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ABSTRACT
H I intensity mapping data traces the large-scale structure matter distribution using the
integrated emission of neutral hydrogen gas (H I). Cross-correlation of the intensity maps
with optical galaxy surveys can mitigate foreground and systematic effects, but has been
shown to significantly depend on galaxy evolution parameters of the H I and the optical
sample. Previously, we have shown that the shot noise of the cross-correlation scales with
the H I content of the optical samples, such that the shot noise estimation infers the average
H I masses of these samples. In this paper, we present an adaptive framework for the cross-
correlation of H I intensity maps with galaxy samples using our implementation of the halo
model formalism which utilizes the halo occupation distribution of galaxies to predict their
power spectra. We compare two H I population models, tracing the spatial halo and the galaxy
distribution, respectively, and present their auto- and cross-power spectra with an associated
galaxy sample. We find that the choice of the H I model and the distribution of the H I within
the galaxy sample have little impact for the shape of the auto- and cross-correlations, but
significantly affects the measured shot noise amplitude of the estimators, a finding we confirm
with simulations. We demonstrate parameter estimation of the H I halo occupation models and
advocate this framework for the interpretation of future experimental data, with the prospect
of determining the H I masses of optical galaxy samples via the cross-correlation shot noise.

Key words: cosmology: theory – cosmology: large-scale structure of Universe – radio lines:
galaxies.

1 IN T RO D U C T I O N

The cosmological evolution of our Universe can be tested via
probes of the statistics of large-scale structure. Common techniques
include measuring the Baryon Acoustic Oscillations (BAOs), which
act as a standard ruler for distance measures constraining the
Cosmic acceleration (see e.g. Reid et al. 2012; Anderson et al.
2014), as well as galaxy clustering which employs the positions of
galaxies to measure their cosmological power spectrum (for instance
Seljak et al. 2005; Percival et al. 2007). Both BAO measurements
and galaxy clustering require the determination of millions of
galaxy positions over large volumes in order to minimize statistical
uncertainties. Traditionally, optical telescopes have been employed
for cosmological measurements as radio telescopes are limited
in sensitivity. Beyond the nearby Universe, the determination of
redshifts at radio frequencies, at which the spectrum is close
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to featureless, is extremely challenging. The most notable radio
spectral line, at a rest-wavelength of 21 cm, is caused by the
spin-flip of the neutral hydrogen (H I) and is comparably weak.
It has only been directly detected up to z = 0.36 in a single object
(Fernandez et al. 2016), and in the statistically averaged spectrum
via H I stacking up to z ≈ 0.32 (Rhee et al. 2018). To circumvent
these limitations, H I intensity mapping provides a novel technique
to map the large-scale structure distribution as traced by neutral
hydrogen gas via low-resolution observations of the integrated and
unresolved 21 cm emission of multiple objects.

After H I intensity mapping was proposed as a test of cosmology
more than a decade ago (see Battye, Davies & Weller 2004;
Wyithe, Loeb & Geil 2008; Chang et al. 2008), Pen et al. (2009)
reported the first detection of structure in H I intensity maps of the
local Universe. Later, Chang et al. (2010) reported a detection in
observations around z ≈ 0.8. The challenges in detecting the H I

intensity mapping power spectrum arise due to the weakness of
the redshifted H I signal in comparison to the radio foregrounds in
combination with the radio telescope systematics, see e.g. Switzer
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et al. (2015), Wolz et al. (2017a), and Harper et al. (2018). The
cross-correlation signal of an H I map with an overlapping galaxy
survey is insensitive to many of these systematics and increases
the significance of detection. The detection of the cosmological
distribution via the power spectrum (Masui et al. 2013) was achieved
by measurements of the Green Bank telescope at medium redshift
z = 0.8 in cross-correlation with the WiggleZ Dark Energy survey
(Drinkwater et al. 2010), constraining the H I energy density and the
H I bias to �H IbH I = 0.63+0.23

−0.15 × 10−3 (Switzer et al. 2013). A more
recent detection has also been made, using the cross-correlation of
the H I intensity maps of the Parkes telescope with the 2dF Galaxy
Redshift Survey at z ≈ 0.08 (Anderson et al. 2018). The analysis
presents a 5-sigma detection of the cross-power spectrum with a
significant drop of the power on smaller scales, k ≈ 1.5 h Mpc−1,
indicating a strong anticorrelation of H I with the red galaxy sample.

The future of H I intensity mapping looks very promising, as a
large number of purpose-built instruments are under design and
construction. The instruments can be divided into three categories:
single-dish telescopes similar to the pioneering Green Bank and
Parkes telescopes or those equipped with multibeam receivers (e.g.
BINGO Battye et al. 2013), dish interferometers such as HIRAX
(Newburgh et al. 2016), and cylindrical dish interferometers such as
CHIME (Bandura et al. 2014) or Tianlai (Chen 2012). Additionally,
the Square Kilometre Array, an international radio interferometer
with unprecedented scale and sensitivity, will conduct H I intensity
mapping for wide ranges of redshifts 0 < z < 6 (Bull et al. 2015;
Santos et al. 2015). Two SKA pathfinder projects, MeerKAT and
the Australian SKA Pathfinder (ASKAP), are capable of intensity
mapping observations, and will be able to explore different observa-
tional techniques such as the employment of the array in single-dish
mode (Santos et al. 2017) or phased array feeds, in preparation for
the SKA observations to commence in the next decade. Forecasts
predict that the future SKA H I intensity mapping experiments will
be able to measure distances via BAOs to a level that is comparable
to Stage IV optical experiments as well as obtaining new constraints
on higher, unobserved redshifts (Bull et al. 2015). The forthcoming
intensity maps will also set new constraints on non-Gaussianity
through measuring the ultra-large scales of the power spectrum
(Camera et al. 2014). For all mentioned experiments, the cross-
correlation of the H I intensity mapping signal with galaxy surveys
will be a crucial test for systematics, and most likely be the first
observable to deliver new scientific results.

In addition to cosmological parameters, the amplitude and the
clustering power of the H I intensity mapping power spectrum
depends on the distribution of the neutral hydrogen gas with respect
to the underlying matter field, and additionally for cross-correlations
on the observed optical galaxy sample. Recently, H I models based
on available data (see e.g. Padmanabhan 2018; Padmanabhan,
Refregier & Amara 2017), predictive theories (Chen 2012), as
well as hydrodynamical simulations (Villaescusa-Navarro et al.
2018) have been proposed to deliver the theoretical framework for
interpretation of the intensity mapping signal.

In this work, we extend existing H I models to predict the cross-
correlation of intensity maps with galaxy surveys to enhance the
interpretation of existing and forthcoming data, and provide a frame-
work to include halo occupation parameters into the cosmological
analysis of future measurements (for forecasts, see Pourtsidou,
Bacon & Crittenden 2015; Sarkar et al. 2016; Pourtsidou, Bacon &
Crittenden 2017). In Wolz, Blake & Wyithe (2017b), we have shown
that the shot noise in the cross-power spectrum, which is caused by
the discrete nature of galaxy data, scales with the average H I mass
per optical galaxy. Hence, intensity mapping data can be employed

to determine an average H I mass for any overlapping galaxy sample.
This allows determination of global scaling relations between star
formation activity as traced by the optical sample and their gas
contents, for redshifts well beyond the current limits for direct
gas detection. In this work, we present a theoretical framework
which correctly determines the shot noise contribution given the H I

parameters of the distribution, and which can be employed to fit the
H I parameters and shot noise in future observational data.

In this paper, we first briefly introduce the halo model framework,
along with our chosen numerical implementation (HALOMOD) in
Section 2. Here, we also introduce the employed halo occupa-
tion models for galaxies and H I models and present theoretical
equations for the H I autopower spectra and their respective cross-
power spectra. In Section 3, we describe our method of producing
lognormal realizations of joint optical and H I samples, which we
will use to verify our theoretical formalism. In Section 4, we
review the current understanding of shot noise on power spectra and
discuss its implementation in HALOMOD. We present and examine
the comparison of theory with lognormal simulations in Section 5.
In the following Section 6, we demonstrate how HALOMOD can be
used to constrain H I parameters via MCMC parameter estimation.
We discuss our findings and present the conclusions in Section 7.

2 H ALO MODEL DESCRI PTI ON

The halo model (Peacock & Smith 2000; Cooray & Sheth 2002)
is a highly successful description of the cosmological density field
that uses empirical models of the internal properties of dark matter
halos to access nonlinear scales. It has been employed, along with
a prescription for the abundance of galaxy tracers within halos
termed the halo occupation distribution (HOD), to predict the
spatial statistics of various galaxy populations, typically in order
to constrain various properties of the selected sample (Zheng et al.
2005; Zehavi et al. 2011; Beutler et al. 2013). It has recently
been extended to the domain of H I abundance by Padmanabhan &
Refregier (2017); Padmanabhan et al. (2017).

The halo model is based on the assumption that all material is se-
questered into discrete halos, which are, in turn, self-similar objects
that scale exclusively as a function of their mass. Consequently,
knowledge of the spatial arrangement of the halo centres combined
with a knowledge of their internal profiles, how these scale with the
halo’s mass, and the abundance of halos at any given mass, yields
a full statistical description of the matter field down to arbitrarily
small scales in real space. Likewise, assuming that any given tracer
inhabits halos with an abundance exclusively as a function of their
mass, the statistics of the tracer field may also be determined.

In summary, to describe the two-point statistics of a tracer field
(or the cross-correlation of tracers), one requires the following
ingredients:

(i) The nonlinear matter power spectrum (Smith et al. 2003).
(ii) The radial profile of the tracer within the halo, ρ(r); we

typically employ the standard NFW profile (Navarro, Frenk & White
1997), but also check the modified, or ‘cored” NFW employed by
Padmanabhan & Refregier (2017).

(iii) The mass function of halos, n(m); we use the fitting formula
of Tinker et al. (2008).

(iv) The abundance and distribution of tracers within halos, N(m);
we describe our choices for this component further in Section 2.2.

(v) The concentration–mass relation, c(m), which defines how
the profile scales with halo mass; we use the fit of Duffy et al.
(2008).
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(vi) The bias of halos of a given mass, b(m); we use the function
determined by Tinker et al. (2010).

Additionally, the effects of halo exclusion can be modelled, such
that pairs of the tracer that are very close are probabilistically
assigned to the same halo and excluded from the counts between
different halos, to avoid double-counting. We omit this modelling
for this introductory work, but note that its inclusion is trivial within
the HALOMOD package that we use.

2.1 The HALOMOD package

All halo model calculations performed in this work use the HALO-
MOD PYTHON library1 (Murray et al., in prep.). This library is built
on the HMF package2 (Murray, Power & Robotham 2013), which
handles the cosmology, linear power spectra, and mass functions.
The HALOMOD code provides many models for halo profiles, halo
bias, concentration–mass relations, HODs, and halo exclusion,
along with the necessary framework to combine these to produce
spatial statistics.

A key feature of the HMF framework which is extended to
HALOMOD is the simplicity of defining new component models
and ‘plugging” them into the calculations. Thus, for instance, it
is simple to define a new HOD model from a standard galaxy HOD,
and is instantly usable within the framework without having to
modify the source code. We note that versions of both HMF and
HALOMOD that calculate the results of this paper can be obtained
via the feature/HIHOD branch of each.

2.2 Halo occupation distributions

In our study, we require several HOD models: one which describes
the full galaxy count population, another which describes a particu-
lar optically selected sample count, and a model which describes the
H I occupation. We use variants of the simple HOD parametrization
of Zehavi et al. (2005) (Z05) in all cases. This model depends
on three parameters: the minimum halo mass to be occupied by
a galaxy Mmin, the characteristic halo mass M1 which marks the
turnover of the broken power law, and the power-law coefficient α

of the satellite HOD. We extend the parametrization by adding the
maximum (cut-off) halo mass Mmax as a parameter.

In general, the HOD can be split into two separate classes of
objects; central galaxies Ncen located at the centre of the halo, and
satellite galaxies Nsat that trace the halo’s density profile. The Z05
model assigns the following parametrizations to each component:

〈Ncen(m)〉 =
{

1, Mmin < m < Mmax

0, otherwise.
(1)

〈Nsat(m)〉 =
{

(m/M1)α, Mmin < m < Mmax

0, otherwise.
(2)

When stating that a sample may be described by a separation
of central galaxy and satellite galaxies, we furthermore assume
(in this paper) that this separation is due to the central having
a much higher probability of existence within the sample than
its associated satellites. This may be understood easily in terms
of optical samples, in which the central galaxy is typically much
brighter than the satellites. To approximate the effect of this a priori

1Source code at https://github.com/steven-murray/halomod.
2Available at https://github.com/steven-murray/hmf

Table 1. HOD parameters for all models considered in this work. All masses
are given as log10 and in units of M� h−1.

Model Mmin Mmax α M1 log AH I

Galaxy field 11.0 17.0 0.5 11.0 -
Galaxy sample 11.5 17.0 0.45 11.0 -
H I continuous 11.0 17.0 0.7 11.0 11.0
H I discrete 11.0 17.0 0.7 11.0 11.0

knowledge, our HALOMOD algorithms assert in such cases that a
central galaxy must be present before any satellites. In this case,
the average total occupation is accurately given by the following
definition, which ensures that the total occupation is zero whenever
the central occupation is zero, but otherwise yields the expected
sum of central and satellite:

〈N (m)〉 = 〈Ncen(m)〉(1 + 〈Nsat(m)〉). (3)

HALOMOD does not limit the form or parametrization of the HODs
and more complex models can be assumed.

In this paper, we adopt two fiducial galaxy HODs, in this study,
referred to as sample and field, where we assume that the galaxy field
model is a description of all optically detectable and H I emitting
galaxies and sample is an optically detected subsample of the field.
The HOD parameters of all galaxy and H I models can be found in
Table 1, where we choose representative values for all parameters
in our toy models.

In the following, we postulate two variations of the H I HOD
model in the framework of the halo model. For demonstration
purposes, we base the parametrization of the H I HODs on the
parametrization established for optical galaxies, the Z05 model.
More physically motivated and data-driven H I models have been
suggested in the literature, see Padmanabhan & Refregier (2017),
Paul, Choudhury & Paranjape (2018), and Villaescusa-Navarro et al.
(2018). We refrain from choosing a specific parametrization as H I

evolution is to-date poorly constrained by data, and the choice of
the H I HOD does not limit the validity of our study. Most suggested
models are parametrized by a similar amount of parameters (4)–(6)
and can be easily implemented in HALOMOD and their quantitative
predictions can be studied with our methods.

Continuous H I distribution. In this scenario, we assume that
the H I continuously traces the dark matter halo following an
independent density profile, for example a cored NFW profile as in
Padmanabhan et al. (2017). This implies that the H I is not associated
with galaxies and there are no central or satellite contributions
to the density. This model is best suited to describe the cold gas
distribution at the early stages of galaxy formation at the end of the
epoch of reionization and resembles seminumerical approaches to
cosmological simulations of intensity maps (e.g. Alonso, Ferreira &
Santos 2014).

We alter the Z05 HOD to describe the H I mass distribution, by
adding an extra normalization AH I in units of M� h−1 to scale the
distribution to produce typical H I masses, increasing the number of
parameters to five.

〈MH I(m)〉 =
{

AH I ((m/M1)α + 1), Mmin < m < Mmax

0, otherwise.
(4)

The additional term +1 in the HOD is introduced to simplify
comparison with our second H I model.

Discrete H I distribution. In this model, we assume that the H I is
on average following the underlying dark matter halo density profile
throughout the halo, but specify that the H I mass is co-located
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with the underlying galaxy field. Thus, the H I in any given halo is
discretely located. This model describes a stage of galaxy evolution
in which most H I is confined within galaxies and intergalactic cold
gas is negligible in the intensity maps. The approach predicts a
similar distribution to semi-analytic simulations which model the
cold gas abundances within star-forming regions (e.g. Lagos et al.
2014; Kim et al. 2017).

We model this case in a similar fashion to galaxies, in which we
split the HOD contributions into central and satellite components.

〈Mcen
H I (m)〉 =

{
AH I, Mmin < m < Mmax

0, otherwise.
(5)

and the satellite part by

〈M sat
H I (m)〉 =

{
AH I [(m/M1)α ] , Mmin < m < Mmax

0, otherwise.
(6)

We note that this H I model has a dependence on the model
defining the underlying galaxy field with which it is colocated.
While the HOD itself as defined above requires no knowledge of
the underlying field HOD, and thus the autopower spectrum of the
H I is fully self-defined, its cross-correlation with an optical sample
relies on the actual distribution of H I within the halo, which we
have described as being dependent on the field. We will see that this
information will be necessary in order to define theoretical cross-
correlations, Poisson noise, and also to self-consistently produce
joint simulations.

2.3 Galaxy power spectra

The power spectrum is divided into its 2-halo and 1-halo contribu-
tion, P(k) = P2h(k) + P1h(k). The 2-halo term closely follows the
linear matter power spectrum Plin(k) and, in its most general form
applicable to cross-correlation on large scales, the 2-halo term is
expressed as

P
ij

2h(k) = bi(k)bj (k) ∗ Plin(k), (7)

where bi is the effective bias of the ith probe, given as

bi(k) = 1

n̄g

∫
dm n(m) b(m)〈Ni(m)〉 ui(k|m). (8)

Here, b(m) is the halo bias, u(k|m) is the Fourier transform of the
halo mass profile, with mass m following the NFW model, and n̄g

is given by the number density of the galaxies, computed as

n̄g =
∫

dm n(m)〈N (m)〉, (9)

where n(m) is the halo mass function. For more details on the
implementation, please refer to Murray et al. (2013).

The 1-halo term is given by the clustering within the halos and
depends on the number of central and satellite galaxies. For the
autocorrelation of one probe, this results in

P1h(k) = 1

n̄2
g

∫
dm n(m)

[
〈NcenNsat〉 u(k|m)

+ 1

2
〈Nsat(Nsat − 1)〉 u2(k|m)

]
.

(10)

The first term depends on the expectation value of the number
of central–satellite pairs per halo multiplied by the halo mass
profile and the second term on the expectation value of the number
of satellite–satellite pairs per halo mass multiplied by the self-
convolved mass profile. Since in our model there can only ever be
either zero or one central galaxy in a halo, and under the assumption

that the central galaxy is always the first of the halo to be included
in a sample, we have 〈NcenNsat〉 = 〈Ncen〉〈Nsat〉. Furthermore, for
Poisson-distributed X, 〈X(X − 1)〉 ≡ 〈X〉2, which means (assuming
the satellite occupation is Poisson-distributed) that

P1h(k) = 1

n̄2
g

∫
dm n(m)

[
〈Ncen〉〈Nsat〉 u(k|m)

+ 1

2
〈Nsat〉2 u2(k|m)

]
. (11)

This form is convenient, as it only depends on the mean occupation
functions which we have defined above.

For the cross-correlation of two different galaxy samples which
follow different HODs and density profiles, the analogue of equa-
tion (10) is

P
ij

1h(k) = 1

n̄i n̄j

∫
dm n(m)

[ 〈
Ni

cenN
j
sat

〉
uj (k|m) +

〈
Nj

cenN
i
sat

〉
ui(k|m) +〈

Ni
satN

j
sat

〉
ui(k|m) uj (k|m)

]
. (12)

In general, we cannot further reduce this equation, because it is
not guaranteed that the absence of a central galaxy in one sample
necessitates the absence of satellites (as well as central) in a different
sample. However, if the central HOD happens to be a step-function,
so that at any mass either all or none of the haloes have centrals,
the central–satellite term decomposes as before. We note that this is
an extra condition, which was not required for equation (11). This
allows us to re-write the equation as follows:

P
ij

1h(k) = 1

n̄i n̄j

∫
dm n(m)

[ 〈
Ni

cen

〉〈
N

j
sat

〉
uj (k|m)

+ 〈
Nj

cen

〉 〈
Ni

sat

〉
ui(k|m)

+
(〈

Ni
sat

〉〈
N

j
sat

〉
+ σiσjR

ij − Q
)

ui(k|m) uj (k|m)

]
,

(13)

where Rij is the correlation of the satellite occupation between the
probes, and σ i the standard deviation of the satellite occupation,
which for a Poisson occupation is simply

√〈Nsat〉. Q is equal to
the expected number of shared points between the samples unless
either tracer is continuously spatially distributed which results in
Q = 0.

In general, Rij is constrained to be within (− 1, 1) and depends on
the complicated physical interactions of the two tracer populations.
However, for the toy models that we employ in this paper, it is
possible to provide a better description which we present in detail
in Appendices A1 and A2.

2.4 H I power spectra

Following the same arguments as in the previous section, we may
derive the power spectrum of H I density fluctuations for both cases
presented in Section 2.2. The 2-halo term of the H I power spectra
for both models is similar to equations (7) and (8) with the galaxy
HOD substituted by the H I occupation 〈MH I(m)〉 of the respective
model, such that

bH I(k) = CH I

∫
dm n(m) b(m)〈MH I(m)〉 uH I(k|m), (14)

where the coefficient CH I is described below. The H I halo density
profile uH I(k|m) is commonly defined as a modified (or cored) NFW
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profile (Padmanabhan et al. 2017) which in real space reads as

ρH I(r) = ρ0r
3
s

(r + 0.75rs)(r + rs)2
, (15)

where rs is the scale radius of the dark matter halo which is
defined as rs = rvir/c(m) and rvir is the virial radius of the halo.
We refrain from the use of a H I-specific parametrization of rs and
adopt the concentration–mass relation fit from Duffy et al. (2008).
In HALOMOD, we employ the analytic expression of the Fourier
transform uH I(k) of this profile (Padmanabhan et al. 2017).

H I intensity maps are measured in brightness temperature TH I.
To follow this convention, we convert all power spectra into
temperature units, using a conversion CH I, given by

CH I = 3A12hPc
3(1 + z)2

32πmHkBν2
21H (z)

(16)

with hP being the Planck’s constant, kB the Boltzmann constant, mH

the mass of the hydrogen atom, A12 the emission coefficient of the
21 cm line transmission, and ν21 the rest frequency of the 21 cm
emission. H(z) is the Hubble parameter at redshift z. All presented
studies are for redshift z ≈ 0. The plotted H I power spectra are given
in units of K2(Mpc/h)3 and cross-power spectra as K(Mpc/h)3 if
not stated otherwise.

The predicted mean brightness temperature for each H I model
can be determined via

TH I = CH I

∫
dm n(m)〈MH I(m)〉. (17)

The mean H I brightness temperature is directly proportional to the
H I energy density �H I which makes it a desired observable when
conducting H I intensity mapping experiments.

Continuous H I distribution. The 1-halo term of the autopower
spectrum in this case, with lack of satellite components, can be
written as

P
H I,cont
1h (k) = C2

H I

∫
dm n(m)〈MH I(m)〉2 uH I(k|m)2, (18)

while the cross-correlation with a galaxy sample g is

P
gH I,cont
1h (k) = CH I

n̄g

∫
dm n(m)uH I(k|m)

× [
(ug(k|m) 〈Ng

sat(m)〉〈MH I(m)〉 + RgH I)

+ 〈Ng
cen(m)〉〈MH I(m)〉] ,

(19)

where RgH I is a galaxy–H I correlation coefficient. As there is no
central–satellite split in the H I HOD, the clustering is simplified
into two terms – one in which the satellite galaxies pair with the
H I profile, and another in which the single (possible) central galaxy
pairs with the H I profile. We fiducially consider a value of R = 0 for
this work, which implies that the H I mass is uncorrelated with the
galaxy occupation. The more detailed derivation of the correlation
factor R and an example for a correlated toy model can be found in
Appendix A1.

Discrete H I distribution. The 1-halo power spectrum of the
discrete H I model can be written similarly to equation (11),
assuming that the positions of the satellite occupation are Poisson-
distributed:

P
H I,dsc
1h (k) = C2

H I

∫
dm n(m)

[
uH I(k|m)〈M sat

H I (m)〉〈Mcen
H I (m)〉

+ 1

2
〈M sat

H I (m)〉2uH I(k|m)2

]
.

(20)

Figure 1. The autopower spectra predicted by our model for the case of
galaxy field population, galaxy sample, H I continuum, and H I discrete
model. The H I power spectra are normalized by the square of the mean
temperature predicted by each model using equation (17) for presentation
purposes. Note that, by construction, both H I models predict the same mean
brightness temperature.

The 1-halo term of the H I cross-correlation with a galaxy sample
reads as

P
gH I,dsc
1h (k) = CH I

n̄g

∫
dm n(m)

[ (〈Ng
cen〉〈M sat

H I〉
)

uH I(k|m)+(〈Mcen
H I 〉〈Ng

sat〉
)

ug(k|m)+(〈Ng
sat〉〈M sat

H I〉
)

ug(k|m) uH I(k|m)
]
.

(21)

We note the absence of the correlation term, R. This is due to
exact colocation of the H I with the optical galaxies, as explained
in detail in Appendix A2. Briefly, in this model, H I abundance
depends only on the properties of the galaxy in which it is situated,
and this galaxy, by construction, has no correlation with other
galaxies. Therefore, all correlations are expressed at a separation
of zero, and do not affect the shape of the 1-halo term. This may
alternatively be seen as the exact cancellation of the correlation
term with the Q term in equation (13). The autopower spectrum
predictions of HALOMOD are shown in Fig. 1, where we show
the two models of galaxy power spectra, called field and sample,
with HOD parameters defined in Table 1. In yellow and green,
we compare the H I power spectra of the continuous and discrete
models, where we renormalize the H I spectra through division

by TH I

2
. We can see that for k < 10 h Mpc−1, both models’

predictions closely agree. For k > 10 h Mpc−1, the continuous H I

model falls off more quickly since the 1-halo term contains no
central–satellite contribution in the discrete case. In this figure, we
also demonstrate how the cored H I profile alters the power of the
1-halo term in comparison to the standard NFW profile. In the
remainder of the paper, we employ the standard NFW profile for
our computations such that the comparison of the cases are focused
on their clustering terms rather than on the impact of the density
profile.

The cross-power spectrum prediction of both H I models with
the two galaxy models are shown in Fig. 2. The differences in
the two H I models are negligible over all scales k. Furthermore,
even the differences in the two different galaxy models are very
small compared to the variation in their autopower spectrum. The
agreement of the two models is by construction as they follow
the same H I HOD parameters and we implement the continuous
case to be the sum of the central and satellite terms of the discrete
model. Therefore, they correlate in a similar fashion with the galaxy
samples which is not to be expected in general.
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Figure 2. The cross-power spectra predicted by our model for the case
of galaxy field population, galaxy sample, H I continuum, and H I discrete
model. The H I cross-power spectra are normalized by the mean temperature
predicted by each model using equation (17) for presentation purposes. Note
that, by construction, both H I models predict the same mean brightness
temperature.

In both figures, we neglect the shot noise, also referred to as
the Poisson Noise (PN) contribution PPN, and we will discuss its
contribution in detail in the following sections.

3 LO G N O R M A L SI M U L AT I O N S

In order to test the accuracy of the analytic routines within
HALOMOD, we create a number of mock realizations of the tracer
populations. As this is done explicitly to test the routines, the
simulations are prepared to mimic the assumptions of the halo
model formalism at the simplest level. In this section, we describe
the method used to generate these simulations.

3.1 Galaxy populations

We consider a cube of volume L3(Mpc/h)3 with N3 grid cells, in
which we generate a lognormal density field (Coles & Jones 1991)
using the POWERBOX package.3 We choose matching input power
spectra and parameters to HALOMOD to ensure comparability of
the results using a flat Planck15 cosmological model (Planck Col-
laboration et al. 2016) with �m = 0.307, �b = 0.0486, and H0 =
67.74km/(Mpc s).

We choose a minimum halo mass Mmin, h such that all halos
containing galaxies in our sample lie above the threshold. We
then draw a number density of halo masses nh = ∫

Mmin,h
n(m)dm

from the halo mass function distribution. These halos are placed
probabilistically within the grid volume, with the probability of
landing in a certain cell given by its relative density. The final
positions of each halo are drawn randomly within each cell,
rendering subgrid scales highly inaccurate. We note that the mass of
each halo does not affect its placement, which effectively means that
the halo bias is unity for all masses. When comparing simulations
to theory, we therefore set the theoretical halo bias to unity in
HALOMOD.

Finally, we use the resultant halo catalogue, with masses and
positions, as the scaffolding on which to assign the tracer population.
Here, we will describe the methods used for producing a single
tracer population, suitable for comparing with autospectra. We use
a routine in which for each halo i we perform the following steps:

3Available at https://github.com/steven-murray/powerbox.

(i) Sample a single number (zero or one) Ci from a Bernoulli
distribution with mean 〈Ncen(mi)〉

(ii) If Ci = 1, place a galaxy at 
xi and continue, else proceed to
next halo.

(iii) Sample a number Ni
sat from a Poisson distribution with mean

〈Ns(mi)〉.
(iv) If Ni

s > 0, sample Ni
sat radii, ri

j from the halo’s profile, ρ(r,
m), and sample (θ j, φj) isotropically to yield 3D co-ordinates, 
xi

j

centred at the origin.
(v) Assign Ni

sat galaxies to positions 
xi + 
xi
j .

We note that this procedure does not take into account halo
exclusion – halos are allowed to overlap arbitrarily – and thus to
reproduce the results analytically also requires no halo exclusion
model.

In our simulations, we first apply the steps outlined above using
the field HOD to create a galaxy catalogue which is assumed
to contain all available galaxies. We then create a subsample
of the galaxy catalogue which follows the HOD of the galaxy
sample. Similarly for steps (i) and (ii), for each galaxy in the field
catalogue we draw a single number Ci ∈ (0, 1) from the Bernoulli
distribution with mean Pi = 〈Nsample(mi)〉/〈Nfield(mi)〉 to determine
if the galaxy is part of the sample. The positions of the galaxies
are kept identical. We note that this procedure does not strictly
retain the Poisson-distributed nature of the satellite galaxies in the
sample. Nevertheless, the mean is retained, and we do not expect
the departure from Poisson statistics to be significant.

3.2 H I populations

Continuous H I distribution. For the continuous model, we assign
an H I mass to each halo produced by the lognormal realizations,
where we draw the H I masses according to the input H I HOD
at halo mass m assuming a Gaussian distribution with a standard
deviation σH I = 0.25〈MH I(m)〉. In order to mimic the continuous
H I distribution throughout the halo, we convolve the resulting H I

mass with a density profile using the following method. We note
that any arbitrary density profile independent of the underlying halo
density profile can be used in this routine.

According to the convolution theorem, the convolution of the
H I masses with any given profile is a multiplication in Fourier
space, which is more computationally efficient. However, generally,
the halo profile is a function of halo mass mi. In order to reduce
computation, we apply a projection algorithm for the convolution.
The H I masses are therefore binned according to their halo mass into
Nbin bins. We create Nbin cubes with each H I mass located at their
respective halo centre position. Each cube is Fourier-transformed
and multiplied by the Fourier-transformed profile of the mean halo
mass mi of the respective halo mass bin. We then sum all cubes to
create the final intensity mapping cube. For the case of the NFW
profile, the algorithm converges for Nbin = 25.

We note that the continuous H I distribution is based on the same
underlying halo distribution of the lognormal realization, but is
independent of the field or sample galaxy densities and satellite
positions.

Discrete H I distribution. In the discrete model, the H I HOD is
associated with an underlying galaxy field HOD 〈Nfield〉 which de-
scribes the distribution of all H I emitting objects. In our algorithm,
the galaxy field is drawn from 〈Nfield〉 as described in Section 3.1. We
then assign the H I mass of each galaxy from a Gaussian distribution
with mean 〈MH I,field〉 = 〈MH I(mi)〉/〈Nfield(mi)〉 and standard devi-
ation σH I = 0.25〈MH I,field(mi)〉 for satellites and centrals, respec-
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tively. The assumption that 〈MH I,field〉 = 〈MH I(mi)〉/〈Nfield(mi)〉 is
only true if the probability of selecting a galaxy is independent of
H I mass, which precludes the use of this algorithm for creating
correlated samples. This model allows for the galaxy field HOD
and the H I HOD to follow independent models and parametriza-
tions within the limitation that Mmin and Mmax of the H I sample
cannot be outside the defined galaxy mass range. In our study, we
choose Mmin, HI = Mmin, field and Mmax, HI = Mmax, field for simplicity.
Additionally, the H I mass can be scaled by an independent H I

density profile, similarly to the continuous case. In our study, we
set the H I profile equal to the NFW profile of the underlying galaxy
field.

3.3 Correlated populations

The procedures described above produce galaxy catalogues and H I

intensity maps useful for determining their 1-halo clustering and
Poisson noise. It is nontrivial to populate a physically motivated
model for correlated galaxy–H I samples in the framework of
HALOMOD. Commonly, the H I mass of galaxies is associated with
their star-formation activity and other more complex mechanisms
depending on the galaxy’s evolutionary state, which is beyond the
scope of our work.

As previously stated, in the continuous H I case, the correlation
factor R is determined through the dependence of the galaxy
numbers on the H I mass per halo, or vice versa (a basic example
of this is set out in Appendix A1), and this impacts the 1-halo
contribution of the cross-power spectrum.

For the discrete H I case, we demonstrated that a correlation
between the H I distribution and the galaxy abundances has no
impact on the 1-halo term. However, if H I masses and the galaxy
abundances are correlated, the averaged H I mass per galaxy over
the sample is modulated and hence the amplitude of the cross-
shot noise is changed, as we detail in the following section. As
one of our primary concerns is investigating the cross-shot noise,
we demonstrate this effect with correlated simulations through the
following procedure.

In order to create a H I correlation, we either up- or downweight
the H I masses of the galaxies in the sample by drawing for each
galaxyi a Gaussian variable δMi,H I with zero mean and multiplying
the absolute value |δMi,H I| with a weighting factor w = { + 1,
−1}. When assigning H I masses, we then add w × |δMi,H I| to the
mean H I mass at m given by the H I HOD 〈MH I(m)〉. This implies
that all galaxies in the sample either have higher or lower H I mass
than the mean of the Gaussian. Galaxies which are not part of
the sample are not affected by the weighting and their H I masses
fluctuate around the mean. This process slightly alters the measured
brightness temperature of the H I intensity maps. However, if the
galaxy sample is a small enough subsample of the whole galaxy
field, this effect will be minor.

4 POISSON N OISE

4.1 Autopower spectra

The additive shot noise contribution to the power spectrum, also
referred to as Poisson noise in the literature, is due to the finite
number of data points used to probe a continuous field. In galaxy
surveys, the shot noise is caused by the finite number of galaxies
in the sample employed to trace the matter field. The resulting

Poisson noise on the power spectrum is scale-independent with the
amplitude equal to the inverse of the galaxy density:

PPN = 1

ng

= 1

Ng/V
. (22)

The total power measured from galaxy survey data is P(k) = P2h(k)
+ P1h(k) + PPN.

The shot noise of a galaxy distribution is not strictly Poissonian.
Deviations from the Poisson limit were examined by e.g. (Hamaus,
Seljak & Desjacques 2011; Baldauf et al. 2013; Paech et al. 2017).
The deviations are caused by halo exclusion, nonlinear clustering on
small scales, and satellite galaxy distributions, where the fraction
of satellite galaxies can determine if the noise is sub- or super-
Poissonian (Baldauf et al. 2013).

In the halo model context, the shot noise of the halo power
spectrum may be determined by the k → 0 limit of the 1-halo
term of the power spectrum, which results in the Poisson limit. This
approach is correct when treating tracers without subsampling the
halo with satellite populations. For galaxy populations including
a central / satellite split, the k → 0 limit of the 1-halo term does
not result in the Poisson limit and overestimates the shot noise.
Ginzburg, Desjacques & Chan (2017) investigate the shot noise
expression for dark matter, halos, and tracers in the halo model
framework, considering galaxy populations with satellites. They
derive correction terms to the 1-halo term to accurately determine
the deviations from the Poissonian noise on scales k  1 h Mpc−1.
For our scales of interest where the shot noise dominates the overall
power for k � 1 h Mpc−1, the shot noise must converge towards the
Poisson limit of the 1-halo term neglecting the satellite correlations
(Ginzburg et al. 2017). For the remainder of this study, we will
only consider the Poisson limit of the shot noise and use the terms
Poisson noise and shot noise interchangeably.

We derive Poisson limit of the shot noise as

P
g

PN =
(∫

dm n(m)
∑

i=sat,cen

〈Ni(m)〉
)−1

. (23)

In intensity mapping, the nature of the shot noise depends on
the H I model used. In general, the shot noise is given by the
standard deviation (or second moment) of the observed field (see
Breysse et al. 2017and Kovetz et al. 2017 ), in this case the H I mass
distribution is such that

P H I
PN = C2

H I

∫
dm n(m)〈MH I(m)〉2. (24)

In the halo model context, this is equal to taking the k → 0 limit
of the 1-halo term neglecting the existence of satellite distributions,
similar to equation (18), see also Castorina & Villaescusa-Navarro
(2017) for a similar result.

In our specific case of the continuous model, the H I masses
are sampled per halo, which means that the number of samples is
equivalent to the number of halos. However, H I is not discretely
populated, but convolved with the halo profile which results in a
continuous map of the H I in voxel space. From a strict definition
of Poisson noise originating from discrete sampling and resulting
in a scale-independent noise, this means that the H I continuous
power spectrum does not contain a Poisson noise contribution. The
absence of H I shot noise in the continuous case is due to the strict
smoothness of the H I distribution tracing the halo. Alternatively, one
could think of the 1-halo term as the Poisson contribution which is
convolved by the halo profile.

For our H I discrete model, we assume that the H I masses are
sampled per galaxy, rather than halo, so we need to determine the
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second moment of the H I distribution per galaxy where the H I

per galaxy is given as 〈Mi
H I,field(m)〉 = 〈Mi

H I(m)〉/〈Ni
field(m)〉 with

i = {cen, sat}, (again we note that this is strictly only correct if
H I and galaxy abundances are uncorrelated). The resulting Poisson
noise of this model is

P
H I,dsc
PN = C2

H I

∫
dm n(m)

∑
i=sat,cen

〈Mi
H I,field(m)〉2〈Ni

field〉. (25)

We do usually not know either the HOD of the underlying galaxy
field, or the H I HOD, in order to determine the H I per galaxy as a
function of halo mass. In practice, the Poisson noise can be modelled
as a single additive number and fit to observations.

4.2 Cross-power spectra

The shot noise in the cross-power spectrum of two galaxy samples is
determined by the galaxy density of the overlap of the two samples
(see e.g. Smith 2009). If the two galaxy samples are mutually-
exclusive, the amplitude of the Poisson noise in the power spectrum
is zero.

As outlined in the previous paragraph, the continuous H I power
spectrum does not contain a scale-independent Poisson noise
contribution. Similarly, there is no Poisson noise generated in the
cross-correlation of a continuum and a discrete galaxy sample,
as the H I distribution is assumed to be completely smooth and
hence no additional sampling noise can correlate with the sampling
noise of the galaxies. Again, alternatively, one could think of the
sampling noise being incorporated in the 1-halo term as the Poisson
contribution is convolved by the smooth H I profile.

The discrete H I model can be approached similarly to the case
of two galaxy samples where shot noise is determined by the cross-
section. In intensity mapping, it is assumed that each object emits
H I and contributes to the H I maps. The cross-section of the H I

maps and the sample is hence the number density of the sample and
the Poisson noise is inversely proportional to the galaxy number
density. The H I contribution to the Poisson noise is determined by
the average H I emission of the galaxies in the sample. This general
expression for the cross-shot noise can also be derived considering
the k → 0 limit of the H I-galaxy 1-halo term in absence of satellite
populations. We derive the Poisson noise of the cross-correlation of
the discrete case as

P
gH I,dsc
PN =CH I

(∫
dm n(m)

∑
i=sat,cen

〈Mi
H I,field(m)〉〈Ni

sample〉
)

×
(∫

dmn(m)〈N (m)〉
)−1

.

(26)

This equation agrees with the derivation in Wolz et al. (2017b),
where it was shown that the Poisson noise is directly proportional to
the averaged H I mass per galaxy in the sample. This also implies that
the amplitude of the Poisson noise is sensitive to any correlations
between H I and the abundance of galaxies in the sample. In the
following, we verify these expressions by comparing the HALOMOD

predictions to simulations and showcase how the Poisson noise
can be fit in order to determine the averaged H I masses of galaxy
samples.

Figure 3. The galaxy power spectra predicted by HALOMOD for the
entire galaxy field and the selected galaxy sample in comparison with an
average power spectrum of 100 lognormal realizations with a box of length
15Mpc h−1 drawn from the respective galaxy HOD. We show HALOMOD

predictions including and excluding Poisson noise contribution.

5 C O M PA R I S O N O F H A L O M O D WI TH
SI MULATI ONS

5.1 Auto- and cross-power spectra

We run a suite of lognormal simulations with different box sizes with
length L ∈ {15, 25, 50, 100}Mpc h−1 and N = 200 pixels per side to
create a valid comparison for all relevant scales k. We find that the
HALOMOD prediction agrees well with the lognormal simulations
on all scales. In order to resolve the scales dominated by the H I and
cross-Poisson noise, we closely inspect simulations with volume
V = (15Mpc/h)3, which are presented in the following figures. We
simulate 100 realizations of each lognormal field and the error bars
of the following plots are given by the standard deviation of these
realizations.

In Fig. 3, we show the comparison of the autopower spectra of the
lognormal galaxy population models with the associated HALOMOD

prediction. The power spectrum measurements from the lognormal
realizations naturally contain Poisson noise contributions which we
add to the HALOMOD predictions using equation (23). We see that the
HALOMOD prediction including the Poisson noise is in agreement
with estimates from the lognormal simulations. In this plot, we
show our two galaxy models, field and sample (cf. Table 1). The
galaxy densities of the populations are predicted by HALOMOD as
nsample = 0.036(h/Mpc)3 and nfield = 0.110(h/Mpc)3 and estimated
from the realizations as nsample = 0.036 ± 0.0069(h/Mpc)3 and
nfield = 0.107 ± 0.017(h/Mpc)3.

In Fig. 4, the H I power spectra of the lognormal realizations
using the continuous and discrete model are shown in comparison
to the analytic HALOMOD predictions in units of K2 (Mpc/h)3. For
the continuous case describing smooth H I distributions within
halos independent of galaxy positions, we can see that the average
of the simulations and the analytic prediction agree very well
within the errors. In the discrete model, the H I distribution is
colocated with the galaxy positions and hence this model includes
a Poisson noise contribution as described in Section 4. We add
the theoretical prediction of the Poisson noise using equation (25)
to the predictions of HALOMOD. The combined amplitude is in
agreement with the estimates of the lognormal distributions. Both
H I models follow the same HOD parameter model, except the
discrete model uses two additional parameters to describe the
shape of the underlying galaxy field HOD (αfield and M1,field).
By construction, both H I models predict the same H I brightness
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Figure 4. The H I power spectra predicted by HALOMOD for the H I

continuous model and the H I discrete model in comparison with an average
power spectrum of 100 lognormal realizations with a box of 15Mpc h−1

drawn from the respective galaxy HOD. Note that the H I continuous model
does not include a scale-independent Poisson noise contribution since it is
estimated from a continuum field. We show HALOMOD predictions including
and excluding Poisson noise contribution.

Figure 5. The cross-power spectra predicted by HALOMOD for the H I

continuous model with the galaxy sample, and the H I discrete model
with the galaxy sample, in comparison with a average power spectrum
of 100 lognormal realizations of a box of length 15Mpc h−1 drawn from
the respective H I and galaxy HOD. Note that the H I continuous model
does not include a scale-independent Poisson noise contribution since it is
estimated from a continuum field. We show HALOMOD predictions including
and excluding Poisson noise contribution.

temperature TH I = 0.0050K . The lognormal simulations of the
continuous case produce TH I = 0.0049 ± 0.0013K and in the dis-
crete model produce TH I = 0.0048 ± 0.001K . The errors in these
measurements increase with σH I, the scatter with which the H I

masses per object were drawn from the H I HOD.
The cross-power spectra of the galaxy sample with the two H I

models are presented in Fig. 5. Even though the theory calculation
of the two models does not predict any visible deviation on all
considered scales, we observe that the inclusion of Poisson noise
in the discrete model considerably increases the power in the range
k � 2 h Mpc−1. The theoretical prediction of the cross-Poisson
noise is added to HALOMOD using equation (26). As previously
discussed, the cross-Poisson noise scales with the H I content of the
galaxy population averaged over all halo masses, in this case for the
galaxy sample. For this galaxy sample, we can measure an average
H I mass of log10(MH I,sample/M�h) = 11.202 from the lognormal
realizations, which is very close to the prediction of the theoretical
model with log10(MH I,sample/M�h) = 11.208. We note that in the
considered lognormal realizations with volume (15Mpc/h)3, the
mean number of galaxies in the sample is relatively low, with 121.

Figure 6. The cross-power spectra predicted by HALOMOD for the H I

discrete model with the galaxy sample with different H I weighting, in
comparison with a average power spectrum of 100 lognormal realizations
with a box of length 15Mpc h−1 drawn from the respective H I and galaxy
HOD. The dependence of the shape of the power spectra on the H I weighting
is negligible but the amplitude of the Poisson noise changes significantly.
We show HALOMOD predictions including and excluding Poisson noise
contribution.

5.2 Correlated populations

In the above example, the distribution of the H I within the galaxy
field for each halo mass m follows a Gaussian distribution with
standard deviation σH I. Thus, there is no dependence of the H I

content on the galaxy occupation within the sample. In reality, the
amount of H I present in the galaxy depends on its evolutionary state.
In general terms, blue, star-forming galaxies are expected to be H I-
rich whereas red, quiescent galaxies are H I-deficient. In this work,
focusing on the concept of Poisson noise in intensity mapping, we
do not concern ourselves with details such as luminosity functions
which would be required to accurately model these dependencies.

In order to mimic the effect that a correlation between luminosity
and H I mass would impose on the Poisson noise, we assume that the
galaxy sample describes the HOD of a specific type of galaxy which
is correlated or anticorrelated with the H I content as described in
Section 3.3. This correlation, as predicted, has no effect on the
H I autopower or the shape of the cross-power, but it changes the
amplitude of the cross-Poisson noise as the averaged H I mass per
galaxy in the sample is modified. Fig. 6 presents the result of the
weighting of the H I for the galaxy sample. To demonstrate the
change in the Poisson noise, we added the measured Poisson noise
from the lognormal simulations with coloured horizontal lines to
Fig. 6.

In general, a specific mathematical model of the correlation of two
samples is not available, and so we cannot determine the Poisson
noise amplitude a priori. However, the HALOMOD theory predictions
can be used as a tool to fit the pure Poisson noise contribution as
well as measure the deviation compared to an uncorrelated sample.

6 PARAMETER ESTI MATI ON

In this section, we demonstrate the utility of the HALOMOD algo-
rithms to recover the parameters of a specific H I model via a Monte
Carlo Markov Chain (MCMC) maximum likelihood fit. We use the
Python package EMCEE (Foreman-Mackey et al. 2013) and fit the
theory prediction of each H I model to the estimated power spectra of
the lognormals with box size (15Mpc/h)3, which optimally resolves
the shot noise regime of the power spectra. We fit the averaged power
spectra of 100 realizations, as well as 10 individual realizations.
The variance of each power spectrum measurement is given by
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Figure 7. The likelihood contours of the MCMC fit to the realization-averaged power spectrum of the discrete H I model, using the H I autocorrelation and its
Poisson noise to constrain the HOD parameters of HALOMOD. The dashed lines indicate the input parameter values. All masses are given as log10 and in units
of M� h−1.

the standard deviation of all realizations which includes Cosmic
variance, fluctuations in the number densities due to the small box
size and variations due to the population of H I masses. We note
that due to the limited size of the box, which measures a minimum
scale k ≈ 1.0 h Mpc−1, our parameter fitting is limited to the scales
dominated by the shot noise. The overall fitting could be improved
using a wider range of wavenumbers, however, some intensity
mapping experiments such as the interferometer ASKAP are only
sensitive to similar scales k > 1.0 h Mpc−1. For all cases, we only
fit H I parameters employing very tight priors for parameters of the
galaxy sample distribution. We do not attempt to fit the maximum
halo mass Mmax,H I as for our tested box size, the abundance of these
high mass halos is very low and the cut-off cannot be tested.

We ran MCMCs with a total of 106 samples and tested con-
vergence of the chains via the Gelman–Rubin criteria where all
parameters passed with a threshold of RGR = 1.1. We set Gaussian
priors with the standard deviations of all HOD parameters α given
as σ (αi) = 0.3 with i = {H I, field} and the standard deviation
of all other HOD parameters as σ (θ i) = 1.0. We note that our
results, in particular for the discrete case in which the model is

primarily fit to the constant amplitude of the Poisson noise, are not
independent of the chosen priors. In particularly, the H I amplitude
parameter, log AH I, is constrained by the prior and can not be fit
efficiently by the MCMC unless a total temperature constraint is
imposed. The best-fit values are derived by cumulative statistics
as the marginalized parameter likelihoods exhibit non-Gaussian
characteristics, as can be seen in Fig. 7.

The resulting posteriors of the MCMCs of the autopower spectra
of both H I models are displayed in Figs 7 and 8. In Tables 2,
and 3, we present the outcomes of the parameter estimation for the
auto- and cross-power spectra of both H I models. We individually
fit the power spectra rather than perform a joint analysis as in
many upcoming experiments only one or the other will be available
due to limitations in the quality of data or lack of an optical
galaxy sample. The parameter fits can be extremely biased due
to the fluctuations in the lognormal realizations. In order to derive
mean parameter fits and the expected variance including Cosmic
variance while remaining computationally feasible, we run MCMCs
on the mean power spectrum of all 100 realizations presented
under names {Auto, Cross} in each table, in addition to running
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Figure 8. The likelihood contours of the MCMC fit to the realization-
averaged power spectrum of the continuous H I model, using the H I-galaxy
sample autocorrelation and to constrain the HOD parameters of HALOMOD.
The dashed lines indicate the input parameter values. All masses are given
as log10 and in units of M� h−1.

MCMCs on 10 individual realizations, and presenting the mean
and standard deviation of their fits under {Auto

∑10
i=1, Cross

∑10
i=1}

in the tables. Whereas the constraints given by the MCMCs of the
mean demonstrate the degeneracy within the halo model parameters,
the standard deviation over 10 realizations shows limitations due to
Cosmic variance.

Table 2 and Fig. 7 presents the parameter constraints of the
discrete H I model, where the theory is primarily fit to the Poisson
noise amplitude in the given k range. From cross-correlation,
we derive the ensemble-averaged H I mass of the galaxy sample
from the estimated parameters which is given by the numerator
of the cross Poisson noise. The input parameters correspond to
〈log10(MH I,g/M�h)〉 = 9.77 and the mean of the N = 10 realiza-
tions gives 〈log10(MH I,g/M�h)〉N = 9.89 ± 0.33.

Table 3 and Fig. 8 display the results of the continuous H I model,
where only four parameters need to be estimated in the auto- and
cross-correlation. The individual parameter constraints are much
tighter due both to the fewer number of parameters, and the fact
that the spectrum shape is not dominated by a single Poisson noise
term. The uncertainties due to Cosmic variance are comparable to
the H I discrete case.

7 SUMMARY AND DISCUSSION

In this study, we present a new, adaptive description of the inten-
sity mapping autopower spectrum and cross-power spectrum with
galaxy surveys in the halo model framework (using HALOMOD).
We introduce two different implementations for the description
of H I populations; the continuous H I model which populates H I

within Dark Matter halos following a smooth profile, and the
discrete H I model which co-locates H I masses with the positions

of an underlying galaxy field, where both H I and field can follow
independent HOD descriptions. The models represent the opposite
ends of the spectrum of currently used H I simulations. We inspect
the impact of the different H I models on the shapes of the auto-
and cross-power spectra and find that the H I power spectra of
both models only differ on scales k > 10 h Mpc−1, caused by the
additional central-satellite contributions in the 1-halo term of the
discrete model. The prediction of the 1-halo terms of both H I models
in the cross-power spectrum with galaxies are very similar if the
same H I halo profiles are used.

We verified our analytic predictions with a set of lognormal
realizations, and find that the major difference between the models
is the presence or absence of shot noise contributions. We review
the current understanding of shot noise in galaxy and H I intensity
mapping data and state analytic expressions to determine the
amplitude of the shot noise given the underlying HODs. Most
notably, the shot noise on the cross-power spectrum directly scales
with the averaged H I mass of the optical galaxies, which is well-
defined in the halo model framework.

We examine the shot noise properties of both H I models and find
that the implementation of the continuous H I models has no Poisson
noise contribution to any power spectra due to the continuous,
smooth nature of the H I density field. The shot noise of the discrete
H I model is correctly predicted by HALOMOD for the autocorrelation
and cross-correlation with a galaxy sample, given the H I content is
independent of the galaxy sample abundances. In our examples, the
Poisson noise contributions dominate the amplitude of the overall
power spectra from scales .The cross-Poisson noise is proportional
to the averaged H I mass per galaxy in the sample and, as such, can
be used to determine the average H I mass of galaxy samples without
directly observing their H I content. Our HALOMOD implementation
is the first tool to predict the cross-Poisson noise given H I and galaxy
HOD parameters and will be useful for experimental forecasts as
well as observational interpretations.

We demonstrate how the H I model parameters of the HALOMOD

predictions can be fit to the simulations using MCMC techniques.
These fits also estimate derived H I properties such as the average
brightness temperature, which is directly proportional to �H I, and
the averaged H I mass per galaxy in the cross-correlation with
galaxy sample, a quantity of great interest in future cross-correlation
experiments on small scales. This way, HALOMOD has the potential
to estimate the unknown parameters of the H I distribution traced
by the H I intensity maps, as well as determining the averaged H I

masses of galaxy samples in intensity mapping cross-correlation
experiments.

We note that our study exclusively focuses on the impact of the
halo occupation parameters on the power spectra and Poisson noise.
We have not considered the degeneracy of cosmological parameters
and halo occupation parameters, but on the scales considered in
this work the effect of galaxy evolution dominates. We note that
nonlinear effects of the power spectrum and peculiar velocities
alter the shape and amplitude of the 1-halo term, however, on small
enough scales, the contribution of the Poisson noise is considerably
more dominant than the 1-halo term. In these cases, the HALOMOD

prediction of the cross-Poisson noise could be added to a more
sophisticated power spectrum model which includes these effects
or the fits could be performed to the projected correlation function
to suppress redshift-space distortions.

In this project, we did not employ data-motivated H I models as
we aim to demonstrate a maximally flexible framework for H I auto-
and cross-power spectrum. The qualitative results on the Poisson
noise predictions do not depend on the specific parametrisation of
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Table 2. Discrete H I model: Marginalized parameter likelihoods given by the MCMC fit to the averaged auto- and cross-power spectrum, and the mean and
the standard deviation of the MCMC fit to 10 realizations marked with

∑10
i=1, indicating the Cosmic variance. All masses are given as log10 and in units of

M� h−1.

Model Mmin, HI αH I M1,H I αfield M1,field log AH I

Input 11.0 0.7 11.0 0.5 11.0 11.0
Auto 10.98+0.10

−0.11 0.677+0.064
−0.060 10.54+0.74

−0.88 0.52+0.20
−0.14 11.00+0.39

−0.62 11.0 ± 1.0
Auto

∑10
i=1 10.945 ± 0.2429 0.704 ± 0.1388 10.67 ± 0.522 0.548 ± 0.0214 10.941 ± 0.1453 11.007 ± 0.0296

Cross 10.97+0.18
−0.23 0.73 ± 0.12 10.72+0.86

−0.95 0.55+0.22
−0.16 10.99+0.45

−0.66 11.01+1.00
−1.02

Cross
∑10

i=1 10.883 ± 0.3171 0.753 ± 0.1375 10.79 ± 0.2711 0.544 ± 0.0491 10.883 ± 0.2265 10.998 ± 0.0128

Table 3. Continuous H I model: Marginalized parameter likelihoods given by the MCMC fit to the averaged auto- and
cross-power spectrum, demonstrating the degeneracies within the HOD parameters, and the mean and the standard
deviation of the MCMC fit to 10 realizations marked with

∑10
i=1, indicating the Cosmic variance. All masses are given

as log10 and in units of M� h−1.

Model Mmin, HI αH I M1,H I log AH I

Input 11.0 0.7 11.0 11.0
Auto 10.898+0.047

−0.049 0.660+0.052
−0.040 10.29+0.64

−0.79 11.0 ± 1.0
Auto

∑10
i=1 10.852 ± 0.3594 0.611 ± 0.1013 10.347 ± 0.4343 11.004 ± 0.0087

Cross 10.866+0.106
−0.095 0.714+0.083

−0.075 10.61+0.84
−0.90 11.0 ± 1.0

Cross
∑10

i=1 10.877 ± 0.3458 0.626 ± 0.1561 10.816 ± 0.3106 10.998 ± 0.0093

the H I model. Our adaptable framework allows to easily import any
shape and parametrization of the H I-to-halo relation and examine
their predictions. In future work, more data-driven models will be
implemented in order to compare predictions with observations.
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APPENDIX A : C ORRELATION MODELS FOR
H I-GALAXY SAMPLES

A1 Continuous H I model

In this model, the gas is not colocated with observed galaxies,
forming a spatially-independent smooth profile within the halo.
In reality, we expect that while the averaged profile of the gas is
smooth, it will be lumpy on scales much smaller than the halo radius.
It is then expected that the prospects of observing a galaxy in the
sample may be dependent on the H I density around the location of
the galaxy. However, dealing with this general situation, in which
spatial scales within the halo are correlated according to the typical
size of the H I ‘lumps” is rather difficult, and we may consider two
extreme cases in more detail. The first is that in which the lumps
are infinitely broad, or rather that the H I profile is perfectly smooth
for every halo. The second is that in which the ‘lumps” are Dirac-δ
functions, but this is equivalent to the discrete H I model which we
consider in the following subsection.

Suppose that the H I profile of every halo is always completely
smooth, and is constant with the underlying halo mass. Suppose
also that there is a distribution of H I masses for a given halo
mass, for which the mean is 〈MH I(m)〉, and the variance is σ 2

H I

(the distribution remains arbitrary, but one may like to think of it as
a Gaussian or Lognormal). If a particular halo has an H I mass from
the upper-tail of its distribution, then the H I density of that halo is
increased uniformly everywhere in the halo, because it is necessarily
completely smooth. Now consider a sample of observed galaxies.
The probability of finding a galaxy at any point in a given halo
may depend on the density of the H I in that location (in fact, it
may depend on much more than that, for example, it may depend
on the H I density in nearby locations, or the dynamical state of
the H I rather than just its abundance, but these are considered to
be minor complications which we will ignore). However, since the
density of H I at any given location is determined by the density
at all other locations, or rather, the density at any location is fully

specified by the total H I mass in the halo – due to its smoothness
– the total expected number of observed galaxies in the halo is
completely determined by its H I mass. Summarily, we have the
following system:

Mi
H I ∼ φ(mH I, m),

Ni ∼ Poisson(f (Mi
H I)), (A1)

where f is some function which converts the actual H I mass of
a halo into the expected number of observed galaxies. While this
function is arbitrary, a simple but flexible toy model is such that f =
n0(Mi

H I/A)γ . Letting Ã(m) be the average amount of H I per galaxy
in halos of mass m, we obtain that 〈N〉 = 〈MH I〉/Ã. Furthermore,
we find that

Ã = Aγ

n0

〈MH I〉
〈Mγ

H I〉
. (A2)

We focus hereafter on some special cases, γ ∈ (− 1, 0, 1),
corresponding to anticorrelated, uncorrelated, and correlated cases.
For these, we have

Ã =

⎧⎪⎨
⎪⎩

(An0)−1 〈MH I〉
〈M−1

H I
〉 , γ = −1

〈MH I〉
n0

, γ = 0
A
n0

, γ = 1.

(A3)

We note that the distribution of N in such a setup is not necessarily
Poisson, as we generally assume it to be. Nevertheless, it is not
likely to be significantly different to Poisson, and in any case, this
fact does not affect the rest of our calculations.

We wish to calculate the value of 〈NsMH I〉. This can be achieved
by using the law of total expectation,

〈NsMH I〉 =
∫

dm′m′φ(m′,m)
∞∑

k=0

kPois(f (m′))

=
∞∑

k=0

n0

Aγk(k − 1)!

∫
dm′ m′γ k+1φ(m′, m)e−n0(m′/A)γ .

(A4)

If we assume that φ is a Gaussian distribution, then for masses m
at which the expected number of galaxies is large, since the Poisson
distribution tends to a Gaussian, the result tends to

〈NsMH I〉 = n0A
−γ

√
2πσ

∫
dm′ m′1+γ e−(m′−〈MH I〉)2/2σ 2

H I . (A5)

While this is in general unsolvable, it yields solutions for our three
cases of interest:

〈NsMH I〉 ≈

⎧⎪⎨
⎪⎩

n0A, γ = −1
n0〈MH I〉 = 〈N〉〈MH I〉, γ = 0

n0
〈MH I〉2+σ 2

H I

A
, γ = 1.

(A6)

Thus, the correlation function is (in the large-N limit):

R(m) = 〈NsMH I〉 − 〈N〉〈MH I〉√〈N〉σH I

=

⎧⎪⎪⎨
⎪⎪⎩

1
σH I

√
〈MH I〉

Ã

(
1

〈M−1
H I

〉 − 〈MH I〉
)

, γ = −1

0, γ = 0
σH I√
Ã〈MH I〉

, γ = 1.

(A7)

The question of how to calculate 〈M−1
H I 〉 remains. We find that a

useful empirical formula is such that

〈M−1
H I 〉 ≈ 〈MH I〉2 + σ 2

H I

〈MH I〉3
(A8)
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when MH I is a Gaussian variable, and 〈MH I〉/σH I > 3. This latter
condition must be obeyed in any case to ensure the description is
physically appropriate, otherwise a significant part of the probability
density puts MH I < 0. Under this approximation, the correlation
function becomes

Rγ=−1(m) = −σH I〈MH I〉
√

MH I

Ã

〈MH I〉2 + σ 2
H I

(A9)

A2 Discrete H I model

The result in the case of the discrete model, in which the ‘lumps”
are Dirac-δ functions, is much simpler. The typical assumption
of the galaxies obeying a Poisson distribution carries with it the
assumption that they are spatially independent, and we have by
construction specified that the H I components are also spatially
independent. This implies that while the probability of observation
of a galaxy at a certain point may be dependent on the H I in
that location, it is entirely uncorrelated with any other point. This
means that all correlations exist at a separation of zero, which is
not represented in the power spectrum at all. Alternatively one
may consider equation (13), in which the total contribution of the

satellite–satellite term has a −Q term, which accounts for all self-
pairs. After subtracting the self-pairs, no other pairs contain any
correlations, and so, in general, we have that

〈NsMH I〉 − Q = 〈Ns〉〈MH I〉. (A10)

Nevertheless, while these correlations cannot change the shape of
the power spectrum, they do affect the level of shot-noise present.
This is simple to conceptualise; since the shot-noise depends on
the average H I mass within galaxies of the sample, a correlation
which favours observing galaxies which contain a higher H I mass
will therefore accordingly increase the shot-noise, and vice versa.
The net result is a constant additive factor to the observed power
spectrum, and thus detailed modelling will not usually be required
– the constant may just as well be fit and then interpreted.

In practice, one may conceive of the correlation occurring in
multiple ways. In any of these, if the mean H I mass of the sample
can be calculated, it can be used to directly infer the amplitude of
the shot noise.
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