
TRAM: A Tool for Requirements and Architecture Management

Jun Han
School of Network Computing

Monash University, McMahons Road
Frankston, Victoria 3 199, Australia

j han@monash.edu.au

Abstract

Management of system requirements and sys-
tem architectures is part of any sojiware engineering
project. But it is usually very tedious and errorprone.
In particular, managing the traceability between sys-
tem requirements and system architectures is critical
but difficult. In this paper, we introduce a tool, TRAM,
for managing system requirements, system architec-
tures and more importantly the traceability between
them. Its primary design objective is “being practi-
cal” and ready for practitioners to use without much
overhead. The issues discussed in this paper include
an information model that underlies the capture of re-
quirements, architectures and their traceability, a set
of document templates implementing the information
model, and the support tool.

Keywords: Requirements management, system ar-
chitectures, software engineering tools.

1. Introduction

Continued management of system requirements,
system architectures and the traceability between
them provides critical support for system develop-
ment and evolution. The requirements for a system
are the basis of planning, developing, evolving and
using the system. The system architecture provides
the blueprint or vision for the system’s design. The
traceability between the system requirements and
the system architecture is the key to test whether
the requirements are met by the architecture design.
In the light of changes to systems, the management
of system requirements, system architectures and
their traceability has even a greater role to play.
It facilitates analysis of how a new or changed
requirement will affect the system design and how
an architectural design decision will impact on the
system’s functionality and quality.

In current practice, system requirements are of-
ten kept in some monolithic word-processing files.
They are difficult to analyse and maintain. The spec-
ification of system architectures is usually ad hoc,
again hard to analyse and maintain, and difficult to
be kept up-to-date. Even with certain tool support,
the system requirements and the system architectures
are kept separately, and support for their traceabil-
ity is very limited. Furthermore, most support tools
available are either very generic so that only low-level
assistance is possible, or too specific by dictating the
use of a particular notation.

In this paper, we introduce a tool, TRAM, for
managing system requirements, system architectures
and the traceability between them. This tool hasprac-
tical usability as its primary design objective. As
such, the tool is equipped with a set of document
templates, to provide practical guidance to the user.
The document templates are based on an information
model for capturing system requirements, system ar-
chitectures and their traceability. All together, the
information model, the document templates and the
tool itself provide a practical project start-up kit for
requirements and architecture management.

The paper is organised as follows. We first re-
view the design objectives for the tool and document
templates. Next, we introduce the information model
for capturing requirements, archltectures and their
traceability. We then discuss the templates design
and tool implementation, before finally concluding
this paper. Three case studies of applying the
document templates and tool to real-life systems,
and a comparative assessment of the tool relative to
existing practice are reported in a separate paper [5].

2. Design objectives

The set of document templates for requirements
and architecture management provide a tangible ba-
sis for carrying out requirements engineering and ar-
chitecture design activities. They serve not only as
a starting point and scheme to organise and manage

i530-0900/01$10.00 0 2001 IEEE
60

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:34:06 EDT from IEEE Xplore. Restrictions apply.

system requirements and architectures, but also pro-
vide guidance and serve as a check list for the relevant
activities. The following sets out the specific objec-
tives of the document templates and tool support.

Requirements management for projects and
organisation: Requirement management should
not only be a project-oriented issue, but also an
organisation-wide issue. There should be con-
sistency, consultancy and systematic knowledge
sharing and leverage across projects withm the
organisation. The document templates should
serve both project-level and organisation-level
purposes.

e

e

The

Information and process of requirements engi-
neering: Both the information and process as-
pects are critical to requirements management.
The document templates should capture the ba-
sic requirements information and the necessary
information facilitating the requirements engi-
neering process, and provide process guidance
for the capture of the requirements information.

Requirements capture, ch.ange and evolution:
The document templates should not only be
about the capture or representation of system re-
quirements. They should also accommodate and
facilitate requirements change and evolution.

Traceability between system requirements and
system architecture: The traceability between
system requirements and system architec-
ture is of critical importance. It will help
to answer questions like: “Is requirement A
being addressed by the architecture design?”
and “Which system components are relevant
to meeting requirement B?” Similarly, such
traceability will be invaluable in assessing the
impact of a proposed requirements change.
As such, the document templates should also
facilitate and capture the system architecture
and the traceability between requirements and
architecture.

Practical, immediate and incremental uptake:
The document templates should allow imme-
diate ready uptake in practice with minimal
training. This requires that the templates should
closely related to existing practice. On the other
hand, they should also allow incremental uptake
of advanced features for further improved
requirements and architecture management. We
emphasise that this is the primary objective for
the design of the document templates and the

tool support for requirements and architecture

tool support.

tions has been designed with the above objectives in
mind. It involves three major aspects:

1. a core information model for requirements and
architecture management that serves as the basis
of formulating the documents templates,

2. a set of document templates for requirements
and architecture management, and

3. a support tool.

This project start-up kit has been applied to a number
of case systems during and after their development
for the purpose of refinement and validation [5] . They
are currently used in a “live” industrial project at Na-
tional Air Traffic Services (NATS).

3. An information model

Following the design objectives, the core infor-
mation model for requirements and architecture man-
agement sets out to capture the most essential con-
cepts and their relationships concerning requirements
and architectures. In doing so, we leverage existing
research in three main areas: goal-directed require-
ments engineering, the world-machine relationship in
system engineering, and software architecture design
and description.

In goal-directed requirements engineering, the
requirements for a system are elicited as goals for the
system to achieve. It recognises that the system goals
may be stated at different levels of abstraction, from
high level business objectives to low level concrete
requests. The requirement elicitation and analysis
process is such that high level goals are progressively
refined or operationalised into lower level goals that
are ready for implementation. A representative of
goal-directed requirements engineering is the KAOS
approach [2].

In [6], Jackson highlighted the need for software
engineers to balance the concern between the world,
in which the machine they build serves a useful pur-
pose, and the machine itself. When we decide on the
requirements for a system, it is primarily about what
the system is to achieve or maintain. However, it is
also important to know the properties of the system’s
operating environment that the system must respect.
Only with knowing both the system and its environ-
ment may we be clear about the boundary or relation-
ship between them and about the requirements for the
system.

In recent years, there has been much effort in
software architecture research and practice, includ-
ing architecture description languages such as Dar-
win [7] , architecture styles and case studies [8], archi-
tecture practice [l], and our own work on rich specifi-

management to be introduced in the following sec- cation of software components and architectures [4].

61

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:34:06 EDT from IEEE Xplore. Restrictions apply.

Software architecture design is primarily about de-
vising component-based structures for a system that
meet the system requirements. Software engineer-
ing practice suggests that requirements engineering
and architecture design influence each other during
the development and evolution of a system. The re-
lationship and traceability between system require-
ments and system architecture should be considered
for effective requirements management.

3.1. The model

The core information model identifies the key
concepts and relationships of requirements engineer-
ing and architecture design. These concepts and re-
lationships are identified through review of existing
literature and analysis of requirements engineering
practice, and are further refined through application
to real-world industrial projects. Figure 1 presents
the information model in an entity-relationship dia-
gram. In the following discussion, we introduce the
concepts and relationships of the model.

Stakeholder: The stakeholders of a system are
those individuals or organisations who have an inter-
est in the system. They include users, owners, pro-
curers, developers, and so on.

The identification and documentation of stake-
holders is key to requirements traceability. Maintain-
ing such traceability is critical to requirements vali-
dation and conflict resolution.

Goal: The goals are objectives or desires that
the stakeholders own, and would like the system to
satisfy. The goals generally represent the require-
ments for the system.

A high-level goal can be refined by the combi-
nation of a number of lower-level goals, in a recur-
sive manner. Such refinement relationships are to re-
flect the fact that together with the analysts, stake-
holders often express initial requirements in broad
and general terms, and then move to identify more
detailed and concrete requirements. Retention of the
initial and intermediate broad requirements is neces-
sary for the rationale and validation of the detailed
requirements. Goal refinement may also be used to
resolve conflicting goals and compare refinement al-
tematives.

Value: Some goals are valued by the stakehold-
ers more than others. The value that a stakeholder
gives to a goal represents the level of benefit that
achieving the goal will deliver to the stakeholder,
and highlights the goal’s importance relative to other
goals in that stakeholder’s opinion. We note that the
value is related to a stakeholder-goal pair.

In general, values may be drawn from a value
systembcheme, or simply represented by statements.
They are particularly useful in comparing alternative

refinements and resolving conflicts.
Assumption: Assumptions are “indicative”

properties of the system’s operating environment that
the system has to respect or live with. These are fixed
in the sense that they are not altered by the system.

Authority: Authorities are those who are in a
position and are capable of asserting assumptions.
They may include management, domain experts and
some stakeholders. They may also include static
sources such as standards, documentation or similar.

Risk: Not all assumptions can be made with to-
tal confidence. They may be subject to change or
their status may be otherwise uncertain. This is the
risk associated with an assumption. When an as-
sumption is stated, all related risks should be iden-
tified and documented.

Interface: The interface defines in concrete
terms the boundary between the system and the envi-
ronment in which the system operates. The interface
makes the assumptions about the environment visible
to the system.

Component: Components are elements com-
prising the architecture of the system. They can be
either pre-existing components or to-be-built compo-
nents.

The system architecture comprises a hierarchy
of components in the sense that a component may
have its internal architecture with its own compo-
nents. Therefore, a component may be part of another
component.

The system components conform to the system
interface so that the system can function in its envi-
ronment through proper interaction with it.

Service: Services are capabilities of the system
that are devised to satisfy the goals. They are pro-
vided by system components. In general, a system
component provides a number of services and may
require services provided by other system compo-
nents. The provided services of a component may be
used directly in satisfying the system goals, or used
by other components. In general, it is necessary for
the system services to respect all the assumptions.

Quality of Service (QoS): A service is usually
delivered with a number of quality properties, such as
performance, reliability and security, which are gen-
erally referred to as quality-of-service. The specific
QoS properties are devised to satisfy certain system
goals concerning the quality requirements for the sys-
tem.

Acceptance Criterion: The acceptance criteria
provide the means for establishing the extent to which
the services and quality-of-service properties satisfy
the goals. In other words, they test the satisfaction
relationships between services/QoS-properties and
goals.

In general, the acceptance criteria should be

62

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:34:06 EDT from IEEE Xplore. Restrictions apply.

use-case I
-J. -

IM INT I I
I I

I N

I I I

1

1

I

I

tests
I
I

I I
I I
I N I

v I

: IN

I ' N
goal ,,I

ss*
I
I
I
I
I
I
I
I
I
I
I
I
I

l M i& refines

I stakeholder I
N

authority

Figure 1. Core information model for requirements and architecture management

63

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:34:06 EDT from IEEE Xplore. Restrictions apply.

established according to the goals. The acceptance
test cases that practitioners normally use are specific
forms of acceptance criteria. In is important to note
that the acceptance criteria/cases should include the
extent of the satisfaction required.

Use Case: A use case presents a type of use sce-
nario for the system, and it useslexercises a number of
services. We note that other than validating the sys-
tem services, the inclusion of use cases in the model
also provides a link to UML based system develop-
ment.

From the practicality point of view, we have tried to
keep the information model as concise as possible
but without compromising the objective of captur-
ing the essential concepts of requirements engineer-
ing and architecture design. The relationships be-
tween the concepts are carefully considered, includ-
ing those between requirements concepts and archi-
tecture concepts, so that the necessary traceability is
accommodated. The separation between assumptions
and goals clearly addresses the relationship between
the world (the operating environment) and the ma-
chine (the system).

3.2. Examples

In this section, we illustrate the core informa-
tion model with examples drawn from an air traf-
fic Short Term Conflict Alert (STCA) system cur-
rently in operation. The main functionality of the
STCA system is to test periodically the state of all
aircrafthystem tracks under its control to determine
whether any pairs of tracks fulfill the conditions re-
quired to declare a conflict alert. Any declared alert
wid be displayed to the air traffic controller. Essen-
tially, a conflict alert for a pair of aircraft indicates
that the two aircraft are too close to each other. The
STCA system interacts with other Air Traffic Con-
trol (ATC) systems, including Multi-Radar Process-
ing, Control and Monitoring, Workstation Display
Management, Recording and Display, and Support
Information Database.

Stakeholders:
stakeholders are:

For the STCA system, some of the

Air trafslc controllers: The air traffic controllers
are the primary users of the system.

Pilots: The STCA system directly concems the
pilots of the aircraft in the system tracks tested.

Civil Aviation Authority: This is the the national
statutory body for air safety.

STCA Design Authority: This is the organisation
responsible for system development and imple-
mentation.

3

Goals: The stakeholders of the STCA system state
various goals. Some high-level goals of the air traffic
controllers include:

0 g l : All short term conflicts are declared in time.

0 g2: Newly identified alerts must be displayed
for a minimum period of time (MINDISPLAY-
TIME) for controllers to locate the aircraft con-
cerned.

The pilots may state that

0 g.5: Relevant pilots are notified of conflict alerts
(through air traffic control) in time for taking
collision avoidance actions.

As an example of goal refinement, goal g l can be re-
fined into the following lower level goals:

0 g l l : Identify all pairings of tracks that are of
potential concern (according to set criteria) for
conflict alert. This is to quickly reduce the track
space for further complicated processing.

0 g12: Eliminate, from the set of potentially con-
flicting track pairs, those pairs that do not satisfy
the conflict alert condition.

0 g13: The accumulative processing time for the
tasks involved should be within the allowed
maximal delay.

Values:
lowing values to their initial goals:

The air traffic controllers may give the fol-

g l ’ s value: Achieving g l will greatly help the
air traffic controllers in identifying all conflict
alerts and taking appropriate action to avoid any
collision.

a g2’s value: Achieving 8 2 will help the air traf-
fic controllers to identify all alerts before they
disappear.

Acceptance criteria: The following are some ac-
ceptance test cases (i.e., more concrete or refined ac-
ceptance criteria) aimed at the identified goals.

acl: The system should have a successful con-
flict alert detection rate of 99.99% and all sever-
ity 1 alerts are reported. This should be estab-
lished from a set of at least 100,000 sample sys-
tem tracks in normal daily operation situations.

0 ac2: For the given set of devised “collision/near-
collision” cases, the system should always iden-
tify them as having severity 1 status and declare
alert. (Note: The devised cases should be given.)

Generally speaking, the more refined the goals are,
the more concrete the acceptance test cases can be.
We note that acceptance criteria usually relate to spe-
cific use scenarios.

64

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:34:06 EDT from IEEE Xplore. Restrictions apply.

Authorities:
may include:

For the STCA system, the authorities

Avionics experts: These experts provide domain
expertise, and state natural limits that the STCA
system operates in. Such knowledge is particu-
larly important in refining high level goals into
concrete goals.

Radar data processing representatives: These
representatives state limits/facts about the radar
data that the STCA system relies on.

Civil Aviation Authority: In this role, the Au-
thority states relevant laws &d regulations.

Assumptions:
the avionics experts state that

The Civil Aviation Authority and

0 a l : At higher flight levels, presently above
29,00Oft, the vertical separation standard is
increased from lO00ft to 2000ft.

The radar data processing representatives state that

0 a2: The aircraft track information provided to
the STCA system by radar data processing func-
tions includes lateral and vertical tracking.

Risks: A risk related to assumption a2 is that

Due to malfunction of radar equipment and/or
the radar data processing facility, certain track
information may be inaccurate or missing.

Interface: Two interface conditions that refine as-
sumption a1 are

il: The flight levels of the system tracks are
available to the system as input.

i2: The high flight level criterion (presently
29,00Oft), and vertical separation standards for
higher and lower flight levels are available to
the system as (environment) control parameters.

Components:
major system components:

The STCA system has the following

1. Coarse filter: This component identifies the po-
tentially conflicting track pairs.

2. Fine filters: There are three fine filters, namely,
linear prediction filter, current proximity filter,
and manoeuvre hazard filter. These filters pro-
cess in parallel the potentially conflicting pairs
produced by the coarse filter, and produce, fil-
tered track pairs.

3. Alert confirmation: This component takes the
results from the three fine filters (Le,, the filtered
conflict track pairs), eliminates the unnecessary
alerts, and generates alert messages.

Services: Services are capabilities of the system
that are devised to satisfy the goals in the sense that
they operationalise the goals. In general, therefore,
we need to sufficiently refine the goals to identify
services. One service of the STCA system is

0 s l : Confirm and generate conflict alerts by ap-
plying confirmation logic to the filtered conflict
pairs.

This service contributes to the satisfaction of goal
812, and is provided by the alert confirmation com-
ponent in the system architecture.

QoS: Service sl has the following quality property:

0 QoSl: Radar data are processed at real-time
rate, and conflict alerts are generated within the
given maximal delay (MAXDELAY). This is a
performance property.

This quality property satisfies goal g13.

Use cases: An example use case is as follows:

0 ucl : Two aircraft enters the controlled airspace,
and gets too close to each other (vertically and
laterally) so that the separation requirements are
breached. Consequently, a conflict alert is iden-
tified and reported by the STCA system. The
alert is maintained for a minimum number of
cycles, even if the two aircraft divert from each
other immediately after the separation breach.

This use case exercises the service sl identified above
and a range of other services provided by the system.

4. Templates design and tool implementa-
tion

The core information model for requirements
and architecture management provides the basis for
the content of the envisaged document templates. The
document templates capture the information reflected
by the concepts and relationships of the information
model. They also capture some additional informa-
tion, including that of the project characteristics and
that of the system domain. In general, designing the
document templates involves categorising and detail-
ing the information content associated with each con-
cept and relationship, considering additional infor-
mation necessary to reflect current practice and fu-
ture evolution, and selecting and accommodating the

65

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:34:06 EDT from IEEE Xplore. Restrictions apply.

targeted tool support. We have designed and imple-
mented the document templates in two forms: (1) as
HTML document templates, and (2) as templates in
the document management tool DOORS, each with
its own advantages.

In this section, we first discuss the content de-
sign and refinement for the templates. Then we ex-
amine the specific features of the templates in the two
forms of implementation.

4.1. Templates content design and refinement

Representation of concepts and relationships.
The information model sets out the basic structure
for the document templates. The main information
body of a concept is generally represented by a
statement or description in the document templates.
Upon close examination, however, many concepts
and relationships need additional attributes for their
clear representation. These additional features are
the focus of the following discussion.

The stakeholders and authorities should be about
specific individuals, organisations or resources. A
stakeholder or authority is given an ID, and has its
name, position, organisation and responsibility (rela-
tive to the system concemed) recorded.

The goals form a major part of the requirements
information for a system. First, we have identified
two broad classes of goals, i.e., the goals that the
delivered system is to satisfy - system goals, and
the goals that the system development process is
to satisfy - process goals. It is also observed that
certain system goals are about the system behaviour
at run-time while others are about the system as
it is designed. Examples of run-time system goals
are those about the system’s functionality and
performance. Examples of design-time goals include
those about the system design’s maintainability and
evolvability. Examples of process goals are goals
concerning development standards such as those
about validation, verification and documentation,
and goals about project budget and duration. In
general, a high level goal may concem both run-time
and design-time, and even the development process.
Only when the goals are sufficiently refined, can
clear designation be achieved. We also note that the
process goals and design-time system goals do not
manifest themselves into system services or QoS
properties, and only run-time system goals do.

At finer grained levels, the goals can be classi-
fied into various categories, including functionality,
capacitylsizing, performanceltiming, availability,
reliability, safety, security, privacy, operation, adapt-
ability / customisation I portability, system interac-
tion, user interaction, maintainabilitylevolvability,
validation and verification, documentation, and

project management. Again, higher level goals tend
to concem many categories while lower level goals
can be allocated into single categories. In general, it
is beneficial to be aware of the broad and finer cate-
gories that a goal belongs to. In particular, trying to
allocate categories to an identified goal will force the
stakeholder and the analyst to think carefully about
the goal’s role and place in the system. Therefore,
the goals have an categories attribute in addition
to the goal statement.

When a goal is refined into a number of lower
level goals, a rationale for the refinement is recorded.
The rationale can be for simply detailing the require-
ments, or for exploring a businessldesign decision.

The assumptions are in general about the proper-
ties of the system’s operating and development envi-
ronment. According to their nature, the assumptions
can be classified into a number of categories, includ-
ing system interaction, user interaction, system re-
sources, and standards and regulations. The category
of an assumption is recorded as an attribute alongside
the assumption statement. The identified risks related
to the assumption are also recorded.

In capturing the component architecture design
of a system, it is important to recognise the need to
represent the system architecture in a hierarchical
manner. That is, the system architecture involves a
number of components, and these components may
have their internal architectures involving lower-level
components, and so on. A system component is
represented in the context of its immediate enclosing
system architectures. For the top-level system and
each composite component, there is (1) a component
architecture description, identifying the architecture
styledpattems used, the enclosed components, their
interactions, and the architectural constraints: (2)
specifications of the components; (3) specifications
of the inter-component interactions; (4) specifica-
tions of the architectural constraints. Although the
system architectures, inter-component interactions
and architectural constraints are not explicitly shown
in the information model, they are essential for
clearly defining the system’s component architecture.

The architecture description takes the form of a
mixture of diagrams and explanations with formal or
informal techniques. For a component, whether it is
pre-existing or to-be-built is recorded. The compo-
nent should conform to both the extemal system in-
terfaces and the intemal inter-component interfaces,
where appropriate. The specification of an interaction
includes the direction(s) and possibly a detailed de-
scription of the interaction. The constraints are spec-
ified in an informal, semi-formal or formal notation.

The services are in general operationalised sys-
tem goals. They are assigned a service category. The
service categories are system specific and usually re-

66

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:34:06 EDT from IEEE Xplore. Restrictions apply.

flect the major system components.
The system interface specification in the docu-

ment templates may use any chosen notation, e.g.,
EBNF, with necessary explanations. It also identifies
the specific interface’s input/output characteristics.

The document templates also capture some ad-
ditional information. This includes information for
project identification and management, the definition
of domain concepts (i.e.. a glossary), and an optional
domain model. This information forms an important
part of the corporate memory.

4.2. Tool implementation

HTML implementation. In the HTML imple-
mentation, the concepts and relationships of the
information model have been divided into two
document templates: one is named the System
Requirements Document, and the other the System
Architecture Document. The division is shown
in Figure 1 by the filled thick line. The System
Requirements Document (template) concems the
information about stakeholders, goals, values, ac-
ceptance criteria, authorities, assumptions, risks and
related relationships. The System Architecture Doc-
ument (template) contains information about the rest
of the concepts and relevant relationships, including
system architectures and components, services, QoS
properties, system interfaces, and use cases. The
division is primarily based on the concepts, regarding
whether a concept is primarily a requirements-related
concept or an architecture-related concept.

The information concerning each concept is or-
ganised in a structured manner. The documents have
chapters and sections corresponding to concepts and
their categories. The relationships are either embed-
ded in the relevant concepts and/or implemented as
hypertext links. As expected, there are relationships
between the two documents of any given project. The
relationships prove to be a valuable tool for navigat-
ing around the documents.

Both document templates include the project
identification and management information, while
the information concerning domain concepts is
included in the System Requirements Document
template. In general, the templates design in HTML
is a fairly straightforward process.

DOORS implementation. The information model
has also been codified into the software document
management tool DOORS [9], to set up the document
templates. DOORS has a project concept, and within
each project there may be many document modules.
To implement the document templates in DOORS,
all the information as captured in the information
model is organised into a DOORS project. Within the

project, there is a DOORS document module for each
concept. Within each module, the information con-
cerning the concept is structured and organised using
the mechanisms provided by DOORS. DOORS’ sup-
port for cross-module and intra-module fine-grained
linking meant that the support for relationships be-
tween the concepts (i.e., their instances) is naturally
accommodated. The domain concepts are codified in
a separate DOORS module while the project identifi-
cation and management information in another.

The set-up of the different modules in the project
is codified as a DOORS template script. This means
that the selection of the template script will instan-
tiate the template and create a new project contain-
ing all the modules with initial set-ups. The structure
for each of the concepts is also codified as a DOORS
template script so that we can obtain a new instance
of the concept by selecting and instantiating the tem-
plate script. All the templates are implemented using
DOORS’ scripting language DXL. Figure 2 shows
the project set-up and the templates menu.

As a structured document management tool for
systems development, DOORS has a range of fea-
tures for managing, presenting, subsetting and query-
ing information contained in its project documents.
In particular, its support for defining document views
and information filters greatly aids the construction,
management and analysis of the documents. For ex-
ample, a view or filter can be easily defined to show
only the performance goals in the goal module, or
even only the performance goals with given charac-
teristics (e.g.. containing a reference to “coarse fil-
tering”). Another filter can be defined to show those
system goals that are not refined and are not related to
any services or QoS properties. The ability of being
able to perform such queries is immensely useful in
requirements and architecture management.

In general, the templates’ HTML implementa-
tion provides familiar but basic support for document
construction and management, while the DOORS im-
plementation provides advanced support, especially
the analytical support, with some extra investment
and effort. While both implementations can be used
in actual projects, the DOORS implementation is rec-
ommended for its advanced features. We note that
additional capability can be added to the DOORS im-
plementation for even greater support, e.g., checking
of standards compliance [31.

5. Conclusions

In this paper, we have introduced a tool for re-
quirements and architecture management, TRAM. It
involves an underlying information model capturing
the key concepts and relationships of requirements

67

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:34:06 EDT from IEEE Xplore. Restrictions apply.

Figure 2. DOORS implementation of document templates

engineering and architecture design, a set of docu-
ment templates codifying the information model, and
the actual tool implementing the templates and pro-
viding guidance to software practitioners. All these
components together form a project start-up kit for
requirements and architecture management. The doc-
ument templates have been applied to a number of
real-life case studies with positive results [5] . They
are currently being used in a “live” industrial project
at NATS. Further industrial applications of the tem-
plates and tool are also being explored.

The primary objective for TRAM is its practical
usability. We plan to further refine the tool based on
our experience with the industrial projects. We are
currently carrying out an in-depth study of managing
changes to system requirements and architectures,
and plan to incorporate the findings into TRAM.

Acknowledgment. The author would like to thank
his colleagues at Monash University, University Col-
lege London and National Air Traffic Services for
their contribution and comments.

References

[l] L. Bass, P. Clements, and R. Kazman. Software Ar-
chitecture in Practice. Addson-Wesley, Reading, MA,
USA, 1998.

[2] A. Dardenne, A. van Lamsweerde, and S. Fickas.
Goal-Directed Requirements Acquisition. Science of
Computer Programming, 20~3-50, 1993.

[3] W. Emmerich, A. Finkelstein, C. Montangero, S. An-
tonelli, S. Armitage, and R. Stevens. Managing Stan-
dards Compliance. IEEE Transactions on Software En-
gineering, 25(6):836-851. 1999.

[4] J. Han. A comprehensive interface definition frame-
work for software components. In Proceedings of the
1998 Asia-Pacific Sofhvare Engineering Conference,
pages 110-1 17, Taipei, Taiwan, December 1998. IEEE
Computer Society.

[5] J. Han. Experience with designing a requirements and
architecture management tool. In Proceedings of the
2000 International Conference on Sofhvare Methods
and Tools, 10 pages (to appear), Wollongong, Aus-
tralia, November 2000. IEEE Computer Society.

[6] M. Jackson. The World and the Machine. In Proceed-
ings of the 17th International Conference on Software
Engineering, pages 283-292. ACM Press, 1995.

[7] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer.
Specifying distributed software architectures. In Pro-
ceedings of the 5th European Software Engineer-
ing Conference,. pages 137-153, Barcelona, Spain,
September 1995. Springer.

[8] M. Shaw and D. Garlan. Sofhvare Architecture: Per-
spectives on an Emerging Discipline. F’rentice Hall,
Upper Saddle River, NJ, USA, 1996.

[9] W. Smith. Best Practices: Application of DOORS to
System Integration. QSS Quality Systems and Soft-
ware, 1999 So. Bascom Ave., Suite 700, Cambell, CA
950008, USA, 1998.

68

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:34:06 EDT from IEEE Xplore. Restrictions apply.

