
Swinburne Research Bank
http://researchbank.swinburne.edu.au

Author: Anwar, Tarique; Liu, Chengfei; Vu, Hai L.; Leckie,
Christopher

Title: Partitioning road networks using density peak
graphs: efficiency vs. accuracy

Year: 2017
Journal: Information Systems
Volume: 64
Pages: 22-40
URL: http://hdl.handle.net/1959.3/433174

Copyright: Copyright © 2016 Elsevier Ltd. NOTICE: this is the
author’s version of a work that was accepted for
publication in Information Systems. Changes
resulting from the publishing process, such as
peer review, editing, corrections, structural
formatting, and other quality control mechanisms
may not be reflected in this document. Changes
may have been made to this work since it was
submitted for publication. A definitive version was
subsequently published in Information Systems,
Vol 64, March 2017, DOI:
10.1016/j.is.2016.09.006. This manuscript version
is made available under the CC-BY-NC-ND 4.0
license http://creativecommons.org/licenses/by-nc-
nd/4.0/

This is the author’s version of the work, posted here with the permission of the publisher for your
personal use. No further distribution is permitted. You may also be able to access the published
version from your library.

The definitive version is available at: https://doi.org/10.1016/j.is.2016.09.006

Powered by TCPDF (www.tcpdf.org)

Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au

http://www.tcpdf.org

Partitioning Road Networks using Density Peak Graphs: Efficiency vs. Accuracy

Tarique Anwara,c, Chengfei Liua, Hai L. Vua, Christopher Leckieb,c

aSwinburne University of Technology, Melbourne, Australia
bUniversity of Melbourne, Melbourne, Australia

cData61, CSIRO, Melbourne, Australia

Abstract

Road traffic networks are rapidly growing in size with increasing complexities. To simplify their analysis in order to maintain
smooth traffic, a large urban road network can be considered as a set of small sub-networks, which exhibit distinctive traffic flow
patterns. In this paper, we propose a robust framework for spatial partitioning of large urban road networks based on traffic
measures. For a given urban road network, we aim to identify the different sub-networks or partitions that exhibit homogeneous
traffic patterns internally, but heterogeneous patterns to others externally. To this end, we develop a two-stage algorithm (referred
as FaDSPa) within our framework. It first transforms the large road graph into a well-structured and condensed density peak graph
(DPG) via density based clustering and link aggregation using traffic density and adjacency connectivity, respectively. Thereafter we
apply our spectral theory based graph cut (referred as α-Cut) to partition the DPG and obtain the different sub-networks. Thus the
framework applies the locally distributed computations of density based clustering to improve efficiency and the centralized global
computations of spectral clustering to improve accuracy. We perform extensive experiments on real as well as synthetic datasets,
and compare its performance with that of an existing road network partitioning method. Our results show that the proposed method
outperforms the existing normalized cut based method for small road networks and provides impressive results for much larger
networks, where other methods may face serious problems of time and space complexities.

Keywords: Spatial partitioning, Road networks, Spectral clustering, Density peak graph.

1. Introduction

These days there is an increase in the frequency of traffic
congestion on urban road networks, especially during the peak
hours and in the city centers. This increasing congestion re-
quires an improvement in its management by learning from its
behavior to help balance the traffic flow. Usually the roads of
each locality, say inside a suburb, experience a specific traffic
flow pattern regardless of the global flow. For example, roads
inside the city centre or any area having popular venues like a
stadium or hospital, usually remain more congested than others
without any such significance. Additionally, the congestion on
roads connecting important places of public gatherings like air-
ports, train stations, hospitals, and bus stops, remains compar-
atively higher than other locations. Thus different subnetworks
of the urban road network exhibit congestion at different times.
To analyze the behavior of congestion it is important for traf-
fic management authorities to be able to partition an urban road
network into different sub-networks based on the road connec-
tivities and their congestion level, which is determined by the
real traffic measures [3].

Moreover, as we move towards smart urban infrastructure,
there is a growing demand for traffic-aware smart travel ser-
vices, including route guidance and trip planning. These ser-

Email addresses: tAnwar@swin.edu.au (Tarique Anwar),
cliu@swin.edu.au (Chengfei Liu), hvu@swin.edu.au (Hai L. Vu),
caleckie@unimelb.edu.au (Christopher Leckie)

vices are usually based on complex graph processing meth-
ods dealing with the road network. One way to efficiently
process the execution of these services is to exploit computa-
tion in a distributed computing environment, in which the large
road network is partitioned into several small sub-networks, so
that queries can be focused on the relevant sub-networks [32].
Thus there exist different applications where instead of using
the complete urban network, problem solving can be simpli-
fied by separately processing the smaller sub-networks that ex-
hibit homogeneous traffic patterns inside. This leads to the im-
portant problem of traffic-based spatial partitioning of urban
road networks. The application of graph partitioning on gen-
eral information networks has been studied in the past [42, 17].
However, the geospatial properties of a road network associated
with traffic flow patterns makes a unique kind of network [14].
The problem was recently raised in the intelligent transporta-
tion systems (ITS) community [14], where the authors proposed
a normalized cut based method for partitioning road networks.
While this works well for small networks, it faces serious limi-
tations in its time and space complexity for large networks.

In our recent work [3], we proposed a method for traffic-
based spatial partitioning of large road networks that outper-
formed existing techniques. The method comprises three dif-
ferent modules– road graph construction, road supergraph min-
ing, and supergraph partitioning. The first module deals with
transforming the real road network into a road graph to give
it a mathematical representation. To address the problem of

Preprint submitted to Information Systems October 2, 2016

large number of road segments in large urban road networks,
we followed a 2-level partitioning. The second module is the
first level partitioning, which mines a road supergraph from the
road graph with a much reduced order following a bottom-up
approach. It goes through the steps of clustering feature val-
ues using k-means and constructing the road supergraph. The
last module of supergraph partitioning is the second level par-
titioning, which follows a top-down approach to split up the
supergraph into multiple heterogeneous partitions that are ho-
mogeneous within. It is achieved by approximately optimiz-
ing a measure called α-Cut, by following a spectral clustering
based solution. It produces supernode partitions, from which
the road segment partitions are extracted. Despite obtaining
good results the following issues are still outstanding, i) the
problem of learning the right number of clusters, while apply-
ing k-means to create supernodes, is a computationally expen-
sive task; ii) when the value of k in k-means is set very low,
the number of supernodes is sometimes still very large, imply-
ing the relation between k and the supernodes is weak; iii) the
connectivity among the nodes is not considered together with
their feature values when applying clustering (k-means) to mine
the supergraph. In this paper, we address the above issues and
present a robust framework employing both density and spec-
tral based clustering. It is known that spectral clustering based
solutions provide good results but exhibit high computational
complexity [39, 3]. On the other hand, density-based methods
are able to discover clusters of arbitrary shapes and are very
fast. Our framework combines the advantages of spectral and
density based approaches simultaneously, and also overcomes
the issues that existed in our previous work [3].

Our partitioning framework aims to identify the different
heterogeneous regions of an urban network that internally ex-
hibit homogeneous traffic patterns. We propose three algo-
rithms, FaDPa, FaDPa+, and FaDSPa. The main scalable al-
gorithm FaDSPa, which is based on the other two, mines a den-
sity peak graph by identifying the density peaks from the road
graph. Then the density peak graph is subjected to our spectral
theory based α-Cut to obtain the set road network partitions. In
summary, we make the following contributions in this paper.

– We develop a fast density-based road network partition-
ing method FaDPa (extended to FaDPa+). It identifies the
density peaks locally in the graph, and gradually grows
them to form clusters. Unlike spectral clustering meth-
ods, it works very fast, and is highly suitable to large net-
works.

– Using FaDPa, we develop an efficient and effective
method FaDSPa for partitioning small as well as large
road networks. It provides an option to input a factor to
control the trade-off between efficiency and partitioning
quality.

– We present the complete derivation to optimize the α-Cut
objective function (proposed in our previous preliminary
work [3]) that is used in FaDSPa.

– We perform extensive experiments on real as well as syn-
thetic datasets including road networks of different sizes

to establish its efficacy.

The rest of the paper is organized as follows. Section 2
presents some preliminary theories followed by the problem
definition and framework overview. Section 3 presents our
density-based partitioning algorithm FaDPa and its extension
FaDPa+, followed by the main algorithm FaDSPa in Section 4.
Experimental results are shown in Section 5, followed by re-
lated work in Section 6. Section 7 concludes the paper with
some future research directions.

2. Problem Definition and Framework Overview

This section presents some preliminary theories, defines the
problem, and presents the framework overview.

2.1. Road Networks and their Mathematical Representation

Urban roads exist in the form of a physical network spa-
tially spread over a large urban area. To make it a machine-
interpretable network, we need to give it a mathematical rep-
resentation in the form of a graph, which we name as a road
graph. The unique features associated with this kind of net-
work, like varying spatial importance of different roads and the
traffic flow being unidirectional on some roads whereas bidi-
rectional on others, make it a challenging task to give a realistic
mathematical representation. Previous works have represented
it in different graph-based structures that suited the application
area [15, 9].

Unlike the previously attempted problems, the focus of spa-
tial partitioning of road networks is on the road segments, not
on the intersection points. A trivial representation in the form
of a graph by considering roads as links and their intersection
points as nodes is not suitable as its partitioning results into
subsets of intersection points, which is not the objective. To
make the representation applicable to spatial partitioning, we
transform the actual road network into its dual, which forms
an undirected road graph. This transformation is an improved
version of that used in our earlier work [3].

Definition 1: (Road Network) A real urban road network
is defined as N = (I,R) comprising a set of intersection points
I =

{
ι1, ι2, . . . , ιnι

}
as nodes that are connected among them-

selves by the set of directed road segments R =
{
r1, r2, . . . , rnr

}
as its links, where each road segment ri associates the traffic
density ri.d with itself. �

Definition 2: (Road Graph) Given a road network N , the
corresponding road graph G = (V,E) is constructed by adding
each road segment ri ∈ N as a node vi, and establishing an
undirected link ei between each possible node pair (v j, vk) if
there exists at least one intersection point ιl which is a common
intersection for the roads r j and rk, and the traffic can flow either
from r j to rk or vice versa, as shown in Equation 1.

V =
{
v1, v2, . . . , vnr

}
,where vi = node(ri)

E = {link(v j, vk) : ∃ ιl as the commnon intersection
point for r j and rk} (1)

2

1a 3b

4
b

2
a

1b 3a

4
a

2
b

(a) Intersection point

1a 2a 3a 4a

1b 2b 3b 4b

(b) Bipartite formation

Figure 1: Star topology to bipartite formation

Thus the links stand for the adjacency relationships among the
road segments. In this manner, the road network components
in a star topology form bipartites in the road graph, as shown in
Figure 1, where each partite stands for either incoming flow to
or outgoing flow from a common intersection point. Each node
vi (node(ri)) ∈ V associates with it a feature value vi. f which is
the road traffic density ri.d. �

Most urban roads exist as two-way roads, which are two
oppositely directed one-way parts separated from each other.
Each of the two parts (directions) undergo different kinds of
traffic flow patterns. For example, in the morning office hours,
a road that connects outskirts with the city center would find
more traffic heading towards the city center than the opposite
direction. This feature of the urban network is accommodated
in Definition 2 by considering the two traffic directions as sep-
arate road segments, if they share a common intersection point
and thus are adjacent. Figure 2 shows an example of our road
network representation in which Figure 2(a) is a sample road
map, Figure 2(b) is the corresponding road network of those
colored yellow in the map, and Figure 2(c) is the final repre-
sentation called the road graph. When representing any kind
of network in the form of a graph, normally the main objects
of study in the network are considered as nodes and the links
define the affinity between them. In the road network in Fig-
ure 2(b), we can see that nodes represent the intersection points
of roads, which actually do not have much importance for the
problem of spatial partitioning as compared to roads, which ap-
pear as links. The road graph in Figure 2(c) solves this problem
as the objects of study are represented as nodes.

2.2. Problem Definition

The problem of partitioning road networks addressed in this
paper is defined as splitting a given urban road network based
on traffic measures into several disjoint partitions, keeping in-
tact the associated spatial properties. The different partitions

Mary St

Chrystobel Cres

Lynch St

Burwood Rd

Manningtree Rd Oxley Rd

Burwood Rd

Liddiard St

W
ill

ia
m

 S
t

H
en

ry
 S

t

G
le

n
fe

rr
ie

 R
o

ad

(B1)

(B2) (B3)

(Ly1)

(My1)

(C1) (Ld1) (Ld2)

(G
1

)

(G
2

)
(G

3
)

(G
4

)

(Mn1) (O1)

(H
1

)

(W
1

)

(My1)

(C1)

(G1)

(G2)

(Ld1) (Ld2)

(H1)(W1)
(Ly1)

(G3)

(B1)

(G4)

(B2)

(Mn1) (O1)

(B3)

(a) Actual road map

(My1)

(C1)

(G1)

(G2)

(Ld1) (Ld2)

(H1)(W1)

(Ly1) (G3)

(B1)

(G4)

(B2)

(Mn1)
(O1)

(B3)

Mary St

Chrystobel Cres

Lynch St

Burwood Rd

Manningtree Rd Oxley Rd

Burwood Rd

Liddiard St

W
ill

ia
m

 S
t

H
en

ry
 S

t

G
le

n
fe

rr
ie

 R
o

ad

(B1) (B2) (B3)

(Ly1)

(My1)

(C1) (Ld1) (Ld2)(G
1

)

(G
2

)
(G

3
)

(G
4

)

(Mn1)

(O1)

(H
1

)

(W
1

)

(My1w)

(C1w)

(G1s)

(G2s)

(Ld1w) (Ld2w)

(H1s)

(W1s)

(Ly1w)

(G3s)

(B1w)

(G4s)
(B2w)

(Mn1w) (O1w)

(B3w)

Mary St

Chrystobel Cres

Lynch St

Burwood Rd

Manningtree Rd Oxley Rd

Burwood Rd

Liddiard St

W
ill

ia
m

 S
t

H
en

ry
 S

t

G
le

n
fe

rr
ie

 R
o

ad

(B1e) (B2e) (B3e)

(Ly1e)

(My1e)

(C1w)
(Ld1e) (Ld2e)(G

1
s)

(G
2

n
)

(G
3

n
)

(G
4

n
)

(Mn1e)

(O1w)

(H
1

n
)

(W
1

n
)

(My1w)

(C1e)

(Ly1w)

(B1w)

(Mn1w)

(O1e)

(B2w) (B3w)

(Ld1w) (Ld2w)

(G
1

n
)

(G
2

s)
(G

3
s)

(G
4

s)

(W
1

s)

(H
1

s)

(My1e)

(C1e)

(Ly1e)

(G1n)

(G2n)

(G3n)

(G4n)

(Mn1e)

(B1e)

(Ld1e)

(B2e)

(O1e)

(Ld2e)

(H1n)

(B3e)

(W1n)

(b) Road network

(My1w)

(C1w)

(G1s)

(G2s)

(Ld1w) (Ld2w)

(H1s)

(W1s)

(Ly1w)

(G3s)

(B1w)

(G4s)
(B2w)

(Mn1w) (O1w)

(B3w)

(My1e)

(C1e)

(Ly1e)

(G1n)

(G2n)

(G3n)

(G4n)

(Mn1e)

(B1e)

(Ld1e)

(B2e)

(O1e)

(Ld2e)

(H1n)

(B3e)

(W1n)

(c) Road graph

Figure 2: Mathematical representation of road networks

exhibit the property of intra-partition traffic homogeneity and
inter-partition traffic heterogeneity. Let us suppose we have a
real urban directed road network N = (I,R), which is trans-
formed into a road graph G = (V,E) by following the method
described in Section 2.1. Before formally stating the problem,
we present four definitions.

Definition 3: (Cost of Partitioning) While partitioning
the set of nodes V in a road graph G into different partitions
P = {P1,P2, . . . ,Pk}, the cost of partitioning is defined as the
aggregation of affinity values of all possible node pairs (vi, v j)
for which vi and v j lie in different partitions in the final result,

3

where the affinity values are measures of traffic similarity be-
tween nodes in the pairs. �

Definition 4: (Partition Volume) Given a set of road graph
partitions P = {P1,P2, . . . ,Pk}, partition volume is defined as
the aggregation of affinity values of all possible linked pairs
(vi, v j) for which vi and v j lie in the same partition. �

Definition 5: (Partition Connectivity) A partition Pl =

(Vl,El) is said to be connected if for any node pair (vi, v j) ∈ Pl

there exists a path from vi to v j (or vice versa), such that each
node vk in the path belongs toVl (i.e., vk ∈ Vl). �

The problem of traffic-based spatial partitioning of a road
graph G is to split its node set V into k partitions (or subsets)
P = {P1,P2, . . . ,Pk} such that the following conditions hold.

C.1
⋃k

i=1 Pi = V and Pi
⋂
P j = ∅ for all i , j;

C.2 each Pi is connected, and all adjacency relations, ex-
cept the cross-partition relations (inter-partition links),
are maintained as in G;

C.3 the partition volume of G is the maximum; and

C.4 the cost of partitioning G is the minimum;

In the above conditions, C.1 is a general condition of group-
ing the set of nodes (or road segments) into k non-overlapping
subsets, C.2 introduces the spatial connectivity (or linkage) of
nodes, C.3 enforce the condition of intra-partition traffic homo-
geneity, and C.4 enforces inter-partition traffic heterogeneity.
A partitioning may not satisfy C.3 and C.4 together simultane-
ously. Optimizing one of them may lead to sacrificing the other
condition. Therefore, our goal is to make an optimized trade-off

between C.3 and C.4.

2.3. Framework Overview

The task of road network partitioning is to cluster the road
segments of a given road network based on their traffic mea-
sures and the associated spatial connectivities (connectivity of
road segments). However, the traditional clustering algorithms,
like k-means, do not take care of the connectivities directly.
It requires to develop ways to incorporate the connectivities
during clustering in an efficient and effective manner. In the
proposed framework shown in Figure 3, our partitioning algo-
rithm called FaDSPa uses a combination of an efficient density-
based clustering approach and an effective spectral clustering
approach. It starts with constructing a road graph from the
given road network. The graph is passed to the partitioning
algorithm FaDSPa to obtain the set of partitions. Lastly the real
road network partitions are extracted from the resulting road
graph partitions.

The transformation of the real road network N into a road
graphG is done in the beginning to give it a mathematical repre-
sentation, explained as a preliminary step in Section 2.1. Due to
the large and rapidly expanding nature of urban areas, the size
of an urban road network |R| and the order of the corresponding
road graph |V| may become very large, which heavily affects
the time and space complexity for partitioning G. To address
this problem, the framework follows a two-level partitioning

(FaDSPa), where the first level is fast and the second level pro-
duces quality partitions. The first level follows a bottom-up
approach and applies a density based algorithm called FaDPa+

to compress the large graph G into a small density peak graph
Gd (defined later) by identifying the locally dense components.
The second level partitioning follows a top-down approach to
split up the density peak graph Gd into multiple heterogeneous
partitions that are internally homogeneous. It is achieved by
approximately optimizing α-Cut, by following a spectral clus-
tering based solution. It produces partitions of the density peak
graph, from which the road segment partitions are extracted.

The density based FaDPa+ is fast and thus suitable for large
networks. On the other hand, the spectral based α-Cut pro-
duces quality partitions, but comes with high time and space
complexity, and thus is suitable for small networks. Depend-
ing on the available computing resources and processing time,
FaDSPa maintains a balance between the efficiency and accu-
racy of the partitioning task, by using an input parameter. If
the urban network is small in size (manageable by the avail-
able resources), the task is done more by the α-Cut, and if it is
large (beyond manageable by the available resources), the task
is transferred more to FaDPa+. This makes FaDSPa effective as
well as efficient in dealing with graphs of all sizes.

We propose FaDPa (in Section 3) as a fast density-based
partitioning algorithm, which is further extended to FaDPa+ (in
Section 3.4) to partition into any desired small number of clus-
ters, and FaDSPa (in Section 4) as a combined density and spec-
tral based partitioning algorithm. FaDSPa is the main partition-
ing algorithm that is able to handle all small to large urban road
networks, by following an appropriate balance between the den-
sity based (FaDPa+) and spectral based (α-Cut [3]) algorithms.

3. FaDPa: Fast Density-based Partitioning

The road segments inside a road sub-network or parti-
tion are linked together. Any vehicle entering into a partition
through a road segment needs to go through the following seg-
ments to cross the partition or reach the destination. It makes
the traffic pattern of a road segment more likely to be similar
to (or dependent on) other (following or preceding) segments
inside the partition. Also in each partition, locally there exist
some important road segments that are spatially more closely
connected to others and play a special role in the traffic move-
ment. The road network segments including these important
roads and the surrounding roads form dense components with
high similarity in the traffic density, where the most important
and dominating road occupies the density peak. The traffic on
the surrounding roads, other than the density peak, is heavily
dependent on the peak, which again have following roads that
depend on these nearby roads. In this section we use this natural
phenomenon of road traffic networks to propose a fast density-
based network partitioning method called FaDPa (pronounced
as fad-paa). It first identifies the density peaks in a network and
then grows them to identify the density-based clusters.

There exist density based clustering algorithms like DB-
SCAN [7], which are efficient, able to detect clusters of arbi-
trary shapes, and able to find the suitable number of clusters

4

Compute LD

Compute HDD

Identify Density Parent/Child Nodes

Extract DGCs

FaDPa

Construct DPG

FaDPa+

Compute α-Cut Matrix

Compute Eigen-pairs

Construct Matrix from Eigen Vectors

K-Means on Rows

Get Disjoint Partitions

Road Graph Construction

Road graph

α-Cut Partitioning

Partition Extraction

FaDSPa

DPG
DPG

DGC

Road network Road network partitions

Road traffic

measures

Construct Graph

Partition graph

Disjoint partitions

Input Output

Figure 3: Architecture of the proposed framework

automatically. They identify a cluster by looking into the neigh-
borhood of each object within a radius of a predefined thresh-
old ε distance. With each minpts (predefined) objects in the
ε-neighborhood, a new cluster is formed. The process is car-
ried out to find all density-connected clusters, where a density-
connected cluster is defined as the maximal set of density-
connected objects. The main drawback of this method is the
predetermination of ε and minpts thresholds, and their high
sensitivity to cluster formation [28]. The method we propose
here is free from these requirements. We start with presenting
the main concepts and terminology, which is followed by the
algorithm.

3.1. Concepts and Terminology

We use some of the ideas of [28] in Definitions 6 and 7 to
find the density peaks in unlinked data, and then extend them to
graph data.

Definition 6: (Local Density (LD)) Given a set of data ob-
jectsD = {d1, d2, ..., d(nd)}, the local density ρ(di) of an object di

is defined as the number of objects closer than a predefined dis-
tance threshold εd to di. It is formulated in Equation 2, where
dist(di, d j) gives the distance1 between di and d j in terms of
their feature values, and χ(.) is a binary function defined in
Equation 3. �

1We use Gaussian based distance measure defined later in Section 3.2

ρ(di) =
∑

j

χ(dist(di, d j) − εd) (2)

χ(x) =

{
1 if x < 0
0 otherwise (3)

Definition 7: (Higher Density Distance (HDD)) Given a
set of data objects D = {d1, d2, ..., d(nd)}, the higher density dis-
tance δ(di) of an object di is defined as the distance from di to
the closest object d j of higher local density. It is formulated in
Equation 4 as the minimum distance between di and any other
object d j with higher density. �

δ(di) = min
∀d j:ρ(d j)>ρ(di)

dist(di, d j) (4)

Definition 8: (LD in Graph) Given a graph G = (V,E),
the LD ρg(vi) of a node vi is defined as the number of nodes that
are directly linked to vi and closer than a predefined distance
threshold εd. It is formulated in Equation 5, where neigh(vi)
returns all the neighboring or linked nodes to vi, dist(vi, v j) re-
turns the distance between vi and v j in terms of their feature
values, and χ(.) is the same binary function defined in Equation
3. �

ρg(vi) =
∑

∀v j∈neigh(vi)

χ(dist(vi, v j) − εd) (5)

5

a

b

c d

gh

e

f

i

j

k

l

8

3

5 3

6

5

4

6

8

9

42

a

b

c d

gh

e

f

i

j

k

l

8

3

5 3

6

5

4

6

8

9

42

a

f
e j

k

l

i

b d
g

h

c

A

B

C D

E

(a) Sample road graph

a

b

c d

gh

e

f

i

j

k

l

8

3

5 3

6

5

4

6

8

9

42

a

b

c d

gh

e

f

i

j

k

l

8

3

5 3

6

5

4

6

8

9

42

a

f
e j

k

l

i

b d
g

h

c

A

B

C D

E

(b) Identification of DPNs

f

i

c

a

f
e j

k

l

i

b d
g

h

c

D1

D3 D4

D5

D2

k

g

(c) DGCs

f

i

c

a

f
e j

k

l

i

b d
g

h

c

D1

D3 D4

D5

D2

k

g

(d) DPG

Figure 4: Illustration of DPG construction from a graph

Table 1: Distance measures in the sample road graph
Distance measures LD

a b c d e f g h i j k l

a - 0.93 - 0.93 - 0.10 - 0.98 - - - - 1

b 0.93 - 0.35 - 0.62 - 0.10 - - - - - 2

c - 0.35 - 0.35 - 0.82 - 0.62 - - - - 2

d 0.93 - 0.35 - 0.62 - 0.10 - - - - - 2

e - 0.62 - 0.62 - 0.62 - 0.82 0.10 - 0.00 - 2

f 0.10 - 0.82 - 0.62 - 0.93 - - 0.93 - 0.10 2

g - 0.10 - 0.10 - 0.93 - 0.35 - - - - 3

h 0.98 - 0.62 - 0.82 - 0.35 - - - - - 1

i - - - - 0.10 - - - - 0.10 - 0.62 2

j - - - - - 0.93 - - 0.10 - 0.35 - 2

k - - - - 0.00 - - - - 0.35 - 0.35 3

l - - - - - 0.10 - - 0.62 - 0.35 - 2

Example 1: Figure 4(a) shows an example of a road graph
constructed from a small road network, in which exemplary
node feature values are shown beside the nodes, and Table 1
shows the distance measures computed for each pair of nodes.
Setting the distance threshold εd to 0.5, the distances lower than
this threshold are highlighted (bold) in the table, and the right-
most column shows the node local density as the count of these
highlighted entries in each row. �

Definition 9: (Density Parent) Given a graph G = (V,E),
the density parent of a node vi is defined as the linked node v j

having the closest higher local density, such that χ(dist(vi, v j)−
εd) = 1. If there are multiple nodes equally close to vi in terms
of LD, then the one with the lowest dist(vi, v j) is chosen as the
parent. �

Definition 10: (Density Child) Given a graph G = (V,E),
the density children of a node vi is defined as the set of linked
nodes {v j} that have vi as their density parent. A node can have
multiple density children. �

Definition 11: (HDD in Graph) Given a graph G = (V,E),
the HDD δg(vi) of a node vi is defined as the distance from vi to
its density parent v j if v j exists (Equation 6), otherwise it is the
maximum of all distances between any two linked nodes (Equa-
tion 7). In the equations, neigh(vi) returns all the neighboring
or linked nodes to vi, dist(vi, v j) returns the distance between vi

and v j in terms of their feature values, and vk ⇔ vl denotes that
vk is linked to vl. �

δg(vi) = min
∀v j

{
dist(vi, v j)

}
(6)

δg(vi) = max
∀vk ,vl,vk⇔vl

{dist(vk, vl)} (7)

Definition 12: (Density Peak Node (DPN)) Given a graph
G = (V,E), a node v j is called a density peak node ςi, if v j

does not have any density parent. Like nodes, the DPNs also
associate a feature value ςi. f (= v j. f) with them. �

Definition 13: (Density Similar) Given a graph G =

(V,E), two nodes vi and v j are said to be density similar, if they
have a density parent and density child relationship, or if there
is another node vk such that vi is density similar to vk and vk is
density similar to v j. Hence this relationship is both reflexive
and transitive. �

Definition 14: (Graph Component (GC)) Given a graph
G = (V,E), a graph component is defined as a subgraph in
which there exists a path between any two nodes vi, v j ∈ V in
such a way that each node vk in the path belongs toV. �

Definition 15: (Dense Graph Component (DGC)) Given
a graph G = (V,E), a dense graph component Di is defined
as a graph component in which each pair of nodes (vi, v j) are
density-similar. Every DGC must have exactly 1 DPN, which
will not have any density parent, whereas all other nodes in the
DGC must have. �

Definition 16: (Density Peak Graph (DPG)) Given a
graph G = (V,E), a density peak graph Gd is defined as a 3-
tuple

(
Vd,Ed,Wd

)
, where Vd =

{
ς1, ς2, . . . , ςnς

}
is the set of

DPNs, Ed =
{
ε1, ε2, . . . , εnε

}
is the set of links connecting the

DPNs, andWd =
{
ω1, ω2, . . . , ωnε

}
is the set of weights asso-

ciated with each of the corresponding links. The links between
the DPNs are established by looking into the neighborhood re-
lationships between the corresponding DGCs. For each pair of
DPNs (ςi, ς j) in the DPG, if there exists a link ek between a pair
of nodes (vp, vq), such that (vp ∈ Di and vq ∈ D j) or (vq ∈ Di

and vp ∈ D j), then a link εl is established between them. The
weight of this link is set as a measure of similarity between ςi

and ς j, i.e., ωl = sim(ςi, ς j) (defined later in Equation 11). �

Example 2: In Table 1, the LD of node a is 1. To find its
density parent, we look into the LD of all the linked nodes (i.e.,
b, d, f , h) that have their distance less than εd(= 0.5) (i.e., f),
and select the node having the closest higher LD, which is f .
Thus a becomes density child of f , and f becomes the density

6

parent of a. After establishing this relationship, a and f are
called to be density similar. In the set {b, d, g, h}, b, d, and h are
children of g, which makes all the nodes density similar to each
other. Therefore the set forms a dense graph component. For
a node, if there does not exist any linked node with higher LD,
then it forms the density peak. As shown in the table, g has b, d,
and h as the linked nodes satisfying the εd condition, but none of
them have their LD higher than g. Therefore, g becomes a den-
sity peak node. Figure 4(b) shows the DPNs (colored) found in
the sample graph. The solid lines represent a parent-child rela-
tionship and the dotted lines represents a link in the road graph.
Figure 4(c) shows the identified dense graph components en-
closed in the circles with solid lines, where the colored nodes
are the DPNs, and the links with solid lines represent the neigh-
borhood relationship between the DGCs. Figure 4(d) shows the
density peak graph, where the nodes are the identified DPNs
linked by the neighborhood relationship. �

For a given graph G = (V,E), the density parent-child rela-
tionships among the nodes can be easily established after com-
puting their LD and HDD. According to Definitions 9 and 12,
all nodes must have a density parent, unless they are DPNs. It
means that except the DPNs, all other nodes in V can be ac-
cessed by traversing through the children of DPNs, followed by
their children, and so on, until the nodes do not have any chil-
dren. This traversal from a single DPN results into accessing a
complete DGC, and doing this for all the DPNs, gives the com-
plete set of DGCs, which include all the nodes inV. It leads to
the conclusion that any given G can be decomposed into a set of
DGCs, where each of them have one DPN. These DPNs are the
density peaks, which form the center of attention in a surround-
ing. They become nodes in the DPG Gd = (Vd,Ed,Wd), while
the remaining surrounding nodes in V disappear, as shown in
Figure 4. Each DPN represents its corresponding DGC, and
thus constructing a DPG from a road graph condenses the graph
using the density peaks.

3.2. Algorithm
The algorithm (shown in Algorithm 1) starts after trans-

forming the given road network N = (I,R) into the road
graph G = (V,E) as explained in Section 2.1. For all the
nodes V in G, the LD (lines 3–4), and the HDD with den-
sity parent/child nodes (lines 5–19) are computed. We assume
that the feature values are in Gaussian distribution2 and de-
fine the distance measure for computing LD and HDD based
on the Gaussian similarity. Equation 8 formulates the Gaus-
sian similarity between two linked nodes vi and v j, where
σ2(v) = 1

nv
×

∑nv
i=1 (vi. f − µv)2 is the variance of node feature

values with respect to the node mean µv. It is a direct similarity
with path length3 1.

gsim1(vi, v j) = exp

−
(
vi. f − v j. f

)2

2 × σ2(v)

 (8)

2In [14], the authors have used the Gaussian function in road networks, and
we follow them.

3It refers to the number of links in the path connecting the two nodes.

Equation 9 shows the similarity with path length 2 where
we multiply the gsim1(.) of intermediate links together for each
different path between vi and v j and get the average of all such
paths. As the value of gsim1(.) ranges from 0 to 1, its product
of intermediate links also lies in the same range, and thus it also
follows to gsim2(.). This equation is generalized for path length
n in Equation 10.

gsim2(vi, v j) =
1

|V2
(vi,v j)
|
× ∑

vk∈V(vi ,v j)

(
gsim1(vi, vk) × gsim1(vk, v j)

)
(9)

The final similarity measure is defined in Equation 11, by con-
sidering all the possible path lengths up to n, where we weight
the similarity terms with the harmonic series members and di-
vide their summation by the harmonic series. Generally the
shorter paths between two nodes define their associativity (or
relationship) strength more accurately than the longer paths.
The rationality behind using the harmonic series to define the
aggregated similarity is to make the effect of shorter paths more
than longer paths, proportional to the path length. All the
measures gsim1(vi, v j), gsim2(vi, v j), ..., gsimn(vi, v j), range be-
tween 0 and 1, and so does the sim(vi, v j).

sim(vi, v j) =
gsim1(vi, v j) +

gsim2(vi,v j)
2 + . . . +

gsimn(vi,v j)
n

1 + 1
2 + . . . + 1

n
(11)

Based on this, the distance between a pair of nodes (vi, v j) is
defined in Equation 12, which again makes it range between 0
and 1.

dist(vi, v j) = 1 − sim(vi, v j) (12)

All those nodes having their HDD value δg(vi) as the
maximum of all distances between a pair of linked nodes
max∀vk ,vl,vk⇔vl {dist(vk, vl)} are designated as a DPN (line 17).
For each DPN, a search is then started for the density chil-
dren, which are combined with the DPNs to form a DGC (lines
20–29). This component is grown further by looking into the
density children of the children of each DPN, and so on, un-
til they return null. Thus a DGC is the largest component that
could be grown from a DPN by exploring the density children.
The number of DGCs in G is equal to the number of DPNs,
|D| = |Vd |, and the union of all the DGCs equals to the whole
graph, {∪∀iDi} = G. These DGCs are finally accepted as the
different partitions of the road graph G (lines 30–31).

3.3. Determining Distance Threshold

As mentioned earlier, the main drawback of DBSCAN is
the requirement of predetermined constants, ε and minpts. The
cluster formation is highly sensitive to these parameters; a bad
value for these parameters will lead to poor results. In FaDPa,
one of our objectives is to make the algorithm more robust

7

gsimn(vi, v j) =
1

|Vn
(vi,v j)
|
×

 ∑
〈vk1,vk2,...,vk(n−1)〉∈V

n
(vi ,v j)

(
gsim1(vi, vk1) × gsim1(vk1, vk2) × . . . × gsim1(vk(n−1),v j)

) (10)

against these pre-determined parameters. We have only one
constant, which is the distance threshold εd used in Equation
5. We consider this as a vector 〈εd

1 , ε
d
2 , . . . , ε

d
nv
〉 of dimension nv,

instead of a single constant value, where each εd
i corresponds to

the distance threshold for node vi. The value of εd
i is computed

by looking into the neighborhood of vi locally using Equation
13, where V1

(vi)
denotes the set of nodes directly linked to vi

(with path length 1).

εd
i = 1 −

1
|V1

(vi)
|
×

∑
v j∈V

1
(vi)

sim(vi, v j) (13)

3.4. FaDPa+: Reducing the Number of Partitions Further
In a graph where nodes are linked among themselves, each

node is exposed only to its neighboring nodes. While comput-
ing the DPNs in G in Section 3.2, the density parents and den-
sity children relationships are established by looking into only
the neighboring nodes. The DPNs obtained in this manner are
based on the local connections (not on the complete node set
globally). This leads to a large number of DPNs locally, and in
turn a large number of DGCs. But in real situations, we may
sometimes need to cluster the graph into a small number of par-
titions to know the global partitioning pattern. For example, in
our experimental dataset M2 that has a graph of 53,494 nodes,
the number of partitions produced by FaDPa is 22670; it gener-
ally depends on the number of nodes, links, and their distance
weights. This number is still large. A manual analysis of these
partitions would be very difficult, and the user may want to have
far fewer partitions numbering less than 100 or even 10.

To further reduce the number of partitions generated by
FaDPa as per the user requirements, we propose an extended al-
gorithm named FaDPa+ (shown in Algorithm 2). In this exten-
sion, the DPNs obtained from G by FaDPa are used to construct
a DPG Gd =

(
Vd,Ed,Wd

)
(defined in Definition 16). The new

graph Gd becomes a condensed form of the original graph G
where some local information is merged together. Consider-
ing Gd as the main graph now, the DPNs are further obtained
using FaDPa. This time the number of DPNs would reduce fur-
ther, and so would the number of partitions. These steps of
constructing the DPG and identifying the DPNs are repeated
alternatively until the number of DPNs becomes lower than the
predefined number of partitions εp (lines 2–4). Thereafter the
DGCs are obtained in the same way as explained earlier and
accepted as the different partitions of the road graph (line 5).

4. FaDSPa: Fast Density and Spectral based Partitioning

FaDPa+, proposed in the previous section, is a complete
road network partitioning algorithm in itself. It grows the clus-
ters in arbitrary shapes by first identifying the dense compo-
nents, and is able to work efficiently. In contrast, spectral

Algorithm 1: FaDPa (Road graph G, Distance threshold
εd)
1 Vd ← instantiate an empty set of DPNs;
2 stack ← initialize a stack;
// compute LD

3 for i← 1 to (nr) do
4 ρg(vi) =

∑
∀v j∈neigh(vi) χ(dist(vi, v j) − εd);

// compute HDD, and density parent/child

nodes

5 for i← 1 to (nr) do
6 δg(vi)← −1 ; // initialize with null

7 forall the v j ∈ neigh(vi) do
8 if ρg(v j) > ρg(vi) then
9 if δg(vi) = −1 then

// assign distance

10 δg(vi)← dist(vi, v j);
11 parentnode← v j;

12 else if δg(vi) > dist(vi, v j) then
// overwrite HDD with the

minimum distance

13 δg(vi)← dist(vi, v j);
14 update, parentnode← v j;

15 if δg(vi) = −1 then
// Equation 7

16 δg(vi) = max∀vk ,vl,vk⇔vl {dist(vk, vl)};
17 Vd ←Vd ∪ {vi} ; // vi found as DPN ςi

18 else
19 Set vi as child of parentnode, and parentnode as

parent of vi;

// extract DGCs

20 D← instantiate an empty set of DGCs;
21 forall the ςi ∈ V

d do
22 push ςi into stack;
23 d ← {φ} ; // instantiate an empty DGC

24 while stack is not empty do
25 node← pop out from stack;
26 d ← d ∪ {node} ; // add density-similar

nodes to the DGC

27 forall the childnode ∈ child(node) do
28 push childnode into stack;

29 D← D ∪ {d};

// extract partitions from DGCs

30 P← extract partitions from D;
31 return P;

8

Algorithm 2: FaDPa+ (Road graph G, Distance threshold
εd, Number of partitions threshold εp)

1 Gd = (Vd,Ed,Wd)← G = (V,E,W);
2 while |Vd | > εp do
3 partition set P← FaDPa(Gd, εd);
4 Gd ← construct DPG from P;

5 return P;

clustering methods have been a major focus in the literature
due to their ability to produce high quality results. Due to
its high computational complexity, spectral clustering is often
not used directly in large-scale data mining problems. How-
ever, attempts are being made to improve the efficiency of spec-
tral clustering [39]. In this section, we propose FaDSPa (pro-
nounced as fad-spaa and shown in Algorithm 3) as an efficient
as well as effective road network partitioning algorithm that
employs both density-based (FaDPa) (lines 2–4) and spectral-
based (α-Cut) (line 5) theories.

Algorithm 3: FaDSPa (Road graph G, Distance threshold
εd, Compression threshold εc, Number of desired parti-
tions k)
1 Gd = (Vd,Ed,Wd)← G = (V,E,W);
// density based clustering

2 while |Vd | > εc do
3 partition set P← FaDPa(Gd, εd) ; // Algorithm 1

4 Gd ← construct DPG from P;

// spectral based clustering

5 partition set P← α-Cut Partitioning(Gd, k) ;
// Algorithm 4

6 return P;

4.1. Mining DPG

FaDSPa starts by mining a road DPG Gd =
(
Vd,Ed,Wd

)
from the road graph G. It uses FaDPa+ to mine this DPG, in
which εc is a compression threshold that determines the number
of DPNs (|Vd |). The value of εc is pre-defined depending on the
available computing resources and the time that we can afford
to spend in order to obtain good partitioning results. FaDPa+

compresses the graph until |Vd | becomes lower than or equal
to εc. G is normally a sparse graph in nature. Gd is mined
by identifying the dense components in G in arbitrary shapes,
which reduces the sparsity of the graph as well as the overhead
in dealing with that sparsity. The resulting graph Gd becomes a
condensed form of the road graph G, which is much smaller in
order. As the level of compression ofG is controlled by εc, there
exist two extremes. At one end, εc could be set to |V|, and on the
other end, it could be the number of required partitions k. The
first case makes it FaDPa+, whereas the second case makes it
the α-Cut spectral clustering algorithm. Thus FaDSPa provides
a good balance of FaDPa+ and α-Cut, and is a generalization
of these two algorithms. After mining the DPG, a preliminary

level of grouping of road segments has already happened in the
form of DGCs in the DPG (Gd) in a bottom-up manner. There-
after the spectral based partitioning algorithm α-Cut is applied
on the compressed graph Gd, instead of the large graph G, in a
top-down manner.

4.2. Spectral Clustering for DPG Partitioning
Spectral clustering treats clustering as a graph partitioning

problem. Among the existing graph cuts, normalized cut has
been found to be comparatively effective for graph partition-
ing [29, 14]. Its objective function minP

∑k
i=0

W(Pi,Pi)
W(Pi,P) is a min-

imization of the normalized summation of the cross-partition
weighted links, where the normalization is done by all the
weighted links having at least one end in the corresponding par-
tition. Both the numerator and denominator take into account
just the weighted links, and no consideration is made for the
node groupings (or node counts) inside the resulting partitions.
The links in our road graph are established only if they are adja-
cent in the road network, and thus the DPG links too are based
on adjacency relationships. To partition the graph based on both
weighted links and node counts in resulting partitions, in the
next section we present the k-way graph cut developed in our
recent work [3]. Instead of repeated bipartitioning of the whole
graph, it produces k′(> k) partitions in just a single iteration,
and then applies repeated partitioning to produce k partitions,
which significantly improves its efficiency.

4.3. The k-way α-Cut
For a given weighted graph, which in our case is the DPG4

Gd, let us suppose its DPN set is partitioned into k disjoint sub-
sets or clusters as P = {P1,P2, . . . ,Pk}. The adjacency ma-
trix of Gd is denoted by A, the degree matrix is denoted by D,
which is a diagonal matrix having row sums of A at the diago-
nal as shown in Equation 14, and the Laplacian matrix (D − A)
is denoted by L.

D =

nς∑
i=1

a1i 0 · · · 0

0
nς∑
i=1

a2i · · · 0

...
...

. . .
...

0 0 · · ·

nς∑
i=1

anς i

(14)

A function W(Pi,P j) is defined in Equation 15 as the sum
of weights associated with all the links having their DPN at one
end in Pi and the DPN at the other end in P j.

W(Pi,P j) =
∑

εr∈{links(Pi,P j)}

ωr =
∑

ςp∈Pi,ςq∈P j

A(p, q) (15)

4In this section, the DPG can be treated just like a weighted graph, and the
terms DPG and DPN can be read synonymously as graph and node respectively
for the application of α-Cut in graph partitioning.

9

Definition 17: (Cut) For a given partition set P =

{P1,P2, . . . ,Pk} the cut of a partition Pi is defined as the sum-
mation of weights associated with all the links having their
DPNs at one end in Pi and DPNs at other end in any partition
other than Pi, i.e., W(Pi,Pi). �

Definition 18: (Association) For a given partition set P =

{P1,P2, . . . ,Pk} the association of a partition Pi is defined as
the summation of weights associated with all the links having
DPNs at both ends in Pi, i.e. W(Pi,Pi). �

The cut value of a partition Pi gives a measure of connec-
tivity strength between Pi and the rest of the partitions, and
thus quantifies the loss incurred in cutting those link connec-
tions while partitioning the graph. When this value is divided
by the number of DPNs in Pi, it gives the average contribution
of each DPN in the overall cut of Pi. It represents the inter-
partition similarity. Similarly, the association value of a parti-
tion Pi gives a measure of connectivity strength within Pi that
binds it as a unit, and thus quantifies the retained association
of Pi after partitioning the graph. When this value is divided
by the number of DPNs in Pi, it gives the average contribu-
tion of each DPN in the overall association of Pi. It represents
the intra-partition similarity. A good partitioning is achieved by
minimizing the summation of average cut values and simultane-
ously maximizing the summation of average association values
of each partition [29]. However, optimizing any one of these
objectives does not guarantee the other. One possible approach
is that of normalized cut [29, 14]. It minimizes inter-partition
similarity and maximizes intra-partition similarity simultane-
ously. But the optimization is based on normalized values of
cut and association, where the normalization considers the link
connectivities between nodes, instead of the nodes directly. It
does not guarantee the optimization of their average cut and as-
sociation.

Our k-way graph cut called α-Cut aims to achieve a well
balanced optimization of average cut and average associa-
tion. We optimize the objective function minP α-Cut(P), where
α-Cut(P) is shown in Equation 16.

α-Cut(P) =

k∑
i=1

α × W(Pi,Pi)
|Pi|

− (1 − α) ×
W(Pi,Pi)
|Pi|

 (16)

It minimizes a combination of two components, which sep-
arately are the minimization of the average cut representing
the inter-partition similarity, and the maximization of the aver-
age association representing the intra-partition similarity. The
α ∈ [0, 1] acts as a balance between the two components. Its
value is crucial to obtain the best possible optimized partitions.
An advantage of α-Cut over normalized cut is that α-Cut nor-
malizes the cut and association by the partition size, whereas
normalized cut normalizes the cut by the association.

4.4. Determining α in α-Cut
Instead of considering α as a single constant value for all

the partitions, we consider it as a vector α = 〈α1, α2, . . . , αk〉,
where each αi corresponds to the partition Pi. The advantage
in considering it as a vector over a single scalar value is its

non-uniformly defined value depending on the nature of the re-
spective partition. We consider this factor αi as the portion of
the connectivity weight contributed by Pi in the whole DPG
(including intra-connections as well as inter-connections), and
define it as the ratio of the summation of its link connection
weights to the summation of all link connection weights in the
DPG, i.e., αi =

W(Pi,V
d)

W(Vd ,Vd) . Its value ranges from 0 to 1. In
contrast, (1 − αi) gives the portion of the connectivity weight
contributed by all partitions other than Pi. Putting this value of
αi in Equation 16, α-Cut simplifies as shown in Equation 17.

α-Cut(P) =

k∑
i=1

 W(Pi,V
d)

W(Vd,Vd)
×

W(Pi,Pi)
|Pi|

−
W(Pi,Pi)
|Pi|

+
W(Pi,V

d)
W(Vd,Vd)

×
W(Pi,Pi)
|Pi|

)
=

k∑
i=1

 W(Pi,V
d)

W(Vd,Vd)
×

W(Pi,Pi)
|Pi|

+
W(Pi,Pi)
|Pi|

−

W(Pi,Pi)
|Pi|

)
=

k∑
i=1

(
W(Pi,V

d)
W(Vd,Vd)

×
W(Pi,V

d)
|Pi|

−
W(Pi,Pi)
|Pi|

)
(17)

Like normalized cut [29], the problem of achieving a
partitioning configuration that minimizes this cost is an NP-
complete problem. To solve it in a time-bound and computa-
tionally efficient manner, we follow a spectral clustering ap-
proach described in the following subsection.

4.5. Spectral Clustering Approach to α-Cut

If P = {P1,P2, . . . ,Pk} is the set of k disjoint partitions of
Gd, let 1 ∈ Rnς be a vector with each of its values as 1, and
ci ∈ Rnς be the cluster indicator vector of Pi such that its jth
value ci(j) = 1, if ς j ∈ Pi, and ci(j) = 0 otherwise, as shown in
Equation 18.

ci(j) =

1, if (ς j ∈ Pi)
0, if (ς j < Pi)

(18)

The spectral clustering approach to minimize the cost of α-
Cut partitioning follows a relaxed approach based on eigenvec-
tors and eigenvalues. The relaxation lies in the cluster indicator
vectors, which are allowed to take on any real value, instead of
restricting them only to discrete values. Using the cluster indi-
cator vectors, the α-Cut formulation can be simplified by sub-
stituting W(Pi,Vd) by 1T Dci, W(Pi,Pi) by cT

i Aci, W(Vd,Vd)
by 1T D1, and |Pi| by cT

i ci in Equation 17. The simplification
steps are shown in Equation 19.

10

Algorithm 4: α-Cut Partitioning (DPG Gd, number of de-
sired partitions k)

1 A← adjacency matrix of Gd;
2 D← degree matrix of Gd;
// repeated partitioning to obtain k

partitions

3 repeat

4 M ←
(
(1T D)T (1T D)

1T D1 − A
)

; // get the α-Cut

matrix

5
⋃nς

i=1 {(yi, λi)} ← get eigenvector and eigenvalue pairs
of M;

6 sort eigenvalues λi to have λnς ≤ λnς−1 ≤ . . . ≤ λ1;
7 select {λnς , λnς−1, . . . , λnς−k+1} eigenvalues and

corresponding eigenvectors {ynς , ynς−1, . . . , ynς−k+1};
8 generate matrix Ynς×k =

(
y1 y2 . . . yk

)
;

9 Z ← row normalize Y;
10

{
z1, z2, . . . , znς

}
← get row vectors of Z;

11 C = {C1,C2, . . . ,Ck} ← k-means
({

z1, z2, . . . , znς

}
, k

)
;

12 P = {P1,P2, . . . ,Pk′ } ← get disjoint partitions from
C ; // resulting set of partitions

13 if k′ is not equal to k then
// construct a graph from the

partitions and consider this as

the new graph for partitioning

14 nς ← k′;
15 Gp ← construct partition graph from P;
16 A′nς×nς ← adjacency matrix of Gp;
17 D′nς×nς ← degree matrix of Gp;
18 A← A′;
19 D← D′;

20 until number of partitions in P equals to k;
21 return P ; // return the partitions when their

number equals to k

α-Cut(P) =

k∑
i=1

(
1T Dci

1T D1
×

1T Dci

cT
i ci

−
cT

i Aci

cT
i ci

)

=

k∑
i=1

1
cT

i ci
×

(
1T Dci

)2

1T D1
− cT

i Aci

=

k∑
i=1

1
cT

i ci
×

cT
i

(
1T D

)T (
1T D

)
ci

1T D1
− cT

i Aci

=

k∑
i=1

1
cT

i ci
× cT

i

(
1T D

)T (
1T D

)
1T D1

− A

 ci

=

k∑
i=1

cT
i Mci

cT
i ci

where M =

(
1T D

)T (
1T D

)
1T D1

− A

(19)

The derived matrix M is called the α-Cut matrix for αi =
W(Pi,V

d)
W(Vd,Vd)

, and the spectral clustering algorithm works on this

matrix. Equation 19 is further simplified as follows.

k∑
i=1

cT
i Mci

‖ci‖
2 =

k∑
i=1

(
ci

|ci|

)T

M
(

ci

|ci|

)
=

k∑
i=1

yT
i Myi

where yi is a unit vector in the direction of ci, such that yT
i yi = 1.

Hence the optimization function becomes

min
P

k∑
i=1

yT
i Myi subject to yT

i yi = 1 (20)

This is solved by setting its derivative with respect to yi to zero
and introducing a Lagrange multiplier λi for each Pi to incor-
porate the associated constraint [40], as shown in Equation 21.

∂

∂yi

 k∑
i=1

yT
i Myi +

n∑
i=1

λi

(
1 − yT

i yi

) = 0

Myi − λiyi = 0
Myi = λiyi

(21)

It implies that yi is one of the eigenvectors of M corresponding
to the eigenvalue λi, and yT

i Myi = yT
i λiyi = λi. As the objec-

tive is minimization, we select k smallest eigenvalues from the
total of nς eigenvalues as λnς ≤ λnς−1 ≤ · · · ≤ λnς−k+1 and cor-
responding eigenvectors ynς , ynς−1, . . . , ynς−k+1 which represent
the relaxed cluster indicator vectors. Thus, it leads to Equation
22.

min
P
α-Cut(P) = yT

nς Mynς + · · · + yT
nς−k+1Mynς−k+1

= λnς + · · · + λnς−k+1

(22)

Algorithm 4 presents the complete partitioning method,
which starts with getting the adjacency and degree matrices in
line 1 and 2. The steps 4–19 are repeatedly performed until the
resulting number of partitions equals to k. The α-Cut matrix is
computed from the adjacency and degree matrices in line 4 and
eigen-decomposed in line 5. Lines 6–7 select the k smallest
eigenvalues and corresponding eigenvectors. Ideally the indi-
cator vectors should have only binary values, but the actually
obtained indicator vectors are in fact the relaxed vectors and do
not follow a binary pattern. Due to the lack of concrete infor-
mation about clusters, it becomes another problem to separate
the k clusters. We assume that the clusters are well-separated in
the k-dimensional eigenspace, which is a general assumption in
spectral clustering [40], and use the eigenvectors (or indicator
vectors) to generate a matrix Y of nς×k dimensions (line 8). It is
then row-normalized using Equation 23 to have row-vectors zi

of unit length giving the final matrix Z (line 9). Each row-vector
zi represents a DPN ςi. The set of row-vectors are used to clus-
ter the DPNs by applying k-means to find a set of k clusters

11

C = {C1,C2, . . . ,Ck} (lines 10–11), where each cluster Ci com-
prises one or more row vectors (DPNs) in Z. The DPNs inside
each cluster are linked together as they exist in the DPG. Upon
linking them, sometimes more than one connected component
may be found inside a single cluster. As these multiple con-
nected components within a single cluster are disjoint, they can
not become part of the same partition. These connected compo-
nents are extracted from each cluster to form disjoint partitions
(line 12).

Y =

y11 y21 . . . yk1
y12 y22 . . . yk2
| | |

y1n y2n . . . ymn

 =

— zT

1 —
— zT

2 —
...

— zT
n —

 = Z (23)

where, zi =
1√√√ k∑

j=1

y2
ji

(y1i, y2i, . . . , ymi)T

Depending on the data, the number of disjoint partitions
may sometimes be large, which would yield the partition set
from C as P = {P1,P2, . . . ,Pk′ }, where k′ ≥ k. These k′

partitions may be accepted as the final result. However, if the
requirement to have exactly k partitions is strict, Shi and Ma-
lik [29] described two approaches to achieve this, which are
greedy pruning and global recursive bipartitioning. The greedy
pruning approach iteratively merges the two nearest partitions
optimizing the defined graph cut, until it results in a total of k
partitions. In contrast, the global recursive bipartitioning ap-
proach generates a condensed graph where each partition forms
a node and adjacent partitions are connected by weighted links
with W(Pi,P j) as the weight, and is recursively bipartitioned
until it results in a total of k partitions. For large k′ values, the
greedy pruning approach is computationally intensive. On the
other hand, as the global recursive approach bipartitions each
time, it would yield a balanced set of partitions only when k
follows the pattern 2i for any value of i. For example, if the
value of k is 3, firstly the graph is bipartitioned to get 2 parti-
tions, and then only one of them has to be bipartitioned to get a
total of 3 partitions, whereas the other partition remains as it is.
In this way it generates one large partition and two small parti-
tions, where the large partition is approximately double in size
than the small ones. Moreover, the selection of the large parti-
tion that is to be bipartitioned first, is either arbitrary or some
additional condition has to be applied to decide this.

To avoid these complexities and make the method efficient,
we follow a repeated partitioning approach where the inter-
leaved steps of partitioning and constructing a new graph each
time from the obtained partitions are repeated until we obtain
exactly k partitions (lines 4–12). In each repetition, we con-
struct a new graph from the set of partitions, by considering
each partition as a node and their connectivity via the nodes be-
longing to them as links (lines 14–15). The feature value of the
nodes (formed from the partitions obtained in the last iteration)
is assigned as the average of feature values of all nodes belong-
ing to the respective partitions (old partitions), based on which

the link weights are assigned. In lines 16–17, we get its adja-
cency and degree matrices. These matrices are considered to
compute the α-Cut matrix for the next iteration of partitioning.
Finally the k partitions are returned at the end (line 21).

4.6. Computational Complexity

The algorithm FaDSPa comprises successive applications of
FaDPa to mine the DPG of desired order, followed by α-Cut.
The computational complexity of FaDPa is O(n2) for computa-
tion of ρg(vi) and δg(vi), after which the partitions are extracted
using a stack. Thus the overall computational complexity of
FaDPa becomes O(n2), which is applied multiple times but still
much less than n, thereby making it ≈ O(n2). In α-Cut, the
eigen-decomposition task is done in O(n3) time in general and
O(n2) time for sparse matrices. The application of k-means on
row-vectors to find the clusters costs O(tnk2), where t is the
number of iterations required to reach the convergence. In these
costs, n = nς when the spectral clustering is applied on the
DPG, and n = nr when it is applied directly on the road graph.

4.7. Relation with Modularity

Definition 19: (Modularity) The modularity of a set of
graph partitions Q(P) [35] is defined as the difference between
the observed and expected fraction of links within a partition,
and is formulated as Equation 24. �

Q(P) =

k∑
i=1

W(Pi,Pi)
W(V,V)

−

(
W(Pi,V)
W(V,V)

)2 (24)

Larger modularity values are correlated with better graph
partitioning. To maximize modularity while partitioning a
graph, in [35] the authors presented a spectral clustering so-
lution. They showed that the partitioning can be obtained us-
ing the k largest eigenvalues and corresponding eigenvectors
obtained after eigen-decomposition of a derived matrix called
Q-Laplacian [35]. This matrix actually equals to the negative
of our α-Cut matrix derived in Equation 19. As we obtain the
partitioning by selecting the k smallest eigenvalues and corre-
sponding eigenvectors, both the techniques result into the same
set of eigenvalues and eigenvectors, and thus the same parti-
tioning. It means that the minimization of α-Cut approximately
maximizes the modularity.

5. Experimental Evaluation

Although there exist many works on general graph parti-
tioning, we compare our results to a recent work [14] on the
same problem, for a specific comparison. In addition we also
compare with the results obtained by replacing α-Cut by nor-
malized cut in FaDSPa to show the effectiveness of α-Cut.
Section 5.3 presents our experiments on small road networks,
where we compare the results obtained by α-Cut, normalized
cut, FaDSPa, [14], and FaDPa+. Section 5.4 presents our exper-
iments on the real SCATS dataset, where we compare the re-
sults obtained by the proposed FaDSPa and a modified version
of FaDSPa (by replacing α-Cut by normalized cut in FaDSPa).

12

Section 5.5 presents our experiments on large networks, where
we show the performance of FaDPa+ and FaDSPa for varying
values of the compression threshold εc to understand the trade-
off between efficiency and accuracy.

5.1. Datasets

We perform experiments on five datasets of different sizes
including both real data and synthetic data generated on real
road networks. Table 2 shows the statistics of all these datasets.
The real data (Ms) is recorded by the Sydney Coordinated Adap-
tive Traffic System (SCATS)5 from the Melbourne road net-
works provided to us by VicRoads6. This dataset is an accu-
mulation of the traffic records of individual road segments for
each signal cycle from 1st Jan 2011 to 1st Jan 2013. The con-
sidered Melbourne network consists of 7245 road segments and
2928 intersection points, where the traffic measures are logged
by the installed sensors, respective to each lane of road seg-
ments at the SCATS sites. The traffic measures include traffic
volume (number of vehicles crossing a road segment during the
green time) and degree of saturation (the ratio of the effectively
used green time to the total available green time). In this dataset
we consider the degree of saturation as feature value of the road
segments, as it gives an indication of the traffic density. The de-
gree of saturation measure for each road segment is computed
by taking the average of this measure of all the different lanes
that are part of the referred road segment.

The other datasets include synthetic data generated on real
small and large road networks. The traffic on the small net-
work (D1), shared by the authors of [14], is based on a micro-
simulation performed for 4 hours at 120 time intervals of 2 min-
utes. At each time point t, the traffic density on each road seg-
ment is computed in terms of number of vehicles per meter.
For large road network, we consider the city of Melbourne with
three sets of data, M1, M2, and M3. M1 is the road network of the
6.6 sq. miles CBD area consisting of 10,096 intersection points
and 17,206 directed road segments. M2 and M3, larger than M1,
is the road network of the CBD and adjoining areas in a total of
31.5 and 42.03 sq. miles, consisting of 28,465 and 42,321 inter-
section points, and 53,494 and 79,487 directed road segments
respectively. These road segments are obtained by considering
all the two-way road segments as two different one-way road
segments. The traffic data for the large networks is generated by
a web-based7 random road traffic generator MNTG [25, 26]. It
populates vehicles on a selected real road network, which keep
on moving for a time duration on the roads. We populate M1, M2,
and M3 by 25,246, 62,300, and 84,999 vehicles respectively, and
obtain their trajectories for 100 continuous timestamps. The
trajectories are sequences of 100 or less 〈latitude,longitude〉
pairs corresponding to vehicle positions at each timestamp. A

5SCATS is a fully adaptive urban traffic control system developed in Aus-
tralia in 1970. It manages the signal phases (cycle times, phase splits and off-
sets) of the traffic signals dynamically in real-time, based on the traffic data
collected by the vehicle sensors (inductive loops) installed within road pave-
ments of each traffic signal.

6https://www.vicroads.vic.gov.au
7It can be accessed through http://mntg.cs.umn.edu/tg/

self-designed program is used to map their positions to corre-
sponding road segments, and compute the traffic density of road
segments (in terms of vehicles/meter) at each point of time.
While doing this, after each interval of 10 timestamps, each
vehicle is considered as a different one and its updated position
is recounted to compute the density. Thus it makes t range from
1 to 10, and in this work we experiment with t = 1. It is done
to make the network more dense, and reflect the flow speed on
corresponding road segments. The count is then divided by the
road segment length to get the average traffic density in terms
of vehicles per meter.

5.2. Evaluation Metrics

The partitioning framework is evaluated using metrics that
quantify the quality of the results from different perspectives.
The problem defined in Section 2.2 intends to achieve four
different conditions. As we obtain results in the form of dis-
joint and connected road network partitions (connected com-
ponents), C.1 and C.2 are automatically fulfilled. C.3 which
enforces intra-partition homogeneity is evaluated by the intra
metric defined in Equation 25. For each partition, it computes
the intra-partition distance as the average absolute distance be-
tween the pair of nodes, and then takes the average of that com-
puted for all the partitions. Lower values of intra indicate better
partitioning.

Intra(P) =
1
|P|
×

∑
Pi∈P

∑
vp,vq∈Pi

p,q

abs(vp. f − vq. f)

|Pi| · (|Pi| − 1)
(25)

C.4 which enforces inter-partition heterogeneity is evaluated by

the inter metric defined in Equation 26, where Pi
adj
←→ P j de-

notes the set of adjacency relationships8. It is the average of
inter-partition distances between each pair of spatially adjacent
partitions, where the inter-partition distance is the average abso-
lute distance between nodes from the respective pair of adjacent
partitions. Higher values of inter indicate better partitioning.

Inter(P) =
1∣∣∣∣∣Pi

adj
←→ P j

∣∣∣∣∣×
∑
Pi,P j∈P

Pi

adj
←→P j

∑
vp∈Pi

∑
vq∈P j

abs(vp. f − vq. f)

|Pi| ·
∣∣∣P j

∣∣∣
(26)

We also evaluate the overall partitioning using average
NcutSilhouette (ANS) measure defined in [14] especially for
partition evaluation. It is derived from the standard Sil-
houette measure used for cluster evaluation. NS between

8A pair of partitions Pi and P j are said to be adjacent, if there exists at least
one link connecting nodes vp and vq such that vp ∈ Pi and vq ∈ P j

13

Table 2: Dataset statistics

Dataset Place Area (sq ml) # Road segments # Intersection points

Real SCATS data on real road network

Ms Melbourne 627.5 7245 2928

Synthetic data generated on real road network

D1 Downtown San Francisco 2.5 420 237
M1 CBD Melbourne 6.6 17,206 10,096
M2 CBD(+) Melbourne 31.5 53,494 28,465
M3 Melbourne 42.03 79,487 42,321

a pair of partitions (Pi,P j) is calculated using Equation 27,
and the quality of each individual partition is evaluated us-
ing NS (Pi) defined in Equation 28, where NS N(Pi,P j) =

min
{
NS (Pi,Px)|Px ∈ neighbor(P j)

}
.

NS (Pi,P j) =

∑
vp∈Pi

∑
vq∈P j

(
vp. f − vq. f

)2

|Pi| ×
∣∣∣P j

∣∣∣ (27)

NS (Pi) =
NS (Pi,Pi)

NS N(Pi,P j)
(28)

Average NS (ANS) is computed as the average of NS (Pi) for
all Pi ∈ P. A value less than 1 indicates a good partitioning,
and lower values indicate better partitioning.

5.3. Experimental Results on Small Networks

We perform experiments on the small road network D1 to
compare the partitioning quality of our α-Cut, FaDPa+ and
FaDSPa, with other state-of-the-art techniques (normalized cut
and [14]) using performance evaluation metrics listed in Sec-
tion 5.2, and demonstrate their effectiveness.

Quality comparison of NCut, α-Cut, and FaDSPa: We
consider normalized cut as the baseline, and show our com-
parative results. Figure 5 shows the complete results obtained
by α-Cut (ACut) and FaDSPa in comparison to normalized cut
(NCut). We present the results in terms of inter, intra and ANS
in Figures 5(a), 5(b) and 5(c) respectively, for the number of
partitions k ranging from 2 to 20. The ANS measure quanti-
fies the overall partitioning quality. In terms of ANS, ACut of
our framework outperforms NCut for most of the values of k,
whereas NCut outperforms FaDSPa for most of the values. This
is expected because FaDSPa is of lower complexity and suitable
for large networks. In terms of inter, which quantifies inter-
partition heterogeneity, we observe that ACut performs similar
to NCut. However, both of them outperform FaDSPa for all
k ≥ 8, and for k ≤ 7 sometimes FaDSPa outperforms NCut and
ACut. In terms of intra, which quantifies intra-partition homo-
geneity, ACut outperforms NCut for most of the values except
k = 3, 6, 13, 14, and 19, whereas both of them outperform
FaDSPa for all k ≥ 6. These results of FaDSPa are obtained
by setting the compression threshold εc to the number of DPNs
obtained after the first round of FaDPa+, which is 109.

Experiments with FaDPa+: FaDPa+, as proposed in this
paper, does not provide the option to input the value of k. It
has a parameter called the number of partitions threshold εp.
The algorithm merges the partitions on the basis of their local
densities, until k is lower than or equal to εp for the first time.
Thus its k can be any value closest to and lower than or equal to
εp. In our experiment on this dataset it started with 420 nodes,
and after the first round of FaDPa it gave 109 partitions with
14.61, 7.85, and 0.74, as their inter, intra and ANS measures
respectively. After the second round, it gave 13 partitions with
the values as 20.69, 16.11, and 1.00, respectively, and after the
next round all the partitions were merged to a single partition.
Looking into the ANS values, it shows that the quality of 109
partitions are better than the 13 partitions obtained after the sec-
ond round. However, Figure 5 shows that the best clustering
is obtained at lower values (e.g., k = 5, 6 and 8, by different
methods). To know how FaDPa+ behaves for these lower k, we
merged the density-closest partitions one by one, and found the
best partitioning at k = 5. The performance metric values are
found as 42.16, 16.53, and 0.68, respectively.

Summary of comparisons: The overall partitioning qual-
ity is evaluated by ANS, which considers both the inter-
partition heterogeneity and intra-partition homogeneity simul-
taneously. Lower values indicate a better partitioning. In Fig-
ure 5(c), ACut is lower than NCut at most values of k, whereas
FaDSPa is mostly above both of them. In [14], the authors
used the ANS measure to learn the number of optimal parti-
tions. They accept the value of k that leads to the ANS min-
imum as the optimal number of partitions, which in this case
is 8 for NCut, 4 for ACut, and 9 for FaDSPa. We observe in
the figure that the minimum of ACut is the lowest followed by
NCut, and that of FaDSPa is the highest. It shows the accuracy
of the partitioning task by these three methods. ACut performs
the best, followed by NCut, and both of them are better than
FaDSPa. Figure 6 and Table 3 show the obtained ANS mea-
sures by ACut, FaDSPa, FaDPa+, NCut, in comparison to the
existing work [14]. Our methods ACut and FaDSPa are lower
(and thus perform better) than [14]. In the methods, we deter-
mine the optimal value of k by repeatedly obtaining the results
for a range of k and comparing their ANS measure. It can also
be an application dependent issue, as a small k produces par-
titions of coarse granularity and this granularity becomes finer
with an increasing k.

14

0

10

20

30

40

50

60

70

80

2 4 6 8 10 12 14 16 18 20

In
te

r

k

NCut ACut FaDSPa

(a) Inter

0

10

20

30

40

50

2 4 6 8 10 12 14 16 18 20

In
tr

a
k

NCut ACut FaDSPa

(b) Intra

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

2 4 6 8 10 12 14 16 18 20

A
N

S

k

NCut ACut FaDSPa

(c) ANS

Figure 5: Road graph and DPG partitioning results in small networks

0.40

0.55
0.60 0.62

0.69

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
N

S

ACut NCut FaDSPa Ji-Ger FaDPa+

Figure 6: Overall comparison of partitioning results in small networks

Table 3: Overall quality of partitioning

ACut NCut FaDSPa Ji-Ger FaDPa+

ANS 0.4009 0.5470 0.6041 0.6210 0.6853
k 4 8 9 3 5

Even though the results of FaDSPa do not look very im-
pressive (in comparison to α-Cut or NCut), its advantage is that
it can efficiently handle large networks while simultaneously
maintaining the quality. The spectral based algorithms face
time and space complexity issues, whereas the density based
algorithms compromise the partitioning accuracy.

5.4. Experimental Results on Real Data

We perform experiments on real data to see the applicability
of the proposed method in real environments. For this we con-
sider the SCATS data Ms, described in Section 5.1. Through our
experiments on this dataset, we show the results obtained by the
proposed FaDSPa algorithm and also compare them with those
obtained by replacing α-Cut by normalized cut in FaDSPa.

Different schemes of FaDSPa: Before going further, we
explain the different schemes we have used to present our result

insights. We applied the proposed method FaDSPa in different
ways, which are denoted by F〈number〉. This stands for the
method when FaDSPa is applied by repeatedly running FaDPa+

〈number〉 number of times forming hierarchical groups, before
passing the control to α-Cut. Thus F1 applies one round9 of
FaDPa+, and the generated DPG after that is treated by α-Cut to
obtain the k partitions. F2, F3, F4, and F5 work similarly with
two, three, four and five rounds of FaDPa+ followed by α-Cut.
One alternative to α-Cut in the proposed FaDSPa is to replace
α-Cut by normalized cut and keep the remaining method same.
We denote these schemes by N〈number〉. This stands for the
method when FaDSPa is applied by repeatedly running FaDPa+

〈number〉 number of times before passing the control to nor-
malized cut. Thus N1 applies one round of FaDPa+, and the
generated DPG after that is treated by normalized cut to obtain
the k partitions.

Quality comparison of F1 and N1: Figure 7 shows the
quality of partitioning obtained by the F1 and N1 schemes of
FaDSPa. It presents a clear comparison of α-Cut and normal-
ized cut when they are embedded in FaDSPa. Figures 7(a), 7(b),
and 7(c) show the quality in terms of inter, intra, and ANS
respectively (shown in Y-axis) for the number of partitions k
varying from 2 to 20 (shown in X-axis) using two curves. The
overall partitioning quality is shown in terms of ANS in Figure
7(c). We observe that at all the values of k, F1 is lower (better
in quality) than N1. As this measure considers both the inter-
partition and intra-partition distances, it very clearly shows that
our proposed FaDSPa algorithm (using α-Cut) outperforms the
other method.

We also look into the inter-partition heterogeneity and intra-
partition homogeneity individually. In Figure 7(a), we observe
that except at k = 2, 3 and 4, the inter measure of F1 is always
greater than or equal to that of N1. As a higher inter indicates a
better partitioning in terms of inter partition distances, it means
that most of the times F1 performs better than N1 in terms of
this measure. In Figure 7(b), we observe that except at k = 12
and 17, the intra measure of F1 is always smaller than that of
N1. As a lower intra indicates a better partitioning in terms of

9All subsequent usage of this term refer to the schemes F〈number〉

15

15

20

25

30

35

40

2 4 6 8 10 12 14 16 18 20

In
te

r

k

F1 N1

(a) Inter

5

10

15

20

25

30

2 4 6 8 10 12 14 16 18 20

In
tr

a

k

F1 N1

(b) Intra

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

2 4 6 8 10 12 14 16 18 20

A
N

S

k

F1 N1

(c) ANS

Figure 7: Comparison of proposed FaDSPa and normalized cut based FaDSPa on real data

intra partition distances, it means that most of the times F1 per-
forms better than N1 in terms of this measure. Thus we see that
sometimes F1 performs inferior to N1 in terms of either inter or
intra individually, but as the overall partition quality considers
both the factors simultaneously, F1 always outperforms N1.

Quality comparison of F1 and F2: After we are known
about the good performance of our proposed FaDSPa, it is im-
portant to look into the variation in quality as we increase the
number of rounds. Figure 8 shows the quality of partitioning
obtained by the F1 and F2 schemes of FaDSPa. Both of them
use α-Cut. It presents a comparison of one and two rounds of
the density-based FaDPa+ (both followed by α-Cut). The over-
all partitioning quality is shown in terms of ANS in Figure 8(c).
We observe that at all the values of k except 10, F1 is lower
(better in quality) than F2. It shows that generally fewer rounds
of FaDPa+ followed by α-Cut produces results in better quality.
Also in terms of inter-partition and intra-partition distances in-
dividually, we found that most of the times F1 performs better
than F2. In Figure 8(a), we observe that except at k = 2 and
3, the inter measure of F1 is always greater than that of N1.
It means that most of the times F1 performs better than F2 in
terms of inter-partition distances. In Figure 8(b), we observe
that except at k = 4, 12 and 20, the intra measure of F1 is al-
ways smaller than that of F2. It means that most of the times
F1 performs better than F2 in terms of intra-partition distances.

Summary of comparisons: Figure 9 presents the overall
results summary obtained on the real Ms dataset. It shows the fi-
nal comparison of the F1, F2, and N1 schemes (in the X-axis) in
terms of ANS (in the Y-sxis). As mentioned in Section 5.3, the
ANS measure also gives the information to identify the optimal
number of partitions by selecting the k where the its minimum
is found. We see in Figures 7(c) and 8(c) that the minima of F1,
F2 and N1 occur at k = 6, 2, and 6 respectively. These values
of k become the optimal number of partitions for the respective
schemes. We compare the quality of partitioning in terms of
ANS obtained at these optimal values of k in the figure. The
lowest value of F1 shows itself as the best performer, followed
by F2 and N1. Looking into the running times of F1 and F2,
we found that they take 173.56 and 17.41 seconds respectively
to complete the execution. Thus F1 produces better results than

F2 in terms of effectiveness, but takes longer execution time,
thus sacrificing the efficiency. The running time of FaDSPa on
all the datasets is discussed in detail in Section 5.5.

0.35
0.42

0.76

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
N

S

F1 F2 N1

Figure 9: Partitioning results summary on SCATS data

Impact of εd in FaDPa+: The distance threshold εd is a
fundamental parameter of FaDPa+ and has an impact on the
quality of partitioning. As mentioned in Section 3.3, we con-
sider εd as a vector of values, where each of those values in-
dividually refer to a specific node in the graph. It means that
the distance threshold for each node is customized according to
the kind of links of the referred node, which helps in cluster-
ing the nodes relatively. As it is an external parameter, it can
also be set to some fixed value (∈ [0, 1]) that is same for all the
nodes. When it is set to low values (less than 0.4), due to the
strict condition the number of established density parent-child
relationships is found to be low. As shown in Figure 10(a), the
DPG is compressed at a slow rate in each round of FaDPa+ for
εd = 0.1, 0.2,& 0.3, and therefore requires more rounds to pro-
duce the final partitions. During this gradual compression, most
of the nodes accumulate as children of one (or very few) den-
sity peak. It results into an imbalanced set constituting one (or
very few) big partition and several small partitions, which is not
good. For example, setting εd = 0.1 results into one big parti-
tion of 7179 nodes and the remaining 66 nodes are distributed
into 61 other partitions. The results gradually improve as this

16

15

20

25

30

35

40

2 4 6 8 10 12 14 16 18 20

In
te

r

k

F1 F2

(a) Inter

5

10

15

20

25

30

2 4 6 8 10 12 14 16 18 20

In
tr

a

k

F1 F2

(b) Intra

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

2 4 6 8 10 12 14 16 18 20

A
N

S

k

F1 F2

(c) ANS

Figure 8: Partitioning results of FaDSPa on real data

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
u

m
b

e
r

o
f

D
P

N
s

Round

Ɛd = 0.1

Ɛd = 0.2

Ɛd = 0.3

Ɛd = 0.4

Ɛd = 0.5

Ɛd = 0.6

Ɛd = 0.7

Ɛd = 0.8

Ɛd = 0.9

Ɛd = 1

Ɛd = Proposed

(a) DPG compression

0

0.2

0.4

0.6

0.8

1

1.2

A
N

S

Distance threshold ϵd

(b) Quality of Partitions

Figure 10: Impact of the distance threshold εd

threshold is increased, and become satisfactory only after 0.4.
Therefore, ignoring εd = 0.1, 0.2,& 0.3, Figure 10(b) shows
the quality of partitions obtained by varying εd from 0.4 to 1,
and compares it with the proposed method of determining its
value. Observe that the ANS measure for the proposed method
is the lowest of all, and thus leads to the best quality results.

Visualization of obtained partitions: Figure 11 presents a
snapshot of the different partitions obtained by F1 setting k =

6 (optimal number of partitions) at 08:00 AM on 03-12-2012
(Monday). The road segments in each different color represent
a partition. The displayed road network includes only those

road segments that are operated by traffic signals and have the
traffic sensors installed. Therefore even though the area is large,
the number of road segments is relatively small. In the Section
5.5, we consider all the road segments that exist on digital maps,
which results into large number of road segments in small areas.

5.5. Experimental Results on Large Networks

Through our experiments on large urban road networks, we
show the performance of FaDPa+ and FaDSPa at different val-
ues of the thresholds εp and εc respectively. As FaDSPa pro-
vides the flexibility to handle the complexity of large networks,
we also show the trade-off between efficiency and accuracy by
varying the external parameter εc.

Impact of εp in FaDPa+: Table 4 shows the results obtained
using FaDPa+ on the M1 and M2 datasets. In this algorithm the
number of desired partitions is controlled by εp, shown in the
left column, and the actual number of partitions denoted by k
could be any value less than or equal to that number. The results
in terms of intra, inter, and ANS are shown for εp = 25, 50, 75,
and 100. The optimal εp, optimal k, and optimal partitioning are
determined by looking into the minimum ANS. The minimum
values of 0.75 in M1 and 0.78 in M2 at εp = 75 (k = 69 and
63 respectively) indicate that 75 is the optimal εp for both the
datasets. We also observe that the same value of εp leads to
different values of k in different datasets.

Table 4: FaDPa+: quality of partitioning

M1 M2

εp k Intra Inter ANS k Intra Inter ANS

25 23 0.4554 1.2805 1.1375 24 0.1691 0.2904 1.1857
50 47 0.4384 1.2886 0.8071 46 0.2274 0.3735 0.8632
75 69 0.3878 1.2934 0.7463 63 0.2947 0.5810 0.7826
100 93 0.4849 1.1628 0.8322 89 0.3326 0.6113 0.8146

Accuracy in FaDSPa: Figure 12 shows the partitioning
quality of FaDSPa in large road network datasets M1, M2 and
M3. Figure 12(a) shows the ANS measures obtained for k =

2 to 10 for M1. There are four curves for F2, F3, F4 and F5.
As explained earlier in Section 5.4, F〈number〉 denotes the
method when FaDSPa is applied by repeatedly running FaDPa+

17

Figure 11: Partitions obtained from the Melbourne network at 08:00 AM on 03-12-2012 (Monday)

0.4

0.6

0.8

1.0

1.2

1.4

2 4 6 8 10

A
N

S

k

F2 F3 F4 F5

(a) ANS in M1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

3 5 7 9 11

A
N

S

k

F3 F4 F5 F6

(b) ANS in M2

0.4

0.6

0.8

1.0

1.2

1.4

3 5 7 9 11

A
N

S

k

F3 F4 F5 F6

(c) ANS in M3

Figure 12: Partitioning results in large networks

〈number〉 number of times before passing the control to α-Cut.
Thus F2, F3, F4, and F5 apply two, three, four, and five rounds
of FaDPa+, and the generated DPG after that is treated by α-Cut
to obtain the k partitions. Fewer rounds of FaDPa+ produces a
large DPG and puts more work on α-Cut, and vice versa. Thus
the figure shows the quality of results obtained by varying the
combination of our density and spectral based methods. We ob-
serve that there is no such clear trend that for all the values of
k, one setting outperforms the other. The reason is that the par-
titioning quality is also highly dependent on the selected value
of k, which could vary for the different schemes. To know their
relative performance, we find the most suitable k for each of
them. The scheme F2 has its minimum at k = 7, which shows 7
as its most suitable k. Similarly F3, F4, and F5, have their most

suitable k as 6, 6 and 9 respectively. Their ANS values at the
minimum are 0.56, 0.60, 0.59 and 0.68 respectively. Comparing
the depth of their minimum we observe that the order of their
performance is F2 > F3 ' F4 > F5. Figures 12(b) and 12(c)
show the ANS measures for the larger datasets M2 and M3 start-
ing10 from F3 to F6. A similar performance trend is found also
for these larger datasets, which are F3 > F4 > F5 ' F6 and
F3 > F4 > F5 > F6 respectively. We observe that the parti-
tioning quality is generally better with fewer rounds of FaDPa+
(or lower values of 〈number〉) and doing more of the task by α-

10The reason we do not start from F2 is that their DPGs produced after two
rounds of FaDPa+ have a large number of DPNs (close to 10,000), and to apply
α-Cut on such a large graph is beyond the scope of our computing environment
because of the high computational complexity.

18

Cut. The reason behind this is that a larger value of 〈number〉
compromise more with the partitioning accuracy, and improve
the efficiency11. We saw in previous experiments that α-Cut
performs better than the density-based FaDPa+, because of its
global perspective in partitioning. When FaDPa+ is repeatedly
applied for F〈number〉, it starts with forming small partitions
locally which combine with others in the subsequent rounds and
form larger partitions in each repetition. In this way, they form
hierarchical partitions locally. Once a grouping (in the form of
a partition) is formed based on the local density-based infor-
mation during these steps, it is done permanently for the final
result. These small partitions are not broken or re-adjusted later,
which leads to increase in lose of accuracy in each round. After
〈number〉 rounds, α-Cut (that looks into the graph globally) is
applied on the DPG constructed from the obtained intermediate
partitions to get the final partitions.

Efficiency in FaDSPa: Figure 13 shows the execution time
(in seconds) when k is set to 4, 6, 8, and 10, for all the three
large datasets. In the X-axis we vary the number of rounds of
FaDPa+ from 2 to 10 (F2 to F10). We observe that for any
value of k, as the rounds increase the execution time decreases,
while at the same time the accuracy degrades, and vice versa.
Another thing to note is that, the execution time decreases dras-
tically in the initial rounds (decreases from more than 100 secs
to around 40 secs from F2 to F3 for M1) and this amount of de-
crease reduces in the subsequent rounds (decreases from around
40 secs to around 30 secs from F3 to F4). Thus the efficiency
increases drastically as we progress through the initial rounds
but becomes almost stable later, whereas the accuracy decreases
as the rounds increase and no such drastic decrease is seen. It
suggests that if the efficiency of execution is also a concern in
addition to accuracy, then it is worth sacrificing the accuracy in
the first few rounds. Thus a good choice of rounds for M1 could
be any one of F3, F4, and F5, as they can do the work efficiently
with a satisfactory accuracy. The elbow point can be used as an
indicator to locate the best choice. In the higher rounds, the
execution time goes a little higher, though it is not very signifi-
cant. This behavior and the reason behind it are explained later
in detail. In the figures we see that the curves for the differ-
ent values of k almost overlap. It shows that though a larger k
requires a longer execution time, the difference is small.

Efficiency analysis in detail: Table 5 shows the running
time of FaDPa+ and FaDSPa at varying εc (by varying the num-
ber of rounds) on all the datasets. The left most column stands
for the method, which is either FaDPa+ or F〈number〉, where
F0 refers to the method of applying α-Cut directly on the road
graph. The table has other columns for the number of DPNs ob-
tained after 〈number〉 rounds and the execution time in seconds
for each dataset. For the small dataset D1 that has 420 nodes, the
methods F3 and higher are not applicable, as in the third round
it FaDPa+ merges all the partitions into a single large partition.
It completes running within fractions of a second. Similar to
D1, F4 and higher are not applicable to the real dataset Ms. In
the large datasets, the running time decreases as εc becomes

11Shown in Figure 13 and explained in the next paragraph.

lower (with increasing rounds). The reason for this decrease is
that εc decides how much the road graph is to be compressed
using FaDPa+ to form the DPG, and thus the size of the ma-
trix that has to be eigen-decomposed for applying α-Cut. As
eigen-decomposition is a computationally expensive task, the
running time increases substantially as the size of this matrix
goes beyond a limit, where the limit depends on the computing
environment. We see that there is a large difference between the
time taken by F0 and F1 in Ms. It jumps to 10507.20 seconds in
F0 from 173.56 seconds in F1. Similarly there is a sudden rise
of execution time from F2 to F1 in M1, and F3 to F2 in M2 and M3.
On applying α-Cut directly (F0) on M1, it could not complete
execution even in 10 hours, and its application on M2 and M3
could not be performed due to higher memory requirement. The
reason for such behavior is the expensive eigen-decomposition
task. In the initial rounds of FaDPa+, the number of DPNs re-
duce rapidly whereas in the successive rounds they reduce at a
slower rate. In M1 the number of DPNs at F1, F2, F3, and F4

are 7402, 2990, 1419, and 814, respectively. The difference be-
tween the first two cases is more than the difference between
the last two. The same trend is also observed with M2 and M3.

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1 6 11 16 21 26 31 36 41

Lo
g 1

0
(N

u
m

b
er

 o
f

D
P

N
s)

Round

M1 M2 M3

Figure 14: Compression of the DPG at different rounds

While normally it is expected that FaDPa+ would have the
lowest running time because no eigen-decomposition task is
needed, we actually see that the minimum running time is taken
by F5 in case of M1. It reduces as the method goes close to
F5 and then increases gradually as it goes further. Similarly,
the minimum execution time for M2 and M3 occur at F8, and
F7 respectively. It shows that for large datasets, purely den-
sity based clustering methods take more time than when it is
combined with spectral clustering as in FaDSPa. The reason
behind this phenomenon can be explained from Figure 14. For
all three datasets, it shows the compression rate of the DPG by
using FaDPa+. The vertical axis is the logarithm of the num-
ber of DPNs and the horizontal axis is the number of rounds of
FaDPa+. We observe that at lower rounds, the number of DPNs
reduces rapidly, and at later rounds, the DPNs remain almost
constant. Thus achieving further compression requires many
more iterations in the higher rounds, which consumes much
longer time for FaDPa+. But if α-Cut is applied at that point
instead of further compression using FaDPa+, the task can be

19

20

40

60

80

100

120

140

2 4 6 8 10

Ti
m

e
 (

in
 s

e
co

n
d

s)

Round

k=4 k=6
k=8 k=10

(a) Running time in M1

400

600

800

1000

1200

1400

2 4 6 8 10

Ti
m

e
 (

in
 s

e
co

n
d

s)

Round

k=4 k=6
k=8 k=10

(b) Running time in M2

700

900

1100

1300

1500

1700

2 4 6 8 10

Ti
m

e
 (

in
 s

e
co

n
d

s)

Round

k=4 k=6
k=8 k=10

(c) Running time in M3

Figure 13: Running time in large networks

Table 5: Running Time (in seconds)

Method DPN-D1 Time-D1 DPN-Ms Time-Ms DPN-M1 Time-M1 DPN-M2 Time-M2 DPN-M3 Time-M3

FaDPa+ NA less than 1 NA 16.01 NA 37.58 NA 538.16 NA 887.196
F0 (α-Cut) 420 less than 1 7245 10507.20 17206 - 53494 - 79487 -
F1 109 less than 1 2124 173.56 7402 10723.70 22670 - 30543 -
F2 13 less than 1 224 17.41 2990 116.15 9398 25018.30 9967 28477.60
F3 1 NA 17 15.77 1419 47.39 4715 1237.63 4495 1553.46
F4 NA NA NA NA 814 37.39 2874 607.31 2654 995.10
F5 NA NA NA NA 512 35.96 1938 486.61 1785 879.18
F6 NA NA NA NA 355 36.18 1439 452.09 1327 847.59
F7 NA NA NA NA 257 36.20 1125 437.43 1047 843.25
F8 NA NA NA NA 190 36.55 906 432.22 849 845.61
F9 NA NA NA NA 145 36.83 752 433.77 698 846.46
F10 NA NA NA NA 115 37.19 626 436.90 591 851.39

done in a single iteration, thus requiring much less execution
time.

6. Related Work

With the rapid growth in expansion of urban areas and fre-
quent movement of people, the urban road networks has be-
come an important area of research for several transportation
related problems. Spatial partitioning of urban road networks is
one such problem, having its objective as identifying the differ-
ently congested partitions or sub-networks. It has its theoretical
foundation in clustering and general graph partitioning, which
are well studied problems. This section starts with presenting
some basic clustering and graph partitioning techniques, fol-
lowed by important related works on spatial clustering and spa-
tial network partitioning.

6.1. Clustering and Graph Partitioning

Clustering and graph partitioning apply to a wide variety of
research problems, and many solutions have been proposed in
the past. The k-means [23] and expectation-maximization [5]
clustering algorithms work well for finding ellipsoidal or con-
vex shaped clusters, but fail to find non-convex clusters. Den-
sity based clustering algorithms [12] are able to find clusters of

arbitrary shapes. Areas of higher density are considered as clus-
ters, and the nodes in the sparse areas separating the dense areas
are considered as noise or boundary nodes. The density based
spatial clustering of applications with noise (DBSCAN)[7] al-
gorithm is the most popular of this kind. It identifies a clus-
ter by looking into the neighborhood of each object within a
predefined radius of ε distance. With each minpts (predefined)
objects in the ε-neighborhood, a new cluster is formed. How-
ever, this algorithm is highly sensitive to the thresholds ε and
minpts, and choosing an appropriate threshold is very impor-
tant to get accurate clusters [28]. The authors in [28] recently
proposed a fast density based clustering method by finding the
density peaks locally. They assume that the cluster centers are
surrounded by neighbors with lower local density and they are
at a relatively large distance from any point of higher local den-
sity. Extending the DBSCAN concepts, SCAN (structural clus-
tering algorithm for networks) [36] partitions a graph based on
its structure to detect the clusters, hubs and outliers. A recently
proposed algorithm SCAN++ [30] uses a new data structure
called directly two-hop-away reachable node set (DTAR) to ef-
ficiently partition a graph in order to get the same results as pro-
duced by SCAN. Spectral clustering algorithms like minimum
cut and normalized cut have remained quite popular [29, 35]. In
[6], the authors proposed a spectral cut based on the min-max

20

clustering principle for graph partitioning in a data clustering
point of view. In [35], White and Smith proposed a spectral
clustering based solution to find communities in graphs by par-
titioning. Their objective function is based on network mod-
ularity. The modularity of a set of graph partitions is defined
as the difference between the observed and the expected frac-
tion of links within a partition. Larger modularity values are
correlated with better graph partitioning. The minimization of
our α-Cut approximately maximizes the modularity, and thus it
gives an indication of good performance of our α-Cut.

As graph partitioning is an NP-complete problem, multi-
level and heuristic algorithms have also been studied [17]. Zhou
et al. [42] aimed to obtain graph partitions in which the nodes
inside a partition are structurally close to each other and have
similar feature values, and followed a random walk based ap-
proach. Sun et al. [31] integrated the problems of ranking and
clustering in heterogeneous information networks and proposed
the algorithm RankClus that produces clusters with rank infor-
mation of the objects in the network. There is a wide appli-
cation of graph partitioning for network community detection.
In [20], the authors explored some graph partitioning based
community detection methods and evaluated their relative per-
formances. However, most works on graph partitioning face
time and space complexity issues with large networks. In the
proposed framework, our partitioning algorithm FaDSPa over-
comes these issues by distributing the partitioning load into two
levels, comprising the density based FaDPa+ and the spectral
based α-Cut.

6.2. Spatial Clustering and Spatial Network Partitioning
Spatial clustering is an important component of spatial data

mining, which groups similar spatial objects into classes using
basic clustering algorithms [27, 10, 11]. In the recent years, it
has been studied from different perspectives for different kinds
of data including spatial trajectories, traffic data, and spatial
streaming data. It is an important component in mining differ-
ent traffic patterns. Trajectory clustering has remained an im-
portant problem for mining people movement patterns [18, 13].
In [18], Lee et al. presented a partition-and-group framework
for clustering trajectories. It starts with optimally partition-
ing each trajectory into a set of line segments using the min-
imum description length (MDL), and then the grouping phase
groups the similar line segments into clusters using a density
based clustering method. Recently Hung et al. [13] used clues
based on movement behavior to cluster similar trajectories into
groups, which leads to find partial trajectory routes. Thereafter
they do a clue-aware trajectory aggregation to derive the com-
plete trajectory pattern and route. FlowScan proposed by Li et
al. in [22] finds the hot routes in a road network by clustering
the road segments based on the density of commonly shared
traffic. The authors in [34] proposed an efficient incremental
algorithm to cluster the spatial data streams collected from sen-
sors. Their method first predicts the clusters roughly using the
previous clustering results, and then refines them further in the
next stage. In [21], the authors discover the spatial co-clustering
patterns in traffic collision data by identifying the sets of non-
spatial attribute-value pairs of collision data, e.g., weather con-

ditions and day of the week, that together contribute signifi-
cantly to the spatial clustering of corresponding collisions.

Though graph partitioning in general has been well stud-
ied, not much work have been done on the spatial partitioning
of road networks. In [14], the authors proposed a normalized
cut based method for spatial partitioning of transportation net-
works. They tried to achieve three predefined criteria of small
variance of within-partition traffic density values, small num-
ber of partitions, and spatially near-compact partitions. Their
method starts by excessive partitioning of the road network
using normalized cut, followed by merging smaller partitions,
and then locally adjusting the road segments lying on partition
boundaries by replacing them into the neighboring partitions. It
works well for small road networks, but suffers from high time
and space complexities for large networks. In [8] the authors
proposed two heuristic methods to partition the road network
into a set of subnetworks that are balanced in terms of their
size. The first method follows a recursive approach to find the
sparsest cuts that lead to balanced partitions in terms of their
size. The second method applies a greedy-based coarsening
iteratively along the high-flow links, and terminates when the
number of nodes in the coarsened network is equal to the re-
quired number of partitions. The authors have reported that
their method works fine for small-sized networks, but the run-
ning time increases significantly with the increasing the net-
work size because of the expensive computations in determin-
ing the optimal maximum concurrent flow (MCF). In our recent
work [3], we proposed a method for traffic-based spatial parti-
tioning of large road networks that outperformed existing tech-
niques. The method starts with constructing a road graph from
the given road network, followed by mining a road supergraph,
and then partitioning the supergraph. The actual road network
partitions are then extracted from the supergraph partitions by
mapping them to the road network. The supergraph mining is
done by clustering the feature values using k-means and con-
necting the linked nodes in each cluster. The partitioning of
the supergraph is done by approximately optimizing a measure
called α-Cut, by following a spectral clustering based solution.
However, there exist some outstanding issues in the supergraph
mining method, explained earlier in Section 1. These are the
computationally expensive learning of right number of clusters
to create supernodes, the weak relation between k and the num-
ber of supernodes, and the non-consideration of node connec-
tivities. We address the issues in this paper by mining a density
peak graph (instead of the supergraph) using density based clus-
tering and applying spectral clustering based α-Cut to partition
the density peak graph. It makes our framework good in both
efficiency and accuracy.

There exist some other works that treat spatial network par-
titioning as a secondary problem to solve some other problem of
primary concern. Some works suggest to partition the network
into small subnetworks and use distributed computing in paral-
lel to efficiently solve different transportation related problems
in large road networks [32]. The authors in [32] used exist-
ing graph partitioning techniques to form a hierarchy of nodes
in a spatial network and proposed an index structure called a
partition tree that can be used for efficient spatial query pro-

21

cessing. Some works partition the road networks in a way that
suits their application, including monitoring proximity relations
[37], point to point shortest path query indexing [16], traffic pre-
diction [41], and finding distance-preserving subgraphs [38].
In [24], the authors partition a sensor network such that the
data dissimilarity between any two nodes inside a partition is at
most δ. They proposed a distributed clustering algorithm called
ELink that works for both synchronous and asynchronous net-
works.

Our current and previous [3] papers identify the differently
congested partitions (having different levels of traffic) in an ur-
ban road network (a snapshot shown in Figure 11), and con-
tribute to the urban traffic congestion management. Crowd
management and dealing with traffic congestions are of great
importance in transportation networks [19, 33]. Wang et al.
[33] developed an interactive system for visual analysis of ur-
ban traffic congestion based on GPS trajectories. They clean
the trajectories and match them to the road network, based on
which they detect the traffic jams. They also studied the traffic-
jam propagation using graphs over a period of time. Their work
mainly shows congestion on individual road segments having
no concrete information about how the congestion is linked in
the whole network globally. In contrast, the differently con-
gested partitions produced by our framework gives the high-
level insight of traffic congestion in the form of partitions in-
stead of individual road segments. It also helps us analyze the
connectivity of congested and non-congested sub-networks via
road segments in the urban road network. Some other words
related to traffic congestion on road networks include our re-
cent papers [2, 4] where we study the evolution of congestion
in different perspectives, and [1] where we identify important
segments in a road network having high influence in propagat-
ing congestion.

7. Conclusion and Future Work

In this paper, we presented a framework called FaDSPa for
spatial partitioning of large urban road networks, that employs
both density and spectral based clustering. It is based on the
data of traffic congestion on a road network defined by the ve-
hicle density per unit distance on each road segment. It starts
by transforming the actual road network into a road graph, fol-
lowed by mining a density peak graph using our density based
clustering algorithm called FaDPa. Thereafter we apply our
spectral clustering based α-Cut on this graph to obtain the dif-
ferent road network partitions. The framework makes use of
the locally distributed computations of FaDPa and the glob-
ally centralized computations of α-Cut together to make it ef-
ficient as well as effective. Our experiments on real SCATS
data shows that it is very much applicable in real environments.
Our method outperforms the existing road network partitioning
method based on normalized cut. We found that in small net-
works our α-Cut performs the best whereas FaDSPa produces
satisfactory results, but in large networks direct application of
α-Cut brings huge time and space complexities that may go
beyond the scope of the computing environment. FaDSPa han-
dles such large networks with the help of a density peak graph,

also providing the flexibility of setting the trade-off between
efficiency and accuracy. We found that density based compu-
tations are faster, whereas the spectral based computations give
better results in terms of quality.

Traffic congestions in peak hours is a big problem in urban
road networks. The road network partitions discussed in this
paper are the differently congested segments of a road network
at a point of time, which are determined by the level of traffic
in them. This work focuses mainly on the static partitioning of
road networks. However, as the traffic keeps changing dynam-
ically, an important problem for further study is to develop an
indexing scheme that can keep on updating the existing parti-
tions efficiently as the new recent traffic data is recorded in real
time. From the obtained set of partitions, a congestion can be
identified as a partition having its congestion level higher than
a threshold. The study of their formation, evolution with time,
and identifying the pattern of evolution are crucial problems for
future work.

Acknowledgment

This research was supported by Data61 (formerly
NICTA), Australian Reasearch Council (ARC) Discovery
Project DP140103499, and ARC Future Fellowship grant
FT120100723. Data61 is funded by the Australian Government
through the Department of Communications and the Australian
Research Council through the ICT Centre of Excellence Pro-
gram.

References

[1] T. Anwar, C. Liu, H. L. Vu, M. S. Islam, Roadrank: Traffic diffusion and
influence estimation in dynamic urban road networks, in: Proc. of the
CIKM, 2015.

[2] T. Anwar, C. Liu, H. L. Vu, M. S. Islam, Tracking the evolution of con-
gestion in dynamic urban road networks, in: Proc. of the CIKM, 2016, (to
appear).

[3] T. Anwar, C. Liu, H. L. Vu, C. Leckie, Spatial partitioning of large urban
road networks, in: Proc. of the EDBT, 2014.

[4] T. Anwar, H. L. Vu, C. Liu, S. P. Hoogendoorn, Temporal tracking of
congested partitions in dynamic urban road networks, Transportation Re-
search Record: Journal of the Transportation Research Board 2595 (2016)
88–97.

[5] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood from
incomplete data via the em algorithm, Journal of the Royal Statistical
Society. Series B (Methodological) 39 (1) (1977) 1–38.

[6] C. Ding, X. He, H. Zha, M. Gu, H. Simon, A min-max cult algorithm for
graph partitioning and data clustering, in: Proc. of the ICDM, 2001.

[7] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for
discovering clusters in large spatial databases with noise, in: Proc. of the
KDD, 1996.

[8] H. Etemadniaa, K. Abdelghanya, A. Hassan, A network partitioning
methodology for distributed traffic management applications, Transport-
metrica A: Transport Science 10 (6) (2014) 518–532.

[9] H. Gonzalez, J. Han, X. Li, M. Myslinska, J. P. Sondag, Adaptive fastest
path computation on a road network: a traffic mining approach, in: Proc.
of the VLDB, 2007.

[10] J. Han, M. Kamber, Data Mining: Concepts and Techniques, Morgan
Kaufmann, 2000.

[11] J. W. Han, M. Kamber, A. K. H. Tung, Spatial clustering methods in data
mining: A survey, Taylor & Francis, 2001, pp. 188–217.

[12] K. Hans-Peter, K. Peer, S. Jorg, Z. Arthur, Density–based clustering,
WIREs Data Mining Knowl Discov 1 (3) (2011) 231–240.

22

[13] C.-C. Hung, W.-C. Peng, W.-C. Lee, Clustering and aggregating clues of
trajectories for mining trajectory patterns and routes, The VLDB Journal
24 (2) (2015) 169–192.

[14] Y. Ji, N. Geroliminis, On the spatial partitioning of urban transportation
networks, Transportation Research Part B: Methodological 46 (10) (2012)
1639–1656.

[15] E. Kanoulas, Y. Du, T. Xia, D. Zhang, Finding fastest paths on a road
network with speed patterns, in: Proc. of the ICDE, 2006.

[16] G. Kellaris, K. Mouratidis, Shortest path computation on air indexes,
Proc. VLDB Endow. 3 (1-2) (2010) 747–757.

[17] M. Kim, K. S. Candan, Sbv-cut: Vertex-cut based graph partitioning using
structural balance vertices, Data Knowl. Eng. 72 (2012) 285–303.

[18] J.-G. Lee, J. Han, K.-Y. Whang, Trajectory clustering: A partition-and-
group framework, in: Proc. of the ACM SIGMOD, 2007.

[19] R. Lee, K. Sumiya, Measuring geographical regularities of crowd behav-
iors for twitter-based geo-social event detection, in: Proc. of the ACM
SIGSPATIAL Int’l Workshop on LBSN, 2010.

[20] J. Leskovec, K. J. Lang, M. Mahoney, Empirical comparison of algo-
rithms for network community detection, in: Proc. of the WWW, 2010.

[21] D. Li, J. Sander, M. A. Nascimento, D.-W. Kwon, Discovering spatial co-
clustering patterns in traffic collision data, in: Proc. of the ACM SIGSPA-
TIAL Int’l Workshop on Computational Transportation Science, IWCTS
’13, 2013.

[22] X. Li, J. Han, J.-G. Lee, H. Gonzalez, Traffic density-based discovery of
hot routes in road networks, in: Proc. of the SSTD, 2007.

[23] J. B. MacQueen, Some methods for classification and analysis of multi-
variate observations, in: Proc. of the 5th Symposium on Math, Statistics,
and Probability, 1967.

[24] A. Meka, A. K. Singh, Distributed spatial clustering in sensor networks,
in: Proc. of the EDBT, 2006.

[25] M. F. Mokbel, L. Alarabi, J. Bao, A. Eldawy, A. Magdy, M. Sarwat,
E. Waytas, S. Yackel, Mntg: an extensible web-based traffic generator,
in: Proc. of the SSTD, 2013.

[26] M. F. Mokbel, L. Alarabi, J. Bao, A. Eldawy, A. Magdy, M. Sarwat,
E. Waytas, S. Yackel, A demonstration of mntg– a web-based road net-
work traffic generator, in: Proc. of the ICDE, 2014.

[27] R. T. Ng, J. Han, Efficient and effective clustering methods for spatial
data mining, in: Proc. of the 20th Int’l Conf. on Very Large Data Bases,
VLDB ’94, 1994.

[28] A. Rodriguez, A. Laio, Clustering by fast search and find of density peaks,
Science 344 (6191) (2014) 1492–1496.

[29] J. Shi, J. Malik, Normalized cuts and image segmentation, IEEE Trans.
Pattern Anal. Mach. Intell. 22 (8) (2000) 888–905.

[30] H. Shiokawa, Y. Fujiwara, M. Onizuka, Scan++: Efficient algorithm for
finding clusters, hubs and outliers on large-scale graphs, Proc. VLDB En-
dow. 8 (11) (2015) 1178–1189.

[31] Y. Sun, J. Han, P. Zhao, Z. Yin, H. Cheng, T. Wu, Rankclus: Integrating
clustering with ranking for heterogeneous information network analysis,
in: Proc. of the EDBT, 2009.

[32] J. Wang, K. Zheng, H. Jeung, H. Wang, B. Zheng, X. Zhou, Cost-efficient
spatial network partitioning for distance-based query processing, in: Proc.
of the MDM, 2014.

[33] Z. Wang, M. Lu, X. Yuan, J. Zhang, H. v. d. Wetering, Visual traffic
jam analysis based on trajectory data, IEEE Trans. on Visualization and
Computer Graphics 19 (12) (2013) 2159–2168.

[34] L.-Y. Wei, W.-C. Peng, An incremental algorithm for clustering spatial
data streams: exploring temporal locality, Knowledge and Information
Systems 37 (2) (2013) 453–483.

[35] S. White, P. Smyth, A spectral clustering approach to finding communities
in graph, in: Proc. of the SDM, 2005.

[36] X. Xu, N. Yuruk, Z. Feng, T. A. J. Schweiger, Scan: A structural cluster-
ing algorithm for networks, in: Proc. of the ACM SIGKDD, 2007.

[37] Z. Xu, H.-A. Jacobsen, Processing proximity relations in road networks,
in: Proc. of the ACM SIGMOD, SIGMOD ’10, 2010.

[38] D. Yan, J. Cheng, W. Ng, S. Liu, Finding distance-preserving subgraphs
in large road networks, in: Proc. of IEEE ICDE, 2013.

[39] D. Yan, L. Huang, M. I. Jordan, Fast approximate spectral clustering, in:
Proc. of ACM SIGKDD, 2009.

[40] M. J. Zaki, W. Meira Jr., Data Mining and Analysis: Fundamental Con-
cepts and Algorithms, Cambridge University Press, 2014.

[41] B. Zhang, K. Xing, X. Cheng, L. Huang, R. Bie, Traffic clustering and on-

line traffic prediction in vehicle networks: A social influence perspective,
in: Proc. of the IEEE INFOCOM, 2012.

[42] Y. Zhou, H. Cheng, J. X. Yu, Graph clustering based on struc-
tural/attribute similarities, Proc. VLDB Endow. 2 (1) (2009) 718–729.

23

	cover_page-7
	spatialpartitioning-CR

