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A new molecular simulation procedure is reported for determining the phase behavior of fluids and
fluid mixtures, which closely follows the experimental synthetic method. The simulation proce-
dure can be implemented using Monte Calro or molecular dynamics in either the microcanonical
or canonical statistical ensembles. Microcanonical molecular dynamics simulations are reported for
the phase behavior of both the pure Lennard-Jones fluid and a Lennard-Jones mixture. The vapor
pressures for the pure fluid are in good agreement with Monte Carlo Gibbs ensemble and Gibbs-
Duhem calculations. The Lennard-Jones mixture is composed of equal size particles, with dissim-
ilar energy parameters (ε2/ε1 = 1/2, ε12/ε1 = 1/

√
2). The binary Lennard-Jones mixture exhibits

liquid-liquid equilibria at high pressures and the simulation procedure allows us to estimate the co-
ordinates of the high-pressure branch of the critical curve. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4739853]

I. INTRODUCTION

Understanding the phase behavior of fluids and fluid
mixtures is of both considerable scientific and practical
importance.1 The phase transitions between vapor and liq-
uid phases, different liquid phases, or solid and liquid phases
are ultimately due to intermolecular interactions, which re-
flect both subtle and substantial differences of the molecu-
lar components of the phases involved. Differences in phase
behavior have profound influences on many important indus-
trial processes2 such as enhanced oil recovery, food prepa-
ration, combustion, and transportation of fluids. In view of
this it is not surprising that considerable effort is devoted both
to the measurement3 and prediction of phase equilibria.4 In
this context it should be noted that both experimental mea-
surement and prediction have their own challenges. The mea-
surement of phase behavior is often a labor-intensive exercise,
requiring considerable skill and specialised equipment. It is
also not without risks, particularly when high temperatures,
pressures, and potentially toxic substances are involved. Pre-
dictions, based, for example, on equations of state,5 are cer-
tainly helpful but their usefulness is often restricted because
of underlying theoretical limitations, which make the use of
approximations unavoidable.

Molecular simulation,6 which provides an exact evalua-
tion of the underlying theoretical model, is a valuable alterna-
tive to conventional calculations. In some cases,7, 8 molecular
simulation has also had a valuable role in guiding experimen-
tal work and clarifying discrepancies. Historically, the appli-
cation of molecular simulation algorithms to phase equilibria
was somewhat limited because of the uncertainties involved in
accurately determining the chemical potential. Early attempts
circumvented this problem using indirect approaches such

a)E-mail: rsadus@swin.edu.au.

as thermodynamic integration9 and grand canonical Monte
Carlo techniques.10 The Gibbs ensemble method11, 12 repre-
sents the first direct simulation method for phase equilibria
and it is now arguably the standard technique in the field.
The main advantage of the Gibbs ensemble method is that
the conditions for phase equilibria are achieved without the
need to calculate the chemical potential. Subsequently, algo-
rithms based on Gibbs-Duhem integration13, 14 and histogram
reweighting15 have been widely applied to pure fluids, fluid
mixtures, and solid-liquid equilibria. Examples of other ap-
proaches have involved using a test particle in conjunction
with an isothermal-isobaric ensemble,16 a spinodal decompo-
sition algorithm17 to determine orthobaric densities and the
combination18 of equilibrium and non-equilibrium molecular
dynamics to determine solid-liquid phase equilibria.

As reviewed in Ref. 6 these alternative algorithms have
well documented strengths and limitations. The Gibbs en-
semble avoids the need for a physical interface but the prob-
ability of particle interchange between dense phases is low,
hampering its usefulness for both high-pressure liquid-liquid
and solid-liquid phase equilibria. In contrast, particle inter-
change is not a feature of the Gibbs-Duhem algorithm but the
method is not self-starting and as such its accuracy depends on
well-chosen starting conditions. Histogram reweighting pro-
vides accurate results, particularly in the vicinity of the crit-
ical point19 but it is somewhat cumbersome for multicompo-
nent mixtures. It should also be noted that these algorithms are
most easily implemented using Monte Carlo, whereas the use
of molecular dynamics (MD) requires additional effort.18, 20

There are a variety of experimental techniques for the
measurement of phase behavior, which at least partly reflects
the varied conditions of interest such as high pressures and
temperatures. There is not even a remote resemblance be-
tween simulation algorithms and any experimental method.
This is understandable in view of the unavoidable disconnect
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between the abstract nature of theory or computation and the
practical nature of experiment. In this context, the “synthetic”
experimental method for high-pressure phase equilibria pio-
neered by Lentz and Franck21, 22 is of particular interest be-
cause it can be mapped directly onto existing simulation tech-
niques. The aim of this work is to exploit this correspondence
to develop a simulation procedure that can be used for the
high-pressure phase equilibria of mixtures. In particular, the
method provides the opportunity to estimate the critical points
of binary mixtures, which is difficult to achieve in a conven-
tional simulation.

II. METHODS

A. Experimental synthetic method

First, we must briefly consider the experimental method
developed by Lentz and Franck21, 22 for high-pressure phase
equilibria as it provides the rationale for the corresponding
simulation procedure reported here. The method, which Lentz
and Franck described as “synthetic” involves filling an auto-
clave of variable volume with known amounts of two com-
ponents that are initially immiscible. While maintaining a
constant volume, the temperature is gradually increased and
the corresponding increase in pressure is monitored until the
meniscus between the two phases disappears and there is only
one phase. The transition represents a coexistence point on the
three-dimensional pressure (p)-temperature (T)-composition
(x) surface. Importantly for our purpose, a “knick point” on
the pressure-temperature curve also marks the transition. Al-
though it is impossible to observe a meniscus in a molecu-
lar simulation, a disruption in the pressure-temperature curve
should be an observable simulation feature. As the pressure-
temperature curve is at constant volume, it is commonly re-
ferred to as an isochore.

An example of such experimental measurements for the
methane + methanol binary mixture reported in Ref. 23 is
illustrated in Fig. 1. The above procedure, with composition
unchanged, is subsequently repeated for several different vol-
umes, resulting in different knick points on the various iso-
chores. The locus of these knick points represents an isopleth
at a given composition. By repeating the measurements at dif-
ferent compositions, different isopleths are obtained. The crit-
ical curve of the mixture can be obtained as the high tempera-
ture envelope of the isopleths. The synthetic method has been
successfully used to determine the high-pressure phase behav-
ior and critical curve of a wide variety of binary mixtures.24

B. Algorithm for simulating phase equilibria

The above description suggests a simulation method that
closely mirrors the experimental procedure. The constant vol-
ume autoclave at a given temperature and fixed composition is
equivalent to a canonical (NVT) ensemble in which the vol-
ume (V), temperature, and the number of particles (N) are
held constant. Alternatively, a microcanonical (NVE) ensem-
ble could be used, with the fixed energy (E) being determined
by the desired temperature. The simulation procedure for bi-
nary mixtures is as follows.

FIG. 1. An example of an experimentally determined23 isochore (©) for a
methane + methanol mixture (x2 = 0.451, V = 81.94 cm3 mol−1) with a
knick point (●) located at T = 442.15 K and p = 30.35 MPa. An isopleth
at a given constant composition is the locus of knick points obtained from
different isochores. The line through the points is for guidance only.

(a) Determine a fixed composition (x2 = N2/N) by specifying
the number of particles of component 1 (N1) and compo-
nent 2 (N2) such that N = N1 + N2.

(b) For a given N and V, conduct a series of either NVE or
NVT independent simulations (i) for a range of different
temperatures separated by an appropriate interval (Ti+1

= Ti ± �T) and monitor the pressure. The initial temper-
ature can be either below or above the knick point temper-
ature. An abrupt change in pressure indicates that a knick
point has been passed.

(c) Reduce the size of �T and repeat (b) between the last two
temperatures (Ti, Ti−1).

(d) Repeat (b) and (c) until the knick point temperature is
located to within the desired level of accuracy. This pro-
vides one point on the isopleth corresponding to a partic-
ular isochore.

(e) To obtain additional knick points repeat (b) to (d) with
different volumes but unchanged composition. The iso-
pleth at a given composition is obtained as the locus of
these knick points.

In this way the phase behavior of the mixture is obtained
by simply performing repeated NVE or NVT simulations.

We monitored the change in pressure graphically but the
process could in principle be automated by monitoring the
derivative of pressure with respect to temperature. The pro-
cedure for calculating the temperature derivative for the NVE
ensemble has been reported in Ref. 25. However, as deriva-
tives obtain from simulations are prone to error it would be
unwise to rely solely on an automated procedure without a vi-
sual inspection of the results. The main source of error is the
location of the knick point temperature, which is governed by
the temperature interval (�T). In this work, we report tem-
perature with an uncertainty of ±0.005 but greater accuracy
could be achieved by choosing a smaller temperature interval.
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FIG. 2. An example of an isochore obtained for a binary Lennard-Jones mix-
ture (ρ* = 0.1, x2 = 0.1) studied in this work. A knick point can be identified
at T* = 1.01, p* = 0.0486. The line through the points is for guidance only.

The error in the pressure is simply the statistical uncertainty in
the virial calculation for pressure at the given knick point tem-
perature. This means that, depending on the adequacy of the
simulation settings (system size, simulation length, etc.), an
accurate pressure can be usually attributed to the knick point
temperature.

An example of an isochore for a binary Lennard-Jones
mixture is illustrated in Fig. 2, which clearly shows the knick
point. Taking the logarithm of both pressure and temperature
is useful in identifying the knick point. As can be observed
from Fig. 2, the branches of the curve at temperatures either
side of the knick point are close to linear but diverge in the
proximity of the knick point. In some cases, particularly at
temperatures and densities associated with a critical transi-
tion, there is considerable variability in the pressure, which
makes it difficult to accurately locate the knick point. This
phenomenon, which is not observed experimentally, is associ-
ated with the finite nature of the simulations. To minimize this
problem a system size of at least N = 1000 is recommended.

The canonical ensemble is the natural ensemble for
Monte Carlo simulations, whereas the microcanonical en-
semble is the natural choice for molecular dynamics because
Newton’s equations of motion result in energy conservation.
As the use of molecular dynamics for phase equilibria is rel-
atively rare in the literature, we have opted to use it here to
demonstrate the efficacy of the technique.

C. Simulation details

In this study the interaction between particles is described
by the Lennard-Jones potential (u):

u(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]

, (1)

where r is the inter-particle separation, σ and ε are the char-
acteristic energy and size parameters, respectively. All the re-
sults are given in a system of reduced units, i.e., density (ρ*

= ρσ 3), temperature (T* = kT/ε), pressure (p* = pσ 3/ε), and
time (τ ∗ = τ

√
ε/mσ 2). The asterisk superscript will be omit-

ted in the rest of this study. The binary mixture was specified
with components of equal size (σ 2/σ 1 = 1, σ 12/σ 1 = 1) but
dissimilar energy parameters (ε2/ε1 = 1/2, ε12/ε1 = 1/

√
2).

A cubic simulation box was used, with the particles ini-
tially positioned on a face centred cubic (FCC) lattice. MD
NVE simulations were performed by integrating the equations
of motion using a five-value Gear predictor-corrector scheme6

with a time step of τ = 0.001 and a cut-off radius of half
the box length. This cut-off radius was chosen to be consis-
tent with that used for other simulation methods such as the
Gibbs ensemble11 and Gibbs-Duhem13 methods. The results
from these direct methods are typically sensitive to the cut-off
value. As an alternative to using half the box length, a suffi-
ciently large common cut-off value could be used. It has been
recently reported in Ref. 26 that 6σ is sufficiently large to
minimize discrepancies. We repeated some calculations with
this value and the results were almost indistinguishable from
those obtained with half the box length.

A desired temperature was specified at the outset of the
simulation and, during the equilibration stage only, periodic
velocity scaling was performed to ensure the temperature was
achieved. The results for each new temperature represent a
completely independent simulation, starting from a FCC lat-
tice at a given density. The pressure was calculated via the
virial theorem6 and the standard long-range corrections6 were
applied to obtain the full contributions to both energy and
pressure. Values of N = 500, 1000, 2000, and 3000 were used
depending on the composition, temperature, and density. An
equilibration period of 5 × 105τ was typically used for equi-
libration, with a further period of 5 × 105τ for the accumula-
tion of ensemble averages.

III. RESULTS AND DISCUSSION

A. Vapor pressures of the pure Lennard-Jones fluid

Although binary mixtures are the main focus of this
work, it occurred to us that the simulation technique could
be also applied to pure components. To the best of our knowl-
edge, the experimental synthetic method has not been applied
to pure fluids, which can probably be attributed to the fact
that the equipment was primarily designed for higher pres-
sures and there are simpler methods for obtaining the vapor
pressure curve. However, it is useful to apply the simulation
technique to pure fluids because there are ample simulation
data in the literature for comparison. The procedure for ob-
taining the phase coexistence of a pure fluid is the same as for
the mixture, except that there is no composition variable. In
this case, the isopleth curve simply becomes the vapor pres-
sure curve.

An example of a knick point obtained for the pure
Lennard-Jones fluid is given in Fig. 3. The pressure-
temperature behavior of the fluid in the vicinity of the knick
point reflects the nature of the fluid transition. A transition to
a single liquid phase, results in either an increase (Fig. 1) or
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FIG. 3. An example of an isochore obtained for a pure Lennard-Jones mix-
ture (ρ* = 0.295) studied in this work. A knick point can be identified at T*

= 1.29, p* = 0.1184. The line through the points is for guidance only.

very small decline (Fig. 6) in the pressure gradient at tem-
peratures beyond the knick point. In contrast, a transition to
a vapor phase (Figs. 2 and 3) results in a noticeably reduced
pressure gradient at higher temperatures. This difference in
behavior can be attributed to the difference in compressibil-
ity of vapor and liquids. The sharpness of the knick point
diminishes as the coexisting phases become more similar in
character. By definition, the critical point is reached when the
properties of the coexisting phases become identical. T*

= 1.29 is close to the critical temperature of the Lennard-
Jones fluid (T* = 1.312) and the knick point observed at
this temperature (Fig. 3) is much less sharp than is observed
at lower temperatures (Fig. 2). Above the critical point, the
pressure-temperature profile would be smooth and uninter-
rupted under all conditions because no further phase transi-
tions are possible.

The vapor pressures of a pure Lennard-Jones fluid ob-
tained in this work are summarized in Table I and a compar-
ison with Monte Carlo Gibbs ensemble12, 19, 27, 28 and Gibbs-
Duhem29 simulation data from the literature is given in Fig. 4.
It is apparent from Fig. 4 that there is generally good agree-
ment between the vapor pressures obtained here and data re-
ported in the literature. In all cases, the discrepancies are
within the combined reported uncertainties. We could not ac-
curately resolve the vapor pressure at the critical temperature
as there was a large degree of scatter at temperatures above
T* = 1.29. This is hardly surprising, as it is well known that
finite size effects severely impede such calculations in con-
ventional simulation techniques. It should be noted that the
simulation procedure does not allow us to determine the co-
existing densities of the vapor and liquid phases.

B. High-pressure phase equilibria of a binary
Lennard-Jones mixture

The parameters of the binary mixture were chosen be-
cause previous work19, 30–32 for this mixture has only reported

FIG. 4. Comparison of the vapor pressures of the pure Lennard-Jones fluid
obtained in this work (●) with Gibbs ensemble12, 19, 27, 28 (©) and Gibbs-
Duhem29 simulation data (�) reported elsewhere.

vapor-liquid equilibria, whereas the large difference in the en-
ergy parameters suggests that liquid-liquid equilibria at high
pressure are likely. Although the synthetic simulation method
also provides results for vapor-liquid equilibria, comparisons
with literature calculations19, 30–32 are not possible because the
method does not yield the coexisting compositions.

The synthetic simulation procedure as described above,
was used to generate different constant composition isopleths,
and some of these are illustrated in Fig. 5. Examples of the
knick points used to obtain the isopleths in Fig. 5 are illus-
trated in Fig. 6. The gentler transition through the knick point
at high pressure (Fig. 6(b)) compared with lower pressure
(Fig. 6(a)) reflects the greater similarity of the liquid phases
in the former case.

TABLE I. Vapor pressure curve of a pure Lennard-Jones fluid obtained in
this work from NVE molecular dynamics simulations.a

T* p*

0.7 0.00234(17)
0.74 0.00435(50)
0.87 0.0073(33)
0.91 0.0103(30)
0.95 0.0143(16)
0.97 0.0178(21)
0.99 0.0207(17)
1.02 0.0286(15)
1.1 0.0482(17)
1.14 0.0551(22)
1.19 0.0764(20)
1.25 0.0988(26)
1.27 0.1051(33)
1.29 0.1184(11)

aThe values in brackets represent the standard error in last digit of the calculated pres-
sure. The typical uncertainty in the temperatures is ±0.005.
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FIG. 5. Isopleths for the Lennard-Jones binary mixture at compositions of
x2 = 0.5 (×), 0.4 (�), 0.3 (�), 0.1 (©), 0.041 (�), and 0.032 (�) determined
from the synthetic simulation procedure reported here. The estimated high-
pressure binary mixture critical curve (—), the pure critical point (●, CP)
(Ref. 19) and vapor pressure curve (- - - -) are also illustrated. The lines
through the isopleths are for guidance only.

Two phases are observed to the left of each isopleth
(Fig. 5) whereas the one phase-region occurs on the right.
Therefore, the critical curve can be identified as the high tem-
perature envelope of the isopleths. Numerical values can also
be estimated by locating the pressure minimum of the liquid-
liquid curves (Fig. 7) at constant temperature and these are
summarized in Table II. The data in Fig. 7 were obtained by
taking constant temperature slices through the isopleths.

The high-pressure critical locus for this binary mixture
occurs over a very narrow range of composition. This means
the critical composition at the different temperatures cannot
be reliably differentiated and consequently only the critical
pressures and temperatures are given in Table II. The steep-
ness of the p–T critical curve is an obvious source of possible
error in the pressure. For example, at T* = 1.37, the estimated
critical pressure is approximately 55 times greater than the
critical pressure of the pure Lennard-Jones fluid.

Two important features of the phase behavior of the
Lennard-Jones binary mixture are apparent from the shape of

TABLE II. Estimated high-pressure liquid-liquid critical curve of the binary
Lennard-Jones mixture.a

T* p*

1.24 0.12
1.26 0.22
1.28 0.53
1.30 1.11
1.32 2.19
1.35 5.62
1.37 6.98

aThe typical uncertainty in the pressures is at least ±0.5, particularly at high
temperatures.

FIG. 6. Examples of isochores for the binary Lennard-Jones mixtures, show-
ing the position of the knick points used to construct the isopleths in Fig. 5.
Results are shown for (a) x2 = 0.032, ρ* = 0.5 (knick point at T* = 1.24, p*

= 0.098) and (b) x2 = 0.5, ρ* = 0.9 (knick point at T* = 1.125, p* = 4.696).
The lines through the points are for guidance only.

the critical curve illustrated in Fig. 5 and the location of the
critical point of the pure Lennard-Jones fluid19 (T* = 1.312,
p* = 0.1279). First, it is likely that the critical curve passes
through a pressure-temperature minimum. Starting from the
critical point of the pure Lennard-Jones fluid, we would ex-
pect vapor-liquid equilibria to extend partly to lower temper-
atures. Potoff and Panagiotopoulos reported19 a vapor-liquid
critical point at T* = 1.0, p* = 0.1522, and x2 = 0.541. In
view of both the high concentration of component 2 and the
relatively low temperature, this point appears to be part of the
vapor-liquid branch of the critical curve commencing from
the critical point of component 2 and ending at an upper crit-
ical end point of a three-phase liquid-liquid-vapor line. The
high pressures (p* = 0.12–6.98) indicate that liquid-liquid
equilibria is involved and the curve passes through a pressure-
temperature minimum at or near T* = 1.24. Second, phase
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FIG. 7. Liquid-liquid equilibria at T* = 1.26 (●), 1.28 (©), 1.3 (�), 1.32
(�), and 1.35 (�) obtained from the synthetic method for the binary Lennard-
Jones mixture. The lines are for guidance only.

equilibria are observed at temperatures (T* = 1.32–1.37) that
are greater than that of the critical temperature of the pure
Lennard-Jones fluid. This region of fluid phase equilibria is
sometimes referred to as “gas-gas immiscibility”33 to reflect
the fact that we would intuitively expect a gas at such temper-
atures.

In terms of the classification scheme for binary mixtures,
originally proposed by van Konynenburg and Scott,34 we can
conclude that the Lennard-Jones binary mixture is probably
a Type III system, with “gas-gas immiscibility” of the sec-
ond kind.6, 33 In contrast, Type III mixtures of the first kind
of gas-gas immiscibility6, 31 have a critical locus that extends
directly to temperatures above the critical temperature of the
least volatile component. Examples of real systems exhibiting
Type III behavior are mixtures containing an n-alkane and ei-
ther water24 of a fluorocarbon35, 36 as the other component. An
alternative explanation is the mixture as a Type II system, with
the critical locus representing upper critical solution temper-
atures, commencing from an unidentified upper critical end
point at low pressures. The narrow range of compositions is
consistent with Type II behavior, although the liquid-liquid
critical locus of such systems typically occurs at lower tem-
peratures.

The ability to locate liquid-liquid equilibria and hence
Type III/II behavior over such a narrow range of composition
is a significant advantage of the synthetic simulation proce-
dure. The narrowness of the composition range coupled with
the similar densities of the coexisting phases is likely to im-
pose a severe impediment for conventional simulation algo-
rithms, which rely on particle interchange between the phases.
It is likely that the Gibbs ensemble method would have diffi-
culty in distinguishing between such similar phases, resulting
in the prediction of a single phase.

The synthetic simulation procedure has some other ma-
jor advantages as well as some disadvantages. The main ad-
vantage is that it can be used to obtain phase equilibria us-
ing existing NVE or NVT molecular simulation programs
without any additional modifications. The strategy can be
implemented in both molecular dynamics and Monte Carlo,
whereas applying molecular dynamics to phase equilibria
with other algorithms is often difficult. In principle, a compre-
hensive description of the phase diagram at high pressures can
be obtained and it yields an estimate of the critical curve of
binary mixtures. The procedure can be easily extended to any
number of components and it also closely mirrors the corre-
sponding experimental method. Disadvantages of the method
are that several state point calculations are required to iden-
tify a knick point; in some cases it is difficult to accurately
identify the knick point; post-simulation analysis is required
to generate the isopleths and coexistence points; and the co-
existing densities are not determined.

IV. CONCLUSIONS

A new molecular simulation procedure has been devel-
oped to predict the phase behavior of both pure fluids and
fluid mixtures at high pressures. The procedure can be imple-
mented in either the microcanonical and canonical statistical
ensembles using Monte Carlo or molecular dynamics tech-
niques. A feature of the procedure is that it closely reflects the
experimental synthetic method used for high-pressure phase
equilibria. It can be used with existing simulation codes with-
out the need for any modifications. Unlike alternative meth-
ods, it allows us to estimate the high-pressure critical curve
of binary mixtures. Microcanonical molecular dynamics re-
sults are reported, which are in good agreement for the vapor
pressures of the pure Lennard-Jones fluid. Calculations for a
binary Lennard-Jones mixture indicate the existence of liquid-
liquid equilibria at temperatures above both the pure critical
points. This means that the mixture is either a Type III or II
system. The coordinates of the high-pressure branch of the
critical curve of the binary mixture are estimated.
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