
Agent-Based Ontology Management towards

Interoperability

By

Li Li

BSc (Southwest China Normal University, China)

MSc (Southwest China Normal University, China)

Submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy

of Swinburne University of Technology

December 2005

SWINBURNE UNIVERSITY OF
TECHNOLOGY

CANDIDATE DECLARATION

I certify that the thesis entitled:

Agent-Based Ontology Management Towards Ontology

Interoperability

submitted for the degree of:

Doctor of Philosophy

is the result of my own research, except where otherwise acknowledged, and that

this thesis in whole or in part has not been submitted for an award, including a

higher degree, to any other university or institution.

Full Name: Li Li

Signed:....................................... Date:.........................

ii

To My Family

iii

Abstract

Ontologies are widely used as data representations for knowledge bases and marking

up data on the emerging Semantic Web. Hence, techniques for managing ontol-

ogy come to the centre of any practical and general solution of knowledge-based

systems.

Challenges arise when we look a step further in order to achieve flexibility and

scalability of the ontology management. Previous works in ontology management,

primarily for ontology mapping, ontology integration and ontology evolution, have

exploited only one form or another of ontology management in restrictive settings.

However, a distributed and heterogeneous environment makes it necessary for re-

searchers in this field to consider ontology interoperability in order to achieve the

vision of the Semantic Web. Several challenges arise when we set our goal to

achieve ontology interoperability on the Web. The first one is to decide which soft-

ware engineering paradigm to employ. The issue of such a paradigm is the core of

ontology management when dynamic property is involved. It should make it easy

to model complex systems and significantly improve current practice in software

engineering. Moreover, it allows the extension of the range of applications that can

feasibly be tackled. The second challenge is to exploit frameworks based on the pro-

posed paradigm. Such a framework should make possible flexibility, interactivity,

reusability and reliability for systems which are built on it. The third challenge is

to investigate suitable mechanisms to cope with ontology mapping, integration and

evolution based on the framework. It is known that predefined rules or hypotheses

may not apply given that the environment hosting an ontology is changing over

time.

iv

Fortunately, agents are being advocated as a next generation model for en-

gineering complex and distributed systems. Also some researchers in this field

have given a qualitative analysis to provide a justification for precisely why the

agent-based approach is well suited to engineer complex software systems. From

a multi-agent perspective, agent technology fits well in developing applications in

uncontrolled and distributed environments which require substantial support for

change. Agents in multi-agent systems (MAS) are autonomous and can engage in

interactions which are essential for any ongoing agents’ actions. A MAS approach

is thus regarded as an intuitive and suitable way of modelling dynamic systems.

Following the above discussion, an agent-based framework for managing ontology

in a dynamic environment is developed. The framework has several key characteris-

tics such as flexibility and extensibility that differentiate this research from others.

Three important issues of the ontology management are also investigated. It is be-

lieved that inter-ontology processes like ontology mapping with logical semantics

are foundations of ontology-based applications. Hence, firstly, ontology mapping

is discussed. Several types of semantic relations are proposed. Following these,

the mapping mechanisms are developed. Secondly, based on the previous mapping

results, ontology integration is developed to provide abstract views for participating

organisations in the presence of a variety of ontologies. Thirdly, as an ontology is

subject to evolution in its life cycle, there must be some kind of mechanisms to

reflect their changes in corresponding interrelated ontologies. Ontology refinement

is investigated to take ontology evolution into consideration. Process algebra is

employed to catch and model information exchanges between ontologies. Agent

negotiation strategy is applied to guide corresponding ontologies to react properly.

A prototype is built to demonstrate the above design and functionalities. It is

applied to ontologies dealing with the subject of beer (type). This prototype con-

sists of four major types of agents, ranging from user agent, interface agent,

ontology agent, and functionary agent. Evaluations such as query, consistency

checking are conducted on the prototype. This shows that the framework is not

only flexible but also completely workable. All agents derived from the framework

exhibit their behaviours appropriately as expected.

v

Acknowledgments

First, I would like to thank my coordinating supervisor, Professor, Yun Yang, for his

helpful supervision and continuous encouragement throughout, his guidance and

stimulating discussions during the course of this work. He has always given me

timely and constructive feedback for my research ideas, papers and thesis drafts.

His suggestions have been helpful, and his comments and questions are very in-

sightful. Without his consistent support, I would not have been able to complete

this manuscript. I am lucky and happy to have been able to work with him during

my PhD program. I would also like to thank my associate supervisor, Dr. Baolin

Wu, for his valuable advice and useful feedback on my work which helped to make

it better.

I am grateful to the Faculty of Information and Communication Technologies

(FICT) and Swinburne University of Technology, which have offered me Research

Scholarships throughout my doctoral program. FICT has provided an excellent

environment for learning and experiencing, and sponsored my participation in con-

ferences. At the FICT, I must acknowledge research administration coordinators

Mrs. Neroli Finlay and Ms. Charlotte Swain for their tireless efforts to make my

life in Swinburne easier.

Thanks to all those who helped me in one way or another during my PhD study:

Dr. Jun Yan, Dr. Dongang Yu, Jinjun Chen, Xiaohui Zhao and Shane Grund.

Finally, I am deeply grateful to my family, who have always believed in me and

provided love and support over all these years. I would never have achieved what

I have without their encouragement. I cannot imagine completing graduate study

without their help. I am forever in their debt.

vi

List of Publications

The following is a list of my research papers published in referred conference pro-

ceedings during my PhD study at Swinburne University of Technology:

1. Li, L., Yang, Y., and Wu, B., Agent-based Ontology Integration for Ontology-

Based Application, in: T. Meyer, M. Orgun (Eds.), Proc. of Australasian

Ontology Workshop (AOW 2005), the 18th Australian Joint Conference on

Artificial Intelligence, Conference in Research and Practice in Information

Technology (CRPIT) series by Australian Computer Society, Vol 58, pp. 53-

59, Sydney, Australia, December 2005.

2. Li, L., Yang, Y., and Wu, B., Agent-based Ontology Mapping towards On-

tology Interoperability, Proc. of the 18th Australian Joint Conference on

Artificial Intelligence (AI05), LNAI 3809, Springer-Verlag, pp. 843-846, Syd-

ney, Australia, December 2005.

3. Li, L., Wu, B., and Yang, Y., Agent-based Approach for Dynamic Ontol-

ogy Management, Proc. of the 9th International Conference on Knowledge-

Based Intelligence Information & Engineering Systems (KES2005), LNCS

3683, Part III, Springer-Verlag, pp. 1-7, Melbourne, Australia, September

2005.

4. Wu, B., Dewan, M., Li, L. and Yang, Y., Supply Chain Protocolling, IEEE

Conference on E-Commerce Technology (CEC’05), pp. 314-321, München,

Germany, July 2005.

5. Li, L., Yang, Y., and Wu, B., Agent-based Approach towards Ontology Re-

finement in Virtual Enterprises, Proc. of the 3rd International Conference on

vii

Active Media Technology (AMT 2005), pp. 250-255, Kagawa, Japan, May

2005.

6. Li, L., Wu, B., and Yang, Y., Ontology-based Matchmaking in e-Marketplace

with Web Services, Proc. of the 6th Asia Pacific Web Conference, LNCS

3399, Springer-Verlag, pp. 620-631, Shanghai, China, March 2005.

7. Li, L., Wu, B., and Yang, Y., Semantic Mapping with Multi-Agent Systems,

Proc. of IEEE International Conference on e-Technology, e-Commerce and

e-Service (EEE-05), pp. 54-57, Hong Kong, March 2005.

8. Li, L., Wu, B., and Yang, Y., Refinement for Ontology Evolution in Virtual

Enterprises, Proc. of the 4th International Conference on Electronic Business

(ICEB2004), pp. 696-701, Beijing, China, December 2004.

9. Wu, B., Li, L., and Yang, Y., E-Business Value Process Modelling, Proc. of

the 4th International Conference on Electronic Business (ICEB2004), pp. 408-

413, Beijing, China, December 2004.

10. Li, L., Wu, B., and Yang, Y., Developing Ontology in Virtual Enterprises,

Proc. of International Conference on Intelligent Agents, Web Technologies

and Internet Commerce, CD ISBN 1740881893, pp. 337-343, Gold Coast,

Australia, July 2004.

11. Li, L., Wu B., and Yang, Y., An Ontology-Oriented Approach for Virtual

Enterprises, Proc. of the 5th Asia Pacific Web Conference, LNCS 3007,

Springer-Verlag, pp. 834-843, Hangzhou, China, April 2004.

viii

Contents

Abstract iv

Acknowledgments vi

List of Publications vii

1 Introduction 1

1.1 Ontology and Ontology Management towards Interoperability . . . 3

1.2 Key Research Issues in Ontology Management 5

1.3 Overview of the Thesis . 7

1.4 Thesis Outline . 9

2 Literature Review and Requirements Analysis 12

2.1 Typical Approaches to Ontology Interoperability 13

2.1.1 Similarity Measurement . 14

2.1.2 Systems and Tools . 15

2.2 Agent-based Software Engineering 25

2.3 Requirements Analysis . 26

2.4 Summary . 28

3 Agent-based Framework for Ontology Management 30

3.1 Ontology Terminology . 31

3.2 Agent-based Approach for Ontology Management towards Interop-

erability . 33

3.3 Agent-based Framework for Ontology Management 35

3.3.1 General Framework . 36

ix

3.3.2 Agent Communication . 39

3.4 Comparison . 40

3.5 Summary . 46

4 Agent-based Ontology Mapping 47

4.1 Problems in Ontology Mapping . 49

4.2 Specific Related Work . 50

4.3 Scope of Ontology Mapping . 52

4.4 Mapping Process . 53

4.5 Mapping Mechanisms . 56

4.6 Examples . 59

4.7 Ontology Mapping Evaluation . 62

4.7.1 Query in Prototype . 62

4.7.2 Mapping Results Analysis 64

4.8 Discussion . 66

4.9 Summary . 69

5 Agent-based Ontology Integration 71

5.1 Problems in Ontology Integration 72

5.2 Specific Related Work . 72

5.3 Scope of Ontology Integration - Incorporating Ontology Reuse in

Integration . 74

5.4 Integration Process . 75

5.5 Integration Mechanisms . 77

5.6 Examples . 79

5.7 Consistency Checking in Prototype 79

5.8 Discussion . 81

5.9 Summary . 83

6 Prototyping and Evaluation 84

6.1 Implementation of the Framework 85

6.1.1 Technology Platform . 85

6.1.2 Agent Communication Languages 87

x

6.2 Ontologies . 90

6.2.1 User Defined Ontology . 91

6.2.2 User Defined Ontology in System 92

6.3 Agent Design and Implementation 92

6.3.1 User Agent . 93

6.3.2 Interface Agent . 93

6.3.3 Ontology Agent . 94

6.3.4 Thesaurus Similarity Agent 95

6.3.5 Mapping Agent . 96

6.3.6 Integration Agent . 98

6.3.7 Checking Agent . 102

6.3.8 Query Agent . 104

6.3.9 Ontology Import and Export 105

6.3.10 Important Notes . 108

6.4 Ontology Mapping and Integration 108

6.4.1 Ontology Mapping . 108

6.4.2 Ontology Integration . 110

6.5 Evaluation . 111

6.6 Lessons Learned . 112

6.7 Summary . 113

7 Agent-based Ontology Refinement 114

7.1 Problems in Ontology Refinement 115

7.2 Specific Related Work . 117

7.3 Negotiation Model . 119

7.4 Process Algebra . 122

7.4.1 Process Algebra for Information Exchange 122

7.4.2 Agent Process Interaction 124

7.4.3 Interaction Process Evolution 126

7.5 Agent Utility Function . 128

7.6 Scope of Ontology Refinement - Incorporating Ontology Refinement

in Ontology Management . 128

7.7 Refinement Process . 130

xi

7.8 Refinement Mechanisms . 130

7.9 Example - Reaching Agreement between Agents 135

7.10 Discussion . 138

7.11 Summary . 139

8 Conclusions and Future Work 140

8.1 Summary of Thesis . 140

8.2 Principal Contributions of This Thesis 141

8.3 Future Work . 143

Bibliography 146

xii

List of Tables

2.1 Comparison of systems and tools 22

2.2 Comparison of the ontology integration systems and tools 24

3.1 Comparison of frameworks . 44

4.1 MAS mapping evaluation . 65

4.2 Comparison of proposed agent-based mapping with some existing

mechanisms . 68

5.1 Comparison of some OWL inference engines 80

5.2 Comparison of proposed agent-based integration with some existing

systems . 82

xiii

List of Figures

1.1 Major tasks of the thesis . 8

3.1 Agent-based framework . 36

3.2 Agent communication channel . 39

3.3 InfoSleuth architecture . 41

3.4 OBSERVER architecture . 42

3.5 MOMIS architecture . 43

4.1 Ontology mapping . 53

4.2 Module for deciding the domain . 55

4.3 Interactions from MA’s view . 55

4.4 Fragment of beer ontology from DAML ontology library 60

4.5 Fragment of term beer from WordNet 61

4.6 Fragment of classification of basic beer types 61

4.7 Fragment of Australian beer types 62

4.8 Query in a directed graph . 64

5.1 Ontology integration . 74

5.2 Interactions from InA’s view . 75

5.3 Integrated ontology . 79

6.1 Reference architecture of a FIPA agent platform 86

6.2 Message passing between agents from FIPA communicative act li-

brary specification . 88

6.3 Three-layer agent communication model 88

6.4 Three-layer ontology model . 92

6.5 Interactions from OA’s view . 95

6.6 Interactions from SA’s view . 96

xiv

6.7 Mapping main window . 97

6.8 Mapping interface . 98

6.9 Mapping result . 98

6.10 Integration main window . 100

6.11 Integration interface . 100

6.12 Integrated ontology . 101

6.13 Integrated ontology in RDF(s) format 101

6.14 Interactions from CA’s view . 102

6.15 Checking main window . 103

6.16 Consistency check result . 103

6.17 Interactions from QA’s view . 104

6.18 Query main window . 105

6.19 Query interface . 106

6.20 Query result . 106

6.21 Export interface . 107

6.22 Screen shot of ontology mapping . 109

6.23 Screen shot of ontology integration 110

7.1 Feedback-driven negotiation . 119

7.2 Negotiation process - strategy determined by interactions and agent’s

status . 121

7.3 Ontology refinement . 129

7.4 Interactions from RA’s view . 131

7.5 Beer order in brewage industry domain 136

xv

Chapter 1

Introduction

Ontology management towards interoperability is a key for managing ontologies

based on certain applications. An ontology is an explicit specification of a concep-

tualisation [38]. Ontologies are widely used as data representations for knowledge

bases and marking up data on the emerging Semantic Web [11]. Hence, techniques

for managing ontology come to the centre of any practical and general solution

of knowledge-based systems. The vision of ontology for different purposes, such

as Web-enabled applications, Web semantics, information systems, is receiving in-

creasing attention both from academia and industry. In the context of knowledge

sharing, an ontology is a specification used for making ontological commitment

which is an agreement to use a vocabulary in a way that is consistent with respect

to the theory specified by an ontology [37, 38]. The next generation of the WWW,

the so-called Semantic Web, is based on using ontologies for annotating content

with formal semantics. Ultimately, ontologies enable data/information integration

in the context of the semantics. They would widen the accessibility of information

by allowing the use of multiple ontologies belonging to diverse organisations. The

benefits of using ontologies have been recognised in many areas such as knowledge

and content management, e-commerce and the Semantic Web. Approaches based

on ontologies have shown the advantages for both information integration and sys-

tem interoperability including reusability, extensibility, verification analysis and so

on.

1

CHAPTER 1. INTRODUCTION 2

Based on past experience, for example, CYC [69], a monolith ontology is un-

likely to be constructed due to the large scale, individual privacy needs, dynamics

and heterogeneity. As a typical example, the proliferation of Internet technol-

ogy and globalisation of business environments give rise to the advent of dynamic

virtual alliances [14] such as virtual organisations (VOs) among complementary

organisations. It is hardly conceivable that a single ontology can be applied to

all involved parties and applications. In addition, in numerous domains there is

always a need to deal with different purposes to keep their uniqueness. How-

ever, it seems that no satisfactory solutions to semantic mapping exist, because

today the vast majority of semantic mappings is still created manually. The slow

and expensive manual creation of mappings has now become a serious problem

in building ontology-based applications. The problem becomes even more critical

when a changeable environment (e.g. the Web) is involved, in which ontologies

and ontology-based applications might proliferate and scale up. Also a changeable

environment enforces underlying ontologies to evolve over time. Finally, the devel-

opment of technologies such as the Semantic Web will further fuel deployment of

ontologies to enable knowledge sharing and reuse across different sources. Manual

mapping is simply not possible for such scales. Given semantic mapping is a fun-

damental step in numerous ontology-based applications, it is time to think about

the development of solutions which are flexible, robust and applicable, to meet the

requirements of dynamic changes in an environment. Besides ontology mapping,

ontology integration and evolution are also critical and need to be investigated in

ontology management.

When heterogeneity, distribution, autonomy and evolution are concerned in on-

tologies, achieving effective interoperability of ontologies manually seems unlikely.

Interactions between agents on demand for the purpose of understanding each

other, which is a potential solution to addressing environment change, is treated

as a flexible approach and seen as a key technology at the knowledge view level.

As understanding in a particular domain is required before any decision is made,

it is regarded as a feasible and effective way to find certain semantics in a certain

business scenario at run-time. Besides VOs, the very viable and rapid growth of

the Web has made it even more prominent than ever before. Addressing ontology

CHAPTER 1. INTRODUCTION 3

management in a timely fashion and providing a conformance view for participat-

ing organisations at an abstract level is thus seen as necessary. Therefore, run-time

interactions are needed for ontology management. However, existing knowledge

management cannot cope with these interactions efficiently as they may occur at

unpredictable times between unpredictable parts of ontologies.

An agent is capable of flexible, autonomous actions in an environment in order

to meet its design objectives [147]. A multi-agent system (MAS) is a collection of

autonomous agents working together to solve problems that are beyond the overall

capability of individual agents. MASs [150, 81] fit well in the situations where

dynamic interactions and communication are needed. Agent-based perspective is

thus an appropriate approach for distributed ontology management where opera-

tions on diversity of ontologies cannot be achieved at design-time. Through agents

taking part in the ontology management at run-time, the bottleneck of information

understanding on the basis of agents’ interaction will be eased to some extent.

1.1 Ontology and Ontology Management towards

Interoperability

The concept of an ontology was initially introduced by Aristotle. In the computer

science domain, ontologies aim at capturing domain knowledge in a generic way

and provide a commonly agreed understanding of a domain, which may be reused

and shared across applications and groups [18]. It has become one of the hot topics

in computer science and information technology. Gruber’s [38] ontology definition

becomes the most referenced in the domain of computer science. In the context of

knowledge sharing, an ontology means a specification of a conceptualisation. That

is, an ontology is a description (specification) of the concepts and relationships

that can exist for an agent or a community of agents. It is a shared understanding

which is designed to enable communication for a community of agents (human or

intelligent agents). It aims at knowledge sharing and reuse [156]. There are other

ontology definitions which emerge as a consequence of their authors building and

using ontologies. Refer to Guarino et al. [39] for a deep study of this. We follow

Gruber’s ontology definition throughout this thesis.

CHAPTER 1. INTRODUCTION 4

Attention to ontologies and related areas has given rise to the advent of enor-

mous ontology languages and tools, and some of these have been used to build

ontology-based applications in the areas of knowledge management, e-business pro-

cess modelling, negotiation in e-commerce, bioinformatics or medicine.

In addition, ontologies provide support in integrating heterogeneous and dis-

tributed information sources. This gives them an important role in areas where

achieving interoperability is vital.

With the advent of ontologies, especially given that a monolith ontology is not

feasible for technical and non-technical reasons, the issues have increased because of

very close relationships between ontologies and the Semantic Web. Actually ontolo-

gies are the backbone of the Semantic Web. Frequently, in business, every organ-

isation conforming to a same ontology is infeasible. Ontology heterogeneity arises

because different sources have different vocabularies and semantics. Moreover, the

proliferation of Internet technology and globalisation of business environments has

given rise to the advent of a variety of ontologies which are far beyond expecta-

tions, whilst the changing environment enforces underlying ontologies to evolve over

time. That achievement of some goals in business requires more than individual

capabilities and knowledge, and makes it necessary for different organisations to

work together to maximise their own profits. All these make a continuing demand

on dealing with ontology operations on the fly rather than defined in advance.

Distributed ontologies from varied sources also add the requirement of interoper-

ability, thus system interoperability in the context of the Web is now reduced to

ontology interoperability. Dynamic ontology mapping is seen as a promising ap-

proach to tackling heterogeneous ontologies in order to pave the way to ontology

interoperability and eventually to achieving the goals of. In addition, if visions

such as the Semantic Web are ever going to become a reality, it will be necessary

to provide as much automated support as possible to the task of mapping different

ontologies. On the other hand, an ontology evolves throughout its life cycle. On-

tology refinement can be regarded as encouraging to taking ontology evolution into

account whenever needed. In short, ontology mapping is fundamental to further

ontology managements such as ontology integration (e.g. a global view of available

ontologies at an abstract level in order to take advantage of existing resources) and

CHAPTER 1. INTRODUCTION 5

refinement (e.g. coping with ontology evolution).

Ontology management aims to provide flexible mechanisms to cope with dy-

namic mapping and ontology integration as well as ontology changing within ontology-

based applications.

1.2 Key Research Issues in Ontology Manage-

ment

As stated in Section 1.1, it is necessary to consider ontology interoperability in the

context of the Web. The Web is an application that can operate on global computer

networks (http://www.december.com/web/develop/character.html). In this sense,

the emergence of the Web has made the environment of ontologies and ontology-

based applications change rapidly, which in turn has made ontology integration

more difficult than ever before. In order to identify the characteristics of problems,

let us take a closer look at ontologies and ontology-based applications on the Web.

The following are dominant characteristics of the environment:

• Available ontologies are scattered on the Web which makes manual gathering

of relevant information for a particular problem nearly impossible.

• The number of organisations (with different ontologies) may change dynam-

ically through organisations coming or leaving the environment randomly.

Furthermore, which ontology is available along with a particular organisa-

tion is uncertain.

• Ontologies are prone to adaptation and evolution.

• Processes of different organisations operate concurrently to modify the envi-

ronment in ways over which an organisation has no control.

• Different organisations demand efficient interaction as these interactions may

occur at unpredictable times, for unpredictable reasons, between unpredictable

organisations. An organisation thus needs to consider synchronising or coor-

dinating its actions with those of other processes in the environment.

CHAPTER 1. INTRODUCTION 6

In short, the typical characteristics of ontologies and ontology-based applica-

tions on the Web can be identified as: distributed (namely ontologies scattered in

different places), non-deterministic1 (in practice, almost all realistic environments

must be regarded as non-deterministic), heterogeneous (ontologies may have var-

ious modelling methods and different representations), and highly dynamic (the

number of organisations/ontologies changes dramatically, the ontology evolves over

time, with many processes concurrently modifying the environment in ways over

which an organisation has no control, heterogeneous systems need to interact by

spanning organisational boundaries and operating effectively within changing en-

vironments). However, existing systems or tools in this field so far have been

treated mainly as being static, so it is unlikely that they can tackle ontologies

and ontology-based applications efficiently and effectively in the above environ-

ment. Actually, existing software development techniques are concerned with what

are known as functional systems2. Systems developed by using classic software

engineering paradigms are inherently too simple to fulfill the tasks of an open

environment. On the contrary, reactive systems3 [120] are capable of responding

rapidly to changes in the environment [150]. From a MAS perspective, agents are

autonomous and flexible with major characteristics of reactivity, pro-activity and

high interactive ability [150]. MASs are able to operate flexibly and rationally in a

variety of environmental circumstances, given their abilities to perceive changes in

the environment and respond in a timely fashion. MAS’s ability to provide robust-

ness and efficiency and solve problems in which data or control is distributed, makes

the MAS perfectly suited for scalable, distributed environments. Agent technology

is thus ideally suited to model ontology integration on the Web.

Agent technologies are every promising to take on the responsibilities of carrying

out actions with the interference of other processes. In this research, an agent-

oriented view is ushered in and highlighted in order to meet the requirements of

1A deterministic environment is one in which any action has a single guaranteed effect - there
is no uncertainty about the state that will result from performing an action.

2A functional system is one that simply takes some input, performs some computation over
this input, and eventually produces some output.

3Typically, the main role of reactive systems is to maintain an interaction with their en-
vironment, and therefore must be described and specified in terms of their on-going be-
haviours...interacting with its own environment which consists of other modules.

CHAPTER 1. INTRODUCTION 7

responding promptly to changes in a dynamic and decentralised heterogeneous

environment.

1.3 Overview of the Thesis

Many researchers agree that one of the major bottlenecks in ontology-based appli-

cations on the Web is ontology mapping. The reason is because there are simply

too many ontologies available and they are too large to have manual mapping.

Rather than manually defining correspondences which is currently the primary ap-

proach in mapping, it is time to have a technique to provide potential ways to

map structures (e.g. representations and modelling paradigms) known by partici-

pants to new structures encountered on the fly. Hence the task of finding mappings

automatically takes the centre stage in the ontology community.

Naturally, mapping is not a goal in itself. The resulting mappings are used for

various integration tasks, given that ontologies are expressed in a language that

can be used for inference and semantics of ontology specified with reasoning. In

addition, ontology evolves over time. An applicable mechanism needs to take this

into account to reflect any changes.

In this thesis, our main focus will be on developing an agent-based framework

to tackle ontology management issues flexibly and effectively. In other words,

agents which consume ontologies also engage in ontology management towards

ontology interoperability. We intend to build a MAS to support the proposed

framework in order to handle ontology mapping, integration and refinement on

demand. In this system, available heterogeneous ontologies are converted to an

internal representation and imported to the agent-based system. The system then

performs mapping followed by integration or ontology refinement separately, or in

parallel. Integrated ontology is then exported in a RDF(s) format. The results

of refinement are either used through a mapping process to impact the current

mapping and integration processes, or exported in RDF(s) formats. The exported

ontology or ontologies in RDF(s) can then be reused with other existing ontologies

in the agent-based system (Figure 1.1).

To summarise, we discuss three dimensions of ontology management, under an

CHAPTER 1. INTRODUCTION 8

import

import

import

.

.

.

ontology

ontology

ontology

integration mapping

refinement

export
RDF(s)

export

Figure 1.1: Major tasks of the thesis

agent-based framework, in the thesis:

• Ontology mapping: Finding mappings between pairs of ontologies. This

consists of importing ontologies to the system, deciding which concepts rep-

resenting similar notions based on defined similarity measurement, exporting

mapping results for the next stage (integration), and so on.

• Ontology integration: Integrating ontology is based on the previous map-

ping results. It describes how the system integrates given ontologies and

exports in a specific format to allow information exchange between the sys-

tem it is hosted in and the other knowledge-base frameworks (e.g. Protégé).

Ontology reuse is at the core of avoiding error-prone and time-consuming

reinvention. This is discussed in detail to enable ontology reuse on demand.

• Ontology refinement: As long as an ontology exists, it is subject to change

in its life cycle. The negotiation mechanism is applied to cope with changes

whenever needed. Exports of ontology refinement may further feed back to

the processes (e.g. mapping and integration), or are the final result of the

management system.

In this thesis, we explore these dimensions. Specifically, our goals are as follows:

• to justify why the multi-agent perspective is appropriate for distributed on-

tology management;

• to develop a general framework;

CHAPTER 1. INTRODUCTION 9

• to investigate ontology mapping, integration and refinement mechanisms un-

der the proposed framework, in which agent interactions are highlighted for

the purposes of dynamic semantic mapping, abstract conformance viewing

and unpredicted ontology evolution;

• to implement an agent-based ontology management system, in which ontology

mapping and integration are realised as well as evaluation prototyping;

• to use process algebra to channel agent interactions for ontology evolution

(e.g. ontology refinement); and

• to use description logics to identify problems like inconsistency in ontologies.

In saying so, we attempt to make contributions in the the following two aspects

throughout this thesis:

• to provide a general framework to support heterogeneous and distributed

ontology management;

• to provide a solution to the problem of how to dynamically perform ontology

management.

1.4 Thesis Outline

The reminder of the thesis consists of 7 chapters. Chapter 2 is the literature review

and requirements analysis. Major chapters in the thesis can be grouped into three

levels. The upper level is the work toward the generic framework and mechanisms,

which is contained in Chapters 3, 4 and 5. Chapter 3 addresses an agent-based

framework for ontology management. Based on the framework, proposed in Chap-

ter 3, Chapter 4 discusses the mapping mechanisms which are treated to pave the

way to ontology interoperability in ontology-based applications. Chapter 5 ad-

dresses ontology integration based on the results of the mapping process to obtain

a global view at an abstract level under certain circumstances. The middle level is

the prototyping work of applying the framework and mechanisms proposed in the

upper level to detailed applications. Issues such as ontology building, importing

CHAPTER 1. INTRODUCTION 10

from and exporting to the system, and how to generate agents to take different roles

in a MAS are thoroughly investigated in Chapter 6. The bottom level extends the

above work to tackle ontology evolution in its life cycle. Chapter 7 presents the

ontology refinement mechanisms for tackling ontology evolution from a MAS’s per-

spective. Finally, Chapter 8 consists of conclusions and future work. An overview

of each chapter is as follows:

• Chapter 2, literature review and requirements analysis, briefly presents the

motivation for ontology management. A brief survey of existing systems/tools

and approaches is provided. Their advantages and disadvantages are sum-

marised. Based on these, the requirements analysis is thoroughly discussed.

• Chapter 3, agent-based framework for ontology management, argues that an

agent-based approach is well suited to tackling ontology management flexibly.

The analysis and design of a general agent-based framework are discussed.

Some material in this chapter is also reported in [73].

• Chapter 4, agent-based ontology mapping, discusses mechanisms of ontology

mapping under the framework proposed in Chapter 3. Mapping is based

on two kinds of semantic relations. A similarity thesaurus dictionary also

plays an important role in mapping by providing synonym information. This

dictionary is increasing in size over time. Based on mapping results, querying

(query) in a distributed ontology environment is detailed. We argue that

a query can always be made, given that there exists a weakly connected

graph whenever mappings between pairs of ontologies have been performed.

The work is also reported in [71, 75].

• Chapter 5, agent-based ontology integration, discusses mechanisms of ontology

integration under the framework proposed in Chapter 3 and the mapping

results achieved in Chapter 4. It is believed that a global view at an abstract

level is very important in ontology-based applications where achieving an

objective goal may require knowledge and capabilities beyond individual.

Ontology reuse is taken into account in practice. Consistency checking of

integrated ontology is discussed. The work is also reported in [76].

CHAPTER 1. INTRODUCTION 11

• Chapter 6, prototyping and evaluation, elaborates how to implement the pro-

posed framework and mechanisms using the JADE agent platform for on-

tology mapping and integration. The prototype is called JOMI (Jade-based

Ontology Mapping and Integration). JADE ACL communicative acts, espe-

cially semantics of ACL are introduced. Then a three-layer ontology model

based on our ontology building experience and a relatively profound analysis

of the current development of ontologies is presented. Detailed agent designs

and implementations are then discussed. A case study is given to show the

major functionalities of JOMI. Based on the implementation, a discussion is

presented followed by the evaluation of the framework. The material in this

chapter is also reported in [77].

• Chapter 7, agent-based ontology refinement, discusses mechanisms of ontology

refinement under the framework proposed in Chapter 3. Agent negotiation

mechanisms are applied to reflect ontology evolution over time. A strategic-

negotiation model is used to describe and catch ontology changes. Process

algebra provides strong theoretical background to abstract information ex-

change regardless of whatever semantic relations exist. The work is reported

in [74, 151].

• Chapter 8, conclusions and future work, summarises the new ideas discussed

in this thesis. Principle contributions are presented, followed by some inter-

esting directions for future research.

Chapter 2

Literature Review and

Requirements Analysis

Ontologies are becoming increasingly important as Web-based applications in-

crease. They are useful (and arguably necessary) in supporting at least naviga-

tion, browsing, user-expectation setting, and parametric search. They facilitate

interoperability between heterogeneous systems involved in commonly interested

domain applications by providing a shared understanding of domain problems and

a formalisation that makes ontologies machine-processable. This is why ontology

research is attracting increasing attention from both academia and industry. Al-

though much work in the field has been done, this mainly treat ontologies hosting

environments as static by deploying traditional software engineering paradigms.

Actually, ontology management, as an evolving process, is more complex than pre-

viously expected. As briefly discussed in Section 1.2, there exist some key issues

regarding ontology management in the context of the Web. To reveal why a flexible

approach is required in this field, classic approaches associated with ontology inter-

operability in database1, AI and knowledge management communities are reviewed

in Section 2.1.

While heterogeneous ontologies (including different representations and differ-

ent sources) are increasing on the Web, in particular, whenever ontology semantics

1Much work [32, 83, 123] has been done in database community to facilitate retrieving infor-
mation, matching of schema, and identifying similarity among schema towards interoperability
in heterogeneous databases.

12

CHAPTER 2. LITERATURE REVIEW AND REQUIREMENTS ANALYSIS 13

is involved, traditional distance-like similarity measurement is unsatisfactory for

describing or illustrating ontology semantics at run-time, which contributes heav-

ily towards ontology interoperability. By saying this, we do not mean that syntactic

clues have nothing to do with estimation of semantic similarities. On the contrary,

we utilise the knowledge that semantic similarity is strongly and positively cor-

related with syntactic similarity and relies on it whenever semantic similarity is

required.

Intelligent agents and multi-agent systems represent a new paradigm of analysing,

designing, and implementing complex systems such as ontology systems towards

ontology interoperability. The agent-based perspective opens up prospects to con-

siderably improve the way in which people conceptualise and implement many types

of software. The current practice of agent-based software engineering is discussed

in Section 2.2.

The trend of heterogeneous ontologies to increase significantly requires that

any ontology management towards ontology interoperability must take their het-

erogeneity and dynamic features into consideration. Intelligent agent technology

holds great promise for solving such problems. The corresponding requirements

analysis is presented in Section 2.3. Finally, Section 2.4 summarises this chapter.

2.1 Typical Approaches to Ontology Interoper-

ability

Attention has been paid and will continue to be paid to ontology and ontology

related research fields from different perspectives. The first one is similarity mea-

surement by deploying techniques from other research studies. For example, fuzzy

logics from AI is utilised in some cases to cope with fuzzy information. The sec-

ond one is systems or tools which utilise similarity definitions to provide some

helpful assistance to human experts. We review major existing systems, tools, or

approaches for the purposes of either mapping or integration relevant to our work.

For previous works which did not claim their purposes, or can be assigned to either

the mapping group or the integration group, we put them where they belong (with

emphasis given to the primary criterion) according to our criteria. Please note our

CHAPTER 2. LITERATURE REVIEW AND REQUIREMENTS ANALYSIS 14

emphasis varies from chapter to chapter even on the same work, given that we

have different foci in each chapter. In other words, some work can appear in either

mapping or integration related work, but not at the same time. Detailed criteria

are given in corresponding Chapters 4 and 5, respectively.

Ontology mapping is not the goal in itself. It is the foundation of further ontol-

ogy management (e.g. ontology integration). Similarity measurement is becoming

a core issue whenever mapping is concerned. In the following, we first present

related work in solving similarity of two elements (an element might be instanti-

ated as an attribute, a concept, or an instance in practice) followed by the most

referenced existing mapping and integration systems and tools.

2.1.1 Similarity Measurement

Specific techniques or knowledge in measuring similarities are utilised in the vast

majority of existing solutions. For example, several studies have suggested the use

of graph theory techniques to identify similarity among schemata, represented in

the form of either a tree or a graph [16, 104, 129]. The distance-based (e.g. edit dis-

tance [70]) approach from information retrieval techniques is adopted in the work

of Maedche et al. [86] to overcome the inadequacy of exact “keyword-based” match-

ing. This approach is based on the presumption that semantic similarity is strongly

correlated with syntactic similarity (e.g. similar attribute names representing se-

mantic similarity). The DIKE [116] system computes the similarity between two

representation elements based on the similarity of characteristics of the elements

and the similarity of related elements. Protégé2 (http://protege.stanford.edu/) relies

on the assumption of the PROMPT [106] algorithm. PROMPT is a semi-automatic

matching algorithm that provides suggestions in guiding experts through ontology

matching and alignment.

Some approaches, for instance, in Doan’s GLUE [21], machine learning algo-

rithms are deployed to create a mapping between two attributes based on the

2Protégé is a free, open source ontology editor and knowledge-base framework. Protégé is based
on Java. It is extensible, and provides a foundation for customised knowledge-based applications.
Hence, it is supported by a strong community of developers and academic, government and
corporate users, who are using Protégé for knowledge solutions in areas as diverse as biomedicine,
intelligence gathering, and corporate modelling.

CHAPTER 2. LITERATURE REVIEW AND REQUIREMENTS ANALYSIS 15

similarity among their associated values. Some form of Bayesian classifier [24, 68]

is utilised, where mappings are based on classifications with the greatest posterior

probability, given data samples.

A hybrid of matching techniques is proposed to provide a more reasonable mea-

surement to leverage participants’ strengths. Under this approach, a weighted sum

of similarity measurement formula has been given to specify the similarity of any

two objects (or elements, concepts; these terms are used interchangeably). Cu-

pid [83] and OntoBuilder [101] are two models that support the hybrid approaches.

Those techniques are the basis of building and supporting application systems,

especially in which similarity measures are essential. Popular systems and tools in

this field are presented next.

2.1.2 Systems and Tools

2.1.2.1 Ontology Mapping Systems and Tools

Ontology mapping or sharing of ontology, is not a solved problem. It has been

acknowledged and researched by the knowledge engineering community for years.

There are many such kind of systems and tools, more or less related to that of

database communities (as long as database schemas can be considered a particular

kind of lightweight ontology) which claim to have provided some sort of solutions

in resolving semantic heterogeneity. A survey by Rahm et al. [123] provides more

details about schema matching, a basic problem in database application domains.

Some commonly referenced ontology mapping systems and tools are listed as fol-

lows.

• CAIMAN [66]: This is a system which uses machine-learning for ontology

mapping. It is used for text classification which measures the probability

that two concepts are corresponding.

• Chimaera (http://www.ksl.stanford.edu/software/chimaera/) [90, 91]: This is

a software system that supports users in creating and maintaining distributed

ontologies on the Web. Two major functions it supports are merging multi-

ple ontologies together and diagnosing individual or multiple ontologies. It

supports users in such tasks as loading knowledge bases in differing formats,

CHAPTER 2. LITERATURE REVIEW AND REQUIREMENTS ANALYSIS 16

reorganising taxonomies, resolving name conflicts, browsing ontologies, edit-

ing terms, etc. Chimaera is built on a platform that handles any OKBC

compliant [19] representation system. It contains a simple editing environ-

ment in the tools. In addition, it also allows the user to choose the level of

vigor with which it suggests merging candidates. It is the analysis capability

that allows users to run a diagnostic suite of tests selectively or as a whole.

• Clio [94, 95, 122]: This is a system for managing data transformation and

integration under development at IBM Almaden. Clio’s engines, consisting of

Schema, Correspondence and Mapping Engine, work together with an internal

knowledge base, as well as the user to produce the desired mapping.

• ConcepTool [20]: This is a system which adopts a description logic approach

to formalise a class-centred, enhanced entity relationship model. ConcepTool

aims to facilitate knowledge sharing. It is an interactive analysis tool that

guides the analyst in aligning two ontologies. Linguistic and heuristic infer-

ences are also used to compare attributes of concepts in two models to resolve

conflicts between overlapping concepts.

• FCA-Merge [133]: This is a method of ontology merging. It follows a bottom-

up approach offering a global structural description of the merging process.

For the source ontologies, it processes by means of three steps to generate

the new ontology. First, the ‘Linguistic Analysis and Context Generation’ is

used to extract instances from a given set of domain-specific text documents

by applying natural language processing techniques. Based on the extracted

instances, in the next step, ‘Generating the Pruned Concept Lattice’, mathe-

matical techniques from Formal Concept Analysis [34, 145] are used to derive

a lattice of concepts as a structural result of FCA-Merge. Finally, in the step

of ‘Generating the New Ontology from the Concept Lattice’, the produced

result is explored and transformed to the merged ontology by the ontology

engineer.

• GLUE [23]: This is a system which employs machine learning technologies to

semi-automatically create mappings between heterogeneous ontologies, where

CHAPTER 2. LITERATURE REVIEW AND REQUIREMENTS ANALYSIS 17

an ontology is treated as a taxonomy of concepts. GLUE focuses on finding

one-to-one mappings between concepts by using probabilistic definitions of

several practical similarity measures in a taxonomy.

• IF-MAP [127, 57]: This is an automatic method for ontology mapping based

on the Barwise-Seligman theory of information flow [5]. In IF-MAP, map-

pings have a strong relationship with ontology merging. IF-MAP is partially

inspired by FCA-merge. Taxonomy is the main structure of an ontology.

• ITTalks [121]: This presents a mapping mechanism which uses text classifi-

cation techniques as part of its web-based system for automatic notification

of information technology talks (ITTalks). The text classification technique

is used to generate scores between concepts in two ontologies based on their

associated exemplar documents. Bayesian subsumption is then employed for

subsumption checking.

• MAFRA (MApping FRAmework for distributed ontologies) [85, 131]: This

is an ontology management tool developed by the University of Karlsruhe.

MAFRA’s framework defined for mapping distributed ontologies on the Se-

mantic Web is based on the idea that complex mappings and reasoning about

those mappings are the best approach in a decentralised environment like the

Web. Semantic bridges are defined in MAFRA’s framework.

• OntoMap [60]: This provides a mapping model for upper-level ontologies,

and a few of the most popular ones are encoded in it. It includes a number

of alternative viewers: HTML, DHTML, and a standalone GUI application.

However OntoMap focuses on the evaluation and comparison of the ontolo-

gies, which are encoded into OntoMapO, rather than on providing ontology

management services.

• PROMPT [106, 108]: This takes into account different features in the source

ontologies to make suggestions and to look for conflicts. It has been imple-

mented in a plug-in for Protégé-2000 (http://protege.stanford.edu). User’s

intervention is desired from time to time.

CHAPTER 2. LITERATURE REVIEW AND REQUIREMENTS ANALYSIS 18

Naturally, defining the mappings between pairs of ontologies, either a general ap-

proach or a specific one, is not a goal in itself. The mapping results are used for

various integration tasks in applications. Below are some known ontology integra-

tion systems and tools.

2.1.2.2 Ontology Integrated Systems and Tools

Like ontology mapping, previous solutions to integration are also related to inte-

gration of heterogeneous databases conducted in the 1980s and early 1990s [6, 128].

Some of the most popular ontology integration systems and tools are listed below.

• Ariadne (http://www.isi.edu/info-agents/ariadne/index.html): The Ariadne

project aims at the development of technology and tools for rapidly construct-

ing intelligent agents to extract, query, and integrate data from Web sources.

It is being developed in the Information Sciences Institute (ISI) at the Univer-

sity of Southern California, with support from DARPA (http://www.daml.org/).

This project tries to improve SIMS (Service and Information Management for

decision Systems) [1], allowing the management of semi-structured sources

such as Web pages. The application can access different sources via an Ari-

adne information mediator, which uses ontologies codified in LOOM3 [82].

This mediator has mappings between the ontologies and the information

sources.

• InfoSleuth [29, 105]: This is a system which integrates agent technology,

domain ontologies, brokerage, and Internet computing, in support of medi-

ated interoperation of data and services in a dynamic and open environment.

Different types of agents have been developed in the system. The agent com-

munication language is KQML.

• MOMIS (http://sparc20.dsi.unimo.it/Momis/) (Mediator envirOnment for

Multiple Information Sources) [9, 10, 8]: This is an approach to the inte-

gration of heterogeneous data sources using a global ontology, which is the

3Loom is a representative for description logic based language, which can define concepts in
terms of descriptions that specify the properties that objects must satisfy in order to belong to
that concept.

CHAPTER 2. LITERATURE REVIEW AND REQUIREMENTS ANALYSIS 19

result of a merge of the local data schemas. The ontology merging task is

provided by the ARTEMIS tool [17]. The ARTEMIS tool provides the sup-

port in the matching task by determining the affinity between terms in the

ontologies.

• OBSERVER (http://siul02.si.ehu.es/ jirgbdat/OBSERVER/) (Ontology Based

System Enhanced with Relationships for Vocabulary hEterogeneity Resolu-

tion) [92]: This is a system which aims to overcome problems with hetero-

geneity between distributed data repositories by using component ontologies

and the explicit relationships between these components. In OBSERVER,

When a user poses a query, the first answer is given using just one ontology.

If the user is not satisfied, he or she can choose the another to extend the

result. The system provides the estimated loss of information, given that

the correspondence between the concepts of an ontology with the concepts

of the other one is not exact. That is, the system estimates how many items

are not proper answers, and how many items should appear, but do not yet.

A query can be expanded over multiple ontologies by rewriting the query

from the local ontology to the component ontologies. However, the system

has no intention of creating the mapping between ontologies. Automatically

integrating ontologies during the query process is based on the inter-ontology

relationships from the Inter-ontology Relationship Manager (IRM).

• ONION (ONtology compositION) [33, 97, 98]: It is an architecture based on

a sound formalism to support a scalable framework for ontology integration

that uses a graph-oriented model for the representation of the ontologies.

Articulation rules are established to enable knowledge interoperability.

• PICSEL (http://www.lri.fr/p̃icsel/) [30, 31]: It is an information integration

system over sources that are distributed and possibly heterogeneous. It has

been developed by LRI (France). The approach which has been chosen is to

define an information server as a knowledge-based mediator between users

and several existing information sources relative to the same application do-

main. The mediator gives its users the illusion of a centralised and homo-

geneous information system. It allows them to ask domain-level queries and

CHAPTER 2. LITERATURE REVIEW AND REQUIREMENTS ANALYSIS 20

takes charge of accessing the relevant sources in order to obtain the answers

to the queries. Description Logic with function-free Horn rules are utilised in

PICSEL.

• RDFT (RDF Transformation): Omelayenko and Fensel [113, 115] assume

product catalogs from different organisations specified in XML documents.

The approach to the integration of product catalogs is called two-layered

because the product information itself is represented in XML, whereas the

transformation between different representations is done in RDF. They pro-

pose a mapping meta-ontology for describing the transformation between

RDF documents. The mapping meta-ontology, called RDFT, is specified us-

ing RDF Schema and is used to describe the mapping between two RDFS

ontologies. Moreover, Omelayenko [114] describes a technique for discover-

ing semantic correspondence between different product classification schemes

based on a Naive-Bayes classifier.

2.1.2.3 Comparison of Systems and Tools

The comparison of the above systems and tools is based on the criteria presented

below, which is set up in such a way that it enables us to catch the state of the

art (e.g. advantages and disadvantages in semantic mapping and integration) of

existing systems according to flexibility and applicability towards ontology interop-

erability in the Web context. We investigate two major characteristics as outlined

below.

• Semantic Similarity: A vast majority of work in estimating semantic sim-

ilarity relies heavily on similarity of syntactic clues. Similarity measurement

plays a vital role in any mapping. And there is no exception in ontology

mapping, which leads to semantic mapping intuitively.

• Interaction between ontologies: Predefined or manual creation of Semantic

mappings has long been known to be unable to meet dynamic features of

technologies such as the Internet and the Web. In particular, manual mapping

is regarded as being extremely laborious and error-prone. As discussed in

Section 1.2, the development of solutions to be able to respond promptly to

CHAPTER 2. LITERATURE REVIEW AND REQUIREMENTS ANALYSIS 21

changes in its environment becomes truly crucial to building a broad range of

ontology-based applications. In response to the requirement, solutions should

be robust and flexible across domains.

Table 2.1 summarises the above two characteristics with respect to the listed

systems and tools in this section. Notations used in Table 2.14 are presented below.

(i) “Yes” if a corresponding item in the table is supported;

(ii)“No” if it is not; and

(iii)“N/A” if no information is available with respect to a specific feature.

To summarise, the systems and tools for ontology mapping use the following

features in ontology definitions (to a varying extent) to measure similarities between

pairs of ontologies:

• concept denotation names;

• class hierarchical structures; and

• property definitions (attributes)

Note that the syntactic similarity is positively and strongly correlated with the

semantic similarity. The above syntactic features will be utilised as foundations of

semantic similarity measurement in our thesis.

Previous works listed in Table 2.1 have run into the problem of semantic het-

erogeneity. Although some specific techniques (e.g. machine leaning, heuristics)

have been utilised to speed up the process or leverage workloads across the systems,

they have the following limitations:

• Such systems pay less attention to run-time operations (e.g. lack of interac-

tion), but only focus on design-time manipulations. This is not applicable

when scalability and extensibility are involved;

• They suffer from flexibility if ontology/data interoperability is concerned in

the context of the Web.

4The contents of the table represent the present situations and may change because of the
evolution of listed systems/tools. This applies to the following tables.

CHAPTER 2. LITERATURE REVIEW AND REQUIREMENTS ANALYSIS 22

Table 2.1: Comparison of systems and tools
System/Tool Semantic

Similarity
Interaction Remarks

Mapping systems
CAIMAN Yes N/A measuring the probability

of two corresponding con-
cepts

Chimaera N/A N/A resolving name conflict
and aligning the taxon-
omy

Clio Yes (to some
extent) with
additional
information
from users

mapping
engine may
update the
mapping

query fine-grained map-
ping (e.g. SQL or
XQuery); user interven-
tion only when absolutely
necessary

ConcepTool Yes N/A six step methodologies
are provided

FCA-Merge Yes N/A bottom-up merging of on-
tology

GLUE Yes N/A using machine learning
approach

ITTalks Yes N/A text classification tech-
niques

IF-MAP No N/A drawing from work of
mathematical theory of
information flow

MAFRA Yes N/A implemented with KAON
by providing bridging on-
tology

OntoMap Yes N/A meta-ontology (e.g. On-
toMapO); mapping be-
tween EuroWordnet Top
(ontology) and other on-
tologies

PROMPT Yes N/A semi-automatic guided
ontology merging

CHAPTER 2. LITERATURE REVIEW AND REQUIREMENTS ANALYSIS 23

Integration systems
Ariadne Yes N/A a natural extension of

SIMS; users are assumed
to be familiar with the
application domain, and
to use standard termi-
nology to compose the
LOOM query

InfoSleuth Yes Yes query language is a vari-
ant of SQL

MOMIS Yes N/A identify all possible rela-
tionships between a set
of ontologies; integrating
them in a global ontology

OBSERVER Yes (pro-
vided by
IRM)

N/A component-based ap-
proach

ONION Yes N/A ontology mapping based
on the graph mapping

PICSEL Yes N/A a few algorithms for re-
formulating queries ex-
pressed from domain re-
lations into sources rela-
tions

RDFT Yes N/A product catalogs specified
in XML documents

CHAPTER 2. LITERATURE REVIEW AND REQUIREMENTS ANALYSIS 24

Table 2.2: Comparison of the ontology integration systems and tools
System/Tool Automatic

or Semi-
automatic

Defining On-
tology Map-
pings

Extensible Ontol-
ogy Integration
Architecture

Ariadne “+” “+” “++”
InfoSleuth “++” “+” “+++”
MOMIS “++” “+” “+”
OBSERVER “++” “++” “+++”
ONION “++” “+” “++”
PICSEL “+” “+” “+”
RDFT “+” “+” “+”

In addition, the following criteria are used to evaluate introduced integration

systems and tools. Some of the specific challenges in ontology integration that must

be addressed in the near future are listed below. Refer to [107] for more details of

challenges in this field.

• Finding similarities and differences between ontologies in an automatic or

semi-automatic way;

• Defining mappings between ontologies;

• Developing an ontology integration architecture which is possible to be capa-

ble of extension.

In Table 2.2, notation “+” is for weak support of a particular feature, “++” for

reasonable support, while “+++” for strong support. Table 2.2 summarises the

above characteristics with respect to the introduced integration systems and tools.

It is clear that agent- or component-based frameworks provide stronger support for

extensibility, while the foundation on which many scalable applications are built is

the possibility of finding similarity in an automatic or semi-automatic way.

Nevertheless, applying any techniques to the domain of ontology management

towards ontology interoperability need to consider any challenges (discussed in

Section 1.2) raised by the emerging Web or Semantic Web. In the following, we

provide a detailed discussion of agent-based software engineering, which is deemed

CHAPTER 2. LITERATURE REVIEW AND REQUIREMENTS ANALYSIS 25

the most suitable paradigm for exploiting ontology interoperability in the context

of the Web.

2.2 Agent-based Software Engineering

Designing and building high quality industrial-strength software is difficult. Indeed,

it has been claimed that such development systems are among the most complex

construction tasks undertaken by humans. Nowadays, agents are being advocated

as a next generation model for engineering complex and distributed systems [147,

54]. Some researchers in this field have given a qualitative analysis to provide the

justification for precisely why agent-based approaches are well suited to engineering

complex software systems [50, 51, 55, 54, 52]. Significant advantages are shown

clearly as follows:

• Agent-based approaches can significantly enhance software ability to model,

design and build complex and distributed software systems;

• Agent-based approaches will succeed as a mainstream software engineering

paradigm in so far as long as they are suited for designing and building

complex systems.

Agent technology ushers in a new trend in software engineering. Agent-oriented

software engineering represents a promising point of departure for software en-

gineering through being a new programming paradigm5. The development of

agent-based applications implies new programming abstractions and methodolo-

gies. There are some methodologies [47, 137, 148, 149, 153, 154] which provide

clear guidelines for developing multi-agent systems.

Because of the nature of agent technology, it is likely that the successful adop-

tion of agent technology in the environment, in which the ability to respond dy-

namically to changing circumstances is required, will have a profound, long-term

impact. It is expected that agent technology will affect the competitiveness and

5A wide range of software engineering paradigms have been devised. In addition to agent-
oriented software engineering, there are procedural programming, structured programming,
declarative programming, object-oriented programming, design patterns, application frameworks
and component-ware.

CHAPTER 2. LITERATURE REVIEW AND REQUIREMENTS ANALYSIS 26

viability of IT industries as well as the way in which future computer systems

are conceptualised and implemented [81]. Agent-based software engineering has

proven very popular in coping with complex system design and construction. It

plays a key role in constructing scalable systems. Key observations based on past

experience [12, 53, 79, 80, 149, 152] clearly suggest the use of agent technologies for

the full benefits of realising flexibility and scalability of the systems to be achieved.

And this is especially true in the context of environments that the emerging Web

has been envisaged recently.

2.3 Requirements Analysis

It is not uncommon for ontologies to be developed by several persons and continue

to evolve over time, because of changes in the real world, adaptations to different

tasks, or alignments to other ontologies. To prevent such changes from invalidat-

ing existing usage, a change management methodology is needed. It is known that

ontologies either need to be integrated [117], which means that they are composed

into one new ontology, or they can be kept separate. In both cases, the ontolo-

gies have to be matched, which means that they have to be brought into mutual

agreement. The problems that underlie the difficulties in ontology mapping and

integration are the mismatches that may exist between separate ontologies across

organisations. Ontologies can differ at the language level, which can mean that

they are represented in a different syntax, or that the expressiveness of the ontol-

ogy language is dissimilar. Ontologies also can have mismatches at the model level,

for example, in the paradigm, or modelling style [61]. Moreover, reusing existing

ontologies is one of many complex tasks which requires considerable effort [140].

Besides, when the number of different ontologies is increasing, the task of maintain-

ing and reorganising ontologies to secure the successful ontology interoperability is

challenging.

Before reaching a real understanding of semantics on the Web (e.g. allowing

machines to infer implicit knowledge), ontology mapping towards ontology interop-

erability, regardless of different models and languages used in conceptualising and

CHAPTER 2. LITERATURE REVIEW AND REQUIREMENTS ANALYSIS 27

representations, must be resolved. To develop appropriate architectures and mech-

anisms to automate and improve existing systems or tools is of key importance.

Furthermore, dynamic capability is essential our work.

Based on the literature review of the state of the art in ontology management, it

is clear that existing methodologies and tools, which mainly treat ontology hosting

environments statically rather than dynamically in a distributed fashion, lack of

flexibility and extensibility in dealing with ontology management leads to these

systems operate under limited operational conditions. Some causes of this problem

are listed as follows:

(1) Most architectures used to develop these systems have failed to anticipate

future requirements of ontology management. In fact, they are ‘functional’

systems instead of ‘reactive’ ones to exhibit intelligent behaviours. Unfortu-

nately, the desired architectures for handling ontology management are not

‘functional’ in the sense of the complex interactions required, and communi-

cations are exchanged in terms of high-level protocols and languages.

(2) Considerable prior knowledge is required to enable these systems to oper-

ate correctly in ontology management. However we know that knowledge

provided in advance does not always hold in a changing environment. This

means that these systems are brittle in the sense that human intervention is

required to compensate for even slight shifts of the environment. Obviously,

they are unable to cope with the requirements of ontology management in an

open environment.

(3) Ontologies in these systems or tools are the only objects. In other words,

these systems or tools manage ontologies from the knowledge management

perspective rather than from the knowledge deployment perspective. How-

ever, it is known that ontologies are used to provide interoperability among

ontology-based applications. And this is eventually used for reasoning pur-

poses.

In short, existing systems or tools are observed to lack the capabilities to deal

with highly changing environments with their underlying developing motivations.

CHAPTER 2. LITERATURE REVIEW AND REQUIREMENTS ANALYSIS 28

They have either no theoretical backgrounds, or no clear architecture, or no flex-

ibility. Agents in a MAS are autonomous and flexible enough to interact with

other complex interactions in order to achieve defined objectives. the advantages

of deploying an agent-based approach in ontology management are three fold:

(1) ability to support changes in the environment substantially, given that they

are rational and have the capabilities to perceive any change and adapt to the

change accordingly.

(2) ability to exhibit goal-directed behaviour to satisfy their design objectives;

and

(3) ability to exhibit intelligent behaviours by interacting with other agents

to achieve designed goals in the environment. For this reason agents are being

advocated as a next generation model for engineering complex and distributed

systems [147, 54].

With the above objectives achieved, the problems discussed above are expected

to be addressed. Moreover, with the best known FIPA (the standards organisation

for agents and multi-agent systems) specifications (http://www.fipa.org/) being of-

ficially accepted by the IEEE as its eleventh standards committee on 8 June 2005,

it is expected that research into agent technology will become more attractive with

increasing attention around the world.

2.4 Summary

In this chapter, the literature in relation to ontology interoperability has been

widely reviewed. The major problems in current approaches, such as lack of flexi-

bility and extensibility, have been analysed comprehensively. Based on the litera-

ture review and requirements analysis, Agent technology, which is able to support

responding dynamically to changing circumstances, to exhibit goal-directed be-

haviour, as well as to exhibit intelligent behaviours is suggested for dealing with

existing problems.

In response to the impediments mentioned in this chapter, a general agent-based

framework to facilitate ontology management in a dynamic environment is needed.

The framework is discussed in Chapter 3. With the support of the framework,

CHAPTER 2. LITERATURE REVIEW AND REQUIREMENTS ANALYSIS 29

major ontology managements and relevant issues are addressed in Chapters 4, 5, 6

and 7, respectively.

Chapter 3

Agent-based Framework for

Ontology Management

The limitations of current approaches, such as lack of flexibility and extensibility,

have seriously blocked ontology development on the Web since existing frameworks

failed to cope with ontology management dynamically. As stated in Chapter 2,

agent-oriented software engineering is a promising new paradigm suitable for com-

plex system development where responding dynamically to changing environment

is required. In this chapter, an innovative agent-based framework is presented to

facilitate heterogeneous ontology management with a focus on the run-time rather

than only design-time phase. It aims to provide a flexible general framework to

cope with distributed ontologies on the Web.

It is not surprising that there are some terms used inconsistently when people

talk about ontology management and even ontology itself. To this end, ontol-

ogy definition and terminology used throughout this thesis will be introduced in

Section 3.1. Some distinguishing characteristics of agent-based approaches are ad-

dressed in Section 3.2. Bearing this in mind, in Section 3.3, a general framework is

given with a brief introduction to different kinds of agents. Section 3.4 is a compari-

son, in which our agent-based framework is compared with well-known frameworks.

Section 3.5 summarises this chapter.

30

CHAPTER 3. AGENT-BASED FRAMEWORK FOR ONTOLOGY MANAGEMENT31

3.1 Ontology Terminology

In this thesis, we follow a well known ontology definition by Gruber [38]. An

ontology is an explicit specification of a conceptualisation. One of the reasons for

representing ontologies is the ability to reason about them. Within the ontology

definition, an ontology O with a specific domain model T is defined as: O ::=<

Σ, Ψ >. Thus a conceptualisation Σ is a pair of < C,R >, where C represents

a set of concepts, and R stands for a set of relations over these concepts. A

specification is a pair of < Σ, Ψ > to show that Σ satisfies axioms Ψ. There are

many representations and languages1 available for encoding an ontology, however,

to establish the notation of the ontology used in a MAS internally for the task

of ontology mapping, an Entity-Relation (E-R) data model is considered for

encoding an ontology, where concepts are regarded as classes. A typical concept

class will have an identifier that distinguishes it from others, and a set of attributes

that describes the properties of the concept class. Hence it is feasible to compare

two concepts by looking at the identifier as well as the attributes. We assume that

Oi and Oj are in the same domain (i, j ∈ N, N natural numbers). ci (ci is a concept

with inherent attributes, ci ∈ C(Oi)) and cj (cj ∈ C(Oj)) are two different concepts.

Definition (Equivalent): Two concepts are semantically equivalent, i.e. if ∃ci, cj,

such that ci ∼ cj. Namely, these two concepts:

• have the same denotation names (e.g. labels);

• are synonyms; or

• their attributes are the same.

Definition (Inclusive): Two concepts are semantically inclusive, if ∃ci, cj, such

that ci ≤ cj (e.g. ci is a kind of cj) or ci ≥ cj (e.g. cj is a kind of ci). Namely, the

attributes of one concept are also the attributes of the other.

Definition (Ontology Mapping): A mapping ℜ between two ontologies Oi

and Oj exists, if ∃ci, cj, such that ℜ(ci, cj) ∈ {∼, ≤, ≥}. In some cases, we

1There are many formal languages, such as RDF(s) (http://www.w3.org/RDF/),
OIL (http://www.ontoknowledge.org/oil/), DAML+OIL (http://www.w3.org/TR/daml+oil-
reference), and OWL (http://www.w3.org/TR/owl-guide/) for ontology representation. Intu-
itively, these languages differ in their terminologies and expressiveness. The ontologies that
they model essentially share the same features.

CHAPTER 3. AGENT-BASED FRAMEWORK FOR ONTOLOGY MANAGEMENT32

can only achieve partial mapping (mappings between some pairs of concepts in

two ontologies) instead of full mapping (mappings between pairs of concepts and

relations in two ontologies).

Definition (Ontology Integration): Reusing available source ontologies within

a range to build a new ontology which serves at a higher level in the application

than that of various ontologies in ontology libraries. It is associated with semantic

integration. Different levels of integration can be distinguished.

For the purpose of ontology integration, we need to consider the consistency

problem of an integrated ontology. It is obvious that the E-R date model of an

ontology and the defined semantic relations between concepts allow us to check

the consistency of a newly derived ontology. The ontology disjoint and ontology

consistency are defined as follows.

Definition (Disjoint): Two concepts are disjoint, if ∃ci, cj, such that ci∩ cj = Φ.

Namely, there is no common attribute between them.

Definition (Consistent): An ontology is consistent, if ∀ck
i , c

n
i , cm

i (ck
i , cn

i , c
m
i ∈

C(Oi), and ck
i 6= cn

i 6= cm
i (k, n,m ∈N), ck

i ≤ cn
i and cn

i ∩ cm
i = Φ, such that ck

i 6≤ cm
i .

Namely no sub-concept (a sub-concept cj has something with a particular concept

ci such that ci ≥ cj) of a particular concept is also a sub-concept of another concept

where these two concepts are disjoint.

Definition (Ontology Refinement): An ontology evolves throughout its life

cycle. A successful ontology management is not possible without reflecting ontology

change. Ontology refinement is such a mechanism in exploiting ontology evolution

in order to seamlessly incorporate evolving ontology in ontology management.

Definition (Ontology Interoperability): This is a full realisation of a vision

in which at least two properties need to be present: (1) any two ontologies Oi

and Oj are interoperable, i.e. Oi ←→ Oj, if ∃ℜ (direct mapping) between these

two ontologies, or ∃ℜ′,ℜ′′, . . . , (indirect mappings) which lead to the mapping of

these two ontologies; and (2) the ontologies comply with the above defined ontology

mapping, integration and refinement.

CHAPTER 3. AGENT-BASED FRAMEWORK FOR ONTOLOGY MANAGEMENT33

3.2 Agent-based Approach for Ontology Manage-

ment towards Interoperability

Agent technologies represent a trend in software development. They are fundamen-

tal to the realisation of next generation computing [81]. They have the potential

to significantly improve current practice in software engineering and to extend the

range of applications that can feasibly be tackled [54]. Because of the nature of

agent technology, it is likely that the successful adoption of agent technology in

the areas of distributed, dynamic and heterogeneous environments will have a pro-

found, long-term impact.

According to Russell et al. [126]: “an agent is any entity that can be viewed

as perceiving its environment through sensors and acting upon its environment

through effectors”. Also Jennings [52] and Wooldridge [147] give the following

definition: “an agent is an encapsulated computer system that is situated in some

environment and that is capable of flexible, autonomous action in that environment

in order to meet its design objectives.” In more details [55], agents are: (i) clearly

identifiable problem solving entities with well-defined boundaries and interfaces; (ii)

situated (embedded) in a particular environment in that they receive inputs related

to the state of their environment through sensors and they act on the environment

through effectors; (iii) designed to fulfill a specific role in that they have particular

objectives to achieve and have particular problem solving capabilities (services)

that they can bring to bear to this end; (iv) autonomous in that they have control

both over their internal state and over their own behaviour; and (v) capable of

exhibiting flexible problem solving behaviour in pursuit of their design objectives in

that they need to be both reactive (able to respond in a timely fashion to changes

that occur in their environment) and proactive (able to opportunistically adopt

goals and take the initiative). By the above description, the agent is essentially

similar to the traditional AI systems where it is human experts who observe changes

in the environments and report to the systems. Autonomous agents, on the other

hand, observe the changing environment and respond promptly to it by performing

appropriate actions. Agents in a MAS are assumed to be autonomous and flexible

enough to take actions corresponding to changes in the environments. Wooldridge

CHAPTER 3. AGENT-BASED FRAMEWORK FOR ONTOLOGY MANAGEMENT34

and Jennings [146] suggest the following characteristics in terms of flexibility:

• Reactivity: Agents are able to perceive their environment, and respond in

a timely fashion to changes that occur in it in order to satisfy their design

objectives.

• Proactiveness: Agents are able to exhibit goal-directed behaviour by taking

the initiative in order to satisfy their design objectives.

• Social ability: Agents are capable of interacting with other agents (and

possibly humans) in order to satisfy their design objectives.

Whatever the nature of the social ability, there are two points that qualita-

tively differentiate agent interactions from those that occur in other computational

models [28].

• Agent-oriented interactions tend to be more sophisticated than in other con-

texts, dealing, for example, with notions of cooperation, coordination, and

negotiation;

• Agents are flexible problem solvers, operating in an environment over which

they have only partial control and observability.

Thus, interactions need to be handled in a similarly flexible manner, and agents

need the computational apparatus (e.g. a range of techniques, such as reinforce-

ment learning and mechanism design) to make context-dependent decisions about

the nature and scope of their interactions and to initiate (and respond to) interac-

tions that were not foreseen at design time.

Based on the concept of agents, a MAS can be defined as “a loosely coupled

network of problem solvers (agents) that work together to make decisions or solve

problems that are beyond the individual capabilities or knowledge of each problem

solver (agent)” [26]. In other words, a MAS is formed to fulfill a particular task

that no single individual can cope with. The characteristics of MAS are [49]:

• each agent has incomplete capabilities for solving the problem (in a whole

system), thus each agent has a limited viewpoint;

CHAPTER 3. AGENT-BASED FRAMEWORK FOR ONTOLOGY MANAGEMENT35

• there is no global system control;

• data is decentralised; and

• computation is asynchronous.

A MAS is ideally suited to represent problems that have multiple problem solvers

(agents). That a MAS’s ability to provide robustness and efficiency, allow inter-

operation of existing legacy systems, and solve problems in which data or control

is distributed, makes a MAS perfectly suitable for scalable, autonomous environ-

ments. Although MASs provide many potential advantages, they are neither om-

nipotent nor magic. They also face many difficult challenges [49]. However, they

can operate flexibly in an environment, provided that agents commit to their ca-

pabilities. It is these capabilities which distinguish a MAS from other forms of

software.

In this thesis, terms like agent, intelligent agent, or soft agent are used inter-

changeably except where otherwise specified. An agent-based system is used to

refer to a multi-agent system where agents of the system are designed and imple-

mented to fulfill principle characteristics of a MAS. Additionally, a vision of MAS

is quite similar to the definition of a business process, in which one of the principle

characteristics is interaction between participants (e.g. agents) or sub-processes

(e.g. MASs). We will not distinguish a MAS from a business process unless stated

otherwise.

3.3 Agent-based Framework for Ontology Man-

agement

So far, it is clear that an agent-based approach is ideal because it is exactly what

ontology management needed. In this section, a general agent-based framework is

proposed, followed by brief introductions to the behaviours of each kind of agent

and agent communication.

CHAPTER 3. AGENT-BASED FRAMEWORK FOR ONTOLOGY MANAGEMENT36

user
agent

l i b r a r y o f c o m
 m

 o n k n o w
 l e d g e

interface
agent

functionary agents

legend: OA- ontology agent NA- negotiation agent

query
agent

mapping
agent

checking
agent

integration
agent

refinement
agent thesaurus

agent

wrapper

Frame-
based

wrapper

RDF

wrapper

OIL

wrapper

DAML+
OIL

wrapper

OWL

OA

NA

OA

NA

OA OA OA

NA NA NA

Figure 3.1: Agent-based framework

3.3.1 General Framework

A framework for ontology management must be flexible to allow agents to go on-line

or off-line freely. The flexibility of the system becomes evident when applications

become more and more complex. As stated in Section 3.2, a MAS is ideally suited to

model ontology management on the Web. In this section, an agent-based framework

is developed. The overall framework of the agent-based ontology management is

shown in Figure 3.1. The behaviours of each kind of agent in this environment

are briefly described below. These will be discussed in more detail in the following

chapters.

• User Agent (UA): This is different from other agents developed in this

thesis. A user agent is designed to only know the interface agent (IA).

This agent interacts with a particular GUI. This includes getting the business

scenario from the GUI and passing it on to IA to display proper results on

the user interface (e.g. GUI) when it receives a return message from IA.

• Interface Agent (IA): This interacts with UA, which includes getting the

business scenario from a particular GUI and passing it on to the virtual com-

munity2, and then presenting UA with expected results. It acts as a broker

2a group of partners commonly interested in a certain business scenario

CHAPTER 3. AGENT-BASED FRAMEWORK FOR ONTOLOGY MANAGEMENT37

agent in an attempt to help various agents find each other in a distributed

environment.

• Ontology Agent (OA): This acts on behalf of a certain ontology. It behaves

properly in a specified agent platform. It is equipped with the functionalities

of a certain ontology (e.g. it operates over the ontology structure and a

particular intermediate result structure). The main purpose of an OA is to

perform ontology related tasks which are isolated from external functionary

agents. The presence of an OA allows flexible system organisation.

• Negotiation Agent (NA): This takes part in negotiation setting in an at-

tempt to obtain ontology evolving information for the corresponding OA.

• Functionary Agent (FA): This is an agent which provides functionalities of

thesaurus similarity measure, ontology mapping, ontology integration, ontol-

ogy refinement, consistency checking and query. These are described below.

- Thesaurus Similarity Agent (SA): This is in charge of maintaining

thesaurus similarity within a suitable structure. The major tasks of a

SA are to: (1) append new concepts to the structure; and (2) search a

particular concept in the structure.

- Mapping Agent (MA): This is shaped to provide linkages to pave

the way for the interoperability of various ontologies on the Web. It is

the foundation of further ontology management towards interoperability.

The major task of a MA is to estimate whether two given concepts map

each other according to its knowledge.

- Integration Agent (InA): This is responsible for ontology integration

based on a certain business scenario. The major tasks of an InA are to:

(1) count the appearance of each specified concept; and (2) filter the

unexpected items before sending them to the OA.

- Refinement Agent (RA): This exploits how to maintain ontology co-

herence and integrity in an environment of dynamic changes of ontologies

that may take place frequently. The major tasks of a RA are to: (1)

CHAPTER 3. AGENT-BASED FRAMEWORK FOR ONTOLOGY MANAGEMENT38

obtain up-to-date information for a specified concept; and (2) locate any

differences between a previous description and the current one.

- Consistency Checking Agent (CA): This checks the consistency of

an ontology. The major tasks of a CA are to: (1) check if a particular

concept is the subclass of two disjoint concepts; and (2) warn the UA if

inconsistency exists.

- Query Agent (QA): This shows how to utilise previous mapping re-

sults with distributed ontologies. The main tasks of a QA are to: (1)

respond to any concept-like query; and (2) dispatch the query to other

recongnised agents in the environment if the RA is unable to do it by

itself; and (3) keep the query path.

• Library of Common Knowledge: This library includes atomic roles and

primitive concepts which comprise the baseline of knowledge in a particular

domain. It may initially be created during run time through agent commu-

nications.

• Ontology Representations (Wrapper): Due to the diversity and hetero-

geneity of ontologies, it is not unusual that different kinds of representation

languages coexist. Each ontology representation has a corresponding wrapper

to translate a particular ontology representation into a common representa-

tion.

In this framework, the fact of different agents work collaboratively is highlighted.

For example, FAs can effectively access ontologies via OAs, whilst a MA (one of

the FAs) may contact a SA (another one of the FAs) or any other agents which

can provide required functionalities. A scenario can be as follows: a user queries

the system through the UA. Then the UA converts the user’s query to a suitable

representation. After that the IA collects relevant information from the previous

process and passes it on to the corresponding FAs. After a series of operations, a fi-

nal result is provided graphically to the user via the UA. Without doubt, ontologies

are excellent foundations for agent communications.

CHAPTER 3. AGENT-BASED FRAMEWORK FOR ONTOLOGY MANAGEMENT39

ACL
Coder

common understandable
format based string

ACL
Decoder

agent i agent j

Figure 3.2: Agent communication channel

3.3.2 Agent Communication

A critical issue in the communication among agents is that of ontological com-

mitments, i.e. agreement among various agents on the terms for specifying agent

context and the context of the information handled by the agents.

In our proposed agent-based framework, there are five major kinds of agents.

They are: (1) OAs; (2) NAs; (3) FAs consisting of a SA,aMA,an InA, a RA, a

CA, and a QA; (4) an IA; and (5) a UA. As stated in [52, 147], agents in MASs

are autonomous and can engage in flexible and highly interactive actions. In fact,

agents are able to perceive their environment and respond in a timely fashion to

changes that occur in their environment in order to satisfy their design objectives.

They are capable of interacting with other agents (and possibly humans) for the

purpose of achieving their design objectives. In other words, agents are highly

interactive in the direction of satisfying their objectives. In detail, their abilities of

reactivity, proactiveness, and sociability ensure that they can work together with

other agents correctly and rationally to achieve the goal beyond their individual

capabilities and knowledge.

An agent in this research is defined as: an agent has amongst its mental atti-

tudes the goal G and intention I. Suppose that in some cases, the agent itself

cannot carry out the intention. The question then becomes how to work with

others by estimating whom to send messages to and which messages should be

sent. According to its intention to satisfy the goal, it will send out messages to

those agents to bring about an expected outcome or a rational effect on its goal

(see Figure 3.2).

In Figure 3.2, agenti sends out a message to agentj in order to achieve its

designed objective, for example, in a scenario where the UA sends a message to

the IA when it has received a user action. Assuming that if a user is in the

CHAPTER 3. AGENT-BASED FRAMEWORK FOR ONTOLOGY MANAGEMENT40

integration interface and then chooses some agents to execute integration, the UA

passes these agents to the start-integration method in the UA. Because the UA has

no idea about the integration module, it will create a message and add specified

OAs as parameters in the message and send this off to the IA. The IA then passes

the message on to a particular FA which claims that it has such capabilities for

tackling the corresponding task.

Agent communication is based on Agent Communication Languages (ACLs).

ACLs provide agents with a means of exchanging information and knowledge, which

is really the essence of all forms of interaction in multi-agent systems. Due to

message overheads and the possibility of network congestion, normally the message

is parsed into a common understandable format based string. The presence of an

ACL Coder and an ACL Decoder at each end of the communication is to convert

the message to String and vice versa.

At an abstract level, agents work together based on interactions (see Figure 3.2).

Let us assume that individual agents cannot carry out the intention by themselves.

If agents are behaving rationally, they will contact other agents which will satisfy

the intention and thus achieve the end goal. An interaction process (e.g. diagram)

is needed as interactions between agents may take place concurrently. After in-

vestigating the existing tools, we have chosen AUML (http://www.auml.org/) to

describe the artifacts of agent interactions. The key idea underlying interactions

is to investigate corresponding actions of relevant processes. Agent interactions in

chapters 4, 5 and 6 will be depicted by AUML.

3.4 Comparison

One of the principle methods in developing a flexible framework to manage dis-

tributed ontologies is to comply to a highly modular standard. There is some

research work involved in this topic. InfoSleuth, OBSERVER and MOMIS are

three typical architectures.

The InfoSleuth architecture [105] in Figure 3.3 consists of a number of different

types of agents. User agents and resource agents are the main agents in the system.

User agents request information to fulfill the user’s information needs and resource

CHAPTER 3. AGENT-BASED FRAMEWORK FOR ONTOLOGY MANAGEMENT41

Information
Services

User
Agent

Ontology 1 Ontology 1

Structured
Databases

text
Images
video

User
Agent

Value
Mapping

Agent

.

Applet

Resource
Agent

Resource
Agent

Resource
Agent

Broker
Agent

 Ontology
Agent

 Subscription
Agent

 Multiresource
Query
Agent

R e s p o n s e

S u b s c r i b e

Request

A d v e r t i s e

P u b l i s h

R e q u e s t

Mobile

Figure 3.3: InfoSleuth architecture

agents provide that information. Other agents, for example service agents, query

and analysis agents, and multi-resource query agents, provide mediation in the

system.

The OBSERVER architecture [92], depicted in Figure 3.4, consists of a number

of component nodes and the IRM node. A component node contains an Ontol-

ogy Server which provides for the interaction with the ontologies and the data

sources. It uses a repository of mappings to relate the ontologies and the data

sources and to be able to translate queries on the ontology to queries on the un-

derlying data sources. The architecture contains one Inter-Ontology Relationship

Manager (IRM), which contains a one-to-one mapping between any two component

ontologies.

A number of components are used to enable the MOMIS architecture [10].

The architecture in Figure 3.5 shows the main tools used to support the overall

architecture:

• A wrapper performs the translation of the individual data source into the

language (and translates the queries back);

• The mediator consists of the query manager (QM) and the global schema

CHAPTER 3. AGENT-BASED FRAMEWORK FOR ONTOLOGY MANAGEMENT42

query processor user query

ontology

ontology server mappings

IRM

Interontologies
Termonological
Relationships

ontology server

query processor

ontology

mappings ontology server

query processor

ontology

mappings

data repositories

data repositories data repositories

component node

user
node

component node

IRM node

Figure 3.4: OBSERVER architecture

builder (GSB). The QM component breaks up global ODLI3 (an object-

oriented language with an underlying description logic language OLCD) queries

into sub-queries for the different data sources. Therefore, the GSB is an off-

line component, which aids in ontology merging and the QM is a run-time

component, which performs the queries.

• The ARTEMIS [17] tool environment performs the classification (affinity and

synthesis) of classes for the synthesis of the global classes.

• The ODB-tools engine (a description logic reasoner) performs schema valida-

tion and inferences for the generation of the Common Thesaurus, as well as

query optimization for the Query Manager.

Among the above three systems, the InfoSleuth architecture takes a MAS per-

spective to support construction of complex ontologies from smaller component

ontologies. However, a flexible framework, from our perspective (for ontology

mapping and integration), should allow creation of ontology mapping as well as

integration at run-time. Although InfoSleuth architecture provides service agents

CHAPTER 3. AGENT-BASED FRAMEWORK FOR ONTOLOGY MANAGEMENT43

file
system

DB

wrapper

ODB-Tools Engine

ARTEMIS global schema
builder

query manager

ODL I 3 interface

mediator

wrapper wrapper ...

Figure 3.5: MOMIS architecture

such as broker agents to maintain advertised information, automatic ontology map-

ping is very limited since mapping is explicitly specified among those ontologies.

In the OBSERVER architecture, the way to achieve flexible framework design is

through a component-based approach. However, its mapping is also limited due to

the use of IRM. The MOMIS architecture also provides a way to integrate hetero-

geneous data sources but by using a global ontology rather than creating ontology

mapping dynamically.

In summary, the above architectures have the following limitations:

• They are not designed to automatically create ontology mapping. Instead,

mappings are specified for those involved ontologies;

• It is unlikely to add/delete ontologies to/from the systems dynamically (in

InfoSleuth, a set of information about the ontology mapping rules are pre-

sented). For example, in OBSERVER, an IRM is used to provide translations

between the terms among the different component ontologies.

CHAPTER 3. AGENT-BASED FRAMEWORK FOR ONTOLOGY MANAGEMENT44

Table 3.1: Comparison of frameworks
Framework Broker

Agent
Ontology Mediation

InfoSleuth +++ - +++ (service agents)
MOMIS - - ++ (mediator)
OBSERVER - +++ + (query processor)
Our Framework +++ +++ +++ (service agents)

• Communication languages between components or agents are totally differ-

ent. Therefore, it is hard to interrelate each one in an integrated tool envi-

ronment.

Table 3.1 shows comparison of our framework to the above three well-known

frameworks. Notations of the table are defined below:

(i) “ +” if a corresponding item in the table is supported, with “ +++” repre-

senting strong support, while “ +” indicates weak support;

(ii) “ -” otherwise.

Three major characteristics in Table 3.1 are outlined below:

• Broker Agent: This enables agents in the system to advertise their abilities

or the services they can provide.

• Ontology: Participating agents, especially OAs, are strongly recommended

to have their own ontologies regardless of representation languages and host-

ing platforms. In this sense, the underlying ontology provides definitions for

the terms used in a particular domain and also allows corresponding OAs to

be able to ask for help from other OAs if the same agent is unable to fulfill a

certain task (e.g. query).

• Mediation: This is the mechanism by which the overall operations can be

monitored through a certain process.

Without doubt, all these three types of existing architectures have influenced

our work. For example, designing service agents to act on broker agents and media-

tion is motivated by InfoSleuth. Nevertheless, our work goes beyond these three, as

CHAPTER 3. AGENT-BASED FRAMEWORK FOR ONTOLOGY MANAGEMENT45

it provides an integrated view of the overall ontology management, from mapping,

integration to refinement. It is significantly distinguished from other work in that

characteristics such as flexibility and reusability are highlighted. We emphasize our

innovations in applying MAS to ontology management to achieve interoperability.

In terms of framework flexibility, high modularity makes it possible to easily

adapt it to specific domains. As for reusability, in practice, this is not possible

without incorporating specific techniques. In order to avoid taking on the heavy

burden of reinventing the wheel, approaches or mechanisms that promote ontology

reuse are highly recommended. In our framework, the problem of realising ontology

reuse for the purpose of achieving ontology interoperability is ultimately reduced

to providing feasible mechanisms to create special agents which are responsible for

taking any further actions. The proposed framework enables us to take these into

account to significantly enhance the effectiveness of applications created under the

framework.

In short, in our framework, agent technology, a technique deemed most suit-

able for exploiting complex systems in dynamic and heterogeneous environments,

is employed. Moreover, actions of different ontologies are based on knowledge ob-

tained at run-time by means of interactions. The following characteristics become

evident to enable the proposed framework to cope with dynamic and heterogeneous

features of an environment:

• flexibility

• interactivity

• interoperability

• scalability

• reusablity

• reliability

In the following chapters, we highlight these important aspects of our approach

and illustrate our innovations in applying MAS to ontology management. We will

come back to these characteristics after prototyping in Chapter 6.

CHAPTER 3. AGENT-BASED FRAMEWORK FOR ONTOLOGY MANAGEMENT46

3.5 Summary

This chapter presents the ontology definition and relevant terminology to be used

throughout this thesis. An agent-based approach for ontology management is ex-

amined thoroughly. Based on the analysis, a novel framework has been presented

with a brief introduction to the different kinds of agents involved. Agent commu-

nication by means of message passing between agents has also been discussed.

Our framework has the following characteristics that differentiate this work

from others:

• The ability to perform functionalities based on exchanging messages;

• Functionary agents can easily access relevant information or knowledge of

existing ontologies via ontology agents (OAs);

• The presence of the OAs allows adaptive system organisation; and

• The ability to generate an OA on the fly which looks after the newly inte-

grated ontology when needed;

Further work is needed to detail the proposed framework. Mechanisms of de-

fined agents in our framework will be discussed in Chapters 4, 5, 6 and 7, respec-

tively.

Chapter 4

Agent-based Ontology Mapping

It is hard to have a conformable view as long as different organisations have various

aims and purposes where ontologies are concerned. In this sense, an ontology is not

a solution for all unless everyone adheres to the same one. It is difficult and requires

great effort to construct an ontology that is sufficient for the environment due to

large-scale, individual privacy needs, dynamics and heterogeneity. On the other

hand, it is a trend for different organisitions to work together to solve a problem

beyond individual capabilities and knowledge. All these factors may take place at

unpredictable times between unpredictable organisations. Agent technology [150,

81], as stated in Chapters 2 and 3, embodied with autonomy, adaptation, and

other features, fits well in this situation by providing a MAS environment with

agents working together to solve problems. A MAS perspective is thus suitable for

tackling ontology mapping within and across the boundaries of organisations. The

aim of this chapter is to develop novel agent-based ontology mapping mechanisms

to operate ontology mapping dynamically to achieve ontology interoperability.

Ontology mapping is treated as a reconciliation approach and is seen as a key

technology because it does not intend to unify ontologies and their data, but ac-

cepts this fact and endeavours to identify how different ontologies are mapped and

related. It is a feasible and effective mechanism of communication among multiple

ontologies or ontology-based applications. Of the approaches to ontology mapping,

there are two major methods so far. They are manual ontology mapping and auto-

matic ontology mapping. Obviously, distributed and dynamic environments desire

47

CHAPTER 4. AGENT-BASED ONTOLOGY MAPPING 48

automatic ontology mapping. In practice, most work in this area has been classified

to the former because of the prior knowledge required or user intervention desired

from time to time. However, the prior knowledge may not take effect then; or the

workload of a user may increase dramatically since ontology evolution is inevitable.

We refer the reader to an excellent and thorough review [58] for a detailed discus-

sion in this field. It is a great challenge to perform ontology mapping as flexibly

as possible by considering heterogeneous ontology sources (including heterogenous

platforms and different ontology representations) in a dynamic environment. To

our best understanding, to address ontology mapping on the fly through agent

communications or interactions is a novel and feasible approach. It is better than

current systems and tools which treat the environment of ontology mapping mainly

statically.

To this end, agent-based ontology mapping mechanisms based on previous

work [77] are developed. A crucial feature of our work is its flexibility and scal-

ability; its ability to perform ontology mapping dynamically. It is natural that

in business, the achievement of some goals are beyond individual capabilities and

knowledge. Hence, working together to achieve goals is inevitable. When adopting

an agent-based vision in ontology mapping, it soon becomes clear that multiple

agents are needed to represent multiple perspectives of competing but coordinat-

ing organisations. As actions of individual agents are based on interactions, any

changes of ontologies may reflect on their interactions. Thus the proposed ontology

mapping mechanisms can be thought of as also taking ontology changes or evolution

into consideration. We anticipate that applications of knowledge management, e-

commerce and the Semantic Web could benefit from the flexible ontology mapping

proposed in this thesis.

This chapter starts by addressing problems in current ontology mapping in

Section 4.1. Then some specific related work of ontology mapping is discussed

in Section 4.2. The scope of agent-based ontology mapping is detailed in Sec-

tion 4.3. Based on these analyses and descriptions, mapping process and mapping

mechanisms are examined in Section 4.4 and Section 4.5 respectively, followed by

examples in Section 4.6. A summary is given at the end of this chapter.

CHAPTER 4. AGENT-BASED ONTOLOGY MAPPING 49

4.1 Problems in Ontology Mapping

Ontology mapping is seen as a solution in today’s landscape of ontology research.

A single ontology (if applicable) is no longer enough to support the tasks envisaged

by a distributed environment such as the Web. A variety of ontologies are made

publicly available and accessible. And the tendency is increasing steadily given the

next generation of the Web, the so-called Semantic Web, is emerging. Mapping

could provide a common layer from which several ontologies could be accessed and

hence could exchange information in semantically sound manners [58]. Developing

such mappings has been the focus of a variety of works over a number of years.

However, some problems listed below are still critical issues for reaching mapping

objectives.

• Mapping is conducted according to previous information, little response to

changing environment;

• Mapping process does not allow agents to reason using part of the other

agents’ ontology;

• Mapping results, if they really represent the semantic relations between the

concepts in the ontologies of the agents, are no longer being prepared for use

any more.

The first limitation hampers ontology mapping in adapting to a dynamic en-

vironment which is seen as pervasive nowadays. To overcome this problem, the

agent-oriented paradigm is applied to describe changes of other agents (the envi-

ronment) and hence provides sufficient information for this agent to make a decision

on further action. The second impediment has a serious impact on the original goal

of ontology, in which defined ontology is intended for sharing among different ap-

plications with the ability to reason over available ontologies [107]. Since ontologies

are developed for use with reasoning engines and semantics of ontology are speci-

fied with reasoning in mind, inference and reasoning are at the heart of ontology

research. In a MAS, an agent is devised to respond properly, based on available in-

formation (including knowledge1 and information derived from agent interactions).

1The term knowledge implies that the facts have been analysed, condensed, or combined with
other facts to produce useful information.

CHAPTER 4. AGENT-BASED ONTOLOGY MAPPING 50

The reasoning ability of an agent enables knowledge sharing between applications.

In addition, existing ontology mapping works have paid little attention to applying

mapping results. As ontologies are envisioned to assure interoperability, ontology

mapping can be treated as a potential way to make progress in this area. There-

fore, rather than just setting up for mapping as mentioned, mapping results should

allow further reasoning to be performed for the purpose of knowledge sharing.

4.2 Specific Related Work

Similarity measurement is one of the most important issues where ontology map-

ping is concerned. Rodrguez et al. [124] give a general overview of similarity. Li et

al. [71] define ontology mapping based on similarity computation.

Maedche et al. [87] present an ontology engineering process and elementary

changes in ontology as well in forms of Add Concept, Add SubConceptOf, Delete

Concept, and Delete Property, etc. This is the foundation of ontology mapping

and related research work.

Of the related work in this area, some progress has been made already. For

instance, PROMPT [108] uses the structure of ontology definitions and the struc-

ture of a graph representing an ontology to suggest to ontology designers which

concepts may be related. It is a semi-automatic approach to ontology merging

and alignment. Users’ intervention is required. The work of McGuinness on Chi-

maera [89] presents potential matches (including hierarchical structures) to make

an easier decision for users. GLUE [22] applies machine-learning techniques to find

ontology mapping by defining probability to several practical similarity measures.

These approaches are focused on providing tools to assist in the ontology mapping

process. IF-MAP [127, 57] is an automatic method of ontology mapping based

on the Barwise-Seligman theory of information flow [5]. Lacher et al. [66] present

CAIMAN, a system which uses machine learning for ontology mapping. Text clas-

sification is utilised to measure the probability that two concepts are corresponding.

Prasad et al. [121] develop a mapping mechanism (in ITTalks) which uses text clas-

sification techniques for similarity information collection, and Bayesian reasoning

for resolving uncertainty in similarity comparisons. A certain threshold (posterior

CHAPTER 4. AGENT-BASED ONTOLOGY MAPPING 51

probability) is applied to obtain the best mapping. Compatangelo et al. [20] present

a system (ConcepTool), which adopts a description logic approach to formalise a

class-centred, enhanced entity-relationship model. They also use linguistic and

heuristic inferences to compare attributes of concepts. Their approach is similar to

MAFRA’s framework [85, 131] in that they both define semantic bridges. Bouquet

et al. [13] present an approach for semantic mappings based on SAT, which is in

the direction of complex matches.

Of the other work in this field, Maedche [84] mentions an essential part of ontol-

ogy engineering - ontology learning. The development of the taxonomic backbone

of the ontology is also involved. The clustering analysis mainly discussed in natural

language processing previously, has been highlighted from learning the taxonomic

relation perspective. The work of Obitko et al. [111] assumes that the sending

agent knows the structure of the target ontology. A mapping approach is estab-

lished based on a mapping matrix which takes “yes”, “no”, and “unknown”, but no

further detail about the “unknown” value. Wiesman et al. [144] indicate three types

of conflicts in terms of ontology mapping. Their work addresses “structure conflict”

and “name conflict” conflicts by introducing flattened representations of instances.

Rules are defined to solve conflicts if there is more than one instance of the target

ontologies competing with each other to match the source instance in a certain

circumstance. However, their flattened representations are pertinent to structures

of ontologies rather than playing no role as stated in the paper. We believe on-

tology semantic mapping should take structures into consideration. Maedche et

al. [85] propose that mapping is one way to mediate between ontologies. They

argue that existing approaches/tools are mostly centralised and fail to properly

adapt to distributed systems. A “semantic bridge” is undoubtedly a bridge to fill

the gap between two ontologies. However, domain experts’ intervention is required

from time to time during the mapping process. The work of Silva et al. [131] also

addresses the semantic bridge and demonstrates it with an example.

Still other related work is more concerned with instance-based ontology map-

ping to accommodate requirements such as cooperation in an open MAS. In an

open agent environment, adapting rapidly to new categories, conceptualisations,

and specification of domains is required because none of these can be given a finite

CHAPTER 4. AGENT-BASED ONTOLOGY MAPPING 52

definition. Wang et al. [141] present a learning approach to deal with collectively

designing common ontologies actively. However, the number of clusters needs to

be fixed in advance.

Rather than treating the environment of ontology mapping in a static fashion

as existing systems and tools have mainly done, our proposed agent-based ontology

mapping mechanisms aim to tackle ontology mapping in a flexible way (e.g. dy-

namic instead of static). In addition, agents are devised with the ability to reason

(e.g. to take appropriate actions) against perceived information (including mapping

results). Certainly, mapping results are employed in one way or another. In this

thesis, they are applied to ontology query (Section 4.7) and ontology integration

(Chapter 5), respectively.

Some characteristics of our proposed framework [77] can be distinguished from

others. For example, heterogeneous ontology representations (e.g. a wrapper-like

converting module) and heterogeneous ontology hosting platforms (e.g. platform-

independent framework enabling end-to-end interoperability between agents of dif-

ferent agent platforms) are possible in our framework. Moreover, the fact that

agents act properly, given that they have the capability to perceive changes of an

environment and respond promptly, also enables ontology mapping to take ontology

change into consideration whenever needed.

4.3 Scope of Ontology Mapping

Some ontologies exist in the same area with different aspects and overlapping infor-

mation. Organisations with independently created ontologies may need to contact

each other in a certain scenario by mapping a source ontology to a target ontology

at an unexpected time and for an unexpected reason. The strengths of dynamic

mapping are prominent. Nevertheless, it is not easily achieved. We attempt to en-

able dynamic semantic mapping by taking heterogeneous platforms and different

ontology representations into consideration (Figure 4.1).

Figure 4.1 points out the scope of ontology mapping with respect to the other

parts of ontology management. In can be roughly grouped into three parts from

left to right:

CHAPTER 4. AGENT-BASED ONTOLOGY MAPPING 53

RDF

OWL

Frame-
based

mapping.txt
. . .

IA UA

OA

OA

OA

NA

NA

NA

.

legend: UA- user agent IA- interface agent MA- mapping agent
 OA- ontology agent NA- negotiation agent

MA
(mapping module)

Figure 4.1: Ontology mapping

(1) On the left, there are the UA and the IA, in which the UA gathers informa-

tion and translates it into a more precise form, and also presents the results

back to the user in an acceptable and understandable form. Certainly it

is the IA which assists the UA to realise its full functions by dealing with

the dynamic nature of the ontology hosting environment, where ontologies

become available, and then go off-line;

(2) In the middle, the mapping module works out semantic mappings between

pairs of ontologies if possible. mapping.txt represents mapping results; and

(3) On the right, OAs (acting on behalf of existing ontologies) as well as NAs

(taking part in negotiation to anticipate ontology change and report it to

OAs) provide operable ontologies.

4.4 Mapping Process

In our proposed framework [77], there are different kinds of agents to represent mul-

tiple perspectives of competing but coordinating organisations, and the distributed

nature of the problems. Suppose an OA, which acts on behalf of the corresponding

CHAPTER 4. AGENT-BASED ONTOLOGY MAPPING 54

ontology, is responsible for ontology related tasks. It provides as much information

of the ontology it acts on as possible. The OA operates over two structures: (1)

the ontology structure (e.g. the ontology it acts on behalf of); and (2) the mapping

result (e.g. mapping.txt).

Unlike the OA or other agents, the MA does not operate directly over existing

structures. It has the effect via the IA in the module (Figure 4.2) of deciding

whether existing ontologies come from the same domain or not; or in the module

of ontology mapping (Figure 4.3) through the OA and SA to acquire relevant

information. The former paves the way for deployment of predefined rules in the

latter. Actually, these rules are the little required prior knowledge (see Definition

Equivalent & Definition Inclusive in Section 3.1). The rules are:

R1 : If two concepts have the same labels, they are of the same meanings, namely

they are semantically equivalent.

R2 : If labels of two concepts are synonyms (from a dynamic generated synonyms

list), they are semantically equivalent.

R3 : If two concepts have the same attributes as each attribute of the same

datatype, namely, if pairs of <attribute, datatype> are the same; they are

semantically equivalent.

R4 : If all pairs of <attribute, datatype> of one concept are also pairs of another

concept, there is a class-subclass relationship between them.

R5 : If super-concepts are the same (according to R1, R2, R3), sub-concepts of

one node (e.g. super-concept here) are also sub-concepts of another node.

In Figure 4.3, a scenario starts with the MA sending a particular request to

the existing OAs to obtain the required concepts. The MA then performs the

mapping module to check whether the given concepts are semantically equivalent

or inclusive. Now, let us take a close look at the mapping module presented in

Figure 4.3.

An MA is responsible for ontology mapping related tasks by working with OAs.

The mapping module starts with the MA sending OAs requests (for the current

concept) to two given ontologies (for simplicity, interactions between the UA and

CHAPTER 4. AGENT-BASED ONTOLOGY MAPPING 55

MA UA IA

request mapping

request mapping

inform-ref ask for the
value of “domain” inform-ref ask for the

value of “domain”

yes
refuse no

Figure 4.2: Module for deciding the domain

MA

request get_current_node

traverse the ontology structure
to get the current node

inform current_node

R1

request synonyms

inform synonyms R2

request attr, type

R4

SA

traverse the ontology structure to
get the attributes and
corresponding attribute date
types of the current node

R3

sim
1

OA
OA j

inform attr, type

OA i

sim
2

insert into
mapping.txt

sim
3

compute
overall sim

R5 insert into
mapping.txt

Figure 4.3: Interactions from MA’s view

CHAPTER 4. AGENT-BASED ONTOLOGY MAPPING 56

IA, IA and MA are omitted). It then checks if two acquired concepts satisfy the

rules in its knowledge base. The similarity measurement is defined as:

sim(c1, c2) =
k∑

j

wjsimj(c1, c2)/k
′

where j, k, k′ ∈ N, k′ ≤ k, k′ is the number of non-zero similarity of a specific

method, wj is the weight for a specific method, wj ∈[0,1]. simj(c1, c2) is the

similarity measurement of a specific method. When the summarising similarity of

two concepts from similar ontologies is greater than a given threshold δ, the MA

sends a specified OA a request for inserting the mapping result into a mapping.txt.

The process may loop and wait to be enacted for further acquired concepts until

it runs out of sub-concepts of a specified ontology. Mapping is conducted from a

particular OA’s perspective. In other words, mapping is with directions. This is

outlined as follows:

(1) obtain ontology related information via OAs;

(2) estimate obtained information according to the knowledge in the MA’s knowl-

edge base, namely MA computes if semantic relations between pairs of on-

tologies exist, and which kind of semantic relations they are;

(3) write the mapping results to a file (e.g. mapping.txt);

Following the above approach, mapping results are available for further ontology

operations such as ontology integration discussed in Chapter 5.

4.5 Mapping Mechanisms

The mapping module operates over available ontologies in order to achieve ontology

interoperability. The MA is in charge of mapping in the environment. The module

uses the following functions or data structures to check whether two given concepts

meet the predefined rules.

• initilise: initilise the process.

• next-c: request a particular OA for the next concept of a specified ontology.

It returns the concept if it exists;

CHAPTER 4. AGENT-BASED ONTOLOGY MAPPING 57

• next-a: request a particular OA for the attribute of a specified concept. It

returns the attribute if it exists;

• next-t: request a particular OA for the corresponding data type of a certain

attribute of a specified concept. It returns the data type if it exists;

• comp: compare two items. It returns true if two compared items are equal.

Otherwise, it returns false;

• syn: request the SA for the synonyms of a given concept. It returns a syn-

onym list (e.g.syn − list) if it exists;

• measure-sim: compute the weighted similarity over the given methods (see

Section 4.4 for the calculation formula);

• add: add items to the mapping results (e.g. mapping.txt).

• next-i: request a equivalent relation from the mapping.txt;

• add-sub-concept: add inclusive relations to the mapping.txt.

The pseudocode for the mapping algorithm is shown below.

Pseudocode of mapping algorithm

/*assume the mapping module starts from a given start point;

O1, O2: the source ontology and target ontology, respectively;

c1, c2: concepts from the source ontology and target ontology, respectively;

att1, att2: the attributes of c1, c2, respectively;

type1, type2: data types of att1, att2, respectively;

flag1, f lag2: two flags with Boolean values;

syn − list: a list of synonyms of a specified concept label returned from function

syn;

w1, w2, w3: a weight for a specific method;

sim1, sim2, sim3, sim: similarities;

δ: a given threshold to filter out inappropriate mappings;

mapping.txt: mapping results.

CHAPTER 4. AGENT-BASED ONTOLOGY MAPPING 58

*/

Function mapping {

1. initialise;

2. do {

3. c1=next-c(O1);

4. c2=next-c(O2);

5. if !(comp(c1.label, c2.label)) {

6. syn(c1.label);

7. } else {

8. sim1=measure-sim(R1);

9. } //end if

10. flag1=flag2=true;

11. while (syn-list(c1.label)!=Null) {

12. if !(comp(syn-list(c1.label), c2.label)) {

13. flag1=false;

14. } else {

15. sim2=measure-sim(R2);

16. } //end if

17. if !(flag1) {

18. while (next-a(c1)!=Null && next-a(c2)!=Null) {

19. att1=next-a(c1);

20. att2=next-a(c2);

21. type1=next-t(c1);

22. type2=next-t(c2);

23. if !(comp(att1, att2) && comp(type1, type2)) {

24. flag2=false;

25. } else {

26. sim3=measure-sim(R3);

27. }// end if

28. }//end while

29. }//end if (flag1)

30. if (flag2) {

CHAPTER 4. AGENT-BASED ONTOLOGY MAPPING 59

31. if ((next-a(c1)!=Null) && (next-a(c2)==Null)) {

32. add(mapping.txt,(c1, c2,⊒));

33. }//end if

34. if ((next-a(c1)==Null) && (next-a(c2)!=Null)) {

35. add(mapping.txt,(c1, c2,⊑));

36. }//end if

37. }//end if (flag2)

38. sim=
∑3

j=1measure-sim(Rj);

39. if sim ≥ δ {

40. add(mapping.txt,(c1, c2, =));

41. }//end if

42. }//end while

43. } while (next-c(O1)!=Null && next-c(O2)!=Null);//end do

44. while (next-i!=Null) {

45. add-sub-concept;

46. } //end while

47. }// end function

4.6 Examples

The running example ontologies come from the domain of beer and concern the

types of beer. The first one is from the DAML ontology library (http://www.daml.org

/ontologies/66). A fragment of this is shown in Figure 4.4. The second one is built

on the definition of the term beer from the WordNet (http://wordnet.princeton.edu/).

A fragment of this is shown in Figure 4.5. The third one is based on basic types

of beer provided by the website http://www.dma.be/p/bier/1 2 uk.htm#, which

states: “every beer in Belgium, the Netherlands and Luxemburg is classified in one

of the given basic styles. These basic styles are the building blocks of every themat-

ical classification of beer styles”. A fragment of this classification is shown in Fig-

ure 4.6. The fourth one is an Australian beer types ontology based on information

from websites: (1)http://www.australianbeers.com/beers/beer types/beer types.htm;

CHAPTER 4. AGENT-BASED ONTOLOGY MAPPING 60

and (2) http://www.fosters.com.au/beer/ about/beertypes/beer types.asp. A frag-

ment of this classification is shown in Figure 4.7. Our main interest is in the term

beer and the corresponding hyponym relationship. These four ontologies are about

types of beer, but from different points of view.

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns="http://www.daml.org/2001/03/daml+oil#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns:gen="http://www.cs.umd.edu/projects/plus/DAML/onts/general1.0.daml#">

<Ontology about="">
 <versionInfo>beer-ont, v.1.0</versionInfo>
 <comment>An ontology that models brewers and types of beer.</comment>
 <imports resource="http://www.cs.umd.edu/projects/plus/DAML/onts/general1.0.daml"/>
</Ontology>

<Class ID="ScotchAle">
 <subClassOf resource="#Ale"/>
</Class>

......

Figure 4.4: Fragment of beer ontology from DAML ontology library

In the running example ontologies, we assume that R consists of relations

{hyponym(is-a), part-of}. Moreover, we assume that participating ontologies agree

upon a small set of common sense knowledge regardless of syntactical, structural

and language heterogeneity to conform to a normalised uniform representation.

Generally speaking, the taxonomy is at the heart of ontologies and ontology appli-

cations. So we also assume that ontologies have the same structures (e.g. hierarchi-

cal). Moreover, we suppose that there are no polysemous words in an ontology, and

there is only one possible relation between two concepts of the ontology. Finally,

we assume that different ontologies are available and there is no need to consider

conceptual modelling issues ourselves.

These four examples are used to demonstrate the mapping mechanisms in a

MAS environment. Different kinds of agents (e.g. a UA, an IA, a MA, aQA and

an OA) have been created to take different roles in ontology mapping. see Chapter

6 for detailed implementations.

CHAPTER 4. AGENT-BASED ONTOLOGY MAPPING 61

beer -- (a general name for alcoholic beverages made by fermenting a cereal (or mixture
of cereals) flavored with hops)
 => draft beer, draught beer -- (beer drawn from a keg)
 => suds -- (a dysphemism for beer (especially for lager that effervesces))
 => lager, lager beer -- (a general term for beer made with bottom fermenting yeast
 (usually by decoction mashing); originally it was brewed in March or April and
 matured until September)
 => Munich beer, Munchener -- (a dark lager produced in Munich since the 10th
 century; has a distinctive taste of malt)
 => bock, bock beer -- (a very strong lager traditionally brewed in the fall and
 aged through the winter for consumption in the spring)
 => light beer -- (lager with reduced alcohol content)
......

Figure 4.5: Fragment of term beer from WordNet

You'll find more information in the Bierjaarboek 1995- 1996 .
{Style - Beername, alcohol by volume, Brewery(country)}

Aarschots brown ale
Alcohol free beer
Ale
Alt
Amber
Barley wine
Beerette
Bitter
Blending beer
…...

Figure 4.6: Fragment of classification of basic beer types

CHAPTER 4. AGENT-BASED ONTOLOGY MAPPING 62

All beer can be classified as either a lager or an ale. The differences begin during
the brewing process. Whether the beer is an ale or lager is defined by the type of
yeast used in the brew and the temperature at which fermentation takes place. Ales
are brewed with top-fermenting yeast which allows for rapid fermentation at
warmer temperatures. Lagers are brewed with bottom-fermenting yeast which
ferments more slowly and at colder temperatures.

……

ALE: A top fermented English-style beer. Very few ales are sold commercially
in Australia. The best known are Coopers Sparkling and Pale Ales.

BITTER: In Australia this is likely to be a bottom fermented lager rather than the
top-fermented ale that English would call a bitter. Take XXXX Bitter as an
example.

…...

Figure 4.7: Fragment of Australian beer types

4.7 Ontology Mapping Evaluation

We evaluate the mapping mechanisms in the beer type domain with the above four

different beer ontologies. The evaluation is conducted to verify the quality of the

MAS mapping results against the expected ones in the same domain.

4.7.1 Query in Prototype

Based on the semantic equivalent relations built in the mapping process, further

operations such as query over other than this ontology can be achieved.

The query is conducted to verify the mapping - equivalence effectiveness on the

prototype. In the query module, we deliberately query a particular OA before/after

ontology mapping. The experiments clearly show that a particular OA can instantly

return corresponding concepts or true/false of given propositions after running the

mapping module. As an OA can refer to the corresponding mapping.txt file(s) for

each pair of ontologies, the OA is certain about the results and can obtain what

is requested by dispatching the query to other OAs if it is unable to answer the

query itself. We may regard existing ontologies as vertices (natural numbers are

used to notate vertices), and mappings between ontologies (if they exist) as edges.

As mapping is conducted between pairs of OAs, when there is a mapping from one

ontology to another, the query module draws an edge to link these two vertices

CHAPTER 4. AGENT-BASED ONTOLOGY MAPPING 63

together with a direction. In the end, a directed graph is obtained. Assuming that

the number of available ontologies is n, clearly, it is a weakly connected graph2 if

(n − 1) pairs of ontologies have performed mapping (see Figure 4.8 for example).

The main task of the QA is to maintain an effective path from a specified agent

(e.g. an OA) to a target ontology in a decentralised ontology network when the

queried term is processable. The query module is defined as follows:

(1) request a query from a specified agent e.g. an OA;

(2) inform the QA, two cases may take place in this situation:

(a) if the queried term is understandable by the specified agent OA, then

END;

(b) otherwise, this specified OA dispatches the query to other available OAs

which are known to this OA, whilst it informs the QA which agent the

query is passed to.

(3) draw a line from the query sending agent OAs to the query receiving agent

OAs;

(4) repeat steps (2) and (3) until the queried term is understandable or the process

runs out of candidate ontologies;

(5) return a path annotating by the vertex numbers.

In terms of which agents dispatch the query, the OA may choose either depth-

first search (DFS) or broad-first search (BFS) to dispatch the query. We are con-

cerned about a reachable path at the end, so DFS is used in our work.

We believe that a query can be made by the query module provided the graph

is weakly connected.

Below are representative examples. For simplicity, q(OAi, x) is for query(OAi, x);

where i ∈ [1..4]; x is the content of query; OAi is an agent which acts on behalf

of the existing ontology (e.g. Oi); and ck
i (k ∈ N) represent an concept in on-

tology Oi. In this example, dispatching a query from OA1 to OA2 is denoted as

2A weakly connected graph is where the direction of the graph is ignored and the connect-
edness is defined as if the graph was undirected.

CHAPTER 4. AGENT-BASED ONTOLOGY MAPPING 64

OA1 −→ OA2, and the path is denoted by the vertex number in a form of 1 −→ 2

if vertex 2 is reachable from vertex 1. Suppose the initial state is: q(OA1, c4). The

query module is conducted as follows:

2

1

4

2

1

4
(a) (b)

2

1

4
(c)

3 3 3

Figure 4.8: Query in a directed graph

Case 1 (Figure 4.8(a)): the query can be executed via OA1 because of a direct edge

from O1 to O4, i.e. no need to dispatch the query to any other agents;

Case 2 (Figure 4.8(b)): since no such kind of mapping exists, the query module may

dispatch a query to any agents associated. In this case, the optional agent

set is {OA2, OA3}. The process is as follows:

If OA1 −→ OA3, it is settled. The path is 1 −→ 3 −→ 4;

If OA1 −→ OA2, then another dispatching (e.g. OA2 −→ OA3) is needed.

Moreover, as the mapping direction is from O3 to O2, the corresponding agent

(e.g. OA2) needs to reverse the mapping results. After this is settled, the

query is made. The path is: 1 −→ 2 −→ 3 −→ 4. But the best path is:

1 −→ 3 −→ 4 in this case.

Case 3 (Figure 4.8(c)): the module will follow the process: OA1 −→ OA2 −→ OA3.

The best path is: 1 −→ 2 −→ 3 −→ 4.

In any case, a query can always be made given the graph (mapping) is weakly

connected.

The mapping results shown in Table 4.1 also illustrates that equivalent-based

query works very well. However, it is not alway the case. A further study in the

inclusive results is needed. Details are described in the following section.

4.7.2 Mapping Results Analysis

Ontology mapping is executed between pairs of ontologies. Mapping mechanisms

will decide equivalent and inclusive relations then. Let us have a look at the

CHAPTER 4. AGENT-BASED ONTOLOGY MAPPING 65

mapping results in the beer type domain. We will illustrate the MAS mapping

results against expected ones in the same domain in the following. For simplicity,

we focus on O2 in Table 4.1. But others can be done in the same way. Details are

displayed in Table 4.1. Notations in the table are defined as follows:

Os: an source ontology involved in mapping;

Ot: an target ontology involved in mapping;

M→: two ontologies involved in mapping;

MAS Eq: the number of MAS equivalent relations (MAS mapping mechanisms

proposed in Section 4.5);

MAS Inl: the number of MAS inclusive relations (MAS mapping mechanisms);

Eq: assumed number of equivalent relations which would be picked up by human

user;

Inl: assumed number of inclusive relations which would be picked up by human

user.

Table 4.1: MAS mapping evaluation
Os Ot M→ MAS Eq MAS Inl Eq Inl
O1 O1 → O2 10 10 10 6
O3 O2 O3 → O2 5 2 5 0
O4 O4 → O2 7 3 7 2

As shown in Table 4.1, the equivalent relations in mapping have been correctly

picked up (columns 4 and 6 in the table). But there are differences between columns

5 and 7 in relation to inclusive relations. The difference varies from ontology to

ontology. For example, the difference in O4 → O2 is 1 compared with number 4 of

the difference in O1 → O2.

It seems that mapping - equivalence works very well in this domain (we have

discussed in Section 4.7.1). The reason is that the defined syntactic-based similarity

is sufficient to deal with similarity measurement for the time being.

On the other hand, mapping - inclusion works in a slightly different way from

mapping - equivalence. It is mainly caused by various conceptualisations of involved

ontologies. Let us take a close look at the cause of the differences in Table 4.1.

CHAPTER 4. AGENT-BASED ONTOLOGY MAPPING 66

• O1 → O2: in O1, bock, Pilsner, porter and stout are sub-concepts of beer.

However, in O2, bock and Pilsner are sub-concepts of lager, while porter

and stout are sub-concepts of ale. Also in O2, lager and ale are sub-

concepts of suds which is equivalent to beer according to proposed similarity

methods. At the end, the difference or inconsistency comes to appear (more

details will be discussed in Section 5.7, Chapter 5). The differences leads to

that inclusive relation is 10 (row 2, column 5, Table 4.1) instead of assumed

6.

• O3 → O2: for the same reason, porter and bitter with different definitions

in O3 and O2 lead to that inclusive relation is 2 (row 3, column 5, Table 4.1)

instead of assumed 0.

• O4 → O2: the only difference is bitter. The reason is that in Australia,

bitter is likely to be a bottom fermented lager rather than the top-fermented

ale that English would call a bitter. This leads to that inclusive relation is 3

(row 4, column 5, Table 4.1) instead of assumed 2.

As discussed in the above, these inconsistency cannot be solved until performing

the consistency checking. Consistency checking is necessary to eliminate inclusive

relation differences as shown in columns 5 and 7, Table 4.1. We will investigate

into consistency checking in Section 5.7, Chapter 5.

4.8 Discussion

Rather than mainly treating the environment of ontology mapping statically as

in most existing systems and tools, the proposed agent-based ontology mapping

aims to tackle ontology mapping in a more flexible way. On the one hand, under

our proposed framework [77], as an ontology representation has a corresponding

wrapper-like converting module to translate the ontology representation into a com-

mon representation, heterogeneity of ontology representations can be handled. On

the other hand, the agent platform used in the work enables end-to-end interoper-

ability between agents of different agent platforms. Thus heterogeneity of platforms

can also be handled. Moreover, the fact that agents act correctly, given that they

CHAPTER 4. AGENT-BASED ONTOLOGY MAPPING 67

are capable of perceiving changes in an environment and respond promptly, also

enables ontology mapping to take ontology evolution into consideration whenever

needed. A comparison of the proposed agent-based mapping approach with other

existing mapping mechanisms is illustrated in Table 4.2. Seven criteria are at the

core of the comparison. They are:

1. Specific Technique: This shows if specific techniques are used to facilitate

ontology mapping.

2. Mapping Type: This indicates if mapping is 1-to-1 or other general cases.

It will also detail which kind of mappings (e.g. SubClassOf, PartOf) they are

if applicable.

3. Logic: This supports logics in the systems (e.g. Horn Logic).

4. Ontology Organisation: This specifies ontology structures over which

mapping is operated. In most cases, it is a taxonomy or a hierarchical struc-

ture when ontology organisation is involved.

5. Interaction: This indicates that interactions between participants/agents

play important roles for a certain goal.

6. Language: This means supported ontology representation languages, such

as RDF, DL, etc.

7. Integration/Composition: This checks if the mapping results will be used

in further ontology integration or composition. It is argued that ontology

mapping is the foundation of ontology integration. So we expect systems will

take it into consideration.

Notations are the same as those presented in Section 2.1.2. For simplicity, we

use corresponding numbers to specify different columns in Table 4.2.

It is clear that existing systems/tools have ignored features such as interactions

between actors and have shown no intention to deploy mapping results for further

ontology management. Our proposed agent-based mapping approach has three

unique features compared with some existing systems:

CHAPTER 4. AGENT-BASED ONTOLOGY MAPPING 68

Table 4.2: Comparison of proposed agent-based mapping with some existing mech-
anisms

System
/Tool

1 2 3 4 5 6 7

Our
Agent-
based
Mapping

agent
technol-
ogy

1-to-1
(Syn-
onym,
Attibu-
teOf,
Sub-
ClassOf)

fragment
of FOL;
DL

taxonomy Yes RDF; with
Protégé, it
may sup-
port more
semantic
languages

Yes

Chimaera KSL On-
tolingua
platform

1-to-1
(syn-
onym,
sub-
sumed)

N/A taxonomy N/A OKBD-
compliant
represen-
tation
languages
such as
ANSI
KIF, On-
tolingua,
Protégé,
CLASSIX,
and iXOL

N/A

CAIMAN machine
learning;
text clas-
sification

1-to-1 N/A taxonomy N/A N/A N/A

ConcepTool DL rea-
soner

1-to-1 DL; E-R
model

taxonomy N/A N/A N/A

GLUE machine
learning
(joint
prob-
ability
distribu-
tion)

1-to-1 fragment
of FOL

taxonomy N/A N/A N/A

CHAPTER 4. AGENT-BASED ONTOLOGY MAPPING 69

IF-MAP information
flow the-
ory

generic Horn
logic

taxonomy N/A KIF [35];
Ontolin-
gua;
OCML [102];
RDF; Pro-
log

N/A

ITTalks text clas-
sification;
Bayesian
approach

1-to-1 N/A mostly
taxon-
omy

N/A DAML+OIL N/A

PROMPT knowledge-
based
approach

1-to-1 N/A taxonomy N/A OKBD-
compliant
represen-
tation
languages

N/A

• Agent technology is used. We expect that agent technology can significantly

enhance the system’s ability to cope with heterogeneous and varied ontologies

in the context of the Web;

• Interaction is essential for agents to respond to changing environments;

• Ontology mapping aims to pave the way for ontology interoperability. So we

consider using ontology mapping results for further ontology management.

Furthermore, our approach keeps pace with most existing mapping mechanisms

in that the most popular relationships, for example, SubClassOf, AttributeOf, and

Synonym are addressed throughout the thesis.

4.9 Summary

In this chapter, we have presented a novel agent-based ontology mapping in order

to achieve ontology interoperability regardless of heterogeneous environments and

different ontology representations. The proposed mechanism allows flexible system

organisation by also taking ontology evolution into consideration. Moreover, it is

CHAPTER 4. AGENT-BASED ONTOLOGY MAPPING 70

also in accordance with the little prior knowledge needed but acquiring relevant

knowledge directly from agent interactions during run-time.

It is natural to take the further step to the use of mapping results because

mapping is not a goal in itself. In the following chapters, Chapter 5 will discuss

ontology integration, Chapter 6 will demonstrate ontology mapping and integration

as well as evaluation. In fact, where ontology management is involved, ontology

evolution must be addressed. Specifically, the succeeding chapter (Chapter 7) will

exploit ontology refinement with process algebra as the theoretical background to

providing a channel for timely information exchange.

Chapter 5

Agent-based Ontology Integration

As stated in the previous chapter, ontology mapping is not a goal in itself. It is the

foundation for further actions, for instance, ontology integration. The aim of this

chapter is to develop novel agent-based integration mechanisms to conduct ontology

integration based on proposed framework in Chapter 3 and mapping results derived

from Chapter 4.

This chapter starts by addressing problems in current ontology integration in

Section 5.1. Then some specific related work of ontology integration is discussed in

Section 5.2. Integration architecture incorporated with ontology reuse is described

after that in Section 5.3. Based on these analyses and descriptions, an integration

process and integration mechanisms are addressed in Section 5.4 and Section 5.5,

respectively. Following on is a case study in Section 5.6. Integrated ontology is not

always consistent, hence ontology consistency checking is examined in Section 5.7

followed by discussion in Section 5.8. Finally, comes a summary of the chapter.

Under the framework, agents’ roles in interaction diagrams are highlighted. A

crucial feature of our framework is its flexibility and extendibility; its ability to

define new entrants in a dynamic environment. We anticipate that a spectrum of

applications ranging from content management, e-commerce, to the Semantic Web

could benefit from integration of ontologies.

71

CHAPTER 5. AGENT-BASED ONTOLOGY INTEGRATION 72

5.1 Problems in Ontology Integration

Some of the specific challenges in ontology integration are as follows. More details

of ontology integration issues can be found in [107].

• Finding similarities and differences between ontologies in an automatic and

semi-automatic way;

• Defining mappings between ontologies;

• Representing uncertainty and imprecision in mappings;

• Composing mappings across different ontologies; and

• Developing an ontology integration architecture/framework.

We classify the above items into two categories. The first four items are about

defining similarity measurements and mapping in certain and uncertain environ-

ments. The last item is about integration architecture. Although the problem of

specifying the architecture is at the heart of integration for the Web, it has not been

thoroughly investigated yet. It is a great challenge to automate ontology managing

processes as much as possible to reduce the burden of manual operations for large

scale resources. What we are going to address is closely associated with a novel

architecture which fundamentally impacts on the performance of ontology integra-

tion. In this way, through ontology integration in the context of the Semantic Web

it is possible to consider both flexibility and extensibility.

5.2 Specific Related Work

Some ontologies in the same domain exist with different aspects and overlapping

information which are independently created by individual organisations. They

may be merged later on if necessary, which would lead to ontology integration.

Since integration itself is a process, it is natural to treat it from a process per-

spective. Pinto et al. [118] present activities that should be performed in the

integration process. The work of them also describes a methodology to perform

the integration. Their approach provides support and guidance for the activities

CHAPTER 5. AGENT-BASED ONTOLOGY INTEGRATION 73

that compose the integration process. Even though each stage of the integration

process still needs to be addressed in the future, we find some existing tools which

claim to support it in some way. These systems are: PROMPT [108], Chimaera

(http://www.ksl.stanford.edu/software/chimaera/), OntoEdit (http://www.ontoknowledge.org/to

FCA-Merge [133], OBSERVER [92], MOMIS [8, 9, 10], ONION [97, 98], and In-

foSleuth [29, 105]. Moreover, some other tools listed in [25] support ontology

integration to some extent.

Besides those tools, some researchers have investigated ontology integration

from different technical aspects. Calvanese et al. [15] present a framework for on-

tology integration. Grüninger et al. [41], in their position statement, adopted an

“Ontology Stance” to predict the set of sentences that the inference system must

satisfy. In their work, mediating ontology, the so-called Interlingua architecture,

is a neutral interchange ontology to fill the gap between applications. The work

of Kalfoglou et al. on IF-MAP [59], draws on the proven theoretical grounds of

Information Flow and channel theory which can provide a systematic and mech-

anised way for deploying the approach in a distributed environment to perform

ontology mapping among a variety of different ontologies. Similar work [48] of Itoh

et al. computes “uniqueness” (frame format information) from the information

theory to provide an approach for automatic integration of different ontologies at

the vocabulary level in the information retrieval area. Gómez-Pérez et al. [36] offer

another way of combining ontology with problem-solving methods to configure new

knowledge systems from existing, reusable components.

Another closely related work is Process Specification Language (PSL) (http:

//www.mel.nist.gov/psl/ontology.html). Its aim is to create a process interchange

language that is common to all manufacturing applications, generic enough to be

decoupled from any given applications and robust enough to be able to represent

the necessary process information for any given applications. It is more appropriate

to refer to it as an ontology or a data model than a language.

Our work is inspired by the approaches in information integration and PSL.

We argue that different techniques and methodologies are complementary and thus

must be used in combination and not exclusively. Bearing these in mind, we adopt

a MAS perspective to model a variety of ontologies in ontology-based applications.

CHAPTER 5. AGENT-BASED ONTOLOGY INTEGRATION 74

We believe that the agent technology is ideally suited in a dynamic and distributed

environment such as ontology integration on the Web.

RDF

OWL

Frame-
based

mapping.txt . . .

integrated

IA UA

OA

OA

OA

OA

NA

NA

NA

NA

.

legend: UA- user agent IA- interface agent InA- integration agent
 MA- mapping agent OA- ontology agent NA- negotiation agent

MA
(mapping module)

InA
(integration module)

Figure 5.1: Ontology integration

5.3 Scope of Ontology Integration - Incorporat-

ing Ontology Reuse in Integration

Some ontologies in the same area exist with different aspects and overlapping in-

formation. Ontologies independently created by individual organisations may be

integrated later on if needed. Moreover, integration serves ontology reuse in ap-

plications. Ontology reuse here has two meanings. On the one hand, existing

ontologies can be used to generate new ontologies. On the other hand, newly gen-

erated ontologies are ready for reuse in the system whenever needed. Ontology

integration embedded with ontology reuse is shown in Figure 5.1.

Figure 5.1 points out the scope of ontology integration with respect to the

other parts of the ontology management. It clearly depicts the interdependency

CHAPTER 5. AGENT-BASED ONTOLOGY INTEGRATION 75

of the ontology integration module and mapping module (refer to Section 4.3 for

descriptions of the mapping module). Integration is based on mapping results,

which are generated by the mapping module described in Chapter 4. A newly

integrated ontology, displayed at the top right of Figure 5.1, can be reused in the

system as shown by the dotted lines.

5.4 Integration Process

A vision of a MAS is not possible without agent interaction as discussed in Sec-

tion 3.2. Figure 5.2 displays the interactions between agents involved in the inte-

gration module. In Figure 5.2, InA directly operates over the intermediate result,

which records all concepts that meet the requirements, for instance, the items with

the number of occurrences greater than a given threshold. A visualisation module

of the UA can present a graphic view of the result upon request.

InA

request start_node

traverse the ontology
structure to get the current
nodes

inform current_node

search mapping.txt,
if they are the same,

then increase the
counter by 1

UA

request subs

inform subs

request is_sub

inform [Yes|No]
search mapping.txt,
if they are the same,

then increase the
counter by 1

request threshold

inform threshold

request insert new ontology

create a new ontology by
inserting concepts

visualisation

inform insert new ontology

OA new OA
OA i OA j

Figure 5.2: Interactions from InA’s view

CHAPTER 5. AGENT-BASED ONTOLOGY INTEGRATION 76

In this thesis, the integration module starts from the root of the specified on-

tology and then traverses all sub-concepts of the ontology. Briefly speaking, InA

counts the appearance of each concept of existing ontologies, and then filters un-

expected concepts with a given threshold. By saying this, we do not mean that

we attempt to change the conceptual modelling of the ontology. Rather, ontology

integration is based on a specified ontology. The process is as follows:

(1) obtain ontology related information via OAs (e.g. by accessing the mapping.txt);

(2) keep the numbers of occurrences of each concept in the specified ontology;

Three cases may take place according to the mapping results. They are:

- Case 1: semantic equivalence for the current two concepts (for example,

“beer” is the same as “suds”):

In this case, increase the number of occurrences of the concept by 1 for

each equivalence.

- Case 2: inclusive relation for the current two concepts (for example,

“stout” is a kind of “ale”):

In this case, insert sub-concepts of the counterpart into the specified

ontology structure but keep the original relations.

- Case 3: no semantic equivalence for the current two concepts but their

corresponding direct ancestors are semantically equivalent.

In this case, insert the counterpart into the specified ontology but with-

out conflict with existing sub-concepts of the same ancestor.

(3) filter unexpected concepts by a given threshold.

The user can request visualisation of the integrated ontology or export this new

ontology to a RDF(s) format.

Following the above approach, a new OA is created instantly (to act on behalf

of this ontology) corresponding to the newly derived ontology which is based on the

mapping results of the mapping module. The newly created OA enables ontology

reuse in practice since OAs in the proposed framework are devised to be responsible

CHAPTER 5. AGENT-BASED ONTOLOGY INTEGRATION 77

for ontology related tasks. Hence, the integrated ontology can be reused with other

existing ontologies in the repository. The presence of the OA makes the integration

process self-contained in that it can directly and seamlessly reuse integrated results

to continuously improve its effectiveness.

5.5 Integration Mechanisms

The integration module operates over available mapping results. The InA is respon-

sible for ontology integration in the environment. The module uses the following

functions or data structures to execute relevant operations. Pseudocode represen-

tation of the integration algorithm is shown below.

• initialise: initialise the process.

• next-c concept: request a particular OA for the next concept of a specified

ontology. It returns the concept if it exists.

• search: search for relations in mapping results. It returns existing relations

if it exists or NIL otherwise.

• insert-sup: insert a specified concept as a super-node of a given concept in

a particular ontology structure.

• insert-sub: insert a specified concept as a sub-node of a given concept in a

particular ontology structure.

• get-threshold: contact the UA via the IA to obtain a threshold. It returns

the threshold.

• filter: filter unexpected items from a given ontology, and returns a filtered

ontology.

Pseudocode of integration algorithm

/* assume the integration module starts from a given start point;

Os, Ot: two different ontologies to be integrated, respectively;

CHAPTER 5. AGENT-BASED ONTOLOGY INTEGRATION 78

Od: the derived ontology;

cs, ct: the concepts from Os and Ot, respectively;

lcs
, lct

: the number of occurrences of concepts from Os and Ot, respectively;

m: the number of available ontologies;

relation: relations between two given concepts from different ontologies;

threshold: the threshold given by the user to filter unexpected items from the

generated ontology.

*/

Function integration {

1. initilise;

2. for (i = 1; i < m; i + +) {

3. while ((next-c(Os)!=Null) && (next-c(Ot)!=Null)) {

4. cs=next-c(Os);

5. ct=next-c(Ot);

6. relation=search(cs, ct);

7. switch (relation) {

8. case “=”:

9. lcs
+ +;

10. break;

11. case “⊑”:

12. insert-sup(ct, cs);

13. lct
= 1;

14. break;

15. case “⊒”:

16. insert-sub(ct, cs);

17. lct
= 1;

18. break;

19. default:

20. lcs
= 1;

21. } //end switch

22. } //end while

23. } //end for

CHAPTER 5. AGENT-BASED ONTOLOGY INTEGRATION 79

24. threshold=get-threshold;

25. filter(Od, threshold);

26. } //end function

5.6 Examples

We assume that the mapping results of four examples are available from Chapter 4.

Ontology integration is demonstrated by specifying “WordNet” beer (one of four

available ontologies) as a source ontology. The newly generated ontology is shown

in Figure 5.3. Newly generated ontology is organised in a hierarchical structure.

Chapter 7 will provide more details.

Figure 5.3: Integrated ontology

5.7 Consistency Checking in Prototype

To verify the prototype, consistency checking is conducted by applying a certain de-

scription logic (DL) based reasoning tool. In DL, consistency checking also means

satisfiability checking. It is known that axioms like C ⊑ D, (e.g. C is subsumed

by D, “⊑” denotes subsumption relations in DL) exists if and only if C ⊓¬D ⊑ ⊥.

That is to say that C ⊓ ¬D is not satisfiable (inconsistent). DL-based inference

CHAPTER 5. AGENT-BASED ONTOLOGY INTEGRATION 80

Table 5.1: Comparison of some OWL inference engines
RACER FaCT Pellet F-OWL

Logic DL DL DL Horn
Frame
Higher Order

Reasoning
support

OWL-DL OWL-DL OWL-DL OWL-Full

Handling
XML
datatype

Yes No Yes Yes

Decidable Yes Yes Yes No
Complete
consis-
tency
checking

Yes (OWL-
Lite)

Yes Yes (OWL-
Lite)

No

Interface DIG DIG DIG Java GUI
Java GUI Command

line
Java Command

line
Known
limitation

N/A No ABox sup-
port

N/A Poor scaling

engines, which use tableau based algorithms [3, 2], are decidable and support com-

plete consistency checking.

Some works on the OWL inference engine [155] are available from the Semantic

Web research community and description logic community. Table 5.1 lists some of

the popular engines (notations are the same as those presented in Table 4.2 Sec-

tion 2.1.2). However, as we are interested in the graphic ontology editor Protégé, we

have chosen RACER1 (http://www.racer-systems.com/) instead of others. RACER

can perform reasoning over RDF and DAML+OIL as a background reasoner. In

our approach, RACER is used with Protégé as a user interface.

1RACER, the Renamed ABox and Concept Expression Reasoner [43]. RACER implements a
TBox and ABox reasoner for the description logic ALCQHIR+(D)− [42]. It can be regarded as:
(1) a Semantic Web inference engine; (2) a description logic reasoning system capable of both
TBox and ABox reasoning; and (3) a prover for modal logic Km. In the Semantic Web do-
main, RACER’s functionalities include developing ontologies (creating, maintaining and deleting
concepts, roles and individuals); querying, retrieving and evaluating the knowledge base, etc. It
supports DAML+OIL and RDF.

CHAPTER 5. AGENT-BASED ONTOLOGY INTEGRATION 81

RACER is typically started by opening a terminal/console window and start-

ing the reasoner running with HTTP communication enabled (By default, RACER

runs with the HTTP service enabled on port 8080.). If a class has been reclas-

sified (i.e. if its super-classes have changed) then the class name will appear

in blue in the inferred hierarchy2. If a class has been found to be inconsistent,

its icon will be circled in red. See the tutorial at the website http://www.co-

ode.org/resources/tutorials/ProtegeOWLTutorial.pdf for more details.

By using a DIG3 compliant reasoner over the ontologies in Protégé, we have

achieved the goal of checking the consistency of the integrated ontology by import-

ing this ontology into the editor and running RACER.

5.8 Discussion

The integration mechanisms proposed here aim to provide flexibility and exten-

sibility as much as possible in a dynamic environment where improvements on

traditional computing models and paradigms are suggested. The characteristics of

dynamic and open environments require built systems to operate effectively within

rapidly changing circumstances. Interactions between heterogeneous systems are

becoming more essential than ever before. In practice, agent technologies have

become some of the primary weapons for addressing problems such as managing

complexity. There is also an implicit and gradual realisation that agent technologies

need to be exploited to achieve flexibility and extensibility. Table 5.2 (notations

are the same as those presented in Table 4.2 Section 2.1.2) compares some of the

most important characteristics of our agent-based integration with other systems

and tools reviewed in Section 5.2 but with a focus on assisting integration. We

extend the seven criteria outlined in Table 4.2 Section 4.8 to include Reuse. Ad-

ditionally, we now distinguish interactions between systems and human users from

those between participating agents. In this sense, the criteria are defined as follows:

2The class hierarchy that is automatically computed by the reasoner is called the inferred
hierarchy.

3DIG (Description Logic Implementers Group), a DIG compliant reasoner provides the means
to communicate via the DIG interface, which is a standard interface/protocol for talking to
description logic reasoners.

CHAPTER 5. AGENT-BASED ONTOLOGY INTEGRATION 82

Table 5.2: Comparison of proposed agent-based integration with some existing
systems

System/Tool Interaction reuse
Our Agent-based
Integration

Yes Yes

Chimaera between human user and the system N/A
FCA-Merge N/A N/A
InfoSleuth N/A Yes
MOMIS N/A N/A
OBSERVER N/A Yes
ONION N/A N/A
OntoEdit between human user and the system N/A

RDFS
OIL

PROMPT between human user and the system N/A

• Interaction: Interactions between participants/agents play important roles

for a certain goal. Moreover, rather than interacting with human users, we

would like to distinguish interactions between different parts of systems and

tools (agents).

• Reuse: This indicates that integrated ontology can be reused or not in the

system it is derived from.

Table 5.2 clearly indicates that existing systems and tools have paid less at-

tention to features such as interactions between participating actors/agents and

ontology reuse. Compared with some available systems and tools, our agent-based

integration has two unique features:

(1) Interaction between agents is essential and agent behaviour is conveyed through

this agent interacting with other agents in the environment;

(2) The integrated ontology (deriving from existing varied sources) is ready to be

reused in the system. Because of deployment of agent technology, an agent

which is responsible for the integrated ontology (e.g. OA) will be generated

CHAPTER 5. AGENT-BASED ONTOLOGY INTEGRATION 83

on the fly to take effect immediately. This allows easy modification whenever

needed.

5.9 Summary

Ontologies are becoming more and more important in the context of the emerging

Semantic Web. The need for integration and reuse of ontologies is increasing as

well. In this chapter, we have presented ontology integration processes and mech-

anisms based on work in Chapters 3 and 4 to investigate ontology integration in

the environment where similar ontologies exist. With the presence of ontology

agents, newly generated ontologies can be reused immediately, which is in accor-

dance with the intuition of reusing ontologies regardless of where the ontologies

are and when they created/will to be created. Consistency checking has been

considered and fulfilled by applying description logics and relevant tools.

In the next chapter, different agents under the proposed framework will be

created to demonstrate ontology mapping and integration. Evaluation is also dis-

cussed.

Chapter 6

Prototyping and Evaluation

In Chapter 3, we have presented an agent-based framework. In Chapters 4 and 5,

we have investigated ontology mapping and integration. In the discussion in the

earlier chapters, it was argued that:

• Agent technology is one the most suitable paradigms for modelling complex

systems;

• A MAS shows promise in solving dynamic, distributed and heterogeneous

problems;

The proposed framework in Chapter 3 is general. We believe that the technical

platform should be given much more attention for the reasons (1) to illustrate that

agent technology is potentially adequate for ontology management (in an environ-

ment where ontologies reside in heterogeneous platforms with different ontology

representations); and (2) to apply the proposed general-purpose framework in a

broad variety of application scenarios without expending too much effort to con-

sider platform compliant problems later on when needed.

In this chapter, the criteria for choosing an appropriate technology platform to

meet the requirements is discussed in Section 6.1. Detailed ontology description

is presented in Section 6.2. Different kinds of agents are thoroughly investigated

in Section 6.3 . We highlight some important aspects of agents in our approaches.

Prototype systems (ontology mapping and integration) are demonstrated in Sec-

tion 6.4. Section 6.6 is about the lessons learned. Section 6.5 covers framework

84

CHAPTER 6. PROTOTYPING AND EVALUATION 85

evaluation. And finally, Section 6.7 summarises this chapter.

6.1 Implementation of the Framework

In order to realise the proposed agent-based framework and mechanisms of ontology

mapping and ontology integration, several points should be kept in mind while

choosing the technology platform. They are as follows:

(1) The platform should be independent, have open sources and comply with

FIPA specifications1.

(2) The architecture must be able to govern operations in a dynamic, distributed

and heterogeneous environment.

(3) The platform must offer flexible and efficient messaging facilities between

agents. By saying so, we focus on the semantics of the communication rather

than the concrete syntax of the message.

(4) The platform should be easy to use.

With these criteria in mind, we next discuss why we chose JADE (http://jade.tilab.com/) [7]

as the implementation platform. According to our survey, JADE is an appropriate

technology platform that meets the above criteria.

6.1.1 Technology Platform

JADE is a software framework to facilitate the development of agent-based appli-

cations. JADE, complying with the FIPA standard model of an agent platform

as shown in Figure 6.1 (http://jade.tilab.com/doc/programmersguide.pdf), runs all

those mandatory agents (including Agent Management System (AMS), Directory

1FIPA, the standards organisation for agents and multi-agent systems, was officially accepted
by the IEEE as its eleventh standards committee on 8 June 2005. Since its foundation in 1996,
FIPA has played a crucial role in the development of agent standards and has promoted a number
of initiatives and events that contributed to the development and uptake of agent technology.
Furthermore, many of the ideas originated and developed in FIPA are now coming into sharp
focus in new generations of Web/Internet technology and related specifications.

CHAPTER 6. PROTOTYPING AND EVALUATION 86

Agent
Agent

Management
Systems

Directory
Facilitator

Agent Communication Channel
(Message Transport System)

Agent Platform

Figure 6.1: Reference architecture of a FIPA agent platform

Facilitator (DF) and Agent Communication Channel (ACC) to manage the plat-

form. The major characteristics of JADE in response to the above criteria are

listed below.

(1) JADE is claimed to comply to FIPA (http://www.fipa.org) specifications.

(2) JADE is a software framework fully implemented in Java language. It is an

architecture-neutral language which is independent of the underlying hard-

ware. Besides, it is an open-source project, complies with FIPA specifications,

and includes all those mandatory components that manage the platform.

(3) In JADE, the agent platform can be distributed over several hosts. It also pro-

vides a complete run time environment for agent execution and allows several

agents to concurrently execute on the same host. Moreover, JADE enables

end-to-end interoperability between agents of different agent platforms.

(4) The communication architecture of JADE offers flexible and efficient messag-

ing. All agent communication is performed through message passing, where

FIPA ACL is the language to represent messages. It supports the full FIPA

communication model (most pertinent to semantics of communicative acts).

(5) JADE provides a homogeneous set of APIs that are independent from the

underlying network and Java version. Furthermore JADE API’s are easy

CHAPTER 6. PROTOTYPING AND EVALUATION 87

to learn and use. JADE has been designed to simplify the management of

communication and message transport.

Additionally, by using the well-known FIPA-compliant agent technical platform

(e.g. JADE) to implement the prototype, commonly raised questions such as ef-

ficiency and management overheads will be solved with the presence of AMS, DF

and other bundled tools to simplify platform administration and application devel-

opment.

In short, although there some other agent tool kits/platforms (http://www.

agentlink.org/resources/agent-software.html) are available, JADE2 is one of the

most suitable platforms so far according to our implementation criteria.

6.1.2 Agent Communication Languages

At an abstract level, agents achieve a goal by working with other agents to solve

problems that are beyond individual capabilities and knowledge. Agents work

together based on interactions. ACL is a FIPA agent communication language

which is based on communicative acts of speech act theory (http://www.fipa.org

/specs/fipa00037/SC00037J.html). It is treated as an agent communication lan-

guage outweighing KQML [27] in which the semantics of ACL are rigorously de-

fined. An ACL is a set of primitives (e.g. performatives) that allow an agent to

state its intention to achieve by exchange of messages between agents.

ACL is an outer language that specifies message format and includes descrip-

tions of the pragmatics, that is the communicative acts or intentions of the agents.

ACLs are message formats as well as an “instruction” to describe an agent’s in-

tention in the communication. It allows flexibility in designing autonomous and

heterogeneous agents in the implementation.

6.1.2.1 Agent Communication

Communicative acts are based on speech act theory, in which agents have, amongst

their mental attitudes, a goal G and an intention I. Let us assume that individual

2Refer to the website http://exp.telecomitalialab.com/ for more details of why JADE is a
suitable technical platform for modelling distributed and heterogeneous environments.

CHAPTER 6. PROTOTYPING AND EVALUATION 88

agent i

convert to transport form

message delivery / transportation service

goal G

intention I

speech act

msg M

agent j

convert to transport form

message M

Figure 6.2: Message passing between agents from FIPA communicative act library
specification

Content

Message

Communication

expressed in an agreed language

performatives of ACL

mechanics of communicaiton

Figure 6.3: Three-layer agent communication model

agents cannot carry out the intention by themselves. These agents will contact

other agents which will satisfy the intention and thus achieve the end goal if they

behave rationally (Figure 6.2).

the agent communication language used in the thesis is FIPA ACL. In essence,

an agent communication language provides a set of communication acts for agents

in a MAS to perform. The purpose of agent communication is to convey informa-

tion about an agent’s own mental state with the objective of affecting the men-

tal state of the communication partner. As some kind of shared ontology is the

foundation in agent communications, we build an ontology with respect to access-

ing ontology structure (below we name it meta-ontology). Following the FIPA

ACL (http://www.fipa.org/repository/aclspecs.html) communicative acts (http://

www.fipa.org/repository/cas.php3), a three-layer model (Figure 6.3) of the FIPA

ACL includes the content (layer) of the message; the message (layer) of particular

attitude towards the content in the forms of performatives of ACL [150]; and the

communication (layer) of the mechanics of communication. The concrete syntax

CHAPTER 6. PROTOTYPING AND EVALUATION 89

for FIPA ACL messages closely resembles that of Knowledge Query and Manip-

ulation Language (KQML) (http://www.cs.umbc.edu/kqml/), but ACL language

differs from KQML fundamentally, as FIPA-ACL has greatly enhanced the seman-

tics of passing messages by eliminating any ambiguity and confusion from the usage

of the language. Let us take the two most important performatives inform and

request in the FIPA ACL as an example. They are shown in the following:

Example 1:

(request

:sender i

:receiver j

:content "get syn(beer)"

:language fipa-sl

:ontology meta-ontology)

In the case of this message, agenti asks agentj to perform the action of searching

the term beer in the synonym file. The content of the message is in “fipa-sl” (e.g.

FIPA Semantic Language), and the communication is based on the meta-ontology.

Example 2:

(inform

:sender j

:receiver i

:content "syn(beer,suds)"

:language fipa-sl

:ontology meta-ontology)

In the case of this message, agentj wants agenti to believe that the statement that

“beer” and “suds” are synonyms is true within the same ontology of Example 1.

6.1.2.2 ACL Semantics

The Semantic Language (content language of the FIPA ACL messages) is the formal

language used to define the semantics of the FIPA ACL.

Practically, the semantics of inform are as follows:

< i, inform(j, ϕ) >

feasibility precondition (FP): Biϕ ∧ ¬Bi(Bifjϕ ∨ Uifjϕ)

CHAPTER 6. PROTOTYPING AND EVALUATION 90

rational effect: Bjϕ where

1) Biϕ means agent i believes ϕ or that it believes ¬ϕ;

2) Bifjϕ ≡ Bjϕ∨Bj¬ϕ, namely that either agent i believes ϕ or that it believes

¬ϕ;

3) Uifjϕ ≡ Ujϕ∨Uj¬ϕ, namely that either agent j is uncertain about ϕ or that

it is uncertain about ¬ϕ;

Thus agent i sending an inform message with content ϕ that is either true or

false, or that agent j believes whether ϕ is either true or false, or that agent j is

uncertain of the truth or falsity of ϕ. If agent i is successful in performing the

inform, then the recipient of the message (e.g. agent j) will believe ϕ.

Here is the semantics for request:

< i, request(j, α) >

feasibility precondition: FP (α)[i\j] ∧ Bi agent(j, α)¬Bi Ij Done(α)

rational effect: Done(α) where

1) FP (α)[i\j] denotes the part of the FPs of α which are mental attitudes of

agent i;

2) agent(j, α) means that agent j denotes the only agent that ever performs (in

the past, present or future) the actions which appear in action expression α;

3) intention is defined as a persistent goal imposed on the agent to act. Thus

IjP means that “agent j has P as a persistent goal” and “I has the intention

to bring about P”. In the above formula, P is Done(α).

Thus agent i requests agent j to perform action α means that agent i believes

that the agent of α is j, and agent i believes that agent j does not currently intend

that α is done. The rational effect is that the action is done (e.g. which i wants to

achieve by sending the message).

6.2 Ontologies

The purpose of this work is to develop a flexible system for agents, which commonly

consume ontologies, engage in ontology management such as ontology mapping and

CHAPTER 6. PROTOTYPING AND EVALUATION 91

ontology integration. An agent, if it works with some other agents, clearly needs

some kind of ontologies to communicate with others to know the meanings of the

content expressions. Moreover, the agent is able to verify that messages it re-

ceives are meaningful pieces of information which comply with the specifications of

the agent ontologies by means of which both the sender (agent) and the receiver

(agent) agree upon the proper meaning of the messages. As distinct from user

defined ontologies, herein, “agent ontology” denotes the internal ontologies, while

“ontology” represents user defined ontology. There are various user defined ontolo-

gies with different representations. These ontologies come from different sources

(different organisations in business). When cooperation among agents is called for,

first of all, that these agents desire a variety of user defined ontologies is under-

standable. As this work is focused on using agent technology in handling ontology

related management, we would prefer to emphasise operations over ontologies on a

given content expression of an ACL message. The “agent ontology” is the ontology

of operations over the user defined ontologies, it is called meta-ontology. Next,

descriptions of user defined ontology and some relevant terminology are given.

6.2.1 User Defined Ontology

A three-layer model (Figure 6.4) has been developed to represent user defined on-

tologies in the system. This model allows different ontology languages and repre-

sentations when instantiating various ontologies. The three layers are: E-R model,

object, and ontology.

The top level E-R model is a general model used in modelling the reality at an

abstract level. It is in accordance with Gruber’s well known ontology definition [38]

where an ontology is an explicit specification of a conceptualisation. As addressed in

Section 3.1, an ontology is a specification, namely a pair of < Σ, Ψ > to show that

Σ satisfies the axioms Ψ derived from a domain model, where a conceptualisation

Σ is a pair of < C,R > with C representing a set of concepts, and R standing for a

set of relations over these concepts. Under the E-R model layer (Figure 6.4) is the

object layer where id, label, attribute, datatype and relationship type are defined.

Objects in this layer are instances of E-R model layer classes. The bottom layer

is the ontology layer. Various ontologies of the system are instantiations of objects

CHAPTER 6. PROTOTYPING AND EVALUATION 92

Object
Layer

Ontology
Layer

entity entity

concept concept

 ontology

is-a

E-R
model
Layer

R

relationship
type

id

 datatype

label

attribute

Figure 6.4: Three-layer ontology model

in the object layer.

A prominent feature of the ontology in this system is the attribute of an “entity”

or a “slot”. This is designed to take either simple data types or complex data types

such as class type.

6.2.2 User Defined Ontology in System

When an ontology is imported to the system, an OA is automatically developed

to act on behalf of this ontology and to perform ontology related operations for it

such as accessing and updating the ontology. For example, once the four running

examples (Section 4.6) are imported, four different OAs run to act on these four

ontologies accordingly.

6.3 Agent Design and Implementation

In this section, the interrelated processes and functionality together with the im-

plementation of each agent (Figure 3.1) in the JADE agent platform are presented.

For simplicity, as indicated in Chapter 1, the implemented system is called JOMI

(Jade Ontology Mapping and Integration).

CHAPTER 6. PROTOTYPING AND EVALUATION 93

6.3.1 User Agent

The UA assists the user in formulating his/her requests, posting queries (e.g. tasks)

to the proposed system via the IA, and visualising the required results according

to the user’s requirement. The UA isolates complex internal system designs and

implementations from the user. Upon initialisation, it waits for information of user

actions via the user interface. The UA must engage in “communications” with

the IA in fulfilling its role because the internal structures are also invisible to it.

The UA only knows the IA. It does not know any other agents we have created in

our MAS environment.

This UA is started up with the main container when we start up JADE. It waits

for actions from the user interface then sends an ACLMessage to the IA when

it has received a user action. For example, once the user selects two agents in the

mapping interface, then it performs the mapping module. The user interface

passes the agents to the “start mapping” method in the UA. The UA does not

know how to map, therefore, it creates an ACLMessage and adds these two OAs

as parameters in the ACLMessage. After that, it sends this ACLMessage off to the

IA. When information is to be displayed to users, the IA passes a message back to

the UA which shows the necessary results on the user interface.

6.3.2 Interface Agent

The IA acts as an interface between agents in our MAS and the UA. Upon ini-

tialisation, every agent knows about the IA. So if any other FAs, for example, the

MA, want to show mapping results to the user, they can send a message to the IA

which will pass it on to the UA to display. On the other hand, when new agents,

for example OAs, are added in, the IA will let all other agents know. So existing

agents may refer to newly added agents.

This IA is started up with the main container when we start up JADE. It re-

ceives messages from the UA, then based on the conversation id of the ACLMessage,

it passes it on to the appropriate agent in our MAS to deal with. For example,

the IA may receive a message from the UA with the conversation id of “start-

mapping”. The IA does not know anything about mapping but knows when it gets

CHAPTER 6. PROTOTYPING AND EVALUATION 94

this message to pass it on to the MA to handle. The MA then extracts the content

of the message and performs mapping on these two OAs.

6.3.3 Ontology Agent

The OA provides ontology related information and operations to other agents. The

OAs isolate details of external ontologies from FAs.

Upon initialisation, it waits for information from other agents. It engages in

“communication” with these agents with respect to the required information. This

process may loop until the module runs out of concept candidates of a specified

ontology. The OA may return a result to the user via the IA and the UA.

The OA provides as much information about the ontology it acts on as possible.

The OA operates over ontology structures on behalf of which it acts. Interactions

among agents, specifically between FAs and OAs are shown in Figure 6.5. The

major operations of the OA are described as follows.

• Insert, namely insert a new concept into the ontology structure as requested.

For example, the UA may specify where to attach the concept (for ontology

integration phase).

• Traverse, namely traverse the structure, return the requested concepts or

true/false of a given proposition.

• Delete, namely delete out-of-date concepts and corresponding relations as

required.

• Update, namely update the labels of concepts and relations as required.

Furthermore, an OA acts correctly when triggered by different sources of driving

forces. For example, in the refinement module, it has capabilities to collabrate with

the NA to modify (e.g. insert, delete, update) its acting ontology. For another

example, in a query module, an OA will dispatch a particular query request to

other known OAs if it is unable to answer the query. We focus on ontology mapping

related interactions, by taking into account the interactions between the OA and

the MA, and the OA and the QA as well.

CHAPTER 6. PROTOTYPING AND EVALUATION 95

IA UA Ontology agents Functionary agents

OA i OA j
request for a

certain
functionality

request

request

request

request
inform

inform

send a request
to a particular
OA

Figure 6.5: Interactions from OA’s view

An OA’s main responsibility is to look after an ontology, either the one imported

from a RDF(s) file or the one created in an object oriented way. Ontology agents

are all equipped to be able to perform some functions to reify agent behaviours

responding to in coming ACLMessages.

The OAs are not added to JADE at start up. They are added to our current

running container when the user asks for them via the user interface. For

example, suppose that the user would like to add some OAs, for instance two of

them, to our current running container of JADE. When these agents first enter our

system, they register themselves with the IA. Then all agents will have a reference

to these two added OAs via the IA.

6.3.4 Thesaurus Similarity Agent

The SA maintains a thesaurus for the purpose of similarity. Upon initialisation,

it waits for information from either a FA or the UA with respect to the query or

updates the contents of the thesaurus. It then returns the corresponding results.

The SA may work in two cases by interacting with other agents (Figure 6.6). One

is in the mapping module when the MA is looking for synonyms for a given term

from ontologies if the MA has found no such concept in other ontologies. Another

case is when the user asks to update the thesaurus list.

We assume that the SA holds a list of common words and synonyms of words.

This agent is started up with the main container when we start up JADE. For

CHAPTER 6. PROTOTYPING AND EVALUATION 96

request mapping

request syn_search

unknown

inform synonyms check
request (append to

syn.file)

agree (append to
syn.file)

search
syn.file

append to
syn.file

SA MA IA UA

Figure 6.6: Interactions from SA’s view

example, during the mapping process, if the MA is trying to perform mapping on

two ontologies, and gets the concept suds from one ontology, and wants to map it to

another ontology, but that ontology has no concept called suds, then the MA sends

an ACLMessage to the IA. The IA reads the conversation id of this message and

passes it on to the SA. The SA then looks in its list and gathers a list of synonyms

for the particular term. The SA then sends this list back in an ACLMessage to the

IA, which passes it back to the MA. The MA will then use this list for mapping.

6.3.5 Mapping Agent

Dynamic mapping is thought to be on the right track to pave the way for further

ontology operations. The MA takes effect on receiving a mapping request from the

UA via the IA. It engages in “communication” with OAs and the SA to execute

mapping until the process is completed. OAs will have a reference to the mapping

results.

Unlike the OA or other agents, the MA does not operate directly over existing

structures. It takes effect via IA in the module (see Figure 4.2) in deciding whether

existing ontologies come from the same domain or not; or in the module of ontology

mapping (see Figure 4.3) through the OA and the SA to acquire relevant informa-

tion. The former paves the way for deployment of predefined rules (actually, these

CHAPTER 6. PROTOTYPING AND EVALUATION 97

Figure 6.7: Mapping main window

rules are the required little prior knowledge). The latter depicts agent interactions

in the ontology mapping process.

In reality, the process of deployment of rules may loop until it runs out of sub-

concepts of a specified ontology. Mapping is conducted from a particular OA’s

perspective. In other words, mapping has directions.

This agent is started up with the main container when we start up JADE. It

performs mapping on pairs of ontologies and writes the mapping results out to a

file (e.g. mapping.txt). We take the example below to illustrate the entire process.

When the user wants to perform mapping between two ontologies, the user

inputs two ontologies. The user interface then sends these two ontology names

to the UA which wraps them up in an ACLMessage and passes it on to the IA. The

IA will pass the message on (based on conversation id) to the appropriate agent

to handle. Here the MA will then extract the content of the message and perform

mapping on these two specified OAs (acting on these two ontologies).

Figures 6.7, 6.8 and 6.9 are screenshots. Figure 6.7 is the mapping main window

when “mapping” is selected. Figure 6.8 is the mapping interface for the user to

key in some information. Figure 6.9 is the mapping result based on informa-

tion from the mapping interface when “OK” is clicked. The mapping results

indicate which concept from one ontology is the semantic equivalent to a concept

from another ontology after the mapping module has been executed, for instance,

CHAPTER 6. PROTOTYPING AND EVALUATION 98

Figure 6.8: Mapping interface

Figure 6.9: Mapping result

Beer1Agent.beer=Beer2Agent.suds from Figure 6.9. Later on when performing

ontology integration, the integration module knows that Beer1Agent beer equals

Beer2agent suds.

6.3.6 Integration Agent

Ontology integration is based on the results of ontology mapping. It is from a

particular agent’s perspective. In other words, the system has no intention of being

engaged in conceptual modelling issues (e.g. how to build an ontology). Instead,

it uses the existing conceptual models by choosing one of them. The purpose of

CHAPTER 6. PROTOTYPING AND EVALUATION 99

integration is to abstract the existing ontology from a global view (according to a

certain scenario).

Upon initialisation, the InA waits for the action of performing integration over

specified ontologies. The InA then engages in “communications” with proper OAs

until the integration task has been solved. The integration module executes in-

tegration from a given start point of an ontology. It then requests corresponding

OAs to traverse sub-concepts of the ontology. Briefly speaking, the InA counts

the appearance of each concept in existing ontologies, and then filters unexpected

concepts with a given threshold. By saying this, we do not mean that we are at-

tempting to change the conceptual modelling of the ontology. Instead, ontology

integration is based on a specified ontology.

This InA is started up with the main container when we start up JADE. We

take the example below to illustrate the entire process.

When the user wants to integrate the ontologies they provide the dominating

ontology and a threshold. The user interface passes this information on to the

UA which wraps it up in an ACLMessage and sends it to the IA. The IA looks

at the conversation id of this message then passes it on to the InA. The InA will

request the ontologies from available OAs (this is done again via ACLMessages).

When the integration module has all the ontologies (by contacting the OAs), it

performs the integration module based on the dominant ontology, the mapping

results (e.g mapping.txt), and of course the given threshold for a better outcome.

When the integration has been done, firstly an OA is created on the fly which will

look after the newly integrated ontology. Then the InA sends the new ontology to

the IA in an ACLMessage. The IA then passes it on to the UA which will display

the new ontology to the user in a tree view. The user can later export this new

ontology to RDF(s) format.

Figures 6.10 to Figure 6.13 are screenshots. Figure 6.10 is the integration

main window when “integration” is selected. Figure 6.11 is the integration

interface for the user to key in some information. Figure 6.12 is the “integrated

ontology” based on information from the integration interface when “OK” is

clicked. It is in hierarchical structure. Figure 6.13 is the “integrated ontology” in

RDF(s) format.

CHAPTER 6. PROTOTYPING AND EVALUATION 100

Figure 6.10: Integration main window

Figure 6.11: Integration interface

CHAPTER 6. PROTOTYPING AND EVALUATION 101

Figure 6.12: Integrated ontology

Figure 6.13: Integrated ontology in RDF(s) format

CHAPTER 6. PROTOTYPING AND EVALUATION 102

6.3.7 Checking Agent

The CA is developed to check the consistency of the integrated ontology (assuming

all given ontologies are consistent at the beginning). Upon initialisation, the CA

waits for actions from the user interface to perform the consistency checking

task upon a generated ontology. The CA then executes the checking module by

engaging in “communications” with a particular OA. This process may loop until no

candidate concept from the ontology is left. When the CA (Figure 6.14) initialises,

the CA waits for a request to perform checking task over a specified ontology. After

the process is completed, the module returns the user either (a given ontology)

consistent or not. If the ontology is inconsistent, the problem part of the ontology

is highlighted in the user interface.

OA IA CA

request checking

traverse
ontology

UA

request
information

consistent

inconsistent visualise

execute
checking
module

return
result

Figure 6.14: Interactions from CA’s view

This agent is started up with the main container when we start up JADE. The

CA gets an ACLMessage from the IA to check the consistency of an ontology. It

sends a message back stating that inconsistencies or no inconsistencies were found,

which will eventually be passed back to the user interface. Figures 6.15 and

6.16 are screenshots. Figure 6.15 is the checking main window when “consistency

check” is selected. Figure 6.16 is the status of consistency of the integrated ontology.

CHAPTER 6. PROTOTYPING AND EVALUATION 103

Figure 6.15: Checking main window

Figure 6.16: Consistency check result

CHAPTER 6. PROTOTYPING AND EVALUATION 104

QA

search
map.files

OA
OA j OA i

inform result

request term search
map.files

search
map.files

request term

inform result

request the term
inform result

OA k

draw edges
to link
reachable
ontologies inform where

[Y]

[N]
[N]

[Y]

[N]

[N]

inform where

inform where

[N]
[N]

[Y]

Figure 6.17: Interactions from QA’s view

6.3.8 Query Agent

The QA is designed to govern query execution around available OAs over the

mapping results. The query aims to give an equivalent description of the queried

term if the agent knows it. If not, the agent then passes the query to other available

OAs. The query dispatching module is continually executed until either the query

is answered or the process has queried all existing OAs with respect to the term.

The result (e.g. a query routing) is displayed on the user interface.

Upon initialisation, the QA waits for actions from the user interface to per-

form the query. The QA then executes the query module by engaging in “commu-

nications” with OAs with reference to mapping results (e.g mapping.txt). This

process is completed when the queried terms is interpreted.

The query agent acts as a planning agent not only for an optimal route but for

a reachable path in a decentralised ontology network. It is responsible for tasks

such as keeping track of OAs in case backtracking is required (Figure 6.17).

The QA is started up with the main container when we start up JADE. This

agent gets an ACLMessage from the IA to query an ontology of a specified term.

For example, when a user performs a query, the user inputs the query term and the

ontology to query. The user interface will pass the query term and the ontology

to the UA which will wrap up this information in an ACLMessage and send it to

the IA. The IA will look at the conversation id of the message and realise that it

CHAPTER 6. PROTOTYPING AND EVALUATION 105

Figure 6.18: Query main window

needs to send it to an OA itself. So the IA will unwrap the message to determine

which agent it needs to send it to. The IA then sends the ACLMessage to that

OA. Each OA has been programmed to handle this kind of message. So when

an OA receives this message it searches through its own ontology for the query

term. If it is unsuccessful, it then searches through appropriate mapping files. It

will then pass a result message back to the IA, which will pass it on to the UA.

Then the user will see a message posted on screen either something like suds =

BeerAgent1.beer or no semantic equivalence.

Figures 6.18 to 6.20 are screenshots. Figure 6.18 is the query main window

when “query” is selected. Figure 6.19 is the query interface for the user to key

in some information. Figure 6.20 is the “query result” based on the user’s input

information in the query interface.

6.3.9 Ontology Import and Export

6.3.9.1 Import RDF(s) from Protégé

Importing an RDF file (ontology) from Protégé into JOMI RDF format file works

like a glue to join JOMI to Protégé. It is possible to create an ontology in Protégé

without spending too much effort in considering ontology integrity and consistency

CHAPTER 6. PROTOTYPING AND EVALUATION 106

Figure 6.19: Query interface

Figure 6.20: Query result

CHAPTER 6. PROTOTYPING AND EVALUATION 107

during the ontology creation phase. In other words, the prototype JOMI allows

both object-oriented ontology and Protégé ontology in RDF(S) format (importing

a RDF file from Protégé).

Once a RDF file has been exported from Protégé and saved in a specified folder,

JOMI can access it. When a RDF file is specified as an imported ontology, the

JOMI imports this RDF(s) file instead of the usual Java file. At the same time on

the screen, this imported RDF(s) file is represented in a different colour in contrast

to other Java ontology files. What happens in the background is that a Java file is

created for the RDF(s) file and stored in a particular folder. For example, if you

had a RDF schema file called test.rdfs which was stored in a specified folder when

you import it, there will now be a file called test.java in a particular folder. Then

the test.java file is added to the current running JADE container.

6.3.9.2 Export Ontology in RDF(s)

When JOMI has integrated a new ontology, it may be exported in RDF(s) format.

The export interface is shown in Figure 6.21. From the dialog, there will be an

RDF(s) file which is called test.rdfs created in a specified folder. An RDF(s) file

will be created able to be imported into Protégé for consistency checking.

Figure 6.21: Export interface

CHAPTER 6. PROTOTYPING AND EVALUATION 108

6.3.10 Important Notes

All our agents make use of JADE Message Templates to perform certain tasks based

on certain attributes of the message. For example, an OA can send concepts. When

the OA receives a message, it needs to determine which behaviours to execute.

Message Templates allow us to filter messages based on attributes like performative

type, conversation id, and sender, etc.

6.4 Ontology Mapping and Integration

The JADE agent platform is used to build our MAS system. Following the analysis

of the proposed architecture, we have worked out the details of the prototype. To

meet the main tasks of the prototype, different classes (e.g. concept class, ontology

class and agent class) have been defined to enable ontology and agent genera-

tion on the fly. The prototype consists of the following agents: one user agent

(UA), one interface agent (IA), one mapping agent (MA), one integration

agent (InA), one consistency checking agent (CA), one query agent (QA),

four ontology agents (OAs). In the prototype, different ontologies, for example

RDF(s) ontologies, are created for demonstration. In the following, two major on-

tology management - ontology mapping and integration will be demonstrated in

detail.

6.4.1 Ontology Mapping

As working together in a business environment is becoming inevitable with busi-

ness globalisation, it is necessary that agents should be able to collaborate. But

the fact is that there is often more than one ontology designed by different orgai-

sations in a given domain. Since agents need to cooperate in a MAS, there has

been an increasing interest in dynamic ontology mapping. It is seen as a feasible

and effective approach to achieve ontology interoperability regardless of ontology

representations and hosting platforms.

In our work, mapping attempts to provide mapping results for any further on-

tology operations, for example, ontology integration. Mapping is operated between

CHAPTER 6. PROTOTYPING AND EVALUATION 109

Figure 6.22: Screen shot of ontology mapping

pairs of ontologies based on basic mapping rules (Section 4.4).

The mapping module in the prototype runs as follows:

(1)Import existing ontologies;

(2)Develop corresponding OAs for each available ontology;

(3)Develop corresponding FAs (e.g MA);

(4)Execute the mapping algorithm as described in section 4.5.

The above mapping module may start from the top of the ontologies, it may

also start from particular parts of ontologies. It may loop until it runs out of

concepts of ontologies according to a scenario.

Figure 6.22 is a screenshot of the ontology mapping and the demonstration

of the mapping process. The window at the back is an overall prototype when

“mapping” is selected. The lower left part is a mapping screen where the mapping

direction is specified in addition to two given ontologies. The mapping result in

plain text is shown in the lower right of Figure 6.22.

CHAPTER 6. PROTOTYPING AND EVALUATION 110

Figure 6.23: Screen shot of ontology integration

6.4.2 Ontology Integration

Ontology integration is based on ontology mapping results in order to provide a

global view of existing ontologies in the environment. Since ontology conceptual-

isation is out of our scope in this work, we will not extend this topic any further

but instead we will choose one available ontology to perform ontology integration.

The prototype runs as follows:

(1)Import existing ontologies;

(2)Develop corresponding OAs for each available ontology;

(3)Execute mapping module;

(4)Develop corresponding FAs (e.g MA and InA);

(5)Execute integration algorithm as described in Section 5.5;

(6)Visualise the integrated ontology;

(7)Export the integrated ontology in a specified format (e.g. RDF(s)).

Figure 6.23 is a screenshot of the ontology integration and integration results.

The upper part is the overall prototype when “integration” is selected, while the

lower right part is the integrated ontology in the hierarchical structure. See Fig-

ure 6.13 for RDF(s) format export.

CHAPTER 6. PROTOTYPING AND EVALUATION 111

6.5 Evaluation

Ontologies and ontology-based applications perform in the environment of dynam-

ics, distribution and heterogeneity. The agent-based framework proposed in this

thesis is suitable for tasks such as ontology mapping and integration in a certain

business scenario. By adopting a MAS perspective, interactions among multiple

agents, which work together to achieve the goal beyond individual capabilities and

knowledge, are highlighted. In other words, MASs are able to take a variety of

environmental circumstances into consideration rather than mainly treating the

environment as being static. The evaluation work takes the following characteris-

tics into account:

• Flexibility: In the framework, the already set up agent communication chan-

nel facilitates message delivery. Moreover, the presence of the OAs allows for

flexible system organisation. The system allows freely adding/deleting OAs

and FAs (including all defined agents for a particular task) to/from the sys-

tem;

• Interactivity: Agents are highly interactive in the framework. Interactions

take place not only between OAs and FAs, but also between FAs if a particular

task needs to deploy the functionalities of other FAs;

• Interoperability: The framework enables interoperability between agents of

different agent platforms. In terms of syntactic and semantic heterogeneity of

ontologies, a meta-ontology is developed to resolve semantic heterogeneities;

• Scalability: In the framework, different classes are developed. They include

a concept class, an ontology class and an agent class. Moreover, all ontology

related operations are encapsulated and isolated from the FAs’ view. By

extending corresponding classes, the OAs and FAs can be created easily;

• Reusability: In the framework, whenever a new ontology is generated based

on existing ontologies, an OA is developed accordingly. This enables the

general view of a particular application domain to be reused in the system;

CHAPTER 6. PROTOTYPING AND EVALUATION 112

• Reliability: this depends on agents performing rationally in the framework.

As every agent of the system is required to register and advertise its capa-

bilities to the IA, any other agents are able to reach all available capabilities

in the system whenever needed. Moreover, the upper bound on the number

of iterations (the developed agent algorithms) required to reach a fixed point

is the number of concepts in an ontology. It is known that the number of

concepts in an ontology is finite.

To sum up, the proposed framework provides a flexible and effective modelling

approach to tackle ontology mapping and integration over a variety of ontologies.

6.6 Lessons Learned

(1) Problems we encountered in developing the framework using JADE

JADE provides a good platform for developing multi-agent systems but a

major problem we encountered was with JADE’s Ontology Class. In our

prototype we were mainly looking at performing mapping and integration on

two or more ontology’s whereas JADE’s Ontology Class looks at ontologies

only at an instance level which is used for communication purposes between

agents.

(2) Our solutions

We came up with a solution but it took quite a lengthy time to implement.

Basically we had to create our own ontology class and provide methods that

would allow us to change the dynamics of the ontology. For instance, we

included methods to allow the user to add concepts, sub concepts, add slots

to concepts, return concepts, and return slots from a concept. We found

the easiest way to do this was to extend Java’s JTree Class because this

class already provided us with the most functionality in accessing things in a

hierarchal structure.

(3) Enhancement of JADE

From our point of view, maybe JADE could provide two representations of

their ontology class. One for the instance level and agent communication,

CHAPTER 6. PROTOTYPING AND EVALUATION 113

and another for an abstract view to be used to perform certain tasks on the

ontology. Something that needs to be addressed in JADE is that sometimes it

runs at the back of other programs and therefore needs to provide a method

for terminating itself from another program. For example, when we have

been running JADE in our program and close our program, JADE still has

a process running. JADE might provide for this but we were unable to find

any documentation about it.

6.7 Summary

A variety of ontologies from different sources exists in a dynamic and heterogeneous

environment. Existing systems or tools have mainly treated the environment stati-

cally. Agents in a multi-agent system are autonomous and flexible, given the agents

are capable of perceiving changes in the environment and responding promptly.

Agent technology is thus suitable for ontology mapping and integration. In this

chapter, an agent-based prototype has been implemented to demonstrate our work

discussed in previous chapters (e.g. Chapters 3, 4 and 5). In order do this, the

JADE agent platform was deployed. We have detailed each kind of agent and its

implementation in JADE. Two major ontology managements - ontology mapping

and integration are demonstrated in the prototype.

Additionally, Protégé (http://protege.stanford.edu/) is an ontology editor with

incremental plug-ins. Although ontology building is out of the scope of this work,

we expect it will be possible for various ontologies with different representations and

languages to be imported into the agent-based system. RDF(s) is such a channel

to link our agent-based system with Protégé. Actually, the agent-based system

is designed to be able to import and export ontologies in RDF(s) format. Some

ontology related work such as ontology verification may thus be moved to Protégé

by taking advantage of a number of plug-ins to support this.

Chapter 7

Agent-based Ontology Refinement

In Chapters 4 and 5, we have investigated agent-based ontology mapping and

integration. And in Chapter 6, we have described the prototype to realise the

framework proposed in Chapter 3, in which ontology mapping and integration re-

lated work (e.g. ontology mapping and query, ontology integration and consistency

checking) discussed in Chapter 4 and 5 have been implemented. Based on the work

we have done so far, it is clear that ontology mapping and integration benefit from

deploying agent techniques. Certainly, ontology is the conceptual backbone that

provides meaning to data on the Semantic Web. The vision of the Semantic Web

can only be realised through proliferation of well-known ontologies describing differ-

ent domains. However, ontology is not a static resource and may evolve over time,

especially where different domains are concerned. Ontologies are rarely static, but

are constantly being adapted to changing requirements. In fact, they are subject

to continuous change. Changes in the domain, conceptualisation and explicit spec-

ification can cause changes in an ontology [110]. In detail, changes can take place

as follows:

• New concepts need to be added to the ontology.

• Outdated concepts need to be removed from the ontology.

• The common ontology (in integration) is required to change (add/delete /up-

date) with the changes brought by new information resources.

• Better ways of organising information are available.

114

CHAPTER 7. AGENT-BASED ONTOLOGY REFINEMENT 115

In a nutshell, ontology evolves with changes in the environment. Hence, ontol-

ogy evolution can be defined as the timely adaptation of an ontology and consistent

propagation of changes to the dependent artefacts. The complexity of ontology evo-

lution increases as the number and the size of ontologies grows, so an insight into

potential solutions in ontology refinement is required (herein, ontology refinement

is used to provide mechanisms along with NAs, which are responsible for agent ne-

gotiations in the environment). We will not distinguish between agents and process

when agents commit to processes in this chapter.

To this end, this chapter is designed to tackle ontology change from a MAS

perspective. It is an extensive chapter with a focus on individual ontology in

contrast to previous chapters (e.g. Chapters 4, 5 and 6). In this chapter, we

first identify problems in ontology refinement in Section 7.1 followed by specific

related work in Section 7.2. Based on the introductions to the negotiation model

in Section 7.3, the process algebra is outlined in Section 7.4 followed by the utility

function in Section 7.5. Then the scope of ontology refinement is presented in

Section 7.6. After that, the refinement process and refinement mechanisms are

thoroughly exploited in Section 7.7 and Section 7.8, respectively. A case (based on

a VO) is presented in Section 7.9 to demonstrate how agents reach an agreement by

means of negotiation in terms of process algebra to describe information exchange

between agents. Discussion is then presented in Section7.10. Finally, we summarise

this chapter.

7.1 Problems in Ontology Refinement

A changeable environment enforces underlying ontologies to evolve over time. For

this reason, ontology refinement needs to look in depth of the requirements of

dynamic changes in the environment and rapid development of the Web. The

research in ontology evolution is in its very early stages [110]. Undoubtedly, there

are some critical issues that ontology evolution research needs to address before

the proliferation of ontologies is made possible in the field such as supporting

semantics-based search, interoperability support and Semantic Web applications.

These issues are as follows:

CHAPTER 7. AGENT-BASED ONTOLOGY REFINEMENT 116

• Addressing requirements of environmental (to host ontologies) change;

• Reflecting environmental change and guiding corresponding ontology refine-

ment accordingly; and

• Developing an ontology refinement architecture.

The very viable and rapid growth of the Web has made ontology change even

more prominent than ever before. The timely addressing of ontology refinement

and the provision of a conformance view for agents involved in a certain scenario

are thus seen as the foundation for further operations (as shown in Figure 1.1,

ontology change may affect ontology mapping and integration). Therefore, a much

more detailed analysis of ontology evolution and supporting architecture becomes a

higher priority on the agenda of research into ontology evolution. In this chapter, we

attempt to provide potential solutions to some of the above mentioned challenges.

Although procedure of reflecting ontology changes and taking appropriate ac-

tions by agents in a MAS is an essential requirement for successful application

of ontologies (taking ontology evolution into account), methodologies and tools

to support this complex task are largely missing. Among available techniques,

as discussed in previous chapters (Chapters 2, 3, 4, 5 and 6), agent technique is

identified as a suitable way of coping with ontology change in a dynamic and hetero-

geneous environment. Agent interaction, a potential solution for reflecting dynamic

changes in an environment, is seen to be promising in targetting problems such as

what information is known by agents in a MAS and how interactions can affect

agents’ succeeding actions. More importantly, interactions facilitate understanding

between agents (semantically) through provided ontologies.

Given multiple ontologies, finding a conformance view for all participating

agents seems impossible in advance as far as heterogeneity, distribution, autonomy

and evolution are concerned. The run-time interaction is needed in this regard.

In other words, by agents taking part in the ontology management at run-time,

we can expect that the agents will be able to make decisions on how ontologies

evolve by themselves rather than by specified rules in advance, because few a priori

defined rules will apply given that changes are unpredictable.

CHAPTER 7. AGENT-BASED ONTOLOGY REFINEMENT 117

Our contribution lies in that we propose that dynamic semantic understanding

in a business scenario be supported by means of interactions between self-interested

but rational agents. To comply with the requirement of run-time setting up associ-

ation for understanding a particular issue, our approach is summarised as follows:

(1) to describe and analyse interactions between agents but with a focus on on-

tology refinement on the basis of process algebra; (2) to discuss and develop a

decision making strategy on the basis of negotiation between agents in the event

of collaboration and competition both existing.

It is worth noting that we attempt to provide a flexible solution by modelling

agents’ interactive and negotiated activities in a collaborative environment. In say-

ing so, our assumption is that ontologies of different organisations are available. In

addition, this is different from “ontological commitment” which focuses on the sit-

uation of an agent committed to ontology when its actions are consistent with the

definitions of the ontology. This is when agents agree to a shared understanding for

a set time by putting aside the meanings for a specific time. To our understanding,

the ontological commitment is entirely different from the attempts of managing

individual ontologies by considering reflections from others. The reason for this is

that “ontological commitment” is mainly focused on the agreements for using the

shared vocabulary in a coherent and consistent manner, whereas our work investi-

gates ontology management on demand, which is a further step. Our approach is

not only considering ontological commitment but also attempting to provide a set

of strategies and corresponding mechanisms to cope with the evolution of ontology

over time.

7.2 Specific Related Work

Ontologies are becoming an integral part of many industrial and academic ap-

plications in the field such as supporting semantics-based search, and Semantic

Web applications. As ontology development becomes a more ubiquitous and col-

laborative process, ontology evolution is becoming an important area of ontology

research.

CHAPTER 7. AGENT-BASED ONTOLOGY REFINEMENT 118

Although ontology evolution is essential in ontology management and even on-

tology engineering, there are no commonly accepted methodologies or guidelines for

ontology evolution so far. Thus there are very few approaches to its investigating.

In [89] the author presents the guiding principles for building consistent and

principled ontologies in order to facilitate their creation, their usage and mainte-

nance in widely distributed environments.

The approach to ontology evolution given in [132] is very interesting. In this

work an ontology is used to specify the semantics of possible changes of a knowledge

base. It presents a six-phase evolution model to check the ontology after changes

have been made with the possibility of reversing these changes. Noy and Klein [110]

discuss an ontology evolution system by extracting the operations from two versions

of one ontology. They developed a framework [64] for managing ontology evolution

by extracting the operations from one ontology version and transferring them to

another. Similar to [132], an ontology for specifying change operations is presented.

A recent project, the KAON (http://kaon.semanticweb.org/) [88], is more flexible,

by enabling the user to control and customise the manner of resolving change.

However, this requires the possible means of resolving change being specified in

advance. One possible way is to enable the system to calculate on its own, all ways

that satisfy the users’ needs.

Ontology evolution can be treated as a part of the ontology versioning mecha-

nism that is analysed in [63]. Klein and Fensel provide an overview of causes and

consequences of the changes in ontology. However, the most prominent shortage is

the lack of a detailed analysis of the effect of specific changes on the interpretation

of data.

Tamma et al. [135] present an extended ontology knowledge model to describe

what is known by agents in a MAS. However, the model is not used for supporting

ontology evolution.

Other research communities have also influenced the research into ontology

evolution which benefits from many years of research of database and knowledge-

based system evolution [93].

In contrast to previous work that addresses ontology evolution in one form or

another, we go one step further by allowing agents to take part in the evolution

CHAPTER 7. AGENT-BASED ONTOLOGY REFINEMENT 119

process and reflect ontology changes in the environment. The application of an

agent-based approach in ontology refinement is two-fold. On the one hand, it fills

the various gaps in understandings of a specific issue by providing an appropriate

approach to catch differences whenever they arise. On the other hand, reflections

from agents have a great impact on the agent which has identified a discrepancy

in understanding on the basis of its ontology. This in turn activates the agent to

perform some managing tasks to its ontology repository. With widespread use of

ontologies, we believe this approach together with ontology mapping and integra-

tion discussed in Chapters 4 and 5, is applicable in the areas such as e-marketplaces,

virtual organisations and ontology-based applications where interaction plays a vi-

tal role in overcoming the problems that evolution has been facing for a long time.

7.3 Negotiation Model

Negotiation in MAS includes a negotiation set, a protocol, a collection of strate-

gies, and rules [150]. Here, negotiation aims to eliminate conflicts/inconsistency in

order to reach agreement about specific negotiation issues. Figure 7.1 is a graphic

demonstration. It also shows that agents approach the goal gradually after several

rounds of negotiation. Obviously, efficient individual negotiation strategies in the

correct direction of achieving the goal are at the heart of this stage. Normally a

strategy is private, i.e., each agent has its own strategy profile which is invisible to

other agents. In our term negotiation, an open cry setting is applied to reach the

agreement if conflicts in understanding each other occur. The negotiation strategy

specifies what to do next. The results of negotiation are applied to refine ontologies.

conflicts

consistency
f e e d b a c k

 - d
 r i v

 e n

n e g o t i a
 t i o n

Figure 7.1: Feedback-driven negotiation

CHAPTER 7. AGENT-BASED ONTOLOGY REFINEMENT 120

The negotiation strategy used is the strategic-negotiation model based on Ru-

binstein’s model of alternative offers [125]. Please refer to [65] for a general view of

negotiation of self-interested agents in a MAS. In the strategic-negotiation model,

a set of agents is defined as AG = {Ag1, Ag2, . . .}. It is assumed that the agents

can take actions defined as Ac = {α1, α2, . . .}, which are available from agents’

action repertoire in a time sequence set T = {0, 1, 2, . . .}, that is known to the

agents. A sequence set is defined as S = {s1, s2, . . .}, corresponding to the time

sequence. ∀t ∈ T of a negotiation period, if negotiation is still going on without

any agreement being reached, the agent, with its turn to make an offer at time

t, will suggest a possible solution to other agents which may choose one of the

following three answers. Each of them may either accept an offer by choosing Yes,

reject an offer by choosing No, or opt out of a negotiation by choosing Opt. If

an offer is accepted by all agents, negotiation is terminated and then followed by

implementation. Let fo = (Gindex, t) be the released offer that an agent makes at

time period t, where Gindex annotates a subgraph of a particular taxonomy ontol-

ogy. Generally speaking, in order to reach an agreement in ontology management,

simply choosing either Yes, No, or Opt is insufficient. For the purpose of providing

more information in each negotiation round, the spectrum of the feedback state is

extended to include the following activities:

• state 1: No.

This indicates that the agent knows nothing about the offering question.

• state 2: Yes.

Implicitly, two things may happen. The agent may choose either one from: (1)

I know something about it (a certain degree); and (2) I know. If it chooses the

second one, it is one hundred percent in agreement with a specific negotiation

issue suggested by the agent who is currently making an offer.

• state 3: Yess (Yes to some extend).

This provides the feedback with an approximate percentage to describe the

agent’s opinion.

• state 4: Opt (Opt out).

If at least one of the agents opts out of the negotiation, then the negotiation

CHAPTER 7. AGENT-BASED ONTOLOGY REFINEMENT 121

Legend:

: a NA (negotiation agent) is in
turn to make an offer

: NAs provide corresponding
answers to the proposed offer

a.P P’ P” ...

a.Q Q’ Q” ...

P ’ | Q ” Q
 |

 P ’

Figure 7.2: Negotiation process - strategy determined by interactions and agent’s
status

terminates.

By adopting process algebra for the description of interaction between agents,

we intend to reflect agents’ responses by receiving messages sent by an agent in the

previous or current round of negotiation. This will decide which kind of strategy

the agent will have when its turn comes. In other words, the strategy indicates to

the agent what to offer at t + 1. The process is shown in Figure 7.2, where each

agent has its own strategy profile decided by its individual global view at a certain

period. On the left side of Figure 7.2, the interaction between agents is represented

by process algebra as deduction rules. For simplicity, only two agents/processes

(in a MAS we assume that the agent conducts the process, so we use both of them

interchangeably) are shown. Generally speaking, interactions between agents can

be depicted by parallel composition process P |Q with P,Q ∈ P, P is a process

set. Section 7.4 will provide more details regarding the process description. Any

reflection from the previous or current round will affect an agent’s next action. The

negotiation process is shown on the right side of Figure 7.2.

The process is thus described as a restricted token passing cycle with each

agent making offers in turn, but other rational agents provide feedback (posi-

tive/negative) as much as possible. According to the above discussion, the po-

tential solution to a corresponding offer is defined as: fs = (λ, fo), where λ means

the current agent’s agreement upon a specific concept in the form of a percentage.

We are interested in reflections between agents at a certain time point t. We will

discuss agent interaction and its effects by means of process algebra in much more

detail in the following sections.

CHAPTER 7. AGENT-BASED ONTOLOGY REFINEMENT 122

7.4 Process Algebra

It is understood that a MAS is a collection of autonomous agents that work together

to solve problems that are beyond the capabilities of individual agents. That agents

in a MAS may not share common goals requires coordination of their activities and

cooperation with others at run-time rather than hard-coded strategies at design-

time. Bearing this in mind, we will investigate interaction protocols using process

algebra in the following sections.

7.4.1 Process Algebra for Information Exchange

An agent can perceive any change of environment [150], that is, it is not deaf-

and-dumb during the operation. For formally representing the interaction process,

we consider a mathematical formalism based on π-calculus [96], a type of process

algebra with the notation of names and processes specified for distributed and

communication computations, that describes the communication behaviours of a

distributed system. The interaction is likely to be described by means of informa-

tion exchange with certain restrictions between interested agents. Two main types

of actions are sending and receiving for a given communication point:

a(x).P : meaning the action of sending the value along the point

a(x).P : meaning the action of receiving the value along the point

Let a, b, . . ., be set interaction points that are considered as the channel between

the processes, while x, y, z, . . ., is set of name variables and information values that

can be instantiated as a specific object for transmission in process algebra. P , Q,

A, B, . . . are elements of process set P. Despite the fact that there is more than

one agent involved in a process, for the purposes of notation, we assume process P

represents agents involved. Agents are thus ranged over by P , Q, The syntax

of basic process algebra is defined as:

P ::= α.P prefix

P + Q Sum

P |Q Parallel

0 Nil

CHAPTER 7. AGENT-BASED ONTOLOGY REFINEMENT 123

(νx)P Restricting

where α is the prefix of sending and receiving ranging over a(x) and a(x). We have

five constructors which are detailed in the following.

• Prefix α.P defines a process with the information flow prefix and continuation.

• Sum P + Q represents an agent that can enact either P or Q.

• Parallel composition P |Q represents two independent components which can

act independently, and may have dependency by P acting to send information

flow, and another Q performing complementary action receiving information

flow along the same point.

• The empty agent 0 which cannot have any interaction with the environment.

• (νx)P behaves as P , but restricting its performance on information flow,

name y cannot be used for communication.

The purpose of describing reflections of individual agents in a negotiation setting

is achieved by utilising interesting properties of the process algebra, specifically,

deduction rules, in governing negotiation processes at run-time. Just as in tradi-

tional process algebra [4], the deduction operator “→” over agents (processes) like

P → Q is used to define information exchange among the agents for a computation

step. For example, the following representation

(. . . + a(−→x)).P |(. . . + a(−→y)).Q → P |Q{−→x /−→y }

means that process (. . .+a(−→x)).P |(. . .+a(−→y)).Q is transformed into P |Q{−→x /−→y }

in which −→y is substituted for −→x after the communication occurs (−→x and −→y are of

equal length to the name vector). The reduction rules can be derived from process

commutative and associative properties based on the above deduction operator

definition (e.g. deduction relation). In this respect, information exchanges between

agents can be modeled by process algebra to highlight an agent’s prompt reflection

and the effects caused accordingly, and how it affects an agent’s next action. By

saying so, we are attempting to describe agents’ interactions (process interaction)

by using process algebra.

CHAPTER 7. AGENT-BASED ONTOLOGY REFINEMENT 124

7.4.2 Agent Process Interaction

Describing and fulfilling interactions among agents involved in a dynamic envi-

ronment is inspired by using process algebra. Process algebra gets its richness

from mathematics. Here we are interested in the use of process algebra to depict

interactions among agents in a particular negotiation setting.

Definition 1: An interaction process is an enactment process, denoted as PI ,

PI ∈ PI , PI is a interaction process set. It defines at least two independent

processes that interact via a channel for a name to be sent and received on the

channel.

Using the π-calculus notation, we may express the interaction process PI =

a(x).P |a(y).Q, where {a, a} or {b, b} is a pair of dual ports that are considered

as the channel between the processes, x and y are the name variables that can be

instantiated as a specified object for transmission, A = a(x).P and B=a(y).Q are

two processes. The interaction process is a specified process where the properties

of the process algebra are retained.

More complicated interaction processes can be constructed via the channels and

processes involving multiple processes. The following representation is an example

(m ∈N).

P ′
I = a(x1).P |a(x2).Q| . . . |a(xm).W

In this case, there is one sender but with multiple recipients. In contrast, there is

a case with one recipient but multiple senders. It is shown below (n ∈N).

P ′′
I = a(x1, x2, . . . , xn).P |a(y1).Q|a(y2).R| . . . |a(yn).W

. To this end, the interaction processes, such as the one below

P ′′′
I = a(x1).P |a(y1).b(x2).R|b(y2).S

can be split into two interaction processes with Q′
I = a(x1).P |a(y1).Q and Q′′

I =

b(x2).R|b(y2).S.

We do not intend to capture information such as who is the sender and who

is the recipient. Instead, the interaction between two process is at a high level of

abstraction that indicates what the content of the interaction is. It enables more

flexibility in configuring implementation at run-time.

CHAPTER 7. AGENT-BASED ONTOLOGY REFINEMENT 125

Now we consider the transformation of two interaction processes. In process

algebra, the reduction rule determines the transformation between two processes.

However, the reduction rule cannot be deployed directly for the interaction pro-

cesses because of the inherent logic of the interaction processes. The transformation

of the interaction processes does not follow the logic in processes. For instance,

a(x).P |a(y).Q → P |Q{x/y} obeys the logic in processes, but the above two inter-

action processes a(x1).P |a(y1).Q and b(x2).R|b(y2).S have no logic between them

because they can be transformed into each other at an unpredicted time. The

logical order determines the transformation of the processes. We define “stepping”

to represent the logical order of the transformation of interaction processes.

Definition 2: A stepping of interaction processes, denoted as ց, is responsible

for transforming interaction process PI into QI in the form of PI ց QI , where PI ,

QI ∈ PI .

The stepping does not explicitly state the relationship of the two interaction

processes, rather the logical order of the transformation. The information is hidden

for the purpose of abstraction. For example, with PI = a(x1).P |a(y1).Q and QI =

b(x2).R|b(y2).S, after taking a computation step (assuming that they have the same

channel), the former one comes to the status: a(x1).P |a(y1).Q → P |Q{x1/y1}.

According to the stepping definition, the next interaction process is QI after PI .

It implies that P ⇒ a(x2).R and Q{x1/y1} ⇒ a(y2).S. Eventually Q{x1/y1}

will become a(y2).S and P transforms into a(x2).R. In fact, the transformation

occurs behind the interfaces. It depends on an individual participant’s process

implementation.

Next, we introduce an interaction process series. this is the abstracted notation

for agent negotiation description.

Definition 3: An interaction process series (IPS for short), takes the form IPS :

PI ց QI . . . ց WI , where PI , QI and WI ∈ PI .

Note that a series of process interactions starts from an interaction process

originating a process task, and ends with an interaction process whenever the task

is completed.

However, the algebra based interaction processes cannot be directly applied

to describe negotiation setting without involving process commitment. Next, we

CHAPTER 7. AGENT-BASED ONTOLOGY REFINEMENT 126

discuss some basic concepts of process commitment. We assume that the poten-

tial agents, apart from their own processes, have an interaction process ready for

interaction for a certain circumstance.

Definition 4: A process commitment is a process relation ≻ between process

P and commitment ω.A, such that P is committed to ω.A, denoted as P ≻ ω.A,

where ω is the action including the channel and the process that process P will

perform and A is the continuation.

Let us recall the interaction process discussed in the above, the interaction

process is defined as a(x).P |a(y).Q. If P1 ≻ a(x).P and P2 ≻ a(y).Q, we get

P1|P2 ≻ a(x).P |a(y).Q. Obviously the commitment is made on the processes as

well as the action on ports and objects by both parties to the interaction. It is a suc-

cessful interaction only if both parties agree on the contents of the communication,

otherwise either P1 or P2 might have additional processes within the continuation

P or Q to modify the contents of name x or y. Moreover, in a negotiation setting,

it is required that the participating agents adhere to a set of commitments C for

process interaction.

Definition 5: Agent commitment is the relation ≻ between the agent’s interfaces

Pi and a set of commitments {ωi.Ai}∈ C (i ∈N), such that the agent will perform

commitments to enable interaction processes. {ωi.Ai}∈ C (i ∈N) is said to have

a logical dependent commitment if {ωi.Ai} ({ωi.Ai}∈ C) can be transformed to

another in a logical order for given finite computation steps, namely {ωi.Ai}→

. . . →{ωj.Aj} (i 6= j), otherwise, they are independent.

7.4.3 Interaction Process Evolution

The interaction processes affect not only individual processes belonging to different

participating agents but internal interaction processes. In addition to the agent

process interaction and the process commitment discussed in Section 7.4.2, we

investigate how the interaction processes run logically from one interaction process

to another.

Suppose that we have a set of required interaction processes to complete the

process of an initial offer (by one of agents), denoted as PIj ∈ PI (j ∈N). Prior to

CHAPTER 7. AGENT-BASED ONTOLOGY REFINEMENT 127

completing the interactions, the interaction process series is given by

IPS : PI1 ց PI2 ց . . . ց PIj

By interaction process commitments of agents, each interaction process in the series

is defined as: PIj = ω.Aj|ρ.Bj, where ω and ρ are the communication actions

including the channels and processes, and Aj and Bj are two processes performed

by individual agents. The stepping of the interaction processes gives an interaction

process series in the form of

IPS : ω.A1|ρ.B1 ց ω.A2|ρ.B2 ց . . . ց ω.Aj|ρ.Bj

Because PIj ∈ PI and PIj = ω.Aj|ρ.Bj, let ω.Aj|ρ.Bj → Aj|Bj{ω/ρ}, if Aj ⇒

ω.Aj+1 and Bj{ω/ρ} ⇒ ρ.Bj+1, then a new interaction process ω.Aj+1|ρ.Bj+1 is

derived.

Proposition: For sequential interaction process PI , there must exist two sets

of independent processes such that the involved process has the same order as

the interaction process. Furthermore, the evolving operators define the additional

processes between interface processes that transform from one interface process to

another.

Proof: Suppose that interaction process PI1, PI2, . . . , PIn ∈ PI , ISP : PI1 ց

. . . PIn, (n ∈ N). By definition of the interaction process, each interaction process

PIj = ω.Aj|ρ.Bj (j ∈N) directs the process stepping ω.A1|ρ.B1 ց ω.A2|ρ.B2 ց

. . . ց ω.Aj|ρ.Bj, where ω.Aj and ρ.Bj are the communication processes indepen-

dently performed by different agents.

Now ω.Aj|ρ.Bj → Aj|Bj{ω/ρ}, if ω.Aj|ρ.Bj ց ω.Aj+1|ρ.Bj+1, the independent

property of the communication processes gives ω.Aj → ω.Aj+1 and Bj{ω/ρ} →

ρ.Bj+1. Then it refines Bj{ω/ρ} such that Bj{ω/ρ} → . . . → ρ.Bj+1, an evolving

consequence leads to ρ.Bj+1. Then PIj → PIj+1 = ω.Aj|ρ.Bj → Aj|Bj{ω/ρ} ⇒

ω.Aj → ω.Aj+1 and ρ.Bj → ρ.Bj+1.

Based on the analysis, it is concluded that for a given logically ordered inter-

action process series among the participating agents, there are internal processes

of each agent such that if the participating agent commits to the interaction pro-

cess series, then in addition to incorporating the required processes, the internal

CHAPTER 7. AGENT-BASED ONTOLOGY REFINEMENT 128

process can be constructed in such a way that its evolution could follow the step-

ping of interaction processes for communication. It it believed that as long as the

agent commits to the interaction process, the internal process can be constructed

or re-constructed to match the interaction process series.

In addition to the interaction model based on process algebra, how to solve

conflicts or misunderstandings in MAS is another issue that needs to be addressed.

Before we start to discuss this work, it is worth defining utility functions to tell an

agent how “good” the current result/state is.

7.5 Agent Utility Function

In terms of the result/state, as we assume that an agent is proactive, it should

obviously act in the direction of maximising its welfare at each stage of a process,

by considering environment changes overtly. In this approach, we adopt a utility

function defined in [150] as: u : Ω → R, where Ω = {υ1, υ2, . . .} of states that

agents have preferences over, R is the set of real numbers. For two elements υ

and υ′, wher υ, υ′ ∈ Ω, if ui(υ) > ui(υ
′), then we say υ is preferred by agent i at

least as much as υ′. Every agent is willing to adopt a good strategy to maximise

its expected utility but not one has the motivation to deviate and use another

strategy because strategies used by agents are in Nash equilibrium [103]. Clearly,

the optimal agent action Agopt which leads to the best performance under certain

circumstances is defined as: Agopt = arg maxAg∈AG

∑
υ∈Ω u(υ) ([150], p. 39), where

AG is the set of all agents.

7.6 Scope of Ontology Refinement - Incorporat-

ing Ontology Refinement in Ontology Man-

agement

Ontologies are subject to evolution over time. There must be a dedicated process

to look after ontology evolution to save us from overlooking it. In our framework

CHAPTER 7. AGENT-BASED ONTOLOGY REFINEMENT 129

(Section 3.3), a refinement agent (RA) is designed to be responsible for tack-

ling evolution during run-time. Incorporating ontology refinement into ontology

mapping and integration to provide a holistic view of ontology management makes

our approach go beyond existing work in this field. We attempt to catch changes

of involved agents and reflect their changes in ontology mapping and integration

and the next actions of OAs, which act on behalf of their ontologies in the design.

Properly bound ontology refinement with ontology mapping and integration makes

our approach unique in that it can directly obtain changes and seamlessly use them

to take succeeding actions (Figure 7.3). From previous discussions (Chapter 5), it

is clear that ontologies, regardless of existing ones or newly generated ones, can be

used/reused in the design. It is envisaged that our design is potentially adequate

to cope with ontology management requirements in a dynamic and heterogeneous

environment.

RDF

OWL

Frame-
based

mapping.txt

. . .

integrated

IA UA

OA

OA

OA

OA

NA

NA

NA

NA

.

legend: UA- user agent IA- interface agent InA- integration agent
 MA- mapping agent RA- refinement agent OA- ontology agent
 NA- negotiation agent

RA
(refinement module)

MA
(mapping module)

InA
(integration module)

Figure 7.3: Ontology refinement

It is worth noting that we do not intend to expand our work to include ontology

change recursively. In other words, we focus on the stage of how an agent refines

its own ontology in adaptation to the environment (e.g. ontology) change rather

CHAPTER 7. AGENT-BASED ONTOLOGY REFINEMENT 130

than tracing the impact of change propagation (to ontology-based application).

7.7 Refinement Process

In this thesis, the refinement module starts when the RA is enacted. In contrast to

the mapping process (Section 4.4) and the integration process (Section 5.4), which

take place whenever they are requested, the refinement process runs in the back-

ground to provide OAs with ontology modification (inserting/deleting/updating)

in a timely fashion. Briefly speaking, the RA monitors the NAs negotiation pro-

cesses via individual OAs. Agreements reached by NAs during negotiation are fed

back to corresponding OAs, which take appropriate actions to modify their ontolo-

gies. We assume that OAs are able to present integral and consistent ontologies

at a certain point in time whenever they are asked (e.g. by MA and InA). The

refinement process is outlined as follows:

(1) NAs get to start when the RA starts up;

(2) NAs start negotiation according to the strategic-negotiation model (Sec-

tion 7.3);

(3) OAs modify their acting ontologies based on negotiation results respectively.

Figure 7.4 displays interactions among agents involved in the refinement process.

The refinement process influences existing ontologies and OAs as well. After NAs

reach agreements or when the negotiation process is terminated, OAs then modify

corresponding ontologies. As ontologies are subject to change over time, the CA

is kept running to guarantee the above process presents consistent ontologies for

further ontology operations.

7.8 Refinement Mechanisms

The refinement module is responsible for ontology refinement. The RA is in charge

of refining ontologies whenever possible by means of the negotiation process. The

negotiation process includes an agent presenting an initial offer, together with other

CHAPTER 7. AGENT-BASED ONTOLOGY REFINEMENT 131

RA

request start_neg

modify
ontology

NA
NA i NA j

OA
OA i OA j

modify
ontology

negotiation
process

request start_neg

inform finish_neg

request
modification

request
modification

Figure 7.4: Interactions from RA’s view

agents providing potential solutions in terms of the initial offer. After that, the

same agent checks potential solutions from others to make a decision on its next

action (e.g. exit the process or keep track of refinement for the next time). Three

relevant functions are presented to describe the negotiation module. They are de-

scribed in a sequence within each table: (1) defining data structures and variables

used; (2) defining some functions; and (3) describing corresponding process algo-

rithms in pseudocode. The pseudocode of an agent’s behaviour which is not in turn

to give an initial offer, is presented first. The pseudocode of an agent’s behaviour

which is in turn to give an initial offer is shown next. The pesudocode to describe

the negotiation process is then presented followed by the ontology modification pe-

sudocode. Based on the above processes, finally the pesudocode of the refinement

process is given.

Pseudocode of agent behaviour without initial offer

/*assume four potential solutions from an agent which is not in turn to give an

initial offer: “Yes”, “No”, “Opt” and “Yess” (Section 7.3);

m: the number of available ontologies, also the number of OAs;

j: a randomly generated integer number between 1 and m standing for one of the

OAs;

solution: a variable for one of the above four solutions;

λ: a variable to estimate percentage (accept to some extent);

evaluate: a function to evaluate the initial offer;

CHAPTER 7. AGENT-BASED ONTOLOGY REFINEMENT 132

send1: a function to send back λ percentage to indicate percentages upon agree-

ment;

send2: a function to send back solution.

*/

Function solution offer {

1. for (i = 1; i < m; i + +) {

2. if (i! = j) {

3. solution=evaluate initial offer;

4. switch (solution) {

5. case “Yess”: send1; break;

6. default: send2;

7. } // end switch

8. } // end if

9. } // end for

10. }// end function

Pseudocode of agent behaviour with initial offer

/*assume four possible solutions: the same as definitions in the Pseudocode of agent

behaviour without initial offer ;

m: the number of available ontologies, also the number of OAs;

solution: a variable for one of the above four solutions;

threshold1: a percentage threshold to filter unexpected items;

threshold2: a threshold that the ontology refinement may need;

change list: a list keeping track of changes;

kj,y, kj,n, kj,o: the number of occurrences of potential solutions “Yes”, “No” and

“Opt”, respectively;

λ: a variable of estimated percentage (accepted to some extent);

decision: decisions that an agent makes according to its knowledge and current

change of the environment;

decide next: a function to decide what the next action (for a particular agent) is;

modify: a function to modify the change list with the potential decision made in

decide next.

CHAPTER 7. AGENT-BASED ONTOLOGY REFINEMENT 133

*/

Function check initial offer {

1. do {

2. switch (solution) {

3. case “Yes”: kj,y + +; break;

4. case “No”: kj,n + +; break;

5. case “opt”: kj,o + +; break;

6. default: if (λ >= threshold1) kj,y + +;

7. else kj,n + +;

8. }// end switch

9. if (kj,o == m − 1) return kj,o;

10. if (kj,n >= threshold2) {

11. decide next;

12. modify;

13. }// end if

14. if (kj,y == m − 1) return kj,y;

15. } while (existing potential solutions from agents involved in the negotiation

setting); // end do

16. }// end function

Pseudocode of negotiation process

/* m: the number of available ontologies, also the number of OAs;

j: a randomly generated integer number between 1 and m standing for one of OAs;

generate nextInt: to generate a random integer number;

initial offer: an agent (decided by a randomly generated integer number) to

issue an initial offer;

solution offer: function solution offer;

check initial offer: function check initial offer.

*/

Function negotiation {

1. do {

2. j =generate nextInt(m)+1;

CHAPTER 7. AGENT-BASED ONTOLOGY REFINEMENT 134

3. initial offer(j);

4. solution offer(j);

5. check initial offer(j);

6. } while (negotiation time is not out); // end do

7. } // end function

Pseudocode of ontology modification

/* change list: a list keeping track of changes (as defined in the Pseudocode of

agent behaviour with initial offer);

top: an element from a list;

insert: a function of insert operation on a specified ontology hierarchical struc-

ture;

delete: a function of delete operation on a specified ontology hierarchical struc-

ture;

update: a function of update operation on a specified ontology hierarchical struc-

ture;

get head: get the head element of a list;

*/

Function ontology-modification {

1. do {

2. top=get head(change list);

3. switch {

4. case “insert”: insert; break;

5. case “delete”: delete; break;

6. default: update;

7. } // end switch

8. } while (top!=Null); // end do

9. } // end function

Pseudocode of refinement algorithm

CHAPTER 7. AGENT-BASED ONTOLOGY REFINEMENT 135

/* change list: a list keeping track of changes (as defined in the Pseudocode of

agent behaviour with initial offer);

initialise: initialise the process;

negotiation: function negotiation;

ontology modification: OAs modify their acting ontologies according to negoti-

ation results, referring to change list for any changes.

*/

Function refinement {

1. initialise;

2. negotiation;

3. ontology modification;

4. } // end function

7.9 Example - Reaching Agreement between Agents

We consider an example of beer order where the domain knowledge of the brewage

industry is involved. We have discussed the basic business conducting phases

in [72]. Generally speaking, four phases, namely order, fulfillment, payment,

and delivery are involved. In the real world, every stage might consist of many

sub processes that are more complex and beyond the scope of this chapter. In or-

der to highlight our concentration, we focus on these four stages by observing the

accomplishment of a task as a process. In saying this, we mean that each agent,

which conducts a process or is embedded in a process, performs its internal and

coherent processes with respect to business rules. Meanwhile, a MAS also presents

a business process from a holistic view. In order to exemplify the case, only differ-

ent entities are shown in Figure 7.5, with inter-organisational relations simplified

as dotted circles (actually it is a VO formed upon requested).

Considering these organisations work together to achieve a defined objective,

it is not unusual that they have different ontologies where beer type is concerned.

We assume that these four organisations (e.g. MAS) are supported respectively by

the four beer ontologies presented in Section 4.6. In addition to ontology mapping

CHAPTER 7. AGENT-BASED ONTOLOGY REFINEMENT 136

Shipment

third party
authorisation

Customer Brewery Retailer
Material
Supplier

2 3

4

1

Figure 7.5: Beer order in brewage industry domain

and integration, discussed in Chapters 4 and 5, we focus on an ontology evolution

to illustrate the key point of agent negotiation in reflecting ontology evolution.

The negotiation setting of order fulfillment where four process agents are in-

volved, consists of Retailer (R for short), Brewery (B for short), Supplier (Su for

short) and Shipment (Sh for short). We assume that a particular business scenario

would provide prerequisites for how the process is to be executed. In this example,

let us suppose that the business processes that agents must perform are as follows

(modified from the report at http://www.wfmc.org/standards/docs/IneropChallPublic.PDF):

Retailer = R(place order, invoice customer, pay invoice, approve payment,

print cheque, . . .)

Brewage = B(collect order, order parts, schedule production, check inventory, . . .)

Supplier = Su(collect order, prepare parts, deliver parts,

invoice manufacturer, . . .)

Shipment = Sh(collect order, book delivery, schedule van,

confirm delivery, . . .)

Accordingly, the negotiation setting is defined as follows (activities involved

are annotated by acronym, for example, co is used to notate collect order in the

manufacturing process.).

settingNeg = R(po, ic, pi, . . .)|B(co, op, sp, . . .)|Su(co, pp, dp, . . .)|Sh(co, bd, sv, . . .)

The processes for these four agents can be defined as (with the prefix such as po

and ap the same as defined in Section 7.4.1, and processes like R1 denoting internal

CHAPTER 7. AGENT-BASED ONTOLOGY REFINEMENT 137

processes):

R(po, ic, pi, ap, pc, . . .) = po(x1).R1 + ic(x2).R2 + pi(x3).R3 + ap(x4).R4 + pc(x5)R5 + . . .

B(co, op, ci, . . .) = co(y1).B1 + op(y2).B2 + sp(Y3)B3 + ci(y4)B4 + . . .

Su(co, pp, dp, im, . . .) = co(z1).Su1 + pp(z2)Su2 + dp(z3).Su3 + im(z4).Su4 + . . .

Sh(co, bd, sv, cd) = co(d1).Sh1 + bd(d2)Sh2 + sv(d3)Sh3 + cd(d4)Sh4 + . . .

where Ri, Bj, Suk and Shl are the processes with the prefix actions specified,

xj, yj, zj and dj are name variables, and i, j, k and l ∈ N.

In addition to the individual processes above, we take a close look at the interac-

tion processes for the purpose of the negotiation. In the following we demonstrate

the order related interaction processes of these four participating agents (with the

same channel between two interaction agents). They are defined as

place order(R 7→ B) = a1(x1).R1|a1(y1).B1

order part(B 7→ Su) = a2(y2).B2|a2(z1).Su1

schedule production(B 7→ Sh) = a3(y3).B3|a3(d1).Sh1

If we denote the above interaction processes (agents’ interfaces) as Pi (one

agent) and Qi (the agent which acts accordingly with the former agent) (i ∈ N),

we can see the commitments in order related processes (Figure 7.5) as follows:

P1 ≻ a1(x1).R1 place order Q1 ≻ a1(y1).B1

↓ ց ↓

P2 ≻ a2(y2).B2 order part Q2 ≻ a2(z1).Su1

↓ ց ↓

P3 ≻ a3(y3).B3 schedule production Q3 ≻ a3(u1).Sh1

With these in mind, now we discuss negotiation for the purpose of reaching

an agreement in terms of available ontologies. Suppose that the Beer Retailer

has been randomly chosen to provide an initial offer, and another three parties

are ready to provide potential solutions in terms of the initial offer. With four

beer type ontologies being available, the other three agents’ potential solutions are

identified as follows.

fsB,t1 = (λB, Gindexj
, t1)

fsSu,t2 = (λSu, Gindexk
, t2)

CHAPTER 7. AGENT-BASED ONTOLOGY REFINEMENT 138

fsSh,t3 = (λSh, Gindexl
, t3)

where j, k and l ∈ N, λB, λSu and λSh are the percentage of the agreement upon

particular concepts, respectively. Gindexj
, Gindexk

and Gindexl
denote the subgraphs

of the other three ontologies in the taxonomy respectively; t1, t2, and t3 are certain

time periods.

We suppose that if the topic of negotiation is about a particular concept, feed-

back about it would be available after the negotiation. The Beer Retailer thus

will refine its ontology if possible. The example shows two interesting aspects of

agent-based ontology refinement. One aspect is that the ontology refinement can

be modelled from the MAS point of view when distributed and dynamic issues are

considered. Another one is that communications between agents should be richer

and more powerful than KIF (knowledge interchange format) and ACL (agent

communication language) performatives if we look back to the interaction between

agents which is modelled by process algebra.

7.10 Discussion

In the above discussion (Section 7.9), we mentioned that the agent in turn keeps

track of agents’ feedback. That is to say, agents need to maintain linkages with

other agents in case other agents need to access the recorded information of the

previous round of negotiation. It seems that it is a heavy burden for agents to

have this kind of one-to-one linkage. Fortunately, the number of agents which are

involved in a business scenario and at the same time with a direct linkage with one

another is less than expected (it is not a fully connected graph). In this sense, the

computation complexity can be reduced.

On the other hand, agents engaged in negotiation are keen to choose “good”

strategies to maximise their utilities respectively because strategies used by agents

are in Nash equilibrium. However, scoring criteria vary from circumstance to cir-

cumstance. The negotiation algorithm is neither just simply Tit-For-Tat (against

its opponents on all rounds), nor just reciprocal (reciprocating whatever its op-

ponent did on the previous round). In order to prevent agents from opting (e.g.

opt out) or responding nothing (e.g. no), suggesting useful offers (from the point

CHAPTER 7. AGENT-BASED ONTOLOGY REFINEMENT 139

view of the agent which makes an initial offer) in our case is desirable. Some kind

of heuristic algorithm (scoring system) may need to be developed to direct the

negotiation to the defined objective for the reason that in negotiation, there is no

absolute notion of for and against.

7.11 Summary

In this chapter, our general focus has been on developing flexible mechanisms with

each agent having its negotiation strategy to deal with inconsistency or conflicts

in understanding meanings of certain concepts, and eventually to achieve the goal

of conformance to changes in an environment. We argue that agent interactions

at run-time are a suitable way to substantially support environment changes. This

mechanism also makes it possible for agents to adapt themselves to changes through

communications. As agent communications may take place concurrently, it is better

to represent them with process algebra. We have proposed that interaction in the

process algebra model symbolises information exchange between agents and the

effects it may cause. Each agent’s strategy profile is determined from the feedback

of the environment and its current local global view. The novelty of our work lies

in that we have highlighted the motivation for why ontology evolution is needed

and how it adapts in accordance with the ontology evolving cycle. In addition,

we have developed strategies to reflect the dynamic changes in this cycle. Finally,

the interaction in a MAS has been discussed thoroughly on the basis of process

algebra.

Chapter 8

Conclusions and Future Work

Agent technology is a promising point of departure for engineering complex soft-

ware systems. With industrial-strength, multi-agent system (MAS) software and

corresponding systematic methodology becoming mature, we can anticipate that

more and more application areas will benefit from applying agent technique in one

form or another.

Firstly, in this chapter, a summary of the thesis is presented in Section 8.1, fol-

lowed by key contributions in Section 8.2. After that, directions for future research

are addressed in Section 8.3.

8.1 Summary of Thesis

Based on the analyses conducted in this thesis, we come to the conclusion that

the proposed framework has the following characteristics that differentiate it from

others:

1. effectively interacting among agents (between ontology agents and compo-

nent agents, and ontology agents themselves) to realise ontology dynamics;

2. freely adding/deleting ontology component agents to/from the system;

3. highly isolating ontology related tasks such as traversing the ontology struc-

ture, gathering requested information of a particular ontology from external

agents’ views by using ontology agents;

140

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 141

4. easily accessing the ontology agents from other agents in the MAS.

The proposed framework attempts to provide a flexible and effective modelling

approach to tackle ontology mapping, integration and evolution over a variety of

ontologies. Tasks of ontology management discussed in the thesis are based on in-

teractions between participating ontology agents (OAs) which provide as much

information as possible to suggest better actions under certain circumstances. On-

tology mapping is one major task which aims to provide dynamic mapping by

enacting the mapping process. This is essential in achieving ontology interoper-

ability. Ontology integration was discussed after ontology mapping. Its main task

is to provide a dynamic view (e.g. an integrated ontology) of existing ontologies

at an abstract level on demand. For example, a virtual organisation (VO) coali-

tion is frequently required in that an individual may be unable to meet a certain

requirement because of limited resources and capabilities. Hence, each participat-

ing oraganisation will choose to contribute some complementary information to

the business process which consequently enhances overall capabilities to meet the

designed objective significantly. Meanwhile, each organisation will benefit from

engaging in such a coalition by maximising its potential welfare. It is argued that

an integrated ontology is more suitable than any other individual existing ones in

this regard. An integration process is responsible for this in our discussion. As

a particular ontology agent acts on behalf of each ontology to handle ontology

related tasks, integrated ontologies can be easily reused later on (to be imported

as an available ontology to engage in corresponding tasks in the prototype).

An ontology evolves over time. In the framework, ontology refinement is de-

signed to cope with ontology evolution in the presence of negotiation agents.

Alternating offering in the proposed negotiation model may reflect any change in an

ontology, thus helping the refinement process which deals with ontology evolution

to catch instant change whenever required.

8.2 Principal Contributions of This Thesis

This thesis makes two major contributions. The first contribution is a general-

purpose framework that provides a foundation and support to heterogeneous and

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 142

distributed ontology management. Previous works have turned out to be insuf-

ficient to cope with ontology management in a dynamic environment. Here, an

agent-based framework is introduced to provide the following key points:

• The framework offers the ability to exchange information via communication

channels.

• Each functionary agent can easily access other services available in the

system.

• The presence of the ontology agents in the framework allows system adap-

tivity possible by:

- providing ontology agents which are responsible for ontology relevant

tasks. By doing so, other agents only need to access each ontology

agent to obtain required information;

- providing the ability of generating an ontology agent to act on behalf

of a newly integrated ontology which makes it possible to reuse the

ontology in the system in practice.

• The framework is highly modular and easily extensible without expending

too much effort. For example, when a new ontology representation language

is available, we only need to add a new ontology agent to the system. The

same is true for agents which provide services to facilitate ontology manage-

ment as a whole.

The second major contribution of the thesis is a solution to the problem of how

to dynamically perform ontology management. The key innovations that we have

made in developing this solution are as follows:

• We have proposed mapping mechanisms (Chapter 4) to cope with ontology

mapping based on knowledge of the mapping agent. Two main semantic

relations are involved. They are semantic equivalent and inclusive. The

similarity thesaurus dictionary plays an important role in deciding semantic

equivalence. The effectiveness of the mapping process can be greatly im-

proved by increasing the number items in the synonym dictionary (through

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 143

adding new synonyms) over time. Ontology interoperability can be achieved

after mappings between pairs of ontologies are created. The mechanisms are

expected to be easily customised to any particular domain.

• We have brought the necessity of exploiting a global view of existing ontolo-

gies at an abstract level to the forefront of ontology applications. We have

then presented ontology integration mechanisms (Chapter 5) by applying

mapping results from the mapping process. The reuse idea yields an out-

come in which a new ontology agent is created on the fly to act on behalf

of the corresponding ontology. Ontology reuse is made possible in practice by

ontology agents being dedicated to taking care of ontology related work.

• We have developed a prototype (Chapter 6) to demonstrate the feasibility

of the framework. Verifications such as query and consistency checking are

conducted with the prototype.

• We have investigated a solution to the problem of handling ontology evolu-

tion over time. Key ideas underlying our approach rely on agent interactions

and the negotiation strategy. By each ontology providing a potential solution

alternatively, corresponding to the proposed offer, a broad variety of ontol-

ogy changes can be captured and reflected through the interactions. We have

exploited the refinement process (Chapter 7) to cope with changing ontolo-

gies. In order to facilitate negotiation execution, process algebra is applied to

describe the information exchange by means of the interaction process. The

result is significant because process algebra lays a solid theoretical foundation

regardless of what kind of semantic relations there really are between pairs

of ontologies.

8.3 Future Work

We have made significant inroads into understanding and developing solutions for

ontology management in a dynamic and heterogeneous environment. However,

substantial work remains to be done towards the goal of achieving comprehensive

semantic mapping and seamless integration in an environment where ontologies are

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 144

continuously evolving. In the following, several research directions are indicated

for future work.

1. We are aware of relations other than {hyponym(is-a), part-of} existing in

ontology description. In addition, the semantic match by considering ax-

ioms of an ontology is one of the toughest questions to be dealt with. To

our best understanding, no such work has yet been done sufficiently, even

though some researchers mention it and propose their solutions. With all

these observations in mind, we are investigating the theoretical background

of ontology mapping from an algebraic perspective by treating an ontology

as an abstraction in the sense that it can represent any relations with com-

plex structures (axioms). We hope that an algebraic abstraction will allow

us to deal with ontology mapping in the same way as familiar computational

metaphors.

2. We plan to extend the usage of process algebra to theoretically support agent

interactions at a high level of abstraction (in both ontology mapping and inte-

gration). We expect that this perspective will allow the proposed framework

to deal with ontology management in an abstract yet flexible way.

3. We plan to implement the rest of the functionalities presented in this thesis,

particularly those of extension. For example, adding ontology refinement to

the implemented prototype to enhance the effectiveness is underway. More-

over, functionary agents might be service providers on the Web. The prob-

lem of deciding which functionary agent is a suitable service provider will

also become crucial and we may need to augment the proposed framework to

include Web services protocols and languages as Web services proliferate and

the need for balance among these increases. An interesting direction to fol-

low will be the development of Web services related to ontology management

based on what we have done.

4. As services (catering for e-science) might be provided by Grid, another in-

teresting research direction to examine is how mechanisms developed for dis-

tributed environments can be transferred or tailored to solve new types of

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 145

problems in ontology management. Although Grid research is in its very

early stages, the significant advantage is evident. It is known that the Grid

middleware provides computational integration to enable information inte-

gration with the presence of ontologies.

Bibliography

[1] Arens, Y., Knoblock, A. C., and Shen, W. M., Query Reformulation for Dy-

namic Information Integration, Journal of Intelligent Information Systems,

Special Issue on Intelligent Information Integration, 6(2/3), pp. 99-130, 1996.

[2] Baader, F., and Sattler, U., An Overview of Tableau Algorithms for Descrip-

tion Logics, Studia Logica, Vol 69, pp. 5-40, 2001.

[3] Baader, F., and Sattler, U., Tableau Algorithms for Description Logics, In R.

Dyckhoff (Eds.), Proc. of the International Conference on Automated Rea-

soning with Tableaux and Related Methods (Tableaux 2000), St Andrews,

Scotland, UK, LNAI 1847, pp. 118, 2000.

[4] Baeten, J. C. M., and Weijland, W. P., Process Algebra, Cambridge Univer-

sity Press, ISBN 0521400430, 1990.

[5] Barwise, J., and Seligman, J., Information Flow: The Logic of Distributed

Systems, Cambridge Tracts in Theoretical Computer Science 44, Cambridge

University Press, 1997.

[6] Batini, C., Lenxerini, M., and Navathe, S., A Comparative Analysis of

Methodologies for Database Schema Integration, ACM Computing Surveys,

18(4), pp. 323-364, 1986.

[7] Bellifemine, F., Poggi, A., and Rimassa, G., Developing Multi Agent Sys-

tems with a FIPA-Compliant Agent Framework, Software - Practice And

Experience, 2001 N31, pp. 103-128, 2001.

146

BIBLIOGRAPHY 147

[8] Benetti I., Beneventano D., Bergamaschi S., and Guerra F., and Vincini

M., An Information Integration Framework for e-commerce, IEEE Intelligent

Systems, January/February 2002.

[9] Bergamaschi, S., Castano, S., and Vincini, M., Semantic Integration of

Semistructured and Structured Data Sources, Special Issue on Semantic In-

teroperability in Global Information, SIGMOD Record, 28(1), March 1999.

[10] Bergamaschi, S., Castano, S., Beneventano, D., and Vincini, M., Semantic

Integration of Heterogeneous Information Sources, Special Issue on Intelligent

Information Integration, Data & Knowledge Engineering, 36(3), pp. 215-249,

Elsevier, 2001.

[11] Berners-Lee, T., Hendler, J., and Lassila, O., The Semantic Web, Scientific

American, 284(5), pp.34-43, 2001(5).

[12] Boccara, N., Modelling Complex Systems, Graduate Texts in Contemporary

Physics, Springer: New York, NY, USA, 2004.

[13] Bouquet, P., Magnini, B., Serafini, L., and Zanobini, S., A SAT-based Algo-

rithm for Context Matching, Proc. of 4th International and Interdisciplinary

Conference on Modeling and Using Context (CONTEXT’2003), USA, June

2003.

[14] Byrne, J. A., Brandt, R., and Bort, O., The Virtual Corporation, Business

Week, Vol. 8, pp.36-40, February 1993.

[15] Calvanese, D., Giacomo, D. G., and Lenzerini, M., A Framework for Ontology

Integration, in: Isabel Cruz, Stefan Decker, Jérome Euzenat, and Deborah

McGuinness (Eds.), Proc. of the 1st Semantic Web Working Symposium at

the Emerging Semantic Web, pp. 201-214, 2002.

[16] Castano, S., de Antonellis, V., Fugini, MG, and Pernici, B., Conceptual

Schema Analysis: Techniques and Applications, ACM Trans on Database

System, 23(3), pp. 286-332, 1998.

BIBLIOGRAPHY 148

[17] Castano, S., and Antonellis, V., A Schema Analysis and Reconciliation Tool

Environment for Heterogeneous Databases, Proc. of 1999 International Sym-

posium on Database Engineering & Applications, IEEE Computer Society,

1999.

[18] Chandrasekaran, B., Johnson, T. R., and Benjamins, V. R., Ontologies:

What Are They? Why Do We Need Them?, IEEE Intelligent Systems and

Their Applications, Special Issue on Ontologies, 14(1), pp. 20-26. 1999.

[19] Chaudhri, V., Farquhar, A., Fikes, R., Karp, P., and Rice, J., OKBC: A Pro-

grammatic Foundation for Knowledge Base Interoperability, AAAI-9, 1998.

[20] Compatangelo, E., and Meisel, H., Intelligent Support to Knowledge Sharing

through the Articulation of Class Schemas, Proc. of the 6th International

Conference on Knowledge-Based Intelligent Information & Engineering Sys-

tems (KES’02), 2002.

[21] Doan, A., Domingos, P.,and Halevy, A. Y., Reconciling Schemas of Disparate

Data Sources: A Machine-Learning Approach, Proc. of the ACM-SIGMOD

Conference on Management of Data (SIGMOD), Aref WG (Eds.), Santa

Barbara, CA, 2001.

[22] Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., and Halevy, A.,

Learning to Match Ontologies on the Semantic Web, VLDB Journal, Special

Issue on the Semantic Web, 12(4), pp. 303-319, 2003.

[23] Doan, A., Madhaven, J., Domingos, P., and Halevy, A., Ontology Match-

ing: A Machine Learning Approach, Handbook on Ontologies in Information

systems, Springer-Verlag, pp. 397-416, 2004.

[24] Domingos, P., and Pazzani, M., Conditions for the Optimality of the Simple

Bayesian Classifier, Proc. of the 13th International Conference on Machine

Learning, Bari, Italy, pp. 105-112, July 1996.

[25] Duineveld, J. A., Stoter, R., Weiden, R. M., Kenepa, B., and Benjamins, R.

V., WonderTools? A Comparative Study of Ontological Engineering Tools,

BIBLIOGRAPHY 149

International Journal of Human-Computer Studies, 52(6), pp. 1111-1133,

June 2000.

[26] Durfee, E. H., and Lesser, V., Negotiating Task Decomposition and Alloca-

tion Using Partial Global Planning, Distributed Artificial Intelligence Volume

II, L. Gasser and M. Huhns (Eds.), Pitman Publishing and Morgan Kauf-

mann, pp. 229-244, 1989.

[27] Finin, T., McKay, D., Fritzson, R., and McEntire, R., KQML: An Informa-

tion and Knowledge Exchange Protocol, Knowledge Building and Knowledge

Sharing, Kazuhiro Fuchi and Toshio Yokoi (Eds.), Ohmsha and IOS Press,

1994.

[28] Foster, I., Jennings, N., and Kesselman, C., Brain Meets Brawn: Why Grid

and Agents Need Each Other, Proc. 3rd International Conference on Au-

tonomous Agents and Multi-Agent Systems(AAMAS’04), New York, USA,

pp. 8-15, 2004.

[29] Fowler, J., Nodine, M., Perry, B., and Bargmeyer, B., Agent Based Semantic

Interoperability in InfoSleuth, SIGMOD Record, 28(1), pp. 60–67, 1999.

[30] Goasdoué, F., A Knowledge Based Approach for Information Integration:

The PICSEL System, in: Nicolas Spyratos, K. Vidyasankar and Gottfried

Vossen (Eds.), Declarative Data Access on the Web, Dagstuhl-Seminar-

Report 251, p. 7, Dagstuhl Castle, Germany, September 1999.

[31] Goasdoué, F., Lattes, V., and Rousset, M -C., The Use of CARIN Language

and Algorithms for Information Integration: The PICSEL Project, Interna-

tional Journal of Cooperative Information Systems (IJCIS), World Scientific

Publishing Company, 9(4), pp. 383-401, 2000.

[32] Gal, A., Anaby-Tavor, A., Trombetta, A., and Montesi, D., A Framework for

Modeling and Evaluating Automatic Semantic Reconciliation, VLDB Jour-

nal, 14(1), pp. 50-67, 2005.

BIBLIOGRAPHY 150

[33] Gangemi, A., Pisanelli, M. D., and Steve, G., An Overview of the ONIONS

Project: Applying Ontologies to the Integration of Medical Terminologies,

Data & Knowledge Engineering, Vol 31, pp.183-220, 1999.

[34] Ganter, B., and Wille, R., Formal Concept Analysis: Mathematical founda-

tions, Springer, Berlin-Heidelberg, 1999.

[35] Genesereth, M., and Fikes, R., Knowledge Interchange Format (KIF). Draft

proposed American National Standard, NCITS T2/98-004, 1998.

[36] Gómez-Pérez, A., and Richard Benjamins, V., Applications of Ontologies and

Problem-Solving Methods, AI Magazine, 20(1), pp. 119-122, 1999.

[37] Gruber, T. R., Toward Principles for the Design of Ontologies Used for

Knowledge Sharing, KSL-93-04, Knowledge Systems Laboratory, Stanford

University, http://ksl-web.stanford.edu/, 1993.

[38] Gruber, T. R., A Translation Approach to Portable Ontology Specifications,

Knowledge Acquisition, 5(2), pp. 199-220, 1993.

[39] Guarino, N., and Giaretta, P., Ontologies and Knowledge Bases, towards a

Terminological Clarification, in: N. Mars (Eds.), Towards Very Large Knowl-

edge Bases, Amsterdam: IOS Press, pp. 25-32, 1995.

[40] Grüninger, M., Fox, S. M., Methodology for the Design and Evaluation of On-

tologies, Proc. of IJCAI’95 Workshop on Basic Ontological Issues in Knowl-

edge Sharing, Montreal, Canada, 1995.

[41] Grüninger, M., and Kopena, B. J., Semantic Integration, Position State-

ment, Proc. of the Workshop on Semantic Integration, the 2nd International

Semantic Web Conference, Sanibal Island, Florida, USA, October 2003.

[42] Haarslev, V., and Möller, R., Practical Reasoning in Racer with a Con-

crete Domain for Linear Inequations, in: I. Horrocks and S. Tessaris(Eds.),

Proc. of the International Workshop on Description Logics (DL-2002),

Toulouse,France, April 2002.

BIBLIOGRAPHY 151

[43] Haarslev, V., and Möller, R., RACER User’s Guide and Reference Manual:

Version 1.7.6, December 2002.

[44] Hendler, J., Agents and the Semantic Web, IEEE Intelligent Systems, 16(2),

March/April 2001.

[45] Horrocks, I., Sattler, U., and Tobies, S., Practical Reasoning for Expressive

Description Logics, Proc. of 6th International Conference on Logic for Pro-

gramming and Automated Reasoning(LPAR’99), LNAI, Springer-Verlag, pp.

161-180, 1999.

[46] Hovy, E., Combining and Standardising Large-scale, Practical Ontologies for

Machine Translation and Other Uses, Proc. of the 1st International Confer-

ence on Language Resources and Evaluation (LREC), pp. 535-542, 1998.

[47] Iglesias, C., Garijo, M., and Gonzales, J., A Survey of Agent-Oriented

Methodologies, in: A. Rao, J. Muller, and M. Singh (Eds.), Intelligent Agents

IV (ATAL’98), LNAI, Springer, pp. 317-330, 1999.

[48] Itoh, F., Ueda, T., and Ikeda, Y., Example-Based Frame Mapping Applied to

Information Agents for Distributed Information Sources, Systems and Com-

puters in Japan, 30(14), pp.1-11, 1999.

[49] Jennings, N., Sycara, K., and Wooldridge, M., A Roadmap of Agent Re-

search and Development, Autonomous Agents and Multi-Agent Systems, Vol.

1, pp.7-38, 1998.

[50] Jennings, N., Agent-Based Computing: Promise and Perils, Proc. of 16th

International Joint Conference on Artificial Intelligence, AAAI Press, pp.

1429-1436, 1999.

[51] Jennings, N., Agent-Oriented Software Engineering, Proc. of 12th Interna-

tional Conference on Industrial and Engineering Applications of Artificial

Intelligence, Cairo, Egypt, pp. 4-10, 1999.

[52] Jennings, N., On Agent-Based Software Engineering, Artificial Intelligence,

Vol 117, pp. 277-296, 2000.

BIBLIOGRAPHY 152

[53] Jennings, N., An Agent-based Approach for Building Complex Software Sys-

tems, Communication ACM, 44(4), pp. 35-41, 2000.

[54] Jennings, N., and Wooldridge, M., Agent-Oriented Software Engineering, in:

J. Bradshaw (Eds.), Handbook of Agent Technology, AAAI/MIT Press, 2001.

[55] Jennings, N., An Agent-Based Approach for Building Complex Software Sys-

tems, Communications of the ACM, 44(4), pp. 35-41, 2001.

[56] Jurisica, I., Mylopoulos, J., and Yu, E., Ontologies for Knowledge Man-

agement: An Information Systems Perspective, Knowledge and Information

Systems, 6(4), pp. 380-401, Springer-Verlag, July 2004.

[57] Kalfoglou, Y., and Schorlemmer, M., Information-Flow-based Ontology Map-

ping, Proc. of International Conference on Ontologies, Databases and Appli-

cations of Semantics, California, USA, October 2002.

[58] Kalfoglou, Y., and Schorlemmer, M., Ontology Mapping: The State of the

Art, Knowledge Engineering Review, 18(1), pp. 1-31, 2003.

[59] Kalfoglou, Y., and Schorlemmer, M., IF-Map: An Ontology-mapping Method

Based on Information-flow Theory, Journal of Data Semantics, 1(1), pp. 98-

127, 2003.

[60] Kiryakov, A., Simov,K., and Dimitrov, M., Ontomap: the Upper-Ontology

Portal, Proc. of Formal Ontology in Information Systems, Ogunquit, Maine,

2001.

[61] Klein, M., Combining and Relating Ontologies: An Analysis of Problems

and Solutions, in: Gomez-Perez, A., Gruninger, M., Stuckenschmidt, H.

and Uschold, M. (Eds.), Workshop on Ontologies and Information Shar-

ing(IJCAI01), Seattle, WA., August 2001.

[62] Klein, M., and Bernstein, A., Searching for Services on the Seman-

tic Web Using Process Ontologies, Proc. of 1st Semantic Web Working

Symposium(SWWS-1), Stanford, 2001.

BIBLIOGRAPHY 153

[63] Klein, M., and Fensel, D., Ontology versioning for the Semantic Web, Proc.

of International Semantic Web Working Symposium, USA, July 2001.

[64] Klein, M., and Noy, F. N., A Component-Based Framework for Ontology Evo-

lution, Proc. of the IJCAI’03 Workshop: Ontologies and Distributed Systems,

International Joint Conference on Artificial Intelligence 2003 (IJCAI’03),

Acapulco, Mexico, 2003.

[65] Kraus, S., Automated Negotiation and Decision Making in Multiagent Envi-

ronment, Proc. of Advanced Course on Artificial Intelligence (ACAI 2001),

LNAI 2086, pp.150-172, 2001.

[66] Lacher, M., and Groh, G., Facilitating the Exchange of Explicit Knowledge

through Ontology Mappings, Proc. of the 14th International FLAIRS Con-

ference, 2001.

[67] Labrou, Y., Finin, T., and Peng, Y., Agent Communication Languages: The

Current Landscape, IEEE Intelligent Systems, March/April 1999.

[68] Langley, P., Iba, W., and Thompson, K., An Analysis of Bayesian Classifiers,

Proc. of the 10th National Conference on Artificial Intelligence, San Jose,

CA, July, pp. 223-228, 1992.

[69] Lenat, B. D., and Guha, V. R., Building Large Knowledge-Based Systems,

Representation and Inference in the CYC project, Addison-Wesley, Reading,

Massachusetts, 1990.

[70] Levenstein I. V., Binary Codes Capable of Correcting Deletions, Insertions,

and Reversals, Cybernet Control Theory, 10(8), pp. 707-710, 1966.

[71] Li, L., Wu, B., and Yang, Y., Semantic Mapping with Multi-Agent Systems,

Proc. of the IEEE International Conference on e-Technology, e-Commerce

and e-Service (EEE’05), pp. 54-57, Hong Kong, March 2005.

BIBLIOGRAPHY 154

[72] Li, L., Wu, B., and Yang, Y., Ontology-based Matchmaking in e-Marketplace

with Web Services, Proc. of the 6th Advanced Web Technologies and Ap-

plications (APWeb05), LNCS 3399, Springer-Verlag, pp.620-631, Shanghai,

China, April 2005.

[73] Li, L., Yang, Y., and Wu, B., Agent-Based Approach towards Ontology Re-

finement in Virtual Enterprises, Proc. of the 3rd International Conference

on Active Media Technology (AMT 2005), pp. 220-225, Kagawa, Japan, May

2005.

[74] Li, L., Wu, B., and Yang, Y., Agent-Based Approach for Dynamic Ontology

Management, Proc. of the 9th International Conference on Knowledge-Based

Intelligence Information & Engineering Systems(KES2005), LNCS 3683, Part

III, Springer-Verlag, Melbourne, Australia, pp. 1-7, September 2005.

[75] Li, L., Yang, Y., and Wu, B., Agent-Based Ontology Mapping towards On-

tology Interoperability, in: S. Zhang and R. Jarvis (Eds.), Proc. of the 18th

Australian Joint Conference on Artificial Intelligence (AI05), LNAI 3809,

Springer-Verlag, Sydney, Australia, pp. 843-846, Sydney, Australia, Decem-

ber 2005.

[76] Li, L., Yang, Y., and Wu, B., Agent-Based Ontology Integration for

Ontology-Based Application, in: T. Meyer, M. Orgun (Eds.), Proc. of Aus-

tralasian Ontology Workshop (AOW 2005), the 18th Australian Joint Con-

ference on Artificial Intelligence, Conferences in Research and Practice in In-

formation Technology (CRPIT) series by Australian Computer Society, Vol

58, pp. 53-59, Sydney, Australia, December 2005.

[77] Li, L., Yang, Y., and Wu, B., Implementation of Agent-based Ontol-

ogy Mapping and Integration, Technical Report, Swinburne University,

http://www.it.swin.edu.au/personal/yyang/papers/2005TR-Li-1.pdf.

[78] López, F., Overview of Methodologies for Building Ontologies, Proc. of the

IJCAI’99 Workshop on Ontologies and Problem-Solving Methods: Lessons

Learned and Future Trends, CEUR Publications, 1999.

BIBLIOGRAPHY 155

[79] Luck, M., and d’Inverno, M., A Formal Framework for Agency and Au-

tonomy, Proc. of the 1st International Conference on Multi-Agent Systems,

AAAI Press/MIT Press, pp. 254-260, 1995.

[80] Luck, M., Munroe, S., and d’Inverno, M., Autonomy: Variable and Gen-

erative, in: H. Hexmoor, C. Castelfranchi, and R. Falcone, (Eds.), Agent

Autonomy, Kluwer, pp. 9-22, 2003

[81] Luck, M., McBurney, P., and Preist, C., A Manifesto for Agent Technology:

Towards Next Generation Computing, Autonomous Agents and Multi-Agent

Systems, 9(3), pp. 203-252, 2004.

[82] MacGregor, R., Using A Description Classifier to Enhance Deductive Infer-

ence, Proc. 7th IEEE Conference on AI Application, Florida, pp. 93-97, 1991.

[83] Madhavan, J., Bernstein, P. A., Rahm, E., Generic Schema Matching with

Cupid, Proc. of the 27th International Conference on Very Large Data Bases

(VLDB), Rome, Italy, pp. 49-58, September 2001.

[84] Maedche, A., Ontology Learning for the Semantic Web, Kluwer Academic

Publishers, 2002.

[85] Maedche, A., Motik, B., Silva, N., and Volz, R., MAFRAA Mapping FRAme-

work for Distributed Ontologies, in: A. Gomez-Perez and V.R. Benjamins

(Eds.), Proc. of the 13th International Conf. of Knowledge Engineering and

Knowledge Management (EKAW 2002), pp. 235-250, Siguenza, Spain, Octo-

ber 2002.

[86] Maedche, A., and Staab, S., Measuring Similarity between Ontologies,

in: A. Gomez-Perez and V.R. Benjamins (Eds.), Proc. of the 13th In-

ternational Conference on Knowledge Engineering and Knowledge Manage-

ment(EKAW2002), Siguenza, Spain, pp. 251-263, October 2002.

[87] Maedche, A., Motik, B., Stojanovic, L., Studer, R., and Volz, R., Man-

aging Multiple Ontologies and Ontology Evolution in Ontologging, Proc.

of the Conference on Intelligent Information Processing, World Computer

Congress, Montreal, Canada, pp. 51-63, 2002.

BIBLIOGRAPHY 156

[88] Maedche, A., Motik, B., Stojanovic, L., Studer, R. and Volz, R., An Infras-

tructure for Searching, Reusing and Evolving Distributed Ontologies, Proc.

of International Conference of WWW (WWW2003), pp. 439-448, 2003.

[89] McGuinness, D., Conceptual Modelling for Distributed Ontology Environ-

ments, Proc. of International Conference on Conceptual Structures, pp. 100-

112, 2000.

[90] McGuinness, D., Fikes, R., Rice, J., and Wilder, S., The Chimaera Ontology

Environment, Proc. of the 7th National Conference on Artificial Intelligence

(AAAI 2000), Austin, Texas, August 2000.

[91] McGuinness, D., Fikes, R., Rice, J., and Wilder, S., An Environment for

Merging and Testing Large Ontologies, Proc. of the 7th International Con-

ference on Principles of Knowledge Representation and Reasoning (KR2000),

pp. 483-493, Breckenridge, Colorado, USA, April 2000.

[92] Mena, E., Illarramendi, A., Kashyap, V., and Sheth, A.P. OBSERVER:

An Approach for Query Processing in Global Information Systems Based

on Interoperation across Pre-existing Ontologies, International Journal Dis-

tributed and Parallel Databases (DAPD), 8(2), pp. 223-271, ISSN 0926-8782,

April 2000.

[93] Menzis, T., Knowledge Maintenance: The State of the Art, The Knowledge

Engineering Review, 10(2), 1998.

[94] Miller, R., Haas, L., and Hernández, L., Schema Mapping as Query Discov-

ery, Proc. of the International Conference on Very Large Databases (VLDB),

2000.

[95] Miller, R., Hernández, M., Haas, L., Yan, L., Howard Ho, C. T., Fagin, R.,

and Popa, L., The Clio Project: Managing Heterogeneity, SIGMOD Record,

30(1), pp. 78-83, 2001.

[96] Milner, R., Parrow, J., and Walker, D., A Calculus of Mobile Processes, Pars

I and II, Journal of Information and Computation, 100(7), PP. 1-77, 1992.

BIBLIOGRAPHY 157

[97] Mitra, P., Wiederhold, G., and Kersten, M., A Graph-Oriented Model for Ar-

ticulation of Ontology Interdependencies, Proc. of Conference on Extending

Database Technology (EDBT 2000), Konstanz, Germany, 2000.

[98] Mitra, P., and Wiederhold, G., An Algebra for Semantic Interoperability of

Information Sources, IEEE International Conference on Bioinformatics and

Biomedical Engineering, pp. 174-182, 2001.

[99] Mitra, P., Wiederhold, G., and Decker, S., A Scalable Framework for In-

teroperation of Information Sources, The Emerging Semantic Web, Cruz, I.,

Decker, S., in: Euzenat, J., and McGuinness, D. (Eds.), selected Papers from

the first Semantic Web Symposium, Amsterdam (NL), ISBN: 1586032550,

IOS press, 2002.

[100] Mitra, P., and Wiederhold, G., An Ontology Composition Algebra: Handbook

on Ontologies in Information Systems, in: S. Staab, and R. Studer(Eds.),

Springer-Verlag series on International Handbooks on Information Systems,

ISBN 3540408347, pp. 93-117, 2004.

[101] Modica, G., Gal, A., and Jamil, H., The Use of Machine Generated Ontologies

in Dynamic Information Seeking, in: Batini C, Giunchiglia F, Giorgini P,

MecellaM(Eds.), Proc. of the 9th International Conference on Cooperative

Information Systems (CoopIS 2001), Trento, Italy, LNCS 2172, Springer,

pp. 433-448, September 2001.

[102] Motta, E., Reusable Components for Knowledge Modelling: Case Studies in

Para-metric Design Problem Solving, Frontiers in Artificial Intelligence and

Applications, Vol 53, IOS Press, 1999.

[103] Nash, F. J., Equilibrium Points in N-Person Games, Proc. of NAS, 1950.

[104] Nestorov, S., Abiteboul, S., and Motwani, R., Extracting Schema from

Semistructured Data, in: Haas LM, TiwaryA (Eds.), Proc. of the ACM-

SIGMOD Conference on Management of Data (SIGMOD), Seattle, ACM

Press, New York, pp. 295-306, June 1998.

BIBLIOGRAPHY 158

[105] Nodine, M., Fowler, J., Ksiezyk, T., Perry, B., Taylor, M., and Unruh, A.,

Active Information Gathering in InfoSleuth, International Journal of Coop-

erative Information Systems, 9(1-2), pp. 328, 2000.

[106] Noy, F. N., and Musen, M. A., PROMPT, Algorithm and Tool for Automated

Ontology Merging and Alignment, Proc. of 17th National Conference on Ar-

tificial Intelligence (AAAI-2000), Austin, TX, pp. 450-455, August 2000.

[107] Noy, F. N., What Do We Need for Ontology Integration on the Semantic

Web, Position Statement, Proc. of the Workshop on Semantic Integration,

the 2nd International Semantic Web Conference, Sanibal Island, Florida,

USA, October 2003.

[108] Noy, F. N., and Musen, M. A., The PROMPT Suite: Interactive Tools for

Ontology Merging and Mapping, International Journal of Human-Computer

Studies, 59(6), pp. 983-1024, 2003.

[109] Noy, F. N., Semantic Integration: A Survey of Ontology-Based Approaches,

SIGMOD Record, Special Issue on Semantic Integration, 33(4), pp. 65-70,

December, 2004.

[110] Noy., F. N., and Klein, M.,. Ontology Evolution: Not the Same as Schema

Evolution, Knowledge and Information Systems, 6(4), pp. 428-440, 2004.

[111] Obitko, M., and Marik, V., Mapping between Ontologies in Agent Commu-

nication, Springer-Verlag, LNAI 2691, pp. 191-203, 2003.

[112] Odell, J., Parunak, H. V. D., and Bauer, B., Extending UML for Agents, in:

G. Wagner, Y. Lesperance, and E. Yu (Eds.), Proc. of the Agent Oriented

Information Systems Workshop (AOIS) at the 17th National Conference on

Artificial Intelligence, Austin, Texas, pp.3-17, 2000.

[113] Omelayenko, B., and Fensel, D., A Two-layered Integration Approach for

Product Information in B2B E-Commerce, Proc. of the 2nd Intenational

Conference on Electronic Commerce and Web Technologies (EC WEB-2001),

Munich, Germany, Springer-Verlag, 2001.

BIBLIOGRAPHY 159

[114] Omelayenko, B., Integrating Vocabularies: Discovering and Representing

Vocabulary Maps, Proc. of the 1st International Semantic Web Conference

(ISWC2002), Sardinia, Italy, 2002.

[115] Omelayenko, B., RDFT: A Mapping Meta-Ontology for Business Integration,

Proc. of the Workshop on Knowledge Transformation for the Semantic Web

(KTSW 2002) at the 15th European Conference on Artificial Intelligence,

Lyon, France, pp. 76-83, July 2002.

[116] Palopoli, L., Terracina, G., and Ursino, D., The System DIKE: towards

the Semi-Automatic Synthesis of Cooperative Information Systems and Data

Warehouses, Proc. of Current Issues in Databases and Information Systems,

East European Conference on Advances in Databases and Information Sys-

tems, jointly held with the International Conference on Database Systems

for Advanced Applications (ADBIS-DASFAA 2000), Prague, Czech Repub-

lic, pp. 108-117, September 2000.

[117] Pinto, H. S., Gómez-Pérez, A., and Martins, P. J., Some Issues on Ontol-

ogy Integration, Workshop: Ontologies and Problem Solving Methods, Inter-

national Joint Conference on Artificial Intelligence (IJCAI’99), Stockholm,

Sweden, 1999.

[118] Pinto, H. S., and Martins, P. J., A Methodology for Ontology Integra-

tion, Proc. of the International Conference on Knowledge Capture, Victoria,

British Columbia, Canada, pp. 131-138, 2001.

[119] Pinto, H. S., and Martins, P. J., Ontologies: How Can They Be Built?,

Knowledge and Information Systems, 6(4), pp. 441-464, Springer, July 2004.

[120] Pnueli, A., Specification and Development of Reactive Systems, Information

Processing 86, pp. 845-858, Elsevier, Amsterdam.

[121] Prasad, S., Peng, Y., and Finin, T., Using Explicit Information to Map

between Two Ontologies, Proc. of the AAMAS 2002 Workshop on Ontologies

in Agent Systems (OAS’02), pp. 52-57, 2002.

BIBLIOGRAPHY 160

[122] Popa, L., Velegrakis, Y., Hernández, M., Miller, R., and Fagin, R., Trans-

lating Web Data, Proc. of the International Conference on Very Large

Databases(VLDB), 2002.

[123] Rahm, E., and Bernstein, P., A Survey of Approaches to Automatic Schema

Matching, The VLDB Journal, Vol 10, pp. 334-350, 2001.

[124] Rodrguez, A. M, and Egenhofer, J. M., Determining Semantic Similar-

ity among Entity Classes from Different Ontologies, IEEE Transactions on

Knowledge and Data Engineering, 2000.

[125] Rubinstein, A., Perfect Equilibrium in a Bargaining Model, Econometrica,

50(1), pp. 97-109, 1982.

[126] Russell, S., and Norvig, P., Artificial Intelligence: A Modern Approach, New

York Prentice-Hall, 1995.

[127] Schorlemmer, M., Duality in Knowledge Sharing, Proc. of the 17th Inter-

national Symposium on Artificial Intelligence and Mathematics, Fort Laud-

erdale, Florida (USA), January 2002.

[128] Sheth, A., and Larson, J., Federated Database Systems for Managing Dis-

tributed, Heterogeneous, and Autonomous Databases, ACM Computing Sur-

veys, 22(3), pp. 183-236, 1990.

[129] Sheth, A., and Rusinkiewicz, M., On Transactional Workflows, The Data

Engineering Bulletin, 16(2), pp. 37-40, 1993.

[130] Silva, N. and Rocha, J., Complex Semantic Web Ontology Mapping, Web

Intelligence and Agent Systems: An International Journal, 1(3/4), pp. 234-

248, 2003.

[131] Silva, N., and Rocha, J., Ontology Mapping for Interoperability in Semantic

Web, In: Proc. of the IADIS International Conference WWW/Internet 2003

(ICWI2003), Algarve, Portugal, 2003.

[132] Stojanovic, L., Maedche, A., Motik, B., and Stojanovic, N., User-driven

Ontology Evolution Management, Proc. of the 13th European Conference

BIBLIOGRAPHY 161

on Knowledge Engineering and Knowledge Management (EKAW), Madrid,

Spain, 2002.

[133] Stumme, G., and Maedche, A., FCA-Merge: Bottom-Up Merging of Ontolo-

gies, IJCAI’01 Workshop on Ontologies and Information Sharing (jointly

held with the 17th International Joint Conference on Artificial Intelligence)

(IJCAI’01), Seattle, USA, August 2001.

[134] Sure, Y., Erdmann, M., Angele, J., Staab, S., Studer, R., and Wenke, D., On-

toEdit: Collaborative Ontology Engineering for the Semantic Web, Proc. of

the International Semantic Web Conference 2002(ISWC 2002), LNCS 2342,

Springer-Verlag, pp. 221-235, Sardinia, Italy, June 2002.

[135] Tamma, V., and Bench-Capon, T., A Conceptual Model to Facilitate Knowl-

edge Sharing in Multi-agent Systems, Proc. of the OAS 2001, Montreal,

pp. 69-76, 2001.

[136] Teknowledge: High-Performance Knowledge-Bases (HPKB),

http://projects.teknowledge.com/HPKB/, accessed on 15th May 2005.

[137] Tveit, A., A Survey of Agent-Oriented Software Engineering,

http://www.jfipa.org/publications/AgentOrientedSoftware Engineering.

[138] Uschold, M., and King, M., Towards a Methodology for Building Ontolo-

gies, Workshop on Basic Ontological Issues in Knowledge Sharing, held in

conjunction with IJCAI-95, Montreal, Canada, 1995.

[139] Uschold, M., and Grueninger, M., Ontologies: Principles, Methods and Ap-

plications, Knowledge Sharing and Review, 11(2), pp. 93-155, 1996.

[140] Uschold, M., Healy, M., Williamson, K., Clark, P., and Woods, S., Ontology

Reuse and Application, in: N. Guarino(Eds.), Proc. of Formal Ontology in

Information Systems (FOIS’98), Treno, Italy, June 1998.

[141] Wang, J., and Gasser, L., Mutual Online Ontology Alignment, In: Stephen

Cranefield, Tim Finin, and Steve Willmott (Eds.), Proc. of the Workshop

BIBLIOGRAPHY 162

on Ontologies in Agent Systems, 1st International Joint Conference on Au-

tonomous Agents and Multi-Agent Systems, CEUR Workshop Series Volume

66, Bologna, Italy, July 2002.

[142] Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neu-

mann, H., and Hübner, S., Ontology-Based Integration of Information - A

Survey of Existing Approaches, Proc. of the IJCAI-01 Workshop: Ontolo-

gies and Information Sharing, International Joint Conference on Artificial

Intelligence (IJCAI’01), 2001.

[143] Wiederhold, G., An Algebra for Ontology Composition, Proc. of Monterey

Workshop on Formal Methods, Monterey CA, pp. 56-61, September 1994.

[144] Wiesman, F., and Roos, N., Domain Independent Learning of Ontology Map-

pings, Proc. of the 3rd International Joint Conference on Autonomous Agents

& Multi Agent Systems (AAMAS04), New York, USA, 2004.

[145] Wille, R., Restructuring Lattice Theory: An Approach Based on Hierarchies

of Concepts, In: I. Rival(Eds.), Ordered Sets, Reidel, Dordrecht-Boston, pp.

445-470, 1982.

[146] Wooldridge, M., and Jennings, N. R., Intelligent Agents: Theory and Prac-

tice, Knowledge Engineering Review, 10(2), pp. 115-152, 1995.

[147] Wooldridge, M., Agent-Based Software Engineering, IEE Proc. Software En-

gineering, 144(1), pp. 26-37, 1997.

[148] Wooldridge, M., Jennings, N., and Kinny, D., A Methodology for Agent-

Oriented Analysis and Design, Proc. of the 3rd International Conference on

Autonomous Agents, Seattle, WA, pp. 69-76, 1999.

[149] Wooldridge, M., and Ciancarini, P., Agent-Oriented Software Engineering:

The State of the Art, in: P. Ciancarini and M. Wooldridge (Eds.), Agent-

Oriented Software Engineering, Springer, LNAI 1957, pp. 1-28, January 2001.

[150] Wooldridge, M., An Introduction to MultiAgent Systems, John Wiley & Sons,

ISBN 047149691X, 2002.

BIBLIOGRAPHY 163

[151] Wu, B., Dewan, M., Li, L. and Yang, Y., Supply Chain Protocolling, IEEE

Conference on E-Commerce Technology (CEC’05), pp. 314-321, München,

Germany, July 2005.

[152] Zambonelli, F., and Parunak, H., Signs of a Revolution in Computer Science

and Software Engineering, in: P. Petta, R. Tolksdorf, and F. Zambonelli

(Eds.), Engineering Societies in the Agents World (ESAW 2002), Springer:

Berlin, Germany, pp. 13-28, 2003.

[153] Zambonelli, F., Jennings, N., Omicini, A., and Wooldridge, M., Agent-

Oriented Software Engineering for Internet Applications, in: A. Omicini,

F. Zambonelli, M. Klusch, and R. Tolksdorf (Eds.), Coordination of Internet

Agents: Models, Technologies and Applications, Springer, pp. 326-346, 2001.

[154] Zambonelli, F., Jennings, N., and Wooldridge, M., Organizational Abstrac-

tions for the Analysis and Design of Multi-Agent Systems, in: P. Ciancarini

and M. Wooldridge (Eds.), Agent-Oriented Software Engineering, Springer,

LNAI 1957, January 2001.

[155] Zou,Y., Finin T., and Chen, H., F-OWL: An Inference Engine for the Se-

mantic Web, in: M. Hinchey, J. Rash, W. Truszkowski, and C. Rouff (Eds.),

Formal Approaches to Agent-Based Systems, the 3rd International Workshop

(FAABS2004), Greenbelt, MD, USA, April, 2004, revised paper, LNCS 3228,

Springer, ISBN 3-540-24422-0, pp. 238-248, 2005.

[156] http://www-ksl.stanford.edu/kst/what-is-an-ontology.html.

