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ABSTRACT
The slope of the source-count distribution of fast radio burst (FRB) fluences, α, has been
estimated using a variety of methods. Hampering all attempts have been the low number of
detected FRBs, and the difficulty of defining a completeness threshold for FRB surveys. In this
work, we extend maximum likelihood methods for estimating α, using detected and threshold
signal-to-noise ratios applied to all FRBs in a sample without regard to a completeness
threshold. Using this method with FRBs detected by the Parkes radio telescope, we find
α = −1.18 ± 0.24 (68 per cent confidence interval, CI), i.e. consistent with a non-evolving
Euclidean distribution (α = −1.5). Applying these methods to the Australian Square Kilometre
Array Pathfinder (ASKAP) Commensal Real-time ASKAP Fast Transients (CRAFT) FRB
survey finds α = −2.2 ± 0.47 (68 per cent CI). A full maximum likelihood estimate finds an
inconsistency with the Parkes rate with a p-value of 0.86 per cent (2.6σ ). If not due to statistical
fluctuations or biases in Parkes data, this is the first evidence for deviations from a pure power
law in the integral source-count distribution of FRBs. It is consistent with a steepening of
the integral source-count distribution in the fluence range 5–40 Jy ms, for instance due to a
cosmological population of FRB progenitors evolving more rapidly than the star formation
rate, and peaking in the redshift range 1–3.
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1 IN T RO D U C T I O N

Fast radio bursts (FRBs) are one of the most poorly understood
astrophysical phenomena. FRBs are radio pulses with measured
durations of milliseconds, arriving with high dispersion measures
inconsistent with a Galactic origin. This makes their intrinsic lumi-
nosity extreme, with a plethora of models proposed to explain their
progenitors.

The nature of FRB progenitors is so poorly constrained be-
cause, with the exception of the only known repeating source
(FRB 121102; Spitler et al. 2016), FRBs arrive from unpredictable
directions at unpredictable times. Despite estimates for the all-sky
daily rate being in the hundreds to thousands, the total number
of detected FRBs is only approximately 50 (Petroff et al. 2016,
www.frbcat.org; Shannon et al. 2018).

Efforts to understand the distribution of FRB fluences tend to
assume a power-law distribution for the all-sky rate R of FRBs
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above a given fluence threshold F of the form

R(F ) = R0

(
F

F0

)α

sky−1 d−1, (1)

where R0 is the rate at fluence threshold F0. In the case that FRBs
originate from the local Universe – as suggested by the proximity
of FRB 121102 (Chatterjee et al. 2017; Tendulkar et al. 2017) – a
value of α = −1.5 is expected.

Shannon et al. (2018) have recently shown a dispersion–
brightness relation for the FRB population probed by the Parkes
and Australian Square Kilometre Array Pathfinder (ASKAP) tele-
scopes, suggesting this population originates at distances up to
redshifts of 2–3. For cosmological populations of radio sources,
source evolution and k-corrections interact with the intrinsic source
luminosity distribution to produce unique features in the measured
source-count distribution (see e.g. Wall (1996)), and the same is
therefore expected of the observed FRB fluence distribution (Mac-
quart & Ekers 2018b). FRB data have been too sparse however to
test more complicated models. The approach taken here is to search
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for the first hints of such structure by finding deviations from the
simple power-law model for the observed fluence distribution.

Estimates of the parameters of the simple power-law model
vary greatly. Champion et al. (2016) find R0 = 6+4

−3 × 103 FRBs
sky−1 d−1 (95 per cent confidence interval, CI) based on the nine
FRBs detected by the High Time Resolution Universe (HTRU) sur-
vey at Parkes above the fluence duration range from 0.13 Jy ms
at 0.128 ms to 5.9 Jy ms over 262 ms. However, this estimate did
not include the non-detection of the HTRU mid-latitude survey
(Petroff et al. 2014). Bhandari et al. (2018) use a larger sample
of Parkes FRBs, finding a rate of 1.7+1.5

−0.9 × 103 FRBs sky−1 d−1

above a ‘fluence-complete’ limit of 2 Jy ms. Oppermann, Connor &
Pen (2016) estimate both the FRB rate and α using 15 FRBs from
seven surveys, finding −0.8 ≥ α ≥ −1.7 (95 per cent CI), with rates
above 105 sky−1 d−1. Importantly, Oppermann et al. (2016) use the
ratio of observed to threshold signal-to-noise ratio (S/N) values in
their likelihood estimate, a parameter to which we shall return in
Section 2.

These estimates effectively calculate R by dividing the total num-
ber of bursts by the total observation time and sensitive solid angle,
and hence fluctuate due to the low number of FRBs observed. In
addition, as Macquart & Ekers (2018a) have noted, the effective de-
tection threshold Feff and solid angle �eff of an FRB search depends
on α, with small negative values of α (e.g. −1) favouring strong
bursts detected far from beam centre, and large negative values
(e.g. −3) favouring bursts detected near threshold close to beam
centre. Without accounting for these effects, estimates of R will be
highly biased.

James et al. (2018) account for the interaction between
R and α in using 19 FRBs detected in the ASKAP Com-
mensal Real-time ASKAP Fast Transients (CRAFT) sur-
vey (Shannon et al. 2018), finding R to be between 6.9
(α = −1.1) and 23 FRBs sky−1 d−1 (α = −3.0), above effective
thresholds of 92 and 36 Jy ms, respectively, at the survey time res-
olution of 1.2656 ms.

Lawrence et al. (2017) perform a maximum likelihood fit of
equation (1) to FRBs detected by several telescopes, accounting
for the effect of idealized beam shapes. They find R = 587+336

−315
above 1 Jy ms for α = −0.91 ± 0.34 (95 per cent CI). Vedantham
et al. (2016) also use maximum likelihoods, estimating α using
two methods. The observed fraction of multiple- to single-beam
detections of Parkes yields −0.52 > α > −1.0 (90 per cent CI),
and combining both detections and non-detections of several other
instruments finds −0.32 > α > −0.92, with a combined constraint
of −0.5 > −α > −0.9.

The constraints set by the maximum likelihood methods of both
Vedantham et al. (2016) and Lawrence et al. (2017), which come
from comparing multitelescope data, are sensitive to unmodelled
differences in system response to the (unknown) dark matter (DM)
distribution, time duration, and frequency dependence of FRBs.
Neither include the effects of radio-frequency interference (RFI)
on detection efficiency, and use analytic approximations to beam
patterns, deviations from which have been shown by Macquart &
Ekers (2018a) to greatly affect implied FRB properties. Further-
more, both analyses include the Lorimer burst, which should be
excluded from statistical calculations on the grounds of discovery
bias (Macquart & Ekers 2018a).

In summary, while the methods of both Vedantham et al. (2016)
and Lawrence et al. (2017) are analytically sound, their quantitative
results should be subject to revision.

A more robust method to estimate α is to apply the maximum
likelihood method of Crawford, Jauncey & Murdoch (1970) to FRB

samples from a single telescope. Both Bhandari et al. (2018) and
Macquart & Ekers (2018a) do so to different samples of FRBs
detected by Parkes, including data from the SUrvey for Pulsars and
Extragalactic Radio Bursts (SUPERB), estimating α = −2.6+0.7

−1.3

and −2.2+0.6
−1.2, respectively. It is therefore an outstanding question

as to whether or not the differences in the values of α obtained with
different methods are due to the pitfalls of making comparisons
between different telescopes, a true change in the FRB spectral
slope at different fluences, a statistical fluctuation, or some other
effect.

This paper concerns estimates of α and the maximum likelihood
method of Crawford et al. (1970) – estimates of the absolute rate
R will be left to a future work. In Section 2, we extend the max-
imum likelihood method of Crawford et al. (1970), formulating it
in terms of measured and threshold S/Ns as per Oppermann et al.
(2016). Our formulation avoids all of the aforementioned uncertain-
ties in beam shape and FRB properties, and renders the concept of
a ‘completeness fluence’ irrelevant. We outline the correct method
for applying this updated maximum likelihood test to FRB data in
Section 3. The new approach is both simpler, and allows the use of
a greater proportion of detected FRBs than previous applications.
This gives it greater statistical power and less bias. This method
is then applied independently to both Parkes and ASKAP FRBs in
Section 4, which have sufficient detections to provide independent
meaningful estimates of α. A full maximum likelihood optimiza-
tion, accounting for errors, is performed in Section 5, which allows
the likelihood ratios to test whether or not the same power-law dis-
tribution can account for both samples. The discussion of Section 6
compares the resulting estimates of α, both to each other and to
those of previous authors, and interprets the result in terms of the
cosmological source evolution of FRB progenitors.

2 G E N E R A L I Z AT I O N O F TH E M E T H O D O F
C R AW F O R D ET A L .

The application of maximum likelihood methods to source-counting
statistics is often referenced to Crawford et al. (1970), who discuss
the problem in terms of a population of N(S) sources with flux
densities greater than some value S. It is assumed that N(S) has the
form of a power law:

N (S) = kSα, (2)

where k is a constant, and α the index. Note that Crawford et al.
(1970) use −α for the index, and a for the estimator of α. Using
here α∗ as the maximum likelihood estimator of α, α∗ is then given
by

1

α∗ = − 1

M

∑
i

ln s ′
i (3)

for an observation of M sources with flux densities Si, where si =
Si/S0 for a detection threshold S0. The standard deviation of the
result for large M, for which α∗ ∼ α, is given by

σα(α) ∼ σα(α∗)

= Mα∗

(M − 1)(M − 2)0.5
. (4)

The distribution of α∗ given α, p(α∗|α), follows a gamma distribu-
tion:

p(α∗|α) = (−α)M

M!

(
M

−α∗

)M+1

e−αM/α∗
. (5)
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Crawford et al. (1970) also note that while the estimate (α∗)−1 of
α−1 obtained from equation (3) is unbiased, the estimate of α, α∗,
is biased. An unbiased estimate, α′, can be found using

α′ = M − 1

M
α∗. (6)

Error estimates for α′ will also be modified by the same factor.
Equations (2) and (3) specify both the source distribution and the

detection threshold S0, in terms of a single variable, S. However,
the flux density threshold S0, or equivalently a fluence threshold
F0, of a transient source will vary with event duration. In the case
of FRBs, both dispersion measure and source position in the beam
are often discussed complicating factors. In the following section,
we first demonstrate that equation (3) is applicable to an arbitrarily
complicated distribution when s is simply the observed S/N rel-
ative to a threshold, S/Nth. We also formulate the problem from
hereon in terms of fluence F, which is the standard used by the FRB
community.

2.1 Maximum likelihood methods in a multidimensional
observation space

Consider a set of parameters θ covering both intrinsic source prop-
erties (e.g. dispersion measure) and observational effects (e.g. beam
shape). Defining the relative source distribution of events within the
space θ as k(θ ), and total K such that

K =
∫

dθ k(θ ), (7)

we assume that k is independent of fluence threshold F, so that the
integral source-count distribution still has the form

N (F ) = K

(
F

F0

)α

. (8)

Note that we now normalize F relative to some threshold F0 (cf.
equation 2). While the use of number counts N, rather than a rate R, is
arbitrary, we do so as a reminder that θ can include time-dependent
factors.

For this formulation, the probability of an event p(θ , F ) occurring
in the range dθ dF given a single observation is

dp(F, θ )

dθ dF
= −k(θ )

C

α

F0

(
F

F0

)α−1

. (9)

The normalizing constant C is required to ensure that the probability
density, when integrated over the entire parameter space, equates to
unity. Considering events between a threshold Fth and maximum Fm,
where (crucially for this method) both depend on θ in an arbitrary
way to account for possible experimental sensitivities, C, becomes

C =
∫

dθ

∫ Fm(θ )

Fth(θ )

−dN (F, θ )

dF
dF

=
∫

dθ k(θ )

[(
Fth(θ)

F0

)α

−
(

Fm(θ )

F0

)α]
. (10)

Defining relative fluence threshold s and maximum b similarly to
Crawford et al. (1970):

s ≡ F

Fth(θ )
, (11)

b ≡ Fm

Fth(θ)
, (12)

equations (9) and 10 can be written in terms of s, using dF = Fthds:

dp(s, θ )

dθ ds
= −k(θ )

C ′ αsα−1Fα
th(θ ), (13)

C ′ =
∫

dθ k(θ )Fα
th(θ )

[
1 − bα(θ )

]
, (14)

where a factor of Fα
0 has disappeared into the new normalization

constant, C
′
. Practically, this means that an experiment observing

N events need not be concerned about the absolute scale F0 of the
power-law distribution when calculating the relative probability of
observing s – however, the absolute scale is critically important
when estimating the absolute rate R, necessary to compare different
experiments. A simple example would be two experiments with
thresholds F0 of 1 and 10 Jy ms, where the latter would measure a
rate R of 10α less than the former.

In the case where the relative maximum fluence, b, is independent
of θ , the total probability of observing s given a single observation
becomes

p(s) =
∫

p(s, θ )dθ

= −α
sα−1

1 − bα

1

C ′′ ds

∫
dθ kobs(θ)Fα

th(θ),

C ′′ =
∫

dθ kobs(θ )Fα
th(θ ). (15)

Noting that the normalization constant C′′ simply cancels out the
integral, p(s) reduces to

p(s) = −α
sα−1

1 − bα
ds. (16)

This is exactly the formula derived by Crawford et al. (1970) in
their equation (6). All results presented in that work then apply,
specifically that in the case where b = ∞, α can be calculated
as per equation (3). To repeat their analysis, maximizing the log
likelihood L in terms of estimated probabilities pi for each event i
gives

L = log
N∏

i=1

pi(s) (17)

=
N∑

i=1

[
log(−α) + (α − 1) log si − log(1 − bα)

]
.

Differentiating with respect to α produces

∂L
∂α

=
N∑

i=1

[
α−1 + log si + bα log b

1 − bα

]
. (18)

Setting this to zero to find the maximum with respect to α defines
the estimator α∗. Using b = ∞ produces

N

α∗ +
N∑

i=1

log si = 0

⇒ 1

α∗ = −1

N

N∑
i=1

log si . (19)

In summary, if one can calculate the ratio s between signal strength
and detection threshold Fth(θ) for each event, one can estimate the
slope of the cumulative source-count distribution α without knowing
the complex dependencies of that threshold on event parameters θ ,
or the distribution of true source events with that space k(θ) – or
even what the source space θ is.
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3 A P P LIC ATION TO FRB SEARCHES

FRB searches currently suffer from several complicating effects.
Their (generally) once-off nature means that most FRBs are poorly
localized, and hence their true fluence F is observed at reduced
sensitivity Fobs = BF, where B is the value of the antenna beam
pattern at which they are observed. Their variable duration – itself a
function of dispersion measure, scattering, and intrinsic pulse width
– means that longer bursts require a higher fluence to be detected.
RFI can result in a time-dependent threshold, while different surveys
have vastly different sensitivities. The analysis algorithms used by
each experiment have their own complicated response patterns. The
particular shape of each FRB pulse in both time and frequency – and
how this is measured at the experimental time/frequency resolution
– also affects the detection probability (Keane & Petroff 2015).
While the source distribution k(θ ) will obviously be independent of
some of these parameters (e.g. local RFI, position in beam), all may
affect the fluence sensitivity threshold Fth(θ ).

It is important to emphasize that all these parameters fall within
the definition of the parameter space θ introduced in an abstract
sense in Section 2. Indeed, θ can extend to include different exper-
iments in the one analysis.

Correctly incorporating these experimental effects into an analy-
sis will result in a powerful probe of the FRB fluence distribution.
However, they make it very difficult to reconstruct the true value of
F for any given event. Furthermore, the intrinsic FRB distribution
is related to the observed properties through equation (10), where
in this example, the ‘normalizing constant’ C is the total number
of detected events. Estimating the FRB rate therefore requires inte-
grating over the parameter space θ of experimental dependencies.
This is very difficult, since each telescope’s Fth(θ ) is often not well
understood, and the DM, duration, frequency, and signal-shape de-
pendence of k(θ ) certainly is not. The result of Section 2.1 is so
useful because this complicated integration is cancelled when using
s in maximum likelihood estimates of α (the cancellation occurs at
equation 15). Furthermore, for FRB searches, the relative fluence s
is generally very easy to calculate.

FRB searches regularly report the S/N of events passing a pre-
determined threshold, S/Nth. Calculating both parameters is readily
achieved by assuming Gaussian noise statistics for received power
in the time–frequency domain, and simply tracking the number of
samples added in any given search. In such a case, the parameter s
is simply the ratio

s = S/N

S/Nth
, (20)

i.e. it is the detected significance relative to threshold significance.
Combining equations (19) and (20) gives

1

α∗ = −1

N

N∑
i=1

log

(
S/N

S/Nth

)
i

. (21)

It is worthwhile discussing the assumptions in the derivation of
Section 2.1 in the context of FRB searches. Certainly, it is pos-
sible that the true integral source-counts distribution, N (F, θ ), is
not separable between ‘complicating parameters’ θ and the fluence
distribution (F/F0)α . An example would be observationally brighter
FRBs having lower DMs. However, should this be the case, the
integral source-counts spectrum would almost certainly not be a
power law – in this specific example, it would necessarily turn over
due to the missing bright, high-DM population. Hence, a power-law

model would simply be the wrong model to fit, and more sensitive
tests using s will then be more likely to detect deviations from this
model.

Assuming that the relative maximum threshold b is constant
over all θ (to derive equation 16), and set to infinity (to derive
equation 19), is not a very stringent criterion – b needs only be
very large. This is the case for both FRB 010724 (Lorimer et al.
2007) and FRB 180309 (Oslowski et al. 2018a), which demon-
strate the possibility of an FRB hitting a limit at which its S/N
can no longer be estimated in the primary detection beam. In both
cases, and likely future cases, it was due to insufficient dynamic
range causing saturation in recorded data. For FRB 010724, the
S/N could be recovered using neighbouring beam detections, while
for FRB 180309, saturation affected relatively few scintles in the
dynamic spectrum. If this effect can be characterized as a moder-
ate linear reduction in an intrinsically high S/N, the resultant effect
on log s for that event would be small. For example, were the true
S/N for FRB 180309 to be 421 rather than 411, log s would have
increased by 0.01 for that particular event, and hence α increased
for an FRB sample by an even smaller fraction. Equivalently, this
means that the calculated values of α will be insensitive to any
cut-off in the peak FRB luminosity lying far above experimental
threshold.

It is also worthwhile noting that the derivation in Section 2.1 (and
of Crawford et al. 1970) ignores errors in s, i.e. it assumes that the
measured S/N is unaffected by noise. As discussed in Murdoch,
Crawford & Jauncey (1973), when the threshold S/N, S/Nth, is 6
or greater, this has negligible effect on the resulting calculations of
α. The calculation of Section 5 illustrates how to account for these
errors.

Some cautionary notes are needed. The value of S/N must be
calculated using the detection algorithm that sets S/Nth, not with
a more detailed follow-up calculation (e.g. fitting a detailed pulse
profile) that boosts S/N. Doing so would create an artificial gap
between the original threshold S/Nth and the boosted S/N values,
which could not be filled by boosted subthreshold events, since
these are missed by the detection algorithm.

If a data set is re-examined using a more sensitive detection
method however, then the newer updated values of S/N and S/Nth

must be used in the calculation, even for FRBs detected in the
prior analyses. The more sensitive method will only identify new
events that were subthreshold in a previous analysis, equivalent to
setting a very low upper sensitivity limit b in equation (18). To
recover the b = ∞ result of equation (19) therefore requires using
updated values for all events. This applies even if no new events
are detected, since changing statistical methods based on observed
outcomes (‘flip-flopping’) leads to biased results.

3.1 A possible cause of bias

The most likely cause for bias in calculated values of s, however,
is the use of human ‘by-eye’ discretion to identify plausible can-
didates against RFI background, as noted by Macquart & Ekers
(2018a) in section 2.3 of that work. When these inspection methods
are used to rule out RFI-only candidates, as is usually the case,
this does not present a bias. However, when a true candidate is
detected in the presence of RFI, then the chance that it is falsely
rejected decreases with increasing signal strength. Mathematically,
this implies a time-varying threshold S/N that can be significantly
larger than the nominal computed values. If a candidate is accepted
this way, then using the nominal S/Nth will give an artificially large
value of s, and hence a biased value of α.
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1346 C. W. James et al.

Any method to overcome this bias necessarily involves estimat-
ing S/Nth on an event-by-event basis. The first step requires using a
reproducible algorithm (e.g. a machine learning method) to identify
FRBs, and associate them with a statistical S/N value. Once an FRB
is detected, however, it should be fed back into the detection algo-
rithm with artificially reduced S/N, i.e. after manually subtracting
its fitted flux. This should be repeated until the algorithm no longer
identifies the event as an FRB, thus determining the actual S/Nth

for that event. This method could also work with crowdsourced
classification methods, where the initial and subsequent identifi-
cations are performed by a random, and hence independent (but
statistically identical) ensemble of volunteers. However, it could
not be used when a small number of experts perform by-eye anal-
ysis, both because the initial identification will not be replicable,
and subsequent identifications of reduced S/N events will not be
independent.

3.2 Equivalence to V/Vmax test

The V/Vmax test of Schmidt (1968) has been discussed in the context
of FRBs by Oppermann et al. (2016) and Macquart & Ekers (2018a),
and applied to a sample of CRAFT FRBs by Shannon et al. (2018).
The test calculates for each detection the volume of space over
which a source would have been detectable, Vmax, and the volume
enclosed within the actual detected distance, V. For a non-evolving
source distribution, the measured values of V/Vmax will be uniformly
distributed between 0 and 1, with a mean of 0.5, and standard
deviation of 1

2
√

3
(for a single sample).

In the case of FRBs, where the distance to each source is generally
unknown, the value of V/Vmax for a particular event in Euclidean
space can be calculated using

V

Vmax
= R3

R3
max

,

R

Rmax
=

(
F

Fth

)−0.5

(22)

⇒ V

Vmax
≡ s−1.5.

In other words, the V/Vmax test uses exactly the same information
from each event (s) as the calculation of α in equation (21). This
explains why the V/Vmax test is insensitive to variations in burst
properties and variations in sensitivity, as noted by Shannon et al.
(2018).

An interesting exercise is to determine for which kinds of true
source distributions each test more effectively rejects the Euclid-
ian, non-evolving hypothesis. In the case of pure power-law distri-
butions, Table 1 compares the expected values for each test as a
function of α, and the rejection power r, defined here as

r = lim
N→∞

√
N

(
μ(α) − μ(α = −1.5)

σ (α = −1.5)

)
, (23)

where μ is the expected value of each test, and σ is the standard
deviation in the case of α = −1.5 and number of samples N. The
limit N → ∞ is taken so that σ approaches its large N form, and
biases tend to zero (i.e. α′ → α), while the factor

√
N renormalizes

this to a single sample. From Table 1, the rejection power of the
maximum likelihood test is approximately 30 per cent greater than
that of the V/Vmax test. This is to be expected, since the maximum
likelihood estimate has been optimized specifically for a power-law
distribution.

Table 1. Rejection power r, defined as per equation (23), for rejecting the
α = −1.5 hypothesis, in the case where the true FRB fluence distribution is
a power law with index given by the leftmost column. In the N → ∞ limit,
this will also equal the expectation value μl for the maximum likelihood
estimation of α from equation (3). The expectation value of the V/Vmax test
is given by μv , while rl and rv are the rejection powers of the maximum
likelihood test (equation 3) and the V/Vmax test (equation 22), respectively.

α(= μl) μv rl rv

−1.0 0.410 − 0.41 − 0.31
−1.1 0.430 − 0.33 − 0.24
−1.2 0.449 − 0.25 − 0.18
−1.3 0.467 − 0.16 − 0.11
−1.4 0.484 − 0.08 − 0.06
−1.5 0.500 0 0
−1.6 0.516 0.08 0.06
−1.7 0.531 0.16 0.11
−1.8 0.544 0.24 0.15
−1.9 0.557 0.33 0.20
−2.0 0.570 0.41 0.24

4 C A L C U L AT I O N S W I T H PA R K E S A N D
ASKAP DATA

The methods described above can be applied simultaneously to
combined sets of FRB data from multiple telescopes. Here, we
limit this to the two instruments with sufficiently large numbers of
detected FRBs such that fits to individual telescope data sets will
be meaningful. Currently, this is data from various searches with
the Parkes radio telescope, and FRBs detected by the Commen-
sal Real-time ASKAP Fast Transients (CRAFT; Macquart et al.
(2010)) survey with ASKAP. In the near future, the upgraded
Molonglo Observatory Synthesis Telescope (UTMOST; Bailes
et al. 2017) and the Canadian Hydrogen Intensity Mapping
Experiment (CHIME; The CHIME/FRB Collaboration et al.
2018) should both have sufficiently high statistics to apply this
method.

Applying equation (3) to Parkes and ASKAP data requires only
being able to calculate s from equation (20) for each detected FRB,
i.e. it requires knowing both the detected and instantaneous thresh-
old S/Ns. As discussed in Section 3, the multitude of potentially
complicated effects causing some fraction of FRBs to remain un-
detected can be ignored.

All FRBs detected by Parkes listed on FRBCAT (Petroff et al.
2016) with published S/Ni and S/Nth are given in Table 2. The
only exceptions were FRB 150807 (Ravi et al. 2016), for which
no published S/N or S/Nth value exists; and the Lorimer Burst
(FRB 010724; Lorimer et al. 2007), which is excluded on grounds
of discovery bias (Macquart & Ekers 2018a). Equivalent values for
ASKAP FRBs detected by CRAFT, which all used S/Nth = 9.5
(after post-processing of initial data searched at S/Nth = 10), are
given in Table 3. Fig. 1 shows the distributions of N(s) for these
samples.

Using these values as input to equation (21), we calculate bias-
corrected values α′

p = −1.18 ± 0.24 and α′
a = −2.20 ± 0.47 for

Parkes and ASKAP/CRAFT, respectively. The errors are 68 per cent
CI, calculated using equation (5), and scaled according to equa-
tion (6) for α′. They are symmetric at the stated level of precision.
Thus the difference corresponds to 1.9σ assuming Gaussian errors.

The analysis allows both data sets to be combined if we assume
that the same power law governs both data sets. Doing so produces
α′

c = −1.55 ± 0.23.
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The source-count slope of FRBs 1347

Table 2. Parkes FRBs with known S/Ns and threshold ratios S/Nsth, allow-
ing relative detection strength s to be calculated.

FRB S/N S/Nth s Ref.

110220 49 9 5.44 Thornton et al. (2013)
110627 11 9 1.22
110703 16 9 1.78
120127 11 9 1.22
090625 28 10 2.8 Champion et al. (2016)
121002 16 10 1.6
130626 20 10 2
130628 29 10 2.9
130729 14 10 1.4
150418 39 10 3.9 Keane et al. (2016)
150610 18 10 1.8 Bhandari et al. (2018)
151206 10 10 1
151230 17 10 1.7
160102 16 10 1.6
010125 16.9 7 2.415 Burke-Spolaor & Bannister (2014)
010621 16.3 8 2.04 Keane et al. (2011); Keane (private

communication)
131104 30.6 10 3.06 Ravi et al. (2016)
140514 16 10 1.6 Petroff et al. (2015)
150215 19 10 1.9 Petroff et al. (2017)
171209 40 10 4 Shannon et al. (2017)
180301 16 10 1.6 Price et al. (2018)
180309 411 10 41.1 Oslowski et al. (2018a)
180311 11.5 10 1.15 Oslowski et al. (2018b)
180714 22 10 2.2 Oslowski et al. (2018c)

Table 3. CRAFT FRBs showing detected S/Ns and relative ratio s, com-
pared to the detection threshold S/Nth = 9.5.

FRB S/N s

Bannister et al. (2017)
170107 16 1.68

Shannon et al. (2018)
170416 13.1 1.38
170428 10.5 1.11
170712 12.7 1.34
170707 9.5 1.00
170906 17 1.79
171003 13.8 1.45
171004 10.9 1.15
171019 23.4 2.46
171020 11. 2.05
171116 11.8 1.24
171213 25.1 2.64
180110 35.6 3.75
180119 15.9 1.67
180128.0 12.4 1.31
180128.2 9.6 1.01
180130 10.3 1.08
180131 13.8 1.45
180212 18.3 1.93

Macquart et al. (2018)
180315 10.5 1.11
180324 9.8 1.03
180525 27.4 2.88

To check the robustness of the fit, a cut-off in s, scut, is introduced.
Modified values of s, s ′

i , are used in equation (3), calculated as

s ′
i = si

scut
, (24)

Figure 1. Cumulative source-count distributions N(s) of the Parkes,
ASKAP/CRAFT, and combined FRB samples used in this work, as a func-
tion of the logarithm of relative detection significance s. The factor s1.5

normalizes N(s) to the Euclidean expectation. The point due to FRB 180309
at log10(s) = 1.61 is not shown .

with only data points satisfying s ′
i ≥ 1 included in the sum. Doing

so should produce statistically similar (although correlated) values
of α′, due to the scale invariance of power-law distributions, while
α will slowly vary as per the expected bias. Significantly chang-
ing values of α′ indicate deviations from a power law, e.g. due to
near-threshold effects. This procedure is similar to that used by
Macquart & Ekers (2018a) to search for a threshold fluence, where
scut is set to each measured value si successively.

Fig. 2 shows the change of both corrected α′ and uncorrected α

as a function of scut. For each data set, changing scut produces only
small variations in α and α′, since neighbouring estimates differ
by at most one FRB, and are thus highly correlated. This explains
why the error ranges are much larger than the variation in the data.
While the errors gradually increase, the calculated value for Parkes
data, α′

p, stays approximately constant. There is a small hint of a
systematic decrease in α′

p for scut < 1.6, which is consistent with the
notion that RFI is acting to obscure marginal events, as discussed
in Section 3. However, this trend does not appear to be statistically
significant, and is followed by a subsequent increase in αp in the
range 1.6 < scut < 2, i.e. there is no conclusive evidence for this
behaviour in the Parkes data.

This is not the case for ASKAP data however, where the fitted
value of α′ decreases rapidly with the cut-off fluence, i.e. the FRB
integral source-count distribution appears to be steeper at higher
fluences. However, the lower bound of the 68 per cent CI stays con-
stant at around −1.7, so this also should not be seen as a significant
result.

Fig. 2 illustrates the bias that comes with using detected values
of si as cut-off fluences. Local minima in α are found when scut =
si, and local maxima when scut is slightly above si. Since a point
with si = scut contributes nothing to the sum in equation (3), but
does change the normalization N by 1, the increase in α when
moving from using N to N − 1 data points is a factor of (N − 1)/N.
Choosing either extremum can thus be associated with a systematic
error of ±0.5α/N, where the error is negative (positive) for including
(excluding) the threshold point si.

To test for shape deviations from a pure power law, the
Kolmogorov–Smirnov (K–S) test (Kolmogorov 1933; Smirnov
1948) is performed for each of the data sets, and illustrated in Fig. 3.
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1348 C. W. James et al.

Figure 2. Calculated values of uncorrected α (left) and corrected α′ (right), with upper plots using Parkes (blue) and ASKAP/CRAFT (red) data, and lower
plots using a combined data set. Calculations used equation (3), as a function of cut-off S/N, scut. This was performed as a continuous function of scut (lines,
with error bars according to equation 5), and using values of detected FRBs si as the cut-off (points). The uncorrected plots are shown to illustrate the bias on
estimates of α when compared to the corrected values.

Figure 3. Left: Kolmogorov–Smirnov (K–S) test for compatibility between bias-corrected power-law fits (dotted) to Parkes (blue), ASKAP (red), and combined
(green) data, as a function of the natural log of relative S/N, s (equation 20). Maximum deviations, i.e. the K–S statistics, are indicated by black arrows. Right:
results of a Monte Carlo estimate of the distributions of the test statistic K–S, assuming true power laws equal to the fitted values α′. Shown are the cumulative
(left-hand axis) and differential (right-hand axis) probability distributions for Parkes and ASKAP FRBs, and lines indicating the observed values of the K–S
statistic for each.
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The maximum deviations for each of the Parkes, ASKAP/CRAFT,
and combined samples, i.e. the K–S statistics, are 0.230, 0.104, and
0.133, respectively.

Since the values of α are estimated from the data, the standard
tables of the K–S test statistic under the null hypothesis do not apply.
Goldstein, Morris & Yen (2004) provide tables of the test statistic
for fitted power-law distributions in the case where the estimated
value of α is drawn from the data, using the Monte Carlo method.
However, their table is sparse, and it is much simpler to perform
such a Monte Carlo estimate of the distribution of the K–S statistic
under the null hypothesis, which allows a p-value to be assigned. The
results of this investigation are given in Fig. 3 (right). The associated
p-values (probability of seeing a K–S statistic equal to or greater
than that observed, assuming a true power law with values given by
α′) are 2.7 per cent (Parkes), 88 per cent (ASKAP), and 15 per cent
(combined).1 That is, from the K–S test, there is some evidence
that the Parkes sample deviates significantly from an underlying
power-law distribution, but none in the case of ASKAP data. The
result from the combined case is, as expected, intermediate.

The K–S statistic for Parkes data is a maximum immediately
below scut = 1.6. Using data at and above scut = 1.6 only, we find
α′ = 1.85, for which there is no significant discrepancy with the
value of α′ found for ASKAP data.

That the K–S statistic highlights the Parkes results as being less
consistent with a power-law distribution than the ASKAP/CRAFT
data, whereas Fig. 2 suggests the opposite, is likely due to the
correlated nature of the data presented in Fig. 2, and a reminder of
the dangers of by-eye interpretations of it.

The K–S test is a very general, and consequently not very pow-
erful, test for differences in the integral source-count spectrum be-
tween the two data sets. A full likelihood ratio test is used in Sec-
tion 5 to quantify this difference. First, we make some comments
on previous results.

4.1 Comments on previous results using completeness fluences

The maximum likelihood method of Crawford et al. (1970) used in
Section 2 has been invoked by both Macquart & Ekers (2018a) and
Bhandari et al. (2018) on different samples of Parkes FRBs, finding
α = −2.6+0.7

−1.3 and −2.2+0.6
−1.2 for N = 9 and 5 FRBs above threshold,

respectively. In both cases, the values of s inserted into equation (3)
were the estimated fluences (with no beam correction) relative to
a completeness threshold in fluence. Macquart & Ekers (2018a)
calculate α using only observed fluences as thresholds, and hence
their estimate of α is biased downwards by 0.5α/N = 0.14, whereas
Bhandari et al. (2018) use a pre-determined experimental complete-
ness threshold of 2 Jy ms. Also correcting for the intrinsic bias in
α, the adjusted estimates of these authors are α′ = −2.2+0.55

−1 and
−2.0+0.55

−1.1 , respectively (errors are scaled identically to the mean).
It is also interesting to comment on the use of a ‘completeness

threshold’ F0 with which to normalize observed fluences F in cal-
culating s. First, note that in the original historical context (source
counts in the Third Cambridge Catalogue of radio galaxies), it is
not readily possible to estimate an S/N – see e.g. the discussion in
section II of Murdoch et al. (1973). Thus it was more common to
try to find a ‘completeness flux’ (here fluence) Fc above which all

1The trial factor is somewhere between 2 and 3 due to the correlated nature
of the combined and individual tests, corresponding to between a 5.5 and
8.2 per cent chance of any result being as inconsistent as the Parkes data
under the null hypothesis of a true power-law distribution.

sources in the survey area would have been detected. Applying this
notion to the formalism of Section 2.1, Fc should be set such that

Fc ≥ Fth(θ ) ∀ θ . (25)

In this case, Fc can simply replace Fth in equation (9), and the basic
method of Macquart & Ekers (2018a) – increasing Fc until stability
is reached in α – is sound. However, it has several deficiencies in
the case of FRB counts.

First, the nominal value of Fc = 2 Jy ms in the case of most
searches at Parkes arises from the observed maximum pulse du-
ration of 30 ms (Keane & Petroff 2015). However, if Fth exceeds
the completeness threshold Fc over any part of the parameter space
for which FRBs exist (i.e. k(θ) is non-zero in this range), then the
survey will not in fact be complete. For instance, FRBs of 32 ms
width. The lack of FRBs with observed widths in this range can
either be interpreted as validating the k(θ ) = 0 requirement, or as
being evidence of incompleteness itself.

Secondly, the criteria of equation (25) results in many events
being rejected, which is unnecessary when their relative S/N can
simply be calculated according to equation (20). In particular, for
short FRBs, 2 Jy ms is well above the actual detection threshold,
which is closer to 0.5 Jy ms for FRBs of 1 ms duration.

Thirdly, equation (6) shows how the bias in α(Fc) increases as
the number of events in the sample is reduced. The effect is even
greater if the events themselves define the threshold. It induces an
artificial slope in plots of α as a function of threshold, which can be
seen in Fig. 2 (left). Any method that searches for a completeness
limit via a flattening in α(Fc) above a critical value will therefore
misidentify the completeness limit.

Fourthly, whereas S/N is readily calculable for a FRB search al-
gorithm, care must be taken not to calculate the observed fluence
(which is a derived data product) using a more advanced method
than that used for the FRB search, e.g. by the fitting of and inte-
gration over a Gaussian profile. Of course, corrected fluences (e.g.
beam-corrected values) can yield important information on FRB
properties – they just should not be used for this method.

Finally, when considering the impact of human discretion in
identifying candidates against an RFI background, the use of a
completeness threshold defined in terms of fluence rather than S/N
means that some candidates (e.g. those with long durations) with
fluence near Fc will indeed be marginal and difficult to identify by
eye, while others (e.g. those with short durations) will be extremely
strong. Artificially increasing s as per equation (24) is thus a much
more effective way to search for this effect.

The other aspect to note in the method of Macquart & Ekers
(2018a) (and applied by Bhandari et al. 2018) is that beam shape
remains a hidden and uncorrected variable. That is, while a sample
may be complete in received fluence, it is not complete in true flu-
ence. Hence, while the former authors note that defining thresholds
in terms of S/N leads to incompleteness at a given fluence level, in
fact a completeness fluence Fc cannot be defined in terms of true
FRB fluence either, which will always be greater by some amount
than the observed fluence.

In Appendix, we show – for completeness – how this case (defin-
ing S/N and/or Fc in terms of detected fluence) reduces to the results
of Section 2.1, and how the threshold method of equation (25) ap-
plies (i.e. equally, and with the same caveats). This result can be
briefly understood by realizing that a detection off beam centre will
affect both threshold and measured S/N (or equivalently fluence)
by an equal, if unknown, amount, thus preserving their ratio for
statistical purposes.

MNRAS 483, 1342–1353 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/483/1/1342/5173059 by Sw
inburne Library user on 08 April 2019



1350 C. W. James et al.

5 FU L L MA X I M U M L I K E L I H O O D
C A L C U L AT I O N O F PA R K E S A N D A S K A P FR B S
I N T H E PR E S E N C E O F N O I S E

We now present a traditional maximum likelihood estimate of α,
and use a likelihood ratio test to determine whether separate power
laws describe ASKAP/CRAFT and Parkes data significantly better
than a single power law.

The methods used in Section 2 ignore the contribution of noise
to the measured value of S/N, and hence s. Such a case is covered
by Murdoch et al. (1973), where the authors note that when the
threshold S/N is 6 or greater, no significant effect due to noise
is expected when calculating the power-law index α. Here, we
explicitly check this using a full likelihood maximization.

The likelihood of observing an S/N, Sobs, for a true power-law
distribution of Strue depends on the noise deviate n = Sobs − Strue:

P (Sobs) = 1

C

∫ +∞

−∞
P (n) dn

(
Strue

Sth

)α

, (26)

where the normalization constant C is the probability of observing
any such event above a threshold Sth:

C =
∫ ∞

Sth

P (Sobs)dSobs. (27)

For standard normal deviates, P(Sobs) is simply

P (Sobs) = 1

C

∫ +∞

−∞

1√
2π

e−(0.5n2)dn

(
Strue

Sth

)α

. (28)

The integral over dn can in practice be limited to a small range –
here ±5 is used. This has been tested to reproduce the values of
Murdoch et al. (1973) (table 1) to within the stated precision of four
significant figures.

The simplest definition of the likelihood functionL for the Parkes
and ASKAP samples of FRBs is therefore,

L = 1

N

N∑
i=1

log P (Si
obs), (29)

where the sum proceeds over all i observations. The Pi are calculated
according to equation (28), with Sobs and Sth the measured and
threshold S/Ns for that particular observation (the constant C must
also be renormalized for each observation). This is only applicable
when using Parkes data; the ASKAP data used a constant threshold
S/N of 9.5σ .

A more correct estimate in the case of Parkes or combined data
would require weighting each observation by the relative fraction of
observation time spent observing at that given threshold. However,
these values are generally not available, and the expected loss of
precision for a small variation in Sth is also small.

Calculating L as a function of α for the ASKAP, Parkes, and
combined samples (Tables 2 and 3) produces the values shown in
Fig. 4. To estimate the influence of Gaussian noise, calculations
were also performed by setting Sobs = Strue, i.e. P(Sobs) = δ(Sobs −
Strue). In general, this was found to have negligible effect on the
resulting likelihoods, except for large values of α.

The best-fitting values of α are found at the maximum of L, Lmax.
For the Parkes, ASKAP/CRAFT, and combined data sets, these
were −1.24, −2.40, and −1.61, respectively. These are consistent
with both corrected and uncorrected values calculated in Section 3,
although the uncorrected values are the proper comparators (the
bias of the analytic method is inherent in the maximum likelihood
procedure).

Figure 4. Evolution of the maximum likelihood L as a function of α for
Parkes, ASKAP/CRAFT, and combined data sets. Dashed lines use the full
Gaussian error distribution from equation (28), while dotted lines ignore the
noise contribution to Sobs.

While this numerical method does not allow CI to be set for
α, it does allow the likelihood ratio test to be performed. This
is because the combined fit represents a constricted model of in-
dividual fits to ASKAP and Parkes data. The test statistic D is
defined as

D = −2 log

(
Lmax

c

Lmax
a + Lmax

p

)
, (30)

where ‘p’, ‘a’, and ‘c’ denote Parkes, ASKAP, and combined data,
respectively. According to Wilks’ theorem (Wilks 1938), as the
number of observations tend to infinity, the distribution of D under
the null hypothesis (that both Parkes and ASKAP data come from
the same power-law distribution) will approach a χ2

1 distribution.
The number of degrees of freedom is 1 due to the single extra power
law being fitted.

For this case, D = 6.9, corresponding to a one-sided p-value
of 0.86 per cent for a χ2

1 distribution. That is, there is evidence
at the 2.6σ level that the Parkes and ASKAP data originate from
distributions with power laws of different indices, rather than the
same index.

Note that this test is complementary to the K–S test presented in
Section 3, which tests for deviations from power-law-like behaviour.
In the specific case of testing one versus two power laws, however,
this test is more sensitive, since it tests a specific deviation from
single power-law behaviour, rather than the general case. Hence,
greater inconsistency with the null hypothesis of both Parkes and
ASKAP data coming from the same power-law distribution is
found.

Specifically testing for differences of each sample with
a Euclidean distribution (α = −1.5), the test statistic
becomes

D = −2 log

(
Lp/c(α = −1.5)

Lmax
p/c

)
. (31)

This produces D = 1.01 for Parkes data (no evidence for
deviations from a Euclidean distribution) and D = 4.00 for
ASKAP/CRAFT data, corresponding to a one-sided 5 per cent prob-
ability of a more extreme deviation in the case of a Euclidean
distribution.
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6 D ISCUSSION

6.1 Evidence of a break in the FRB source-count distribution

Using the likelihood ratio test, we find evidence (p-value
0.86 per cent, i.e. 2.6σ ) that the Parkes and ASKAP/CRAFT sam-
ples arise from distributions with different power-law indices, of
−1.22 ± 0.25 and −2.15 ± 0.49, respectively (68 per cent CI). Our
ASKAP/CRAFT result agrees with the value of −2.1+0.6

−0.5 found by
Shannon et al. (2018) using an almost identical sample, but with the
less sensitive V/Vmax test.

The nominal Parkes threshold for FRB detection is 0.5 Jy ms for
a 1 ms duration FRB (Keane et al. 2018), while for ASKAP, it
is 26 Jy ms (Shannon et al. 2018). Therefore, if the FRB source-
count distribution observed by ASKAP is steeper, Parkes can-
not observe a pure power-law distribution. This is confirmed
by our K–S test results, which show that only 2.7 per cent of
true power-law distributions would show a worse fit to Parkes
data.

Under the null hypothesis of Parkes and ASKAP/CRAFT data
coming from the same power-law distribution, both p-values – de-
noted as p1 = 0.86 per cent and p2 = 2.7 per cent – will be inde-
pendent and uniformly distributed (this has been confirmed with
simulations). Their product p1p2 will therefore have a cumulative
distribution of p1p2(1 − ln p1p2), with low values providing evi-
dence for the alternative hypothesis of deviation from power-law
behaviour. This one-sided test provides 0.22 per cent (3.1σ ) ev-
idence against the null hypothesis. We have performed this cal-
culation a posteriori however, and therefore consider our a priori
probability of 0.86 per cent more reliable.

The K–S test of the ASKAP/CRAFT S/N distribution tests for
the steepening occurring above the ASKAP detection threshold.
Since we find this data to be well fitted by a power law (p-
value 86 per cent), this is consistent with the steepening occurring
over the fluence range between the Parkes and ASKAP/CRAFT
thresholds.

Another interpretation of our results is the potential bias dis-
cussed in Section 3.1, whereby effective experimental thresholds
are significantly larger than the claimed thresholds. If this is cor-
rect, then Parkes data below s = 1.6 should be excluded, i.e. the true
effective experimental threshold for most Parkes observations must
be near S/N = 16, given for the most common Parkes threshold of
10σ .

Further evidence for a turn-over in the observed Parkes rates,
however, can be found in the literature. The values of α found
for Parkes data by both Macquart & Ekers (2018a) and Bhandari
et al. (2018), after correcting for biases as discussed in Section 4.1,
are α = −2.2+0.55

−1 and −2.0+0.55
−1.1 , respectively. While these esti-

mates use an artificially high fluence threshold due to the use of
a completeness limit, the calculations – after bias correction –
are still statistically valid. Their results therefore appear to be in
tension with our value of α = −1.22 ± 0.25 for Parkes. How-
ever, the higher fluence threshold samples a fluence regime more
similar to that seen by ASKAP, so that if a break in the source-
count spectrum is present, then the used completeness threshold
likely lies above it. This then explains the better agreement with
the ASKAP value of α found here despite the use of data from
Parkes.

The effective threshold at α = −2.2 of ASKAP/CRAFT ob-
servations is 40 Jy ms to a 1.2656-ms pulse (James et al. 2018).
For Parkes, the nominal threshold of 0.5 Jy ms would be increased
to an effective threshold of at least 5 Jy ms for α > −1.5 and a

Gaussian beam shape (James et al. 2018). Therefore, we expect
the downturn in the FRB fluence distribution, Fb, to lie in this
range.

6.2 Interpretation

In this section, we consider what our results would imply about the
nature of FRBs, should they be verified by further data.

Macquart & Ekers (2018b) discuss how features in the FRB
source-count distribution will be intimately related to the cosmo-
logical evolution of the FRB progenitors. A value of α = −2.15
found here is typical of a flat FRB spectral index sν (F ∝ νsν for
frequency ν) and source evolution function that is more strongly
peaked than the star formation rate. It is analogous to the high-
fluence limit of active galactic nuclei (AGNs) source counts (e.g.
Wall, Pearson & Longair 1980).

Macquart & Ekers (2018b) also note that a flat distribution in
FRB energy/luminosity up to some maximum Emax/Lmax, com-
bined with a downturn in cosmological source evolution (at red-
shift z0), will lead to a break in the observed differential source-
count distribution. The break is predicted to be at a fluence
Fb = Emax(1 + z0)2+sν (4πD2

L(z0)−1), where DL is the luminosity
distance.

FRB data are currently too sparse to produce a full fit of the FRB
luminosity function. However, it is useful to check whether existing
constraints on Fb, Emax, z0, and sν can be mutually consistent with
the model of Macquart & Ekers (2018b). Shannon et al. (2018) ob-
serve that ASKAP/CRAFT FRBs are viewed out to approximately
z ∼ 1, and Parkes FRBs out to z ∼ 2–3 (suggesting 1 ≤ z0 ≤ 3), and
that the most energetic FRBs detected by ASKAP/CRAFT, Parkes,
and UTMOST have energies Emax around 1033–1034 erg Hz−1. Mac-
quart et al. (2018) find sν = −1.5 ± 0.3 for the ASKAP/CRAFT
sample. These ranges for sν , Emax, and z0 are indeed generally
consistent with 5 ≤ Fb ≤ 40 Jy ms, although some regions of the
parameter space can be excluded. The observed ranges are not hard
limits however, and further analyses and/or observations will be
required to further constrain these parameters.

7 C O N C L U S I O N S

We have extended the statistical results of Crawford et al. (1970),
allowing surveys with unknown completeness thresholds in phys-
ical units such as flux/fluence, but readily definable detection and
threshold values of S/N, to calculate the slope of power-law distri-
butions of detected events.

Applied to FRBs, this allows improved estimates of the slope of
the integral source-count distribution, α, without the need to con-
sider a completeness limit, beam pattern, or any other confounding
factor. Combining detections with the Parkes radio telescope and
CRAFT detections using ASKAP, we find a bias-corrected value for
α of −1.52 ± 0.24. Fitting these samples individually however, we
find −1.18 ± 0.24 and −2.20 ± 0.47, respectively. A likelihood ratio
test indicates this is compatible with a single power law at a p-value
of 0.86 per cent, and that the ASKAP/CRAFT sample is only com-
patible with the Euclidean expectation of −1.5 at a 5 per cent level.
This implies either a steepening in the FRB luminosity function
in the fluence range 5–40 Jy ms, or that the experimental threshold
for most Parkes FRBs is significantly higher than reported, being
approximately 16σ . This is the first hint of structure in the FRB
source-count distribution, which could be the first evidence of a
turn-over in a sharply peaked source evolution of FRB progenitors
in the redshift range 1–3.
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APPENDI X: EXPLI CI T BEAM DEPENDENCE
OF TELESCOPE SENSITIVITY

The abstract definition of the parameter set θ in Section 2.1 makes
it difficult to relate to specific experimental examples. Below is
explicitly outlined its application in the context of a ‘completeness
limit’ defined by observable fluence (i.e. reduced by the telescope
beam), as discussed in Section 4.1, and used by Macquart & Ekers
(2018a) and Bhandari et al. (2018). A similar method of explicitly
removing beam-shape effects from observed FRB fluence statistics
has been presented by Katz (2017), albeit only in the case where all
other confounding parameters are ignored, and without reference
or reduction to the statistical methods of Crawford et al. (1970).

Let the beam shape of a telescope be described by the direction-
dependent relative sensitivity B(�), such that B(�) ≤ 1, with (in
general) equality at beam centre. Ignoring frequency dependencies
(which could be treated within the set θ ), an FRB with fluence F
would be registered with modified fluence F′:

F ′(B) = BF . (A1)

The rate of FRBs, and hence the source term k of equation (7), will
not depend on B, and FRBs will arrive uniformly in solid angle �.
Furthermore, assume that the threshold Fth(θ) depends on B only via
equation (A1). It is useful to explicitly remove B from the parameter
set θ by defining

θ = {φ, B} , (A2)

i.e. φ is the set of all confounding parameters except B. Hence, we
can define

Fth(θ ) = Fth(φ)

B
, (A3)

and, since the event rate is not dependent on the beam, it can be
written as

R(θ ) = R(φ)

= k(φ)

(
F

F0

)α

. (A4)

The total integral C over all parameter space (cf. equation 10) can
be calculated as

C =
∫

dφ

∫
d�

∫ Fm(θ )

Fth(θ )
k(φ)

−α

F0

(
F

F0

)α−1

dF . (A5)

This can also be written as an integral over beam factor B, by
defining the solid angle viewed at each value of B, �(B) (see James
et al. 2018). Hence, C becomes

C =
∫

k(φ)dφ

∫
�(B)dB

∫ Fm(φ)/B

Fth(φ)/B

× −α

F0

(
F

F0

)α−1

dF . (A6)

As with equation (10), the integration over F in equation (A6) can
be performed explicitly:

C =
∫

k(φ)dφ

∫
�(B)dB

×
[(

Fth(φ)

BF0

)α

−
(

Fm(φ)

BF0

)α]
. (A7)
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Changing the definitions of relative minimum and maximum flu-
ences s and b in equation (12) to be relative to observed values:

s = B
F

Fth(φ)
,

b = B
F

Fmax(φ)
, (A8)

and inserting these into equation (A7) with ds = BF −1
th dF , pro-

duces

C =
∫

k(φ)dφ

∫
�(B)dB

×
∫ b

s=1

−α

F0

(
sFth

BF0

)α−1
Fth

B
ds. (A9)

What we wish to calculate is the normalized probability P(s), since
neither B nor φ is observable. This is defined as

P (s) =
∫

dφ

∫
dBP (s, B, φ), (A10)

where the joint probability P(s, B, φ) is simply the normalized
negative of the integrand in equation (A9):

P (s, B, φ) = −1

C
k(φ)�(B)αsα−1

(
Fth

BF0

)α

. (A11)

Observe that the integrals over φ and B can be separated out:

P (s) = −1

C
αsα−1F−α

0

×
[∫

k(φ)Fα
thdφ

] [∫
�(B)B−αdB

]
. (A12)

Returning to the constant C, performing the integration over s in
equation (A9) produces

C =
∫

k(φ)dφ

∫
�(B)dB

(
Fth

BF0

)α [
1 − bα

]
. (A13)

Noting that Fth is a function of φ, but not B, and again assuming
that b is independent of both parameters, C can be written as

C = [
1 − bα

]
F−α

0

∫
�(B)B−αdB

∫
k(φ)Fα

th(φ)dφ. (A14)

The integrals over B and φ in equation (A14) for C are identical to,
and cancel with, the same integrals in equation (A12). Removing
also the common power of F−α

0 produces

P (s) = −α
sα−1

1 − bα
. (A15)

This is identical to equation (16), with s and b defined in terms of
observable (i.e. beam-affected) quantities. All results thus follow,
i.e. the results of Crawford et al. (1970) outlined in Section 2
hold.

We also note that applying an artificial cut (or completeness
limit) Fc > Fth in the integrals over dφ, and defining s and b relative
to Fc rather than Fth, produces an identical result. Therefore, the
application of Crawford et al. (1970) by Macquart & Ekers (2018a)
and Bhandari et al. (2018) to beam-affected FRB fluences above a
completeness limit is valid.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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