one SMSS per RTT, and like SS,
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Figure 1: Congestion window versus time for a FreeBSD NewReno TCP flow.

carries on until either rwnd becomes the effective send window limit, or congestion
is detected. The CA approach to linearly increasing cwnd and FR approach to
aggressively decreasing cwnd is known as Additive Increase Multiplicative Decrease
(AIMD).

Figure 1 provides a feel for the window dynamics associated with each of the
CC modes2. These seemingly simple operational modes and algorithms contribute
heavily to the propensity for complex and dynamic intra- and inter-flow behaviour
alluded to earlier. A fascinating ecosystem of CC techniques has emerged, each
aiming to address a shortcoming of standardised CC [60, 61]. Algorithms most
differ in how they grow and shrink cwnd in response to network conditions, and
are broadly classified as either loss-based or delay-based depending on the path
characteristics they use to infer the existence of congestion.

Short-lived flows (e.g., small query-response) are noticeably impacted by TCP’s
2Experiment utilised a single TCP sender and receiver, communicating via a 20 Mbps, 30 ms

one-way delay bottleneck link with a 10 packet queue. The TCP flow utilised a 1448 B MSS and
initial congestion window of 3 MSS per RFC 3390.
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connection establishment phase and the small IW. Connection establishment takes
1.5RTT , and an IW of two to four segments forces a multiple-RTT delay on the
transfer of application-layer responses. Increasing IW can help short-lived connec-
tions, but increases burstiness which is undesirable and can negate the capacity-
probing role of SS. Increasing IW to 10 segments has been experimentally proposed
[62] based on analysis of Google’s vast Hyper Text Transfer Protocol (HTTP) query-
response load. TCP Fast Open (TFO) [63], HTTP/2 [64] (and its predecessor SPDY
[65]) and Quick UDP Internet Connections (QUIC) [66] all attempt to address this
TCP pain point.

By comparison, moderate-to-long-lived flows run into performance problems
waiting for cwnd to recover after congestion events or idle periods. This is par-
ticularly problematic on high BDP paths, as it takes longer to return to the optimal
range after each congestion event. RFC 3649 [67] gives standard TCP’s average
cwnd as w = 1.2√

p
for a steady-state packet drop rate p, making congestion events

singularly undesirable. For example, RFC 3649 further observes that to fully utilise a
10 Gbps/100 ms path using 1500 B packets would require an average cwnd of 83,333
segments and no more than one congestion event every 100 minutes. On such a
path it would take just over one hour for cwnd to regain half the BDP after each
congestion event. Many proposals in addition to RFC 3649 attempt to address the
slow capacity probing of large BDP paths problem [68, 69, 70, 71, 72].

Apart from the effect on throughput after reducing cwnd, loss also manifests as
a brief increase in latency at the receiving end point, as the destination waits at
least one RTT for the missing segment(s) to be retransmitted. It might seem self-
evidently a good thing to minimise packet loss by maximising queue sizes anywhere
transient congestion is likely to occur. This more (buffering) is more approach turns
out to be very unhelpful in the context of standardised loss-based CC.

Standardised CC relies on regular packet losses as its feedback signal. Without
losses, cwnd grows until rwnd becomes the effective send window limit. If rwnd
exceeds the path’s unloaded BDP (increasingly likely given cheap Random Access
Memory (RAM) and TCP window scaling [35]), the excess packets in flight (once
cwnd > BDP ) simply accumulate in the bottleneck queue. The result is a standing
queue, which increases the RTT experienced by all traffic sharing the bottleneck
without improving the TCP throughput achieved when cwnd = BDP . The topic has
gained renewed notoriety as “Bufferbloat” – the tendency of operating system and
network device vendors to add significant amounts of buffering (BDP) in the network
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path without due regard for the consequences [29]. However, the downside of simply
adding buffering at congested gateways has been understood and articulated since
at least RFC 896 [52]:

“Adding additional memory to the gateways will not solve the problem.
The more memory added, the longer round-trip times must become be-
fore packets are dropped. Thus, the onset of congestion collapse will be
delayed...”

Irrespective of signal timeliness, standardised CC’s reliance on loss is problem-
atic for paths which are subject to non-congestive loss (e.g., wireless environments).
Unnecessary reductions of the congestion window when a connection is congestion
window limited can make it difficult to achieve an appropriate fair share of through-
put if the sending rate is frequently below the path’s BDP.

It is worth drawing attention to the fact that both flow control and CC rely on
imprecise hindsight to determine their send window limit. For active connections,
the peer’s advertised window used for sender side flow control will probably be stale
by the time it has reached the sender OWD later. Similarly, CC relies on inferring the
existence of network layer congestion from imprecise indications of the path’s state
at least one RTT ago. Any increase in delay therefore decreases the responsiveness
of TCP’s feedback control loop, which in turn increases the length of time TCP may
be operating with an inappropriate (too small or large) send window.

2.4.3 RTT and the TCP Control System

RTT fundamentally affects TCP’s dynamic behaviour and is a key input to the
protocol’s control machinery. RTT implicitly affects connections by dictating the
feedback latency, which has implications for overall responsiveness and path utili-
sation per the interaction between BDP and send window. It also explicitly affects
connections, by way of measured RTT, as the basis for determining the RTO in-
terval. This also affects responsiveness and path utilisation with flow on effects for
various timers and state machine transitions. Although not core to TCP’s specifi-
cation, measured RTT also features as an important control input for many TCP
related proposals and schemes (e.g., delay-based CC and fast recovery mechanisms).

At any instant in time, there exists both an intrinsic and dynamic component to
a path’s RTT. The intrinsic component comprises minimally variant factors inherent
to the path itself like signal propagation delays and data serialisation times. The
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dynamic component comprises factors inherent to statistically multiplexed systems,
like queue occupancy. Measuring the intrinsic and dynamic components of RTT
separately is not a consideration for TCP’s RTO calculation, which is concerned
with selecting a conservative interval based on the current overall path RTT.

There is no practical means by which TCP can know the current end-to-end
path’s instantaneous RTT. Without an oracle to consult, the RTT has to be mea-
sured, and the act of taking a measurement by definition gives you the instantaneous
RTT that was rather than is. A great deal of TCP’s specification/implementation
complexity and performance challenge stems from the fact that it has to make de-
cisions in the present using stale and/or inferred information, RTT being one such
example.

Measuring RTT

Prior to the publication of RFC 1323 [35], TCP stacks would perform RTT measure-
ments in a typically serial manner by pairing the transmission time for an arbitary
segment of data with the receive time of that data’s corresponding ACK.

The now ubiquitous TCP timestamp option specified in RFC 1323 was conceived
as a multi-purpose protocol extension to improve RTT measurement and handling of
packet sequencing issues. It specifies the addition of a monotonically increasing 32-
bit timestamp value (TSval) to each packet, which the peer reflects back verbatim as
an echo reply (TSecr) in the next return ACK packet. The RFC goes on to describe
how RTT measurements can be derived from packets which meet certain criteria by
calculating the delta between TSecr and the current timestamp clock. This scheme
has a number of useful properties:

• The sender does not need to maintain any measurement state which reduces
memory consumption and code complexity.

• Other than the monotonicity requirement, the sender’s TSval semantics (e.g.,
rate of increment), do not need to be known to the peer.

• The number of measurements a sender can make scales proportionally with
the send window, which helps to minimise undersampling error.

Adapting TCP’s control loop to the path would be pretty straight forward if that
were the whole story; senders could make accurate RTT measurements by selecting
a timestamp clock rate of appropriate resolution, which the rest of TCP’s control
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logic would ingest and adapt to accordingly. To understand the more complicated
reality, let us take a detour via some important historical context.

RFC 793 [22] relied on sequence numbers combined with the concept of Maximum
Segment Lifetime (MSL) (RFC 793 arbitrarily assumed a 2 minute worst case)
to ensure correctly ordered assembly of the received data stream. This became
problematic as the performance of IP networks rapidly improved, because it became
plausible for a connection’s sequence space to wrap inside of a MSL period. This
made it possible for a duplicate segment from a previous window of data to arrive
at a receiver, pass the in-window sequence check and corrupt the assembled data
stream.

The problem could have been solved a number of ways, but a pragmatic oppor-
tunity existed to utilise the freshly minted timestamp option for this in addition to
RTT measurement. The result was development and specification of the Protect
Against Wrapped Sequence Numbers (PAWS) mechanism.

PAWS is a receiver side mechanism for connections utilising the timestamp op-
tion. PAWS extends the set of validity checks applied to incoming segments by
comparing a segment’s TSval against the cached TSval of the most recently ac-
cepted segment (TS.Recent). Only if the former is not less than the latter is the
segment eligible to be accepted and have its TSval cached as TS.Recent. The same
definition of “less than” (see equation 1, computed in unsigned 32-bit arithmetic)
and associated assumptions that relate to TCP sequence numbers also apply to
timestamp comparison, ensuring correctly behaved logic even across a field wrap.
This definition is also the reason for imposing a monotonicity requirement on times-
tamp values, which would not otherwise be required if the timestamp option was
only used for RTT measurement.

s < t if 0 < (t− s) < 231 (1)

The scheme’s ability to help a receiver correctly determine segment order depends
on a number of factors and assumptions which are discussed in RFC 1323. To recap
the relevant issues, the PAWS mechanism provides no help to a receiver if the
timestamp increments too slowly such that the sequence number can wrap within
the increment interval. It also fails if the timestamp increments too quickly such
that the timestamp and sequence number wrap within a similar period of time that
is less than the MSL. Both cases would make it possible for a delayed duplicate
segment to pass a receiver’s segment validity checks and corrupt the data stream.
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The PAWS mechansim also introduces a problem of its own. Otherwise valid
segments will fail a receiver’s PAWS check and be dropped if the delta between
TSval and TS.Recent exceeds an absolute value of 231. This is a property of the
modulo unsigned arithmetic used to define “less than” (see equation 1), which can
be triggered by a sender’s timestamp clock incrementing too quickly relative to the
idle period between segments. The failure mode is particularly unfortunate, as all
segments sent after the idle period would continue to fail the PAWS check until the
delta reaches 232 i.e. wraps back around to 0. Given that TCP has never required a
keepalive mechanism to maintain a connection in the ESTABLISHED state, imposing
a limit on the maximum idle period was considered undesirable.

RFC 1323 discusses all these matters in more detail, and concludes that the
timestamp clock frequency should be in the range [1ms, 1s]. To mitigate the idle
period issue, a mechanism is specified to invalidate TS.Recent. The PAWS check
is short circuited if it fails but the elapsed time since TS.Recent was last updated
exceeds 24.9 days i.e. the period of time it would take for the fastest suggested clock
frequency of 1ms to cause a delta of 231 to be computed.

Many (if not most) popular TCP implementations conform to the RFC, and use
a 1ms timestamp clock frequency as well as the TS.Recent invalidation logic3.

The quality and composition of RTT measurements made using the RFC 1323
prescribed method depends on many factors which receive some discussion in the
RFC. Take delayed ACKs for example [73, 17, 59]. Schemes typically send an ACK
for every other data segment, and use a timer to trigger an ACK for unpaired seg-
ment arrivals. The effective send window limit can therefore influence measurements
simply by falling on an odd number of segments boundary.

The RFC suggests that the peer should echo the TSval from the first segment
the ACK covers instead of the last, in the hope that the measurement-derived RTO
interval will not trigger spurious retransmissions while waiting for the delayed ACK
timer to fire. However, this behaviour poses obvious problems for schemes like delay-
based congestion control which care about variation of path queuing delay rather
than peer contributed delay.

3e.g., FreeBSD: https://svnweb.freebsd.org/base/head/sys/netinet/tcp_input.c?
revision=294931&view=markup#l2200
Linux: http://lxr.free-electrons.com/source/include/net/tcp.h?v=4.3#L1247
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Consequences of Inaccurate RTT Measurement

On account of RFC 1323 and the PAWS mechanism considerations, current pop-
ular TCP stacks do not measure RTTs below 1ms. Whilst generally sufficient for
wide-area paths, 1ms is completely inadequate for sub-millisecond latency paths. A
fundamental disconnect is created between the TCP feedback latency determined by
the true path RTT, and explicitly measured RTT which lacks sufficient resolution
to be relevant as a control system input.

A particularly deleterious effect of this disconnect is the inability to calculate an
appropriate RTO interval. Transmission opportunity is lost while waiting for the
RTO interval to expire. As the performance of a path increases (higher bandwidth
and/or lower latency), so too does the negative impact of a TCP RTO event because
of the grossly inflated RTO interval.

2.5 Cluster Computing and the Rise of the Data Centre

Cluster computing is a practical manifestion of horizontal scalability – increasing
the overal system output/utility by way of increasing the number of workers. The
concept is readily observed in nature with eusocial insects such as ants and bees,
where colony growth and success is tied to increasing the number of workers to
perform required tasks. In contrast, vertical scalability relies on increasing the
resources of a single worker to achieve the same outcome.

Whilst not mutually exclusive means of achieveing scale in the computing space,
the economics of commoditisation dictate that as required scale increases, so too does
the cost effectiveness of the horizontal scaling “axis”. A key challenge is engineering
the workload and support infrastructure appropriately.

2.5.1 The Pathway to Computing Commoditisation

Due to their expense and size, early computers were only within grasp of govern-
ments, big business and well funded academic institutions. There were no stan-
dards, and manufacturers were typically vertically integrated selling their own top-
to-bottom hardware and software stack. Two important parallel developments which
hit a turning point in the 1970s completely changed the landscape: programming
languages and personal computing.

Programming languages provide the means by which computer hardware is given
instruction. Low level languages are tightly coupled to the specific hardware they
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program, requiring the programmer to write code (instructions for the hardware
formed using the grammar and semantics of the programming language in use)
tailored to that particular hardware. High level languages abstract the details of
the underlying hardware, freeing the programmer from the need to tailor all of their
code to specific hardware. High level languages therefore require an interpreter
– something to turn the abstract code into machine code that the hardware can
actually understand. The generic term for such an interpreter is “compiler”, which is
responsible for translating between a particular programming language and machine
code. High level programming languages therefore enabled the possibility to share
software between different types of hardware with minimal or no changes required,
as long as a suitable compiler existed for the target platform.

The development and specification of the C programming language [74] and
its use to rewrite the majority of the fledgling UNIX operating system is of great
historical significance. As interest in UNIX grew, C compilers emerged to be able to
run it on different hardware. More and more of the operating system was converted
from machine specific assembly language into C code which further reduced the
effort to port to new platforms [75]. The common abstractions and APIs presented
by UNIX were a boon to programmers, allowing them to write general purpose
programs within a familiar programming environment that worked across many
systems and could therefore be readily shared [76]. This was all pivotal to software
commoditisation.

Around the same time, small computers that were suitable and affordable for per-
sonal use were gaining popularity amongst electronics hobbyists. They were typically
sold as a self assembly kit, and came with a programming manual that described the
hardware language used. As hardware and software capabilities improved, Personal
Computer (PC) manufacturers turned their eyes to the mass market, focusing their
efforts on delivering fully assembled systems that ran useful software. The advent
of Graphical User Interfaces (GUIs) significantly broadened the appeal of the PC,
and the stage was set for computers to become a common place item in households
[77]. The mass market economy of scale precipitated by the personal computing
revolution was the other key driver for hardware and software commoditisation.

2.5.2 Data Centres and Incast

A data centre is essentially a centralised location to house back-end systems i.e.
computers that people do not need to physically sit in front of. Data centres were
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traditionally intra-organisationally focused, housing the systems that provided crit-
ical services to an organisation. This was more out of necessity than desire, and the
rise of the Internet allowed organisations to obtain many of the information tech-
nology services they required from third parties. The growing number of Internet
subscribers also created market opportunities for Internet-based companies to de-
liver goods and services to users as well as organisations, which drove the “dot-com
bubble” of the late 1990s [78, 79]. All of the computation and storage required to
deliver these goods and services needed to be housed somewhere.

A market developed in parallel with the Internet boom to supply data centre co-
location space and hosted resources as a commodity to those who did not build their
own. As the Internet continued to grow, so too did the data centre requirements
of an ever increasing number of Internet-based companies, and the multi-tenancy
data centre market gradually matured as a result. Virtualisation technology has
underpinned further evolution of hosted resource data centres into the technology
back-end for “the cloud”. It allowed data centres to be built more homogenously at
greater scale and meet differing tenant requirements using the flexible allocation of
resources that virtualisation allows for [80, 79].

Whether leasing resources from a multi-tenancy data centre or building and
running custom infrastructure, delivery of ever more complex services at scale has
seen cluster computing become synonymous with data centres. Efficiency and per-
formance from every CPU cycle, watt or millisecond of user response time saved
furthers competitive advantage.

Being very much geared towards delivering Internet connected services, cluster-
based computing inside data centres naturally used TCP/IP for communication.
Intra-data centre cluster communication therefore used that which was readily avail-
able to it as well. The disparity between high-speed, low-latency data centre network
paths and public Internet paths is what ultimately has led to a body of work seeking
to optimise TCP/IP for the data centre.

It is with this context in mind that we turn our attention to a particular pain
point associated with the use of TCP in the data centre. As discussed in section 2.4.3,
TCP relies on accurate RTT measurements as an important control input. Typical
intra-data centre path latencies are well below one millisecond [5], and therefore
TCP has a significant measurement resolution problem. Being low latency, high
bandwidth and typically overprovisioned, data centre networks might be expected
to be effectively zero packet loss environments. Unfortunately this is not in fact the
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case.
Query-response workloads common to client-server applications, and therefore

to data centres, readily lend themselves to a cluster-based, partition-aggregate com-
putation approach [5]. A client issues a query to one of many potential front-end
servers. The data from which the response is constructed typically requires compu-
tation across a number of distributed services (e.g., [81, 82, 83]) and many back-end
machines. An intermediate step is therefore taken to distribute the computation,
which the front-end then collates into a client response.

Given that the distribution of work will be approximately equal, the computation
time to return a result will also likely be approximately equal. This time correlation
of responses combined with the fan-in towards the front-end server can cause an
almost instantaneous build up of queues at nearby switch ports. Depending on the
nature and number of any losses sustained, TCP may have to resort to one or more
RTOs in order to recover.

The order of magnitude or more discrepancy between true RTT, measured RTT,
and the stack’s RTOmin results in the the effective RTO interval being completely
inappropriate. The stalls reduce utilisation and goodput, which ultimately increases
user response time, bringing undesirable consequences with it [1, 2, 7]. This phe-
nomenon is known as incast, a phrase coined by a clustered storage vendor in the
context of their distributed filesystem interacting with their back-end storage node
network [84].

2.6 FreeBSD: An Operating System for Cluster Computing

Operating Systems (OSs) interface between the network and applications desiring
to communicate over it; turning application data into an appropriate sequence of
bits on the wire, and vice versa. The OS network stack acts as a concrete instanti-
ation of the otherwise intangible protocol specifications that define the syntax and
semantics of network communication. The IETF early on in its existence recognised
the importance of “running code” and independent interoperable implementations
to the protocol specification process. Consequently, OS network stacks have been a
key vehicle for data networking research and development, with open source stacks
in particular providing a readily accessible and free base upon which innovate.

FreeBSD [85] is a mature, open source, UNIX-based operating system that is
used in a diverse range of ecosystems, from performance oriented service delivery to
embedded consumer electronics devices and indeed, cluster computing as well. It is
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derived from the University of California, Berkeley’s Berkeley Software Distribution
(BSD) version of UNIX, and the BSD network stack was the defacto reference im-
plementation of the TCP/IP protocol suite during development and standardisation
within the IETF. Since its inception in 1993, FreeBSD as a project has continued to
evolve and innovate its BSD-derived network stack together with other open source
communities, industry and academia. FreeBSD and its network stack therefore
provide a historically and contemporarily suitable base for cluster and data centre
networking research and development.

2.6.1 VIMAGE and VNET

VIMAGE and VNET [86] are FreeBSD virtualisation features available in releases
since version 8 and are integral to the CLUES toolkit. VIMAGE refers to the
general infrastructure used to virtualise kernel data, on which the VNET virtualised
network stack is based. VNET dovetails usefully with FreeBSD’s jail [87] feature to
offer jails local control of network related configuration. It has both compile-time
and run-time requirements in order to function.

Compile-time requirements involve toolchain support and explicit modifications
to kernel code. Data to be virtualised are declared as such using the VIMAGE
infrastructure [88] and can be assigned a default value if desired. By convention,
data are named with a V_ prefix for clarity. During linking, all virtualised data and
their values are gathered together into a “vnet” linker set [89] in the resulting shared
object. Each data element is identified by its offset from the start of the block.

At run-time, VNETs are dynamically instantiated using a simple three step op-
eration. First, a new struct vnet is allocated and initialised to hold the context
for the new VNET. Second, the entire “vnet” linker set block, complete with default
values, is copied into a newly allocated block of appropriately sized memory. Finally,
the vnet data block’s base address is stored in the vnet_data_mem member of the
previously allocated struct vnet.

Kernel threads maintain a pointer to the currently active struct vnet context,
which subsystems are responsible for setting prior to calling into the network stack.
Persistent state associated with various kernel entities (e.g., processes and creden-
tials) determines the correct VNET context to set. When a virtualised piece of
data is accessed by a kernel thread executing in the network stack, it is resolved
relative to the active VNET’s vnet_data_mem data block. All changes made to
virtualised data therefore only affect the active VNET’s data block, while changes
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to non virtualised data affect the entire kernel.
VNET trades kernel code complexity against the ability to share the majority

of kernel infrastructure between instances. This makes it a comparatively resource
efficient, light weight and minimal overhead form of virtualisation.

2.6.2 Development Model

FreeBSD uses a branched software development model, the basic details of which
are relevant to parts of this thesis. In FreeBSD parlance, X-STABLE (where X
is a major version number) names a conservative development branch from which
production-ready X.Y point releases are periodically made. Development occurs on
the branch known as [X+1]-CURRENT (“head” branch in FreeBSD’s Subversion
repository). Development work eventually becomes part of a production release
when [X+1]-CURRENT is branched to create [X+1]-STABLE. A backporting pro-
cess also exists for changes which meet certain criteria to make their way back
into existing [X-n,...,X-1,X]-STABLE branches (“stable/X” branches in FreeBSD’s
Subversion repository) at the discretion of developers.

2.7 Experimental Tools and Methodologies for Cluster-
focused Network Protocol Research and Development

Investigating cluster computing and data centre network issues “in the wild” re-
quires comprehensive access to the entire hardware and software stack, as well as
a willingness to experiment with production systems and networks. These require-
ments are not commonly able to be met outside of large service providers who run
their own infrastructure. For anyone without such access, validating and extending
existing work or developing new ideas is difficult.

Small, topologically representative test beds can be created in a lab at moderate
cost to ensure experiments can be performed that are subject to the vagaries of
real hardware and software. The costs associated with scaling such experiments
to a cluster of more realistic size and/or components quickly becomes prohibitive.
Simulation-based approaches become an appealing option with which to bridge the
gap between small scale test bed experiments, and the larger experiments required
to validate results at operational scale.

A number of benefits and problems are typically associated with simulation-
based approaches. Benefits often include faster than real-time experiments, higher
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scalability for a given amount of compute and memory resources, arbitary flexibility,
fast iteration and ultimate control. These trade-off against the primary problem
being a lack of complexity and realism.

Consider a spectrum of “experimental relevance” on which tools and methodolo-
gies can be placed. Simplified pure mathematical models exist at the least relevant
extreme, with full-scale deployment and verification in the end production envi-
ronment at the other extreme. Emulation-based approaches fit somewhere in the
middle, by blending real hardware and software together with some simulated char-
acteristics (e.g., passing real data flows through a network device that adds artifical
delay).

Simulation-based approaches typically occupy the space between mathematical
models and emulation-based approaches, but can acquire some of the properties of
the latter. Effort can be invested in improving simulation models and the inter-
actions between them, integrating components of real software stacks, and under-
standing relevant caveats. The improved experimental realism and relevance from
these endeavours, combined with the scalability properties of simulation-based ap-
proaches, offer a plausible means with which to investigate cluster computing and
data centre network issues.

2.7.1 Discrete Event Network Simulators

Discrete event network simulators [90, 91] operate by way of an event loop execut-
ing events from a time-ordered event queue until the queue is empty, at which point
the simulation is complete and terminates. The simulator engine’s virtual clock is
stepped to the scheduled time of each event prior to execution, which means com-
plexity (number of events to process) rather than virtual run time (elapsed virtual
clock time) determines the amount of real-world time required to complete a simu-
lation. This property of discrete event simulators can translate into a useful benefit
of faster than real-time simulations if the complexity is appropriately matched to
the underlying host’s compute and memory resources.

The ns-2 [92], ns-3 [93, 91] and OMNeT++ [94, 95] discrete event simulators
are the most widely represented in cluster and data centre network protocol related
literature. They are all open source, community based projects with broadly similar
goals, differing primarily in their licence and implementation details.

ns-2 is licenced under a mix of GNU General Public License v2 (GPLv2) and
BSD style licences based on its code base’s varied lineage. Community development
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has gradually quiesced, but it still retains an active user base on account of its
familiarity within the research community and rich set of derivative work. ns-2 is
based around a C++ core, extensible using C++ and OTcl.

ns-3 is licenced under the GPLv2, and is the logical successor to ns-2 even though
its code base started from a “clean slate” without any attempt at backwards com-
patibility. It is actively developed and used. ns-3 is based around a C++ core,
extensible using C++ and Python.

OMNeT++ is licenced such that it is free for non-commercial use, while
OMNEST [96] is offered as the commercial use counter part. It is actively de-
veloped and used. OMNeT++ is based around a C++ core, extensible using C++.
The non-commercial use restriction makes OMNeT++ a less palatable development
base where feature differences with ns-3 are not a significant factor.

Riverbed (formerly OPNET) Modeler [97] is a fully commercial network simu-
lator with a long history of development and use. It is based around a C++ core,
extensible using Proto-C. Its commercial nature makes it an undesirable base for
development and community building.

2.7.2 ns-3

ns-3 is an open source discrete event network simulator which aims to “develop a
preferred, open simulation environment for networking research” [98]. It is related
to the well known and widely used ns-2 [92] in name only, being a “clean slate”
GPLv2 software development effort that is “focused on improving upon the core
architecture, software integration, models, and educational components of NS-2”
[99].

ns-3 provides a rich set of infrastructure and object models in the form of C++
classes [100], which are combined together as required in a user-defined program and
compiled to create a simulation executable. A plethora of models exist, each repre-
senting a component or variation thereof which can be used to construct different
types of networks, network nodes, applications and other entities.

2.7.3 NSC

NSC defines a generic API that abstracts the plumbing required to interface real-
world commodity network stacks with simulated network hosts. It leverages the
SCons [101] Python-based build system to provide cross-platform build infrastruc-
ture. NSC was initially targeted at ns-2 but has subsequently been incorporated
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into ns-3 and OMNeT++. The API was developed in conjunction with ports of the
FreeBSD [85], OpenBSD [102], Linux [103] and LWIP [104] network stacks.

NSC stacks are typically compiled as a shared library and dynamically linked
into a simulation at run-time using the OS’s dynamic linker API. Each simulation
can specify which network stack a simulated host will use, and the simulator then
instantiates the appropriate stack for each host. ns-3 is given the NSC library path
as part of its configuration and stacks are identified by the name of the shared library
(e.g., the “libfreebsd-head.so” NSC stack is selected with name “freebsd-head”).

The NSC API exchanges fully formed IP packets via the bottom part of the
stack, and the standard Berkeley sockets abstraction mediates interaction with the
top part of the stack. Porting a candidate stack to NSC therefore typically involves
extracting the IP, transport and socket layer code.
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3 Data Centre Network Incast and Research
Tools

This thesis and its contributions intersect three primary areas of literature: the in-
cast phenomenon, TCP RTT measurement, and experimental tools and methodolo-
gies for validating cluster and data centre network protocol research at operational
scale.

3.1 Incast

Incast has received a great deal of attention in line with the growing importance
of cluster-based workloads and the commodity TCP/IP based networks commonly
used as the communications substrate.

A note on terminology – the term incast is used inconsistently across the body of
incast related literature, and [105] notes two such discrepancies. Some authors use
it to refer to a transport agnostic many-to-one communication pattern. Others use
it per its original meaning in [84] to refer to the overall phenomenon of TCP-specific
throughput collapse caused by such communication patterns inducing network con-
gestion and associated RTOs. Others differentiate transport throughput collapse
from incast congestion i.e. the network-focused effects of highly correlated arrivals
at network devices. Context is therefore important when discussing incast related
literature

Let us begin with an examination of literature devoting some amount of focus
to the investigation, analysis and/or measurement of incast related issues.

3.1.1 Investigation, Analysis and Measurement

The foundational work on incast was based on empirical observation and measure-
ment to understand the relevant parameters as they applied to the clustered storage
domain. Nagle et al. coined the “incast” term and were the first to publish details
about the phenomenon and some mitigation techniques in the context of their clus-
tered storage product [84]. They identified the causal link between transactional
workloads, high fan-in communication, network buffer overruns and TCP’s loss re-
covery mechanisms conspiring to produce throughput collapse.

Expanding on Nagle et al.’s observations, Phanishayee et al. reproduced incast
in both ns-2 and a storage cluster test bed to investigate the phenomenon and
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evaluate some mitigation strategies in greater depth [106, 105]. They primarily
focused on measuring goodput as a function of the number of concurrent servers,
thereby independently reproducing and validating the observations of Nagle et al..

Chen et al. followed with a more detailed empirical investigation of TCP incast
throughput collapse on a test bed [107]. They explored goodput, number of senders,
TCP time sequence plots, congestion window, inter-packet idle time, Smoothed
Round Trip Time (SRTT) and RTO count using a synthetic MapReduce-like work-
load. In later work [108], they presented empirical studies analysing the overhead
introduced by incast on Hadoop MapReduce workload components and entire work-
loads synthesised from third-party production traces. They compared job comple-
tion time for regular and 1 ms RTO intervals, and attributed the difference to “incast
overhead”.

Judd documented operational experience with TCP and various performance
problem mitigation measures in a production data centre [109]. A focus of their
work was incast mitigation, including reducing RTOmin and identifying practical
problems with DCTCP deployment that resulted in proposed changes.

Others examined incast within the broader context of data set analysis from
operational data centres. Benson et al. analysed data sets collected from a range
of data centres [110, 111, 112]. In addition to the empirical analysis, they also
extrapolated characteristcs that were used in ns-2 to study various phenomena in fine
detail. “Micro-burst losses” were one of the phenomena discussed, which although
not directly linked to incast by the authors, is conceptually related to, and likely
associated with, incast congestion induced loss. The majority of micro-burst losses
were found to be associated with events lasting less than 10 s.

Kandula et al. performed an empirical investigation of a large scale data set col-
lected from an instrumented production cluster [113]. They examined general link
congestion and explicitly looked for evidence of TCP incast throughput collapse,
noting that it was not directly visible in their socket-level data. They instead com-
ment on the likelihood of incast events having been present based on the frequency
with which the requisite conditions were met, and concluded there was very little
evidence of collapse occurring in their cluster.

The move towards Ethernet as a converged fabric for data centre connectivity
drove research and development of Ethernet fabrics and their interaction with data
centre transport/application protocols. Efforts to add congestion control and pro-
vide network guarantees for loss-intolerant and/or latency sensitive protocols (e.g.,
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from the storage domain) precipitated work with a focus on incast and such con-
verged Ethernet fabrics.

Devkota and Reddy simulated TCP incast scenarios on a Quantised Congestion
Notification (QCN) Ethernet and found that QCN is not able to improve the incast
throughput collapse pathology on account of an inherent inability to cope with
synchronised flows [114]. Anghel et al. investigated the interaction between the
New Reno, Vegas and Cubic TCP variants operating over Priority Flow Control
(PFC) and QCN Ethernets in both test bed and simulation [115]. Although they
did not focus on incast specifically, they found that PFC consistently improved
FCTs in the simulation and test bed scenarios examined, and that Vegas was the
best perfomer of the three TCP variants if some straight forward changes were made
to the implementation.

3.1.2 Modelling

The various empirical investigation and measurement efforts informed a number of
modelling efforts.

Chen et al. also developed the first quantitative model for goodput as a func-
tion of the number of concurrent senders, transfer size and TCP’s RTOmin, though
the model was acknowledged as being incomplete. Chen et al. later refined and
extended their work [108]. They developed and empirically validated a flow rate
model to predict goodput before and after the onset of incast in their experiments.
They also presented a simple network buffer based model to predict the number
of senders bringing about the onset of goodput collapse as a function of TCP slow
start congestion window progression and request size. While successful at captur-
ing a number of goodput response features with their model, a number of second
order effects were identified which alter the onset of goodput collapse but were too
complex to model quantitatively.

Zhang et al. developed an analytical goodput model for TCP NewReno incast
throughput collapse and validated it with ns-2 simulation [116]. The model makes
numerous simplifying assumptions such as no delayed ACKs, no competing cross
traffic, senders are completely synchronised, slow start is ignored, and the number
of senders is less than the bottleneck queue size in packets. Feng et al. followed the
work of Zhang et al. and developed a broadly similar model, but did include slow
start behaviour and validated theirs against test bed experiments [117].
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Zheng and Qiao [118], and Chen et al. [119] developed a BDP based model to
determine a limit for the number of concurrent senders. Wang et al. developed a
BDP and congestion window based model for the onset of incast throughput collapse
and validated it using ns-2 [120]. Podlesny and Williamson [121, 122] developed a
model that both limits the number of concurrent senders and adds a time-based
scheduling dimension. Ke et al. [123] applied the estimation result of [118] to [121]
to achieve better throughput results.

Kulkarni and Agrawal developed a throughput based incast model for long lived
flows and validated it using ns-2 [124]. They used the well known TCP steady state
throughput equation from [125] as a starting point, and extended it to multiple
synchronised TCP flows across a single bottleneck link.

Chen et al. developed an interpretive model of incast throughput [126]. They
made two key assumptions that they validated using test bed measurements: that
full window loss is the primary cause of incast throughput collapse, and the distri-
bution of window sizes amongst flows during any given RTT is normally distributed.
Their modelling also assumed the flows are operating in congestion avoidance mode,
implying long lived connections without idle periods. A model for the probability
of a RTO was also developed as a sub component of the throughput model.

Alizadeh et al. analysed QCN and developed a mathematical model to study
the scheme’s stability [127]. They also articulated the “Averaging Principle” as
a method to improve the stability of congestion control loops in the presence of
increasing RTT.

3.1.3 Avoidance and Mitigation

Approaches to dealing with incast issues broadly fall into avoidance and/or mitiga-
tion categories. Avoidance approaches typically focus on making the network fabric
as lossless as possible, by way of oracle-based or distributed resource scheduling.
Transport protocol agnostic approaches typically either modify application commu-
nication behaviour, or Ethernet level factors like queue size/management and link
level retransmission/congestion control. TCP specific approaches tend to avoid wire
format changes, instead opting for transparent packet manipulation or repurpos-
ing existing control mechanisms (e.g., modifying the TCP header window field or
end-host congestion control algorithm).

Mitigation approaches primarily focus on TCP and its RTO mechanism. They
target reducing the duration, prevalence and/or time correlation of RTO events,
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thereby reducing the degree of network under utilisation and throughput collapse.
Given that many data centres operate under a single administrative domain, a

significant portion of work presumes a willingness and ability to have end-hosts work
in cooperation with the network. Approaches that explicitly involve the network
in some way are typically better able to increase the overall network utility and
performance.

A number of high level surveys covering incast avoidance and mitigation litera-
ture have been published, and some provide possible taxonomy points.

Tahiliani et al. surveyed a small subset of TCP modifications and variants for
data centre networks and included a discussion of incast [128]. Schemes were clas-
sified on where the modification is required (sender, receiver, or switch) and which
of the identified data centre network issues (incast, outcast, queue build-up, and
sustained queue pressure) are addressed.

Zhang and Ansari surveyed a range of data centre related issues [129]. Included
was a comparison of Ethernet congestion notification schemes related to the IEEE
802.1Qau standardisation effort, and a separate discussion of incast mitigation pro-
posals. The Ethernet congestion notification schemes were compared using the fol-
lowing eleven criteria: fairness, feedback control, overhead, rate of convergence to
stability, congestion regulation, throughput oscillation, load sensor, link disconnec-
tion, fast start, number of rate regulators, and reactive/proactive signalling. No
attempt was made to define a taxonomy or set of comparison criteria for the incast
proposals discussed.

Pawar and Kulkarni extended the Ethernet congestion notification scheme survey
of Zhang and Ansari to include FQCN, but retained the same comparison criteria
[130].

Zhang et al. surveyed transport control in data centre networks and included a
discussion of TCP incast [131]. Schemes were categorised based on whether they
revised TCP, replaced TCP with a different transport, or addressed incast outside
of the transport layer.

Ren et al. specifically surveyed TCP incast [132]. They categorised schemes
based on the network layer(s) at which they operate, and whether the scheme’s
modus operandi is to reduce packet loss or improve the time taken to recover from
loss. Some schemes at each layer were then compared based on efficiency and cost
of deployment.

Rojas-Cessa et al. surveyed schemes for fast transmission of data centre flows
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[133]. They produced the most extensive comparison and taxonomical categorisation
found in all of the reviewed surveys, and the details are too extensive to summarise
here. Despite their Herculean effort, they overlook a significant portion of relevant
literature. Their comparison criteria and taxonomical categorisation also fail to
establish sufficient detail particularly at the sub-category level (and below). Their
efforts provide a sound basis for future categorisation and comparison work.

Sreekumari and Jung surveyed issues, solutions and challenges associated with
data centre transport protocols [134]. Proposals were grouped by the issue they
addressed (TCP incast, TCP outcast, and latency). Schemes that addressed TCP
incast were compared based on end host modification (sender, receiver, or both),
switch support requirement, type of congestion control employed (window-based,
delay-based, rate-based, or window/recovery-based) and which RTO inducing sce-
nario was avoided/minimised (LHTO, LTTO, and LRTO). Schemes that addressed
latency were compared based on deadline awareness, switch hardware modification
requirement, ECN requirement, flow size information requirement, and end host
TCP modification (sender, receiver, or both).

The taxonomy points and comparison criteria established in the survey literature
fall short of capturing the breadth and depth of proposals. Non-survery literature
referring to prior work does not apply consistent categorisation. For this literature
review, the simple two category classification scheme in Table 1 is used to capture
high level groupings.

Containment Mechanism is fully contained in communicating end
points, network devices, or requires cooperation between
both

Layers Which of the network interface, internet, transport or
application TCP/IP model layers the mechanism explic-
itly or semantically changes

Table 1: Incast avoidance/mitigation taxonomy categories.

End point contained, application layer mechanisms

The proposals in this category focus on manipulating application layer logic to
control request sizes and/or the number of active sockets at any given time.
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Nagle et al. [84] documented an effective modification to a clustered storage prod-
uct’s filesystem striping pattern. The domain-specific modification served to limit
the number of cluster nodes concurrently engaged in backend filesystem operations
to serve client data requests.

Phanishayee et al. and Krevat et al. [106, 135, 105] extended and generalised the
work of Nagle et al. by reproducing incast in a research environment and examining
the efficacy of domain nonspecific mechanisms. Explicitly limiting the number of
concurrent senders was explored, as was increasing request sizes to reduce the num-
ber of concurrent senders and/or increase utilisation during times some flows have
incurred timeouts. Staggering data transfers either by modifying the client request
or server response characteristics (e.g., intentionally fuzzing the response service
time) was used to reduce time correlation between flows. Finally, they suggested
but did not investigate the possibility of globally scheduling transfers (e.g., using a
token based scheme) as another means of limiting the amount of data able to be
concurrently incast towards a receiver.

A collection of works discussed in section 3.1.2 developed simplistic, single
switch, model-based approaches to calculating concurrency limits for incast avoid-
ance [118, 119, 121, 122, 123]. These approaches assume homogeneous, single work-
load environments and require the input of static variables (e.g., switch port buffer
size and link speed), thereby limiting their adaptability and generality.

Zhang et al. proposed Optimal Staggering Data Transfers (OSDT) [136], which
combines limiting the number, and rate of flows. Yang et al. [137] examined stagger-
ing flow start times such that flow end times and TCP window progression have a
limiting effect on the amount of incast data. Osada et al. and Kajita et al. [138, 139]
examined a more extreme form of staggering with complete and near complete seri-
alisation of flows.

Nishtala et al. discussed the beneficial addition of a request-level, sliding window
flow-control mechanism to regulate the number of concurrent requests issued by
their UDP-based memcache client [140].

Xu and Li proposed RepFlow [141] and Liu et al. proposed RepNet, a superset
middleware scheme consisting of RepFlow and RepSYN [142]. RepNet seeks to min-
imise FCT for <100 kB flows by replicating them, in the hope that the underlying
multipath network and forwarding scheme (e.g., Equal-Cost Multi-Path (ECMP))
may inadvertently find a less congested path for one of the replicated flows. RepFlow
replicates flows in their entirety, whereas RepSYN only replicates the TCP hand-

Page 41 of 172



3 DATA CENTRE NETWORK INCAST AND RESEARCH TOOLS

shake and uses the socket which is first to connect for the transaction. The authors
did not discuss incast in the context of RepNet, but arguably should have given the
potential for replication to induce or exacerbate incast.

End point contained, transport layer mechanisms

The mechanisms in this category broadly fall into implementation tuning, protocol
operational enhancements, algorithmic enhancements, or scheduling proposals, with
the majority applied specifically to TCP.

Early tuning work carried out by Nagle et al. [84], Phanishayee et al. [106, 105],
and Krevat et al. [135] evaluated different TCP implementations (NewReno, SACK),
lowering RTOmin, lowering the receive socket buffer size to restrict each sender’s
window, lowering the duplicate ACK threshold, disabling slow start, and restricting
the send window. None of the changes in isolation or combination proved entirely
effective.

Vasudevan et al. later examined removing RTOmin altogether in combination
with desynchronising retransmissions and improving TCP’s RTT measurement res-
olution to microsecond granularity [6]. These modifications did not stop incast from
occurring, but notably improved aggregate incast goodput by equipping TCP with
the ability to compute a path-appropriate (shorter) RTO interval.

Reducing the effect of RTO induced transmission stalls on aggregate goodput
was also explored in [143, 144, 145, 146]. Zheng et al. examined removing TCP’s
binary exponential backoff algorithm to reduce the transmission stall period caused
by consecutive retransmit timeouts [143]. Huo and Cao evaluated a hybrid RTO
interval calculation scheme, where the Kesselman and Mansour method [147] is
used for N ≥ 16 concurrent senders. Miyayama et al. proposed TCP Fine-grained
Timer (TCPFT), which reduced RTOmin on the order of hundreds of microseconds
and reduced the maximum binary exponential backoff factor to cap the interval
for consecutive RTOs [145]. Hafeez et al. proposed and evaluated three different
algorithms for randomising RTO intervals to avoid synchronised RTOs triggering
synchronised binary exponential backoff [146].

Deng et al. developed the sender-side Minimize the Idle Periods (MIP) scheme,
which combined a scheduling mechanism together with removing binary exponential
backoff and optimising RTOmin for the prevailing conditions [148]. Distributed fair
rate control tracks the difference between expected and measured throughput to
feedback the required sender rate control to avoid starvation during periods of incast
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congestion.
However, the first scheduling-centric proposal was the notionally transport-

agnostic Aggregate Transport Control (ATC) scheme from Chesson [149, 150]. By
having senders report their instantaneous send backlog with transmitted data (e.g.,
using a TCP option), the receiver can orchestrate the inbound data flows’ windows
to minimise bottleneck queue overruns.

Subsequent work also explored receiver-side flow control orchestration schemes.
Wu et al. developed ICTCP, which manipulates the advertised window in a Vegas-
like manner based on measuring achieved versus expected throughput using a view
across all inbound flows [151, 152]. Hwang et al. created the rate-based Incast-
Avoidance TCP (IA-TCP) algorithm, which employs ACK pacing for fine-grained
rate control combined with ICTCP-like manipulation of advertised windows [153].
Bai et al. proposed Proactive ACK Control (PAC), which uses TCP’s ACK-clock
mechanism as a means of controlling the amount of, and synchronisation between,
in-flight data [154].

Sender-side congestion control algorithms, which traditionally focused on wide-
area network congestion issues, followed low latency, high throughput issues like the
incast phenomenon into the data centre. Brakmo developed a data centre focused,
Vegas-inspired TCP variant named New Vegas (TCP-NV), to be robust in the face
of low delay, high bandwidth paths and common hardware offload technologies [155,
156]. Zheng et al. created a data centre focused TCP variant based on FAST TCP
[157, 158]. Wang et al. proposed Incast Decrease TCP (IDTCP), a delay-based
algorithm that merged the slow start and congestion avoidance window increase
algorithms into a single discrete exponential increase function focused on RTT as a
congestion signal [159]. Ren et al. developed Stochastic Adjustment TCP (SA-TCP)
to desynchronise senders by changing TCP’s AIMD congestion window adjustment
factors to stochastic values [160]. Zhang and Wen proposed the Ratio Estimation
TCP (RETCP) algorithm, which calculates the congestion window as a function
of the difference between expected and achieved throughput together with other
heuristics over a two RTT horizon [161].

A cluster of work proposed alterations to TCP’s loss discovery and recovery
strategies to minimise periods of reduced or stalled transmission caused by loss repair
and/or RTOs. Kulkarni and Agrawal explored two ideas: a dynamic segment sizing
scheme, and a probabilistic, pre-emptive tail retransmission scheme [162, 163, 124].
The former attempts to keep a minimum number of packets in flight regardless of
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the send window to increase the likelihood of soliciting sufficient duplicate ACKs
to trigger fast retransmit/fast recovery. The latter specially marks and sends pre-
emptive tail retransmits that receivers can use to detect tail loss and send four
ACKs to trigger fast retransmit/recovery. Tam et al. proposed two sender-side
changes: timestamp-assisted retransmission to recover from loss of fast retransmits,
and reiterated FINs to detect tail loss at connection termination [164].

Dukkipati et al. proposed the more general sender-side TCP Tail Loss Probe
(TLP) scheme for Selective ACKnowledgement (SACK)-enabled connections to re-
cover from tail loss by way of an “ACK overdue” timer tied to the connection’s RTT
[165]. Cheng and Cardwell specified the sender-side Recent ACK (RACK) loss de-
tection algorithm for TCP SACK-enabled connections, which replaces the duplicate
ACK threshold-based fast retransmit trigger with a time based mechanism [166].
Like the complementary TLP, RACK was designed for wide area use, but can be
adapted for the data centre.

Jiang et al. proposed the Luby Transform code based Transport Protocol (LTTP)
[167, 168, 169]. LTTP combines TCP control channels and UDP data channels
utilising TCP Friendly Rate Control (TFRC) [170] for congestion control and LT
coding [171] for FEC-based reliability.

Cheng et al. developed ParaVirtualized TCP (PVTCP) to address issues inherent
in the operation of virtualised end hosts [172, 173]. PVTCP manipulates TCP’s RTT
measurement and RTO management machinery to make them more robust against
spurious RTOs in the face of hypervisor scheduling induced time skips.

End point contained, network interface layer mechanisms

Zhang et al. explored shrinking the Maximum Transmission Unit (MTU) to increase
the number of packets in flight, which in turn may decrease the likelihood of tail
loss and associated RTOs [174].

Packet pacing as a rate control mechanism has been employed to augment or
serve as a critical component in numerous proposals to reduce congestion amplifi-
cation caused by sender burstiness (e.g., [175, 176, 177, 178]). Ghobadi and Ganjali
explored its effectiveness in data centres [179]. Hardware offload support for pacing
large numbers of flows is gradually becoming available [180, 181].
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End point contained, cross-layer mechanisms

Parisis et al. proposed a network coding based distributed storage scheme named
Trevi [182]. Trevi provides a multicast-based transport service tailored to cluster-
based storage systems, employing fountain coding to make it robust in the face of
packet reordering and loss.

The remaining proposals in this category effectively propose transport layer
mechanisms that rely on assistance from other layers to realise their benefits.

Zhang et al. defined the sender-side Guarantee Important Packets (GIP) scheme
[183]. GIP leverages application-supplied request boundary information to reduce
the send window at these boundaries in the hope of avoiding an excessive aggre-
gate accumulated congestion window across senders inducing full window loss. GIP
also employs packet duplication for each transaction’s final packet in the hope of
detecting tail loss and triggering fast retransmit/fast recovery.

Hwang et al. proposed the receiver-side, IA-TCP based Deadline and Incast
Aware TCP (DIATCP) [184]. DIATCP adds deadline awareness to the receive
window allocation and ACK pacing mechanisms proposed by IA-TCP.

Mittal et al. developed TIMELY, a transport-agnostic, delay-gradient congestion
control scheme that leverages hardware assisted packet pacing, time stamping and
ACK generation capabilities [176]. A rate computation engine ingests the hardware-
generated RTT measurements and applies delay-gradient-based AIMD adjustments
to determine each flow’s appropriate rate relative to a low and high RTT threshold.
The hardware rate control engine then appropriately paces the packets to acheive
the desired rate.

Network contained, transport layer mechanisms

The mechanisms in this category all propose transparent manipulation by the net-
work of the TCP header’s window field to effect incast mitigation.

Abdelmoniem and Bensaou specified the Incast Queue Management (IQM) AQM
scheme [185]. Each RTT measurement period, IQM performs a simplistic queue pro-
jection and on projected overflow, reduces the window of all flows to one Maximum
Segment Size (MSS) until the queue drops below a defined threshold.

Unlike the self-contained IQM, the other proposals used the OpenFlow Software
Defined Networking (SDN) standard to manage the flow selection and manipulation
machinery independent of where the treatment is applied [186, 187]. Lu and Zhu
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developed the congestion-reactive SDN-based TCP (SDTCP), which targets long-
lived flows for window reduction during congestion on the presumption that short
lived flows are more important [186]. Hwang et al. proposed the Scalable Congestion
Control Protocol (SCCP), which proactively apportions a fair share of each port’s
notional BDP to the port’s active flows [187].

Network contained, network interface layer mechanisms

Phanishayee et al. evaluated increasing switch buffer sizes up to 1 MB per port
[106, 105].

Shpiner and Keslassy proposed the Hashed Credits Fair (HCF) switch queuing
scheme [188]. The flow tuple of frames arriving at a HCF switch are hashed into
groups which track the amount of service credits the flow group has remaining.
Frames are then enqueued in one of two priority queues, with higher priority given
to flow groups that have service credits i.e. have been under-served.

Birke et al. proposed the v-RED scheme for SDN-based network virtualisation
overlays in multi-tenant data centres [189]. v-RED performs SDN translation to
deliver ECN signals up to the overlay network end points, thereby facilitating incast
congestion avoidance.

Wu et al. proposed ECN*, an alternative to DCTCP that leaves end host ECN
machinations unchanged [190]. Switches are modified to use instantaneous rather
than average queue length as the basis for ECN CE marking, and a marking thresh-
old based on the data centre network’s BDP.

Alizadeh et al. developed High-bandwidth Ultra-Low Latency (HULL), a switch-
based mechanism that trades network utilisation for predictable low latency [175].
HULL seeks to preempt queue build up by modifying switches to begin ECN CE
marking as link utilisation approaches saturation. This is achieved by applying the
ECN marking threshold to a “Phantom Queue”, which simulates what the queue
occupancy would be at some fraction of the true link rate.

Xu et al. proposed the SDN-based Sending In Group (SIG) scheme [191], though
insufficient technical detail was communicated to fully understand the proposal.
The SDN controller calculates and enforces a limit on the number of concurrent
senders allowed to transmit towards a given switch port. Senders are broken up into
transmit groups which the switch controls, presumably using a mechanism such as
Ethernet pause frames.

Alizadeh et al. proposed CONGA, a distributed, congestion-aware flowlet load
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balancing scheme for data centre fabrics [192]. CONGA leverages VXLAN [193]
to carry state by encapsulating frames crossing the fabric. Hop-by-hop congestion
information between the source and destination leaf switches is accumulated and op-
portunistically fed back by piggybacking on any reverse direction packets. Switches
use the information to maintain a table of congestion on each path towards a leaf
and makes forwarding decisions that seek to reduce path congestion. Wang and Xu
developed Expeditus, which is conceptually similar to CONGA but flow-based and
suited to complex fat-tree topologies [194].

Wang et al. proposed using physical optics to accelerate various data centre com-
munication patterns [195]. Samadi et al. developed the idea further and proposed a
SDN controlled hybrid electrical and optical network architecture that can be used
to accelerate bulk incast traffic delivery [196].

Lee et al. proposed that SDN network devices hide ECN CE marks from end hosts
for certain TCP flows whose window is to be protected [197]. The Differentiated
Services Code Point (DSCP) is set by the edge SDN network devices for packets
belonging to target flows and used to identify packets which should have ECN CE
marks removed

End point and network cooperative, transport layer mechanisms

Jouet and Pezaros proposed a SDN assisted scheme that disseminates dynamically
calculated TCP initial window and minimum RTO interval values to hosts during
connection establishment [198]. By virtue of being an oracle consulted for all new
flow routing decisions (e.g., TCP SYN packets), the SDN controller can perform
this role in parallel with route and connection establishment.

Cheng et al. proposed Cutting Paylod (CP) and Precise ACK (PACK) [199].
Network devices are modified to drop the data payload of TCP segments during
congestion and forward the truncated packet. Two reserved bits from the TCP
header are used for signalling segments that can be cut (set by end host), have been
cut (set by network device) or carry a PACK (set by end host). PACKs repurpose
the SACK option wire format and are used to inform senders of CP segments that
were received so that the data can be retransmitted.

Zhang et al. developed Sharing by Allocating switch Buffer (SAB) [200]. SAB
repurposes the window field of the TCP header to instead convey a network imposed
limit on the sender’s window. Network devices along the path calculate a window
limit based on local conditions and update the window field if the local limit is lower
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than the current field value. Receiver’s reflect the limit in the window field of ACKs
instead of advertising their own receive window.

Adesanmi and Mhamdi proposed a similar scheme to SAB named Many-To-One
TCP (M21TCP) [201]. A new Maximum Congestion Window (MCW) TCP option
is defined and used instead of repurposing the window field of the TCP header.

End point and network cooperative, network interface layer mechanisms

The IEEE 802.3 Ethernet working group defined the PAUSE frame flow control
mechanism as part of the 802.3x Ethernet standard [202]. PAUSE frames allow
an Ethernet receiver to indiscriminately stop all communication originating from a
specified sender for a configurable period of time. Nagle et al. [84] notes Ethernet
flow control (PAUSE frames) could be used and Phanishayee et al. [106] explored
the idea. Both note that PAUSE frames pose significant issues in networks that do
not connect all nodes via a single switch due to trunk port head-of-line blocking.

The IEEE 802.1 Data Center Bridging Task Group defined the Priority Code
Point (PCP), QCN, and PFC mechanisms as part of the 802.1Q Ethernet standard
[203]. These mechanisms provide building blocks which can be used to construct
lossless Ethernet fabrics. PFC provides a finer granularity of control than standard
802.3x PAUSE frames by targeting a particular PCP class. QCN provides a means
for network devices to advise senders of graduated congestion at queues and thereby
influence the sending rate to curtail the congestion.

A number of proposals were discussed during the 802.1Q congestion notifica-
tion standardisation process. The initial Backward Congestion Notification (BCN)
proposal [204] eventually morphed into QCN which was ultimately adopted. Jiang
et al. and So-In et al. proposed Forward Explicit Congestion Notification (FECN)
[205] and Enhanced FECN (E-FECN) [206].

Devkota and Reddy explored QCN performance in TCP incast scenarios and
proposed changes to QCN’s congestion point sampling and reaction point rate adap-
tation [114].

Kabbani et al. improved the convergence to fairness speed of QCN with Ap-
proximately Fair QCN (AF-QCN) [207]. Zhang and Ansari proposed an alternate
scheme to improve the fairness of QCN named Fair QCN (FQCN) [208].

Shimonishi et al. proposed Ethernet with Flow Label (EFL) [209], which aug-
ments Ethernet to make it function as a reliable, delay-based, congestion-controlled
transport in its own right. The scheme is discussed in the context of tunneling
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PCI-Express over very short distance Ethernets, but would in theory be capable of
carrying regular IP packets.

Rajanna et al. proposed XCo [210, 211], an oracle-based flow scheduling scheme.
Local coordinators running on each host react to transmission directives issued by a
central controller during periods of congestion, and limit IP-level (i.e. host-to-host)
flows in the requested manner.

Vattikonda et al. developed an oracle-based Time Division Multiple Access
(TDMA) “fabric manager” to coordinate data centre Ethernet fabrics [212]. The
Ethernet PFC [203] mechanism is coopted for signalling slot start and stop times to
hosts based on the host requirements communicated to the fabric manager.

Grosvenor et al. combined sender-side rate control together with IEEE 802.1Q
Priority Code Points (PCPs) [203] to create qJump [178]. By inversely coupling rate
with the PCP priority enforced at network devices, applications are able to trade
throughput for latency. The scheme also applies intelligence to the rate limiting
of each qJump level, by admitting packets to the network based on the network’s
intrinsic transmission rate and forwarding delay, or “network epoch”. This imposes
a single packet limit on each host’s contribution to each priority of network queue
during each epoch.

End point and network cooperative, cross-layer mechanisms

Alizadeh et al. devised an ECN-based congestion control modification to TCP named
DCTCP [5, 213]. All network switches are configured to ECN mark IP packets
when local queue occupancy exceeds a fixed threshold. The sender then uses the
proportion of marks reflected back to it by the receiver to infer the level of congestion
and thereby reduce its congestion window in a proportional manner.

Motivated by some perceived implementation shortcomings with DCTCP, Stew-
art et al. developed Data Center Congestion Control (DCCC) and Dynamic DCCC
for SCTP [214]. DCCC uses the fundamental DCTCP insight of window reduction
based on the proportion of ECN marks, but takes advantage of SCTP’s richer sup-
port for ECN to simplify the end-host implementation. Dynamic DCCC switches
from regular ECN backoff to DCCC proportional backoff if the stream’s RTT is
below 1.1ms.

Das and Sivalingam proposed throughput-seeking incremental modifications to
DCTCP and named the result Throughput DCTCP (TDCTCP) [215]. The sender
side congestion avoidance window increase was made variable based on α and larger
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to more aggressively seek throughput. TDCTCP also adds heuristics related to
delayed ACKs to further improve throughput. On the sender side, α is reset if a
delayed ACK timeout is incurred to avoid stale congestion information potentially
hampering throughput. On the receiver side, the delayed ACK timeout is changed
to a dynamic quantity based on the flow’s segment arrival rate.

Chen et al. replaced DCTCP’s single queue marking threshold at switches with
two thresholds to create Double-Threshold DCTCP (DT-DCTCP) [216]. DCTCP
was observed to induce queue oscillation in large fan-in scenarios, which was at-
tributed to its single queue marking threshold. DT-DCTCP uses a lower threshold
above which to start marking packets, and a higher threshold below which to stop
marking packets.

Hwang and Yoo developed the Fine-grained and Scalable TCP (FaST) scheme
[217]. FaST combines the DCTCP ECN marking threshold and accounting concepts
together with variable segment sizing. Supporting congestion windows below one
MSS increases the amount of concurrent fan-in that can be reliably controlled by
the scheme.

Xia et al. created the Packet Drop Notification (PDN) scheme [218]. Switches
collect the five-tuple, size and TCP sequence number of dropped packets in a PDN
record and enqueue records in a side queue associated with the sender’s port. PDNs
are then piggy backed on the end of Ethernet frames destined for the sender which
can use the information to trigger a fast retransmit.

Zats et al. also developed a drop notification scheme, named FastLane [219].
FastLane generates notifications in the data plane as stand alone packets with the
same transport header, which are then returned to the sender’s IP address. Sender-
side modifications to TCP and pFabric to better utilise the drop notifications were
also proposed.

Huang and Hu proposed modifications to improve DCTCP’s responsiveness to
loss, calling the new scheme Enhanced DCTCP (E-DCTCP) [220]. E-DCTCP
changes network devices to specially mark and return-to-sender packets that would
have been dropped due to congestion. In response to returned packets, senders ex-
ecute a randomised binary exponential backoff retransmission algorithm to avoid
synchronising retransmissions with other potentially affected senders.

Miao et al. took a different approach to FaST with DCTCP+ [177]. Under
high fan-in scenarios, the congestion window will reach the minimum non-zero lower
bound which may still allow too high a transmission rate to effectively control con-
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gestion. DCTCP+ addresses this by employing packet pacing with randomisation to
both achieve the required average rate and avoid synchronisation with other senders.

Judd proposed a minor change to DCTCP which they also named DCTCP+
[109]. The change was derived from operational experience difficulties encountered
while trying to deploy DCTCP in a production data centre. They showed that
DCTCP does not cooexist well with regular TCP and segregated both from one
another using DSCP marking and separate network device queues. They also found
that not having ECT set on SYN packets resulted in connections often failing to es-
tablish in a timely manner. DCTCP+ proposed setting ECT on both SYN and SYN-
ACK segments to overcome them being preferentially dropped at network queues
when the occupancy was above the ECN marking threshold.

Kato et al. proposed One-sided DCTCP (ODCTCP) and other improvements
to DCTCP [222, 221]. ODCTCP calls for minor send and receive side DCTCP
changes to avoid performance issues when DCTCP is only available on one side of
a connection. Improvements to ECE processing and α initialisation/calculation are
also detailed.

Sreekumari et al. based NewDCTCP on DCTCP, but modified the switch ECN
marking paradigm and sender-side window calculations [223]. NewDCTCP calls for
switches to employ the “mark-front” ECN marking strategy [224]. It also modifies
the DCTCP sender-side α and congestion window calculations to be more conser-
vative when more marked than unmarked ACKs are received.

Wilson et al. proposed Deadline-Driven Delivery (D3) [225], a transport protocol
in the same vein as RCP [226] but which is data centre focused and deadline-aware.
Applications, hosts and network elements proactively exchange rate-control infor-
mation and enact rate limiting to optimise the fraction of flows which meet their
deadline.

Vamanan et al. further developed the notion of deadline-aware transports with
Deadline-Aware Datacentre TCP (D2TCP) [227], but without the deployment barri-
ers inherent withD3. D2TCP is based on DCTCP, and integrates deadline awareness
by weighting the window reduction adjustment based on the application-specified
deadline.

Hong et al. proposed the distributed, deadline aware Preemptive Distributed
Quick (PDQ) flow scheduling protocol [228]. PDQ is a reliable, connection-oriented
transport protocol that explicitly involves the network by way of cooperatively
shared fields in the PDQ header. Network devices prioritise flows based on network
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policy and the end host supplied PDQ header information. They also feedback rate
control information to senders in the PDQ header of ACKs. Applications option-
ally supply deadline information which influences the prioritisation and allocation
of resources at network devices.

Zats et al. created a data centre optimised stack named DeTail [229]. A PFC-
based lossless link layer is combined with congestion-aware shortest path packet
routing, ECN marking, a simplified TCP resilient to packet reordering, and appli-
cation specified flow priorities.

Alizadeh et al. developed a minimalist, priority-based data centre fabric named
pFabric [230, 231]. End hosts mark packets with an independently and locally deter-
mined priority, which network devices use as the sole basis for scheduling and drop
decisions. Although compatible with standard transports, a cut down TCP variant
is proposed for use with pFabric. It eschews many of the standard TCP heuristics
and algorithms in favour of a simplistic rate control mechanism that operates at line
rate except when reacting to chronic congestion events.

Chen et al. drew inspiration from deadline aware, FCT optimising proposals such
as D2TCP, PDQ and pFabric to create MCP [232]. MCP relies on DCTCP-like ECN
marking, deadline awareness and average packet delay measurements to determine
appropriate per-flow rates. It is implemented as a sender-side TCP window update
function.

Munir et al. proposed the Low Latency Data Center Transport (L2DCT) FCT
minimisation transport protocol [233]. L2DCT is based on TCP and approximates
the Least Attained Service scheduling discipline in order to acheive a reduction in
completion times for short flows. L2DCT modulates the sender congestion win-
dow based on estimated flow size and DCTCP-like ECN congestion feedback, with
smaller flows receiving larger window allocations.

Munir et al. also proposed Router Assisted Capacity Sharing (RACS) to min-
imise average FCT [234]. RACS senders initiate rate probing at least once per RTT
by attaching a rate request header with flow weight to an outbound packet. Net-
work devices locally compute stateless weighted flow rate assignments based on the
number and cumulative weight of flows, and update the rate request hop-by-hop
with the lowest path rate. RACS receivers echo the information back to senders to
update their sending rate.

Munir et al. deconstructed prior work into three key transport strategies and
using them, formulated the Prioritization, Arbitration, and Self-adjusting Endpoints
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(PASE) scheme [235]. PASE utilises network abitrators doing coarse timescale inter-
flow prioritisation, end hosts independently probing for network capacity, and in-
network per-packet prioritisation at sub-RTT timescales. Per-flow arbitration to
determine a reference rate and network priority is performed in concert with the
path’s control plane. The end host transport adjusts the congestion window of its
flows per the assigned reference rate, priority and DCTCP-based network congestion
feedback. A RTO recovery and packet ordering mechanism is employed to avoid
spurious retransmissions when service starvation or priority changes occur.

Bai et al. created the Practical Information-Agnostic flow Scheduling (PIAS)
scheme to minimise average FCT [236]. PIAS combines host-based, flow size de-
termined priority marking and DCTCP-based rate control together with priority
queuing and DCTCP-based ECN marking at switches. The spurious retransmission
avoidance mechanism described in [235] is also utilised.

Ding and Rojas-Cessa proposed the Deadline-Aware Queue (DAQ) flow schedul-
ing scheme [237]. DAQ uses a hop-by-hop credit-based flow control scheme together
with priority queuing and weighted round robin scheduling at switches to provide
flow size and deadline prioritised service. Network devices assign credits to senders
by manipulating the TCP header’s advertised window.

Xu et al. proposed Receiver-oriented Datacenter TCP (RDTCP) [238]. RDTCP
blends ICTCP-like receiver side advertised window manipulation together with flow
priority information and DCTCP-like ECN marking to determine the receive window
allocated to each flow.

Tam et al. proposed a switch-assisted flow admission control scheme [164]. TCP
packets with the SYN flag set cause the switch to perform a queue projection based
on the initial window burst that would proceed connection establishment. If the
projection indicates the queue would overflow, the SYN packet is ECN marked to
convey the prediction to the end hosts which can then elect to defer connection
establishment.

Fang et al. defined Multiple-congestion-points TCP (MTCP) together with a few
variations thereof [239]. The scheme repurposes the two bit IP header ECN field as
an accumulator, requiring congested devices along the path to increment the field
by one up to the maximum value of four. The count, or an average if not exchanging
packets one-for-one, is then returned to the sender in the ACK’s two bit TCP header
ECN field. The congestion window is then adjusted in a manner similar to DCTCP.

Zhang et al. combined the DCTCP ECN marking threshold and accounting
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concepts together with delay-based congestion control to create TCP-FITDC [240].
RTT measurements made during a given RTT period are grouped based on the ECE
value of the ACK used to make the measurement. The averages of RTTs measured
using marked and unmarked packets are then used as the basis for delay-based
congestion window adjustments.

Shukla et al. developed TCP Packet Labelling to Alleviate Time-Out (PLATO)
[241]. PLATO seeks to increase the number of opportunities for TCP’s fast retrans-
mit/fast recovery mechanisms to fully recover from losses, thereby reducing the
number of damaging RTO events. The scheme involves end hosts applying DSCP
marking to strategically selected packets which network devices must preferentially
avoid dropping during congestion. PLATO is able to reduce the likelihood of tail
drops and other situations that typically require a RTO to recover from.

Huang et al. proposed the Packet Slicing (PS) scheme [242]. PS relies on the net-
work dynamically calculating the optimal packet size based on fan-in and through-
put. The packet size is then communicated to senders using Internet Control Mes-
sage Protocol (ICMP) “Destination Unreachable” messages as defined for Path MTU
Discovery (PMTUD) [243].

Guo et al. explored in-network aggregation schemes that utilise intermediary
hosts and/or network devices to reduce fan-in at the ultimate end host [244].

3.2 TCP RTT Measurement Literature

A small body of work exploring modifications to TCP’s RTT measurement machin-
ery has been undertaken post RFC 1323 and the introduction of the TCP timestamp
option [35].

Vasudevan et al. proposed changing the defacto standard 1ms timestamp option
tick granularity on the sender-side to microseconds to alleviate TCP incast con-
gestion collapse [6]. Increasing the resolution of the timestamp clock and using it
as the source for outgoing TSval field values allows microsecond granularity RTT
measurements to be made. The RTO interval derived from the RTT measurements
therefore directly benefits from the better resolution if RTOmin is set appropriately.

Scheffenegger et al. proposed a scheme for negotiating a set of extended times-
tamp option based capabilities [245], and a complementary time interval encoding
scheme [246]. The negotiation scheme proposes exchanging signalling during the
TCP handshake to agree on timestamp option field semantics for the duration of
the connection. A 16-bit timestamp clock interval field is included in the signalling,
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which uses the interval encoding scheme from [246] to convey intervals from ap-
proximately 16s down to 3.64ps. By exchanging this information, the peers (and
devices along the path) can interpret each other’s TSval field values and use them
for enhanced measurement, algorithmic and other purposes.

Hayes developed the sender-side Enhanced RTT (ERTT) FreeBSD kernel-based
TCP RTT measurement scheme [247]. ERTT was developed primarily in support
of delay-based congestion control, which requires more measurement accuracy than
the stack’s SRTT estimate provides. ERTT maintains a list of metadata associated
with in-flight data, which it pairs with returning ACKs to produce raw, unsmoothed
millisecond resolution RTT measurements.

Mittal et al. leveraged hardware assisted time stamping in their TIMELY scheme
to achieve microsecond granularity RTT measurements [176]. The scheme is notion-
ally transport agnostic, but the reality is that the Network Interface Card (NIC) has
to understand the transport protocol semantics in order to perform measurements.
These measurements could be passed up to TCP for computing SRTT, RTTVAR
and the RTO interval, but the scheme intentionally excludes end host processing
delay and does not work for bidirectional data transfer. Whether these issues would
be overly problematic for RTO interval calculation are not immediately obvious and
would require detailed investigation.

3.3 Experimental Tools and Methodologies for Network
Protocol Validation at Scale Literature

The ns-2 [92], ns-3 [93, 91], OMNeT++ [94, 95], OMNEST [96] and Riverbed (for-
merly OPNET) Modeler [97] discrete event network simulators discussed in 2.7 all
provide idealised models of key network protocols that are modifiable. These sim-
ulators scale based on simulation complexity and the available compute/memory
resources.

Jansen developed the Network Simulation Cradle (NSC) to allow real-world com-
modity network stacks to be integrated into ns-2, and was later ported to ns-3 and
OMNeT++ as well [248]. NSC facilitates transport protocol research using real-
world code bases at simulation scale by rerouting transport-layer operations via the
NSC-abstracted network stack. The “globaliser” mechanism used to isolate per-host
network stack data puts downward pressure on the maximum practical number of
NSC host nodes in a simulation. The design of the stack ports distributed with NSC
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also makes it impractical to maintain them in relation to the upstream code bases
which are a constantly moving target.

Lacage developed the Direct Code Execution (DCE) framework for ns-3, which
integrates real-world POSIX applications and the Linux network stack with simu-
lated hosts [249, 250]. DCE effectively replaces everything above the simulated net-
work interface of DCE host nodes with real-world code. Tazaki et al. contributed the
DCE Cradle, which wraps the DCE network stack in such a way that internal ns-3
application models can use it [251]. This offers a choice between real and modelled
application workloads, with the former trading scalability for realism compared to
vice versa for the latter.

Kliazovich et al. developed the ns-2 based GreenCloud simulator [252]. Green-
Cloud is focused on energy consumption for cloud computing data centres rather
than network and protocol specific issues. The similarly focused but OMNeT++
based CloudNetSim++ was developed by Malik et al. and relies on the existing
OMNeT++ code base for network and protocol level functionality [253].

Birke et al. described modifications to the Venus simulation environment [254] to
create a suitable base for their data centre focused research [189]. They modelled a
10 Gbps commodity lossy Ethernet fabric for the network and ported the FreeBSD
9 TCP stack into Venus to provide realistic TCP behaviour. They developed a
trace-based synthetic partition/aggregate application workload generator which ran
across their sub-hundred node topology.

Zec and Mikuc developed the FreeBSD-based Integrated Multiprotocol Net-
work Emulator/Simulator (IMUNES) [86, 255]. Unlike discrete event simulation
approaches, IMUNES uses a light-weight operating system virtualisation approach
to create virtual nodes that can be arbitrarily linked together. Nodes therefore
run real-world code, communicate in real-time using fully formed connections, and
links can be manipulated to emulate various characteristics such as delay. Puljiz
and Mikuc further increased the scalability of IMUNES by extending it to run dis-
tributed across a cluster [256]. Scalability on the order of thousands of nodes was
documented.

Hibler et al. described the FreeBSD-based Emulab open-access virtualised net-
work testbed [257]. Emulab’s fundamental architecture is very similar to the en-
hanced IMUNES described by Puljiz and Mikuc, but its open-access goal and dis-
tributed topology from the outset took its feature set in a somewhat different di-
rection to that of IMUNES. Scalability on the order of one thousand nodes was
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documented.
Lantz et al. developed Mininet to facilitate rapid prototyping and easy sharing

of ideas for large networks on a “single laptop” [sic] (i.e. single resource constrained
machine) [258]. Like IMUNES and Emulab, Mininet leverages light weight virtual-
isation techniques found in Linux to create virtual Ethernet-linked hosts to create
arbitrary, functional networks. It has a particular focus on SDN-based networks,
and scalability up to the thousand-host mark was documented.

Tan et al. developed the Field Programmable Gate Array (FPGA)-based
Datacenter-In-A-Box at LOw cost (DIABLO) warehouse-scale network simulator
[259]. DIABLO can comfortably scale to tens of thousands of nodes by using FPGAs
to accelerate the simulation of parameterised abstract models similar to those found
in discrete event simulators.

3.4 Research Directions

The review of existing literature reveals a wide range of analysis and approaches for
avoiding and/or mitigating incast related issues. Approaches are varied in mecha-
nism and the point(s) of insertion in the end-to-end communication path between
applications. The predominant analytical and experimental focus on metrics other
than application layer transaction completion times, and therefore user experience,
misses the forest for the trees. Experimental tools and methodologies for exploring
and validating approaches lack focus on the intersection between network protocols,
devices and hosts in representative scenarios.

Of the common themes present in the incast literature, there exists a clear ap-
petite for practical though imperfect approaches that target tail reduction of FCT
distributions. Keeping the forwarding plane as “dumb” as possible and avoiding
application customisation contributes towards practicality. Not being able to utilise
perfect knowledge about the end-to-end path therefore leads to a pragmatic desire –
adapting the transport protocol to the realities of best-effort Ethernet/IP networks
operating at cluster and data centre scale, speeds and latencies.

For TCP, adaptation requires overcoming the impedance mismatch between the
intrinsic properties of these networks and TCP’s ability to properly detect and react
to them. The foundational work of Vasudevan et al. articulates and explores a line of
inquiry that is complementary to other work and which this thesis ultimately follows
on from – equipping TCP with the ability to measure sub-millisecond end-to-end
path RTTs.
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4 CLUES: A Cluster Network Simulation Toolkit

Research and development of cluster-focused networking ideas presents a challenge
for those without comprehensive access to an operational cluster or data centre – an
uncommon luxury outside of large organisations and service providers. Simulation-
based approaches become an appealing option with which to bridge the gap between
small scale test bed experiments and the larger experiments required to validate
results at operational scale.

A non-trivial challenge with simulation is to ensure that relevant properties of
the system are captured in the models and interactions between them so as to make
experiments meaningful. Significant effort has been invested in open source network
simulator projects to develop sufficiently accurate models and provide mechanisms
to run production code in simulated experiments. These efforts improve the level of
realism and therefore relevance imparted to experiments and results. The CLUES
toolkit leverages this prior work and makes additional contributions which combine
to form a simulation environment for cluster computing and data centre network
research.

4.1 Architectural Overview of CLUES v1.0

The CLUES toolkit combines a discrete event network simulator, commodity open
source operating system network stack and new validated models. The benefits and
problems typically associated with simulation that were discussed in 2.7 also apply
to CLUES. The initial focus was incast congestion in support of the work required
to complete this thesis. However, the simulation environment is not specifically
tailored to this issue and can be extended as required to facilitate other research
topics.

A core goal of CLUES is to support the ability to develop ideas against the
production code base which can then be run without modification in the production
validation environment. Using the same code base simplifies calibration of the toolkit
and increases confidence that the calibrated toolkit captures sufficient realism to
ensure the results of simulated experiments are an accurate proxy for testbed results.
The network stack is the production code base of interest for transport protocol
development, and CLUES utilises the NSC framework to allow commodity network
stacks to be ported to the simulator and drive the machinations of simulated host
networking.
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Those interested in applications and overall system behaviour benefit from the
bug-for-bug compatible protocol implementations present in the network operating
systems running on production systems. Those interested in protocols gain a useful
tool for iterative prototyping and development – arbitrary network topologies and
characteristics can be trivially investigated, and code that normally runs in privi-
leged kernel mode where faults manifest as system crashes are no longer disruptive
to development. All users benefit from simplified calibration of the simulation and
testbed environments on account of results being more closely comparable.

However, CLUES is subject to a number of shortcomings with respect to the
realism of experimental results. The core simulator engine runs single threaded and
therefore a whole range of bugs and issues related to concurrency are not present in
simulated experiments. Specific hardware quirks and hardware/software interactions
are not captured in the models and NSC network stack ports (e.g., multiqueue
network adapters). Network nodes such as Ethernet switches and IP routers do not
run with or attempt to simulate bug-for-bug compatible hardware and software.

Despite these shortcomings, useful results can be obtained if experiments are
designed and results interpreted with an understanding of the implications of various
implementation details and caveats.

The primary CLUES building blocks are the ns-3 [93, 91] discrete event network
simulator, a new ns-3 Virtual Output Queuing (VOQ) Ethernet switch model, a
new ns-3 query-response application model for incast-specific synthetic workload
generation, the NSC framework [248] for external network stack integration, and
a “clean slate” NSC port of the FreeBSD network stack from the FreeBSD “head”
Subversion repository development branch.

4.1.1 ns-3

CLUES v1.0 leverages the ns-3 development branch4. Additional work from various
upstream sources which adds full-duplex operation to the CsmaNetDevice model5

and nanosecond resolution timestamp granularity to generated pcap trace files6 was
also integrated. CLUES leverages many of ns-3’s existing models (some with mod-
ifications), and introduces new models specific to cluster and data centre based
experimental simulation.

4Upstream revision http://code.nsnam.org/ns-3-dev/rev/ea99cd3b169c
5http://code.nsnam.org/tomh/ns-3-dev-csmafd
6http://code.nsnam.org/ns-3-dev/rev/471023dc0c7e
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Investigating incast in its pure form requires highly correlated network traffic
originating from multiple sources destined for a common end point. The effects of
incast congestion are felt more strongly by applications that require all incoming
data be received before a transaction can be completed (also known as a “barrier-
synchronised” workload). A query-response client-server application model was cre-
ated to act as a sequential barrier-synchronised workload generator for incast exper-
iments.

Queuing semantics, forwarding delays and even memory management schemes
also influence the dynamic behaviour associated with incast. A new VOQ Eth-
ernet switch model was created with relevant fundamental characteristics roughly
comparable to those of commodity data centre switches.

The modified and new models were combined into an incast-specific simulation
executable with which to conduct experiments.

4.1.2 NSC

CLUES v1.0 leverages the NSC v0.5.3 source code. Although the stack ports that
ship with NSC are outdated and of limited relevance now, the idea of sharing the
same network stack between simulated and hardware hosts retains significant merit.
For pragmatic reasons related to licencing, my expertise and the VNET virtualised
network stack feature, effort was directed towards modernising the FreeBSD port.

The way NSC is integrated with ns-3 is convoluted and far from ideal. The NSC
stack and API is wrapped in C++ classes that slot into the ns-3 transport and socket
layers, sandwiched between ns-3’s IP layer and higher level socket abstraction. The
fully formed IP packets required by the bottom part of the NSC stack have to be
manipulated to add or remove the IP header for packets going to or coming from the
stack. The ns-3 NSC socket wrapper abstraction is not properly integrated with the
underlying NSC stack, containing class data and methods which are disconnected
from the actual state maintained in the NSC stack’s socket object. Event signalling
between the NSC stack and ns-3 is unnecessarily expensive and not well aligned
with the needs of modern OS stacks.

Despite these and other shortcomings, the integration works sufficiently well if
care is taken to understand the implications of the various implementation caveats.
Some improvements detailed in 4.4 were made in support of this thesis, but much
future work to further improve the integration is possible.
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4.1.3 FreeBSD and VNET

A “clean slate” port based on FreeBSD-CURRENT7 was completed after studying
the existing FreeBSD 5.3 based NSC port in detail. Basing the port on FreeBSD-
CURRENT allows work to be easily kept up to date with upstream FreeBSD devel-
opment. It also makes creating ports for STABLE and RELEASE branches trivial.
Work targeted for inclusion in upstream FreeBSD can therefore be developed against
the Subversion “head” branch as required for merging upstream. It can also be tested
against STABLE and RELEASE stack ports to obtain results with the stack used
in production.

4.2 A Barrier-Synchronised Workload Generator for
CLUES

The new CLUES ns-3 QueryResponseApplication model implements a TCP-based
barrier-synchronised synthetic workload. Every ns-3 host the application is installed
on can function as both a querier and responder simultaneously. All hosts are passive
responders by default, listening on a configurable port for unsolicited queries to
respond to. Queriers are implicitly configured when a QueryResponseApplication
instance’s AddResponder() method is invoked to add the address of a responder to
query during the experiment. The model offers the configuration options detailed
in Table 2.

ListenSockAddr Address/port to bind the listen socket to

NumQueries Number of serialised back-to-back transactions to com-
plete

Protocol ns-3 TypeId of the protocol socket factory to use for
socket creation

QuerySize A RandomVariableStream configured to return the de-
sired distribution of query sizes

ResponseSize A RandomVariableStream configured to return the de-
sired distribution of response sizes

Table 2: ns-3 QueryResponseApplication model configuration options (inherited
options not listed).

7Last synced with upstream’s “head” branch at revision 287534 dated 2015-09-07.
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At the application’s configured virtual start time during the simulation:

• The listen socket is created, bound and set to LISTEN state, thus configuring
the host as a functional responder.

• For each responder address added using the instance’s AddResponder()
method, a new socket is created, bound and connection initiated to the re-
sponder peer.

• After all responder peer sockets have successfully connected, the instance will
commence the configured number of query-response transactions in a serialised
manner.

0 7 15 23 31

Sequence (64 bits)

Length (32 bits)

Data (variable)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 2: QueryResponseApplication query and response wire format.

Transactions consist of an identical fixed length query being sent to each con-
figured responder, and each responding in turn with a fixed length response. The
wire format is documented in Figure 2. The query payload consists of an unsigned
64-bit monotonically increasing sequence number, unsigned 32-bit length in bytes
which includes the size of the sequence and length fields, and zeroes as the data.
The response payload similarly consists of the unsigned 64-bit sequence number of
the query being responded to, an unsigned 32-bit data length, and zeroes as the
remainder. The querier tracks the difference between total expected and received
response bytes from each responder, and only when all responses have completed in
full is the next query issued. Figure 3 details the interactions between a querier and
two responders at the TCP flow level with a configured virtual start time of 100 ms.
The experiment utilised a 500 B query length and 2 responders returning a 10 kB
cumulative response over a 10 Gbps network.
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|Time | 10.0.0.1 | 10.0.0.3 |
| | | 10.0.0.2 | |
|0.100000000| SYN | | |Seq = 2832617061
| |(62086) ------------------> (4377) | |
|0.100000072| SYN | | |Seq = 2950880129
| |(14594) --------------------------------------> (4377) |
|0.100008785| SYN, ACK | | |Seq = 684244446 Ack = 2832617062
| |(62086) <------------------ (4377) | |
|0.100008785| ACK | | |Seq = 2832617062 Ack = 684244447
| |(62086) ------------------> (4377) | |
|0.100008857| SYN, ACK | | |Seq = 2664371816 Ack = 2950880130
| |(14594) <-------------------------------------- (4377) |
|0.100008857| ACK | | |Seq = 2950880130 Ack = 2664371817
| |(14594) --------------------------------------> (4377) |
|0.100008923| PSH, ACK - Len: 500 | |Seq = 2832617062 Ack = 684244447
| |(62086) ------------------> (4377) | |
|0.100009388| PSH, ACK - Len: 500 | |Seq = 2950880130 Ack = 2664371817
| |(14594) --------------------------------------> (4377) |
|0.100017545| ACK | | |Seq = 684244447 Ack = 2832617062
| |(62086) <------------------ (4377) | |
|0.100017617| ACK | | |Seq = 2664371817 Ack = 2950880130
| |(14594) <-------------------------------------- (4377) |
|0.100018483| ACK | | |Seq = 684244447 Ack = 2832617562
| |(62086) <------------------ (4377) | |
|0.100018948| ACK | | |Seq = 2664371817 Ack = 2950880630
| |(14594) <-------------------------------------- (4377) |
|0.100020865| ACK - Len: 1448 | |Seq = 684244447 Ack = 2832617562
| |(62086) <------------------ (4377) | |
|0.100020865| ACK | | |Seq = 2832617562 Ack = 684245895
| |(62086) ------------------> (4377) | |
|0.100022089| ACK - Len: 1448 | |Seq = 2664371817 Ack = 2950880630
| |(14594) <-------------------------------------- (4377) |
|0.100022089| ACK | | |Seq = 2950880630 Ack = 2664373265
| |(14594) --------------------------------------> (4377) |
|0.100023313| ACK - Len: 1448 | |Seq = 684245895 Ack = 2832617562
| |(62086) <------------------ (4377) | |
|0.100023313| ACK | | |Seq = 2832617562 Ack = 684247343
| |(62086) ------------------> (4377) | |
|0.100024537| ACK - Len: 1448 | |Seq = 2664373265 Ack = 2950880630
| |(14594) <-------------------------------------- (4377) |
|0.100024537| ACK | | |Seq = 2950880630 Ack = 2664374713
| |(14594) --------------------------------------> (4377) |
|0.100025761| ACK - Len: 1448 | |Seq = 684247343 Ack = 2832617562
| |(62086) <------------------ (4377) | |
|0.100025761| ACK | | |Seq = 2832617562 Ack = 684248791
| |(62086) ------------------> (4377) | |
|0.100026985| ACK - Len: 1448 | |Seq = 2664374713 Ack = 2950880630
| |(14594) <-------------------------------------- (4377) |
|0.100026985| ACK | | |Seq = 2950880630 Ack = 2664376161
| |(14594) --------------------------------------> (4377) |
|0.100027576| PSH, ACK - Len: 656 | |Seq = 684248791 Ack = 2832617562
| |(62086) <------------------ (4377) | |
|0.100027576| ACK | | |Seq = 2832617562 Ack = 684249447
| |(62086) ------------------> (4377) | |
|0.100028166| PSH, ACK - Len: 656 | |Seq = 2664376161 Ack = 2950880630
| |(14594) <-------------------------------------- (4377) |
|0.100028166| ACK | | |Seq = 2950880630 Ack = 2664376817
| |(14594) --------------------------------------> (4377) |

Figure 3: QueryResponseApplication TCP flow diagram as observed at the query
host.

No “think time” is currently simulated by responders in between receipt of a
query and commencing transmission of the response. Implementation would be
trivial, but determining an appropriate distribution less so and was beyond the
scope of work required for this thesis.
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4.3 A VOQ Ethernet Switch Model for CLUES

The CLUES VOQ Ethernet switch model is an almost complete rewrite of the
standard ns-3 BridgeNetDevice model. The forwarding logic was heavily modified,
while the Media Access Control (MAC) aspects of the model were not touched.
The key technical design choices to model buffers as fixed size cells, and backplane
latency as a fixed time interval added to frames after leaving the receive port’s
ingress VOQ, both stemmed from the prior work of Lincoln Dale8.

Mtu Maximum transmission unit supported by the switch
ports

EnableLearning MAC address learning

ExpirationTime Length of time a learned MAC address remains cached

RxQueueCellsPerPort Number of ingress VOQ cells

TxQueueCellsPerPort Number of egress FIFO queue cells

BytesPerCell Number of bytes per cell buffer

BackplaneLatency Time delay added to frames on forwarding from ingress
VOQ to egress queue

TxQueueMgmtScheme Name of the queue management scheme used to deter-
mine when frames can be forwarded from ingress VOQ
to egress queue

Table 3: ns-3 BridgeNetDevice model configuration options.

The model offers the configuration options detailed in Table 3.
BridgeNetDevice groups a set of NetDevice objects to create a multi-port

bridge. The ingress receive hook of each port is set to the BridgeNetDevice
ReceiveFromDevice method, which is the entry point for packets to the bridge
control plane. Unhelpfully for the BridgeNetDevice use case, the NetDevice receive
hook passes the decapsulated packet. For the CsmaNetDevice (Ethernet port) ob-
jects used by the CLUES model, this means the bridge control plane sees IP packets
instead of Ethernet frames. Working around this wrinkle added some complexity to
the implementation that ideally should be improved.

The Queue model was modified to understand cells as a unit of buffer, and a
8Lincoln used ns-3 and a modified BridgeNetDevice model to conduct some proprietary research

for Arista Networks, Inc. and shared his code with me.
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 P2 VOQ  P1 VOQ
 P3 VOQ  P3 VOQ
 P4 VOQ  P4 VOQ
 B/cast VOQ  B/cast VOQ
 Default VOQ  Default VOQ
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Figure 4: High-level logical view of a four port CLUES switch.
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Figure 5: Key bridge machinations on receiving a 4-cell frame (F1) to be forwarded
out port 2 (P2), with 4 µs port-to-port forwarding delay configured.
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new MultiQueue model was created to underpin the VOQ functionality required for
the ingress queue. A MultiQueue instance functions as a set of drop-tail sub-queues
sharing a single resource limit configured in units of packets, bytes or cells. Sub-
queues are selected using an arbitrary Object pointer, with NULL used as the default
sub-queue. Figure 4 shows the logical view of a four port CLUES switch and Figure
5 shows the key steps involved in forwarding a frame.

The CsmaNetDevice model was altered to add a receive queue and enqueue to
it on ingress. Host nodes enqueue and immediately dequeue so are not materially
affected by the change. A switch node sets the receive queue for its CsmaNetDevice
instances to the new MultiQueue model and enqueues received frames in the de-
fault sub-queue prior to decapsulation and calling the receive hook. If successfully
enqueued in the default sub-queue, sufficient space exists to receive the frame and
therefore receive hook processing will continue.

After determining that the received frame does need to be forwarded to one
or more egress ports, ReceiveFromDevice perpetrates a gross layering violation
to implement the VOQ functionality. The frame enqueued by CsmaNetDevice is
dequeued from the default sub-queue and immediately enqueued again, but this
time using the egress port’s NetDevice pointer as the sub-queue address. The overall
ingress queue occupancy remains the same after this shuffle, but the frame is now
logically queued per its target egress port.

Efficient handling of broadcast frames posed a special challenge, which was ad-
dressed by designating the ingress port’s NetDevice pointer as the broadcast sub-
queue address. This works because an ingress queue should never legitimately need
to queue frames for transmission out the same port they were received on.

With the frame correctly ingress queued, the bridge scheduler is invoked using
the BridgeScheduler method. The scheduler implements the logic responsible for
forwarding frames from ingress queues to egress ports per the Figure 6 flow chart.
Every port is iterated as a candidate egress port, and for each, the appropriate VOQ
sub-queue of every other port’s ingress queue is serviced in a round-robin manner
until empty or the egress port’s forwarding limit is reached.

The scheduler maintains a persistent record of the ingress sub-queue to be ser-
viced first for each egress port at the next invocation, so that correct round-robin
servicing of VOQs is maintained. The design decision to restart scheduling from
the VOQ that failed to be serviced last time removes the opportunity for scheduling
starvation caused by other VOQs containing smaller frames. The trade off is that
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Start BridgeScheduler()

txPort = NextTxPort(txPort)

txPort == EOL rxPort = RestartRxPort(txPort)

ServiceVoq(rxPort, txPort)

RestartRxPort(txPort) = rxPort

Service Voq(rxPort, rxPort)

End BridgeScheduler()

rxPort = NextRxPort(rxPort)

AllVoqsServiced(txPort) &&
rxPort == RestartRxPort(txPort)

False

True

True

False

True

False

rxPort = NextRxPort(rxPort)

Figure 6: Bridge scheduler pseudo-code flow chart.

transmit opportunity across the “fabric” can be lost if a frame in another VOQ
could have been forwarded during the current invocation. The broadcast sub-queue
is serviced on more of a best-effort basis and does not influence the scheduling logic
if a broadcast frame fails to be serviced.

ServiceVoq() considers a VOQ successfully serviced if the queue is empty, or
the frame at the head of the queue was dequeued and forwarded across the
fabric to the egress port. Fabric control logic is implemented in the CanBe-
ginForwarding() method, which is a wrapper around the scheme selected using
the “TxQueueMgmtScheme” configuration option. Two schemes are implemented,
namely “cellcredit” and “oracle”.

The “cellcredit” scheme approximates the way commodity switches operate, by
treating the available egress queue cells as fabric admission control tokens. The
token count is decremented as frames are admitted to the fabric and incremented
as frames are dequeued at the egress port for transmission. Frames are admitted
only if the available token count equals or exceeds the number of frame cells. When
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selected, this scheme invokes the scheduler from the egress port’s dequeue callback
on commencing transmission of a frame i.e. after some tokens have been released.
The scheme does not exploit a range of information available to it, such as the fabric
forwarding latency. This can lead to lost transmission opportunity depending on the
balance between fabric forwarding latency, egress port transmission rate, queue size,
and queue occupancy.

The “oracle” scheme is an entirely different beast, (ab)using its access to various
simulated objects’ internals to perform a detailed queue projection. The scheme is
able to instantiate an optimal pipeline across the fabric that eliminates the potential
for transmission opportunity loss, unlike the “cellcredit” scheme. This scheme’s
ability to calculate precisely when a frame should leave the ingress VOQ allows it
to create a future simulator event to invoke the bridge scheduler at the correct time
for the frame to be forwarded.

4.4 A FreeBSD-based Virtualised Network Stack for
CLUES

The CLUES stack offers several notable improvements and contributions to NSC
and NSC-based simulations.

4.4.1 Port Layout

The port is structured to maximise ease of development, configuration flexibility
and maintainability. Upstream source code lives in the pristine port directory
as a virgin Subversion working copy, managed like any other FreeBSD source tree
working copy. Updating the upstream source files or expanding the port to include
additional source files is therefore a simple Subversion update operation without the
need for any complex merging and conflict resolution.

A small number of pristine files require some manipulation for the stack to be suc-
cessfully compiled, and this is achieved by preferencing the override port directory
in the compiler’s search path. Override files are therefore preferentially injected into
pristine files by the preprocessor, providing a cleanly separated means with which
to achieve the required manipulation.

FreeBSD kernel configuration influenced build files reside in the kernconf port
directory, grouped in such a way as to allow future flexibility to build different
“flavours” of stack using different kernel configurations.
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The glue port directory contains the support code required to interface the stack
with the NSC API, and emulate kernel infrastructure required by the upstream code
in pristine. Many of the glue source files require customised build configuration
on account of the subtleties inherent in realising this interface, and are special cased
by the build script for this reason.

Finally, the testharness directory contains a build target that links a test
harness executable against the stack library. The build script builds the test harness
immediately after the library to identify any linkage problems.

4.4.2 Modifications to NSC and its integration with ns-3

The NSC API and integration with ns-3 were modified for CLUES to address a
number of issues and opportunities identified during the porting work.

Reorganisation of callbacks

NSC provides a set of callback function pointers which are organised in a some-
what ad hoc manner, made worse by the callback changes detailed below. Callback
functions were reorganised into a new set of structs per Listing 1 to clearly group
callbacks that pertain to the library as a whole, an individual stack instance or an
individual socket instance respectively. The appropriate struct type is passed at
library initialisation, stack creation or socket creation time, with pointers set by the
simulator.

The FRandom callback was removed rather than migrated into
NscLib2SimCallbacks as it was unused and would likely require a different
definition if it were ever to be reinstated.

High-precision event-timer interface

Kernels have traditionally provided a fixed interval (“tick”) periodic wake up mech-
anism that kernel subsystems use to schedule events. Events from any source are
coalesced into the appropriate queue of future events scheduled n ticks from now.
Achieving sub-tick resolution is not possible, instead requiring that the tick rate be
increased to match the required interval resolution. Higher tick rates increase CPU
utilisation and system power consumption, potentially with minimal or no benefit
if the higher rate is only required sometimes or by a subsystem that is inactive.

Contemporary kernels tend to take advantage of the improved hardware timers
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# define CLOCK_MASK 0 x0000000F
# define FRAC_SHIFT 4
# define FRAC_MASK 0 x000000F0
# define FRAC_NS (1 << FRAC_SHIFT )
# define FRAC_US (2 << FRAC_SHIFT )
# define FRAC_BT (3 << FRAC_SHIFT )
# define FLAG_MASK 0 xFFFFFF00
# define FLAG_SHIFT 8
# define FLAG_INTERPOLATE (0 x01 << FLAG_SHIFT )

typedef void (* FEventFired )(void *);

struct NscLib2SimCallbacks {
virtual ˜ NscLib2SimCallbacks () {}
virtual void evsched_cb ( uint64_t when , uint32_t units ,

FEventFired func , void *ctx) = 0;
virtual void gettime_cb ( uint32_t flags , int64_t *sec , int64_t

*frac) = 0;
};

struct NscStack2SimCallbacks {
virtual ˜ NscStack2SimCallbacks () {}
virtual void iftx_cb (const void *data , int len) = 0;

};

struct NscSocket2SimCallbacks {
virtual ˜ NscSocket2SimCallbacks () {}
virtual void sosnd_cb () = 0;
virtual void sorcv_cb () = 0;

};

Listing 1: Revised NSC callbacks.

available in modern systems that allow them to run in a high-precision event-driven
rather than periodic wake up mode of operation. So called “tickless” mode kernels
allow kernel subsystems to specify with high-precision when they wish to wake up,
as well as how precisely the requested time needs to be honoured. This removes
the reliance on a system-wide periodic timer for event management, maintains the
ability to coalesce events, and better caters for high-precision requirements only
when needed.

NSC uses the traditional tick-based approach driven from the simulator’s event
loop. It therefore suffers from the associated interval resolution and computational
overhead issues as a result. NSC was adapted for CLUES by replacing the former
mechanism with the evsched_cb high-precision event-timer interface detailed in
Listing 1. The interface allows stacks to insert arbitrary callback function events
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into the simulator event loop some number of (nano|micro|milli)seconds into the
future, thereby allowing them to internally manage their own time keeping needs.

Socket upcalls

The NSC wakeup callback functions as a library-wide indiscriminate mechanism for
a stack to inform the simulator that a socket generated an upcall. By not providing
the simulator with the identity of the socket, the simulator was forced to check every
NSC socket associated with the stack for actionable changes.

NSC was adapted for CLUES by replacing the coarse wakeup callback with the
new NscSocket2SimCallbacks send and receive upcall callbacks detailed in Listing
1. Socket upcalls generated within the stack for a given socket now propagate all
the way up to the simulator’s corresponding NSC wrapper socket.

Improved time keeping integration

NSC provides the gettime callback function for stacks to query the simulator’s
virtual clock, returning the elapsed virtual run-time as seconds and microseconds.
The interface does not provide sufficient flexibility for a range of use cases including
the low latency simulation scenarios of interest for CLUES.

The interface and ns-3 implementation were completely redone for CLUES. The
interface was revised as gettime_cb together with the flags shown in Listing 1. The
new interface uses the same CLOCK_UPTIME and CLOCK_REALTIME defines from the
conceptually related POSIX clock_gettime API.

The new ns-3 implementation provides three key features. It can return fractional
seconds in a range of resolutions per the FRAC_ flags. It can return time adjusted
relative to the underlying system’s wall clock if CLOCK_REALTIME is specified. Fi-
nally, it can use the CPU’s Time Stamp Counter (TSC) to interpolate between step
increments of the virtual clock if FLAG_INTERPOLATE is specified.

The interpolation feature provides an option to fuzz the clock by amounts pro-
portional to the code execution time between clock reads, which can potentially
improve experimental realism. The improvement stems from introducing a source
of noise into clock reads, and avoiding quantisation effects associated with multiple
clock reads made between virtual clock increments all returning identical time.

The implementation guarantees that time will never go backwards by internally
latching the largest interpolated clock read returned, but would benefit from addi-
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tional refinement. It does not currently look forward in the event queue to determine
the interpolation upper bound. This makes it possible that the next step of the vir-
tual clock leaves the true virtual clock behind the previously returned interpolated
clock read. In this situation the implementation returns the latched interpolated
clock read to ensure time does not go backwards, but in so doing returns a clock
read ahead of where it should be at that time during the simulation.

Route insertion

On account of the NSC API’s choice to exchange fully formed IP packets between
stack and simulator, the stack’s routing table needs to have a route to every destina-
tion in order for it to emit packets. This is of course a trick played on the stack, given
that the simulator strips the IP header from the packet and prepends its own based
on its internal routing logic. To that end, NSC provides the add_default_gateway
function so that each stack instance’s routing table can be primed with the mini-
mal piece of configuration required to trick the stack. However, this mechanism is
insufficient for a range of statically routed topologies that require explicit routes in
addition to, or instead of, a default gateway.

virtual void add_default_gateway (const char *addr) = 0;
virtual void route (const char *dst , const char *mask , const char

*gw) = 0;

Listing 2: NSC routing table interface.

NSC was augmented with a simple route interface for CLUES per Listing 2. The
interface is functional but too restrictive, as it currently only accommodates addi-
tions to the routing table. However, it is underpinned by code that is capable of full
routing table manipulation including metrics, and the interface should be extended
to allow the full range of manipulations to be expressed. add_default_gateway
was retained for posterity even though route provides a superset of functionality.

ns-3 was augmented to use the new route interface in place of
add_default_gateway. The list of shortest prefix routes are computed for the
entire simulation topology by enumerating the ns-3 Ipv4GlobalRouting model in-
stance, and the list is then injected into the stack’s routing table using the route
interface.
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4.4.3 Port Internal Key Points of Interest

The port takes in a significant amount of FreeBSD kernel infrastructure in an effort
to maximise realism by minimising API emulation and modifications required to
pristine sources using the overrides mechanism. Synchronisation and scheduling
primitives, kthreads, sysctl, and the Universal Memory Allocator (UMA) are some
of the key pieces of infrastructure included, functioning almost entirely in their
upstream form.

64-bit

The stack is built with the 64-bit x86 Instruction Set Architecture (ISA) (FreeBSD’s
“amd64” architecture) and that is currently the only option. Care and attention were
given to the architecture of the build script to make supporting builds of different
architectures from the same code base possible with minor effort.

Library initialisation

The simulator calls nsc_init_lib after dynamically loading the stack library, and
this is used to trigger a mock kernel boot by calling freebsd_so_init.

Kernel modules

Code implemented as a FreeBSD kernel module works seamlessly when compiled
into the CLUES stack, functioning as if it had been loaded by the boot loader prior
to kernel start up. Support for dynamic modules implemented as separate shared
libraries does not currently exist, but could be added with minor effort.

Memory allocation

FreeBSD’s UMA slab allocator is used for most kernel code allocation requirements,
and is included in the port to provide complete similarity with real kernel allocations.
A mix of mmap/munmap and posix_memalign/free service the needs of UMA and a
small number of other kernel subsystems that utilise non-UMA sourced allocations.
Care has been taken to return allocations with the same alignment as real kernel
allocations.
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Stubs and globals

Functions which contain unrequired code and functionality but which are required
by name for linking the stack reside in glue/stubs.c. Stubs not called from any
actively used code paths explicitly terminate the application if invoked to aid with
debugging. Stubs known to be called from actively used code paths but which do not
need to perform their regular functions implemented in their upstream equivalents
are left empty, or return an appropriate value if required.

Global variables referenced by pristine code but defined in source files not in-
cluded in the port reside in glue/globals.c and are initialised to appropriate values
where required.

VNET

The stack’s integration of VNET with NSC allows an arbitrary number of stacks
to be dynamically instantiated at run-time, negating the need for NSC’s “glob-
aliser” tool [248]. Initialising a new stack instance allocates a 48b struct vnet
using FreeBSD’s vnet_alloc and stores a pointer in the stack’s vnetstack mem-
ber variable. The VNET allocation embeds in it a copy of the “vnet” linker set of
virtualised variables, which amounts to 16344b of memory per VNET and brings
the total memory footprint per VNET to 16392b for CLUES v1.0.

Integrating and utilising VNET in this way completely does away with the build
time, shared library size and fixed maximum number of stack instance limitations
associated with the “globaliser” [248]. Further memory and CPU utilisation scala-
bility improvements stem from the majority amount of infrastructure that is shared
between all VNETs. The indirection cost associated with VNET virtualised vari-
ables is on the same order as “globalised” variables, therefore making the use of
VNET an overall flexibility and scalability improvement.

Kernel thread emulation

The FreeBSD kernel utilises a number of permanent kthreads, scheduled periodically
or via an event trigger, to perform various important functions. Retaining the same
division of labour in the port was very desirable in order to maintain similarity of
operation with real kernels. Porting the “kthread” infrastructure to work in the sin-
gle threaded ns-3 context without preemption required some creative maneuvering.
I devised a run-to-completion model using regular pthreads to back each kthread,
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along with a custom “kernel scheduler” residing in glue/sched_nsc.c to manage
the scheme.

The unmodified pristine code creates kthreads and schedules them using
sched_add per normal. The scheduler maintains a list of one-to-one map-
pings between each kthread and its corresponding persistent pthread using a
struct pth2td. If sched_add finds an existing mapping for the kthread it sim-
ply returns. For a previously unscheduled kthread, it creates a new pthread and
mapping on demand, and starts the pthread in the scheduler’s pthread_entry func-
tion. Each new mapping also contains a condition variable cv and mutex cv_mtx
which are initialised and the mutex locked in pthread_entry prior to executing the
thread’s target function.

The target function runs and eventually calls, either directly or indirectly via a
low level kernel API, sched_switch to yield the CPU to the next runnable thread.
sched_switch signals the mapping’s cv using pthread_cond_signal (for reasons
to be explained shortly) and then quiesces the thread using pthread_cond_wait,
which unlocks cv_mtx and waits for a call to pthread_cond_signal from another
context to awaken it.

nsc_handleevents()

sched_tick()

Get next pth2td from list

ns-3 scheduler event

EOL?

pthread_mutex_lock(pth2td->cv_mtx)

pthread_cond_signal(pth2td->cv) pthread_cond_wait(pth2td->cv, pth2td->cv_mtx)

Do work, run to completion sched_switch()

pthread_cond_signal(pth2td->cv)pthread_cond_wait(pth2td->cv, pth2td->cv_mtx)

Wakeup

Wakeup

pthread_mutex_unlock(pth2td->cv_mtx)

ns-3 scheduler's pthread context
˄˄˄˄
˅˅˅˅

kthread's pthread context

False

Return

True

Figure 7: kthread emulation.
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Awakening quiesced threads is driven by the simulator executing callback events
that were previously scheduled by the stack using the evsched_cb NSC interface.
Figure 7 shows the key interactions.

The port indiscriminately uses nsc_handleevents as the callback function for
all stack scheduled events. It is modelled on FreeBSD’s handleevents, which drives
kernel machinations on receipt of hardware event timer interrupts. As one of its ac-
tions, nsc_handleevents calls sched_tick, which implements the final key aspect
of the kthread emulation scheme.

Executing in the context of the main simulator thread, sched_tick walks the list
of mappings and for each, acquires cv_mtx, signals cv using pthread_cond_signal
and then waits on cv using pthread_cond_wait. Each pthread awaiting reanima-
tion in sched_switch awakens on receiving the signal and runs to completion, again
returning to sched_switch. The cv signal from sched_switch triggers sched_tick
to progress through each mapping in the list. Note that at no point do multiple
threads execute concurrently in the stack as a result of this scheme’s implementation.
On return from sched_tick, all kthreads will have run to completion once.

The override files mechanism detailed earlier is used to redefine the curthread
macro in pcpu.h to return the result of the sched_getcurthread function.
sched_getcurthread uses pthread_self to find the struct pth2td associated
with the currently executing pthread. The FreeBSD kthread’s struct thread asso-
ciated with the found struct pth2td is then returned, thereby allowing the pristine
kernel code to remain oblivious to the implementation details.

The lack of concurrency is the single biggest issue affecting realism with the port.
An entire class of dynamic behaviours and bugs observable when running with con-
currency in a real kernel vanish in the CLUES stack. In theory a multi-threaded
ns-3 scheduler could be integrated into CLUES to address this issue and some rel-
evant prior work does exist [260]. However, it would be a significant undertaking
within ns-3 given the lack of attention to concurrency in the existing models and
infrastructure.

Another issue is that without preemption, the run to completion implementation
allows kthreads to complete an unbounded amount of work compared with normal
scheduling quanta in a real kernel. It also runs threads with potentially very different
scheduling intervals to those in a real kernel because NSC kthreads depend on the
frequency with which sched_tick is called. A number of possibilities exist as future
work to improve the realism of these aspects of the kthread emulation scheme.
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4.5 Piecing Everything Together

The CLUES v1.0 “incast” simulation serves as a practical instantiation of how to
use the CLUES components to investigate a data centre specific issue. Per Figure
8, a cluster of host nodes consisting of a single designated querier and one or more
responders is connected in a star topology using full-duplex switched Ethernet via a
central VOQ switch node. Host nodes run the NSC FreeBSD-based TCP stack and
query-response application to generate a barrier-synchronised TCP workload, each
in accordance with its role.

Querier

Responder #1 Responder #n

Switch

Figure 8: Topology created by the “incast” simulation.

The key ns-3 models and high-level simplified groupings used in the simulation
are shown in Figure 9. Nodes predominantly function as logical containers for other
models. The CsmaChannel model forms the communications link between node
CsmaNetDevice models, simulating the experiment’s configured propagation delay
and transmission rate. The NSC library integration is primarily contained in the
NscTcpSocketImpl and NscTcpL4Protocol models, which interact with the library
(and vice versa) using the NSC API and callback function pointers. ns-3 applications
function similarly to regular network applications by using a Berkeley-sockets-like
API to send and receive data.

Leveraging the CLUES “incast” simulation as a suitable experimental base, let us
now turn our attention to investigating the characteristics and dynamics associated
with the TCP incast congestion phenomenon.
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Figure 9: Key models and simplified groupings used in the “incast” simulation.
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5 An Investigation of TCP Incast Congestion

The investigation begins with a discussion of the key operational aspects of TCP as
they relate to incast congestion. The general discussion is followed by enumeration
of the experimental methodology employed, and presentation of experimental results
together with associated analytical discussion.

5.1 General Discussion

A key difference between incast and regular congestion in statistically multiplexed
networks is that the application layer workload and communications strategy inher-
ently causes the correlation that leads to oversubscription. This fact is decoupled
from the underlying transport, which introduces its own complexities when dealing
with the effects of congestion like queue delay and packet loss.

The TCP throughput collapse pathology is well understood to be caused by the
loss of transmission opportunity associated with RTO events. As discussed in 2.4.2,
TCP intentionally calculates a conservative RTO interval per RFC 6298 and imposes
a minimum value, RTOmin. If a situation occurs that requires an RTO to recover
from, a sender will remain stalled until the retransmit timer fires.

With multiple concurrent senders in an incast communication scenario, other
senders could continue to make progress and keep the pipeline full during the RTO
stall. Depending on their send windows, they may or may not be able to fully
utilise the contended link during the stall, but this does not in and of itself lead to
aggregate throughput collapse. Rather, collapse occurs when either multiple senders
stall concurrently, or when a stall period far exceeds the intrinsic completion time
had no stall occurred. The former is often true due to the nature of incast congestion
interacting with switch queues, and the latter is also typically true due to TCP’s
RTOmin and 1 ms granularity RTT measurement resolution.

The likelihood of multiple senders stalling in parallel is high because switches
typically service queues of the same priority in round-robin fashion, which distributes
drops across senders. As the senders’ responses are correlated in time, a scenario
leading to a RTO for only one sender at a time is unlikely. This aggregate loss of
transmission opportunity is what can bring about aggregate throughput collapse.

The other mutually inclusive issue is the disparity between a path’s true and
measured RTT affecting the RTO interval calculation. RFC 6298 stipulates that
the RTO interval is calculated as RTO = max(RTOmin, SRTT + 4× RTTV AR),
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where SRTT and RTTVAR are weighted moving averages of the path RTT and
RTT variance respectively. RTOmin is specified as 1s, but many stacks make it
tunable and default it to a value on the order of tens or hundreds of milliseconds.
As discussed in 2.4.3, TCP implementations do not typically measure RTT with sub-
millisecond resolution. Therefore even if the RTOmin is lowered to 1 ms or below,
there is insufficient measurement resolution to compute a RTO interval below 1 ms.

For typical cluster and data centre networks with microsecond-scale path laten-
cies, the retransmit interval remains permanently stuck to the 1 ms floor instead
of adapting to the path. If a RTO is incurred with a 1 ms interval, the amount
of transmission opportunity loss increases together with transmission speed and/or
decreasing path latency. In isolation or in parallel across multiple senders, this also
results in underutilisation and throughput collapse.

A related side note – even though incast is predominantly discussed in the context
of high speed, low latency data centre networking, it does not depend on these
network characteristics in any existential sense. In fact, as long as responses are
correlated at timescales comparable to a network’s latency, the conditions exist for
incast to occur.

5.2 CLUES-based Experimental Methodology

The “incast” simulation detailed in 4.5 was used to conduct the experiments for
this investigation of incast congestion. A single experiment consists of two phases
shown in Figure 10: initialisation followed by experiment. The initialisation phase is
further divided into sub-phases corresponding to start up initialisation, which takes
place at time t=0, and pre-experiment initialisation, which takes place between time
t=0 and the beginning of the experiment phase at time t=100 ms.

The start up initialisation sub-phase is comprised of the listed steps. Link con-
figuration involves setting data rate and propagation delay. NIC configuration in-
volves setting queue type to drop tail and size to the maximum value so that queue
overflows only occur at the switch. VOQ switch configuration involves enabling fine-
grained per-port logging, and setting the MTU, queue buffer cell size, receive and
transmit queue size, port-to-port forwarding latency, and transmit queue manage-
ment scheme. Configuring NSC involves loading the desired library and setting it
as the stack on all host nodes. Configuring ping applications involves setting start
and stop time, and ping interval. Configuring query-response applications involves
setting start and stop time, number of queries, peer addresses, query and response
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Parse command line options

Create results data store
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remaining > 0?

Experiment complete

False

False

True

True

Initialisation Phase
t = 0 → 100ms
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Figure 10: Flow chart showing experiment phases.

sizes. Configuring host nodes involves enabling per-packet pcap and Statistical In-
formation For TCP Research (SIFTR) logging, and setting NSC stack sysctls.

The pre-experiment initialisation sub-phase consists of warming the switch’s FIB
and the Address Resolution Protocol (ARP) caches of all host nodes by way of each
responder pinging the querier node. A 5 ms interval is used with an 11 µs staggered
offset between responders (to avoid ARP incast!) until time t=20 ms i.e. responders
typically manage three echo request/reply exchanges during the 20 ms window. The
network is then allowed to fully quiesce until time t=100 ms, ready for the experiment
phase to begin.

Barring any explicitly noted exceptions, experiments were specified in terms of
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Variable Run-time configurable? Value Used

# query-response transactions Y (--queries) 1

# query bytes Y (--query-size) 500 B

# responders Y (--responders) mixed

# per-responder response bytes Y (--response-size) mixed

# switch RX VOQ cells Y (--rxqueue-cells) mixed

# switch TX cells Y (--txqueue-cells) 24

# switch bytes per cell Y (--bytespercell) 256 B

Switch forwarding latency Y (--backplane-latency) 4 µs

Switch TX queue management scheme Y (--txqmgmt) “oracle”

Ethernet speed Y (--link-speed) mixed

Link propagation delay Y (--link-propdelay) 134 ns

NSC library Y (--nsc-stack) “freebsd-head”

net.inet.tcp.nagledelay sysctl Y (--nagledelay) 0 (disabled)

net.inet.tcp.msl sysctl Y (--msl) 30 s

net.inet.tcp.sendspace sysctl N 1048576

net.inet.tcp.recvspace sysctl N 1048576

net.inet.tcp.delayed_ack sysctl N 0 (disabled)

Node MTU N 1500 B

Host node NIC (CsmaNetDevice) queue size N UINT MAX

Table 4: CLUES incast simulation experiment variables.

the variables documented in Table 4. The link propagation delay models Cat 6A
UTP cable which has a worst case propagation delay of 536 ns over 100 m [261],
or 134 ns over 25 m as modelled for the experiments. The NSC FreeBSD stack
configuration used default values except for the noted changes. TCP delayed ac-
knowledgments were disabled to maximise timeliness of feedback and avoid the need
to implement a mitigation technique for dealing with issues surrounding the delayed
acknowledgement timeout.

The NSC FreeBSD stack was patched as described below to facilitate research
into arbitrary timescale TCP behaviour, and the direct comparison between Chapter
5 and 6 experiments.

Stack variables related to RTT and RTT derivatives (e.g., RTO interval) had
their types changed to the sbintime_t data type. The underlying data type of a
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sbintime_t is int64_t i.e. a signed 64 bit integer, with the top 32 bits used to
store seconds and bottom 32 bits for fractions of a second. The minimum resolution
representable with this data type is therefore 1

232 s or approximately 233 ps. Code
associated with these variables was revised to function in terms of the new data
type, including a change to high resolution timers.

The stack’s RTOmin (including the historical net.inet.tcp.rexmit_slop fac-
tor) was removed, thereby allowing the RTO interval to fully adapt to the available
RTT measurement resolution. This made it possible to fully observe the effects of
RFC 6298 [262] RTO interval calculation for all experiment scenarios.

A sysctl to control the use of Nagle’s algorithm was added to avoid having to
implement the plumbing required to allow ns-3 applications to set the TCP_NODELAY
socket option.

Finally, the scheme proposed in Chapter 6 was present, but bypassed for Chapter
5 experiments by way of a sysctl master control switch.

5.3 Exploring Cause and Effect

Consider a query-response transaction between a single querier and responder. With
a non-blocking switch design and the querier connected at the same speed as the
responder (both common practice), there will be no contention for transmit band-
width towards the querier. The response ingress rate to the responder’s switch port
equals the egress rate from the querier’s switch port, and therefore no standing
queue would be built at the responder’s switch port VOQ.

Now consider a similar scenario with the only difference being that the querier
enlists two responders to answer the query, thus dividing the total amount of re-
sponse data equally between both responders. Even though the total amount of
data returned to the querier is the same, the responders return their portion in
parallel. From the switch’s perspective, the data arrives twice as fast as the single
responder scenario and the ingress rate is double that of egress. The contention for
transmit bandwidth towards the querier will therefore result in queue build up at
each responder’s switch port VOQ. If the imbalance between ingress and egress rates
is sustained long enough relative to the upper VOQ limit, the switch will experience
an incast congestion event resulting in packet loss.
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(c) 25 Gbps
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(d) 40 Gbps
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(f) 100 Gbps

Figure 11: Aggregate VOQ occupancy versus time over 1, 10, 25, 50 and 100 Gbps
networks.
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5.3.1 Queue Occupancy Versus Ethernet Transmission Speed

Figure 11 plots the aggregate occupancy of all responder switch port VOQs over
the course of a query-response transaction. The “lollipops” mark each experiment’s
application layer transaction completion time for clarity. Six different experiments
show two responders (nrsp) returning a combined total of 200 kB of response data
(totalrsp) over networks running at available data centre Ethernet speeds of 1, 10,
25, 40, 50 and 100 Gbps. All switch ports had 199 cells of VOQ buffering, which
was the minimum required to avoid any packet loss.

Each experiment demonstrates some amount of queue build up, confirming the
intuitive expectation that the incast phenomenon is not directly tied to network
transmission speed; as long as responses are correlated at timescales comparable to
a network’s latency, the conditions exist for incast to occur. An important note with
VOQ-style switch operation is that adding responders increases the effective queue
size given that each ingress port independently buffers frames. With 199 cells of
VOQ buffer per port, the aggregate number of frames which can be queued for a
specific egress port is 398 cells worth, which is the high water mark visible for both
the 1 Gbps and 10 Gbps experiments.

As network speed increases, the corresponding decrease in serialisation delay
decreases the intrinsic path latency. This translates at the application layer to
reduced query-response transaction completion times. The decreasing serialisation
delay also reduces the queue high water mark on account of the gaps in transmission
imposed by TCP’s windowed flow control. At 50 Gbps and 100 Gbps, the queue was
able to completely drain between each window of data.

The fixed number of responders for all experiments maintained a constant ratio
between the impulse and impulse response. This manifests as a consistent rate of
change in queue growth for all of the scenarios.

The remainder of this chapter will primarily focus on 10 Gbps and to a lesser
extent 100 Gbps networks, given the former’s prevalence in current commodity data
centres and latter’s emerging widespread availability.

5.3.2 Queue Occupancy Versus Number of Responders

Figure 12 also plots the aggregate VOQ occupancy over the course of a transaction,
but with a varied number of responders. Five different experiments are shown in
which the number of responders equally split 200 kB of response data between them
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Figure 12: Aggregate VOQ occupancy versus time for 1, 2, 4, 8 and 16 responders.

i.e. each responder returned 200 kB
nrsp

of response data. All nodes were connected to the
switch at 10 Gbps and all switch ports had 199 cells of VOQ buffering which was the
minimum required to avoid any packet loss. The nrsp = 2 data series corresponds
with Figure 11b.

As expected, increasing the number of responders increases the imbalance be-
tween ingress and egress rates, resulting in larger individual and aggregate VOQ
utilisation. The minor reductions in transaction completion time as the number of
responders increases is directly attributable to the additional parallelism. A small
amount of extra transmission opportunity is gained from the switch scheduler by
having more frames available earlier on during the transaction to fill the fabric for-
warding pipeline.

The change of gradient visible during the queue growth period of the nrsp =
{4|8} experiments marks the point at which the initial window burst is complete and
the responders transition to ACK-clocked slow start. For nrsp = 16, each responder
is returning 12.5 kB of data which entirely fits within the initial window burst size of
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14.5 kB. Consequently, this experiment exhibits a single gradient during the queue
growth period. Conversely, the initial window burst for nrsp = 2 is small enough
that after accounting for the switch forwarding pipeline, the initial window burst
negligibly contributes to queue growth. The queue growth period for this experiment
is instead dominated by ACK-clocked slow start, and therefore also exhibits a single
queue growth gradient.

5.3.3 Comparing the Impact of Loss Recovery Mechanisms

The deliberate choice of per-port VOQ buffer size for the experiments shown in Fig-
ure 12 matches the ingress queue high water mark for the chosen set of parameters.
The ingress queues were therefore a single cell away from an incast induced packet
loss. If the threshold is crossed and packet loss occurs, TCP’s ability to repair the
damage and limit the associated negative performance impact depends heavily on a
few important factors explored in Figure 13.
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The Figure 13 rxq = 199 data series corresponds with the nrsp = 2 data series
in Figure 12. By reducing the VOQ buffer size from 199 to 198 cells, a loss was
induced at the tail end of one of the responders’ data streams9. Figure 14 plots the
evolution of the TCP sequence space during the experiment to help visualise what
transpired.

100000 100200 100400 100600 100800 101000 101200

0
e
+

0
0

2
e
+

0
4

4
e
+

0
4

6
e
+

0
4

8
e
+

0
4

1
e
+

0
5

Time (µs)

T
C

P
 R

e
la

ti
ve

 S
e
q
u
e
n
c
e
 N

u
m

b
e
r

' ''
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
' '

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

+x

Responder <−> Querier TCP SEQ/ACK Numbers vs Time
totalrsp=200.0kB, nrsp=2, rxq=198cells, links=10Gbps

Colour Key

rsp=2

●

x
+
'

Rsp−>Qry
Rsp−>Qry Dropped
Rsp−>Qry Drop Rexmit
Qry−>Rsp ACK

Figure 14: TCP sequence/acknowledgement numbers versus time, observed at the
ingress switch port for the responder that experienced the RTO event.

Insufficient response data remained to be sent at the time of the loss, and the
responder therefore never received the three duplicate ACKs required to trigger a
fast retransmit of the lost packet. SACK was also of no use because no further
packets arrived at the querier after the loss occurred, so no hole was detected and
the querier only responded with cumulative partial ACKs up to the lost sequence
number. The responder remained deadlocked at this point and had to wait for a
RTO to trigger the retransmit that allowed the transaction to complete.

9Given that fine grained control of switch buffers is uncommon, it would have been more
realistic to induce loss by increasing the response length. However, keeping the baseline completion
time constant between experiments facilitates direct comparison and therefore simplifies discussion.
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Returning now to Figure 13, it may seem counter intuitive that the rxq = 179
experiment with a total of 7 lost packets completed its transaction in an appreciably
shorter period of time than the rxq = 198 single loss experiment. However Figure
15 provides useful insight to assist with the explanation.
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Figure 15: TCP sequence/acknowledgement numbers versus time, observed at the
ingress switch port for the second responder.

At the point of VOQ saturation, the round robin switch scheduler is effectively
causing every other packet sent by the responders to be dropped as it alternates
between servicing each VOQ. This is clearly visible as the pattern of 4 dropped
packets interspersed with 4 forwarded packets approximately 80 µs into the trans-
action. Unlike the single tail drop in Figure 14, the 4 forwarded packets after the
first loss each triggered a duplicate acknowledgement, which are visible as the zero
gradient portion of the ACK data series approximately 170 µs into the transaction.
The series of 4 duplicate ACKs met the threshold of 3 required to trigger a fast
retransmit and enter fast recovery.

Additionally, each of the 4 successfully forwarded post-loss packets allowed the
querier to infer the losses from the gaps in the sequence space of the arriving packets.
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The querier was therefore able to include SACK option data with each elicited
duplicate ACK, and this allowed the responder to perform multiple retransmits per
RTT during fast recovery. Without the SACK option data, the connection would
have had to rely on standard NewReno loss recovery which only allows a single
retransmit per RTT. Although the recovery process was quite involved and took 3
RTTs to complete, it was still an order of magnitude faster than relying on a RTO.

5.3.4 Measured Versus Path RTT
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Figure 16: TCP SRTT and RTO versus time for the responder that experienced the
RTO event.

TCP’s millisecond resolution timestamps impose a 1 ms floor on the measured
RTT, which by extension imposes the same floor on the RTO interval calculation.
Figure 16 provides detailed insight into the relevant TCP stack variables (by way
of SIFTR data) from the same experiment with a RTO shown in Figure 14. The
measured and full resolution SRTT and corresponding derived RTO intervals are
plotted up to the point in the experiment when the last cumulative partial ACK
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was received at the responder i.e. when the retransmit timer was armed for the final
time before the RTO.

Even though the true RTT experienced by TCP in this scenario is on the or-
der of tens of microseconds, the measured SRTT and calculated RTO interval have
insufficient resolution to adapt appropriately to the sub-millisecond latency path.
The retransmit timer is therefore armed with a 1 ms interval instead of the appro-
priate 126 µs interval, which results in the grossly inflated completion time for the
transaction seen in Figure 13.

If the path RTT were to continue increasing and approach the measurement
resolution floor, there would exist a crossover period during which the RTO interval
derived from the measured RTT would in fact be inappropriately short. This is
because the measurement resolution floor effectively quantises RTT variance to zero,
thereby nullifying the contribution of the 4 × RTTV AR term in the RTO interval
calculation. The RTO interval calculated for paths with true latency within the
range [rttfloor − 4×RTTV AR, rttfloor] will therefore be too short.
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(a) 100 µs RTT measurement resolution
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(b) 75 µs RTT measurement resolution

Figure 17: TCP SRTT and RTO versus time for the responder that experienced the
RTO event.

Figure 17 demonstrates this by comparing experiments with 100 µs and 75 µs
RTT measurement resolution floors that were otherwise identicial to Figure 16.
At 100 µs resolution shown in Figure 17a, the measured RTT still has insufficient
resolution to even partially track the true RTT. The RTO interval derived from
the measured RTT is therefore equal to the RTT on account of there being zero
variance. The result is that the retransmit timer is armed with a shorter interval
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than should be used.
However, had sufficient resolution been available to track the underlying changes

to the true RTT, a non-zero variance would have been computed. That in turn would
have armed the retransmit timer with the correct but longer interval. This is exactly
what is observed in Figure 17b, where sufficient resolution is available to track the
true RTT towards the end of the experiment. The RTO interval derived from the
measured RTT increases as soon as change is observed.

This analysis makes for a cautionary note that using a RTT measurement res-
olution that is only slightly too coarse with respect to the path RTT can cause an
inappropriately low RTO interval to be calculated accidentally. That in turn can
lead to spurious retransmissions and incorrect detection of same.
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Figure 18: TCP SRTT and RTO versus time for the responder that experienced
the RTO event, plotted up to the time of the last packet received before the timer
expired.

If instead the gap between true and measured RTT widens on account of shorter
path RTTs, the transmission opportunity loss and negative performance impact of
a RTO will increase. To show this concretely, Figure 18 plots SRTT and RTO
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responder TCP stack data for a single RTO event scenario similar to Figure 16,
but with a 100 Gbps network instead of 10 Gbps. The gap between appropriate
and used RTO intervals has increased to approximately 984 µs, or by approximately
110 µs relative to Figure 16. At 100 Gbps, a 984 µs RTO interval equates to 12.3 MB
of lost transmission opportunity.

5.3.5 A Cautionary Note on Nagle’s Algorithm

Figure 13 implicitly presents the rxq = 199 no loss experiment as a baseline against
which to compare the other two experiments. Verifying how good a baseline it
actually is provides an opportunity to briefly digress via a relevant point of discussion
related to TCP-based transactional workloads.
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Figure 19: TCP sequence/acknowledgement numbers versus time, observed at the
ingress switch port for the second responder. Nagle’s algorithm delays the final
response data packet by a RTT.

Figure 19 plots the evolution of the TCP sequence space for the baseline lossless
experiment from Figure 13 as the “nagle=0” data series, confirming that the exper-
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iment behaved as expected and is an appropriate baseline. However, this behaviour
is non default for commonly used TCP stacks, which for historical reasons attempt
to mitigate the so called “small-packet problem” [52] by employing what is com-
monly known as Nagle’s algorithm. The “nagle=1” data series is from an otherwise
identical experiment run with Nagle’s algorithm enabled as a cautionary note.

The point of interest with Nagle’s algorithm enabled is that the final data packet
sent by the responder is elicited by the querier’s final ACK in that train rather than
being sent together with the bulk of the response. This results in a transaction
completion time that is inflated by an extra RTT, which includes the delay caused
by the incast induced queue build up.

The 100 kB of response data returned by each responder is segmented into MSS
chunks of 1448 B for encapsulation and transmission, which equates to 69 MSS
segments and an 88 B remainder (a so called “small packet”). After the last MSS
segment is ACK-clocked out of the responder, all subsequent received ACKs trigger
the TCP send code which does not transmit the remainder on account of failing
the Nagle check for in-flight data. Only on receipt of the final ACK in that train is
snd una updated to equal snd max, which results in the calculation of zero in-flight
data and the transmission of the remainder.

5.3.6 A Macro-level Look At Transaction Completion Times

Having explored key factors related to the incast phenomenon and its impact, it
would be useful to gain some macro-level insight across a larger range of parameters.
Figure 20 presents the query-response transaction completion times for a large set of
experiments which varied the network speed, number of responders, per port VOQ
buffer size and response length. Given the prohibitive number of permutations to
produce a complete data set, larger than minimum variable step increments were
used. The resulting set of permutations were then subjected to selection criteria and
excluded if unlikely to be of interest. Variables took the following ranges, represented
as [start, end, step]:

• rsplen: [start=14480 (initial window), end=1035320, step=7240 (5 ×MSS)]
and [start=13042 (initial window −MSS + 10), end=1035330, step=7240]

• nrsp: [start=2, end=35, step=3]

• rxq: [start=12, end=1524, step=18]
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(a) 10 Gbps

Figure 20: Continued on next page.

• links: 10 Gbps and 100 Gbps

The range of response lengths covers transactions from tens of kB to tens of
MB in size, representing transactions for small, medium and large objects (e.g., web
response, sharded complex data, and sharded file on a storage cluster respectively).
The second range probes non integer multiples of the MSS to provide visibility
into any synchronisation effects that might exist with the VOQ buffer increment
size. The range of responders was capped at a value similar to those typically
discussed in existing literature [84, 6]. The VOQ buffer range with a cell size of
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Figure 20: Query-response transaction completion time versus total response length
for variable number of responders and per port VOQ buffers.

256 B encompasses 2 to 254 frames per port. Although the numbers are less than the
absolute buffer sizes found in many commodity data centre switches, the reasoning
was two-fold: to study the pure incast phenomenon without interference from cross
traffic or multiple transactions intrinsically requires less buffering, and investigating
the relationship between the variables also does not require any particular amount
of buffering. The range can be thought of as an exploration of buffer head room i.e.
regardless of the absolute size of a switch’s buffers, what happens when a transaction
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takes place with a certain amount of available space.
The selection criteria were designed to probe behaviour just prior to queue sat-

uration out to a reasonable way past queue saturation. To that end, a simplistic
queue projection was applied to each permutation of the four variables and the
permutation was rejected if any of the following tested true:

• The amount of response data returned by each responder fit completely within
the amount of VOQ buffer less one full sized frame (permutations matching
this criteria would all produce baseline lossless results and therefore contribute
minimal new information to the data set).

• The projected queue high water mark was less than the amount of VOQ buffer
less one full sized frame (similarly, permutations matching this criteria would
all produce baseline lossless results and therefore contribute minimal new in-
formation to the data set).

• The projected queue high water mark was greater than twice the amount
of VOQ buffer less one full sized frame (permutations matching this criteria
would overrun the queue by a substantial enough margin that the amount of
loss and associated impact on the transaction would render the experiment so
unlikely as to be of lesser interest).

The queue projection was conservative in its modelling and overestimated the
high water mark by a consistent margin to ensure the first two criteria did not
inadvertently reject experiments that were on the borderline of saturating the queue.
Of the total 581400 possible permutations, 426671 were excluded by the selection
criteria, resulting in a data set consisting of 154729 experiments.

Baseline completion times corresponding with lossless experiments form a lower
bound y-axis floor. The floor is primarily a function of the serialisation time for the
total response length, which manifests as the baseline exhibiting a positive gradient
with respect to total response length.

Four distinct tiers corresponding with the number of non-parallel RTO events
incurred during each experiment are clearly visible, each separated by the 1 ms RTO
floor. The larger gap between baseline and RTO experienced completion times at
100 Gbps account for the more distinct tiers in Figure 20b. Noise visible around the
baseline and each RTO tier is latency associated with losses being repaired by one
or more fast recovery episodes.
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Perhaps the most important observation relevant to the remainder of this thesis is
that there are numerous scenarios in which transactions can incur one or more RTO
events. As previously discussed, each RTO stalls the connection for significantly
longer than it would if RTT could be measured with sufficient resolution. Each
non-parallel RTO therefore compounds the lost transmission opportunity resulting
from the inappropriate RTO interval.

5.3.7 Transaction Completion Time Versus RTT Measurement Resolu-
tion
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Figure 21: Query-Response completion time versus RTT measurement floor.

So how much improvement would be possible for flows experiencing RTO events
if a single change was made – namely to increase the RTT measurement resolution
and thereby lower the calculated RTO interval? Figure 21 presents transaction
completion time as a function of RTT measurement resolution for single and double
non-parallel RTO scenarios at both 10 Gbps and 100 Gbps.

The gap in completion time between the baseline completion time line and single
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RTO event data points is equal to the RTO interval. The left points at 1000 µs reso-
lution correspond with the existing 1 ms resolution in use today. As RTT resolution
increases and the corresponding RTO interval is able to shrink to more appropriate
values, transaction completion times improve substantially. Moving from a 1 ms to
1 µs resolution improves the transaction completion times for the single RTO sce-
narios from 1251.0 µs to 322.5 µs at 10 Gbps and 1058.2 µs to 61.6 µs at 100 Gbps.
The same amount of improvement is observed for dual RTO scenarios as expected.
The absolute numbers and relative improvement vary predominantly with network
speed and total response length, but note that only speed is varied in Figure 21.

The counter-intuitive increase in completion times for the <100 µs 10 Gbps data
points relative to the 100 µs points is the practical consequence of the earlier dis-
cussion surrounding Figure 17. It is not particularly discernable from the plot,
but a minor increase also exists between the 100 Gbps 10 µs and 1 µs data points.
The shorter completion times correspond with experiments that resulted in mistak-
enly short RTO intervals being calculated because the path latency fell within the
[rttfloor − 4×RTTV AR, rttfloor] range.

These findings make a strong case for pursuing improvements to TCP’s RTT
measurement machinery to reduce the damage sustained by RTO events.
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6 Adapting TCP’s Control System for the Data
Centre

The CLUES-based TCP incast investigation leads us to the final contribution of
this thesis - defining and characterising a mechanism which minimises the impact
of incast events and complements other incast mitigation mechanisms.

The review of existing literature revealed a wide range of incast mitigation pro-
posals, each varied in their approach and point of insertion in the end-to-end com-
munication path between applications. As no practical scheme can utilise perfect
knowledge about the end-to-end path, we focus on adapting the transport proto-
col to the realities of best-effort IP networks operating at data centre speeds and
latencies. To that end, we mitigate the most undesirable effects of incast by de-
signing and implementing an adaptive, higher-resolution TCP control system that
ultimately improves responsiveness and goodput.

As described in 2.4, TCP’s control system is comprised of dynamic interactions
between explicit signaling, inferred feedback, timers and finite state machine tran-
sitions. Measured RTT is a fundamental control input affecting many of these
interactions either directly or indirectly. The error between true and measured RTT
therefore has critical implications for TCP in general, and particularly in the data
centre.

We know from the incast chapter that the loss patterns typically associated with
TCP incast congestion events can require repair via the RTO timer. It therefore
stands to reason that if we cannot eliminate RTO events, we should try to minimise
and bound their impact as much as possible.

6.1 Revisiting TCP’s RTT Measurement Machinery

Section 2.4.3 motivates our focus on improving TCP’s RTT measurement machin-
ery for data centres. By equipping TCP with the ability to accurately measure a
significantly wider spectrum of path latencies, we can improve both worst case and
variability of performance. An additional benefit is that for low-latency paths, mea-
sured RTT becomes a useful control input for non-core protocol mechanisms like
delay-based congestion control. Such mechanisms have the potential to yield even
greater performance and/or dynamic behaviour improvements.

Aspects of the RTT measurement machinery were reimagined in such a way as
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to maximise reuse without violating the various constraints codified in existing TCP
implementations. The intent was to yield a minimal modification that would be both
interoperable and incrementally deployable. The wide availability of the timestamp
option in TCP stacks coupled with its workable constraints and established use for
RTT measurement made it a design focal point.

6.1.1 Design Goals and Considerations

Before embarking on a discussion of possibilities, we must establish any constraints
and their degree of inviolability within the context of the stated goals and any other
relevant considerations.

Maintain comparable robustness

The PAWS mechanism, as specified and widely implemented, increases TCP’s ro-
bustness by reducing the opportunity for stream corruption. The MSL in concert
with the interplay between rate of increment of sequence numbers versus TSval
values affect the robustness improvement afforded by PAWS.

There is no clear cut guidance on bounds for MSL, but it is intuitively obvious
that a network’s true MSL is directly tied to the probability of stream corruption.
Consideration of MSL is therefore really about probability and risk management
rather than any sort of absolute correctness.

The MSL upper bound of 255 s referred to in RFC 1323 is based on the long-
irrelevant idea that the 8-bit IP Time To Live (TTL) field represents a value in units
of seconds. The field was to be decremented for each second the packet remained
in the network i.e. an IP packet should never (to a first approximation given that
propagation delays were likely ignored) arrive at its intended destination more than
255 s after it was sent.

In practice, IP routers decrement the TTL field by one on forwarding a packet,
without any concern for the packet’s length of stay i.e. there is no formally enforced
hard limit on the length of time a packet can remain actively forwarded within an
IP network.

Other choices for an MSL upper bound are similarly heuristic in nature. RFC
793 explicitly states that the 2 min MSL value referred to in the document was
arbitrarily chosen. The implementation reality is that operating systems often allow
operators to directly or indirectly set the notional TCP MSL. This provides a means
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to control the length of time connections linger in the TIME_WAIT state tying up
system resources. For some concrete numbers, both FreeBSD 11.0 and Linux 4.6
default to a 30 s TCP MSL.

The conclusion to be drawn is that MSL considerations do not impose any
strong requirements on potential RTT measurement schemes. Schemes which pro-
vide PAWS protection over longer MSL upper bounds would impart more robustness
and therefore be more desirable. Schemes which afford the operator some level of
control over the effective MSL interval, and consequently their appetite for risk of
stream corruption, would be more desirable still.

There are two primary robustness related considerations regarding the interplay
between rate of increment of sequence numbers versus TSval values. The TSval field
should not:

• increment too slowly such that the sequence number can wrap within an in-
crement interval

• increment too quickly such that the TSval field value and sequence number
can wrap within a similar period of time that is less than the notional MSL
interval

Both cases would render a receiver’s PAWS checks helpless to prevent stream
corruption.

Interoperability

Interoperability imposes a requirement not to change the TCP header or timestamp
option wire format. It also requires that any changes to the TSval field semantics do
not materially alter an unmodified receiver’s processing of segments from a modified
sender. The latter hinges on RFC 1323’s PAWS related pronouncements and their
associated implementation in conformant TCP stacks. Specifically, the function
or mechanism used to derive TSval field values must allow receivers to determine
relative segment order (i.e. maintain the RFC 1323 requirement that the field never
goes backwards except when wrapping). It must also be compatible with the PAWS
idle time failure mode mitigation logic (or if incompatible, avoid triggering the failure
mode altogether).
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Adapt RTT measurement resolution to path RTT

Schemes should be capable of measurement resolutions that encompass the full spec-
trum of current and future data centre path latencies. They should also ideally be
capable of measuring wide area path latencies to avoid stacks having to maintain
multiple schemes. Current end-to-end IP paths potentially consist of a diverse mix
of link layer hop technologies (e.g., satellite, 100 Gbps Ethernet and virtualisation
technology emulating network links directly across a system’s backplane). The range
of encounterable path latencies therefore ranges from seconds down to nanoseconds.
At the low end of the range typical in data centres, commodity switches with 350 ns
port-to-port forwarding latency are available today [263].

The speed of light in a vacuum (29.98 cm/ns) sets the lower bound limiting factor
on path latency10. Research advances in photonics hold the promise of practical
latencies approaching the theoretical lower bound in the near future. Air-filled
hollow fibre optic cable capable of 29.00 cm/ns propagation velocity [264], replacing
metal with optical interconnects between and within ICs [265], and optical switching
[266] have been demonstrated. In practical terms, these advances translate into
lower bound latencies between physically separate computers on the order of tens
of nanoseconds. Intra-computer latencies across backplanes or within individual
ICs could be in the picosecond range over sufficiently short communication channel
distances. Resolution adaptation down to the order of picoseconds would therefore
seem like a desirable lower range bound for the future.

Given the range of possible resolutions, it would be desirable for schemes to adapt
resolution measurement per connection or group of connections with similar path
RTT. This would allow overheads associated with higher resolution measurement to
be restricted to connections that actually need it.

Sufficient resolution for variance measurement

As discussed in 5.3.4, the RTT measurement resolution needs to be sufficient to
capture variance. If it is not, an inappropriately low RTO interval may be calculated
accidentally which can lead to spurious retransmissions and incorrect detection of
same. This has clock choice implications for any given connection and its particular
path latency.

10Until a superluminal communication mechanism is discovered and the physics books rewritten!
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Other considerations

Hardware acceleration technologies, including the widely used TCP Segmentation
Offload (TSO)/Large Receive Offload (LRO), are a relevant concern in the data
centre ecosystem. NICs with the TSO/LRO capabilities allow the network stack
and NIC to exchange pseudo packets which are larger than the MSS.

With TSO, the large pseudo packet to be transmitted is passed to the NIC to-
gether with a template TCP/IP header. The NIC’s hardware then divides the data
into MSS segments, attaches the template header, updates fields like sequence num-
ber and checksum as required, and finally transmits the properly formed segments.
LRO is complementary, in that the NIC will merge segments received on the wire
into a pseudo packet. The pseudo packet is then flushed, based on some typically
configurable criteria, up the stack for processing by protocol layers. Used together
or in isolation, TSO and LRO can improve a system’s overall per-packet processing
efficiency. This gain does come at the expense of some protocol layer flexibility and
additional but often configurable latency.

There are some relevant technical details that a RTT measurement scheme reliant
on the timestamp option should be robust in the face of. TSO implementations are
intentionally “dumb” with respect to TCP options, and typically copy the options
component of the template header verbatim into each segment. TCP connections
utilising the timestamp option and TSO therefore do have bursts of packets leaving
the sender with identical timestamp option data. By contrast, the intelligence of
LRO implementations is more varied, with many being aware of the timestamp
option. Such implementations may update the pseudo packet header’s timestamp
option data with that of the most recently received segment being merged into the
pseudo packet.

6.2 ARREAR: An Adaptive Resolution RTT Measurement
Scheme for TCP

The Adaptive Resolution RTT mEAsuRement (ARREAR) scheme is a sender-
side modification of TCP’s timestamp-based RTT measurement mechanism. The
scheme’s genesis can be traced to an observation made in RFC 1323 that a receiver
treats TSval as a serial number. If a sender decouples TSval field increment rate
from real time, thus treating it like a serial number, adaptive resolution RTT mea-
surements can be made in a way that respects our design goals and considerations.
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Note that ARREAR is one plausible possibility selected from the TSval-as-a-serial-
number solution space for implementation and evaluation.

6.2.1 Details

Since TSval can be an arbitrary value, so long as it satisifes the previously discussed
requirements, it can therefore be used to transmit a token which only has meaning
to the sender. Conceptually, ARREAR treats the 32-bit TSval space as a pool of
measurement tokens, with each increment of TSval to be made when a new RTT
measurement is desired. Senders cache the TSval “token” value paired with a clock
read, and when it returns as a TSecr, take a measurement by subtracting the cached
clock read from the current time. Measurement resolution is therefore tied to the
quality of the clocks a sender has access to, and the possibility exists to use different
clocks for different connections.

It follows that the frequency with which measurements are taken and the TSval
wrap period become elastic at the sender’s discretion, which imparts useful flexi-
bility. The ability to perform RFC 1323-style per data-acknowledgement pair mea-
surements remains if a sender increments TSval for each segment. Why not instead
couple measurement rate to a path’s RTT and the variance thereof? A sender could,
for example, set the Nyquist rate as the lower bound and choose the measurement
rate based on RTT variance.

ARREAR retains the TSval field semantics required for PAWS to be effective.
TSval never goes backwards except at wrap, which allows a receiver to determine
relative segment order using the sequence number and TSval. The interplay between
sequence number and TSval rate of increment is now explicitly controlled by senders,
which can ensure the TSval does not increment too fast or slow relative to the
sequence number. If the sequence number wrapped since the last RTT measurement,
the sender can detect this and increment TSval even if a measurement would not
have otherwise been attempted for the next segment. Even with low path latencies
and/or high RTT measurement rates, ARREAR avoids triggering the PAWS idle
time failure mode at receivers. The TSval field only increments as segments are being
sent, and therefore the delta between an incoming TSval and receiver’s TS.Recent
should never exceed 231 regardless of elapsed idle time.

With the TSval increment frequency (and therefore wrap period) decoupled from
real time, ARREAR allows connections to individually control the PAWS protection
interval. The TSval increment (i.e. RTT measurement) rate can be manipulated to
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ensure that the sender would never reuse a particular combination of sequence num-
ber and TSval value within the desired MSL period. For example, dividing the token
pool (232) by the notional MSL and multiplying the result by the RTT yields the
per-RTT token consumption rate that would avoid wrapping the TSval field within
the MSL period. This allows an implementation to offer operator/application level
control of risk tolerance for stream corruption from duplicate segments by changing
the TCP MSL. Many application layer protocols perform their own checksumming
despite TCP’s mostly reliable delivery. Conceivable value therefore exists in having
the ability to trade off MSL period against RTT measurement rate on a per system
or socket basis.

The scheme’s biggest drawback is its reliance on additional sender-side state to
maintain mappings between TSval values and clock reads. Being a function of RTT
and measurement rate, the number of mappings increases in line with both. The
simplest implementation conceivable is a FIFO queue of in-progress measurement
mappings (which is precisely what we implemented and evaluated). Various ways
to reduce the computational overhead and amount of state required have been con-
sidered and are outlined as future work, but this thesis’ focus is characterising the
baseline scheme.

6.2.2 Implementation Specifics

The implementation of ARREAR completed in support of this thesis uses the
sbinuptime() kernel function as its clock source. In CLUES, this function pro-
cures its data from ns-3’s scheduler, which provides a 1 ns resolution by default.
The sbintime_t data type returned by sbinuptime() is used by ARREAR and
the supporting TCP stack changes for time storage.

The new tcp_arrear_gentsval() function generates the TSval to write into a
segment’s header. The function either returns the previous TSval token or a new
one depending on the decision to attempt a measurement or not. Each measurement
attempt stores the paired TSval token and sbintime_t clock read in a FIFO queue
of pending measurements in the connection’s control block.

Deciding whether to attempt a measurement or not depends on a few factors.
The TCP output path passes a boolean indicating whether or not the stack expects
the outbound segment would elicit an immediate response from the peer (e.g., has
the SYN flag set) and therefore make a good measurement candidate. If the stack
does not consider the outbound segment to be a candidate, the current ARREAR
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implementation will not attempt a measurement and returns the most recently used
TSval.

If the outbound segment is a measurement candidate, the ARREAR implemen-
tation will attempt a measurement subject to a token rate limiting calculation.
This rate limiting mechanism is the means by which the implementation ensures
the TSval field does not wrap inside of the configured MSL period. Approximately
once per RTT, the token use rate is compared against the use rate necessary to meet
the MSL wrap period. If the current use rate is too high, an appropriate rate limit
is set in the form of a duty cycle i.e. for every X attempted measurements, the next
Y measurements which would have otherwise been attempted should be skipped.
The decision and parameters with which to rate limit are reviewed every RTT and
adjusted as required.

Each returning ACK with a TSecr token calls the new tcp_arrear_pair()
function from the TCP input processing path. The function walks the pending
measurement queue starting at the oldest entry, removing any entry it encounters
with a token prior to the received TSecr token. It stops on finding a match, or
on finding a larger token which implies the incoming token is not a measurement
candidate. If a match is found, the associated clock read is subtracted from the
current time and the resulting RTT measurement returned to be fed into the SRTT
and RTO update logic.

Removing pending measurements from the queue which are logically before the
incoming TSecr amortises queue maintenance cost across all ACKs and keeps the
queue at a minimal size. This simplifies the implementation in the face of ACK loss
and/or LRO coalescing leaving orphaned pending measurement entries in the queue.
A caveat is that ACK reordering would lead to measurements being prematurely
abandoned that otherwise would have completed successfully.

A more sophisticated implementation could easily deal with this shortcoming by
adding a TTL mechanism to pending measurements. As return path reordering has
not been noted as a prominent concern in data centre networks (to the best of my
knowledge) and is not present in CLUES (unless explicitly configured), the simple
implementation was preferred.

6.3 Evaluation of ARREAR

The methodology used to evaluate ARREAR was essentially identical to that doc-
umented in 5.2, with the primary difference being that ARREAR was enabled by
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way of a sysctl control knob added to the CLUES stack.
Let us begin with a macro level comparison of ARREAR to follow on from

the end of Chapter 5. For every experiment presented in Chapter 5 Figure 20, an
experiment with ARREAR enabled but otherwise identical was also performed to
produce a sister data set. Figures 22 and 23 present this sister data set plotted
against the ARREAR-disabled data set from Figure 20.

With the 1 ns resolution clock source provided by CLUES, ARREAR had an
order of magnitude finer resolution than was required to accurately measure end-
to-end RTT for all scenarios in the data set. The expectation is therefore that the
measured RTT and derived RTO would correctly adapt to the true RTTs experi-
enced during each experiment. This in turn should be reflected in the data as an
identical baseline but less distinct RTO tiers compared with Figure 20, which is re-
alised in Figures 22 and 23. Completion time deviation above the baseline consists of
a mix of high resolution RTO events and/or fast recovery episodes, the approximate
proportion of which is no longer easy to visually discern.

With ARREAR enabled, any inadequacy in the standard TCP algorithms and
formulae pertaining to RTT have the potential to be exposed and possibly exac-
erbated by the data centre environment. Spurious retransmits triggered by inap-
propriately low RTO intervals become a potential source of problems. They cause
congestion window collapse and premature transition to congestion avoidance mode,
thereby slowing the latter part of the transaction. This is the reason why a subset
of experiments take longer to complete with ARREAR than without. Initialisation
and calculation of SRTT/RTTVAR/RTO per RFC 6298 can clearly have undesir-
able effects in some incast scenarios. This warrants future work to explore other
potentially more appropriate algorithms.

Of the total 154729 experiment pairs, Figures 22a and 23a plot the 27207 10 Gbps
and 29920 100 Gbps pairs respectively that recorded shorter transaction comple-
tion times with ARREAR. Figures 22b and 23b plot the 45224 10 Gbps and 1328
100 Gbps pairs respectively that recorded longer transaction completion times with
ARREAR. The 5652 10 Gbps and 45398 100 Gbps pairs that recorded identical com-
pletion times were excluded from the plots.

ARREAR has the expected and desired effect of vertically compressing the AR-
REAR-disabled data set for the experiments shown in Figures 22a and 23a. Com-
pletion times for experiments that experience one or more non-parallel RTO events
are significantly reduced. Where previously a multiple of the RTT measurement res-
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(b) Experiments with ARREAR enabled that completed in more time.

Figure 22: Transaction completion time versus total response length at 10 Gbps.
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Figure 23: Transaction completion time versus total response length at 100 Gbps.
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olution (1 ms without ARREAR), with ARREAR they become a multiple of each
experiment’s unique RTO interval. As already discussed, the amount of transmis-
sion opportunity lost with each RTO increases with increasing network speed and/or
decreasing path latency. This fact is also clearly borne out by the larger relative im-
provement in completion times observed in Figure 23a as compared with the 10 Gbps
experiments in Figure 22a.

Figures 22b and 23b compare the subset of experiments that recorded longer
transaction completion times with ARREAR. Recall from 5.2 that the CLUES stack
was modified to remove RTOmin, the fixed lower bound applied to RTO interval
calculation. This was done to ensure the calculation became completely adaptive
to RTT measurement resolution, thereby providing experimental insight into the
effects.

6.3.1 Reducing Transaction Completion Time

TCP time sequence diagrams help to visualise the underlying transport dynamics
which led to the improvement in transaction completion times with ARREAR. Fig-
ures 24a and 24b show two representative pairs from Figure 22a, with one11 and
two12 non-parallel RTO events respectively.

The only point of difference between both pairs is the reduced RTO interval
derived from the high resolution RTT measurements provided by ARREAR. This
directly translates into reduced application layer latency and therefore a correspond-
ing reduction in the transaction completion time.

6.3.2 Spurious Retransmits

Of particular interest are the 30.1% of experiment pairs which exhibit longer com-
pletion times with ARREAR than without. Figures 25a and 25b are TCP time
sequence diagrams created for pairs of ARREAR enabled/disabled experiments that
exhibited the transaction completion time inversion.

Comparing ARREAR enabled and disabled data series in Figure 25a13 reveals
a spurious retransmission occurred approximately 40 µs into the ARREAR-enabled

11Experiment utilised 5 responders returning a 210.0 kB cumulative response over a 10 Gbps
network with 102 cells of VOQ buffering per port.

12Experiment utilised 2 responders returning a 113.0 kB cumulative response over a 10 Gbps
network with 48 cells of VOQ buffering per port.

13Experiment utilised 8 responders returning a 278.1 kB cumulative response over a 10 Gbps
network with 120 cells of VOQ buffering per port.
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Figure 24: TCP sequence/acknowledgement numbers versus time, observed at the
ingress switch port of the labelled responder.

experiment.
TCP connections only get to make a single RTT measurement during the con-

nection establishment handshake before putting an initial window’s worth of data
on the wire. Per RFC 6298 [262], the first RTT measurement results in the stack
setting SRTT = RTT , RTTV AR = RT T

2 and RTO = SRTT + 4 × RTTV AR i.e.
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Figure 25: TCP sequence/acknowledgement numbers versus time, observed at the
ingress switch port of the labelled responder.

the initial RTO interval is equal to three times the initial RTT measurement.
The RTT measured during the connection establishment handshake suffers from

two relevant problems. First, it does not provide any insight into the maximum
possible queuing delay that the connection might experience. In an incast scenario,
VOQ utilisation is volatile and can change dramatically within a single RTT on
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account of the aggregate behaviour of responders.
Second, the small payload-less segments exchanged during the handshake can

bias the measurement if serialisation delay forms a significant or dominant compo-
nent of path RTT. Networks utilising short run copper or fiber optic cabling and
low-latency network equipment can exhibit propagation delays that are shorter than
the serialisation delay of full size frames. For example, at 10 Gbps a 78 B SYN frame
serialises in 62 ns versus 1214 ns for a full size 1518 B TCP payload frame (more for
jumbo frames which are used in some data centre and cluster networks). Commod-
ity switches are capable of 350 ns port-to-port forwarding latency and fiber optic
cabling is available with 4.80 ns/m propagation delay. Paths with serialisation delay
as the dominant component of path latency can therefore exist today. Even with
the more common port-to-port forwarding latency of a few microseconds found in
larger scale switches, serialisation delay can contribute a non-trivial portion of the
overall path latency.

When both problems conspire and an RTO interval that is inappropriately short
is computed, the likelihood of spurious retransmits increase. This outcome is ob-
served in Figure 25a with ARREAR enabled.

Responder 8’s initial RTT measurement was 8.8 µs and derived initial RTO in-
terval 26.3 µs, but it took 25.8 µs for its first packet of response data to arrive at the
querier. The ACK elicited from the querier does not arrive at the responder until
2.7 µs after the spurious retransmit. Consider that if responder 8’s initial RTT mea-
surement had been based on a 1518 B segment, the calculated RTO interval would
have been approximately 33 µs and the spurious retransmit avoided.

Fortunately, the time delta between retransmit and ACK was less than RT T
2 and

the F-RTO logic was able to declare the restransmit as spurious and revert the TCP
control block changes caused by the timeout. The nett effect is a minor increase in
the transaction completion time by an amount equal to the serialisation delay of the
retransmitted frame i.e. 1.2 µs.

Other scenarios examined were not so lucky, with the ACK arriving more than
half an RTT after the retransmit. They retransmitted their entire initial window
as a result and also spent the remainder of the transaction operating in congestion
avoidance rather than slow start.

A more unfortunate outcome is observed in Figure 25b14. The queue that was
14Experiment utilised 8 responders returning a 162.3 kB cumulative response over a 10 Gbps

network with 66 cells of VOQ buffering per port.
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on the brink of saturation with ARREAR disabled was pushed over the edge by
the single additional spuriously retransmitted packet. The second last packet of
responder 8’s response data was dropped and a RTO incurred as a result. Even
though ARREAR ensured the RTO interval was appropriate for the scenario, the
lack of a RTO with ARREAR disabled is why the ARREAR-enabled experiment
completed later.

This investigation clearly indicates that SRTT/RTTVAR/RTO initialisation per
RFC 6298 but without any lower bound can have undesirable effects in some incast
scenarios. Further work is required to explore other potentially more appropriate
RTO calculation methods for the data centre when high resolution RTT measure-
ments are used (e.g., with ARREAR). Serialisation delay bias in measurements also
warrants further investigation given the effects on TCP behaviour.

6.3.3 Possible Ways to Minimise Early Spurious Retransmits

Of the pairs with spurious retransmits examined in detail, a simple proof of concept
patch that attached junk data to the SYN was enough to alleviate many initial
window spurious retransmits. The receiver simply threw the data away, but it
ensured serialisation delay was accounted for in the initial RTT measurement and
therefore in the initial RTO interval.

Lowering the initial window from ten segments per RFC 6928 to three per RFC
3390 also alleviated the problem. By reducing the impulse load on the switch for a
given number of responders, lowering the initial window allowed the ACKs for the
initial window to return before the retransmit timer fired.

Although untested, packet pacing should also alleviate the problem and allow
larger initial windows to be used for a given number of responders.

6.3.4 Measurement Resolution Versus RTT

As discussed in 6.1.1, TCP may have to contend with end-to-end path latencies
ranging from seconds to picoseconds. By supporting measurements down to 233 ps
resolution with the current implementation, ARREAR can utilise a wide range of
clock sources.

Commodity data centre hardware typically has a selection of hardware clocks
available, each with particular characteristics such as frequency, drift and read ex-
pense. The TSC found in most modern CPUs ticks at the CPU’s base frequency,
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which at commonly available speeds of 2–4 GHz provides nominal picosecond reso-
lution. However, there are numerous complications associated with using the TSC
in Symmetric Multi Processing (SMP) systems which are discussed in [267]. NICs
can provide hardware timestamping features which negate the need for a high reso-
lution general purpose system clock (e.g., 1.5 ns resolution [268]). An exploration of
the clock resolution required for different plausible paths would provide some useful
guidance for hardware specification or a hardware implementation of ARREAR.
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Figure 26: TCP SRTT versus path latency components over 25 m links.

Figures 26, 27 and 28 plot the range of TCP SRTT measurements made by AR-
REAR for a two responder, 100 kB cumulative response, 199 cells of VOQ buffering
per port, lossless incast scenario. The focus is the intrinsic path latency components
of signal propagation, serialisation and device forwarding so as to better comprehend
their respective impact on transport layer RTT measurements.

Three distinct link distances are presented, with 25 m representing a room scale
network, 5 m a rack scale network and 50 cm an intra-chassis scale network (distances
are between node and switch i.e. half the end-to-end distance). Switch port-to-
port forwarding latencies of 5 µs, 500 ns, 50 ns and 5 ns represent both current and
plausible future network equipment latencies. Propagation delays associated with
copper (5.36 ns/m), current fibre optic (4.80 ns/m) and future fibre optic (3.45 ns/m)
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transmission media are represented. Link speeds of 10 Gbps, 100 Gbps and 400 Gbps
similarly range between current and future possibilities.

Recall from 6.3.2 that the initial measurement made during the connection es-
tablishment handshake includes a minimal serialisation delay component on account
of the small segment sizes exchanged. The larger the serialisation delay component
of path latency is, the larger the difference between the initial RTT measurement
and subsequent measurements made using MSS segments. This is clearly visible in
Figures 26, 27 and 28 as the variable distance between the minimum (bottom tail)
and 25th percentile box underside. As speed or port-to-port forwarding latency in-
crease, so the relative serialisation delay component of path latency decreases and
the minimum is closer to the bulk of the measurements.

Conversely, the maximum (top tail) represents the total measured path RTT
inclusive of non-intrinsic latency components like queuing delay. Given that the
response size and amount of VOQ buffering per port were held constant across all
experiments, the relative differences between maxima provide insight into how the
intrinsic components of path latency affect queue utilisation.

For algorithms that rely on precision of RTT measurements (e.g., delay-based
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Figure 27: TCP SRTT versus path latency components over 5 m links.
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Figure 28: TCP SRTT versus path latency components over 50 cm links.

congestion control), having sufficient resolution to measure the full range is critically
important. Given that the lower bound of the range determines the clock resolution
requirement, the minimum path latencies observed are presented in Table 5 for
the experiments that used the lowest switch port-to-port forwarding latency and
transmission media latency. This subset of experiments provide a forward looking
view of minimum path latencies, and suggest that double and eventually single digit
nanosecond resolution should be sufficient for some time to come.

Speed

10 Gbps 100 Gbps 400 Gbps

25 m 590.9 ns 379.0 ns 361.1 ns

5 m 316.2 ns 103.1 ns 85.2 ns

D
is

ta
nc

e

50 cm 253.1 ns 41.0 ns 23.1 ns

Table 5: Minimum path latencies measured with 5 ns switch port-to-port forwarding
latency and 3.45 ns/m transmission media latency.

For incast RTO mitigation, measurement resolution over the complete path la-
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tency range is not strictly required as discussed in 5.3.4. As long as TCP has
sufficient resolution to see the tail end of queue build up leading to loss, it can still
compute an appropriate RTO interval. However, the chosen clock must provide suf-
ficient resolution to measure variance so that the RTO interval is not too short as
also discussed in 5.3.4.

6.3.5 A Summary of ARREAR and its Experimental Evaluation

ARREAR is a sender-side, interoperable, and incrementally deployable RTT mea-
surement scheme that equips TCP with the ability to measure path latencies based
on the quality of a sender’s local clock(s).

Conceptually, ARREAR treats the 32-bit TSval space as a pool of measurement
tokens, with each increment of TSval to be made when a new RTT measurement is
desired. Senders cache the TSval “token” value paired with a clock read, and when
it returns as a TSecr, take a measurement by subtracting the cached clock read
from the current time. The frequency with which measurements are taken and the
TSval wrap period become elastic at the sender’s discretion, which imparts useful
flexibility. ARREAR also retains the TSval field semantics required for PAWS to
be effective.

Without ARREAR, incast congestion induced RTOs are lower bounded to the
stack’s RTOmin, which is typically one or more orders of magnitude larger than
the underlying path’s RTT. Path-inappropriate RTO intervals lead to cumula-
tive lost transmission opportunity with every RTO incurred, which can be further
compounded in cases where binary exponential backoff is invoked. Throughput
collapse occurs when responders experience RTOs concurrently, or when barrier-
synchronisation requirements dictate any delayed responses must be waited on.

With ARREAR, incast congestion induced RTOs inflict less transmission oppor-
tunity loss on account of the path-appropriate RTO intervals in effect, and the im-
provement increases with increasing network speed and/or decreasing path latency.
However, RFC 6298 RTO interval computation is not tuned for data centre speeds
and latencies, and removing RTOmin was also shown to result in the computation
of inappropriately short initial intervals which cause spurious retransmits.

The problems with initial RTO interval computation stem from two relevant
problems associated with the RTT measured during the connection establishment
handshake: it does not provide any insight into the maximum possible queuing
delay that the connection might experience, and the small payload-less segments
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exchanged during the handshake can bias the measurement if serialisation delay
forms a significant or dominant component of path RTT. Attaching junk data to
the SYN, lowering the initial window from ten segments per RFC 6928 to three per
RFC 3390, and employing packet pacing should all be investigated to aid mitigation
of this issue.

Finally, an investigation of clock resolution requirements for a range of plausi-
ble data centre path characteristics was conducted to provide guidance for hard-
ware specification or a hardware implementation of ARREAR. Given that the lower
bound of the RTT range determines the clock resolution requirement, the subset of
experiments presented in Table 5 provide a forward looking view of minimum path
latencies, and suggest that double and eventually single digit nanosecond resolution
should be sufficient for some time to come.
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7 Future Work

Pursuing the core contributions of this thesis has exposed a number of avenues for fu-
ture work. CLUES opens up new opportunities to develop realistic traffic and hard-
ware models, and would benefit from being able to leverage multithreading. RTO
interval initialisation and computation needs to be revisited for high-bandwidth,
low-latency paths. ARREAR opens up new opportunities to revisit past delay-
based congestion control and related RTT-dependent control schemes, and actual
implementations will require careful design for high performance.

Developing a more adequate multi-layered taxonomy and set of comparison cri-
teria to fully categorise and compare the literature would be valuable, perhaps based
on the efforts of Rojas-Cessa et al. [133].

CLUES would particularly benefit from the addition of validated data centre
cross-traffic models, although with DCE [251] it could in theory run actual applica-
tions to generate real workloads. However, doing so would likely be more computa-
tionally expensive and therefore difficult to scale appropriately.

As a development environment, CLUES and the FreeBSD stack port would ben-
efit from being able to alternate between single and multithreaded execution. This
would allow the class of bugs currently excluded when running in CLUES to come
into play at the developer’s discretion. Having this capability would improve confi-
dence in testing and simplify debugging by allowing concurrency to be easily checked
for relevance to the bug.

The existing literature and discussion in Chapters 5 and 6 point to the long
standing wisdom embodied in RFC 6298 needing to be revisited in the context of
high-bandwidth, low-latency, relatively small BDP paths. What initial values should
be used? If an RTOmin is defined, it would seem that it should take a variable rather
than static form. How should it be calculated? Is the amount of hysteresis in SRTT
and RTTVAR calculation appropriate? Is SRTT + 4 × RTTV AR an appropriate
RTO interval calculation given that queue utilisation can be so volatile? Perhaps a
larger amount of variance should be added. These issues and questions are yet to
be thoroughly explored.

With low-latency paths and ARREAR-based RTT measurement resolution to
match, delay-based congestion control and other schemes that rely on RTT as a
control input should also be revisited. TIMELY [176] demonstrated convincing re-
sults by blending transport protocol congestion control with microsecond resolution

Page 121 of 172



7 FUTURE WORK

RTT measurements assisted by hardware offload capabilities. There are likely to be
previously proposed schemes and entirely new schemes which could be reimagined
in the cluster and data centre network context with access to appropriate resolution
RTT measurements.

The issue of RTT measurement serialisation delay bias discussed in Chapter 6
warrants further research. The discussion clearly points to it being desirable for
the first measurement made during the handshake to include maximum serialisation
delay i.e. the SYN should carry a MSS worth of data. This is important to ensure
an appropriate RTO interval during the initial window burst. The proof of concept
patch developed that attached junk data to the SYN worked as expected, but was
wasteful as it threw away the data at the receiver. TFO [63] could provide a stan-
dardised way to achieve this with actual payload data, but does require data to be
ready to send at connect time.

There are also bias considerations for unidirectional versus bidirectional data
transfer, as the TSecr returning in packets laden with data will take longer to re-
turn than pure ACKs, and could be subject to bandwidth asymmetry differences.
Applications that tend to send variable sized segments (e.g., interactive shells like
SSH) will also be more influenced by this bias. One could envisage a scheme that
periodically probed serialisation delay using back-to-back segments of minimum and
maximum size and compared the RTT measurement difference. Complications with
delayed ACKs, hardware offload technologies and other issues would need to be
considered.

The amount of sender-side state required by ARREAR could likely be reduced
by exploring other related ideas. Logically splitting the TSval field into a measure-
ment token sub-field and relative tick counter sub-field was one such idea briefly
contemplated. This might allow a single base clock read to be periodically stored
and used by multiple measurement tokens to calculate a delta.

An idea briefly contemplated to reduce ARREAR’s computational overhead was
to use the lowest order TSval bit as a flag to indicate the segment was a measure-
ment candidate or not. This would avoid unnecessary map consultations in the fast
path when measurements are not being taken for every segment. Another idea was
to devise a TSC-based scheme for use as the clock source because of its relative
cheapness to read. Many obstacles exist, but plausible work discussed with and
undertaken by FreeBSD developer Matt Macy in the NextBSD project’s “dctcp”
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(data centre TCP) GitHub branch15 has interesting potential to be integrated with
ARREAR.

15https://github.com/NextBSD/NextBSD/tree/NextBSD/dctcp
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8 Conclusion

The commoditisation and ubiquity of TCP/IP and related technologies has in-
evitably led to numerous growing pains from using them in environments they were
not designed or optimised for. The use of TCP for high-speed, low-latency, large-
scale cluster and data centre communications can trigger one such pain point – the
incast congestion phenomenon and associated TCP throughput collapse pathology.
Both have received a great deal of attention in line with the growing importance of
the horizontally scaled TCP-based workloads that can induce them.

This thesis presented the CLUES toolkit, used it to perform an investigation of
the incast phenomenon including related issues, and proposed the ARREAR scheme
for TCP.

Chapter 4 presented CLUES, a hybrid simulation-emulation toolkit for cluster
computing and data centre network research. CLUES combines the ns-3 discrete
event network simulator, new validated models, NSC framework, and FreeBSD com-
modity open source operating system network stack. Many of ns-3’s existing models
(some with modifications) were leveraged in addition to the introduction of new
models specific to cluster and data centre based experimental simulation.

A ns-3 QueryResponseApplication model was developed to provide a TCP-based,
sequential, barrier-synchronised synthetic workload with which to trigger incast con-
gestion. A ns-3 VOQ Ethernet switch model was created with relevant fundamen-
tal characteristics roughly comparable to those of commodity data centre switches.
These models allowed parameters such as query/response size, transaction comple-
tion time, switch queue buffer size and switch scheduling to be investigated in detail.

A clean slate NSC network stack port based on FreeBSD-CURRENT was com-
pleted and integrated with CLUES. The port took in a significant amount of
FreeBSD kernel infrastructure in an effort to maximise realism by minimising API
emulation and modifications required to pristine sources. The stack’s unmodified
pristine base allows code to seamlessly transition between real test beds and CLUES,
making it possible to maintain a single code base and more easily calibrate test en-
vironments.

The FreeBSD “VNET” virtualised network stack feature was leveraged to fa-
cilitate run-time stack instance allocation and sharing of common infrastructure
between stack instances. At only 16 392 B of memory per instance, the CLUES
stack supports ample scalability for experiments with large numbers of hosts.
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The NSC API was modified to support measures that improve realism and stack
scalability. Key changes included better targeted signals, fine-grained event schedul-
ing, arbitrary route insertion and more flexible timekeeping.

The CLUES components were used to create the “incast” simulation, which
serves as a practical instantiation of how to use CLUES to investigate a cluster and
data centre specific issue. The simulation formed the experimental basis for the
investigation of incast congestion in Chapter 5, and the evaluation of ARREAR in
Chapter 6.

Chapter 5 detailed a CLUES-based exploration of incast congestion and related
issues, with a focus on application-layer transaction completion time. Per-packet
granularity data logging from the switch and end hosts provided detailed insights
into the interactions between a number of variables and protocol behaviours. Vari-
ables of interest included Ethernet transmission speed, number of responders, re-
sponse size, receive queue VOQ size and the RTT measurement resolution.

Retransmit timeouts, the cause of incast-induced TCP throughput collapse, were
observed across a range of scenarios. The CLUES stack’s RTOmin was removed,
thereby allowing the RTO interval to fully adapt to the available RTT measurement
resolution. This made it possible to fully observe the effects of RTO interval calcu-
lation for all experiment scenarios. Despite the modification, the 1 ms measurement
floor imposed by TCP’s RTT measurement machinery was shown to be insufficient
for the simulated paths.

A set of 154729 experiments varying the number of responders, response size,
Ethernet transmission speed and receive queue VOQ size were conducted. They
provided a macro-level view of transaction completion times, showing distinct strat-
ification of the data related to the number of non-parallel RTO events over a broad
range of experiment permutations. The study showed incast-induced RTOs to be
pervasive and their impact on transaction completion times increasingly undesirable
as network speed increases.

It was shown that by improving the RTT measurement resolution, the RTO
interval derived from the measured RTT could more appropriately adapt to the
path. This improved transaction completion times, and therefore mitigated the
effects of RTOs.

Chapter 6 proposed and evaluated an implementation of ARREAR, a sender-
side, backwards compatible and incrementally deployable TCP RTT measurement
scheme. ARREAR’s development was guided by the fact that no practical incast
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mitigation scheme is able to assert perfect knowledge about the end-to-end path. It
is therefore important to adapt the end-to-end transport and its algorithms to the
realities of best-effort IP networks operating at data centre speeds and latencies.

ARREAR equips TCP with the ability to measure path latencies based on the
quality of a sender’s local clock(s). Commodity hardware clocks are typically mul-
tiple orders of magnitude higher resolution than the artificially constrained 1 ms
used by stacks to implement RFC 1323-based RTT measurement today. Accurate,
path-appropriate resolution RTT measurements make it possible in turn to derive
path-appropriate RTO intervals, and enables the use of RTT as a meaningful control
input in non-core protocol mechanisms like delay-based congestion control.

Conceptually, ARREAR treats the 32-bit TSval space as a pool of measurement
tokens, with each increment of TSval to be made when a new RTT measurement is
desired. Senders cache the TSval “token” value paired with a clock read, and when
it returns as a TSecr, take a measurement by subtracting the cached clock read
from the current time. The frequency with which measurements are taken and the
TSval wrap period become elastic at the sender’s discretion, which imparts useful
flexibility. ARREAR also retains the TSval field semantics required for PAWS to
be effective.

ARREAR’s co-opting of the TCP timestamp option to faciliate adaptive resolu-
tion RTT measurement meets all of the identified design goals. An implementation
was developed against the CLUES stack and evaluated using the same “incast”
simulation as Chapter 5.

A mirror data set to that from Chapter 5, but with ARREAR enabled, was
created and compared. Of the experiment pairs that recorded different transac-
tion completion times, the 10 Gbps experiments were split 27207 (shorter) to 45224
(longer), and 100 Gbps split 29920 (shorter) to 1328 (longer).

Shorter completion times stemmed from the high resolution RTT measurements
translating into shorter, more appropriate RTO intervals. Experiments that ex-
perienced a RTO event without ARREAR therefore faired better with it, and the
improvement increases with increasing network speed and/or decreasing path la-
tency.

Longer completion times stemmed from spurious retransmits triggered by an
inappropriately low RTO interval, especially during the initial window burst. As well
as potentially exiting slow start prematurely, the spuriously retransmitted packets
themselves induced loss in some scenarios. Further work is required to explore other
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potentially more appropriate RTO calculation methods and the issue of serialisation
delay bias in RTT measurements.

A final set of experiments were conducted to explore the effects of path delay
components on TCP RTT measurement. The results provided insight into clock
granularities required for plausible current and future networks with varying trans-
mission speed, network equipment forwarding delay and propagation delay. The
TCP measured SRTT distributions ranged below 100 ns minimums for some plausi-
ble future scenarios, suggesting that double and eventually single digit nanosecond
resolution clocks should be sufficient for some time to come.

This thesis makes useful and concrete contributions towards improved data cen-
tre network research capability, and TCP’s performance in the data centre. CLUES
offers a sophisticated toolkit to inspire and support more detailed community re-
search into data centre network protocol issues. ARREAR shows great potential
to help reduce the negative application and user impact of RTOs on transaction
completion times, which are commonly encountered with workloads that are prone
to inducing incast congestion.
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GLOSSARY

Glossary
Additive Increase Multiplicative Decrease

A general control scheme for conservatively probing a limit and aggressively
backing off if the limit is reached.

Application Programming Interface
A specification defining how computer code interacts with other code.

Active Queue Management
General term referring to management of network queues in a more intelligent
manner than regular FIFO.

Address Resolution Protocol
Used to resolve the hardware MAC address associated with an IPv4 address
of interest.

Advanced Research Projects Agency NETwork
A TCP/IP based packet switching network that was an early precursor to the
Internet.

Adaptive Resolution RTT mEAsuRement
An adaptive resolution RTT measurement scheme for TCP.

Bandwidth Delay Product
A static measure of the maximum capacity of a path, in bits.

Berkeley Software Distribution
An open source operating system developed at UC Berkeley’s CSRG.

CLUster nEtwork Simulation
A toolkit for cluster computing network simulation research.

Central Processing Unit
The general purpose IC that can perform programmed computation within a
computer.

Computer Systems Research Group
A UC Berkeley research group known for developing the open source BSD
operating system.
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GLOSSARY

Differentiated Services Code Point
A 6-bit field in the IP packet header for assigning different classes of service
to packets.

Equal-Cost Multi-Path
A packet forwarding strategy which uses multiple, equally good (in a packet
forwarding metric sense) next hops to reach a given destination.

Explicit Congestion Notification
A signalling scheme that allows capable elements in the network to communi-
cation congestion information to endpoints, defined in [269].

Ethernet
Layer 2 variable length framing protocol developed at Xerox PARC.

Flow Completion Time
Length of time to complete a data exchange as measured at the network flow
level.

Forward Error Correction
A network coding technique that transmits redundant data together with the
intended data in a such a way that the intended data can be reconstructed in
the face of some amount of corruption or loss.

Forwarding Information Base
A lookup table matching destination address to egress port.

First In First Out
A type of queue that writes to the back and reads from the front.

Field Programmable Gate Array
A reprogrammable IC capable of arbitrary computation..

FreeBSD
A UNIX-based open source operating system derived from UC Berkeley BSD.

GNU General Public License v2
A copy-left licence created for the GNU project.

Graphical User Interface
A computer interface allowing users to interact with a system visually using
input hardware.
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GLOSSARY

Hyper Text Transfer Protocol
An application-level protocol for distributed, collaborative, hypermedia infor-
mation systems.

Internet Architecture Board
A committee of the IETF responsible for procedural and architectural oversight
and guidance.

Integrated Circuit
An arrangement of transistors on a chip designed to perform some form of
useful digital electronic computation.

Internet Control Message Protocol
An integral control protocol for IP networks defined in [270].

Institute of Electrical and Electronics Engineers
A professional organisation for engineers that provides many services and also
develops data networking standards.

Internet Experiment Note
A series of technical documents modelled on the RFCs series that focused on
early TCP/IP and Internet development matters.

Internet Engineering Task Force
An open membership collaborative organisation that develops data networking
standards.

Internet Protocol
A protocol defined in [12] that specifies a best-effort addressing and forwarding
scheme for use by packet-switched networks.

Internet Research Task Force
An open membership collaborative organisation that undertakes research in
support of IETF activities.

Instruction Set Architecture
The set of instructions understood by a CPU.

Internet SOCiety
An open membership organisation that aims to promote the open development,
evolution, and use of the Internet for the benefit of all people throughout the
world..
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GLOSSARY

International Telecommunication Union
A bureaucratic organisation that develops telecommunications and data net-
working standards.

Lawrence Berkeley National Laboratory
A University of California managed lab charged with conducting unclassified
research across a wide range of scientific disciplines.

Large Receive Offload
An Ethernet hardware offload technology that allows the hardware to aggre-
gate received segments and pass the chunk up the stack.

Media Access Control
A sub-layer of the data link layer related to addressing and channel access
control.

Maximum Segment Lifetime
A concept first discussed in the early IETF standards documents to offer guid-
ance to protocol implementors about the longest amount of time a segment
might plausibly take to be delivered by an IP network.

Maximum Segment Size
The maximum amount of payload data a transport protocol segment can carry,
which is dependent on the MTU and other lower layer protocols in use.

Maximum Transmission Unit
Largest size payload able to be put on the wire by the data link protocol.

Network Interface Card
A hardware addon card which connects a device to a network.

ns-2
Network Simulator v2.

ns-3
Network Simulator v3.

Network Simulation Cradle
Software framework for running external network stacks inside a network sim-
ulator.
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GLOSSARY

Operating System
Base set of system software installed onto a computer responsible for managing
hardware and providing common services to other software.

One Way Delay
Unidirectional delay between two endpoints.

Protect Against Wrapped Sequence Numbers
RFC 1323 defined mechanism for mitigating TCP stream corruption due to
sequence number wrap.

Priority Code Point
A 3-bit field in the 802.1Q Ethernet header used to assign different priorities
to frames.

Protocol Data Unit
Generic term for the encapsulation wire format associated with a protocol
operating above the physical layer.

Performance Enhancing Proxy
A device that breaks and inserts itself in between the end-to-end connection
(often transparently) in an attempt to improve some aspect of a connection.

Priority Flow Control
An 802.1Q Ethernet flow control mechanism.

Path MTU Discovery
A mechanism defined in [243] that allows end hosts to discover the minimum
MTU of an arbitrary IP path to avoid sending packets that will require the
network to fragment them.

POSIX
A family of standards specified by the IEEE Computer Society for maintaining
compatibility between operating systems.

Quantised Congestion Notification
An 802.1Q Ethernet congestion control mechanism.

Quick UDP Internet Connections
A UDP based congesstion controlled transport protocol being developed by
Google.
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GLOSSARY

Random Access Memory
Dynamic working memory used in computers for temporary storage.

Request For Comments
A document series containing technical and organizational notes about the
Internet.

Routing Information Base
A lookup table matching destination address to next hop gateway address.

Retransmit Time Out
Length of time a TCP connection will wait for peer feedback before trying
again.

Round Trip Time
A cumulative measure of the one way signal delay between two nodes in both
directions.

Selective ACKnowledgement
A TCP loss recovery machanism specified in [36]..

Stream Control Transmission Protocol
An advanced feature set transport protocol defined in [271].

Software Defined Networking
A networking paradigm in which the forwarding and control plane are sepa-
rated by a well defined, standardised interface.

Statistical Information For TCP Research
A FreeBSD kernel module providing event driven TCP connection information
logging.

Symmetric Multi Processing
A computer architecture utilising multiple identical CPUs sharing the required
system work.

Sender Maximum Segment Size
Maximum amount of payload data which can be sent in a TCP segment for a
given connection.

SPDY
An application layer HTTP based protocol designed to overcome some pain
points associated with delivery of web content over TCP.
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GLOSSARY

Smoothed Round Trip Time
A weighted moving average over the last N RTT measurements, where N=8
for TCP.

sysctl
A syscall interface with which to set or get kernel settings, information and
state addressed by way of a hierarchical tree structure named as a dotted set
of components.

TrAnsPort Services
An IETF working group focused on improving the transport-layer abstractions
for consumers.

Transmission Control Protocol
A connection-oriented, reliable, flow-controlled transport protocol defined in
[22].

Time Division Multiple Access
A method for sharing a communications channel by allocating exclusive time
slices to devices.

TCP Fast Open
An experimental proposal for TCP specified in [63] that allows data to be
exchanged and consumed during the connection establishment handshake.

TCP Friendly Rate Control
A congestion control scheme specified in [170] for unicast flows operating in a
best-effort environment that is reasonably fair when competing for bandwidth
with TCP flows.

Time Stamp Counter
A monotonic clock found in many modern CPUs that ticks at the CPU fre-
quency.

TCP Segmentation Offload
An Ethernet hardware offload technology that allows larger than MSS chunks
of data to hit the hardware and be segmented on chip prior to transmission.

Time To Live
A concept commonly employed by network protocols to track data staleness
e.g. the TTL field in the IP header is decremented at each hop and the packet
discarded if the TTL reaches zero.
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GLOSSARY

User Datagram Protocol
A connectionless datagram-based transport protocol defined in [21].

Universal Memory Allocator
The kernel slab allocator used in the FreeBSD kernel.

Virtual Output Queuing
A network device queuing scheme whereby the packets to be transmitted from
a given output port are queued at a buffer associated with the input port the
packet arrive on.
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