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ABSTRACT 

Several subjective pavement surface distress rating procedures are used by highway departments as an 

expedient tool to determine the potential need for maintenance work. This manual rating is prone to be 

biased, causes traffic disruptions and is risky for the assessors required to carry it out. Also, few highly 

qualified personnel are available to perform it. Therefore, many highway agencies have made efforts to 

relate subjective ratings to directly measured pavement condition data, in the hope that the need for 

subjective rating in formulating intervention criteria for road maintenance may be reduced or removed. 

Studies have revealed that significant differences exist among these ratings due to dissimilarities in the 

types of distress considered, allocated weighting factors for severity, and the structures of mathematical 

formulae used. 

In Victoria, Australia, Surface Inspection Rating Procedure (SIRP) is performed for major asphalt concrete 

(AC) and sprayed seal (SS) surfacing road networks based on subjective visual inspection. Subjective data 

of distresses, for each road segment, are combined into one index denoted as Surface Inspection Rating 

(SIR) which is used for triggering the periodic resurfacing program. In addition, Pavement Condition 

Survey (PCS) involves objective surveys, usually accomplished biannually, with measurable outputs of 

overall pavement condition (functional and structural) which can be used for network condition monitoring 

to determine if intervention criteria for all types of renewal activities have been met. 

The aim of the study is to develop a set of relationships between subjective pavement Surface Inspection 

Rating (SIR) and automated pavement distresses, with an investigation of interactions between pavement 

distresses. The pavement condition parameters/distresses include cracking, rutting, texture loss and 

roughness. In addition, the influences of pavement operating conditions (such as age and heavy vehicle 

traffic volume) on the measured strength of relationships between subjective rating and objective pavement 

distresses, are studied.  

To accomplish this study, a sample network of granular pavements surfaced with bituminous surfacing 

(asphalt and sprayed seal) in Victoria, Australia is selected. VicRoads historical data of 2011 and 2013 for 

34 highways are screened and compiled for the study. After filtering the data, 160 highway segments of the 

AC road network and 190 pavement segments of the SS network are prepared for statistical analysis. Initial 

analysis indicates that the correlations between SIR and some of automated pavement distresses are 

statistically significant in the AC network. Pearson’s correlation coefficients (r) values are found to be 

0.526, 0.338 and 0.177 for cracking, rutting and roughness, respectively. However, the ‘texture loss’ is 

found to have negligible correlation with SIR for the AC network. In the SS network, the correlations for 

cracking (r = 0.444) and texture loss (r = - 0.292) are found to be statistically significant. However, ‘texture 
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loss’ being found to be negatively related to SIR indicates that the texture loss data is not reliable, since 

SIR is supposed to be positively related with texture loss.  

In manual survey, each pavement distress is assessed on a four-level scale with values of 0, 1, 3 and 5 

representing good, minor, moderate, and extensive categories respectively, taking severity and extent of the 

distress into account. Pavement distress data are collected by automated devices such as digital video 

cameras and multi-laser profilometers. To validate the automated data (cracking, rutting and texture loss) 

with subjective rating of those distresses, probabilistic logistic regression analysis is performed. The results 

indicate that automated cracking and rutting data can be validated for the AC network. For the SS network, 

only cracking data are validated.  

In the subjective survey, deformation is evaluated considering localized depressions, not just longitudinal 

depressions (rutting). Objectively collected rutting data cannot be validated with the subjective ratings of 

rutting for the SS network. The reason for this may be that local depressions predominate over longitudinal 

depressions (rutting) in the SS network. Thus, the deformation rating values evaluated by the assessors may 

perhaps be more related to local depressions than to rutting in the subjective survey. Again, texture loss 

data cannot be validated with the subjective ratings of texture loss for both networks. The slow deterioration 

process of texture loss, that is difficult to assess in visual rating, justifies this.  Over and above there is a 

possibility of errors in the objective data due to misreading or misinterpretations. The pavement surface 

texture loss data, from both types of surveys, should be investigated. Therefore, ‘texture loss’ is excluded 

from the analysis for both road networks, and roughness is excluded from analysis for the SS network. 

Factorial ANOVA reveals that cracking and rutting interact with each other in predicting the relationships 

with SIR in the AC network and the interaction is statistically significant [F (2,138) = 4.282, p < 0.05]. The 

multiple linear regression model can explain 26% of the variation in SIR when categorical cracking and 

rutting of automated pavement condition data are used along with their interaction. However, categorical 

roughness is found to have no statistically significant interaction with cracking and rutting in predicting 

SIR. Surface inspection rating procedure in Victoria is limited with respect to factors like skid resistance, 

roughness, structural adequacy, and other environmental conditions. Therefore, the result that ‘roughness’ 

is a statistically insignificant predictor, is reasonable. Additionally, Factorial ANOVA tests show that the 

interaction of pavement distresses with both pavement age and heavy vehicle traffic volume is not 

statistically significant in predicting SIR for either network.  

Multiple Linear Regression (MLR) analysis is performed for each of the AC and SS networks, with SIR as 

a function of metric/continuous PCS parameters. The best fit model for the AC network contains log-

transformed objective cracking and rutting as statistically significant predictors, at the 5% significance 
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level. Moreover, by comparing the standardized beta coefficients, the results prove that the contribution of 

cracking is more than that of rutting to explaining SIR. However, the prediction level of the model is found 

to be low (coefficient of determination, R2 = 0.305). Log-transformed objective cracking is found to be a 

statistically significant predictor of SIR in the SS network and the best fitting model is found to explain 

only 24% of the variation in SIR. Since both of the AC and SS network MLR results explain relatively little 

of the variation in SIR, an alternate method is required for the study.  

Reviewing previous studies, probabilistic logistic regression analysis is trialed to predict pavement surface 

condition from objective pavement distresses. Pavement deterioration is associated with the effects of 

known factors and unknown latent causes.  Therefore, probabilistic logistic regression modeling is useful 

to assess the pavement condition by considering the outcome variable as a stochastic event. The logistic 

regression analysis is performed by grouping SIR value into different categories (Very Good, Good, Fair, 

Poor and Very Poor) with two ranking methods: RANK1 (5 categories) and RANK2 (4 categories). The 

most successful ordinal logistic models prove to be statistically significant (shown by the likelihood ratio 

and goodness of fit test results) for both networks. The overall success rates of the models are between 46% 

and 51%, with maximum probabilities in ‘Very Good’ condition in the AC network and ‘Good’ condition 

in the SS network. The developed ordinal models for asphalt and sprayed seal surfacing are validated by 

comparing the differences in weighted average predicted rating and actual rating of each pavement segment. 

The scaled squared residuals of SIR are observed to be small for both types of networks. Therefore, the 

models are validated for both road networks.  

The probability table obtained from the logistic models for different condition categories gives the 

probablity of each pavement segment being in one or other category as a function of objectively collected 

pavement condition data (rutting / cracking).  The pavement condition with the maximum probability is the 

most likely predicted condition for the pavement segment, and this can help the road asset managers of 

Victoria to prioritize pavement segments for periodic maintenance resurfacing. It is anticipated that the 

findings from this study may be able to assist any highway authorities to better understand the interactions 

between pavement distresses on evaluating overall pavement surface condition, and reduce the time, cost, 

and risk of evaluators involved in subjective surveys. 

The thesis concludes by providing a number of recommendations for future research directions. These 

include a recommendation to improve ordinal logistic models when more data, covering the full range of 

SIR, becomes available. Also, it is recommended that future research include automated data of stone loss 

and patching data in model development, in the expectation that the addition of these variables may improve 

the models.  
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CHAPTER ONE  

INTRODUCTION 

 

1.1 Background of This Work 

Granular pavement is widely used in Australia, New Zealand, and South Africa. Almost 90% of total 

motorway freight is carried on the sealed granular road network in Australia (T. C. Martin, 2009). This type 

of pavement consists of granular bases and sub-bases (structural layers) supported by natural soil subgrades, 

and its top surface layer is coated by bituminous materials that can be either a sprayed seal or a thin layer 

of asphalt. Both consist of aggregates and bitumen as the binder. For asphalt surfacing, the aggregates and 

binder are mixed at a plant, laid as a mat over the base and compacted. The sprayed seal involves spraying 

the binder over the base, after which the aggregate is spread over it and compacted to penetrate the binder 

film. This type of pavement is considered to be a cost-effective construction for the greater part of the 

Australian road network (Dickinson, 1982).  

The bituminous surfacing assists in maintaining the skid resistance of pavement and acts as a waterproof 

surface in all-weather conditions. Asphalt surfacing contributes to the pavement structural strength to some 

extent (Arnold, 2004). Throughout the serviceable life of a pavement, its structural strength decreases, and 

the bituminous materials deteriorate. The pavement distress on the surface can indicate the condition of the 

pavement layer’s thickness, deformations, traffic loads along with environmental effects (Lijun Sun, 2016). 

The signs of deterioration can be observed on the surface as different distresses, such as cracking, texture 

loss, stone loss, potholes, and depressions. The progression of distress in the pavement will consequently 

compromise its performance later. 

Due to aging or oxidation of the bituminous binder, its viscosity increases, and it becomes stiff and cracks 

under the effect of traffic loading. Cracks may also develop in asphalt due to fatigue under the effect of 

loading if the mix is not well designed. When these cracks become wider, they allow rainwater to penetrate 

the lower granular structural layers, leading to reduced strength and higher susceptibility to rutting or 

deformation by the action of trucks’ wheels in their wheel-paths. That may also lead to potholing and stone 

loss. When the deformation of pavement is approaching to critical state, resurfacing or rehabilitation is 

necessary. 

Most road agencies practise pavement maintenance prioritization using distinct standardized priority 

indices that are calculated through empirical terms or evaluated through mechanistic-empirical methods. 

For some of these indices, ratings from manual surveys are considered and in some other indices, automated 
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data are also incorporated into subjective ratings. For interpreting visual condition data for condition indices 

there are several issues that should be considered, among which the types of distress  and the rates of 

pavement deterioration are most significant (Karim, Rubasi, & Saleh, 2016). Currently, there is no standard 

survey method for pavement distress assessment. The methods applied differ widely among the highway 

authorities. Most road authorities have developed their individual distress measurement and evaluation 

methods depending on their accessible resources, user demand, and network types. Generally, the pavement 

condition surveys are conducted in two ways: either manually (subjective survey) or automatically 

(objective survey).  

Subjective pavement surface condition evaluation involves a group of experienced engineers giving a rating 

value. These expert personnel follow the standard manual and visually examine the pavement sections using 

their experience. Though the manual ratings have the benefit of being simple and easily presentable, they 

have some limitations too since this type of ratings is costly, inherently subjective and may lack sufficient 

engineering data which are needed to develop repair strategies (Gharaibeh, Zou, & Saliminejad, 2009).  

To abate the constraints of subjective survey data collection procedure like costs for professionals, and 

discrepancy among the assessors, automated distress survey methods have been developed. Modern 

advances in computer science offer significant potential for automated detection and categorization of 

pavement distresses. In this regard, repeatability, accuracy, and the objectivity of pavement distress 

acquisition and detection in automated processes are significant improvements in condition surveys 

(Loprencipe & Pantuso, 2017; Zakeri, Nejad, & Fahimifar, 2017). Automated survey at highway increases 

efficiency as well as lowers potential safety risk associated with subjective field surveys (Ong, Noureldin, 

& Sinha, 2009). 

Considering the cost involved in conducting both surveys, subjectivity, traffic disruption, safety risk to the 

assessors and the delay caused by subjective survey, road agencies (mostly in the USA) have sponsored 

many research projects to develop links between the outputs of both surveys. Carey and Irick (1964) were 

the first to employ the Present Serviceability Index (PSI) by applying a multi-regression fit to AASHO 

Road Test data (the late 1950s) for both rigid and flexible pavements, to relate the physical characteristics 

of a road section to the subjective Present Serviceability Rating (PSR), and established a universal standard 

to evaluate serviceability of roadways without resorting to a panel (C. Liu & Herman, 1996). PSI is the 

functional prediction of the PSR based on pavement roughness, cracking, rutting and patching. Afterward, 

several recognized indices such as Pavement Condition Rating (PCR), Pavement Condition Index (PCI) 

and others have been defined, to evaluate existing pavement condition, compatible with specific road 

agencies (Saraf, 1998; M. Y. Shahin, 2005).  
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The VicRoads’ freeway and arterial road network provide the State’s principal routes for private and 

commercial on-road transport. These are comprised of 25,000 km of declared roads. The rest of the roads 

in Victoria (around 150,000 km) are managed by local councils and other government departments (O. Lin, 

Hassan, & Thananjeyan, 2014). Bituminous surface condition data for Victoria’s road network is collected 

every two to three years for the whole network using surface inspection rating procedures. This is a 

standardized rating system of pavement surface condition. This evaluation is generally conducted by 

experienced personnel visually classifying the types of distress and then assigning weighted values to make 

a suitable estimate for the remaining surfacing service life. Condition data include cracking, loss of 

aggregate, maintenance patching (localized depression and potholes), deformation and texture loss for 

asphalt wearing courses in addition to binder condition and level for sprayed seals (VicRoads, 2004). These 

surface condition ratings are combined into a composite index called Surface Inspection Rating (SIR) which 

is used to trigger the need for resurfacing or resealing using specified threshold values. 

In addition, VicRoads performs objective Pavement Condition Surveys (PCS) to assess the overall 

performance of the pavement. These are performed biannually. The survey is typically conducted using an 

automated vehicle to collect condition data to assess overall pavement functional (roughness, texture loss) 

and structural (rutting, cracking) performance. The measurement method and data aggregation into 

reporting units are standardized by the Guide to Asset Management of Austroads. PCS data assists in 

indicating serviceability and physical conditions of road pavements, therefore, it is beneficial for triggering 

all types of renewal activities. 

Most of the pavement condition surveys assesses one or other than the four attributes, distress, roughness, 

structural strength, and skid resistance (Gramling, 1994). Roughness and pavement distresses are the two 

key components usually covered in determining overall pavement condition, even though physical capacity 

and friction can also be included as important measures in the evaluation (Prakash, Sharma, & 

Kazmierowski, 1994).  

An effective pavement maintenance program is important to a nation’s infrastructure development. 

Pavement condition parameters are key inputs for developing short- and long-term maintenance programs. 

Recently, pavement management has focused on agency budget optimization as well as reducing user cost  

(Lidicker, Sathaye, Madanat, & Horvath, 2012). Therefore, pavement surface condition prediction and 

understanding the effects of pavement distress interactions on overall performance of the pavement have 

become crucial for highway and roads authorities to prioritize renewal and resurfacing needs. 
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1.2 Aim of The Study 

The main aim of the study is to develop the relationship between subjective pavement surface condition 

rating and automated pavement distresses determined by the combined interactions between pavement 

distresses including cracking, rutting, texture loss and roughness. In addition, the influence of pavement 

operating conditions, such as age and heavy vehicle traffic volume, on the strength of relationship between 

subjective rating and objective pavement distresses is to be investigated.     

Efforts are made to develop relationships between subjective surface inspection rating (SIR) and objective 

pavement condition survey (PCS) parameters to trigger periodic maintenance programs, i.e. resurfacing 

activities for asphalt concrete (AC) and sprayed seal (SS) surfaced road networks. To achieve the aim of 

the study, a thorough understanding of the pavement distress mechanisms and the interactions between the 

distresses, and how they influence overall pavement performance, is required. To undertake this study, a 

sample network comprising granular pavements surfaced with both asphalt and sprayed seal is selected, 

and data are provided by VicRoads, the State of Victoria, Australia.   

1.3 Research Questions 

Research questions of this study include: 

1. How do the different surface distresses interact with each other and contribute to assess pavement 

surface conditions? Is there any influence of pavement operating conditions, such as age and traffic 

volume, on pavement distresses in determining the pavement surface condition? 

2. Can automated survey data be validated with subjective survey data? 

1) Automated cracking measurement is assessed by trained but inexperienced personnel by watching 

the videos, frame by frame, and judging the area affected. Can this data be validated with visual 

inspection data? 

2) Deformation includes localized depressions along with rutting whereas rutting is the longitudinal 

depression in wheel-paths. Can these two measures be related? 

3) Texture loss is a slow deterioration process and thus it may be difficult to assess visually. Can 

automated texture loss data be validated with subjective rating? 

3. Are the relationships of subjective surface inspection rating (SIR) with objective pavement condition 

survey (PCS) parameters significant? To what extent can SIR be predicted by PCS parameters? 
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1.4 Objectives of The Study 

1. Study pavement surface distress mechanism and investigate how the distresses influence each other 

in predicting SIR. Simple scatter plot and factorial ANOVA will be used to investigate the 

interaction effects between pavement distresses and the influence of operating conditions (age and 

heavy vehicle traffic volume) on the strength of relationship of surface inspection rating (SIR) from 

objective pavement condition data. 

2. Validate automated and subjective survey data using probabilistic logistic regression as below: 

1) Automatic cracking data as statistically significant predictor for subjective cracking evaluation. 

2) Automated longitudinal depression (rutting) data as a statistically significant predictor for rated 

deformation by considering localized depression data.  

3) Automated texture loss as a statistically significant predictor of manual texture loss rating. 

3. Comprehend the relationship between subjective pavement surface condition ratings and the 

automated distress data. Deterministic and probabilistic models will be trialed and validated to 

develop models to predict subjective Surface Inspection Rating (SIR) as a function of significant 

objective Pavement Condition Survey (PCS) parameters. These include cracking, rutting, texture 

loss and roughness.   

1.5 Outcomes and Significance of The Study 

The outcomes of the research include: 

1. Matrices of correlations between Surface Inspection Rating (SIR) and automated pavement 

distresses data are found for both asphalt and sprayed seal surfacing road networks.  The matrix for 

each network allows identification of statistically significant correlations between subjective rating 

and objective pavement distresses, as well as between the distresses.  Additionally, interaction 

effects between automated pavement distresses in predicting SIR and the influence of pavement 

operating conditions (age and heavy traffic volume) on estimating SIR from automated pavement 

distress are investigated. 

2. The automated pavement distress data (cracking, rutting and texture loss) have been validated with 

corresponding subjective ratings of pavement surface distress. 

3. Statistically significant predictors (automated distresses) are used to predict subjective SIR value 

using multiple linear regression analysis, and probabilistic logistic models are developed to predict 

pavement surface condition categories from automated pavement distresses for granular pavements 

with asphalt surfacing (AC network) and sprayed seal surfacing (SS network) for prioritizing 

resurfacing programs.   
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Significant results of the research include: 

1. A comprehensive study is presented on how the different pavement distresses interact with each other 

in predicting subjective pavement surface rating, that is an indicator of overall pavement performance. 

Additionally, the influence of different operating conditions (age and traffic volume) in assessing the 

relationship between subjective ratings and the automated pavement distresses has been investigated. 

The results would provide better understanding of the relationship between visual pavement surface 

rating and objective pavement surface distresses. 

2. The developed ordinal logistic models for asphalt surfacing network and sprayed seal network would 

provide a useful and practical approach for asset managers of the State Road Authority of Victoria in 

decision-making regarding prioritization of resurfacing maintenance and as a consideration for other 

periodic maintenance activities. The results obtained from this study may contribute to cost-reduction 

and safer assessment conditions for subjective pavement condition monitoring.  

1.6 Structure of The Thesis  

The thesis is broken into six chapters as follows: 

Chapter 1 Introduction 

This chapter provides a brief introduction and outline of the motivation and purpose of this specific research 

in the context of the field, detailing the rationale and significance of this work, as well as the aims and 

objectives to be accomplished.   

Chapter 2 Literature Review 

This chapter briefly documents literature associated with pavement surface condition evaluation and 

assessment for maintenance purposes. A concise description of the pavement behavior that explains the 

distress initiation, progression and interaction between each distress and the performance measures is 

presented. The factors contributing to the distresses, and types of pavement distresses in flexible pavements 

are defined. Subsequently, various methodologies for pavement distress evaluation by subjective survey 

and assessment through automated survey are discussed. The integration between different pavement 

condition indices is reviewed to understand the current practice of pavement condition appraisal. Then, the 

guidelines for rated pavement surface condition survey and objective pavement condition survey 

procedures in the state of Victoria, Australia are briefly described. Finally, previous relevant studies related 

to subjective and objective pavement parameters are systematically reviewed in detail and summarized in 

a table format. Findings from the past studies and research gaps are presented. 
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Chapter 3 Research Methodology and Data Preparation 

Chapter 3 presents the pavement surface condition data collection and evaluation guidelines for subjective 

and automated survey used in the state of Victoria, Australia. A conceptual framework is developed to 

address the research objectives. Both metric and discrete data description, preparation and screening 

assumptions are presented. The pavement condition data incorporates time series data of cracking (percent 

area affected), rutting, texture loss by left wheel path and roughness (in terms of International Roughness 

Index). Finally, fundamental statistical methods used in this study are briefly described.    

Chapter 4 Deterministic Analysis for Pavement Condition Data 

This chapter provides correlation analyses between subjective rating and objective pavement condition data, 

followed by an investigation of the interaction effects between different automated pavement surface 

distress performing factorial ANOVA tests. The development of linear regression models for asphalt 

surfacing and sprayed seal surfacing networks is described separately. The best fit models are presented 

with significant predictors for subjective rating value.  

Chapter 5 Probabilistic Analysis for Pavement Condition Data 

At first, the validation of each objective parameter with corresponding subjective rating using probabilistic 

logistic regression analysis is presented. It details the procedures involved in developing models for 

subjective rating categories, that predict the pavement surface condition from the objective pavement 

condition data. The most successful models are described thoroughly with graphical plots and the models 

are validated with scatter plots of scaled squared residuals of subjective ratings.  

Chapter 6: Conclusions and Recommendations 

This chapter briefly reviews the research outcomes and major findings. Important conclusions and 

recommendations for future study are presented as well. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

This chapter first presents a brief overview of distress mechanisms, specifying different types of distresses 

that initiate and progress in flexible pavement/granular pavement. Then pavement distress evaluation by 

subjective rating and automated measurement of pavement distresses to appraise the condition of the 

pavement, both locally and internationally, are described briefly. In addition, various modeling approaches 

to develop relationships between these two types of road condition data are outlined. Lastly, the previous 

studies in developing relationship between subjective and objective pavement condition data are reviewed 

in detail and summarized, with a focus on the research gap. 

2.2 Pavement Behavior 

The key function of a highway is to ensure a riding surface with proper geometric alignment and sufficient 

skid resistance to guide the traffic while traveling at the desired motion. The pavement is constructed so 

that roads will achieve these required mobility criteria, both functional and structural, in a reliable and 

durable way (Symons, 1985). Usually, the pavements can be categorized into three general categories: 

flexible, rigid, and composite.  

Flexible pavements are usually made up of bituminous mixture placed over a granular base or subbase 

layers that are supported by the compacted natural soil. This type of pavement distributes the imposed loads 

to the subgrade by the interlocking properties of aggregates from different layers, using friction and 

cohesion attributes of the particles (Wright & Paquette, 1987). At first, the traffic load is distributed on a 

small portion of the pavement surface and then with the increase of depth it is transferred over a larger area. 

In this load transfer process the highest stress takes place at the surface and the stress reduces with depth; 

when the load is removed the pavement layers rebound (T. F. Fwa, 2005).  

Rigid pavements are made up of a Portland cement concrete stratum and sustained on the subgrade with or 

without any other mid-layer. These pavements have rigidity due to the high modulus of elasticity and 

distribute loads over a wide area of subgrade soil, thus, foremost structural strength is supported by the 

slabs themselves (Eldon Joseph Yoder & Witczak, 1975).   

Composite pavements include two or more  layers with various attributes and perform as single composite 

element of the structure (Smith, 1963). Here, the Portland concrete and the asphalt concrete are used 
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alternately on each other. In this pavement, the stiffness of the rigid strata (base layer) is more than the 

flexible strata (surfacing layer) (Flintsch, Diefenderfer, & Nunez, 2008).  

2.3 Pavement Performance Measures 

The principal considerations of pavement design and maintenance include durability and desired level of 

service to the users with safety. At the beginning, a newly constructed pavement has an acceptable level of 

service. With age, due to repeated traffic loads and other factors like inadequate design, lack of construction 

quality assurance and environmental constraints, the pavement progressively deteriorates, the condition 

gets poorer and it loses its serviceability.  

‘Performance’ is used to denote how pavements change their ability to ensure necessary functions; usually 

indicated by initiated or progressed distresses, loss of desired serviceability and thus loss of overall 

condition of the pavement through the effects of  designed traffic and other operating conditions (Lytton, 

1987). Hence, performance describes the physical and functional responses of the pavement to vehicle 

loading, material characteristics and other environmental factors that cause changes to its original structure. 

Eventually, the collective influence of these contributing factors alters the level of serviceability of the 

pavement. Thus, the performance of the pavement is evaluated relative to its achievement of standard levels 

of service. Therefore, the current pavement performance available for the user is an important aspect for 

road agencies associated with managing road networks and their maintenance development strategies 

(Bianchini & Bandini, 2010).  

To make decisions about maintenance planning, the pavement performance evaluation is very important 

which necessitates pavement condition to be determined. Pavement condition evaluation can be classified  

by two main performance terms, functional performance and structural performance (Foley, 1999); 

functional evaluation is concerned with parameters that affect safety measures and riding comfort of road 

users (safety is appraised by skid resistance and surface texture, while serviceability is assessed using 

roughness estimates), whereas structural evaluation is concerned with the impact of wheel loads under 

different environmental conditions on pavement structure and surface layer(s) due to  some specific distress 

types and structural properties (Bennett, De Solminihac, & Chamorro, 2006). Overall pavement condition 

is connected to these issues which include structural integrity and capacity, along with functional factors 

related to riding comfort such as roughness, skid resistance and the rate of deterioration of pavement (M. 

Y. Shahin & Kohn, 1981).   

There are several methods to assess the performance of the pavement. Generally, surface distresses along 

with roughness are considered as the performance measures that indicate the deterioration of pavements. 
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The following subsections describe the pavement distress mechanisms, factors influencing the distresses, 

different types of distresses in flexible pavements and relation of pavement roughness with serviceability. 

2.3.1 Mechanisms of Pavement Distress 

Pavement distresses develop through a number of different mechanisms. The factors affecting pavement 

distress mechanisms and interactions between different distresses in flexible pavements are presented in a 

flow chart, as shown in Figure 2.1, and briefly described below.    

Traffic Axle Loadings  

Initially, axle loadings from traffic trigger stress and strain in pavement layers that are functions of the 

material stiffness and thickness of the pavement layers (W. D. Paterson, 1987). When these stresses go 

under repeated traffic loading, cracking starts through fatigue and deformation in materials, which are 

strongly dependent on the properties of these materials. Therefore, one of the most important modes of 

distress in flexible pavement is fatigue, which manifests as cracking in the pavement surface, and it is 

mostly the result of repetitive traffic loadings and pavement layer thickness (Moghaddam, Karim, & 

Abdelaziz, 2011; Suo & Wong, 2009).  

 

Figure 2.1  Pavement distress mechanisms and interactions in paved roads 
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Oxidation 

In asphalt surfacing mixtures, the binder holds the particles firmly and perform as a sealant to counter 

moisture ingress (Mashaan, Ali, Koting, & Karim, 2013).  During the construction of asphalt mixture and 

gradual oxidation of the material over its service life, the volatile portion of the bitumen reduces and causes 

hardening in asphalt surfaced pavement (Airey, 2003). This hardening of bituminous surfacing is also 

known as ageing of bituminous surfaced pavement. When bituminous surfacing is exposed to air, due to 

oxidation the viscosity of the binder increases, the aggregate becomes brittle, and thus more vulnerable to 

cracking, aggregate loss and edge defects. Once initiated, progress in the extent and severity of cracking 

with age stimulates the development of potholes.  

Water 

Water can penetrate via cracks on the surface of the pavement via the interconnectivity of the air voids 

system, or cracks due to rising groundwater level, or from the road shoulders (Hamzah, Kakar, & Hainin, 

2015). Exposed cracks on the pavement surface without proper drainage systems allow water to enter the 

pavement strata. Loss of cohesive bond within the bituminous binder or the reduced adhesion between the 

binder and the aggregate instigates the disintegration process by decreasing the shear strength of aggregate 

mixtures. This type of distress in pavement surface due to moisture intrusion is defined as stripping / 

ravelling and decreases the life cycle of pavement surface by stimulating other distress modes involving 

fatigue cracking, rutting, flushing, and potholes (Mostafa, 2005). 

Repeated Heavy Traffic Loadings 

Heavy vehicle traffic causes rapid differential compaction in the top layers of pavement, including fracture 

of the bituminous surfacing (Sharma, Sitaramanjaneyuiu, & Kanchan, 1995). Repeated high traffic loads 

cause changes in the shape and size of aggregates in pavement by internal abrasion and, as a consequence 

reducing bending stiffness prompts the dislocation of material by plastic flow (Symons, 1985). The 

cumulative progressive deformation all over the pavement depth is exhibited as ruts which are longitudinal 

depressions in the wheel paths of the pavement. Rutting increases as a result of repeated heavy vehicle 

traffic loadings that cause gradual progression of deformation due to repetitive tire pressures (Abdulshafi 

& Kaloush, 1990; Tayfur, Ozen, & Aksoy, 2007).  

The irregularities or distortion of surface profile that are the outcome of all other pavement surface distress 

are known as pavement roughness (W. D. Paterson, 1987). Roughness is associated with riding comfort, 

vehicle operating cost and higher travel time of the road user (Mactutis, Alavi, & Ott, 2000). Therefore, the 
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pavement distresses discussed above have adverse impacts on overall performance of the bituminous 

surfacing pavement and reduce the service life of pavement.  

2.3.2 Factors Contributing to Pavement Distresses 

The factors that influence pavement distresses can be categorized as external causes due to different 

operating conditions and internal causes which are inherent to the pavement infrastructure (Jameson, 2011). 

Usually, it is challenging to identify the key cause of any pavement distress  because more than one factor 

may stimulate the contribution of that distress (W. D. Paterson, 1987). A number of these causes are 

summarized below (T. F. Fwa, 2005; Hamzah et al., 2015; Lay, 2009; Michael Moffatt, 2007a; 

Papagiannakis & Masad, 2017; W. D. Paterson, 1987). 

• Repeated and overloaded traffic on the pavement structure 

• Oxidation of bituminous materials on the surface, with age 

• Insufficient pavement thickness 

• Intrusion of water into pavement strata, mainly through the pavement surface or edges  

• Poor compaction or drainage, owing to inappropriate quality control 

• Inadequate quality of pavement or surfacing materials 

• Mobility of moisture and volume change in subgrade soil 

• Inadequate bonding between pavement layers and incorrect asphalt mix design 

• Entry of plant roots into the pavement structure 

• Settlement of underground structure 

• Impact of environmental factors such as temperature and rainfall 

2.3.3 Flexible Pavement Distresses 

Recently, to keep up with evolving travel demand and aging road infrastructure, highway agencies are 

giving attention to finding more efficient means to utilize funds for different types of maintenance programs 

(A. Ahmed, Bai, Lavrenz, & Labi, 2015). Typically, distresses found in flexible pavements can be classified 

into four general types (T. F. Fwa, 2005): Cracking, Deformation, Surface Defects and Edge Defects. 

i) Cracking 

Cracking is one kind of early disease of the pavement that reduces its performance (C. Wang, Sha, & Sun, 

2010). The bituminous surfacing is likely to crack at a certain stage of design life; primarily from the 

combined action of repeated traffic loadings and environmental influences (moisture and temperature). 

Repeated traffic loadings result in overstressing, whereas environments affect moisture variation, 

settlement of subgrades, and hardening of the pavement surfacing material by oxidation (M Moffatt & 

Hassan, 2006). As well, some other factors such as plant roots, landslides, or strong impacts from outside 



CHAPTER TWO                                                                                                   LITERATURE REVIEW 
 

13 
 

sources have influence on crack initiation, although, they are not the primary sources (Cubero-Fernandez, 

Rodriguez-Lozano, Villatoro, Olivares, & Palomares, 2017).  

 

    

(a) Low severity cracking   (b) Medium Severity Cracking 
 

 

(c) High severity cracking 

Figure 2.2  Pavement surface cracking with different severity level (Miller & Bellinger, 2014). 

Examples of cracking with different severity levels are presented in Figure 2.2. The direct measurement 

procedure and evaluation criteria (based on extent and severity level) of pavement cracking are discussed 

in Chapter 3. In flexible pavements, cracking is a significant indicator of surface failure. Cracks at the 

surface, small or large, always have damaging effects on the pavement (Colombier, 2014). From the 

pavement distress mechanism described in section 2.3.1, it is evident that once initiated cracking progress 

with extent and severity, accelerating the causes of other pavement distresses. 
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ii) Deformation 

Pavement deformation is known as the variation in surface profile from a reference profile of its 

construction. Traffic loading causes stresses on the pavement materials, reduces shear strength within 

aggregate mixtures and induces plastic flow in materials that often results in depression along the wheel 

path and heave around the loadings (W. D. Paterson, 1987). Under the effect of shear stress, material 

properties and temperature differ with the thickness of asphalt pavement and different types of deformation 

tend to occur at different sublayers (Sun, 2016). The common pavement deformations which affect 

pavement service life and riding quality are presented below:  

Rutting 

Rutting is considered a major distress which causes the failure of flexible pavement. It is the formation of 

a longitudinal depression (groove or rut) in the pavement surface in the wheel path (Figure 2.3), which is 

generally caused by traffic wear, abrasion, and displacement of the surface course or base by heavy traffic 

loads (Brewer, 2007). Rutting in pavement surface may indicate the presence of some structural 

deformation that is related to ‘stress-strain-deflection’.  

Two mechanisms within materials are identified as the primary causes of rutting. They are densification of 

the aggregate mixture (compaction) and plastic deformation by shear failure (Collop, Cebon, & Hardy, 

1995). Thus, inadequate compaction during construction or an improper mix design is an important cause 

of rutting. Besides, moisture causes deformation of road pavement, subgrade or shoulder (e.g. heaving of 

the road shoulder or pavement edge) which can result in a longitudinal depression reported as rutting 

(Michael Moffatt, 2007a).  

 

Figure 2.3  Severe rutting in pavement surface (H. Wang, Zhang, & Tan, 2009). 
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Initially in the designed service life, rutting develops due to compaction of the aggregate mixture by moving 

traffic, with a declining rate of deformations; after that, rutting growths are reduced, apparently at a static 

rate where the aggregate mix goes through shear deformations; lastly, materials tend to flow to rupture 

(Gupta, Kumar, & Rastogi, 2014). Usually, pavement is not allowed to reach rupture in its service life, 

largely due to carrying out of preventive maintenance and rehabilitation programs. Rutting is a good 

indicator of pavement behavior since it is less influenced by environmental deterioration (T. F. Henning, 

2008). It is established by experiment that permanent deformation in the pavement is proportional to the 

extent of the ruts (Leiva-Villacorta, Vargas-Nordcbeck, & Aguiar-Moya, 2017). Hence, substantial 

attention is given to avoid rutting in thinly surfaced asphalted granular pavements and it is the principal 

design consideration (Arnold, 2004). 

The effects of rutting are sources of apprehension for several reasons (T. Fwa, Pasindu, & Ong, 2012; Lijun 

Sun, 2016):  

I. Pavement layer thickness reduction caused by rutting lowers (check this word) pavement strength 

and instigate pavement structural damage.  

II. Water logging in rutting due to poor drainage triggers hydroplaning, which is a potential risk for 

high-speed travelers.  

III. Spread ruts cause difficulties in steering control and become dangerous.  

IV. In winter, snow-covered rutted surfaces reduce slippage resistance for vehicles.  

V. Reduced riding comfort as rutting has a negative impact on pavement roughness. 

Therefore, rutting in the pavement can extensively affect its overall performance and decrease its remaining 

service life. Following up of the transverse surface profile for rutting is essential as it is an effective measure 

of pavement structural capacity (J. D. Roberts & Martin, 1998) including its impact on user safety. Most 

international PMS (Pavement Management Systems) use rutting as a measure of potential need for 

pavement maintenance (Robinson, Danielson, & Snaith, 1998). 

Shoving 

Shoving is considered to be a longitudinal shift of a localized portion of the pavement surface, usually 

caused by sudden impact from vehicles braking or accelerating and normally occurs on hilly areas or 

through curvatures or at intersections (Miller & Bellinger, 2014). This type of deformation may be related 

to vertical displacement as well. Shoving takes place in asphalt layers which do not have sufficient stability 

due to excessive asphalt binder present in the HMA mix, use of low viscosity asphalt binder, smooth 

textured aggregate, rounded granular particles or a large amount of fine aggregates in the mixture (T. F. 

Fwa, 2005).  
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Depression 

Depressions are referred to as localized portions of a pavement with heights less than the adjacent area. 

This type of distress is not limited to wheel paths and could extend through various wheel paths. Likely 

causes may include subgrade settlement due to compaction of soft materials by repeated traffic or volume 

variations of subgrade materials (VicRoads, 2004). So, the main reasons for excessive local depressions are 

related to structural flaws in the underlying subgrade (Gallaway & Rose, 1970). These types of local 

depressions also trigger hydroplaning like wheel track depressions (rutting). 

Corrugations 

Corrugation is defined as sequential small gaped ridges and valleys on the pavement at approximately 

regular intervals. Usually, the crests are upright to the traffic flow. This kind of pavement distress is 

typically caused by traffic loading accompanying an unsound road surface or base (M. Shahin, 1997). These 

ripples may be visible in an isolated portion or even over a spreader area of the pavement surface. 

Developed irregularities on the pavement surface cause instability by escalating the roughness.   

 iii) Surface Defects 

Surface defects are mostly related with functional performance of a pavement and usually do not give an 

in-depth idea about structural failure in the pavement. These types of distresses are significant to understand 

the level of service and, without proper maintenance, may cause structural failure of a pavement. The most 

common surface defects are as follows (T. F. Fwa, 2005):   

Ravelling 

Ravelling is considered as the displacing of coarse aggregate from the road surface (M. Y. Shahin, 2005). 

The dislocation of aggregates is result of the loss of cohesive bond between binder and aggregates. Though 

it begins at the surface, it may progress downward. The term ‘ravelling’ is usually used when aggregate 

dislocation occurs from asphalt (VicRoads, 2004). This type of surface defect is associated with moisture 

and affects mixture asphalt (HMA) pavement (You, Zheng, & Ma, 2018). Ultimately it decreases the 

pavement strength and service life. 

Stripping 

‘Stripping’ is used to denote the loss of particles from sprayed seal surfacing. This may appear as a loss of 

a single layer or a substantial number of aggregates in a specific location. The main reason for stripping is 

the action of water and/or water vapor (Kandahl & Richards, 2001). Even though bound materials of 

pavement are not affected by moisture extensively, it initiates and progresses stripping in bituminous 

materials (the binder course) caused by pore water pressure or weakening of the structural strength 
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(Christopher, Schwartz, & Boudreau, 2010). Usually, these aggregates have an affinity for water and the 

formation of thin water films on them will tend to reduce initial bonding between the aggregate and bitumen. 

Poor drainage stimulates these weakly adhered pavement materials susceptibility to stripping under traffic 

loadings (Kiggundu & Roberts, 1988). Eventually, it adversely affects the pavement performance. 

Pothole 

Potholes, as an acute pavement distress, are bowl-shaped or irregular-shaped depressions in the road surface 

(Miller & Bellinger, 2014). The primary cause of potholes is the intrusion of rainwater into the pavement 

layer (Joubert, Tyatyantsi, Mphahlehle, & Manchidi, 2011). When heavy vehicles pass on that water-

intruded weak pavement it causes potholes. Potholes are the consequences of some other distresses too.  

This distress can be dangerous to drivers when they try to cross or avoid them. 

Delamination   

Delamination can be simplified as surface lifting from a large area of the asphalt pavement, which may  

also appear in the full depth of the wearing surface (VicRoads, 2004). In the case of Hot Mix Asphalt 

(HMA) delamination, it is mainly caused by debonding in layers for lack of proper amount of tack coat 

(Hoegh, Khazanovich, Maser, & Tran, 2012). This type of distress causes slippage failure in flexible 

pavement due to the reduction of bonding strength in asphalt layers (Cook, Garg, Singh, & Flynn, 2016) . 

Flushing or Bleeding  

This type of pavement distress is visible as a reflective surface when an excess amount of bituminous 

material exists on the surface that may develop into a sticky state at high temperature (Association). 

Flushing produces soft surface in hot weather and slick top surface in wet or cold weather. Applications of 

excess binder, flaky aggregate particles, and weak base are the causes for flushing in pavement surface (T. 

F. Fwa, 2005). Mostly this defect is found in sprayed seal surface; however, it may be visible in asphalt 

surface also. 

Polishing 

When the pavement aggregate surface becomes smooth by the action of heavy traffic loading it is called 

polishing. Fine particles are polished off due to weathering in summer which causes a loss of texture of the 

pavement; thus this polishing, along with some other pollution from vehicles, results in reduced skid 

resistance of the pavement (Plati & Georgouli, 2014). In winter, the polishing effects are less due to the 

presence of moisture film acting as a lubricant on the surface aggregates that reduces the smoothing action 

(Jayawickrama & Thomas, 1998). Polishing affects skid resistance negatively and therefore results in loss 

of pavement serviceability and user safety. 
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Patches 

Patches are the portions of pavement surface that has been treated for maintenance purposes or utility cuts. 

These are also suitable for the mending of several types of surface distress like potholes, alligator cracking, 

corrugations, shoving, depressions, rutting and some other distresses (Johnson, 2000). Since some 

roughness is always associated with patching, these are considered as surface defects even though they 

perform well.   

Texture Loss 

Surface texture in pavement engineering, is described as “the deviation of a pavement surface from a true 

planar surface” (ISO, 1997). The terms ‘surface texture’ and ‘texture depth’ are often used by practitioners 

as practical descriptors of the macrotexture (Figure 2.4) of the pavement surface. The surface texture profile 

of a pavement is also an important consideration (Hillier & Soet, 2009) for maintenance planning.  

 

Figure 2.4   Pavement Surface Texture (Flintsch, De León, McGhee, & AI-Qadi, 2003).  

According to the World Road Association (WRA), macrotexture is defined as amplitude of deviations from 

the surface plane, usually with wavelengths between 0.5 mm and 50 mm. This can be influenced by the 

physical characteristics and spacing of coarse aggregate particles in the surfacing material, and impacts on 

drainage capacity. Loss of surface texture is the effect of pavement surface flushing and/or bleeding or loss 

of the aggregate. The surface texture is associated with several pavement characteristics and performances, 

for example safety issues like dynamic control of vehicle, skid resistance, drainage and also the physical 

properties of pavement such as distress and deformation (Loprencipe & Cantisani, 2013). 

iv) Edge Defects 

These types of defects can be found along the pavement edge and shoulder, reducing riding quality and 

pavement capacity, and permitting moisture intrusion into the pavement. Edge break and edge drop-off  
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defects are visible in flexible pavement due to the absence of proper edge support, insufficient pavement 

width, and poor adhesion between the surfacing and base layer (T. F. Fwa, 2005). 

2.3.4 Concepts of Pavement Serviceability and Relation with Roughness 

Since the late 1960s, ‘Serviceability’ is a well-known concept that is used widely by pavement engineers 

to evaluate the overall performance of a pavement (Fuentes, Camargo, Arellana, Velosa, & Martinez, 2019). 

In 1962, the practised personnel of American Association of State Highway and Transportation Officials 

(AASHO) road test introduced “pavement serviceability concepts” which involve the measurement of 

pavement behavior under traffic and the capacity to serve that traffic at specific times of its life (BOARD, 

1962). Thus, pavement serviceability refers to the functional capacity of a pavement to ensure the adequate 

riding comfort to the traffic. Pavement serviceability measures the traffic carrying capacity of a pavement 

section at present condition. This aptitude is largely affected by pavement condition. Carey and Irick 

employed the present serviceability-performance concept to make a relationship between riding quality and 

quantifiable pavement parameters (at the AASHO Road Test, in 1962). They developed the Present 

Serviceability Index (PSI) formula which was a revolution to achieve the purpose (F. L. Roberts & Hudson, 

1970). Pavement serviceability is influenced by many attributes. Research has revealed that serviceability 

is largely associated with roughness and it can be used as a predictor for the level of service of a pavement 

(Haas, Hudson, & Zaniewski, 1994).  

The general condition of a road is objectively measured by pavement roughness, and it is the most 

commonly used condition variable in pavement deterioration models (Foley, 1999). Roughness is a 

functional attributes of the pavement that measures states of the longitudinal profile in the wheel path  

comprising those surface deviations which influence the motion and operation of a moving vehicle; that is, 

through the user’s perception of riding quality, the wear and operating costs of vehicles as well as road 

safety (W. D. Paterson, 1987). Roughness measurement is the primary tool to assess the functional 

performance of pavement and combines the consequence of many modes of pavement deterioration 

(McLean & Ramsay, 1996; W. Paterson, 1986). Usually, pavement roughness (smoothness) conveyed the 

extent of the presence of surface irregularities to which ride quality is sensitive.  

The International Roughness Index (IRI) is a recognized unit of measurement to quantify pavement 

roughness using several automatic survey devices (Arhin, Williams, Ribbiso, & Anderson, 2015). To 

measure the roughness a quarter car model simulated with road profilometer is used (Michael Moffatt, 

2007b). Austroads has determined that, at the network level, roughness values are to be reported considering 

Lane IRI or as IRI (m/km). It is measured by averaging two separate single IRI values under wheel track 

collected by the profilometer.  
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2.4 Methods for Pavement Distress Evaluation and Measurement 

Detailed information of the pavement distresses is generally collected and archived for quantifying, 

maintenance decision making and research purposes. This information mostly consists of the type, location, 

extent and/or severity of distress. The detection of distress on pavement involves special attention from the 

transportation authorities all over the world depending on the surface of transportation. In the United States, 

the PAVER and Micro PAVER systems (M. Y. Shahin, Cation, & Broten, 1987; M. Y. Shahin & Walther, 

1990) are widely used, which are dependent on pavement condition survey and are employed to ensure the 

efficient use of the maintenance and rehabilitation fund (Ismail, Ismail, & Atiq, 2009). Several states have 

individual pavement condition survey procedures. 

The Distress Identification Manual was established by the Federal Highway Administration in the U.S. to 

evaluate distress for long term performance prediction (Miller & Bellinger, 2014). In Canada, the Ministry 

of Transportation and Communications, Ontario developed a separate manual for flexible pavement 

condition survey (Chong, Phang, & Wrong, 1975). In Australia, Austroads established a standard guide for 

the visual (subjective) assessment of pavement condition in 1987; the Guide to Asset Management manuals 

are followed to measure and assess the pavement condition parameters (Sharp & Toole, 2009) and other 

states have their own rating systems as well. This guide is updated regularly by the member authorities of 

this organization. Austroads authorities have their individual survey procedures to evaluate and measure 

the pavement condition. Further, different studies for long term pavement maintenance ("Long-term 

pavement performance study finalised," 2019) implemented a detailed data collection procedure by 

Austroads. 

2.4.1 Visual Detection and Assessment of Distress (Subjective Survey) 

At present, the pavement surface condition evaluation is performed largely by visual inspection where a 

professional engineer or practised personnel riding on the highway sections by vehicle detects distress by 

using his or her judgment and collects the relevant data for subjective evaluation such as type, location, 

extent or severity of distress. Hence, this conventional manual way of distress evaluation is expensive as it 

is labor-intensive requiring expert persons, takes time, and may be dangerous, tiresome, biased, and unable 

to give quantitative evidence, and therefore, most of the time it tends to give inconsistent data  depending 

on the verdict of the survey person  (Cheng & Miyojim, 1998).  

Though automatic distress data collection is widely used nowadays, synchronization of the raw video clips 

is still largely conducted by trained persons (Huidrom, Das, & Sud, 2013). Subjective pavement surface 

condition evaluation includes experienced engineers giving rating values. The experienced personnel 

visually examine the pavement sections based on their experience and following the standard manual. 
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Though the visual ratings have the benefit of being simple and illustrative, they have some limitations too 

since this type of ratings is costly, inherently subjective and may lack of sufficient engineering data which 

are needed to develop repair strategies (Gharaibeh et al., 2009).  

 2.4.2 Automated Distress Detection and Measurement Survey (Objective Survey)  

Automatic data collection processes can be categorized into two broad types: the first one uses images from 

photography or videotape and the second one uses measurements by various types of sensors or modern 

electronic devices (McGhee, 2004). There are several procedures and apparatuses available nowadays 

which include video recording devices and ultra-modern contact-less laser sensors to capture the images of 

the pavement surface.  

Several types of camera (single camera, video camera, line-scan camera and infrared camera), stereo 

imaging, focus-defocus, photometric stereo, laser, acoustic, pressure sensor, ultrasonic sensor, 

deflectometers, friction tester, accelerometer and other vibration using contemporary measuring devices 

have been widely used in automated pavement distress detection and synchronizing all over the world 

(Coenen & Golroo, 2017; Koch & Brilakis, 2011). The National Cooperative Highway Research program 

prepared automated pavement condition data collection and processing guidelines for highway practice, 

investigation, and future development for network-level road management (Tsai, Kaul, & Mersereau, 

2009). Typically, automated survey data and images are processed by either fully or semi-automated 

systems. 

Semi-automated Process 

Recorded images of pavement distress using cameras or other sensors mounted in moving vehicles, and 

locations with GPS devices are conveyed to the computer processor to detect and categorize the distress 

types by the appropriate personnel at the work station (M. B. G. Al-Falahi, 2015). Many road agencies use 

this type of distress evaluation system. 

Fully automated Process  

This type of ultra-modern synchronization includes automatic detection of distresses from the input images 

and the distinct pattern identification. The development of the new technology allowed full automation of 

pavement crack surveys, reduced the dependency on the traditional manual methods and resulted in wide 

adoption of automated detection and classification of pavement surface distresses (M. B. G. Al-Falahi, 

2015).  

According to Austroads’ guidelines, automated methods rutting surveys use several vehicle-mounted lasers 

or ultrasonic sensors (Figure 2.5) in conjunction with taut wire or straight edge models. These devices are 
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typically capable of measuring transverse profiles with as close as 50 mm spacing while the host-vehicle 

travels at normal traffic speeds (Michael Moffatt, 2007a).  

 

Figure 2.5  Automated pavement condition data collection vehicle (M. Al-Falahi & Kassim, 2019). 

At present, high configuration processors with huge memory capacity and various competent software have 

become cost-effective and useful for maintenance budgets. However, there are still some limitations with 

the current automated distress detection methods because they are involved with high capital costs and can 

only assess only specific types of distresses (Cheng & Miyojim, 1998). 

2.5 Pavement Maintenance 

Effective maintenance planning can ensure an escalation in service life of pavement, accordingly reducing 

the frequency and the necessity for capital cost (Mohamad, Sinha, & McCarthy, 1997). Usually pavement 

maintenance has two types of impacts, an instant impact on the road surface condition and the other its 

effect on future pavement deterioration rate. Maintenance works improve the condition of the pavement 

and often defer the deterioration process. The major classifications of road maintenance are listed below: 

2.5.1. Routine Maintenance 

These are small-scale repair works which include: patching, seal coating, crack and joints sealing, repair   

of shoulders, cleaning of ditches, maintaining side slopes, vegetation control and other regular maintenance 

of pavement (T. F. Fwa, Sinha, & Riverson, 1988). These types of routine maintenance are useful to slow 
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down the pavement deterioration rate. These operations are expected to be carried out once or more, each 

year on a pavement section to keep it to its original serviceability. 

2.5.2. Resurfacing 

Resurfacing is performed on the existing surfacing of the pavement. Full-width or thin resurfacing like 

reseals, slurry seals, fog seals, thin asphalt surfacing and other surface treatments are used to maintain 

surface characteristics and structural integrity of the existing pavement (W. D. Paterson, 1987). These are 

normally large-scale maintenance works and are periodically performed on a segment of road after a 

number of years. These treatment works also require certain identification and planning. 

2.5.3. Rehabilitation 

Rehabilitation is referred to as a infrastructural or functional improvement of a pavement that makes a 

significant increase in service life, by extensively upgrading the condition of pavement and user comfort 

(Hall, Correa, Carpenter, & Elliot, 2001). This type of maintenance work includes different types of 

overlays comprising granular and asphalt concrete overlays, granular surfacing, specific types of in-depth 

patching, surface treatment with substantial shape corrections and some other similar types of repair works. 

These are conducted for full-width, and full-length of existing road, usually for strengthening.  

2.5.4. Reconstruction 

Reconstruction is usually done for high capacity improvement of roads, ensuring geometric standards. The 

process includes removal and replacement of existing pavement surface layers, and often the underlying 

base and subbase layers with rehabilitation of drainage systems (Hall et al., 2001). 

2.5.5. New Construction 

New construction is required when road needs to be constructed in a new alignment, or major improvements 

of existing pavements like conversion of gravel road to paved road or providing an additional lane to the 

existing right of way are required.  

2.6 Granular Pavement Surfacing   

Granular road pavements (Figure 2.6) are the most common pavements used in urban and rural areas across 

Australia, New Zealand, Africa, and some other countries. The main purposes of the surfacings on these 

granular pavements are to provide a smooth riding path, to protect the underlying weaker base or sub-base 

from water and to ensure desired (sufficient) skid resistance for riding traffic. There are predominantly two 

types of bituminous surfacing which are described in the following sub-sections.  
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Figure 2.6  Typical cross-section of a granular pavement (Saltan & Fındık, 2008). 

2.6.1 Sprayed Seal Surfacing 

Sprayed treatments include a layer of aggregate compacted on a thin bituminous binder sprayed on the 

surface (Figure 2.7). Commonly, surfacing with seals (10 – 20 mm) is made up of an unbound granular 

base, such as crushed rock or gravel. The performance of sprayed seals depends mainly on the rates at 

which the aggregate disintegrates under vehicular load and the binder oxidizes (Jameson, 2011). The 

expected life of a sprayed seal surfacing is 5-15 years, but it can sustain up to 25 years in stable climates. 

Though many rural roads are surfaced with sprayed seal, the structure is not sufficiently strong to resist 

shear stresses caused by heavy traffic vertical loads (Gransberg & James, 2005). This type of surfacing is 

not useful either for sharp grades, at roundabouts or in curvature. To overcome these limitations, asphalt 

and concrete pavements are used.  

 

Figure 2.7  Sprayed seal with single application of binder and single layer of aggregates (Patrick, 2018). 

 

During the 1920s, when pneumatic-tired vehicles started to become popular, the demand for cost-effective 

surface treatment attracted the attention of the highway authorities (Rebecchi & Sharp, 2009). Hence began 

the use of the sprayed seal (Australian term) or chip seal (New Zealand term) or seal coat (term used in 
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Africa and some other countries) as a surface treatment. This development of low-cost road surfacing in 

Australia is a milestone in the road maintenance sector for the international community.  

2.6.2 Asphalt Surfacing 

‘Asphalt wearing course’ refers to surfacing where aggregates are mixed with bituminous binder at a plant 

on site and placed as a carpet on the pavement. The usual thickness of the asphalt wearing course varies in 

between 20 to 40mm (Rebbechi, 2007). Asphalt surfacing can contribute to the pavement structural 

strength, provided with Dense Graded Asphalt (DGA) or Stone Mosaic Asphalt (SMA) as a wearing course 

on an asphalt base, while a sprayed seal surfacing is not able to provide any structural resistance. Asphalt 

surfacing is selected for urban areas, freeways and arterial roads with high traffic volume, while sprayed 

sealing is usually used in low trafficked remote areas, on all types of pavements in Australia (Holtrop, 

2008).  

 

 Figure 2.8  Asphalt surfacing on granular pavements (Rebbechi, 2007) 

The asphalt is suitable for heavy traffic loading roads and in the city area, because it has a greater durability 

and resistance to wheel loading effects (Rebecchi & Sharp, 2009). Therefore, it offers a better riding quality 

for the users. Asphalt surfacing lasts 7 to 25 years depending on traffic loads, environment, developed 

distresses and type of surfacing (dense graded, and open graded, etc.). The typical cross-sections of asphalt 

wearing courses are presented in the Figure 2.8. 

2.7 Road Maintenance Prioritization 

Prioritization of pavement treatments considers those distresses which cause the highest inconvenience, 

discomfort to road users, and need earlier attention. In the priority ranking of pavement maintenance 

programs, a convenient practice is to express potential needs of treatments in terms of a priority index 
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developed via some empirical numerical formula or a combined index based on manual ratings. The 

prioritization practices may be grouped into three categories as below (Shah, Jain, & Parida, 2014).  

(1) Priority ranking based on manual judgement  

(2) Priority ranking based on financial evaluation and  

(3) Priority ranking based on a combined index. 

Though mathematical indices are widely used, they often do not convey an understandable physical 

meaning and cannot articulate the maintenance prioritization precisely (Farhan & Fwa, 2009). This is 

because integrating various aspects empirically into a single measure tends to suppress the different 

influences of the pavement condition parameters. However, prioritization of pavement segments becomes 

essential for selecting a suitable maintenance choice, particularly when budgets are limited. 

2.7.1 Agreement Between different Pavement Condition Indices 

Pavement surface distress, individually or along with other pavement condition parameters, considered as 

a significant input for developing integrated road condition index that reflects the overall current condition 

of pavements. These indices acted as an expedient tool for planning different types of maintenance works 

and rehabilitation strategies. Pavement maintenance prioritization mainly depends on the accessibility of a 

standard measuring or evaluating scale for the current condition of each component of the network. Usually, 

pavement condition indices have been used by transportation agencies to infer the current statuses of 

pavement to decide whether to intervene as a part of road maintenance programs. Many of these indices are 

combined measures of the structural and material condition of pavements (Gharaibeh et al., 2009). These 

indices and methods comprise of simple subjective rating evaluation with mathematical formulations.   

Since the subjective rating systems are constrained by various limitations, directly measured data are 

accumulated to get combined condition indices. These indices are extensively used by many state highway 

departments. In each type of index, the road agencies considered separate criteria for evaluation. These 

indices are mainly based on weighting factors like deduct value and statistical analysis. The overall 

pavement condition index development is more complicated because the ‘roughness’ term is also to be 

considered, which adds an additional feature to the index (Gharaibeh et al., 2009).  

The Present Serviceability Index (PSI) developed on the basis of the Pavement Serviceability Rating (PSR) 

from AASHO road test results, is a well-recognized index used to define the functional condition of a 

pavement considering user ride quality (S. Shoukry, D. Martinelli, & J. Reigle, 1997). The Present 

Serviceability Index (PSI) is determined by a panel of individuals who rate the pavement on a rating scale. 

The index is correlated with objective measurements made on the pavement surface. These objective 
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measurements include a measure of roughness index, the extent of cracking and patching, and for flexible 

pavements, the average rut depth in the wheel tracks. The important point here is that an estimation of 

serviceability can be made by making objective measurements, and then through correlation equations, 

calculations of the index can be made (Eldon Joseph Yoder & Witczak, 1975). The original AASHO 

equation of PSI for flexible pavement is as follows (Chastain & Schwartz, 1964): 

𝑃𝑆𝐼 =  5.03 −  1.91 𝑙𝑜𝑔 (1 + 𝑆𝑉) −  0.01  (𝐶 + 𝑃)
1
2  −  1.38  (𝑅𝐷)2  

Here, 

𝑆𝑉 = the mean of the slope variance in the two-wheel paths (measured by longitudinal profilometer)  

𝐶 = foremost cracking, in ft per 1,000 sq ft of area  

𝑃 = surfacing patching in sq ft per 1,000 sq ft of area 

 and  

𝑅𝐷 = mean rut depth of both wheelpaths in inches 

The U.S. Army Corps of Engineers developed PAVER, a pavement management system that improves the 

maintenance decision-making process at the network and project levels (Nunez & Shahin, 1986). It 

calculates an arithmetic index between 0 and 100 which is defined as the Pavement Condition Index (PCI) 

and has been implemented by the American Public Works Association for use by cities and counties. A 

pavement having a score of 100 is considered to have no defects. On the contrary, pavements in poorer 

condition would have lower scores (Johnson, 2000). Generally, the PCI encompasses two aspects: 1) user 

comfort for traveling which is related to roughness, and 2) pavement surface distress rating. The former is 

based on objective measurements using a roughness profilometer whereas the latter is acquired by 

subjective evaluation of surface distresses following standard guidelines (Hajek, Phang, Wrong, Prakash, 

& Stott, 1986). In 2000 in the U.S., the road authorities adopted the developed PCI and use it for evaluating 

pavement condition for highways and parking lots (ASTM Standard D6433-99). The universal equation for 

calculating PCI is as follows  (M. Shahin, Darter, & Kohn, 1978): 

𝑃𝐶𝐼 =  𝐶 − ∑ 𝐷𝑒𝑑𝑢𝑐𝑡 𝑉𝑎𝑙𝑢𝑒 

Here,  

𝑃𝐶𝐼 = Pavement Condition Index  

𝐶 = maximum value of overall condition index (i.e. perfect score of 100) 
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𝐷𝑒𝑑𝑢𝑐𝑡 𝑉𝑎𝑙𝑢𝑒 = deduct value function that differs with distress parameters  

The calibration of the suitable deduct value is a very challenging and crucial part in the development of an 

effective PCI. The PCI is considered the most specific index that integrates several types of distresses with 

their magnitudes and severity (M. Y. Shahin, 2005).  

Another subjective rating named Pavement Condition Rating (PCR) is also used by some authorities as a 

procedure to detect pavement distress and to comprehend the combined effects of several distress types to 

describe the overall pavement condition, with their severity and extent (Saraf, 1998). These composite 

indices are derived from their constituent elements while the contributions of individual elements to the 

overall index depends largely upon the weightings assigned to each distress in the equation for calculating 

the composite index.  

To determine the agreement among several indices which are used by different highway authorities, six 

indices from five transportation departments in the United States were compared using available relevant 

data collected from the concerned information system. It was found that there are significant variations 

among the commonly used pavement condition indices due to the weighting factors, types of distress 

considered and the arithmetic forms of the indices (Gharaibeh et al., 2009). 

2.8 Surface Inspection Rating (SIR) Survey in Victoria 

In Victoria, surface inspection rating surveying is performed based on some core criteria. The assessed 

fundamental criteria for asphalt surfacing are cracking, ravelling, patching. In the case of sprayed seals, 

binder condition and binder level are considered as well. The non-core criteria for assessment are loss of 

surface texture and deformation (rutting, shoving, corrugations, and depressions). Hence, detection and 

evaluation of distress considers the several modes of distress which are expressed in terms of extent of area 

affected, severity of widths of cracks and background of the pavement or surfacing treatment (VicRoads, 

2004).  

According to the guidelines of VicRoads, the scale used by the practised personnel to give rating is from 0 

to 5 where 0 is considered as good (no distress), 1 is to be rated for minor defects, 3 is for moderate distress 

and lastly, for extensive condition the ranting is 5. The scale used for the rating depicts the effect of the 

level of distress and able to assess the remaining life of pavement. The given ratings from the experts for 

the mentioned five types of core distress parameters are then integrated into one measure termed the Surface 

Inspection Rating (SIR). The calculation of SIR considering all five types of distresses assessed in the 

pavement surface inspection rating method (VicRoads, 2004) can be expressed as: 
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𝑆𝐼𝑅 =  ∑ 
𝑅𝑎𝑡𝑖𝑛𝑔 𝑉𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑎𝑙𝑙 𝐷𝑖𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑠 

(5 ×  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑖𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑠)
×  100   

For example, if the ratings for cracking, texture loss, stone loss, deformation and patching are 1, 3, 1, 3 and 

3 respectively, the value of SIR will be equal to [(1 + 3+ 1 + 3 + 3) / (5 × 5)] ×100 = 44. SIR is very useful 

to trigger the periodic resurfacing programs using a threshold value of SIR = 30 (Hassan, Lin, & 

Thananjeyan, 2014). SIR values are used to determine the potential need for pavement resurface treatment 

and not for the selection of treatment method. Visual inspection rating is used to categorize individual road 

segments’ condition as ‘critical’, ‘needed’ and ‘desired’, for the purpose of prioritization in the resurfacing 

program. 

The subjective condition ratings are also considered with objectively collected automated pavement 

condition data for decision making of other periodic maintenance works (renewal activities), in addition to 

triggering resurfacing programs at the network level. The recommended maintenance period and choices 

are mainly based on assessors’ individual experience and preference. Hence, this approach is not sustainable 

and does not enable the asset managers to develop a long-term asset management strategy. 

2.9 Pavement Condition Survey (PCS) in Victoria 

Additionally, Pavement Condition Survey (PCS) is carried out biannually for Victoria’s road network using 

digital survey vehicles monitored by practised personnel, giving quantifiable condition data. PCS assesses 

overall pavement condition, functional (roughness, texture loss, strength, and skid resistance) and structural 

(rutting and cracking). Hence, this objective survey supports understanding of the pavement performance 

and triggers required renewal activities.   

2.10 Modeling Approaches 

2.10.1 Deterministic Models 

Many studies prefer to use deterministic approaches for prediction because they are the most popular 

models, of great practical value, and easy to use and understand (Lu & Tolliver, 2011). Linear models to 

predict pavement condition have been developed by many researchers (Hunt, 2002; T. Martin & 

Choummanivong, 2008; Stephenson, 2010), considering the relationship between pavement condition 

(dependent variable) and each of the included factors (independent variables) as linear. Research 

conventionally predict the serviceability of pavements using Multiple Linear Regression (MLR) analysis 

(N. O. Attoh-Okine, 2002). This is one of the comprehensive forms of deterministic models and is very 

effective when more than one cause affects the dependent variable (Ens, 2012). It provides information 

about the model as a whole and the relative contribution of each of the variables.   
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Theoretically, the pavement deterioration process is the combined effect of many factors that are related to 

the mechanistic properties of pavements, which include traffic volume, aggregate properties, and the level 

of performed maintenance. However, pavement performance is associated with some other latent 

influencing factors as well that are challenging to incorporate in the pavement condition assessment 

(Madanat, Mishalani, & Ibrahim, 1995). Thus, pavement deterioration is a complex stochastic process. 

Furthermore, the rate of deterioration is not fixed, it changes with time which proves it is a dynamic process 

(Li, 2005). To capture the uncertainty and  dynamism associated with the pavement deterioration process, 

the demand for probabilistic  approaches are getting attention over deterministic models (T. Martin, 

Choummanivong, Thoresen, & Kadar, 2015).  

2.10.2 Probabilistic Models 

Pavement deterioration is associated with the effect of known factors and unknown latent causes.  

Therefore, probabilistic modeling is useful to assess the pavement condition by considering the outcome 

variable as a stochastic event. There are four probabilistic methods in modeling absolute pavement 

deterioration, including survivor curves, Markov Chain (MC) models, semi-Markov models, and 

continuous logistic models. The following sections describe most widely used probabilistic methods for 

modeling subjective pavement condition from objective pavement condition parameters.  

2.10.2.1 Logistic Model 

Logistic modeling is one type of continuous probability approach that has been used in several current 

research in modeling pavement deterioration considering distresses progression (Choummanivong & 

Martin, 2014; T. Henning & Roux, 2012; T. F. Henning, 2008; Khraibani, Lorino, Lepert, & Marion, 2010; 

Y. Wang, 2012). Usually, this type of method is suitable for explaining and testing hypotheses that relate a 

categorical response variable with one or more categorical or metric  explanatory variables (Peng, Lee, & 

Ingersoll, 2002). Additionally, the assumption of probabilistic logistic regression is more flexible with data 

distribution since it does not assume a linear correlation between untransformed DV and IVs. A common 

limitation of these types of models is that they were easier to apply to an entire network rather than 

individual road sections, whereas the deterministic and incremental deterministic models are of greater use 

in this regard (T. F. Henning, 2008).  

2.10.2.2 Markov Chain Model 

Markov Chain is a probabilistic modeling approach that considers the stochastic pavement deterioration 

process with age by using a Transition Probability Matrix (TPM) for predicting the future condition of 

pavement depending on the existing condition (Osorio-Lird, Chamorro, Videla, Tighe, & Torres-Machi, 

2018). This model uses a base condition vector showing the present condition of a pavement segment and 
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a TPM (Amador-Jiménez & Mrawira, 2009). This method is a time-dependent model and disregards non-

load and other environmental effects (Lytton, 1987). 

2.10.3 Other Models 

Other models used in the relevant studies for predicting pavement conditions include Artificial Neural 

Networks (ANNs) and Genetic Programming (GP).  

2.10.3.1 Artificial Neural Networks (ANNs) 

ANNs are statistical models that have similar functional and structural concepts of the living neurological 

system (Hill, Marquez, O'Connor, & Remus, 1994). This structure consists of processing components 

through nodes, links between the components, and processing the information (Alsugair & Al-Qudrah, 

1998). This approach is used for forecasting and decision making in pavement condition assessment to 

trigger maintenance work (Abiola & Kupolati, 2014; Alsugair & Al-Qudrah, 1998; Chandra, Sekhar, 

Bharti, & Kangadurai, 2012).  However, it is hard to interpret and to understand the physical meaning of 

this type of model (Hill et al., 1994).  

2.10.3.2 Genetic Programming (GP) 

Genetic Programming (GP) is a recent approach in the pavement condition modeling arena. The key feature 

of this approach is the ability to create prediction equations without presuming the previous form of the 

current relationships (Alavi, Ameri, Gandomi, & Mirzahosseini, 2011). Some studies applied GP 

optimization based on genetic algorithms in modeling pavement condition parameters (Hsie, Ho, Lin, & 

Yeh, 2012; Tapkin, Çevik, Uşar, & Gülşan, 2013). 

2.10.3.3 Fuzzy Mathematics 

The theory of fuzzy mathematics is introduced in 1965 (Goguen, 1973). This theory provides an effective 

approach to measure the subjectivity in pavement condition evaluation and model the uncertainty related 

to the pavement deterioration process (Kaufmann and Gupta 1991).  This is achieved by the combination 

of a fuzzy set associated with several variables with the assessment of their significance (S. N. Shoukry, D. 

R. Martinelli, & J. A. Reigle, 1997). Fuzzy mathematics is applied in various recent studies for pavement 

condition assessment for maintenance planning (Bandara & Gunaratne, 2001; Singh, Sharma, Mishra, 

Wagle, & Sarkar, 2018; Lu Sun & Gu, 2011). 
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2.10.4 Modeling Approach in the PMS of VicRoads 

VicRoads uses a Pavement Management System (PMS) to enhance management of its pavement assets. 

Austroads deterioration models have been adopted by VicRoads as the primary models to predict future 

network performance. Pavement performance prediction is applied directly throughout phase 2 (Form asset 

strategies), phase 3 (Define investment program) and phase 4 (Identify asset requirements) of the Austroads 

Integrated Asset Management (IAM) framework (Toole, Martin, Roberts, Kadar, & Byrne, 2007) to 

optimize pavement and economic performance through minimizing whole-of-life cycle costs. In addition 

to the Austroads deterioration models, PMS can accommodate further models such as probabilistic models.  

2.11 Previous Relevant Studies 

Initially, in 1962 Carey and Irick employed the Present Serviceability Index (PSI), obtained by 

accumulating subjective ratings with measurements of road roughness by applying a multi-regression fit to 

AASHO Road Test data (Eldon J Yoder & Milhous, 1965). Since its original establishment, the PSI concept 

has been adopted by many state road authorities for triggering maintenance programs and priority ratings. 

Later, different state highway departments developed their individual pavement condition indices based on 

their rating systems. Pavement Condition Index (PCI), developed by the U.S. Army Corps of Engineers 

(1976) (N. Attoh-Okine & Adarkwa, 2013)  and International Roughness Index (IRI) established by the 

World Bank (1968)  are well-acknowledged indices as they are easily comprehensible and convenient to 

monitor the overall condition of the roads and ensure efficient use of road maintenance budgets.   

The recent studies that model the association between pavement condition ratings and distress parameters 

are observed from various aspects. Regression analysis was applied to establish relationships between 

Present Serviceability Rating (PSR) and pavement distress (AL & DARTER, 1995). The study also 

investigated the correlation between PSR and International Roughness Index (IRI). Two multiple linear 

regression models have been established for of Saudi Arabia’s inter-city roads (Mubaraki, 2009). First one 

is for Pavement Condition Rating (PCR) that used traffic loading, age, and IRI as predictors. The other one 

predicts IRI from rutting, ravelling, and cracking. These statistically significant models showed coefficients 

of determination (R2) = 0.799 and 0.93 respectively, which suggests the acceptability of the models. A study 

showed the relationships between PCR and roughness or pavement distresses (rutting or cracking) can be 

developed by a polynomial regression analysis (Hozayen & Alrukaibi, 2008).  

In one study rutting, patching, and slope variance along with cracking are used as explanatory variables in 

developing Artificial Neural Network (ANN) model to estimate subjective PSR, and achieved better results 

than AASHO panel data of PSR (Terzi, 2007). Another regression study considered 21 pavement distresses 

to predict IRI in the roads of the urban and rural areas of the San Francisco Bay (U.S.) and results confirm 
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the acceptability of the PCI as a predictor of IRI with an R2 value of 0.53 in the model (Dewan & Smith, 

2002). For the District of Columbia, linear regression models to predict PCI from IRI were found to be 

statistically significant at the 5% level of significance with R2 values between 0.56 and 0.82 where 

functional classifications of  the pavement are considered (Arhin et al., 2015) which can be considered a 

good prediction level. For the North Atlantic Region, a power regression result showed 59% dependency 

of variation in PCI on IRI (Park, Thomas, & Wayne Lee, 2007). This model predicts the variation of PCI 

for comparatively low IRI values (0.725 to 2.0 m/km).  

Probabilistic logistic regression analysis and developed Markov Chain (MC) models for subjective 

pavement surface distress rating as a function of age in Australia indicated a moderate success rate (48% - 

65%) for sprayed seal surfacing and 57% to 90% for Asphalt wearing course road network (Hassan, Lin, 

& Thananjeyan, 2017b). In the case of the AC network, probabilistic Markov models and the logistic 

models both predict SIR values that are higher than the deterministic regression model and for the SS 

network it is found that the regression and Markov Chain models reflect greater rates of deterioration than 

logistic models, but the second one has a higher prediction ability for below the age of 7 years (Hassan, 

Lin, & Thananjeyan, 2017a). When the age is above 7 years, developed three types of models produce 

almost similar rates including the Markov model is showing a higher prediction level. Further, age is found 

to be a very significant predictor for surface inspection rating (SIR) explaining 85% to 95% variation in 

SIR,  where linear regression analysis and Markov methods prove that both models predict a similar rate 

but the MC model using weighted mean probabilities predicts more at all ages (Hassan et al., 2014).  

Artificial Neural Network (ANN) and regression analysis were used to explore the relationship between 

subjective PSR and objective Present Serviceability Index (PSI), which is a function of measurement of 

roughness and distress (rutting, cracking and patching), for highway sections in South-East Nigeria (Abiola 

& Kupolati, 2014). In India, the IRI model as a function of pavement condition yields a R2 value of 0.86 

and Mean Squared Error (MSE) = 0.041 indicating that the performance of ANN is satisfactory, and it is 

feasible for IRI prediction. Another study in India to predict pavement roughness from pavement distress 

parameters revealed that the non-linear relation is better that the linear model (R2 = 0.73 and 0.77) and ANN 

models yield better forecast (R2 = 0.86) of road roughness for a given set of distress parameter (Chandra et 

al., 2012). A summary of reviewed previous models on predicting subjective pavement data is presented 

below (Table 2.1).      

From the previous studies it is observed that a lot of effort has been employed to develop models for 

forecasting pavement surface condition from present pavement condition parameters and subjective rating 

integrated with measured influencing factors, with varying levels of involvedness. The reason for this 

interest from a pavement management program perspective is that modeling and predicting pavement 
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condition enables optimization of available funds and provision of the required level of service to the users. 

However, selection of the appropriate modeling approaches depends upon available data and the relevant 

pavement management system. 

A comprehensive review of existing relevant pavement condition models indicates that different analytical 

approaches have been recommended for developing relationships between subjective rating and directly 

measured condition data. The mainstream of accepted approaches from the existing statistical prediction 

models are based on observed local historical condition of pavements to estimate future pavement 

condition. Different predictors have been included, signifying their contributions to pavement surface 

condition. These factors generally are pavement distress (rutting, cracking, ravelling, patching and 

potholes), slope variance (a function of profile roughness), IRI (International Roughness Index), pavement 

age and traffic loading. Numerous studies have been developed using various linear or non-linear regression 

models or by using probability models based on individual distresses considered by the relevant road 

authority. In the literature, researchers adopt three kinds of modeling approaches: deterministic, 

probabilistic (logistic regression and Markov chains) and others (artificial neural network and genetic 

programming) to evaluate the relationship between subjective rating and objective pavement condition 

parameters.  

To prioritize road maintenance activities, several decision-making approaches have been incorporated and 

employed in the pavement management study (S. Ahmed, Vedagiri, & Rao, 2017). However, in the past, 

very few studies focused on the interaction effects between pavement distresses in determining the 

association between automated pavement distresses and subjective ratings in detail. Therefore, the current 

study attempts to investigate the interactions between various pavement distresses in developing 

relationships between objective (automated) pavement surface condition data and visual pavement surface 

rating, that is a useful indicator of pavement surface performance. Finally, some sets of relationship between 

subjective and objective pavement condition data are developed for each of the sprayed seal and asphalt 

surface road networks.   
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Table 2.1  Summary of reviewed prediction models for subjective rating data from objective data of pavement 

Authors, Location DV and Predictors Sample Size Modeling approaches Findings 

(Abiola & 

Kupolati, 2014) 

South East, 

Nigeria 

DV: Subjective Present 

Serviceability Rating (PSR) 

Predictor: Objective parameters 

[rut depth, cracking, patching and 

slope variance (function of profile 

roughness)] of Present 

Serviceability Index (PSI) 

247 road 

sections 

1. Multiple Linear 

Regression (MLR) 

Analysis 

2. Artificial Neural 

Network (ANN) 

The results showed that R2 for ANN model is 0.90 

compared to 0.34 for regression model. ANN has 

demonstrated its ability to model non-linear data. This 

result confirms that the input variables are non-linear, 

and the ANN has been shown to forecast with high 

degree of accuracy over regression analysis. 

(Terzi, 2007) 

AASHTO Test 

Results are used 

DV: Pavement Serviceability 

Rating (PSR) 

Predictors: slope variance, rut 

depth, patches, cracking, and 

longitudinal cracking 

74 samples Artificial Neural 

Networks (ANNs), 

(Logarithmic 

Sigmoid transfer 

function is used) 

The developed model gives better results for PSR than 

the AASHO panel estimation for PSI. 

The result shows that the R2 values for training set are 

0.83 and 0.99 whereas for testing set the vales are 0.82 

and 0.87 in the developed ANN model. 

(Mubaraki, 2009) 

Saudi Arabia 

DV1:  PCR, IVs:  pavement age 

(T), average annual daily traffic 

(AADT), IRI   

DV2: IRI, IVs: rutting, ravelling, 

and cracking 

10 years data, 

sample size is 

not mentioned 

Multiple Regression 

Analysis 

The MLR model for PCR explains 79.9% of the 

variation in the outcome variable.  

For IRI model the R2 indicates 93% of the variation in 

the outcome variable from the pavement distresses. 
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Table 2.1  Summary of reviewed prediction models for subjective rating data from objective data of pavement 

Authors, Location DV and Predictors Sample Size Modeling approaches Findings 

(Shah, Jain, 

Tiwari, & Jain, 

2013), India 

DV: Overall pavement condition 

index (combined form of 

PCIdistress+ PCIRoughness+ PCIStructure+ 

PCISkid) 

IVs: For PCIdistress IVs are 

cracking, patching, ravelling, 

rutting and potholes, for    

PCIRoughness IV is IRI, for   

PCIStructure IVs are effective and 

original pavement structural 

numbers, for   PCISkid subjective 

rating values are used. 

10 arterial/ sub-

arterial road 

sections having 

29.92 km road 

length with four 

and six lanes 

divided 

carriageway. 

Subjective and 

Objective surveys 

In this model four pavement performance indices are 

developed separately. After that, all of them are 

combined to give an overall pavement condition index. 

Here, each indicator has been given importance is 

estimating the final index.  

The offered combined index is likely to be a good tool 

for the evaluation of overall pavement condition. This   

index was used in pavement maintenance prioritization. 

(Arhin et al., 

2015), USA 

DV: Pavement Condition Index 

(PCI) 

  

Predictor: IRI 

Freeways = 20 

Arterials = 149 

Collectors = 140 

and  

Locals = 157 

Regression Analysis The regression models yielded statistically significant 

regression models at 5% level of significance where     

R2 values are found between 0.56 and 0.82.   
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Table 2.1  Summary of reviewed prediction models for subjective rating data from objective data of pavement 

Authors, Location DV and Predictors Sample Size Modeling approaches Findings 

(Park et al., 2007), 

North Atlantic 

Region 

DV: Pavement Condition Index 

(PCI) 

  

Predictor: IRI 

62 observations Power Regression 

Analysis 

Developed power regression model indicates that 59% 

of the variations in the outcome variable (PCI) can be 

explained by IRI. The model is suitable for relatively 

smaller values of IRI (0.725 to 2.0 m/km).     

(J.-D. Lin, Yau, & 

Hsiao, 2003), 

Taiwan 

DV: Improvement of IRI 

IVs: Distress and non-distress 

parameters 

125 samples Artificial Neural 

Network (ANN) 

Successful transfer of 

function was sigmoid 

function 

The correlation coefficient between improvement of IRI 

and pavement distresses is found to be 0.944. This 

indicates that IRI can be predicted by distresses to a 

large extent. 

(Hassan et al., 

2017b), Australia 

DV:  Subjective Pavement Surface 

Distress (cracking, stone loss, 

Texture Loss) Rating 

IV: Age 

AC: 3848 road 

sections 

SS: 1994 road 

Sections 

Logistic Regression, 

Markov Chains 

For asphalt surfaced network, all the distresses used in 

developing models are proved to be significant and the 

R2 value ranges from 0.57 to 0.90. For, SS network- R2 

value is in between 0.48 to 0.65 and the parameters are 

significant. 

It is also perceived that predictions of surface distresses 

from age are higher for Markov Chain models than the 

logistic regression models and observed average data. 

(Chandra et al., 

2012), India 

DV: Pavement Roughness Total 510 km Multiple Linear 

Regression, Non-

Linear Regression, 

ANOVA test results indicate that for the developed 

models, nonlinear model gives higher prediction (R2 = 

0.8) than a linear relation (R2 values are 0.73 and 0.77). 
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Table 2.1  Summary of reviewed prediction models for subjective rating data from objective data of pavement 

Authors, Location DV and Predictors Sample Size Modeling approaches Findings 

IVs:  distress parameters (potholes, 

ravelling, rut depth, cracked areas, 

and patch work) 

Artificial Neural 

Network (ANN) 

For this study, the mean error terms also supported the 

developed nonlinear models.   

(Hassan et al., 

2014), Australia 

DV: Surface Inspection Rating 

(SIR) 

IV: Age 

3848 road 

sections (3258.4 

mm) 

Linear Regression, 

Markov Chains 

All the linear regression models proved to be significant 

at the 5% level in explaining 85% to 95% of the 

variation in SIR from age (without constant). The study 

reveals that both models predict the similar rate of 

deterioration in pavements. However, MC models 

predict higher SIR than the linear models. 

(Vidya, 

Santhakumar, & 

Mathew, 2013), 

India 

DV: IRI 

IVs: Pavement condition 

56.49 km 

National 

Highway 

Artificial Neural 

Network with 

sigmoid transfer 

function 

The model yields an R2 value of 0.86 and MSE of 0.041. 

The results indicate that the performance of neural 

network is satisfactory, and it is feasible for IRI 

prediction. Higher precision can be obtained with large 

database and with more Input variables. 

(Golroo & Tighe, 

2010), Canada 

DV: Surface Distress Index (SDI) 

Predictor: Pervious Concrete 

Distress Index (PCPDI) 

 

Predictor: Pervious Concrete 

Condition Index (PCCI) 

Eight PCP 

sections 

(objectively 

evaluated) and 

Twenty 

qualified 

pavement 

engineers gave 

Regression Analysis The results show that 94% of variability can be 

explained by the predictor. The F value of the model 

indicates that the IV was significant at the 5% level. 

Fuzzy theory was proved to be an effective means to 

incorporate the stochastic pavement behavior. 
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Table 2.1  Summary of reviewed prediction models for subjective rating data from objective data of pavement 

Authors, Location DV and Predictors Sample Size Modeling approaches Findings 

Predictors: SDI and Functional 

Performance Index (FPI) 

 

(Rigid Pavement) 

 

rating to the 

PCP Sections 

through digital 

visual 

evaluation. 
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2.11 Summary 

This chapter presented the distress mechanisms for granular pavement with pavement behavior and 

performance measures. Contributing factors that stimulate these distresses are discussed. Agreement 

between different pavement condition indices all over the world are outlined. Subjective evaluation survey 

and objective automated pavement condition surveys are described and compared. Therefore, relevant 

previous studies related to modeling approaches with subjective and objective pavement condition data are 

reviewed in detail. Finally, the findings from the past studies are compiled in a table format and research 

gaps from the literature reviews are specified. 
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CHAPTER THREE 

RESEARCH METHODOLOGY AND DATA PREPARATION 

 3.1 Introduction 

The aim of the study is to develop relationships between subjective rating and automated pavement surface 

distresses. To achieve this goal, the conceptual framework is developed and accordingly, the data set is 

prepared for analysis. This chapter outlines the research methodology and the data preparation process, and 

describes the approaches for statistical analysis.  

The guidelines for pavement condition data collection for both subjective Surface Inspection Rating 

Procedure (SIRP) and objective Pavement Condition Survey (PCS) in Victoria, Australia are reviewed here. 

The conceptual framework of the research is presented here to address the objectives of the study. The study 

area, data description, data preparation and data filtration assumptions are briefly explained. Lastly, the 

modeling approaches suitable for the study are discussed in detail in this chapter.  

3.2 Pavement Surface Distresses Data Evaluation Guidelines for Subjective Survey 

In the subjective SIRP conducted by VicRoads, the practised personnel select and record a rating by 

examining uniform sections on foot at approximately 300 to 500 m intervals, together with a very slow 

‘drive-over’. The manual rating guidelines are described below for the distresses used in this study 

(VicRoads, 2004). 

Cracking 

The percentage of carriageway area affected by cracking, including both untreated and treated cracks, is 

determined and rated. Normally, the more connected cracks that make polygonal shapes are assumed to 

have larger affected area, which affects their rating. Usually in the evaluation process no cracking, area 

affected by cracking < 10%, 10 – 20%, or > 20% are categorized as Nil, Minor, Moderate and Extensive, 

and given rating values as of 0, 1, 3 and 5, respectively. 

Deformation 

In SIRP the assessment of deformation (rutting, shoving, corrugations, and depressions) is conducted for 

each type of deformation. No deformation, deformation affected area < 10%, 10 – 30%, > 30% of area in 

wheel path are regarded as Good, Minor, Moderate and Extensive, which corresponds to 0, 1, 3 and 5, 

respectively. 
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Texture Loss 

In sprayed seal surface, ratings of 0, 1, 3 and 5 for loss of texture correspond to binder levels less than two 

thirds up the aggregate, from two thirds up the aggregate to just underneath the top of the aggregate, just 

below the top of the aggregate, and over the top of the aggregate, respectively. In case of asphalt surfacing, 

no loss of surface texture, loss < 5% of area, loss 5 - 15% of area, loss > 15% of area are considered as 

Good, Minor, Moderate, Extensive conditions and rated as 0, 1, 3 and 5, respectively. 

3.3 Pavement Condition Survey Data Measurement and Assessment Guidelines 

The Austroads guidelines for pavement distress measurement procedures and the adopted methods for 

pavement condition survey in Victoria are described in this section (Foley, 1999; Hillier & Soet, 2009; 

Hussein, 2016; Michael Moffatt, 2007a; M Moffatt & Hassan, 2006; Prem, 1989; Sharp & Toole, 2009; 

Toole et al., 2007). 

Cracking 

In an automatic survey, cracking is assessed by trained but inexperienced personnel. They watch the videos 

of the distress, frame by frame and judge the area affected and in addition to performing electronic crack 

recognition and interpretation according to the Austroads Guidelines (M Moffatt & Hassan, 2006). The data 

is collected using high speed (maximum speed of 105 km/h) data acquisition modules mounted beneath a 

vehicle chassis to collect digital images of the pavement surface. In the context of pavement cracking extent, 

the area affected by cracking is expressed as a percentage of lane area (lane width by length). The 

percentages of cracked areas are categorized into five bins as follows: < 1%, 1 - 5%, > 5 - 10%, > 10 - 25% 

and > 25%. 

In Victoria, cracking is assessed by a manual crack recording method, where data is collected by watching 

digital videos and judging the area affected. Detected cracks are classified by an onboard data synchronizing 

unit and reported by cracking type (transverse, longitudinal and crocodile), crack width (mm), location, and 

cracking severity (average crack width in mm) or extent (area affected by cracking as a percentage of lane 

area). This data collection process is performed twice a year for arterial roads with full lane width in 100 m 

intervals between the centers of the lane lines. In pavement condition survey, cracking condition is 

considered as ‘Good’ when the percent affected by cracking is less than 10% and ‘Poor’ when it is greater 

than or equal to 10%. 

Rutting 

According to Austroads’ Guidelines (Michael Moffatt, 2007a), the automated methods for rutting surveys 

use several vehicle-mounted lasers or ultrasonic sensors, in conjunction with taut wire or straight edge 
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models. These devices are typically capable of measuring transverse profiles with as close as 50 mm spacing 

while the host-vehicle travels at normal traffic speeds.  

Most Austroads member authorities (MAs) record rutting in the left lane in one direction only, the 

assumption being that, in more than 95% of the road network, the left or slow lane carries the highest gross 

freight mass. For each reporting interval, the rut depth is reported as mean rut depth in mm/standard 

deviation. The proportion of Australian and New Zealand roads with rut depths in excess of 20 mm is small 

(< 3%).  Additionally, the severity of rutting is measured by mean rut depth (mm) and the extent is expressed 

as a percentage of pavement length. The maximum rut depths (mm) are categorized in ‘bins’ as follows: 0 

- 5, > 5 -10, > 10 - 15, > 15 - 20, > 20 - 25, > 25 - 30, > 30 - 35, > 35 - 40 and > 40mm. A sample of 

automated rutting survey reports prepared by Austroads is presented in Appendix C. 

In Victoria, a multi-laser profilometer is used to assess pavement rutting, which is an automated method. 

Pavement rutting data is reported for each 100 m in terms of rut depth in mm, as an average of both lane 

wheel paths for the whole section. To keep consistency with other pavement condition parameters, 100 m 

sections are adopted to report pavement condition survey data. Rut depth is binned as Good (< 10 mm), 

Fair (≥ 10 - 15mm), Poor (> 15 - 20mm), and Very Poor (> 20mm) in Victoria. 

Roughness 

According to Austroads Guidelines to measure the roughness a quarter car model equipped with road 

profilometer is used.  At a road network level, roughness is to be reported as Lane IRI or simply as IRI 

(m/km). IRI is an important general pavement performance index because it takes into account most of the 

pavement defects that affect riding quality (West, Michael, Turochy, & Maghsoodloo, 2011). 

In Victoria, roughness is measured with a multi-laser profilometer. Roughness is reported in terms of single 

wheel path IRI (m/km) and is determined by averaging two individual wheel path IRI. The results are 

reported at 100 m intervals, with IRI results reported to no more than two decimal places (m/km).  A travel 

speed of 80 km/h is built into the definition of IRI.  The roughness data is collected once every two years.  

 

Texture Loss 

Austroads uses a laser profilometer to measure pavement surface texture loss. The term ‘texture loss’ 

introduced by the Road Transport Authority of New South Wales, describes the difference between center 

lane surface texture and wheel path surface texture, to compare the wear and loss of texture in minimal 

trafficking areas with the most trafficked area. Thus, the rate and extent of pavement surface texture loss 

can be examined. 
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In Victoria, the texture loss data is measured by a profilometer at 50 mm intervals, estimating the difference 

in surface texture between ‘left wheel path’ and ‘between wheel path’. The data is aggregated to give 

average values per 100 m segment, to be reported in pavement condition survey. The difference is then 

expressed as a percentage of left wheel path texture. In Victoria, texture loss > 20% is considered as poor 

condition.  
 

3.4 Conceptual Framework of This Research 

The overall research plan used in this study to address the aim and objectives stated in Chapter One is 

presented in the flow chart (Figure 3.1). The flow chart of the conceptual framework shows the data analysis 

approach and statistical techniques used to achieve the aim of the study.    
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Figure 3.1  Conceptual Framework of Research Methodology 
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3.5 Study Location 

VicRoads Metropolitan South Eastern (MSE) Region is located at the south eastern part of Metropolitan 

Melbourne and covers 16 municipal councils. The region’s network consists of about 39% sprayed seal and 

61% asphalt surface roads (O. Lin et al., 2014). The average traffic volume of this region is approximately 

17,000 Annual Average Daily Traffic (AADT) on arterial roads and 74,000 AADT on Freeways/Highways 

(O. Lin et al., 2014). Over the years, about 6% and 3% of the sealed and asphalt network have been 

resurfaced annually.  

       

                            Figure 3.2  Location Map of Study Area 

With increasing traffic volumes in the urban MSE area, it is becoming problematic to conduct SIRP from 

the viewpoint of survey personnel safety, which necessitates finding alternatives. Hence, this study attempts 

to develop relationships between SIR and PCS parameters to predict subjective SIR values from 

corresponding objectively collected PCS data for VicRoads’ MSE Regions. 

3.6 Data Description and Preparation 

Years 2011 and 2013 data of subjective surface inspection rating (SIR) and objective pavement condition 

survey (PCS) parameters (cracking, rut depth, roughness, and texture loss) from VicRoads are used for this 

study. Initially, 247 road sections of the asphalt surfacing (AC) network and 256 road sections of the 

sprayed seal (SS) network are organized for the study. After filtering the compiled pavement condition data 

of 2011 and 2013, from subjective and automated survey, 160 road sections for the AC network and 190 

road sections for the SS network are prepared for analysis.  

Study Area:  
VicRoads Metropolitan 
South East (MSE) 
Region covering 16 
municipal councils  

                 (MSE) Region 

Asphalt Surface ≈ 61% 

Seal Surface ≈ 39% 
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3.6.1 Pavement Condition Data 

Cracking 

Objective cracking data (metric) from the pavement condition survey are used in correlation analysis, to 

investigate the interaction effects between pavement distresses in determining subjective rating, SIR, and 

develop probabilistic models for subjective rating as a function of objective pavement distress parameters. 

Factorial ANOVA is performed to find the interaction between pavement distresses. The cracking data is 

categorized into two groups: Good (< 10% area affected by cracking) and Poor (≥ 10% area affected by 

cracking) if the pavement condition survey data binning procedure proposed by VicRoads is followed.    

Rut Depth 

Automated rutting data (metric) is used for initial correlation analysis, interaction effects analysis and 

developing probabilistic logistic models for SIR. To investigate interactions between pavement distresses 

rut depth is binned as Very Good (0 – 5 mm), good (6 – 9 mm) and fair (10 – 15 mm) according to the 

Austroads guidelines. Here, VicRoads’ binning system is not used since most of the rut depths in the data 

set are below 10 mm and there is no rutting value with poor (15 < rutting ≤ 20 mm) or very poor (> 20 mm) 

conditions for the asphalt concrete (AC) surfacing network. For the sprayed seal (SS) network, the rutting 

data cannot be validated with subjective rating and the correlation of rutting with SIR is found to be 

negligible. Hence, rutting data is excluded from the analysis for SS network. 

Texture Loss 

Objectively collected texture loss data (metric/continuous) from VicRoads are used for the correlation 

analysis and validation of data. Since the automated data cannot be validated (Chapter 5) with subjective 

texture loss rating, ‘texture loss’ as an explanatory variable is excluded from further analysis. 

Roughness 

In the pavement condition survey, roughness is reported in terms of IRI (m/km). The automated roughness 

data (metric) is used for the correlation analysis, to find the interactions between pavement distresses and 

develop probabilistic models for the AC network. Roughness is grouped into three categories: good 

condition (IRI < 3.4 m/km), fair condition (IRI ≥ 3.4 - 4.2 m/km) and poor condition (IRI > 4.2 m/km) for 

the factorial ANOVA test, to examine the interaction effects between other pavement distresses and 

roughness. In the data set (after filtering), no pavement segment is found to be in very poor condition (IRI 

≥ 5.3). The grouping of parameters is selected based on the VicRoads’ data binning procedure. 
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3.6.2 Pavement Operating Condition Data 

Heavy Vehicle Traffic Volume  

The wheel load of heavy vehicles like trucks is an important factor behind the formation of pavement 

distresses. Repetitive heavy traffic loading, due to fatigue, causes rapid differential compaction in the 

pavement upper layer involving failure of the bituminous surfacing, due to fatigue. For road maintenance 

purposes, often traffic volume is used because it is simple, and it is useful to understand how busy a highway 

is. ‘Trucks’ are considered as commercial vehicles and separate traffic volume/Annual Average Daily 

Traffic (AADT) values are computed for trucks, considered as heavy vehicle traffic. VicRoads guidelines 

(VicRoads, 2013) for heavy vehicle traffic volume are considered in grouping the traffic data. Thus, heavy 

vehicle traffic volume (HV) is divided into three groups (HV ≤ 500, 500 < HV ≤ 1000 and HV > 1000) to 

observe the effects of traffic volume on the relationship between SIR and PCS parameters by the factorial 

ANOVA test.  

Age 

Age is an important aspect of bituminous surfacing because bituminous binder becomes brittle due to 

gradual hardening, due to oxidation, with aging. However, the age of pavement surfacing, by itself, alone 

is not an adequate cause for resurfacing or treatment work of a surface, it, together with distress condition 

and pavement performance, is used as an important guide to detect potential need for maintenance. The 

desired service lives of asphalt and sprayed seal surfacings are 7 to 25 years and 5 to 15 years, respectively 

(Jameson, 2011). Considering the expected service lives of both types of surfacing, DV and IVs are put into 

two groups (age ≤ 7 years and age > 7 years) to investigate the impact of age in developing relationship 

with manual rating and automated distress parameters by factorial ANOVA testing. 

3.6.3 Surface Inspection Rating (SIR) 

Subjective SIR is used by the road authority of Victoria to trigger periodic resurfacing of pavement and is 

described briefly in Chapter Two (section 2.7). For deterministic analysis, SIR values (continuous) obtained 

from the subjective survey data, are to be used as dependent variable (DV). In the case of the probabilistic 

approach, the SIR values (DV) are categorized using two major rankings (4 and 5 categories) considering 

the grouping of pavement surface conditions according to previous VicRoads study. Examples of SIR as a 

categorical variable with 4 categories are: 

• VG (Very Good): SIR = 0 - 10,  

• G (Good): SIR = 11 - 20, 

• P (Poor): SIR = 21 - 30,  
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• VP (Very Poor): SIR > 30 

3.6.4 Data Compilation 

 The following issues should be considered during data compilation: 

• The ‘same years’ from both types of surveys are considered in data preparation. 

• The subjective survey is conducted for each 300 to 500 m road segment and PCS data is collected 

for 100 m segments.  

• To get the equivalent pavement distress data, chainages of through lanes from PCS data collection 

are matched with corresponding pavement segments from the subjective survey.  

• Then the mean value of those PCS parameters (cracking, rutting, IRI and texture loss) are estimated, 

to get the PCS distress data, corresponding to the SIR value for each pavement segment. 

3.6.5 Data Screening Assumptions 

Years 2011 and 2013 pavement condition data (cracking, rut depth, roughness, and texture loss) of the MSE 

region of Victoria for the asphalt surfacing and sprayed seal surfacing networks are compiled for this study.  

Available subjective rating values of corresponding pavement segments are considered in compiling the 

data. The data set is screened to run the analysis following the conceptual framework of the research plan. 

To filter the data set, the following assumptions are considered. 

1. The network is divided into two sub-networks based on surface types. The two sub-networks are 

as below: 

i) Asphalt wearing courses    ii) Sprayed seals  

2. Ages up to 25 years are considered. The reason for this is the expected average surfacing service 

life of asphalt is 7 to 25 years depending on the category of asphalt surfacing (open graded, thin 

open graded, dense graded or other) and road function. For the sprayed seal network, the average 

service life is expected to be 5 to 15 years, depending on surfacing type (thickness and double 

application) and road function. 

3. Pavement sections with SIR ≤ 40 are selected for the analysis. Greater SIR values are considered 

outliers since they are assumed to be for major rehabilitation or reconstruction. 

4. Sections that were subjected to repair over the study period are excluded to avoid the misleading 

improved performance.   

5. The data set includes only sections of through lanes, to limit the variability of SIR data due to 

geometry.  
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6. Extreme values of Cracking, rutting, texture loss and IRI data are found to be as outliers in the 

analysis and therefore excluded from the study. 

3.6.6 Validation of Objective Pavement Condition Data   

The pavement condition survey distress data is collected objectively, whereas SIR is estimated by the 

combined evaluation of the visual ratings of different pavement surface distresses. The objective distress 

data are to be validated with the corresponding distress rating using logistic regression analysis. Based on 

the severity and extent of the cracking the subjective cracking in the manual survey, is evaluated on a four-

level scale with the values of 0, 1, 3 and 5 for nil, minor, moderate, and extensive distress categories 

respectively. Additionally, objective PCS cracking (automated) data (metric) are used to intervene for 

different maintenance renewal activities. To find the relationship between these two types of cracking data 

for the same set of pavement segments, logistic regression analysis is performed, and objective cracking 

data are validated to use in the analysis. Similarly, automated rutting data are validated with subjective 

ratings of deformation for both the AC and SS networks (Chapter 5). 

3.7 Statistical Approaches 

3.7.1 Correlation Analysis for Pavement Condition Data 

The correlation coefficient is a convenient statistical measure when investigating the relationship between 

one dependent (response/or outcome) variable and one or more independent (explanatory or predictor) 

variables. Pearson’s correlation coefficient, denoted by ‘r’, is a well-known measure that estimates the 

strength and direction of association between two metric (interval/ratio) variables. It is a simple measure of 

the statistical fit of a linear regression model. The square of this value is called the coefficient of 

determination (R2) which is often used as a measure of goodness-of-fit of any linear model (Bolboaca & 

Jäntschi, 2006).  

SPSS statistics software is used to perform correlation analysis with the available data for surface inspection 

rating (DV) and corresponding PCS distresses (IVs) from 2011 and 2013 to investigate the linear 

association between the DV and IVs. 

3.7.2 Interaction Effects between Pavement Distresses 

Interaction effects indicate that the relationship between two variables depends on another variable’s value 

(Aguinis & Gottfredson, 2010). It means that the association between one independent variable and the 

dependent variable is influenced by a third variable. Factorial ANOVA testing is performed to find the 

interaction effects between pavement distresses on modeling subjective rating. The overall ANOVA ‘F 

statistic’ determines only if there are significant differences in the means across all the groups (Kao & 
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Green, 2008). In this study the differences in the means of subjective rating across the groups of pavement 

distresses are investigated through the ANOVA test. 

3.7.3 Modeling Approaches 

 3.7.3.1 Deterministic Approach to Develop Subjective Rating Model 

The widely used deterministic model is a mathematical function that is used to predict the precise value of 

a dependent variable (DV) such as pavement condition (Abaza, 2004). Generally deterministic models can 

be categorized into three types based on their purposes: mechanistic (based on mechanics theories), 

empirical (based on observed or experimental data) and mechanistic-empirical models (Alaswadko, 2016).  

Regression analysis (a type of empirical modeling) is performed to determine the correlation between two 

or more variables and to make predictions (Uyanık & Güler, 2013). Simple linear regression models are 

favored with the asset managers due to their  easy comprehension and  application procedure (Hassan et 

al., 2017a). In this study, regression analysis is selected based on a literature review of previous years’ 

research work and the initial correlation analysis. From the preliminary correlation analysis, it is found that 

the correlations of subjective surface inspection rating (SIR) with automated distresses are significant for 

some parameters. Therefore, regression analysis is found to be a suitable approach to try to estimate SIR 

values directly from the automated pavement condition data.  

Multiple Linear Regression (MLR) is a common analysis method to develop the relationship between single 

continuous outcome variable and more than one explanatory variable (Field, 2013). Here, linear 

transformation of independent variables (IVs) is done to minimize the summation of squared residuals 

(deviations of the predicted values from actual values) of the dependent variable. The general form of the 

multiple linear regression model is as follows (Myers & Myers, 1990): 

𝑌 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ + 𝑎𝑛𝑥𝑛 + 𝜀 

Where, 𝑌 = dependent variable (DV) / Outcome Variable 

𝑎0 = constant / Y-intercept 

 𝑎𝑖 = regression coefficient, 𝑖 = 1, 2, 3, … … . . , 𝑛 

𝑥𝑖  = independent variable (IV), 𝑖 = 1, 2, 3, … … . . , 𝑛 

𝜀 = error 

As the number of independent variables (PCS parameters) is more than one, MLR is an expedient 

deterministic approach for this study. Using SPSS statistics software, multiple linear regression analyses 
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are performed with relevant available PCS distress data from 2011 and 2013 to develop best fit models with 

SIR as DV and PCS parameters as IVs.  

3.7.3.2 Probabilistic Approach for Subjective Rating Condition Model 

Though the deterministic approach is extensively used in developing relationships between different 

variables and can provide good prediction results (T. Martin & Choummanivong, 2010), this method cannot 

incorporate the stochastic nature of pavement effectively, in the assessment of its performance (Toole et 

al., 2007). To overcome this limitation, probabilistic approaches are considered for modeling the pavement 

performance (Hong & Wang, 2003; Porras-Alvarado, Zhang, & Salazar, 2014). Logistic models are useful 

to explain regression with one categorical dependent variable and various independent variables (IVs). 

 Ordinal logistic regression (probabilistic approach) has been used herein for the following reasons: 

1. In the multiple linear regression analysis, the coefficient of determination (R2) values are found to 

be low (0.305 and 0.235 for the AC and SS networks, respectively) indicating that the models 

explain only small amounts of variation (31% and 24%) in SIR. 

2. Ordinal logistic models are used when more than two categories of the dependent variables (DVs) 

are available having a reasonable order between the DV categories (Field, 2013). The dependent 

variable (SIR value) can be grouped in more than two categories and treated as categorical.  

The probabilistic approach of ordinal logistic regression is to be used for predicting subjective SIR values 

from objective PCS data. At first the assumptions of parallel lines are to be tested for ordinal logistic 

regression. If the same slope (parallel lines) assumption is violated, then multinomial logistic regression 

will be conducted. Considering the practice in the relevant studies, the application of logistic regression 

involves ranking of SIR (DV) into the following categories: 

RANK1 
▪ Very Good (VG): SIR = 0 – 10 

▪ Good (G): SIR = 11 – 15 

▪ Fair (F): SIR = 16 – 20 

▪ Poor (P): SIR = 21 – 30 

▪ Very Poor (VP): SIR > 30 

 

RANK2 
▪ Very Good (VG): SIR = 0 – 10 

▪ Good (G): SIR = 11 – 20 

▪ Poor (P): SIR = 21 – 30 
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▪ Very Poor (VP): SIR > 30 

 

The required number of logistic equations is normally decreased by one category, because in developing 

logistic model one of the categories is selected as a base or reference category in each case. Usually the 

reference category for prediction is the category with highest values. Here VG will be the reference 

category. SPSS statistical software output of logistic regression analysis includes the following statistical 

measures (Wuensch, 2014). 

• Regression coefficients (slopes) are available. The test of parallel lines is used to select the 

appropriate logistic model (ordinal or multinomial). 

• Likelihood ratio test specifies the significance of adding the explanatory variables (PCS 

parameters) to the model which is based on the variation in likelihood ratio (-2 log-likelihood) 

when the predictors are added to a model that contains the intercept only.     

• Nagelkerke measure will denote the variation in SIR explained by the PCS parameters. This test 

statistic ranges from 0 to 1 and is one of the measures to assess the relationships. 

• Significance of Logit model parameters for each category will be assessed using the Wald statistic.   

• Classification tables are available in SPSS that show the number of events or cases where the DV 

categories have been predicted correctly. The success rate of the model will be expressed as a 

percentage and calculated as the ratio of the number of events correctly predicted to the total 

observed number of events. 
 

3.8 Summary 

This chapter briefly describes the standard measurement practised in Victoria, Australia for subjective and 

objective surveys. The research plan is presented as a flow diagram to address the objectives to be achieved 

in this study. Then, the considerations for pavement condition data preparation, compilation and filtration 

are briefly explained. Lastly, suitable methods to investigate interactions between pavement condition 

parameters and modeling approaches to develop relationships between subjective rating and automated 

pavement distresses are discussed. 
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CHAPTER FOUR 

DETERMINISTIC ANALYSIS FOR PAVEMENT CONDITION DATA 

4.1 Introduction 

This chapter documents the analysis involved in investigating whether there is a linear relationship between 

subjective pavement surface inspection rating (SIR) and objectively collected pavement condition survey 

(PCS) data. From the initial correlation analysis, data validation, and assumption testing for linear 

regression models, the significant predictors from PCS parameters are selected to determine SIR. 

Interaction effects between pavement surface distresses are investigated by ANOVA tests. The 

development of the best fit model as a function of automated (objective) pavement condition distress 

parameters is described briefly for AC and SS network separately. Statistical Package for Social Sciences 

(SPSS) software is used for the analysis.  

4.2 Deterministic Analysis of pavement condition data   

4.2.1 AC Network 

4.2.1.1 Correlation Analysis of pavement condition data (AC Network) 

From the initial correlation analysis, it is found (Table 4.1) that the correlations of subjective SIR with 

automated cracking (Pearson’s correlation coefficient, r = 0.53) and rutting (r = 0.34) are significant at the 

0.01 level, while the correlation with IRI (r = 0.177) is significant at the 0.05 level. The results also indicate 

that cracking has a significant correlation with rutting and roughness.  

 

Table 4.1 Correlation (Pearson’s Coefficient) SIR and untransformed PCS parameters (AC network) 

 SIR Cracking Rutting IRI /Roughness TL 

SIR 1 0.526** 0.338** 0.177* - 0.048 

cracking 0.526** 1 0.419** 0.292** - 0.079 

rutting 0.338** 0.419** 1 0.315** 0.005 

IRI 0.177* 0.292** 0.315** 1 - 0.086 

Texture loss - 0.048 - 0.079 0.005 - 0.086 1 

** Correlation is significant at the 0.01 level (2-tailed)  

* Correlation is significant at the 0.05 level (2-tailed) 
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In addition, rutting is also significantly correlated with roughness. The correlation results show that texture 

loss has a very weak correlation (r = - 0.048) with SIR. Loss of surface texture is a slow deterioration 

process and thus it is very difficult to assess visually. 

Hence, the result (low correlation with SIR) justifies that ‘loss of surface texture’ is a non-core criterion for 

evaluation in subjective survey. From the correlation analysis results and studied pavement distress 

mechanisms, it can be presumed that there are some interactions between the pavement distresses. The 

interactions between pavement distresses and interactions between distress and different operating 

conditions are discussed in the following sections. 

4.2.1.2 Multiple Linear Regression Analysis for pavement surface condition (AC Network) 

Multiple linear regression is widely used to understand the influence of more than one variable on a single 

outcome. This method is easy to apply and comprehend. Since the number of available IVs (PCS 

parameters) is more than one for developing the model, multiple linear regression (MLR) is an expedient 

deterministic approach for this study. Therefore, to find the combined influence of these four PCS 

parameters on SIR, stepwise multiple regression analysis is trialed.  

Assumptions Testing for Multiple Linear Regression 

In this study the AustRoads recommended minimum set of condition parameters (cracking,rutting, texture 

loss and roughness) are considered ("Pavement management systems : national pavement indicators. - 

Version details," 2019). For a multiple linear regression model to be correct the dependent variable (DV) 

should be a linear function of the independent variables (IVs) with no multicollinearity in IVs, values of 

the residuals should be normally distributed and independent, variance of the residuals should be constant 

with no influential cases to bias the model.  

For the prepared data set, the linearity assumption and the normality assumption for residuals are found to 

be violated. Hence, different transformations are applied to the DV and the IVs to improve the accuracy of 

the predictive models. The successful ones include logarithmic (base 10 logarithms) transformation of the 

IVs. To facilitate such logarithmic transformation all cracking and rutting values were increased by 1 point 

to remove undefined values. Since there is always some roughness in a pavement surface, it was not 

necessary to change roughness values before taking their logarithm in the analysis. 

The partial regression plots for SIR vs. PCS parameters suggest that SIR is linearly associated with 

Log10(cracking + 1) and Log10 (rutting + 1) when other IVs are statistically controlled (Figures 4.1, 4.2 and 

4.3). The partial correlation coefficients for log-transformed cracking and rutting are 0.45 and 0.24 

respectively (Figures 4.1 and 4.2).  
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Figure 4.1  Checking the linearity assumption (Partial Regression Plot) for SIR and transformed PCS 

parameter (cracking) in the AC network.   

 

Figure 4.2  Checking the linearity assumption (Partial Regression Plot) for SIR and transformed PCS 

parameter (rutting) in the AC network.   
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Figure 4.3  Checking the linearity assumption (Partial Regression Plot) for SIR and transformed PCS 

parameter (roughness) in the AC network.   

For roughness, the linearity assumption is violated (Figure 4.3), and the partial correlation coefficient is 

very low (0.042). Though roughness has a very weak partial correlation with SIR, the zero-order correlation 

(Pearson’s correlation coefficient) is significant. Hence it is included in the analysis to see the combined 

influence of roughness with cracking and rutting in predicting subjective rating. 

Table 4.2  Checking multicollinearity assumption for SIR (DV) and transformed PCS parameters (IVs) of 

AC network (2011 and 2013) using Pearson’s Correlation Coefficient 

  SIR Log10(cracking + 1) Log10(rutting + 1) Log10(IRI) 

SIR 1.000 0.505 0.345 0.203 

Log10(cracking + 1) 0.505 1.000 0.256 0.212 

Log10(rutting + 1) 0.345 0.256 1.000 0.301 

Log10(IRI) 0.203 0.212 0.301 1.000 
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It is found (Table 4.2 and Table 4.7) that predictors are not highly correlated with each other (correlation 

values are less than 0.8, VIF is well below 10, and tolerance is greater than 0.2). Thus, the multicollinearity 

assumption is also satisfied for the data set. 

 
Figure 4.4  Investigating the independence and equal variance of residuals for SIR vs. transformed PCS 

parameters (IVs) in the AC network.   

 

Figure 4.4 presents the graph of residuals (staderdized) vs. predicted (standardized) values and generally 

appears more random than funneled. So the independence and equal variance assumptions are satisfied. 

Further, the histogram (Figure 4.5) and Normal Probability plot (Figure 4.6) of the standardized residuals 

clearly indicate that the normality assumption is satisfied. The residuals being examined here are for the 

best fitting linear model for the AC network, which will be discussed in section 4.2.1.4.  
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Figure 4.5  Investigating normality assumption for SIR regressed on transformed PCS parameters in the 

AC network.   

 

Figure 4.6  Investigating normality assumption for SIR regressed on transformed PCS parameters in the 

AC network.   
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Further, in the normal P-P plot (Figure 4.6), the close the dots lie to the diagonal line, the closer to normal 

the residuals are distributed. Here, the plot of residuals is closer to the diagonal line, and indicating that the 

normality assumptions are retained for the filtered data in the AC network. 

4.2.1.3 Interaction Effects between Pavement Distresses (continuous variables) in AC Network 

When the nature or strength of relationship between two variables changes as a function of another variable 

it is called interaction. In applied researches, interaction terms are often used to explore the magnitude of 

one independent variable effects the relationship between another independent variable and the outcome 

variable (Norton, Wang, & Ai, 2004). In the real world, the initiation and progression of pavement surface 

distresses are stochastic in nature. Hence, these distress mechanisms cannot be predicted precisely. A cause 

of one distress initiation might be associated with the influence of other distresses. Therefore, interaction 

effects between pavement distresses in determining subjective rating are investigated with ANOVA tests.  

To increase the interpretability of coefficients in an interaction model, it is recommended that the variables 

used in the regression analysis are to be centered (Afshartous & Preston, 2011). Therefore, all continuous 

independent variables [Log10(Cracking + 1), Log10(Rutting + 1) and Log10(IRI)] are centered by subtracting 

corresponding mean values from actual values. Multiple linear regression with interaction effects is 

performed. The results (Table 4.3 and Table 4.4) indicate that the interaction effects are not statistically 

significant for any set of independent variables (continuous).  
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Table 4.3  Multiple Linear Regression with interaction effects (continuous variables) in the AC network 

 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

95.0% Confidence 

Interval for B 

B Std. Error Beta 

Lower 

Bound 

Upper 

Bound 

1 (Constant) 
12.505 0.633  19.745 0.000 11.254 13.756 

Log10(cracking + 1) centered 
7.642 1.309 0.421 5.837 0.000 5.055 10.228 

Log10(rutting + 1) centered 
12.451 4.368 0.207 2.850 .005 3.821 21.080 

Log10(IRI) centered 
2.736 4.553 0.043 0.601 0.549 -6.258 11.730 

Log10(cracking + 1) centered × Log10(rutting + 

1) centered 
12.872 8.216 0.121 1.567 0.119 -3.359 29.103 

Log10(rutting + 1) centered × Log10(IRI) centered   
- 13.453 27.896 -0.034 -0.482 0.630 -68.563 41.658 

Log10(cracking + 1) centered × Log10(IRI) 

centered   
- 6.524 10.107 -0.048 -0.645 0.520 -26.491 13.444 

a. Dependent Variable: SIR 
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Table 4.4  Multiple Linear Regression with interaction effects (continuous variables) in the AC Network 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

95.0% 

Confidence 

Interval for B 

B 

Std. 

Error Beta 

Lower 

Bound 

Upper 

Bound 

1 (Constant) 12.360 0.609  20.311 0.000 11.158 13.562 

Log10(cracking + 1) centered 7.652 1.285 0.422 5.957 0.000 5.115 10.190 

Log10(rutting + 1) centered 12.916 4.179 0.215 3.090 0.002 4.661 21.172 

Log10(cracking + 1) × 

Log10(rutting + 1) centered 
10.342 7.456 0.097 1.387 0.167 -4.386 25.070 

a. Dependent Variable: SIR 

 

4.2.1.4 Multiple Linear Regression Model for SIR with main effects (Continuous Variables) in the 
AC network 

Since deterministic models are easy to interpret and our study interest is to predict the SIR value from the 

collected numerical (continuous) values of PCS parameters, the linear regression model with continuous 

variables is preferred to categorical independent variables. Since interaction effects with continuous 

variables are found not to be significant, only the main effects are considered for the analysis.  The general 

expression of the multiple linear model for the AC network is as follows: 

𝑆𝐼𝑅 =  𝑎0  +  𝑎1𝐿𝑜𝑔10(𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔 + 1) +  𝑎2𝐿𝑜𝑔10(𝑟𝑢𝑡𝑡𝑖𝑛𝑔 + 1) + 𝑎3 𝐿𝑜𝑔10(𝐼𝑅𝐼) + 𝜀 

Here,  

𝑆𝐼𝑅 = Surface Inspection Rating (SIR), Dependent Variable   

𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔, 𝑟𝑢𝑡𝑡𝑖𝑛𝑔, 𝐼𝑅𝐼 = Pavement Condition Survey (PCS) parameters, Independent 

Variables 

 𝑎𝑖 = regression coefficient; 𝑖 = 0,1,2,3 

 𝜀 = random error component that reflects the difference between observed data and fitted 

values 
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Several trials have been made to develop a best fit multiple linear regression equation. From the stepwise 

multiple linear regression analysis, it is found that roughness is not a statistically significant predictor and 

so it is excluded from the models (Tables 4.3 and 4.6). The best fit model (Model 2 in Table 4.7) is found 

to include log10 (cracking + 1) and log10 (rutting + 1) as statistically significant predictors [Standardized 

Beta coefficient for log10 (cracking + 1) = 0.446 and for log10 (rutting+1) = 0.231 (p < 0.05)]. So, the 

contribution of cracking is more than rutting in predicting the variation of SIR. The coefficient of 

determination (R2) is 0.305 (Table 4.5), meaning that the model explains about 31% of the variation in SIR. 

By itself, log-transformed rutting accounts for 34.5% of variability in SIR value (Model 2 in Table 4.7). 

However, once log-transformed cracking is taken into account, log-transformed rutting accounts for 22.3% 

of the variability in SIR value over and above the variability explained by log-transformed cracking. Log-

transformed cracking contributes 43.1% to the variability of SIR value in addition to the variability 

explained by the log-transformed rutting. 

The fitted equation has the following form: 

𝑆𝐼𝑅 =  −3.136 + 8.093 𝐿𝑜𝑔10 (𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔 + 1) +  13.862 𝐿𝑜𝑔10 (𝑟𝑢𝑡𝑡𝑖𝑛𝑔 + 1) 

The constant term is not statistically significant, but is included in the best fit equation for reasons of 

practicality. SIR is dependent on other parameters also, such as maintenance patching, stone loss, potholes, 

local depression and other factors that are not considered in the analysis. At initial stage with new surfacing 

or after maintenance treatment, the SIR value is expected to be zero. Here, negative value of the constant 

can be justified by effects of other distresses that are not considered in developing the best fit equation. 
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Table 4.5  Model Summary for SIR regressed on transformed PCS parameters (AC network)  

Model R 

R 

Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

Change Statistics 

Durbin-

Watson 

R Square 

Change 

F 

Change df1 df2 

Sig. F 

Change 

1 0.505a 0.255 0.250 7.75650 0.255 54.141 1 158 0.000  

2 0.552b 0.305 0.296 7.51686 0.050 11.235 1 157 0.001 1.355 
a. Predictors: (Constant), log10(cracking + 1) 

b. Predictors: (Constant), log10(cracking + 1), log10(rutting + 1) 

c. Dependent Variable: SIR 

 

Table 4.6  Summary of Excluded Variables from MLR Model for SIR regressed on transformed PCS parameters (AC network)   

Model Beta In t Sig. Partial Correlation 

Collinearity Statistics 

Tolerance VIF Minimum Tolerance 

1 Log10(rutting + 1) 0.231b 3.352 0.001 0.258 0.935 1.070 0.935 

Log10(IRI) 0.100b 1.429 0.155 0.113 0.955 1.047 0.955 

2 Log10(IRI) 0.043c 0.615 0.539 0.049 0.890 1.124 0.871 
a. Dependent Variable: SIR 

b. Predictors in the Model: (Constant), Log10(cracking + 1) 

c. Predictors in the Model: (Constant), Log10(cracking + 1), Log10(rutting + 1) 
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Table 4.7  Coefficients of Multiple Linear Regression Model (MLR) for SIR regression on transformed PCS parameters (AC network)   

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

95.0% 

Confidence 

Interval for B Correlations 

Collinearity 

Statistics 

B 

Std. 

Error Beta 

Lower 

Bound 

Upper 

Bound 

Zero-

order Partial Part Tolerance VIF 

1 (Constant) 
6.067 1.076  5.637 0.000 3.942 8.193      

Log10(cracking + 1) 
9.163 1.245 0.505 7.358 0.000 6.703 11.622 0.505 0.505 0.505 1.000 1.000 

2 (Constant) 
-3.136 2.937  -1.068 0.287 -8.938 2.665      

Log10(cracking + 1) 
8.093 1.248 0.446 6.483 0.000 5.627 10.559 0.505 0.460 0.431 0.935 1.070 

Log10(rutting + 1) 
13.862 4.136 0.231 3.352 0.001 5.693 22.030 0.345 0.258 0.223 0.935 1.070 

a. Dependent Variable: SIR 
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4.2.1.5 Interaction Effects between Pavement Distresses (categorical independent variables) in AC 
network 

In this section, at first the influences of different distresses on predicting subjective rating are visualized 

with simple scatter plots and then the statistical significance of the interaction effects between pavement 

distresses in predicting SIR are tested with Factorial ANOVA. The operating conditions are also considered 

to understand the effects of age and heavy vehicle traffic volumes (trucks) in measuring the strength of 

relationship between SIR and automated pavement distresses. 

SIR vs. Cracking (AC Network) 

To investigate the influence of rutting on cracking in measuring the relationship between SIR and cracking, 

the conditions of rutting are coded as ‘Very Good’ when rutting = 0 - 5mm, as ‘Good’ for rutting = 6 - 9mm 

and ‘Fair’ when rutting = 10 - 15mm. In the AC network, there is no pavement segment in our data with 

poor rutting condition (15 < rutting ≤ 20mm) or very poor condition (rutting > 20mm).  

 
Figure 4.7  Influence of rutting on cracking in predicting subjective rating (SIR) in the AC network. 
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Figure 4.8  Influence of roughness on cracking in predicting subjective rating (SIR) in the AC network. 

From Figure 4.7 it is found that the slopes of the fitted lines are different for the three categories of rutting, 

indicating possible interaction between cracking and rutting. The coefficient of determination is greater (R2 

= 0.588) in predicting SIR from automated cracking for ‘Fair’ condition of rutting than for ‘Good’ and 

‘Very Good’ conditions (R2 = 0.303 and 0.12). 

Therefore, these results indicate that for the data, 59% of the variation in SIR is predicted by automated 

cracking when the pavement section has fair rutting condition and 30% of variation can be explained in the 

case of good rutting condition, but only 12% for ‘Very Good’ condition. This seems right, because the 

influence of rutting on cracking is greater when road conditions are deteriorating.  

Further, Figure 4.8 illustrates that though the difference of the slopes in the fitted lines is not very high, the 

coefficients of determination indicate that roughness has an influence on the relationship of cracking with 

SIR. The results show that 57% of the variation in subjective rating (SIR) can be explained by automated 

cracking data when roughness is in poor condition (IRI > 4.2 m/km, coded as ‘Poor’), 17% of the variation 

can be explained when roughness is in fair condition (IRI = 3.4 - 4.2m/km, coded as ‘Fair’) and 24% of the 

variation can be explained for good condition (IRI = 0 - 3.4m/km, coded as ‘Good’). Hence, these results 

indicate that roughness has an influence in measuring the strength of relationship between cracking and 
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SIR. However, the ANOVA tests indicate that the interaction between cracking and roughness in 

determining SIR is not statistically significant (Appendix A).   

SIR vs. Rutting (AC Network) 

The simple scatterplots (Figures 4.9 and 4.10) reveal that the strength of relationship between SIR and 

rutting also changes with the influence of cracking and roughness. Here, cracking is grouped as ‘Good’ 

condition when the area affected by cracking < 10% and ‘Poor’ when the area affected by cracking ≥ 10%. 

Since the slopes of the lines of best fit are different, it seems that rutting values are dependent on cracking 

condition to some extent in predicting SIR, which is a measure of overall condition of a pavement surface. 

 

 
Figure 4.9  Influence of cracking on rutting in predicting subjective rating (SIR) in the AC network. 
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Figure 4.10  Influence of roughness on rutting in predicting SIR in the AC network. 

The coefficient of determination is higher in the case of poor cracking condition. In real life, when cracking 

condition is poor (wider crack) the water penetrates the pavement layers and decreases the shear strength 

of materials, causing disintegration of materials. Repeated high traffic load reduces the bending stiffness of 

aggregates and causes dislocation of materials, which manifests as rutting in the pavement. Therefore, it 

makes sense that poor cracking condition influences the relationship of rutting with SIR. The Two-way 

ANOVA Test shows that the interaction effect between categorical cracking and rutting is statistically 

significant (Table 4.9). Although it seems from Figure 4.10 that roughness and rutting interact in predicting 

SIR, the interaction is found not to be statistically significant (Appendix A).  

4.2.1.6 Two-way ANOVA Test for interaction effects (AC Network) 

The interaction effects between cracking and rutting (as categorical variables) are found to be significant in 

predicting SIR. The Levene’s Test statistic (p > 0.05) shows (Table 4.8) that equal variances can be 

assumed.  Factorial ANOVA reveals (Table 4.9) that there are significant differences in mean SIR across 

the different conditions of cracking, F (1,138) = 25.608, p < 0.05. The relationship between mean SIR and 

cracking is different for different rutting conditions. Further, the results show that there are significant 

differences in mean SIR across the different rutting conditions, F (2,138) = 3.691, p < 0.05. In addition, 
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there is a statistically significant interaction between cracking and rutting, on determining the SIR value, F 

(2,138) = 4.282, p < 0.05. Thus, the results from the two-way ANOVA test (Table 4.9) show that the 

interaction effect between cracking and rutting is statistically significant at the 5% level. 

 

Table 4.8 Levene’s Test of equality of error variance for cracking and rutting in the AC network 

Dependent Variable:   SIR    

F df1 df2 Sig.  

1.818 5 138 0.113  

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.  

a. Design: Intercept + cracking + rutting + cracking * rutting  

 

Table 4.9 Interaction effects (Tests of Between-Subjects Effects) between cracking and rutting in the AC 

network 

Dependent Variable:   SIR   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Corrected Model 2785.432a 5 557.086 9.700 0.000 

Intercept 7380.594 1 7380.594 128.511 0.000 

cracking 1470.724 1 1470.724 25.608 0.000 

rutting 423.942 2 211.971 3.691 0.027 

cracking * rutting 491.831 2 245.916 4.282 0.016 

Error 7925.568 138 57.432   

Total 32912.000 144    

Corrected Total 10711.000 143    

a. R Squared = 0.260 (Adjusted R Squared = 0.233) 
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Figure 4.11  Comparison of means in predicting SIR from cracking showing interaction effects between 

cracking and rutting in the AC network. 

The interaction plot (Figure 4.11) clearly reveals a difference between ‘Fair’ and ‘Very Good’ rutting 

condition in the way that cracking affects SIR, since the lines are not parallel and intersect each other. The 

difference between the mean SIR on the cracking is much wider for ‘Fair’ rutting condition than for ‘Very 

Good’ and ‘Good’ conditions. Outcomes from previous studies indicate that due to the stresses generated 

for rutting geometry, the greater the existing rut severity is in pavement, the more expected is top-down 

cracking in the pavement (De Freitas, Pereira, Picado–Santos, & Papagiannakis, 2005; G. Wang, Roque, & 

Morian, 2012). In this study, most of the pavement segments are in “Very Good’, ‘Good’ and ‘Fair’ 

condition for the asphalt surfacing network. The number of pavement segments with poor rutting condition 

(rutting = 15 - 20mm) or very poor condition (rutting > 20mm) was very few and these are deemed as 

outliers in the analysis. Hence, the comparison is made based on ‘Very Good’, ‘Good’ or ‘Fair’ conditions. 

The comparison of means supports the findings from previous studies. 
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4.2.1.7 Interaction between pavement distress and operating conditions (AC Network) 

SIR vs. Cracking 

The simple scatter plot (Figure 4.12) indicates that age may influence the strength of the relationship 

between cracking and SIR. Almost 30% of the variation in SIR in the data is explained by cracking when 

pavement age is greater than seven years. The slope is greater for age > 7 years. Thus, the variation of 

means of SIR is greater for age > 7 years. However, the results from the two-way ANOVA test show 

(Appendix A) that the interaction effect between cracking and age is not statistically significant (p > 0.05). 

 

 
Figure 4.12  Influence of operating condition (age) on cracking in predicting SIR in the AC network. 
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Figure 4.13  Influence of operating condition (heavy vehicle traffic volume) on cracking in predicting SIR 

in the AC network. 

In the asphalt surfacing network, usually the traffic volume is high and thus the heavy traffic volume is 

grouped into three categories. The slope for heavy vehicle traffic volume > 1000 is greater than for the 

other two categories with less traffic. So, there is an influence of heavy traffic volume on cracking when 

the traffic volume > 1000. The slopes for traffic volume ≤ 500 and 501-1000 are similar. Almost 38% of 

the variation in SIR can be explained by cracking at heavy vehicle traffic volume > 1000. The plot (Figure 

4.13) indicates that when the commercial traffic volume is high, it has an influence in determining the 

strength of association between subjective rating and objective cracking. To find whether the interaction 

effects are statistically significant, univariate analysis of variance (factorial ANOVA) is performed and the 

interaction effect is found not to be statistically significant for truck volume (Appendix A). 
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SIR vs. Rutting 

The graph (Figure 4.14) indicates that the slope is different depending on the age of the pavement but the 

R2 is very small for each age group. Moreover, ANOVA test results indicate that interaction between rutting 

and age is not statistically significant when measuring the strength of the relationship between SIR and 

rutting (Appendix A). 

 

 
Figure 4.14  Influence of operating condition (age) on rutting in predicting SIR in the AC network. 
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Figure 4.15  Influence of operating condition (heavy vehicle traffic volume) on rutting in predicting SIR in 

the AC network. 

For heavy vehicle traffic volume below 500 or above 1000, there is no influence of traffic because the 

difference in the variation of SIR that can be explained from rutting is negligible (Figure 4.15). For Heavy 

vehicle volume between these values, 19% of variation in the SIR data is explained by rutting. Though 

rutting is usually caused by repeated and high traffic loadings in asphalt surfacing, the non-traffic associated 

variables like consolidation of underlying materials or expansion of subgrade soil may have impacts on the 

progression of rutting for the pavements with heavy vehicle traffic volume more than 1000. Further 

ANOVA results show that the interaction effect between rutting and heavy traffic volume in predicting SIR 

is not statistically significant (Appendix A).  

 4.2.3 SS Network 

From the initial analysis it is found (Table 4.10) that the correlations of subjective SIR with automated 

cracking (Pearson’s correlation coefficient, r = 0.444) and texture loss (r = - 0.292) are significant at the 

0.01 level. From the correlation analysis and studied pavement surface distress mechanisms, it can be 

assumed that there may be some interactions between the pavement distresses. The interactions between 



                                                                                                         
CHAPTER FOUR                            DETERMINISTIC ANALYSIS FOR PAVEMENT CONDITION DATA 
 

76 
 

pavement distresses and interactions between distress and different operating conditions (age and heavy 

vehicle traffic volume) are discussed in the following sections. 

Table 4.10  Correlation analysis (Pearson’s Correlation Coefficients) of SIR and PCS parameters (SS 

network) 

 SIR cracking rutting IRI texture Loss  

SIR 1 0.444** -0.002 -0.037 -0.292** 

cracking 0.444** 1 0.128 0.232** -0.071 

rutting -0.002 0.128 1 0.379** 0.042 

IRI -0.037 0.232** 0.379** 1 0.180* 

texture loss -0.292** -0.071 0.042 0.180* 1 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

In practice, the correlation between texture loss and surface inspection rating should be positive. The 

negative significant correlation result between SIR and texture loss indicates an unrealistic relationship. 

The automated pavement condition survey data for cracking, rutting and texture loss are tested to validate 

the corresponding subjective ratings of the distresses from surface inspection rating survey using logistic 

regression analysis (Chapter 5; Sections 5.6, 5.7 and 5.8). The detailed analysis process of probabilistic 

logistic regression is described in Chapter 5. From the logistic regression, it is found that automated 

cracking data can be validated with subjective cracking (Chapter 5) but rutting and texture loss data cannot 

be validated. Therefore, surface texture loss is considered unreliable and excluded from the analysis in 

developing a deterministic model.  

The correlation coefficients for SIR with rutting and roughness are very low (r = - 0.002 and - 0.037) and 

not statistically significant. Rutting gradually develops in asphalt pavements with the traffic growth (Alavi 

et al., 2011).  The subjective deformation ratings judged by the assessors may possibly more associated 

with local depressions than rutting in the subjective survey. The subjective Surface Inspection Rating 

Procedure (SIRP) is limited with respect to factors such as roughness, skid resistance, pavement structural 

adequacy and other environmental aspects (VicRoads, 2004). Hence, the weak correlation between SIR and 

roughness makes sense. Therefore, rutting and roughness are also excluded from the analysis, along with 

texture loss. 
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4.2.3.1 Simple Linear Regression analysis (SS Network)  

After several trials of different transformations of variables, the logarithmic (base 10 Logarithm) 

transformation of cracking with an increase of 1 point met the linearity assumption. The linear trend 

between SIR and Log10 (cracking+1) is seen in Figure 4.16. The correlation between the two variables is 

0.485 (Figure 4.16, Tables 4.11 and 4.12). 

 

 

Figure 4.16  Checking linearity assumption for SIR (DV) and Log10(cracking + 1) in the SS network. 
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Figure 4.17  Checking the independence of residuals for SIR regressed on Log10 (cracking + 1) in the SS 

network. 

In this section the investigations into residuals being independent and normally distributed are for the best 

fitting linear model for the SS network which will be discussed in the following section (Section 4.2.3.2). 

Figure 4.17 presents the graph of residual (standardized) vs. predicted (standardized) values and generally 

appears more random than funneled. So the independence and equal variance assumptions are satisfied. 

Further, the histogram (Figures 4.18) and Normal Probability plot (Figure 4.19) of the residuals indicate 

that the normality assumption is satisfied.   
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Figure 4.18  Investigating normality assumption for SIR regressed on Log10(cracking + 1) in the SS 

network. 

 

Figure 4.19  Investigating normality assumption for SIR regressed on Log10(cracking + 1) in the SS 

network. 
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4.2.3.2 Linear Regression Model for SIR with main effects (Continuous Variables) in the SS 
Network 

Since only log transformed cracking data is found to satisfy the assumption testing of linear regression, the 

general expression of the simple linear model for the SS network becomes: 

𝑆𝐼𝑅 =  𝑎0  + 𝑎1𝐿𝑜𝑔10(𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔 + 1) +  𝜀 

Here,  

𝑆𝐼𝑅 = Surface Inspection Rating, Dependent Variable   

𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔 = Pavement Condition Survey (PCS) parameter, Independent Variable 

 𝑎𝑖 = regression coefficient 

 𝜀 = random error component that reflects the difference between observed data and fitted values 

The predicted regression equation for the relationship between SIR and cracking in the SS network is as 

below and explains about 24% (coefficient of determination, R2 = 0.235) of the variation in SIR (Table 4.11 

and Table 4.12).  

𝑆𝐼𝑅 =  16.202 +  8.603 × 𝐿𝑜𝑔10 (𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔 + 1) 

Table 4.11  Summary for Linear Model of SIR in terms of PCS parameters for the SS network   

Model R 

R 

Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

Change Statistics 

Durbin-

Watson 

R Square 

Change 

F 

Change df1 df2 

Sig. F 

Change 

1 0.485a 0.235 0.231 7.04880 0.235 57.684 1 188 0.000 1.237 

a. Predictors: (Constant), log10(cracking + 1)  

b. Dependent Variable: SIR(Porras-Alvarado et al., 2014) 

Table 4.12  Parameter Estimates for Linear Model of SIR in terms of PCS parameters for the SS network   

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

95.0% 

Confidence 

Interval for B Correlations 

Collinearity 

Statistics 

B 

Std. 

Error Beta 

Lower 

Bound 

Upper 

Bound 

Zero-

order Partial Part Tolerance VIF 

1. (Constant) 16.202 0.968  16.731 0.000 14.291 18.112      

Log10(cracking 

+ 1) 
8.603 1.133 0.485 7.595 0.000 6.369 10.838 0.485 0.485 0.485 1.000 1.000 

a. Dependent Variable: SIR 
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4.2.3.3 Interaction between pavement distress (cracking) and operating conditions in predicting 

SIR for SS Network 

SIR vs. Cracking 

The simple scatter plot (Figure 4.20) demonstrates that age has not much influence in determining the 

strength of relationship between cracking and SIR. Almost 30% of the variation in SIR can be explained 

by cracking when pavement age is more than 7 years, which is only 3% greater than for pavement age ≤ 7 

years. From the different slopes for three categories of heavy vehicle traffic volume, it might be assumed 

that there is some influence of heavy truck volume (Figure 4.21) on the relationship between cracking and 

pavement surface condition rating, but factorial ANOVA testing shows that the interaction of cracking with 

age and truck volume is not statistically significant (Appendix A).   

 

 
Figure 4.20  Influence of operating condition (age) on cracking in predicting SIR in the SS network. 
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Figure 4.21  Influence of operating condition (heavy vehicle traffic volume) on cracking in predicting SIR 

in the SS network. 
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4.2.3.4 One-way ANOVA Test for SIR with cracking (categorical IV) 

One-way ANOVA testing reveals (Table 4.13) that there are significant differences in mean SIR across the 

different conditions of cracking, F (1,184) = 25.302, p < 0.05. The result indicates that mean SIR is different 

(Figure 4.22) for two different cracking groups (Good and Poor) as was expected. But the coefficient of 

determination for the model from categorical cracking (R2 = 0.121) is lower than for the continuous one (R2 

= 0.235). 

 
Figure 4.22  Comparison of means in predicting SIR from PCS cracking in the SS network. 

Table 4.13  Main effects (Tests of Between-Subjects Effects) of cracking in Predicting SIR in the SS 

network 

Dependent Variable:   SIR   

Source Type III Sum of Squares df Mean Square F Sig. 

Corrected Model 1462.901a 1 1462.901 25.302 0.000 

Intercept 78102.256 1 78102.256 1350.831 0.000 

cracking 1462.901 1 1462.901 25.302 0.000 

Error 10638.503 184 57.818   

Total 105187.000 186    

Corrected Total 12101.403 185    

a. R Squared = 0.121 (Adjusted R Squared = 0.116) 
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4.3 Summary 

In this chapter, the development of a multiple linear regression model (AC network) and a simple linear 

regression model (SS network) for predicting surface inspection rating (SIR) from objective pavement 

condition survey (PCS) parameters (for 2011 and 2013) is documented, with assumption testing. Initially, 

correlation analyses between SIR and PCS parameters are performed. After that, interaction effects of 

pavement surface distresses are investigated. Pavement operating conditions (age and heavy traffic volume) 

are also considered, to investigate the influence of pavement distresses on subjective rating. Various 

transformations of DV (SIR) and IVs (PCS Parameters) were explored in search of the best model. Lastly, 

the results for the best-fitting models based on available data for asphalt surfacing and sprayed seal 

surfacing networks in the MSE region of Victoria are presented.  

Correlation Analysis 

The initial correlation analysis (Pearson’s correlation coefficient, r) revealed that the correlations of 

subjective SIR with objective cracking (r = 0.53), rutting (r = 0.34) and IRI (r = 0.177) are statistically 

significant in the AC network. The correlation results show that texture loss has a very weak correlation (r 

= -0.048) with SIR. Further, the results from the SS network show that the correlations of subjective SIR 

with automated cracking (r = 0.444) and texture loss (r = - 0.292) are statistically significant. However, the 

negative value for texture loss indicates unreliable objective texture loss data because SIR value will be 

high for poor condition of surface texture. Since loss of pavement surface texture is a gradual deterioration 

process, it is hard to evaluate texture loss visually. Moreover, the objective texture loss data cannot be 

validated (Chapter 5) with subjective texture loss rating for any of the network and so is excluded from the 

analysis. 

For the SS network, the correlation coefficients for SIR with rutting and roughness are very low (r = - 0.002 

and - 0.037) and not statistically significant. As discussed in Chapter 2, rutting initiates and progresses in 

asphalt pavements with growing traffic load. The SS network is usually designed for low traffic volume. It 

is assumed that rutting is not correlated with SIR due to the presence of local depressions predominantly 

over longitudinal depression (rutting) in the SS network. The subjective rating of deformation given by the 

evaluators may perhaps more associated with local depressions than longitudinal depression (rutting). 

Further, the subjective rating survey does not consider roughness and other factors. Hence, the weak 

correlation between SIR and roughness is understandable. Therefore, rutting and roughness are also 

excluded from the analysis, along with texture loss in the SS network. Only cracking is considered as the 

independent variable. 
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Interaction Effects between Pavement Distresses 

The strength of relationship between SIR and objective pavement distresses may change as a function of 

some other pavement distress. The distresses’ initiation and progression are stochastic in nature, and the 

reason for one distress initiation may be related to the influence of other distress or distresses. To investigate 

the interaction effects, objective cracking data is coded as ‘Good’ when cracking % area affected < 10% 

and ‘Poor’ for cracking % area affected ≥ 10%. Further, rutting data is coded as ‘Very Good” when rutting 

= 0 - 5mm, as ‘Good’ for rutting = 6 - 9mm and ‘Fair’ when rutting = 10 - 15mm. In the AC network, there 

is no pavement segment in the data set with poor rutting condition (15 < rutting ≤ 20mm) or very poor 

condition (rutting > 20mm). In the subjective rating, roughness is not considered to determine SIR. 

Objective roughness is coded as ‘Good’ (IRI = 0 - 3.4m/km), ‘Fair’ (IRI = 3.4 - 4.2m/km) and ‘Poor’ (IRI 

> 4.2m/km).  

The factorial ANOVA results revealed that there are statistically significant differences in mean SIR across 

the different conditions of cracking and rutting [Fcracking (1,138) = 25.608, p < 0.05 and Frutting (2,138) = 

3.691, p < 0.05] in the AC network. Further, two-way ANOVA indicates that the interaction effect between 

objectively collected cracking and rutting in determining subjective rating is statistically significant [F 

(2,138) = 4.282, p <0 .05] for the AC network. The coefficient of determination is found to be 0.26. So, 

26% of the variation in SIR is explained by categorical cracking and rutting with interaction effects between 

these two pavement distresses.  

Roughness has no statistically significant interactions with cracking and rutting in predicting SIR. As 

mentioned in this Chapter (Section 4.2.3), subjective ratings in Victoria do not consider riding quality or 

skid resistance, which are both related to roughness. This explains why roughness is not a statistically 

significant predictor of subjective SIR. 

Interaction Effects between Pavement Distress and Operating Conditions 

Since the desired service life of asphalt surfacing is 7 to 25 years and for sprayed seal surfacing 5 to 15 

years, the pavement service life age is categorized into two groups (age ≤ 7years and age > 7years). Though 

the slope is little different for the two groups of age in predicting SIR from automated cracking and rutting 

for the AC network, the two-way ANOVA test shows that the interaction effects are not statistically 

significant for different age groups for AC. The slope difference in simple scatter plots for different age 

groups are found to be negligible for the SS network and the ANOVA result shows that the interaction is 

not statistically significant.  
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In addition, the simple scatter plots indicate that the heavy traffic volume grouping has an influence in 

determining the strength of relationship between visual rating and automated distresses, but the interaction 

effect is found not to be statistically significant from two way ANOVA tests for both AC and SS networks. 

In this study, age and heavy vehicle traffic volume are not used as predictors in developing the models for 

SIR as they are associated with the pavement deterioration process and thus embodied in the pavement 

surface distresses used as independent variables in developing the models.   

AC Network (MLR) 

Since linear regression with metric variables is the most precise and simplest way to estimate the outcome 

variable, linear regression with continuous variables is trialed to get the best fit model. The best regression 

models are found with the application of a logarithmic transformation (base 10 Logarithm) to IVs. From 

stepwise multiple linear regression analysis, it is found that PCS cracking and rutting are two statistically 

significant (p < 0.05) predictors [Standardized Beta coefficient for Log10(cracking + 1) = 0.446 and 

Log10(rutting + 1) = 0.231] for the AC network. PCS roughness [Log10(IRI)] is found not to be statistically 

significant in explaining the variation of SIR. This indicates that cracking and rutting make significant 

contributions to estimating SIR value. Coefficient of determination (R2) is 0.305 meaning that about 31% 

of the variation in SIR for the AC network is explained by the model.  

SS Network (SLR) 

For the SS network, only PCS cracking [Log10(cracking + 1)] is found to be statistically significant (p < 

0.05) with Standardized Beta coefficient = 0.485. The results indicate that objective cracking contributes 

significantly to predicting SIR value. In the regression output the coefficient of determination (R2) is 0.235, 

so only about 24% of the variation in SIR for the SS network is explained. 

Model Evaluation 

The developed multiple linear regression model (AC network) and simple linear regression model (SS 

network) for subjective rating of pavement surface condition as a function of automated pavement condition 

parameters are found to have poor prediction ability since the coefficients of determination are 31% and 

24% for the AC and SS network, respectively. This necessitates finding alternative methods to develop 

more applicable models. Considering the previous relevant studies, probabilistic logistic regression analysis 

is trialed to develop the relationship between subjective SIR conditions and objective pavement distresses. 

 



                                                                                                         
CHAPTER FIVE                           PROBABILISTIC MODELS FOR PAVEMENT SURFACE CONDITION 
 

87 
 

CHAPTER FIVE 

PROBABILISTIC MODELS FOR PAVEMENT SURFACE CONDITION 

5.1 Introduction 

This chapter initially outlines the concepts of probabilistic logistic regression. Automated distress data 

(cracking, rutting and texture loss) are validated individually with the corresponding subjective rating 

through logistic regression analysis before developing the models for overall pavement surface condition 

rating. After that, logistic models for surface inspection rating (SIR) conditions are developed as a function 

of automated distresses considering two types of category ranks of the SIR for both AC and SS networks. 

Finally, the developed models are validated by considering the scaled squared of residuals of SIR for each 

pavement segment. 

5.2 Logistic Regression 

Linear regression analysis uses least squares deviation criteria to get the best fit model, with the dependent 

variable (DV) being continuous (interval/ratio). Logit models are used to perform regression with a single 

categorical DV and various independent variables (IVs). Moreover, logistic regression is more flexible with 

data distribution because it does not assume a linear relationship between untransformed DV and IVs.  Here, 

the parameter estimates of the models are determined by maximum likelihood estimation (Fan, Kane, & 

Haile, 2015). 

 

 
Figure 5.1  The standard logistic function f(x) ϵ (0, 1) for all value of x (Bonnell, 2011). 

f(x) = 1/(1+e-kx) 
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Since the pavement deterioration process is the combined effect of known factors and unknown latent 

causes, the pavement condition assessment needs to capture the uncertain stochastic nature of the pavement. 

Therefore, logistic regression analysis is useful to present the pavement deterioration process by 

considering the DV as a stochastic event. The logistic regression approach also solves the difficulties with 

simple linear regression analysis in modeling the situation where categories of outcome variables are of 

interest.  

In logistic regression the DV describes the outcome of this stochastic event with function of cumulative 

probabilities ranging from 0 to 1 (Figure 5.1). Here the best fit model is established using the maximum 

likelihood method. In this type of model, natural logarithm of odds considering a ranked outcome variable 

is expressed in the form of a linear function of IVs (Erkan & Yildiz, 2014).  

In logistic regression analysis, the logit or natural logarithm of the odds acts as dependent variable. 

𝐿𝑜𝑔𝑖𝑡 (𝑝) is defined as the logarithm (usually with base e) of odds or ‘likelihood’. This likelihood or 

probability is for any event occurring is compared to that event not occurring. Here the likelihood ration of 

the DV is considered as 1. If 𝑝 is the probability, then 𝑝/(1 − 𝑝) is the corresponding odds. Thus, the form 

of the logistic regression equation is: 

𝐿𝑜𝑔𝑖𝑡 [𝑝(𝑥)] =  𝑙𝑜𝑔𝑒 [
𝑝(𝑥)

1 − 𝑝(𝑥)
] =  𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑛𝑥𝑛 

Where, 

𝑏0  = constant 

𝑏𝑖  = regression coefficient; 𝑖 = 1, 2, 3, … . . , 𝑛 

𝑥𝑖 = independent variable; 𝑖 = 1, 2, 3, … . . , 𝑛 

The best fit model is achieved by finding the fitted regression coefficient values which maximize the 

probability of obtaining the observed results, using maximum likelihood method. Here, negative value of 

logit indicates that probability for DV category is smaller than 0.5. 

There are generally three types of logit models: 

1. Binary Logistic Model: applied when DV is dichotomous (e.g. Yes vs. No). 

2. Ordinal Logistic Model: used in the case where ordering (e.g. very low, low, medium, high, and very 

high) of DV categories is present. 



                                                                                                         
CHAPTER FIVE                           PROBABILISTIC MODELS FOR PAVEMENT SURFACE CONDITION 
 

89 
 

3. Multinomial (Polytomous) Logistic Model: like ordinal logistic regression but assumes no “ranking 

ordering” of categorical outcomes. 

5.3 Ordinal Logistic Regression 

In general, the proportional odds method is used to determine the cumulative probability of any category 

to be at or below a specific category of the outcome variable in ordinal logistic regression analysis. Here, 

the influence of each explanatory variable is presumed to be the same within different categories of the 

ordinal outcome variable. Therefore, the effect of each predictor on the odds to be at or below a particular 

category of DV, remains the same within the model (X. Liu & Koirala, 2012). 

Thus, in ordinal logistic regression the underlying assumption is that the slope parameters must not change 

for different categories; i.e. correlation between dependent variable and independent variable does not vary 

for DV categories (Erkan & Yildiz, 2014). Therefore, the values of  𝑏1, 𝑏2, … . , 𝑏𝑖 remain constant across 

DV categories i.e. DV categories are parallel to each other. The second assumption is that the intercepts 

will differ only. So, the 𝑏0 values will be different for each category. 

5.4 Test of Parallel Lines 

The assumption of unchanged regression coefficient or proportional odds or parallel lines for ordinal 

regression is tested for all five categories of DV. The aim of this test is to compare the improvement in the 

general model for model fit from the null model. If the Chi square statistic is significant (p < 0.05), it means 

that there is sufficient evidence to reject the parallelism assumption i.e. unvarying regression coefficient for 

all logistic equations. If this assumption of same slope is rejected, then multinomial regression should be 

trialed as it estimates different coefficients (slopes) for each category.  

5.5 Multinomial Logistic Regression 
Multinomial logistic regression is used when prediction of the probabilities of DV categories are required 

having no natural order in them for more than one independent variables. Multinomial logistic regression 

analysis is like ordinal logistic regression analysis but differs as the former assumes that there is no “ranking 

ordering” is the categorical outcomes.  

Being the test of parallel lines is violated for ordinal logits or the dependent variable is not in ordered form, 

multinomial logistic models are needed to achieve acceptable results. This approach makes the assumption 

that the choices of dependent variable categories are independent (Starkweather & Moske, 2011). 

Therefore, multinomial logistic regression assumes that belonging in one category of DV is not dependent 

on the belonging of another category of DV. Thus, the assumption of choice of one category is not 

interrelated to the choice of belonging in another category of DV. Hence, dependent variable categories are 
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not parallel to each other for multinomial models, which generate different coefficients for each 

independent variable, with different intercepts. Hence, the slopes are potentially different for each DV 

category i.e. 𝑏1, 𝑏2, … . . , 𝑏𝑖 can vary across the model. These coefficients are the projected amount of 

variation in the logit per unit change in the independent variable.  

5.6 Development of logit models to validate the automated cracking data (used in developing 

the deterministic and probabilistic models) with subjective rating of cracking    

The subjective cracking in the surface inspection rating survey is evaluated in a four-level scale with values 

of 0, 1, 3 and 5 for nil, minor, moderate, and extensive distress categories, respectively. The allocated rating 

value is based on the evaluation of cracking severity along with its extent, which implies the effect of the 

level of cracking on the determined remaining life of the pavement surface and is thus used for prioritizing 

resurfacing programs. In addition, from pavement condition survey (PCS) the measured (automated) 

cracking data are used to intervene for different renewal activities. To find the relationship of these two 

types of cracking data and validation of automated cracking data, logistic regression analysis is performed.  

 

5.6.1 AC Network 

The test of parallel lines is not significant and the null hypothesis of same regression coefficients for all 

logit models cannot be rejected. Hence, ordinal regression analysis is performed. From the ordinal logistic 

regression analysis, as seen in the model fitting table (Table 5.1), it is found that subjective cracking models 

for AC network are significantly improved (p < 0.05) by adding objective cracking as predictor compared 

to the intercept only. The likelihood ratio test is also significant.  

Table 5.1  Model Fitting Information for validation of cracking data in AC network  

Model 

-2 Log 

Likelihood Chi-Square df Sig. 

Intercept Only 291.447    

Final 223.162 68.285 1 0.000 

Link function: Logit. 

The parameter estimates (Table 5.2) stipulate that intercept is significant for ‘Moderate’ and ‘Extensive’ 

categories of the subjective cracking model. Here, good cracking condition is the reference category. The 

classification table results (Appendix B) indicate that the overall success rate of the cracking models is 55% 

with highest success rate in the ‘Minor’ category. 
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Table 5.2  Parameter Estimates for validation of cracking data in AC network  

 Estimate Std. Error Wald df Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Threshold [cracking (Extensive)] -5.612 0.650 74.629 1 0.000 -6.885 -4.339 

[cracking (Moderate)] -2.879 0.342 70.964 1 0.000 -3.548 -2.209 

[cracking (Minor)] 0.137 0.209 .429 1 0.513 -0.273 0.547 

Location cracking -0.149 0.021 51.222 1 0.000 -0.189 -0.108 

Link function: Logit. 

Therefore, the Logit models are as follows: 

𝐿𝑜𝑔𝑖𝑡 (≤ 𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑣𝑒) =  −5.612 + 0.149 ×  𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔 

𝐿𝑜𝑔𝑖𝑡 (≤ 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒) =  −2.879 + 0.149 × 𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔 

𝐿𝑜𝑔𝑖𝑡 (≤ 𝑀𝑖𝑛𝑜𝑟) = 0.137 +  0.149 × 𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔   

The results of the logistic regression show (Table 5.2) that subjective cracking conditions can be predicted 

from automated cracking since automated cracking found to be a statistically significant predictor. Hence, 

automated cracking data from pavement condition survey can be used to trial deterministic and probabilistic 

models to predict SIR for AC network. 

5.6.2 SS Network 

The model fitting table (Table 5.3) shows that subjective Cracking models for SS network give significantly 

better predictions (p < 0.05) by adding objective cracking as predictors to the model with intercept only. 

The likelihood ratio test is also significant.  

Table 5.3  Model Fitting Information for validation of cracking data in SS network  

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 316.444    

Final 267.076 49.368 1 0.000 

Link function: Logit. 
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Table 5.4  Parameter Estimates for validation of cracking data in SS network  

 Estimate 

Std. 

Error Wald df Sig. 

95% Confidence Interval 

Lower 

Bound Upper Bound 

Threshold [cracking (Extensive)] -5.170 0.602 73.867 1 0.000 -6.349 -3.991 

[cracking (Moderate)] -3.165 0.347 83.429 1 0.000 -3.845 -2.486 

[cracking (Minor)] 0.384 0.187 4.211 1 0.040 0.017 0.752 

Location cracking -0.101 0.016 39.565 1 0.000 -0.133 -0.070 

The results of the ordinal logistic regression show (Table 5.4) that rating value of cracking can be predicted 

from objective cracking data because automated cracking is found to be a statistically significant predictor. 

Therefore, objective cracking data are validated to develop deterministic and probabilistic models to predict 

SIR for SS network.  

5.7 Development of Logit models to validate the automated rutting data (used in developing 

the deterministic and probabilistic models) with subjective rating of Deformation 

The current practice of two types of rutting data collection in Australia include manual rating and using the 

automated multi-laser profilometer which employs optical or ultrasonic sensors to measure the depth of ruts 

(Michael Moffatt, 2007a). The subjective deformation ratings of local depressions (patching and potholes) 

are evaluated in addition to rutting in a guided scale including rating values of 0, 1, 3 and 5 used for good, 

minor, moderate, and extensive categories of distress respectively in Victoria. The rated value is allocated 

depending on the severity and extent of observed rutting. This rating value used with other distress ratings 

to calculate the combined index, SIR which indicates the estimated remaining life of the pavement surface 

and is used for prioritizing resurfacing programs. Thus, rut depth is widely used as an intervention trigger 

for bi-annual or three-year periodic maintenance to improve skid resistance.  

In addition, from PCS, the directly measured rutting data (longitudinal depression in the pavement surface) 

are used to trigger different renewal activities (resurfacing, rehabilitation, reconstruction etc.). Hence, this 

type of automated data is also used to trigger reseal and rehabilitation activities that improve functional and 

structural capacity of pavement along with other pavement condition parameters. To find the relationship 

of these two types of data used for deformation assessment and validate the automated rutting data to 

develop deterministic and probabilistic models, logistic regression analysis is performed.  
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 5.7.1 AC Network 

The test of parallel lines is found to be significant for the deformation model. Therefore, the null hypothesis 

of parallelism is rejected, and multinomial logistic regression is trialed to investigate the relationship 

between subjective deformation and automated rutting. From the following model fitting table (Table 5.5), 

it is found that subjective Deformation models for AC network are significantly improved (p < 0.05) by 

adding objective rutting as predictor, compared to the intercept only. The data are fitted well by the model 

and the likelihood ratio test is also significant. The parameter estimates indicate that objective rutting is a 

significant logit parameter (Table 5.6) for ‘Minor’, and ‘Moderate’ categories of the subjective Deformation 

model. Here, ‘Good’ condition is used as reference category. The classification table results (Appendix B) 

indicate that the overall success rate of the multinomial logistic regression model is almost 58% with 

maximum success rate in the ‘Minor’ category. Therefore, the Logit models for deformations are as follows: 

𝐿𝑜𝑔𝑖𝑡 (≤ 𝑀𝑖𝑛𝑜𝑟) = − 0.656 +  0.215 × 𝑟𝑢𝑡𝑡𝑖𝑛𝑔 

𝐿𝑜𝑔𝑖𝑡 (≤ 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒) =  − 5.791 +  0.718 × 𝑟𝑢𝑡𝑡𝑖𝑛𝑔  

 
Table 5.5  Model Fitting Information for validation of rutting data in AC network  

Model 

Model Fitting 

Criteria Likelihood Ratio Tests 

-2 Log Likelihood Chi-Square df Sig. 

Intercept Only 183.650    

Final 161.005 22.645 2 0.000 

 
Table 5.6  Parameter Estimates for validation of rutting data in AC network  

Deformation (Rating)a B Std. Error Wald df Sig. Exp(B) 

95% Confidence Interval for Exp(B) 

Lower Bound Upper Bound 

Minor Intercept -0.656 0.450 2.130 1 0.144    

rutting 0.215 0.099 4.721 1 0.030 1.240 1.021 1.506 

Moderate Intercept -5.791 1.126 26.446 1 0.000    

rutting 0.718 0.167 18.503 1 0.000 2.050 1.478 2.844 

a. The reference category is: Good. 
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For the ‘Extensive’ category the number of pavement segments is small, and the model cannot predict 

deformation condition from automated rutting data. However, the focus of the study is not is on the 

‘Extensive’ category and thus for our purposes, the automated rutting data are validated to use to develop 

deterministic and probabilistic models to predict SIR. 

5.7.2 SS Network 

For the sprayed seal network, deformation condition can be predicted from objective rutting data only for 

‘Moderate’ condition because the number of pavement segments is nil for the ‘Good’ and ‘Extensive’ 

conditions of deformation and the ‘Minor’ category is used as reference category. Therefore, binary logistic 

regression analysis is performed to find the relationship. The results (Table 5.7 and Table 5.8) show that 

there is no variation in prediction success rate (94.2%) with the addition of the predictor to the base model 

(with intercept only). This is because of the small number of pavement segments in the moderate category 

present in the SS network. So, the automated rutting data for SS network cannot be validated for developing 

the deterministic and probabilistic models. 

           Table 5.7  Classification Tablea for deformation model with intercept only (SS network) 

Observed 

Predicted 

Deformation 

Percentage Correct Moderate Minor 

Step 0 Deformation Moderate 0 11 0.0 

Minor 0 179 100.0 

Overall Percentage   94.2 

a. Constant is included in the model. 

            Table 5.8  Classification Table for deformation model including the predictor (SS network) 

 

 

 

 

 

 

 

 

Observed 

Predicted 

Deformation Percentage 

Correct Moderate Minor 

Step 1 Deformation Moderate 0 11 0.0 

Minor 0 179 100.0 

Overall Percentage   94.2 
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5.8 Validation of automated texture loss data with subjective rating of texture loss 

Texture loss of pavement surface is a slow deterioration process. Hence, it is very difficult to assess this 

distress visually. To validate the automated texture loss from pavement condition survey with the subjective 

rating of texture loss used in surface inspection rating survey, ordinal logistic regression is trialed for both 

AC and SS networks. 

5.8.1 AC network 

The model is found not to be statistically significant (Table 5.9) and the parameter estimate (Table 5.10) 

indicates that objective texture loss is not a statistically significant predictor (at the 0.05 level) for subjective 

deformation, which is used to compute SIR. Therefore, the subjective rating cannot be related with 

automated texture loss data for AC network and it is excluded from the analysis to develop the models for 

SIR. 

Table 5.9  Model Fitting Information for validation of texture loss data in the AC network  

Model 

-2 Log 

Likelihood Chi-Square df Sig. 

Intercept Only 97.161    

Final 93.972 3.189 1 0.074 

Link function: Logit. 

  

Table 5.10  Parameter Estimates for validation for texture loss data in the AC network  

 Estimate Std. Error Wald df Sig. 

95% Confidence Interval 

Lower 

Bound Upper Bound 

Threshold [texture loss (Extensive)] -4.079 0.573 50.678 1 0.000 -5.203 -2.956 

[texture loss (Moderate)] -2.401 0.353 46.284 1 0.000 -3.092 -1.709 

Location texture loss -0.062 0.034 3.398 1 0.065 -0.128 0.004 

Link function: Logit. 

 

5.8.2 SS Network 

The texture loss model is found not to be statistically significant (Table 5.11) for the SS network. The 

parameter estimates (Table 5.12) indicate that automated texture loss is not a statistically significant 

explanatory variable to predict subjective deformation. Hence, the manual rating cannot be related with 
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objective texture loss data for the SS network also and it is excluded from developing the models to predict 

SIR.  

Table 5.11  Model Fitting Information for validation of texture loss data in the SS network  

Model 

-2 Log 

Likelihood Chi-Square df Sig. 

Intercept Only 373.207    

Final 373.006 0.200 1 0.655 

Link function: Logit. 

 

Table 5.12  Parameter Estimates for validation of Texture loss data in the SS network  

 Estimate Std. Error Wald df Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Threshold [texture loss 

(Extensive)] 
-1.114 0.252 19.572 1 0.000 -1.608 -0.621 

[texture loss 

(Moderate)] 
0.985 0.248 15.712 1 0.000 0.498 1.472 

Location texture loss 0.004 0.008 0.201 1 0.654 -0.012 0.020 

Link function: Logit. 

 

5.9 Logistic Regression Analysis and Interpretation of Outputs to Predict Pavement 

Surface Condition Category from automated distress data 

Since categorical variables are qualitative, to analyze the data the coding of categorical variable is 

important. At the time of coding, ranking, or ordering is considered as it influences the odds ratios and slope 

estimates. The DV category of highest value is considered as reference category (here VG) and is given the 

highest code. The input data into SPSS includes SIR values for all sections in the AC and SS network and 

their corresponding PCS parameters.  

The interpretation of SPSS outputs from the analysis and the best fit models for two ranks are described in 

the following sections for modeling subjective SIR from the measured PCS data of the AC and SS network. 

The pertinent SPSS outputs are shown in Appendix B.  
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5.10 Ordinal Logistic Models 

For ordinal logistic regression to predict SIR value from objective PCS parameters, values of the Dependent 

Variable SIR are categorized (ranked) in two ways. 

• RANK1 (5 categories): VG (Very Good) = 0 – 10 = coded as ‘4’; G (Good) = 11 – 15 = coded as 

‘3’; F (Fair) = 16 – 20 = coded as ‘2’; P (Poor) = 21 – 30 = coded as ‘1’; VP (Very Poor) > 30 = 

coded as ‘0’. 

• RANK2 (4 categories): VG (Very Good) = 0 - 10 = ‘3’; G (good) = 11 – 20 = ‘2’; P (Poor) = 21 - 

30 = ‘1’; VP (Very Poor) > 30 = ‘0’. 

 

The necessary number of logit equations/models is generally reduced by one type of prediction category 

because one of the outcome variable categories is selected as a base category.  Here VG has been chosen 

as the base or reference category because of its highest rating. 

In ordinal logistic modeling, the event of interest is observing a specific score or less (Y. Wang, 2012). 

Hence, the fitted equations for predicting the condition of a pavement segment from corresponding 

measured PCS parameters have the following forms for the AC network (RANK1): 

𝐿𝑜𝑔𝑖𝑡 (≤  𝐺) =  𝑎𝐺 − 𝑏𝐺  ×  𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔 − 𝑐𝐺  ×  𝑟𝑢𝑡𝑡𝑖𝑛𝑔 − 𝑑𝐺  ×  𝐼𝑅𝐼 

𝐿𝑜𝑔𝑖𝑡 (≤  𝐹) =  𝑎𝐹 − 𝑏𝐹  ×  𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔 − 𝑐𝐹  ×  𝑟𝑢𝑡𝑡𝑖𝑛𝑔 − 𝑑𝐹 ×   𝐼𝑅𝐼 

𝐿𝑜𝑔𝑖𝑡 (≤  𝑃) =  𝑎𝑃 − 𝑏𝑃  ×  𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔 − 𝑐𝑃  ×  𝑟𝑢𝑡𝑡𝑖𝑛𝑔 − 𝑑𝑃  × 𝐼𝑅𝐼 

𝐿𝑜𝑔𝑖𝑡 (≤  𝑉𝑃) =  𝑎𝑉𝑃 − 𝑏𝑉𝑃  ×  𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔 − 𝑐𝑉𝑃  ×  𝑟𝑢𝑡𝑡𝑖𝑛𝑔 − 𝑑𝑉𝑃  ×  𝐼𝑅𝐼 

Here, slopes are same for all regression equation e.g.  𝑏𝐺 =  𝑏𝐹 =  𝑏𝑃 =  𝑏𝑉𝑃. It means that DV categories 

are parallel to each other. The second assumption is that the intercepts will differ only. Thus, the intercepts 

of the ordinal logistic regression equations are  𝑎𝐺  ≠  𝑎𝐹  ≠  𝑎𝑃  ≠  𝑎𝑉𝑃 . 

In the above logit equations, objectively collected PCS parameters - cracking, rutting and IRI (International 

Roughness Index) are the Independent Variables (IVs). The minus sign is used to indicate that a larger 

coefficient is related with a larger score. For the SS network, only cracking is considered since rutting data 

cannot be validated and roughness has negligible correlation with SIR. The development of logistic models 

for predicting pavement surface conditions is described in the following sections. 
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5.10.1 AC Network (RANK1) 

In this study for RANK1 from the following table (Table 5.13) it is found that p > 0.05 i.e. the assumption 

of parallel lines is satisfied, and ordinal regression is tested to get suitable logistic models for RANK1, 

briefly described in the next section.  

Table 5.13  Test of Parallel Linesa  for SIR model in AC network (RANK1) 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 398.994    

General 391.751 7.243 9 0.612 

The null hypothesis states that the location parameters (slope coefficients) are the same across response 

categories. 
a. Link function: Logit. 

 

5.10.1.2 Data Distribution (RANK1) 

For RANK1, SIR is categorized into five groups for the logit models. Here, ‘Very Good’ is considered as 

the reference category.  For each case, the SIR condition category that is predicted is taken as the category 

for which the predicted probability is maximum. The following table (Table 5.14) presents the number and 

percentage of sections in each category of the AC network (observed data). 

 

Table 5.14  Case Processing Summary (AC Network) 

 N Marginal Percentage 

SIR_RANK1 VP 6 3.8% 

P 21 13.1% 

F 36 22.5% 

G 26 16.3% 

VG 71 44.4% 

Valid 160 100.0% 

Missing 0  

Total 160  
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5.10.1.3 Likelihood Ratio Test (RANK1) 

The following model fitting table (Table 5.15) presents the results of the test of the null hypothesis that the 

slopes of the regression equation for all variables in the model are 0. The likelihood ratio test is used to 

decide whether adding an explanatory variable (or predictor) improves our ability to predict the outcome. 

The table gives the -2log-likelihood (-2LL) values for the null model (containing intercept only) and the 

final model. We compare our model against the null model to check whether it has significant Chi-square 

statistic (p < 0.05), indicating a real improvement in the model fit.  

Table 5.15  Model Fitting Information for SIR model in the AC network (RANK1) 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 441.950    

Final 398.994 42.955 3 0.000 
Link function: Logit. 

The model fitting table (Table 5.15) shows a significant Chi-square statistic value (p < 0.05) which indicates 

that SIR models give significantly better predictions by adding PCS parameters (cracking, rutting and IRI) 

as predictors, compared to the Intercept only (baseline model/null model) for RANK1 in AC network.     

 

5.10.1.4 Measuring Strength of Association Goodness-of-Fit (RANK1) 

The Goodness-of-Fit table represents the model fits (Table 5.16). It comprises Pearson’s chi-square 

statistics and another chi-square result based on Deviance. These statistics are used to test whether the data 

are consistently fitted by the model. When the model fits well, the value of each statistic is small, and the 

significance probability is large. The null hypothesis can be rejected if the observed significance probability 

for the goodness of fit statistics is small. The following table shows that the significance probability is > 

0.05 which indicates that the Null hypothesis of good model fit cannot be rejected for RANK1. Therefore, 

it can be concluded that the SIR models adequately fit the data for the AC network in RANK1.  

 

Table 5.16  Goodness-of-Fit for SIR model in the AC network (RANK1) 

 

 

 

 

 

 

 Chi-Square df Sig. 

Pearson 554.802 633 0.989 

Deviance 398.994 633 1.000 
Link function: Logit. 
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Table 5.17  Pseudo R-Square for SIR model in the AC network (RANK1) 

 

 

 

 

 

 

Here, the Coefficient of Determination (R2) in maximum likelihood logistic regression is calculated by   

equivalent formula. However, it is not conceptually alike to R2 in Ordinary Least Square Regression 

(OLSR). Thus, R2 in this case is not the observed proportion of variation of the dependent variable explained 

by the model but rather the variation of the log likelihood of the fitted model compared to the log likelihood 

of the null model, and ranges from 0 to 1. When the R2 value is 1, it indicates perfect fit of the model and 

0 indicates no relationship. Therefore, R2 satisfies the criterion of measuring strength of association partially 

with an intuitive interpretation here, but these R2 values are not really the most important estimate in which 

we are interested (Menard, 2000). The Pseudo R-Square Table (Table 5.17) presents the Nagelkerke 

statistics value (0.251) indicating medium-low association between predictors and prediction. A 

Nagelkerke R2 value greater than 0.2 is considered as indicating a relatively good fit of the model for any 

kind of logistic analysis (Clark & Hosking, 1986).  

 

5.10.1.5 Parameter Estimates (RANK1)   

In this analysis the DV is categorized as SIR > 30 (VP), SIR = 21 - 30 (P), SIR = 16 - 20 (F), SIR = 11 - 15 

(G) and SIR = 0 - 10 (VG). From the result table it is found that cracking and rutting both are statistically 

significant predictors (Table 5.18). PCS roughness (IRI) is statistically insignificant (p > 0.05) and is 

removed from the model i.e. its coefficient is assumed to be zero. Therefore, rating of ‘Very Good’ category 

is used as the base category and Logits (function of PCS parameters) for the remaining four categories of 

ratings are considered. The fitted equations are: 

 𝐿𝑜𝑔𝑖𝑡 (≤ 𝑉𝑃)  =  −5.274 − (−0.083 × 𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔)  −  (−0.167 × 𝑟𝑢𝑡𝑡𝑖𝑛𝑔) 

𝐿𝑜𝑔𝑖𝑡 (≤ 𝑃)  =  −3.345 − (−0.083 × 𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔)  −  (−0.167 × 𝑟𝑢𝑡𝑡𝑖𝑛𝑔) 

𝐿𝑜𝑔𝑖𝑡 (≤ 𝐹)  =  −1.875 − (−0.083 × 𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔)  −  (−0.167 × 𝑟𝑢𝑡𝑡𝑖𝑛𝑔) 

𝐿𝑜𝑔𝑖𝑡 (≤ 𝐺)  =  −1.077 − (−0.083 × 𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔)  − (−0.167 × 𝑟𝑢𝑡𝑡𝑖𝑛𝑔) 

 

 

 

Cox and Snell 0.235 

Nagelkerke 0.251 

McFadden 0.097 
Link function: Logit. 
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Table 5.18  Parameter Estimates for SIR model in the AC network (RANK1) 

 Estimate Std. Error Wald df Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Threshold [SIR (VP)] -5.274 0.756 48.677 1 0.000 -6.755 -3.792 

[SIR (P)] -3.345 0.603 30.759 1 0.000 -4.527 -2.163 

[SIR (F)] -1.875 0.551 11.580 1 0.001 -2.955 -0.795 

[SIR (G)] -1.077 0.539 3.989 1 0.046 -2.134 -0.020 

Location cracking -0.083 0.018 21.856 1 0.000 -0.117 -0.048 

rutting -0.167 0.082 4.213 1 0.040 -0.327 -0.008 

IRI 0.003 0.188 0.000 1 0.988 -0.366 0.372 

 

Each equation gives the logit of the probability of being in one or below the stated category, predicted from 

the PCS parameters. If a road segment with cracking value = 30% and rutting value = 10mm, then the logit 

value for the estimation of probabilities for ‘Poor’ pavement surface condition are to be calculated as 

follows: Logit (≤P)= - 3.345 - (- 0.083 × cracking)- (- 0.167× rutting)= - 3.345- (- 0.083×  30) - (- 0.167 × 

10) = 0.815.    

Table 5.19  SIR (RANK1) Predicted Response Category Crosstabulation (AC network) 

 

Predicted Response Category 

Total P F VG 

SIR (RANK1) VP Count 2 4 0 6 

% within SIR (RANK1) 33.3% 66.7% 0.0% 100.0% 

P Count 6 5 10 21 

% within SIR (RANK1) 28.6% 23.8% 47.6% 100.0% 

F Count 3 11 22 36 

% within SIR (RANK1) 8.3% 30.6% 61.1% 100.0% 

G Count 1 2 23 26 

% within SIR (RANK1) 3.8% 7.7% 88.5% 100.0% 

VG Count 0 6 65 71 

% within SIR (RANK1) 0.0% 8.5% 91.5% 100.0% 

Total Count 12 28 120 160 

% within SIR (RANK1) 7.5% 17.5% 75.0% 100.0% 
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The classification table (Table 5.19; from SPSS crosstab), allows us to determine the number of events 

where the observed SIR values are predicted correctly. The cross tabulation indicates that 29% of P cases 

have been correctly assigned. The corresponding percentages for categories F and VG are 31% and 92% 

respectively. These results indicate that the success rate of logistic regression model for AC network with 

RANK1 is (6 + 11 + 65) / 160 = 0.513 ≈ 51%. 

 

5.10.1.6 Calculating the Probabilities for Pavement Surface Conditions in the AC network 

Using the predicted logit equations of the five cumulative condition categories the estimated individual 

probabilities of RANK1 are found with the following formulas and reported in the Table (Appendix B). 

The logit equations for the four cumulative condition categories can be used to predict the probability of a 

road segment being in each category as a function of automated cracking and rutting. For plotting the results 

in a graph, one independent variable acts as a predictor and the other IV is to be considered as constant at 

its mean value.  

Since the correlation between SIR and cracking is greater than the correlation between SIR and rutting, 

cracking is considered as the predictor and the mean value of rutting (keeping rutting constant at mean 

value = 4.56 mm) is used in the logit prediction equations to calculate probabilities and present them 

graphically. In a real case, automated data values for both cracking and rutting are to be used to calculate 

the probabilities.  

In ordinal logistic regression the estimated probabilities are cumulative scores where the probability of an 

occurrence and all occurrences that are ordered before it is considered, rather than estimating the probability 

of an individual occurrence. Hence, the cumulative predicted probabilities for the five pavement surface 

conditions can be computed as follows: 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑏𝑒𝑖𝑛𝑔 𝑖𝑛 𝑡ℎ𝑒 𝑉𝑃 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 =  𝑒𝑙𝑜𝑔𝑖𝑡 𝑉𝑃/ [1 + 𝑒𝑙𝑜𝑔𝑖𝑡 𝑉𝑃]  
𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑏𝑒𝑖𝑛𝑔 𝑖𝑛 𝑜𝑟 𝑏𝑒𝑙𝑜𝑤 𝑡ℎ𝑒 𝑃 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 

   =   𝑒𝑙𝑜𝑔𝑖𝑡 𝑃/ [1 + 𝑒𝑙𝑜𝑔𝑖𝑡 𝑃]  

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑏𝑒𝑖𝑛𝑔 𝑖𝑛 𝑜𝑟 𝑏𝑒𝑙𝑜𝑤 𝑡ℎ𝑒 𝐹 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 

=  𝑒𝑙𝑜𝑔𝑖𝑡 𝐹/ [1 + 𝑒𝑙𝑜𝑔𝑖𝑡 𝐹]  

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑏𝑒𝑖𝑛𝑔 𝑖𝑛 𝑜𝑟 𝑏𝑒𝑙𝑜𝑤 𝑡ℎ𝑒 𝐺 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦  

=  𝑒𝑙𝑜𝑔𝑖𝑡 𝐺/ [1 + 𝑒𝑙𝑜𝑔𝑖𝑡 𝐺]  
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From the above computed probabilities, the probabilities of the individual condition categories can be 

estimated as follows:  

▪ 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑉𝑃 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)  =  𝑐𝑢𝑚 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑉𝑃) 

▪ 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑃 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)  =  𝑐𝑢𝑚 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑃) –  𝑐𝑢𝑚 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑉𝑃)  

▪ 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝐹 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)  =  𝑐𝑢𝑚 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝐹) –  𝑐𝑢𝑚 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑃)  

▪ 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝐺 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)  =  𝑐𝑢𝑚 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝐺) –  𝑐𝑢𝑚 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 (𝐹)     

▪ 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑉𝐺 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)  =  1 −  𝑐𝑢𝑚 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝐺 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) 

 

The probabilities from the model are presented graphically in Figure 5.2. The probabilities for VG, G and 

P conditions are calculated using the above equations to plot the model graphically. The category with the 

maximum estimated probability for a given cracking value is taken to be the predicted condition for a road 

segment with that cracking value. 

 
 

Figure 5.2  Predicted SIR category probabilities for SIR as a function of automated cracking (automated 

rutting is considered as constant at mean value) using logistic model in the AC network. 

Figure 5.2 indicates that an AC network pavement segment is most likely to be in ‘Very Good’ condition 

up to about 15% area affected by cracking, then fair condition up to 28% and then in poor condition up to 

50%. After 50% area affected, the probability of being in ‘Very Poor’ condition dominates, as we would 

expect in real life. The results show that for the ‘Good’ category the developed model fails to correctly 
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predict the pavement surface condition. This may be because the number of pavement sections with good 

(SIR = 11 - 15) ratings is smaller than with VG and Fair conditions. Most of the pavement sections of AC 

networks are found to be in ‘Very Good’ (SIR = 0 - 10) and ‘Fair’ (SIR = 16 - 20) conditions according to 

the surface inspection ratings. 
 

5.10.1.7 Validation of the Ordinal Logistic Model for the AC network (RANK1) 

The developed model for prediction of SIR from automated cracking and rutting is validated by comparing 

expected weighted average condition rating (predicted) with observed (actual) rating of the pavement 

segments. Thus, the scaled squared residual of SIR is calculated for each pavement segment to investigate 

the difference between observed and expected SIR value. 

 

Figure 5.3  Scaled Squared Residual of SIR with Predicted Weighted Average Condition for the AC 

network (RANK1) 

To estimate the weighted average condition rating, the probabilities of each condition category are 

multiplied by the corresponding SIR category midpoint and added. The predicted probabilities of the five 

condition categories of pavement segments are obtained from the SPSS output. For RANK1 the SIR 

category midpoints are: Very Good = 5, Good = 13, Fair = 18, Poor = 25.5, Very Poor = 35.5. The table of 

probabilities for validation are presented in Appendix B.  
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Thus, weighted average condition rating (expected rating) is estimated for the first row of the probability 

table (Appendix B) as below: 

For the first case in the Table (Appendix B), where cracking = 2.50 and actual SIR = 12, the expected SIR 

is calculated as: 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑆𝐼𝑅 =  0.01 ×  35.5 +  0.06 ×  25.5 +  0.18 ×  18 +  0.18 ×  13 +  0.57 ×  5 =  10.315   

Hence,  

 𝑆𝑐𝑎𝑙𝑒𝑑 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑜𝑓 𝑆𝐼𝑅 =  (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑆𝐼𝑅 –  𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑆𝐼𝑅)2/𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑆𝐼𝑅 

                         =  (12 –  10.315)2/10.315 = 0.2753 

From the scatter plot (Figure 5.3 ) it is seen that the squared difference between actual SIR value and 

expected SIR value is relatively small (scaled squared residual < 10) for more than 86% of pavement 

segments and small (scaled squared residual < 5) for more than 66% of pavement segments. Therefore, the 

developed ordinal logistic model with RANK1 is validated for the AC network. 

5.10.2 SS Network 

5.10.2.1 Test of Parallel Lines (RANK1) 

From the following table (Table 5.20) it is evident that for RANK1 the test of parallel lines is not significant 

(p > 0.05). The assumption of parallel lines is therefore justified, and ordinal regression is used to get 

significant logistic models for RANK1. From the analysis it is found that (Appendix B) SIR models for the 

SS network give significantly better predictions by adding PCS parameters as predictors, compared to the 

intercept, only for RANK1.The likelihood ratio test shows that PCS cracking is a statistically significant 

predictor in the SS network (for RANK1). The success rate of the models is 40% but it can predict only the 

‘Good’ condition correctly. Hence, RANK2 for SIR is trialed in search of a better model. 

 

Table 5.20  Test of Parallel Lines for SIR model in the SS network (RANK1) 

Model 

-2 Log 

Likelihood Chi-Square df Sig. 

Null Hypothesis 413.612    

General 412.370 1.241 3 0.743 

The null hypothesis states that the location parameters (slope coefficients) are 

the same across response categories. 
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5.10.2.2 Data Distribution (RANK2) 

The following table (Table 5.21) presents the number and percentage of sections in each category of the SS 

network where SIR > 30 is coded as “0” Very Poor), SIR = 21 - 30 as “1” (Poor), and SIR = 11 - 20 as “2” 

(Good) and SIR = 0 - 10 as ‘3’ (Very Good). 

 

Table 5.21  Case Processing Summary for SIR model in the SS network (RANK2) 

 

 N 

Marginal 

Percentage 

SIR_RANK2 VP 32 16.8% 

P 73 38.4% 

G 74 38.9% 

VG 11 5.8% 

Valid 190 100.0% 

Missing 0  

Total 190  

   

 

5.10.2.3 Test of Parallel Lines (RANK2) 

The test for parallel lines is satisfied for SS network and ordinal logistic regression is performed to get the 

models. Table 5.22 shows that the parallel line test for having different slopes is not statistically significant 

(p > 0.05) which indicates that the Null hypothesis of same slope cannot be rejected for RANK2. 

 

Table 5.22  Test of Parallel Linesa for SIR model in the SS network (RANK2) 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 336.340    

General 335.165 1.175 2 0.556 

a. The null hypothesis states that the location parameters (slope coefficients) are the same across response 

categories. 
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5.10.2.4 Likelihood Ratio Test (RANK2) 

The following model fitting information table (Table 5.23) shows a significant Chi-square statistic value (p 

< 0.05) which indicates that the model gives better predictions than the model without adding any predictor. 

Thus, it is found that the SIR models for the SS network give significantly better predictions by adding 

cracking as predictor, compared to the intercept only (baseline model/null model) for RANK2. Table 5.24 

indicates a non-significant result (p > 0.05) and so the null hypothesis of good model fit cannot be rejected 

for RANK2.  

Table 5.23  Model Fitting Information for SIR model in the SS network (RANK2) 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 369.163    

Final 336.340 32.823 1 0.000 
Link function: Logit. 

 
 

Table 5.24  Goodness-of-Fit for SIR model in the SS network (RANK2) 

 Chi-Square df Sig. 

Pearson 351.111 374 0.797 

Deviance 294.952 374 0.999 

 

 

Table 5.25  Pseudo R-Square for SIR model in the SS network (RANK2) 

Pseudo R-Square 

Cox and Snell 0.159 

Nagelkerke 0.174 

McFadden 0.072 
Link function: Logit. 
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Table 5.26  Parameter Estimates for SIR model in the SS network (RANK2) 

 Estimate Std. Error Wald df Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Threshold [SIR (VP)] -2.427 0.270 80.616 1 0.000 -2.957 -1.897 

[SIR (P)] -0.337 0.181 3.487 1 0.062 -0.691 0.017 

[SIR (G)] 2.359 0.322 53.756 1 0.000 1.728 2.990 

Location cracking -0.078 0.015 27.103 1 0.000 -0.108 -0.049 

 

This parameter estimates (Table 5.26) give the following predicted logit equations for SS network 

(RANK2):  

𝐿𝑜𝑔𝑖𝑡 (≤ 𝑉𝑃)  =  −2.427 − (−0.078 × 𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔) 

𝐿𝑜𝑔𝑖𝑡 (≤ 𝑃)  =  −0.337 − (−0.078 × 𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔) 

𝐿𝑜𝑔𝑖𝑡 (≤ 𝐺)  =  2.359 − (−0.078 × 𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔) 

The following classification table (Table 5.27) presents the number of correctly predicted overserved values 

of SIR (DV). Here, 28% of VP cases are correctly predicted, 30% of P cases are correctly predicted, with 

77% of G cases correctly assigned while 0% of the VG cases are identified correctly. These results indicate 

that the overall categorization success rate of the logistic regression model for the SS network with RANK2 

is = (9 + 22 + 57) / 190 = 0.463 ≈ 46%. 

Table 5.27  Predicted Response Category Crosstabulation for SIR in the SS network (RANK2) 

 

Predicted Response Category 

Total VP P G 

SIR_RANK2 VP Count 9 15 8 32 

% within SIR_RANK2 28.1% 46.9% 25.0% 100.0% 

P Count 6 22 45 73 

% within SIR_RANK2 8.2% 30.1% 61.6% 100.0% 

G Count 0 17 57 74 

% within SIR_RANK2 0.0% 23.0% 77.0% 100.0% 

VG Count 0 1 10 11 

% within SIR_RANK2 0.0% 9.1% 90.9% 100.0% 

Total Count 15 55 120 190 

% within SIR_RANK2 7.9% 28.9% 63.2% 100.0% 
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Figure 5.4  Logistic models for SIR as a function of automated cracking (% area affected) for the SS network 

(RANK2). 

From Figure 5.4 it is seen that the model does not predict well for ‘Very Good’ condition, perhaps because 

the number of pavement segments in VG condition is small for the SS network. In addition, the model 

predicts that the probability of pavement segments being in good condition is high up to 6% area affected 

by cracking.  For cracking between 6% and 26% of the area, poor surface condition is predicted. Once 

cracking area is more than 26%, ‘Very Poor’ condition is most likely. The computed table of probabilities 

from the model is presented in Appendix B. 

5.10.2.5 Validation of the Ordinal Logistic Model for the SS network (RANK2) 

The logistic model for SIR from automated cracking is validated by comparing weighted average condition 

rating (predicted/expected rating) with the observed rating of each pavement segment in the SS network. 

The scaled squared residual of SIR is estimated for each pavement segment. Here, the mid values for 

RANK2 condition categories are: VG=5, G=15.5, P=25.5, VP=35.5. The corresponding predicted 

probabilities of the four pavement surface condition categories are obtained from the SPSS output and are 

multiplied by the mentioned mid values to calculate the expected SIR value. The table of probabilities for 

validation are presented in Appendix B.    
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For the first case in the Table (Appendix B), where cracking = 22.66 and actual SIR = 14, the expected SIR 

is calculated as: 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑆𝐼𝑅 =  0.34 ×  35.5 +  0.47 ×  25.5 +  0.18 ×  15.5 +  0.02 ×  5 =   26.945 

Hence,  

  𝑆𝑐𝑎𝑙𝑒𝑑 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑜𝑓 𝑆𝐼𝑅 =  (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑆𝐼𝑅 –  𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑆𝐼𝑅)2/𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑆𝐼𝑅 

                         =  (14 –  26.945)2/26.945 =  6.22 

 

 
Figure 5.5  Scaled Residual Square of SIR with Predicted Weighted Average Condition in the SS network 

(RANK2) 

From the scatter plot (Figure 5.5) it is seen that scaled squared difference between actual SIR value and 

expected SIR value is small for more than 84% pavement segments (scaled residual square is less than 5). 

Therefore, the ordinal logistic model with RANK2 is validated for the SS network. 
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Table 5.28  Summary of Logistic Regression outputs for SIR as a function of PCS Parameters (AC Network)  

 Model 

Type 

Goodness 

of fit 

Likelihood  

ratio test 

Nagelkerke 

measure 

Significant Logit 

parameters 

% 

success 

Categories with 

maximum 

probabilities 

RANK1 Ordinal Retained Significant 25% cracking and rutting 51% SIR = 0 - 10  

(Very Good) 

RANK2  Ordinal Retained Significant   23% cracking and rutting 49% SIR = 0 - 10  

(Very Good) 
 

Table 5.29  Summary of Logistic Regression outputs for SIR as a function of PCS Parameters (SS Network) 

 Model 

Type 

Goodness 

of fit 

Likelihood  

ratio test 

Nagelkerke 

measure 

Significant Logit 

parameters 

% 

success 

Categories with 

maximum 

probabilities 

RANK1 Ordinal Retained Significant     17% cracking 40% SIR = 21 - 30 

(Poor) 

RANK2   Ordinal Retained Significant     17% cracking 46% SIR = 11 - 15 

(Good) 
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5.11 Summary  

In this chapter, the pavement condition survey (PCS) distress data are validated with the corresponding   

subjective distress ratings before using the automated PCS distress data in developing probabilistic models 

for Surface Inspection Rating (SIR) condition categories, to understand the overall performance of the 

pavement surface. Then, the development of Logit models for SIR condition as a function of PCS 

parameters for asphalt surfacing (AC) and sprayed seal surfacing (SS) network are documented separately.  

Validation of objective cracking data 

At first, objective PCS distress data are validated with subjective rating of the corresponding distresses by 

logistic regression analysis. Ordinal logistic regression analysis is performed to find automated PCS data 

(% area affected by cracking) is a significant predictor of subjective rating of the cracking for each 

pavement segment. The subjective cracking is evaluated on a scale with ratings of 0, 1, 3 and 5 for the 

categories - nil, minor, moderate, and extensive cracking, respectively. The nil category with rating 0 is 

considered as the reference category. The ordinal models give significant likelihood ratio tests indicating a 

reasonable fit to the data for cracking in the AC network. Automated cracking is a significant logit 

parameter of subjective cracking models for both AC and SS networks.   

Validation of objective rutting data 

In subjective deformation rating, local depressions (patching and potholes) are evaluated as well as rutting 

whereas, in automated deformation data, rutting is measured as the longitudinal depression of the pavement 

surface. The subjective deformation in surface inspection rating surveys is rated as 0, 1, 3 and 5 for good, 

minor, moderate, and extensive rutting condition, respectively. The multinomial logit model testing results 

show that automated rutting is a statistically significant predictor of subjective deformation for the AC 

network.  

Binary logistic regression results show that, for the dataset, there is no variation in prediction success rate 

with the addition of rutting as a predictor in the base model (with intercept only) for the SS network. This 

may be because of the small number of pavement segments in the moderate category, most of the pavement 

segments being in the ‘Minor’ rating category, making it difficult for the model to predict other conditions. 

So, the automated rutting data for SS network cannot be validated for developing deterministic and 

probabilistic models.  
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Validation of objective texture loss data 

Objective texture loss is found not to be a statistically significant predictor of subjective deformation, used 

to compute SIR. Since pavement surface texture loss is a slow deterioration process it makes sense that the 

visual rating is different from automated data and cannot be validated. Hence, texture loss is excluded from 

developing deterministic (Chapter 4) and probabilistic (Chapter 5) models. 

Ordinal Logistic Models for Pavement Surface Condition  

Probabilistic logistic regression is employed to determine which PCS parameters can be used to predict SIR 

categories, using two types of ranking. The ranking of SIR rating for the analysis depends on the resurfacing 

or renewal activities triggering strategy for Victoria. Ordinal logistic regression is conducted by ranking 

SIR value into different categories (Very Good, Good, Fair, Poor and Very Poor). Cracking, rutting and IRI 

as PCS data are investigated as independent variables in the AC network, with only cracking being included 

in logistic models for the SS network. The roughness (IRI) parameter is found not to be statistically 

significant for the AC network. From the initial correlation analysis, the roughness data is found not to be 

reliable for the SS network and excluded from developing the models. Since the assumptions of parallel 

lines are satisfied, ordinal logistic regression is performed using two types of ranking of SIR as a function 

of original compiled PCS data from year 2011 and 2013.  

The overall success rates of these models (with metric IVs) in predicting SIR condition membership from 

PCS parameters lie between 46% and 51% (Table 5.28 and Table 5.29). The model with highest overall 

success rate (51%) is for RANK1(five categories of SIR condition) in the AC network. To plot the model 

graphically, cracking is used as the independent variable, keeping rutting value constant at its mean. This 

is done because the correlation between SIR and cracking was higher than rutting. In practice, both 

objectively collected cracking and rutting data are to be used to estimate the pavement surface condition 

category. The developed model for the AC network indicates that pavement segments are most likely to be 

in ‘Very Good’ condition up to 15% area affected by cracking, in fair condition up to 28% and in poor 

condition up to 50%. Above 50% area affected by cracking, the probability of being in ‘Very Poor’ 

condition is high, as we expect in real life.  

 

The model with RANK1 can predict ‘Very Poor’ and ‘Poor’ surface condition and failed to predict ‘Very 

Good’, ‘Good’ and ‘Fair’ conditions in the SS network. Hence, the analysis is performed with four 

categories of SIR condition (RANK2) and the most successful model has success rate of 46% in the SS 

network. Here, percentage of cracking area affected is the only predictor in the model. The developed 

ordinal logistic model shows that probability of pavement segments being in good condition is high when 



                                                                                                         
CHAPTER FIVE                            PROBABILISTIC MODELS FOR PAVEMENT SURFACE CONDITION 
 

114 
 

the area affected by cracking is up to 6%. When between 6% and 26% pavement surface area is affected 

by cracking, poor surface condition is predicted. ‘Very Poor’ condition probability is greatest when 

cracking area affected is more than 26%. This model cannot predict ‘Very Good’ condition of the pavement 

surface. The cause may be that the number of pavement segments in ‘Very Good’ condition is small for the 

SS network dataset.   

 

Model Evaluation 

AC Network 

The likelihood ratio test and goodness of fit test results show that the models for both types of ranking fit 

the data quite well for the AC network. The model can predict properly the ‘Very Good (SIR = 0-10)’ 

condition category and to some extent the ‘Fair (SIR = 16 - 20)’ category of surface condition rating. The 

developed ordinal logistic model fails to correctly identify ‘Good (SIR = 11 - 15)’ pavement surface 

condition for the AC network. The reason may be the smaller number of pavement sections with ‘Good’ 

ratings than ‘Very Good’ and ‘Fair’ conditions.  

Most pavement sections of the AC network are found to be in ‘Very Good’ or ‘Fair’ conditions according 

to the surface inspection ratings. In practice ‘Poor’ and ‘Very Poor’ condition pavement segments will 

obviously need to be repaired by the road authorities. The main interest of this study is in the ‘Very Good’, 

‘Good’ and ‘Fair’ condition pavement surfaces, for resurfacing prioritization. The ‘Poor’ and ‘Very Poor’ 

conditions are also required in order to evaluate the model and priority ranking procedure.  

Validation of the models is performed by comparing the weighted average predicted rating with actual 

rating for each pavement segment. The estimated scaled squared residual of SIR for pavement segments is 

found to be relatively small (< 10) for more than 86% of pavement segments and small (< 5) for more than 

66% of pavement segments. Further, the Nagelkerke measure is found to be 0.25 for this model, which 

indicates that the model is a relatively good fit. Hence, it can be concluded that the developed ordinal logit 

model with RANK1 for the AC network is validated. 

 

SS Network 

For the SS network model, the likelihood ratio and goodness of fit tests indicate that the model fits 

reasonably well. The model can predict well ‘Good (SIR = 11 - 15)’ pavement surface condition and to a 

lesser extent ‘Poor (SIR = 21 - 30)’ and ‘Very Poor (SIR > 30)’ conditions. However, the model does not 

predict well for ‘Very Good condition’, perhaps because the number of pavement segments in VG condition 

is small for the SS network. Since ‘Very Good’ and ‘Good’ conditions are important for the ranking of 
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potential need for resurfacing, the maximum probabilities found for Good condition category can be used 

in this regard.   

From the scatter plot and calculation of the squared scaled residual of SIR it is observed that the values are 

small (< 5) for more than 84% of pavement segments. In addition, the Nagelkerke measure is found to be 

0.17 for this model.  Since the Nagelkerke measure is not a precise measure of goodness of fit, and its value 

is close to 0.2, it is reasonable to consider the developed ordinal logistic model for the SS network as being 

validated. 

 

Application of the Models 

In the AC network, the objective (automated) cracking and rutting data from pavement condition surveys 

are to be used in the logit models and the corresponding probabilities of the pavement segments are to be 

calculated using the logistic function. For the SS network only objective cracking data is to be used in the 

logit model. Based on the probabilities of being in particular condition categories, the pavement segments 

can be ranked in order of priority for resurfacing, in both type of road networks. Therefore, it is anticipated 

that these models can be used in the prioritization of pavement segments for resurfacing in the AC and SS 

networks.  
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CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Introduction 

This study investigated the interactions between different pavement surface distresses in determining 

subjective rating and developed models (deterministic linear regression model and probabilistic logistic 

model) to predict the surface condition rating from the objectively collected pavement distress data for 

granular pavements with asphalt and bituminous surfacing. This chapter briefly reviews the research 

methods, results and findings followed by important conclusions and recommendation for future study. 

6.2 Summary and Findings 

Developed relationships from the study would help asset managers of the different road authorities in 

reducing time and cost of periodic visual condition monitoring in addition to giving an in-depth 

understanding of the interactions between different pavement surface distresses to assess the overall 

performance of the pavement. The research focuses on understanding pavement distress mechanisms and 

the interactions between different surface distresses that impact on the overall performance of pavement. 

The distress parameters are assessed in asphalt surfacing and sprayed seal surfacing separately. 

Chapter One briefly describes background information regarding the integration of subjective pavement 

condition rating and directly measured condition data around the world. The merits and demerits of manual 

and automated pavement condition survey are presented, to understand the current conventional pavement 

condition survey procedure. Then subjective rating and automated pavement condition data collection 

procedures used in Victoria/Australia are mentioned. The aim of the study: to investigate the relationship 

between subjectively rated surface condition and directly measured pavement condition parameters is stated 

precisely. These parameters comprise: cracking, rutting, texture loss and roughness. To achieve the aim of 

this research, the required objectives are defined in this chapter. Lastly, the significant and important 

outcomes of the research are pointed out. The main significances of the study include: 

 

i. In this research a detailed study is performed to find the interactions of different pavement 

distresses in predicting subjective pavement surface rating, that is an indicator of overall 

performance of the pavement. In addition, very few studies have examined the influence of 

different operating conditions (age and traffic volume) on the relationship between subjective 

ratings and objective pavement distresses data. Investigated relationships will be useful to better 
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understand the association between manual pavement surface rating and automated pavement 

distresses. 

ii. The developed ordinal logistic models for the asphalt surfacing and sprayed seal networks would 

help road asset managers of Victoria in decision-making regarding the potential need for 

resurfacing maintenance. Therefore, it is anticipated that the findings from the study will reduce 

the time, cost and risk of evaluators associated with condition monitoring, by reducing visual 

inspection surveys.  

The review of related literature documented in Chapter Two concisely describes the pavement distress 

mechanism to measure the performance of the pavement. Different types of pavement distresses to which 

flexible pavements are susceptible are defined and the concept of pavement serviceability and its 

relationship with roughness is reviewed as well. A comprehensive study of the methods for pavement 

distress evaluation by manual survey and pavement distress measurement through automated survey are 

presented in this chapter. Integrations between pavement condition indices used in different countries are 

reviewed to understand the recent practice of pavement condition evaluation. Then, manually-rated 

pavement surface inspection survey and objectively-collected overall pavement condition survey 

procedures for Victoria/Australia are described briefly. Lastly, relevant past studies related to subjective 

and objective pavement condition data are reviewed thoroughly and summarized in a table format. Research 

gaps found from the past research are mentioned in the conclusion. 

Chapter Three includes the current standard practice of subjective evaluation of pavement surface 

inspection rating and objective pavement condition survey in Victoria, Australia. Afterwards, the 

conceptual framework of the research is depicted precisely. Then the available data description, 

considerations for data preparation and assumptions in data filtering are presented. Historical data of 2011 

and 2013 for 34 highways of the MSE region of Victoria are filtered to conduct the analysis for the study. 

Therefore, 160 highway segments of AC network and 190 segments of SS network are filtered for the study. 

Lastly, applied statistical approaches to address the objectives of the study are described briefly.  

6.2.1 Correlation Analysis 

The correlations (Pearson’s correlation coefficient, r) between subjective SIR and objective cracking (r = 

0.53), rutting (r = 0.34) and IRI (r = 0.18) are found to be statistically significant in the AC network. Further, 

the results indicate that texture loss has a negligible correlation (r = - 0.048) with subjective rating. In the 

SS network, the results show that the correlations of visual rating with objective cracking (r = 0.444) and 
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texture loss (r = - 0.292) are statistically significant. However, the negative value for texture loss indicates 

unreliable objective texture loss data to develop the SIR model, because the visual rating is positively 

related to pavement distresses. That means, SIR value should be high for poor condition of surface texture. 

Therefore, it is necessary to validate the objective pavement condition data with the corresponding 

subjective surface condition data before developing the models. 

6.2.2 Validation of automated and subjective distress data 

Objective PCS distress data are validated with the visual rating of the same pavement segment by logistic 

regression analysis. Automated cracking is measured and assessed by comparatively inexperienced 

personnel depending on digital videos, whereas subjective rating is recommended by experienced personnel 

who use their judgement. Logistic regression analysis is carried out to find the objective PCS parameter, % 

area affected by cracking as a significant predictor of subjective rating of cracking for each pavement 

segment. The subjective evaluation of cracking is done on a scale of 0, 1, 3 and 5 for nil, minor, moderate 

and extensive condition categories respectively, depending on the severity and extent of the distress. 

Likelihood ratio tests for the ordinal models are found to be significant and the models fit well the cracking 

data in AC network, and automated cracking is a significant logit parameter of subjective cracking models 

for both AC and SS networks.   

In subjective rating, deformation is evaluated considering local depressions like patching and potholes, 

including rutting. On the other hand, in objective pavement condition surveys, rutting is quantified as the 

longitudinal depression of the pavement surface. Automated rutting is found to be a good predictor of 

manual rating and the multinomial model is found to be statistically significant by likelihood ratio tests for 

the AC network. Thus, the automated data is validated by logistic regression analysis to use in developing 

deterministic and probabilistic models for the AC network. In the SS network, the automated rutting data 

cannot be validated with subjective rating data. This may be because of the evaluation priority 

considerations of the local depressions than rutting, by the assessors in the subjective survey. 

Further, objective texture loss data cannot be validated for either of the road networks. The slow 

deterioration process in texture loss may be the cause of this discrepancy. Manual rating may not be able 

to detect this gradual deterioration precisely.  Therefore, rutting is excluded from the SS network and texture 

loss is excluded from both networks in developing deterministic and probabilistic models. 
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6.2.3 Deterministic Approach for Pavement Condition Data 

Interaction Effects between Pavement Distresses 

To investigate the interaction effects, objective pavement distresses are grouped to transform the data into 

categorical variables. Automated cracking data is grouped into two categories - ‘Good (% area affected < 

10%)’ and ‘Poor (area affected ≥ 10%)’. Since in the AC network, there is no pavement segment available 

with poor rutting condition (rutting = 16-20mm) or very poor condition (rutting > 20mm), rutting data is 

grouped into three categories ‘Very Good (rutting = 0-5mm)’, ‘Good (rutting = 6 - 9mm)’ or ‘Fair (rutting 

= 10-15mm)’. Additionally, objective roughness is categorized as ‘Good (IRI = 0 - 3.4m/km)’, ‘fair (IRI = 

3.4 - 4.2m/km’) or ‘Poor (IRI > 4.2m/km)’.  

The two-way ANOVA test results show that statistically significant differences are present in mean 

subjective rating within the different conditions of automated cracking and rutting [Fcracking (1,138) = 

25.608, p < 0.05 and Frutting (2,138) = 3.691, p < 0.05] in the AC network. In addition, the ANOVA test 

indicates that a statistically significant interaction [F (2,138) = 4.282, p < 0.05] is present between 

objectively collected cracking and rutting in predicting subjective SIR for the AC network. The model can 

explain 26% of the variation in SIR from the categorical cracking and rutting considering the interaction 

effects. Categorical roughness is found to have no statistically significant main effect or interaction effects 

with cracking and rutting in predicting SIR.   

Interaction Effects between Pavement Distress and operating conditions 

Considering the desired service life of asphalt surfacing and sprayed seal surfacing the pavement age is 

classified into two groups (age ≤ 7 years and age > 7 years). The two-way ANOVA test shows that 

interactions of age with pavement distresses are not statistically significant for both networks.  Further, the 

interaction effect of heavy traffic volume with pavement distress is also found not to be statistically 

significant in ANOVA tests in both AC and SS networks. Age and traffic volume are not used as 

explanatory variables in developing the SIR models because they are reflected in the related pavement 

condition variables used as predictors in developing the models.   

Linear Regression Models 

After several trials, the best fit linear models are observed when logarithmic transformation (base 10 

logarithm) is applied to the independent variables. Stepwise multiple linear regression analysis is used for 

the AC network and it is found that log10(cracking + 1) and log10(rutting + 1) are two statistically significant 

(p < 0.05) predictors of SIR. However, roughness is found not to be a significant parameter in the model. 

The model indicates that cracking and rutting make significant contributions to determining SIR value, 
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where the contribution of cracking is more than rutting. The coefficient of determination (R2) is 0.305, 

meaning that the predictors explain about 31% of the variation in SIR for the AC network. Additionally, 

after correlation analysis and validating the data, cracking is found as the only explanatory variable that can 

be used for developing a model for SIR in the SS network. The results show that log10(cracking + 1) is a 

statistically significant predictor of SIR. However, the model can explain only 24% of the variation in the 

subjective rating. 

 

Model Evaluation 

The developed deterministic models for SIR, as a function of objectively collected pavement condition 

parameters are observed to have low coefficienst of determination, predicting only 31% and 24% of the 

variation of SIR in the AC and SS networks, respectively.  This necessitates alternative methods to develop 

more applicable models. After reviewing  past studies, a probabilistic logistic regression approach is 

emplyed to investigate the relationship between subjective pavement surface rating conditions and 

automated pavement distresses. 

6.2.4 Probabilistic Approach for Pavement Condition Data 

Ordinal Logit Models for Pavement Surface Condition  

Probabilistic Logistic Regression analysis is used to model SIR conditions from automated pavement 

condition data. Reviewing the previous studies and considering the surface inspection rating procedure in 

Victoria the rating values are categorized into five groups for RANK1 and four groups for RANK2. This 

ranking is based on resurfacing or renewal triggering in Victoria. The assumption of parallel lines for 

different levels of each variable is used and retained, and ordinal logistic regression is conducted using two 

types of ranking of SIR. For the AC network, roughness is found not to be a statistically significant 

predictor. Considering initial correlation analysis, the roughness data is excluded when developing the 

models for SS network. 

The overall success rates of these models (with automated cracking and rutting as metric IVs) in 

categorizing SIR are between 46% and 51%. The most successful model (with success rate 51%) is with 

RANK1 (five categories of SIR) in the AC network. Since cracking is more correlated with SIR than other 

parameters, it is used as the independent variable in presenting the models graphically, holding rutting value 

constant at its mean value. Practically, both automated cracking and rutting are to be used to predict the 

pavement surface condition.  The most successful model for the SS network is found for RANK2 (four 

groups of SIR condition) and has a success rate of 46%. Here, the percentage of area affected by cracking 

is the only predictor of SIR condition.   
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Model Evaluation 

For the AC network, the most successful model gives a statistically significant likelihood ratio test and this 

result is confirmed by the goodness of fit test. The model can predict ‘Very Good’ and ‘Fair’ condition 

pavement surfaces and fails to predict ‘Good’ condition correctly. The reason may be the lesser number of 

pavement segments in the data set with ‘Good’ condition than ‘Very Good’ and ‘Fair’ conditions. Poor and 

‘Very Poor’ condition pavement segments will readily be identified and repaired by the highway agencies, 

so this study is mostly concerned with the ‘Very Good’, ‘Good’ and ‘Fair’ condition pavement surfaces for 

resurfacing prioritization. Validation of the ordinal logistic model is done by comparing the scaled squared 

differences in weighted average predicted rating of pavement surface and actual rating. These measures are 

very small for ‘Very Good’ and ‘Fair’ conditions. Hence, the model is validated to use. 

In the SS network, the likelihood ratio test and goodness of fit test for the developed ordinal logistic model 

with RANK2 show that it is a good fit. The scaled squared difference of actual condition rating and average 

predicted rating are small with minor differences when pavement segment is in ‘Good’, ‘Poor’ and ‘Very 

Poor’ conditions. The measurement is large for ‘Very Good’ condition, possibly because of the small 

number of pavement segments in the data set with ‘Very Good’ condition. Since ‘Very Good’ and ‘Good’ 

conditions are important for the ranking of potential needs for resurfacing activities, the maximum 

probabilities found for the ‘Good’ condition category can be used in this regard. Hence, it can be concluded 

that the SS network ordinal logistic model can be validated. 

Application of the Probabilistic Models 

The automated cracking and rutting data from pavement condition surveys are to be used in the ordinal 

logit models and the corresponding condition category probabilities of the pavement segments are to be 

calculated for the AC network pavement surface conditions. For the SS network, only objective cracking 

data is to be used in the logit model.  These categorizations of conditions for pavement segments are to be 

used for prioritizing resurfacing in both asphalt surfacing and sprayed seal road networks.  
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6.3 Conclusions 

A set of relationships between Surface Inspection Rating (SIR) and objective/quantified pavement 

distresses (cracking/rutting) are developed for granular pavements to help the practitioners of Victoria, 

Australia to trigger periodic resurfacing activities at the network level. In the current study, 160 asphalt 

surfaced pavement sections and 190 sprayed seal surfaced pavement sections, from the MSE region of 

Victoria, are used to develop deterministic and probabilistic models. In addition, the present study involves 

a detailed investigation to find the interactions between different pavement distresses in determining 

subjective pavement surface rating, an indicator of overall performance of the pavement.  

The conclusions mentioned below can be drawn from the findings of the current study: 

1. Initial correlation analysis indicates that statistically significant correlation exists between 

Surface Inspection Rating (SIR) and automated pavement condition parameters (cracking, 

rutting and roughness) for the asphalt surfacing network. In the sprayed seal network, cracking 

and texture loss are found to have significant correlations with SIR. However, ‘texture loss’ is 

found to have negligible correlation with SIR for the AC network and negative correlation for 

the SS network, indicating that the texture loss data is unreliable for the purpose of modeling 

SIR. 

2. Validation of automated pavement condition data (distress data) with corresponding subjective 

rating of each individual distress indicates that automated cracking and rutting data can be used 

to develop models for subjective rating in the AC network.  For the SS network, only cracking 

data are validated and can be used to model SIR. In the manual survey, deformation is evaluated 

considering localized depressions together with longitudinal depression (rutting). Objectively 

collected rutting data cannot be validated with the subjective ratings of rutting for the SS 

network. The reason may be the rating values evaluated by the engineers are more related to 

local depressions than rutting. Again, texture loss data cannot be validated with subjective 

rating of texture loss. The slow deterioration process of texture loss is difficult to assess in 

visual rating, consistent with this result. Misreading or misinterpretation in objective data 

collection may also be the reasons for generating unreliable data. 

3. Cracking and rutting interact statistically significantly with each other when measuring the 

strength of their association with SIR in the AC network. Therefore, it can be concluded that 

the interaction effect between cracking and rutting should be considered in decision making 

with regard to their relationship with subjective ratings. The investigated relationships are 
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useful to better understand the pavement distress mechanisms when evaluating manual 

pavement surface rating in an asphalt surfacing road network.  

4. The developed multiple linear regression model for the AC network shows that objectively 

collected log-transformed cracking and rutting are statistically significant predictors of SIR 

value. The contribution of cracking is greater than rutting in this regard. However, the amount 

of variation explained is relatively low (coefficient of determination, R2 = 0.305). For the SS 

network, log-transformed cracking is found to be a statistically significant predictor of SIR. 

Again, the R2 value is low with only 24% of the variation in SIR being explained by automated 

cracking data. This low predictive results necessitate alternative approaches. Reviewing the 

past studies, probabilistic logistic regression analysis is trialed in the hope of better results. 

5. The overall success rates of the developed ordinal logistic models for asphalt surfacing and 

sprayed seal surfacing networks are between 46% and 51% for predicting pavement surface 

condition categories. In the study, the most successful ordinal logistic model has a success rate 

of 51% with RANK1 (five groups of SIR) for the AC network. For SS network the best model 

is with RANK2 (four groups of SIR) with success rate of 46%. Here, the percentage of area 

affected by cracking is the only predictor of SIR condition.   

6. Likelihood ratio and goodness of fit tests for both networks indicate that the developed ordinal 

logistic models are good fits to the data. The ordinal logit model can predict ‘Very Good’ and 

‘Fair’ condition of pavement surface in the AC network but fails to predict ‘Good’ condition 

correctly. The reason may be the small number of pavement segments with good condition, 

compared to the number with ‘Very Good’ and ‘Fair’ conditions in this road network. The SS 

network logistic model can predict the ‘Good’ condition category of pavement segments and 

fails to predict ‘Very Good’ condition. The reason may be that the pavement segments with 

‘Very Good’ condition are very few in the SS network. Since ‘Poor’ and ‘Very Poor’ condition 

pavement segments will be obvious to be treated by the concerned road agencies, predictions 

for the other three categories- ‘Very Good’, ‘Good’ and ‘Fair’ conditions are what is most 

needed for prioritizing maintenance resurfacing. However, all condition categories are 

necessary to evaluate the entire model. 

7. The developed models are validated by comparing the scaled squared differences in pavement 

surface average predicted rating with actual rating. These values are found to be very small for 

correctly predicted conditions. Thus, the models are validated for both networks. 

8. The probability tables obtained from these ordinal logistic models for different condition 

categories present the probablilities of pavement segments being in each category, as a function 

of automated pavement condition parameters (rutting / cracking).  
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9. These probabilistic models can be used to predict, with any automated cracking or rutting data, 

the probability of a road section being in any particular condition for the AC and the SS network 

separately.  

10. The category with the maximum probability in each case is the most likely condition for the 

segment and that can assist the road asset managers of Victoria in ranking the pavement 

segments for potential need of resurfacing.  

11. Thus, it is anticipated that the findings from this research will be able to reduce the time, cost 

and risk of evaluators associated with condition monitoring, by reducing the need for visual 

inspection surveys.  

 6.4 Recommendations 

To apply and improve the developed ordinal logistic models for practical pupose some reccomendations 

are provided below:  

1. The ordinal logistic models developed in this study do not predict subjective ratings that consider 

the full range of subjective Surface Inspection Rating (SIR) due to the dataset’s lack of pavement 

segments with high ratings. Moreover, the asphalt surfacing road network model fails to predict the 

‘Good’ condition and the sprayed sealed network model cannot predict well the ‘Very Good’ 

condition. Therefore, it is suggested that these ordinal logistic models should be improved on the 

availabiltiy of a greater number of data, covering the total range of SIR.  

2. Additional relevant historical data should generate more powerful regression models. The linear 

regression models may give better prediction if provided with a larger amount of relevant data.  

3. The pavement distresses used in the calculation of SIR include stone loss and patching (not used in 

the current study), in addition to cracking, rutting and texture loss, which are used in this study for 

developing the models. The variables considered in this study are based on the minimum standard 

set of pavement condition measures recommended by the road authorities in Australia. Therefore, 

it is advised to include automated data of stone loss and patching data in model development, in 

the expectation that the addition of these variables may improve the models. 

4. Determining subjective SIR is limited to some factors that are associated with the serviceability of 

pavement surfacing. These factors include roughness and skid resistance. The studied pavement 

distress mechanisms show that roughness is largely associated with other distress modes. It is a 

measure of functional performance or serviceability of a pavement. Though objectively collected 
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roughness is proved not to be a statistically significant predictor of SIR they are found to be 

correlated (r = 0.18) for asphalt surfacing network. Therefore, roughness data from more number 

of years can be trialed to develop a relationship between SIR and IRI to predict pavement surface 

condition for asphalt surfacing network from automated roughness data.  

5. Objectively collected texture loss data cannot be validated with the manual ratings of texture loss 

for both networks. The slow deterioration process of texture loss, that is difficult to assess in visual 

rating, justifies this. There is a probability of errors in the quantified data due to misconceived 

interpretation as well. Therefore, the pavement surface texture loss data, from both types of surveys, 

should be examined. 
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APPENDIX A 

 

Deterministic Analysis (SPSS outputs) for Pavement Condition Data  

 
1. Interaction Effects with continuous DV and IVs in the AC network 

 
AC Network 
 
Table A.1 Multiple Linear Regression with interaction of cracking, rutting and roughness 

(uncentered untransformed data) in the AC network 

 
 

Coefficientsa 

Model 

Unstandardized Coefficients Standardized Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 5.969 6.928  .862 .390 

cracking .083 .592 .092 .141 .888 

rutting .485 1.386 .111 .350 .727 

IRI -.002 2.685 .000 -.001 1.000 

cracking*rutting .083 .089 .707 .935 .351 

cracking*IRI .128 .219 .480 .583 .561 

rutting*IRI .069 .506 .065 .136 .892 

cracking*rutting*IRI -.029 .031 -.875 -.927 .355 

a. Dependent Variable: SIR 
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Table A.2 Multiple Linear Regression with interaction of cracking, rutting and roughness 

(uncentered log transformed data) in the AC network 

Coefficientsa 

Model 

Unstandardized 

Coefficients 

Standardize

d 

Coefficients 

t Sig. 

95.0% Confidence Interval 

for B Correlations 

B Std. Error Beta 

Lower 

Bound 

Upper 

Bound 

Zero-

order Partial Part 

1 (Constant) .926 16.493 
 

.056 .955 -31.659 33.510 
   

Log (cracking+1) -2.889 18.976 -.159 -.152 .879 -40.379 34.602 .505 -.012 -.010 

Log(rutting+1) 4.602 22.327 .077 .206 .837 -39.510 48.714 .345 .017 .014 

Log (IRI) 8.967 42.152 .141 .213 .832 -74.312 92.246 .203 .017 .014 

Log (cracking+1) × Log(rutting+1) 18.078 24.948 .866 .725 .470 -31.212 67.369 .555 .059 .049 

 Log (cracking+1) × IRI 3.240 45.311 .095 .072 .943 -86.281 92.762 .487 .006 .005 

 Log(rutting+1) × IRI -2.868 55.452 -.043 -.052 .959 -112.424 106.688 .316 -.004 -.003 

 Log (cracking+1) × Log(rutting+1) × IRI -12.621 57.087 -.332 -.221 .825 -125.407 100.164 .510 -.018 -.015 

a. Dependent Variable: SIR 

 
Table A.3  Multiple Linear Regression with interaction of cracking, rutting and roughness (centered 

data) in the AC network 

Coefficientsa  

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

95.0% Confidence Interval for B 

B 

Std. 

Error Beta Lower Bound Upper Bound 

1 (Constant) 12.505 .633 
 

19.745 .000 11.254 13.756 

Log (cracking+1) centered 7.642 1.309 .421 5.837 .000 5.055 10.228 

Log(rutting+1) centered 12.451 4.368 .207 2.850 .005 3.821 21.080 

Log (IRI)centered 2.736 4.553 .043 .601 .549 -6.258 11.730 

 Log (cracking+1) × Log(rutting+1) centered  12.872 8.216 .121 1.567 .119 -3.359 29.103 

Log(rutting+1) × Log (IRI)centered -13.453 27.896 -.034 -.482 .630 -68.563 41.658 

 Log (cracking+1) × Log (IRI)centered -6.524 10.107 -.048 -.645 .520 -26.491 13.444 

a. Dependent Variable: SIR 
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Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. 

95.0% Confidence 

Interval for B 

B Std. Error Beta Lower Bound 

Upper 

Bound 

1 (Constant) 12.360 .609 
 

20.311 .000 11.158 13.562 

Log(cracking+1) centered 7.652 1.285 .422 5.957 .000 5.115 10.190 

Log(rutting+1) centered 12.916 4.179 .215 3.090 .002 4.661 21.172 

 Log (cracking+1) × 

Log(rutting+1) centered 
10.342 7.456 .097 1.387 .167 -4.386 25.070 

a. Dependent Variable: SIR 

 
2. Interaction Effects with continuous DV and Categorical IVs in the AC network 

AC Network 

Table A.4  Parameter Estimates with interaction effects between cracking, rutting and roughness in 

predicting SIR in the AC network 

Tests of Between-Subjects Effects 

Dependent Variable:   SIR   

Source Type III Sum of Squares df Mean Square F Sig. 

Corrected Model 3114.071a 14 222.434 3.777 .000 

Intercept 4622.570 1 4622.570 78.494 .000 

cracking 1250.858 1 1250.858 21.240 .000 

rutting 28.137 2 14.068 .239 .788 

IRI 112.816 2 56.408 .958 .386 

cracking * rutting * IRI 19.693 2 9.847 .167 .846 

cracking * rutting 385.907 2 192.954 3.276 .041 

rutting * IRI 156.785 3 52.262 .887 .450 

cracking * IRI 31.857 2 15.929 .270 .763 

Error 7596.929 129 58.891   

Total 32912.000 144    

Corrected Total 10711.000 143    

a. R Squared = .291 (Adjusted R Squared = .214) 
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Table A.5  Parameter Estimates with interaction effects between cracking and rutting in predicting 
SIR 

Tests of Between-Subjects Effects 

Dependent Variable:   SIR   

Source Type III Sum of Squares df Mean Square F Sig. 

Corrected Model 2785.432a 5 557.086 9.700 .000 

Intercept 7380.594 1 7380.594 128.511 .000 

cracking 1470.724 1 1470.724 25.608 .000 

rutting 423.942 2 211.971 3.691 .027 

cracking * rutting 491.831 2 245.916 4.282 .016 

Error 7925.568 138 57.432   

Total 32912.000 144    

Corrected Total 10711.000 143    

a. R Squared = .260 (Adjusted R Squared = .233) 

Parameter Estimates 

Dependent Variable:   SIR   

Parameter B Std. Error t Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Intercept 9.952 .827 12.036 .000 8.317 11.587 

[cracking=.00] 4.817 1.701 2.832 .005 1.454 8.180 

[cracking=1.00] 0a . . . . . 

[rutting=1.00] -7.952 5.422 -1.467 .145 -18.674 2.769 

[rutting=2.00] 1.190 2.188 .544 .587 -3.135 5.516 

[rutting=3.00] 0a . . . . . 

[cracking=.00] * [rutting=1.00] 16.183 6.780 2.387 .018 2.777 29.589 

[cracking=.00] * [rutting=2.00] 6.612 3.331 1.985 .049 .025 13.199 

[cracking=.00] * [rutting=3.00] 0a . . . . . 

[cracking=1.00] * [rutting=1.00] 0a . . . . . 

[cracking=1.00] * [rutting=2.00] 0a . . . . . 

[cracking=1.00] * [rutting=3.00] 0a . . . . . 

a. This parameter is set to zero because it is redundant. 
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Table A.6  Factorial ANOVA test results with interaction of cracking and roughness (IRI) 

 
Tests of Between-Subjects Effects (AC Network) 

Dependent Variable:   SIR   

Source Type III Sum of Squares df Mean Square F Sig. 

Corrected Model 2574.292a 5 514.858 7.782 .000 

Intercept 7181.446 1 7181.446 108.545 .000 

cracking 1050.457 1 1050.457 15.877 .000 

IRI 86.743 2 43.372 .656 .521 

cracking * IRI 38.705 2 19.353 .293 .747 

Error 10188.808 154 66.161   

Total 38064.000 160    

Corrected Total 12763.100 159    

a. R Squared = .202 (Adjusted R Squared = .176) 

 
Table A.7  Factorial ANOVA test results with interaction effects between cracking and age 
(Categorical IVs) 

 
Tests of Between-Subjects Effects 

Dependent Variable:   SIR   

Source Type III Sum of Squares df Mean Square F Sig. 

Corrected Model 6053.031a 3 2017.677 46.908 .000 

Intercept 25631.786 1 25631.786 595.904 .000 

cracking 1349.823 1 1349.823 31.382 .000 

Age 3519.282 1 3519.282 81.819 .000 

cracking * Age 116.748 1 116.748 2.714 .101 

Error 6710.069 156 43.013   

Total 38064.000 160    

Corrected Total 12763.100 159    

a. R Squared = .474 (Adjusted R Squared = .464) 
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Table A.8  Factorial ANOVA test results with interaction effects between cracking and heavy 
vehicle traffic volume (Categorical IVs) 

 

Tests of Between-Subjects Effects 

Dependent Variable:   SIR   

Source Type III Sum of Squares df Mean Square F Sig. 

Corrected Model 2694.082a 5 538.816 8.241 .000 

Intercept 15746.458 1 15746.458 240.833 .000 

cracking 1643.943 1 1643.943 25.143 .000 

Trcuks_500_1000 189.486 2 94.743 1.449 .238 

crack * Trcuks_500_1000 51.748 2 25.874 .396 .674 

Error 10069.018 154 65.383   

Total 38064.000 160    

Corrected Total 12763.100 159    

a. R Squared = .211 (Adjusted R Squared = .185) 

 
 
Table A.9  Factorial ANOVA test results with interaction effects between rutting and age 
(Categorical IVs) 

 
Tests of Between-Subjects Effects 

Dependent Variable:   SIR   

Source Type III Sum of Squares df Mean Square F Sig. 

Corrected Model 3710.899a 5 742.180 14.631 .000 

Intercept 6580.902 1 6580.902 129.736 .000 

rutting 98.610 2 49.305 .972 .381 

Age 1149.306 1 1149.306 22.657 .000 

rutting * Age 45.556 2 22.778 .449 .639 

Error 7000.101 138 50.725   

Total 32912.000 144    

Corrected Total 10711.000 143    

a. R Squared = .346 (Adjusted R Squared = .323) 
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Table A.10  Factorial ANOVA test results with interaction effects between rutting and heavy 
vehicle traffic volume (Categorical IVs) 

 
Tests of Between-Subjects Effects 

Dependent Variable:   SIR   

Source Type III Sum of Squares df Mean Square F Sig. 

Corrected Model 1475.882a 7 210.840 3.105 .005 

Intercept 4878.684 1 4878.684 71.845 .000 

rutting 134.543 2 67.272 .991 .374 

Trcuks_500_1000 357.611 2 178.806 2.633 .076 

rutting * Trcuks_500_1000 325.491 3 108.497 1.598 .193 

Error 9235.118 136 67.905   

Total 32912.000 144    

Corrected Total 10711.000 143    

a. R Squared = .138 (Adjusted R Squared = .093) 

 
  
3. Interaction Effects with continuous DV and Categorical IVs (operating conditions) in the 

SS network 

SS Network 
 
Table A.11  Factorial ANOVA test results with interaction effects between cracking and age 
(Categorical IVs) in the SS network 

 
Tests of Between-Subjects Effects 

Dependent Variable:   SIR   

Source Type III Sum of Squares df Mean Square F Sig. 

Corrected Model 4985.884a 3 1661.961 42.509 .000 

Intercept 48178.166 1 48178.166 1232.296 .000 

cracking 732.262 1 732.262 18.730 .000 

Age_7yrs 2288.997 1 2288.997 58.548 .000 

cracking * Age_7yrs 1.579 1 1.579 .040 .841 

Error 7115.519 182 39.096   

Total 105187.000 186    

Corrected Total 12101.403 185    

a. R Squared = .412 (Adjusted R Squared = .402) 
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Table A.12  Factorial ANOVA test results with interaction effects between cracking and Trucks 
(Categorical IVs) in the SS network 

 
Tests of Between-Subjects Effects 

Dependent Variable:   SIR   

Source Type III Sum of Squares df Mean Square F Sig. 

Corrected Model 1836.791a 4 459.198 8.097 .000 

Intercept 42320.877 1 42320.877 746.261 .000 

cracking 910.474 1 910.474 16.055 .000 

Trucks_500_1000 344.912 2 172.456 3.041 .050 

cracking * Trucks_500_1000 .001 1 .001 .000 .996 

Error 10264.612 181 56.711   

Total 105187.000 186    

Corrected Total 12101.403 185    

a. R Squared = .152 (Adjusted R Squared = .133) 

 
 
Table A. 13  Pearson’s Correlation Matrix from Weighted Least Square Regression (AC Network) 

 
Correlationsa 

 SIR Log10(cracking+1) Log10(rutting+1) Log10(IRI) 

Pearson Correlation SIR 1.000 0.472 0.334 0.220 

Log10(cracking+1) 0.472 1.000 0.196 0.153 

Log10(rutting+1) 0.334 0.196 1.000 0.301 

Log10(IRI) 0.220 0.153 0.301 1.000 

Sig. (1-tailed) SIR . 0.000 0.000 0.003 

Log10(cracking+1) 0.000 . 0.006 0.027 

Log10(rutting+1) 0.000 0.006 . 0.000 

Log10(IRI) 0.003 0.027 0.000 . 

N SIR 160 160 160 160 

Log10(cracking+1) 160 160 160 160 

Log10(rutting+1) 160 160 160 160 

Log10(IRI) 160 160 160 160 

a. Weighted Least Squares Regression - Weighted by Weight 
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Table A. 14  Pearson’s Correlation Matrix from Weighted Least Square Regression (SS Network) 

Correlationsa 

 SIR Log10(cracking+1) 

Pearson Correlation SIR 1.000 0.480 

Log10(cracking+1) 0.480 1.000 

Sig. (1-tailed) SIR . 0.000 

Log10(cracking+1) 0.000 . 

N SIR 190 190 

Log10(cracking+1) 190 190 

a. Weighted Least Squares Regression - Weighted by Weight 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                                                                                                         
                                                                                                                                    APPENDIX B 
 

143 
 

 
APPENDIX B 

 
Probabilistic Models (SPSS outputs) for Pavement Surface Condition  

 

1.  Logistic regression outputs to find the relationship with subjective cracking evaluation 
with the automatic cracking data 

AC Network 

Table B.1  Ordinal logistic regression model information for validating automated cracking data 

with subjective rating of cracking in the AC network 

Case Processing Summary 

 N 

Marginal 

Percentage 

cracking Extensive 7 4.4% 

Moderate 28 17.5% 

Minor 80 50.0% 

Nil 45 28.1% 

Valid 160 100.0% 

Missing 0  

Total 160  

Test of Parallel Linesa 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 223.162    

General 222.026 1.137 2 .566 

The null hypothesis states that the location parameters (slope coefficients) are the same 

across response categories. 

a. Link function: Logit. 

Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 291.447    

Final 223.162 68.285 1 .000 

Link function: Logit. 
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Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 273.562 266 .362 

Deviance 188.008 266 1.000 

Link function: Logit. 

Pseudo R-Square 

Cox and Snell .347 

Nagelkerke .387 

McFadden .186 

Link function: Logit. 

Parameter Estimates 

 Estimate 

Std. 

Error Wald df Sig. 

95% Confidence Interval 

Lower Bound 

Upper 

Bound 

Threshol

d 

[cracking = .00] -5.612 .650 74.629 1 .000 -6.885 -4.339 

[cracking = 1.00] -2.879 .342 70.964 1 .000 -3.548 -2.209 

[cracking = 2.00] .137 .209 .429 1 .513 -.273 .547 

Location cracking -.149 .021 51.222 1 .000 -.189 -.108 

Link function: Logit. 

Crack_ordinal * Predicted Response Category Crosstabulation 

 

Predicted Response Category 

Total Extensive Moderate Minor 

cracking Extensive Count 0 6 1 7 

% within cracking 0.0% 85.7% 14.3% 100.0% 

Moderate Count 3 10 15 28 

% within cracking 10.7% 35.7% 53.6% 100.0% 

Minor Count 0 2 78 80 

% within cracking 0.0% 2.5% 97.5% 100.0% 

Nil Count 0 1 44 45 

% within cracking 0.0% 2.2% 97.8% 100.0% 

Total Count 3 19 138 160 

% within cracking 1.9% 11.9% 86.3% 100.0% 
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SS Network 

Table B.2  Ordinal logistic regression model information for validating automated cracking data 

with subjective rating of cracking in the SS network 

 Case Processing Summary 

 N Marginal Percentage 

Cracking Extensive 6 3.2% 

Moderate 19 10.0% 

Minor 113 59.5% 

Good 52 27.4% 

Valid 190 100.0% 

Missing 0  

Total 190  

Test of Parallel Linesa 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 267.076    

General 264.131 2.945 2 .229 

The null hypothesis states that the location parameters (slope coefficients) are the same across 

response categories. 

Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 316.444    

Final 267.076 49.368 1 .000 

Link function: Logit. 

Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 375.499 374 .468 

Deviance 239.984 374 1.000 

Link function: Logit. 

Pseudo R-Square 

Cox and Snell .229 

Nagelkerke .264 

McFadden .130 

Link function: Logit. 
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Parameter Estimates 

 Estimate Std. Error Wald df Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Threshol

d 

[Cracking = .00] -5.170 .602 73.867 1 .000 -6.349 -3.991 

[Cracking = 1.00] -3.165 .347 83.429 1 .000 -3.845 -2.486 

[Cracking = 2.00] .384 .187 4.211 1 .040 .017 .752 

Location Cracking -.101 .016 39.565 1 .000 -.133 -.070 

Link function: Logit. 

Cracking* Predicted Response Category Crosstabulation 

 

Predicted Response Category 

Total Extensive Moderate Minor 

Cracking Extensive Count 0 2 4 6 

% within Cracking 0.0% 33.3% 66.7% 100.0% 

Moderate Count 1 5 13 19 

% within Cracking 5.3% 26.3% 68.4% 100.0% 

Minor Count 0 2 111 113 

% within Cracking 0.0% 1.8% 98.2% 100.0% 

Good Count 0 0 52 52 

% within Cracking 0.0% 0.0% 100.0% 100.0% 

Total Count 1 9 180 190 

% within Cracking 0.5% 4.7% 94.7% 100.0% 
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2. Development of Logit models to find the relationship with subjective Deformation 
evaluation with the automatic rutting data 

AC Network 
 
Table B.3  Multinomial logistic regression model information for validating automated rutting data 

with subjective rating of deformation in the AC network 

 
Test of Parallel Linesa 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 164.966    

General 161.030 3.936 1 .047 

The null hypothesis states that the location parameters (slope coefficients) are the same across 

response categories. 

a. Link function: Logit. 

 

Case Processing Summary 

 N Marginal Percentage 

Deformation .00 65 40.6% 

1.00 85 53.1% 

3.00 10 6.3% 

Valid 160 100.0% 

Missing 0  

Total 160  

Subpopulation 75a  

a. The dependent variable has only one value observed in 58 (77.3%) subpopulations. 

 
Model Fitting Information 

Model 

Model Fitting Criteria Likelihood Ratio Tests 

-2 Log Likelihood Chi-Square df Sig. 

Intercept Only 183.650    

Final 161.005 22.645 2 .000 

 
Pseudo R-Square 

Cox and Snell .132 

Nagelkerke .160 

McFadden .081 
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Likelihood Ratio Tests 

Effect 

Model Fitting Criteria Likelihood Ratio Tests 

-2 Log Likelihood of 

Reduced Model Chi-Square df Sig. 

Intercept 209.097 48.092 2 .000 

Rutting 183.650 22.645 2 .000 

  

Parameter Estimates 

Deformationa B Std. Error Wald df Sig. Exp(B) 

95% Confidence Interval for Exp(B) 

Lower Bound Upper Bound 

1.00 Intercept -.656 .450 2.130 1 .144    

rutting .215 .099 4.721 1 .030 1.240 1.021 1.506 

3.00 Intercept -

5.791 
1.126 26.446 1 .000    

rutting .718 .167 18.503 1 .000 2.050 1.478 2.844 

a. The reference category is: .00. 

Classification 

Observed 

Predicted 

.00 1.00 3.00 Percent Correct 

.00 26 39 0 40.0% 

1.00 19 64 2 75.3% 

3.00 0 8 2 20.0% 

Overall Percentage 28.1% 69.4% 2.5% 57.5% 

 
SS Network (Binary Logistic Regression) 

 
Table B.4  Binary logistic regression model information for validating automated rutting data with 

subjective rating of deformation in the SS network 

Case Processing Summary 

Unweighted Casesa N Percent 

Selected Cases Included in Analysis 190 100.0 

Missing Cases 0 .0 

Total 190 100.0 

Unselected Cases 0 .0 

Total 190 100.0 

a. If weight is in effect, see classification table for the total number of cases. 



                                                                                                         
                                                                                                                                    APPENDIX B 
 

149 
 

Dependent Variable Encoding 

Original Value Internal Value 

Moderate 0 

Minor 1 

 Classification Tablea,b 
 

Observed 

Predicted 
 

Deformation 

Percentage Correct 
 

Moderate Minor 

Step 0 Deformation Moderate 0 11 .0 

Minor 0 179 100.0 

Overall Percentage   94.2 

a. Constant is included in the model. 

b. The cut value is .500 

Classification Tablea 
 

Observed 

Predicted 
 

Deformation 

Percentage Correct 
 

Moderate Minor 

Step 1 Deformation Moderate 0 11 .0 

Minor 0 179 100.0 

Overall Percentage   94.2 

a. The cut value is .500 

 
3. Development of Logit models to find the relationship with subjective texture loss rating 
with the automatic texture loss data 

AC Network 

Table B. 5  Ordinal logistic regression model information for validating automated texture loss data 

with subjective rating of texture loss in the AC network 

Case Processing Summary 

 N Marginal Percentage 

Texture loss Moderate 4 2.5% 

Minor 15 9.4% 

Good 141 88.1% 

Valid 160 100.0% 

Missing 0  

Total 160  
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Test of Parallel Linesa 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 93.972    

General 93.473 .500 1 .480 

The null hypothesis states that the location parameters (slope coefficients) are the same across 

response categories. 

  

Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 97.161    

Final 93.972 3.189 1 .074 

Link function: Logit. 

 

Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 127.510 165 .986 

Deviance 80.611 165 1.000 

Link function: Logit. 

Pseudo R-Square 

Cox and Snell .020 

Nagelkerke .034 

McFadden .023 

Link function: Logit. 

 
Parameter Estimates 

 Estimate Std. Error Wald df Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Threshold [Texture loss = 1.00] -4.079 .573 50.678 1 .000 -5.203 -2.956 

[Texture loss = 2.00] -2.401 .353 46.284 1 .000 -3.092 -1.709 

Location Texture loss -.062 .034 3.398 1 .065 -.128 .004 

Link function: Logit. 
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Texture loss * Predicted Response Category Crosstabulation 

 

Predicted Response 

Category 

Total Good 

Texture loss Moderate Count 4 4 

% within Texture loss 100.0% 100.0% 

Minor Count 15 15 

% within Texture loss 100.0% 100.0% 

Good Count 141 141 

% within Texture loss 100.0% 100.0% 

Total Count 160 160 

% within Texture loss 100.0% 100.0% 

 
 
SS Network 
 
Table B.6  Ordinal logistic regression model information for validating automated texture loss data 

with subjective rating of texture loss in the SS network 

Case Processing Summary 

 N Marginal Percentage 

Texture loss Moderate 44 23.2% 

Minor 91 47.9% 

Good 55 28.9% 

Valid 190 100.0% 

Missing 0  

Total 190  

 
Test of Parallel Linesa 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 373.006    

General 371.259 1.747 1 .186 

The null hypothesis states that the location parameters (slope coefficients) are the same across 

response categories. 

a. Link function: Logit. 
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 Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 373.207    

Final 373.006 .200 1 .655 

Link function: Logit. 

Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 323.997 321 .443 

Deviance 351.917 321 .113 

Link function: Logit. 

Pseudo R-Square 

Cox and Snell .001 

Nagelkerke .001 

McFadden .001 

Link function: Logit. 

Parameter Estimates 

 Estimate Std. Error Wald df Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Threshold [Texture loss = 1.00] -1.114 .252 19.572 1 .000 -1.608 -.621 

[Texture loss = 2.00] .985 .248 15.712 1 .000 .498 1.472 

Location TL .004 .008 .201 1 .654 -.012 .020 

Link function: Logit. 
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4. Ordinal Logistic Regression Model for SIR (RANK2) 

AC Network (RANK2) 

SIR is categorized into four groups for the logit models. VG is given highest code=3 as used as the reference 
category. 

Table B.7  Ordinal logistic regression model information for surface inspection rating (SIR) with 

RANK2 in the AC network 

 Case Processing Summary 

 N Marginal Percentage 

SIR_RANK2 .00 6 3.8% 

1.00 21 13.1% 

2.00 62 38.8% 

3.00 71 44.4% 

Valid 160 100.0% 

Missing 0  

Total 160  

Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 357.619    

Final 320.144 37.476 3 .000 

Link function: Logit. 

Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 390.377 474 .998 

Deviance 320.144 474 1.000 

Link function: Logit. 

Pseudo R-Square 

Cox and Snell .209 

Nagelkerke .234 

McFadden .105 

Link function: Logit. 
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Parameter Estimates 

 Estimate Std. Error Wald df Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Threshol

d 

[SIR_RANK2 = .00] -5.073 .760 44.616 1 .000 -6.562 -3.585 

[SIR_RANK2 = 1.00] -3.161 .613 26.617 1 .000 -4.362 -1.960 

[SIR_RANK2 = 2.00] -.952 .551 2.990 1 .084 -2.031 .127 

Location cracking -.079 .018 19.000 1 .000 -.115 -.044 

rutting -.165 .084 3.852 1 .050 -.329 .000 

IRI .044 .194 .052 1 .820 -.336 .425 

Link function: Logit. 

Test of Parallel Linesa 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 320.144    

General 315.851 4.293 6 .637 

The null hypothesis states that the location parameters (slope coefficients) are the same across 

response categories. 

a. Link function: Logit. 

SIR_RANK2 * Predicted Response Category Crosstabulation 

 

Predicted Response Category 

Total 1.00 2.00 3.00 

SIR_RANK2 .00 Count 2 4 0 6 

% within SIR_RANK2 33.3% 66.7% 0.0% 100.0% 

1.00 Count 2 11 8 21 

% within SIR_RANK2 9.5% 52.4% 38.1% 100.0% 

2.00 Count 4 20 38 62 

% within SIR_RANK2 6.5% 32.3% 61.3% 100.0% 

3.00 Count 0 15 56 71 

% within SIR_RANK2 0.0% 21.1% 78.9% 100.0% 

Total Count 8 50 102 160 

% within SIR_RANK2 5.0% 31.3% 63.8% 100.0% 
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 5. Ordinal Logistic Regression Model for SIR (RANK1) 

SS Network 

 
Table B.8  Ordinal logistic regression model information for surface inspection rating (SIR) with 

RANK1 in the SS network 

Case Processing Summary 

 N Marginal Percentage 

SIR_RANK1 .00 (VP) 32 16.8% 

1.00 (P) 73 38.4% 

2.00 (F) 44 23.2% 

3.00 (G) 30 15.8% 

4.00 (VG) 11 5.8% 

Valid 190 100.0% 

Missing 0  

Total 190  

Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 447.022    

Final 413.612 33.410 1 .000 

Link function: Logit. 

Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 468.937 499 .829 

Deviance 364.467 499 1.000 

Link function: Logit. 

Pseudo R-Square 

Cox and Snell .161 

Nagelkerke .170 

McFadden .060 

Link function: Logit. 
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Parameter Estimates 

 Estimate Std. Error Wald df Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Threshol

d 

[SIR_RANK_1 = .00] -2.429 .270 81.189 1 .000 -2.958 -1.901 

[SIR_RANK_1 = 1.00] -.339 .180 3.567 1 .059 -.692 .013 

[SIR_RANK_1 = 2.00] .816 .197 17.151 1 .000 .430 1.203 

[SIR_RANK_1 = 3.00] 2.358 .322 53.745 1 .000 1.728 2.989 

Location Crack -.078 .015 27.485 1 .000 -.108 -.049 

Link function: Logit. 

Test of Parallel Linesa 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 413.612    

General 412.370 1.241 3 .743 

The null hypothesis states that the location parameters (slope coefficients) are the same across 

response categories. 

  

SIR_RANK1 * Predicted Response Category Crosstabulation 

 

Predicted Response Category 

Total .00 1.00 

SIR_RANK1 .00 (VP) Count 9 23 32 

% within SIR_RANK1 28.1% 71.9% 100.0% 

1.00 (P) Count 6 67 73 

% within SIR_RANK1 8.2% 91.8% 100.0% 

2.00 (F) Count 0 44 44 

% within SIR_RANK1 0.0% 100.0% 100.0% 

3.00 (G) Count 0 30 30 

% within SIR_RANK1 0.0% 100.0% 100.0% 

4.00 (VG) Count 0 11 11 

% within SIR_RANK1 0.0% 100.0% 100.0% 

Total Count 15 175 190 

% within SIR_RANK1 7.9% 92.1% 100.0% 



                                                                                                         
                                                                                                                                    APPENDIX B 
 

157 
 

 
6. Validation of Ordinal Logistic SIR Model for AC network 

The predicted probabilities are used from the SPSS outputs. The weighted average SIR (expected SIR) is 
determined by multiplying the predicted probability with the middle value of the corresponding SIR 
category. For RANK1, the mid values are: VG=5, G=13, F=18, P=25.5, VP=35.5 that are considered for 
the average condition. Then the difference between observed rating (actual rating) and expected rating 
(predicted rating) are compared to validate the developed model using scaled squared residual of each 
pavement segment is estimates as follows: 
    

𝑆𝑐𝑎𝑙𝑒𝑑 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑜𝑓 𝑆𝐼𝑅 =  (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑆𝐼𝑅 –  𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑆𝐼𝑅)2/𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑆𝐼𝑅 

                      

Table B.9  Scaled Squared Residuals of SIR with estimated response probability of each category 

from ordinal logistic regression in the AC Network (RANK1) 

SIR  Cracking 
(% area 
affected) 

Estimated 
Response 
Probability 
VP 

Estimated 
Response 
Probability 
P 

Estimated 
Response 
Probability 
F 

Estimated 
Response 
Probability 
G 

Estimated 
Response 
Probability 
VG 

Weighted 
Average 
Predicted 
SIR 

Scaled 
Squared 
Residuals of 
SIR 

12 2.50 .01 .06 .18 .18 .57 10.315 0.28 

0 .00 .01 .07 .20 .18 .54 10.78 10.78 

4 21.00 .05 .20 .34 .17 .24 16.405 9.38 

24 24.25 .12 .37 .32 .10 .10 21.255 0.35 

0 1.00 .01 .05 .16 .16 .62 9.69 9.69 

12 3.50 .02 .08 .22 .19 .49 11.63 0.01 

4 7.00 .02 .08 .23 .19 .48 11.76 5.12 

4 .40 .01 .05 .15 .16 .63 9.56 3.23 

20 30.80 .10 .33 .34 .11 .12 20.115 0.00 

4 2.00 .02 .09 .23 .19 .48 12.015 5.35 

12 .00 .01 .06 .19 .18 .56 10.445 0.23 

4 5.00 .01 .06 .17 .17 .58 10.055 3.65 

0 .22 .01 .05 .15 .16 .63 9.56 9.56 

16 .00 .01 .06 .17 .17 .60 10.155 3.36 

8 13.00 .03 .16 .32 .19 .30 14.875 3.18 

4 6.00 .02 .12 .28 .20 .38 13.31 6.51 

8 1.50 .01 .07 .20 .19 .52 10.81 0.73 

24 4.00 .02 .09 .24 .19 .46 12.095 11.72 

0 2.00 .01 .05 .15 .16 .63 9.56 9.56 

8 .75 .01 .05 .14 .16 .65 9.48 0.23 

0 .00 .01 .07 .20 .18 .54 10.78 10.78 

8 1.50 .02 .09 .23 .19 .47 11.965 1.31 
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SIR  Cracking 
(% area 
affected) 

Estimated 
Response 
Probability 
VP 

Estimated 
Response 
Probability 
P 

Estimated 
Response 
Probability 
F 

Estimated 
Response 
Probability 
G 

Estimated 
Response 
Probability 
VG 

Weighted 
Average 
Predicted 
SIR 

Scaled 
Squared 
Residuals of 
SIR 

0 5.00 .01 .07 .20 .18 .54 10.78 10.78 

20 11.00 .04 .18 .33 .18 .27 15.64 1.22 

28 18.50 .12 .36 .32 .10 .10 21 2.33 

4 4.14 .01 .07 .19 .18 .55 10.65 4.15 

0 .00 .03 .13 .29 .20 .36 14 14.00 

16 .00 .02 .09 .24 .19 .45 12.045 1.30 

8 1.41 .01 .06 .17 .17 .58 10.055 0.42 

16 9.00 .02 .09 .24 .19 .46 12.095 1.26 

8 7.50 .02 .08 .23 .19 .48 11.76 1.20 

28 40.00 .40 .42 .13 .03 .02 27.74 0.00 

16 .00 .01 .05 .17 .17 .60 9.9 3.76 

8 .00 .02 .10 .25 .20 .44 12.56 1.66 

8 .00 .01 .06 .19 .18 .56 10.445 0.57 

16 3.00 .01 .07 .20 .18 .53 10.73 2.59 

12 1.43 .01 .06 .19 .18 .56 10.445 0.23 

0 .00 .01 .05 .15 .16 .64 9.61 9.61 

20 11.00 .02 .12 .28 .20 .38 13.31 3.36 

0 .40 .01 .04 .13 .15 .67 9.015 9.02 

12 3.44 .01 .06 .18 .17 .58 10.235 0.30 

12 28.00 .28 .45 .19 .04 .04 25.555 7.19 

0 6.00 .01 .07 .21 .19 .52 10.99 10.99 

0 .00 .01 .04 .14 .15 .66 9.145 9.15 

0 .00 .01 .05 .15 .16 .63 9.56 9.56 

4 2.20 .01 .05 .15 .16 .63 9.56 3.23 

8 1.25 .01 .07 .21 .19 .52 10.99 0.81 

4 3.36 .01 .05 .16 .17 .61 9.77 3.41 

0 7.24 .03 .13 .29 .20 .37 14.05 14.05 

4 2.00 .01 .05 .17 .17 .60 9.9 3.52 

0 3.30 .01 .05 .15 .16 .63 9.56 9.56 

0 2.00 .02 .09 .23 .19 .48 12.015 12.02 

12 7.33 .02 .09 .24 .19 .45 12.045 0.00 

0 13.33 .04 .17 .32 .18 .29 15.305 15.31 

12 18.50 .06 .25 .35 .15 .19 17.705 1.84 

16 11.00 .02 .12 .28 .20 .38 13.31 0.54 

0 2.00 .01 .06 .19 .18 .56 10.445 10.45 
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SIR  Cracking 
(% area 
affected) 

Estimated 
Response 
Probability 
VP 

Estimated 
Response 
Probability 
P 

Estimated 
Response 
Probability 
F 

Estimated 
Response 
Probability 
G 

Estimated 
Response 
Probability 
VG 

Weighted 
Average 
Predicted 
SIR 

Scaled 
Squared 
Residuals of 
SIR 

8 1.94 .01 .05 .16 .16 .62 9.69 0.29 

0 .88 .01 .05 .17 .17 .60 9.9 9.90 

4 2.00 .01 .07 .19 .18 .55 10.65 4.15 

8 12.22 .03 .16 .32 .19 .30 14.875 3.18 

4 2.33 .01 .07 .20 .19 .53 10.86 4.33 

0 16.17 .03 .15 .31 .19 .31 14.49 14.49 

4 3.33 .02 .10 .25 .20 .44 12.56 5.83 

12 1.00 .01 .06 .19 .18 .56 10.445 0.23 

16 .00 .01 .05 .16 .16 .62 9.69 4.11 

24 12.50 .03 .13 .29 .19 .35 13.82 7.50 

20 17.00 .06 .24 .35 .16 .20 17.63 0.32 

24 2.50 .01 .05 .16 .17 .61 9.77 20.73 

4 .00 .01 .04 .13 .15 .67 9.015 2.79 

8 15.00 .04 .19 .34 .18 .25 15.975 3.98 

12 2.27 .01 .06 .17 .17 .58 10.055 0.38 

0 1.00 .01 .05 .16 .16 .62 9.69 9.69 

0 5.00 .02 .09 .24 .19 .46 12.095 12.10 

8 8.00 .02 .10 .25 .20 .44 12.56 1.66 

16 28.00 .09 .32 .34 .12 .13 19.685 0.69 

24 28.00 .14 .39 .30 .08 .08 21.755 0.23 

24 23.40 .11 .35 .33 .10 .11 20.62 0.55 

12 4.36 .02 .09 .24 .19 .45 12.045 0.00 

16 19.00 .06 .25 .35 .15 .18 17.655 0.16 

20 28.33 .09 .32 .34 .12 .13 19.685 0.01 

12 6.40 .02 .10 .24 .20 .45 12.43 0.01 

20 28.50 .08 .30 .35 .13 .14 19.18 0.04 

8 16.50 .03 .15 .31 .19 .31 14.49 2.91 

20 3.33 .01 .07 .20 .18 .53 10.73 8.01 

8 11.50 .02 .11 .26 .20 .41 12.845 1.83 

8 .40 .01 .05 .15 .16 .64 9.61 0.27 

8 2.00 .01 .06 .19 .18 .56 10.445 0.57 

16 .00 .01 .07 .21 .19 .52 10.99 2.28 

12 10.00 .02 .08 .23 .19 .48 11.76 0.00 

12 .88 .01 .05 .16 .16 .62 9.69 0.55 

20 .83 .01 .07 .19 .18 .54 10.6 8.34 
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SIR  Cracking 
(% area 
affected) 

Estimated 
Response 
Probability 
VP 

Estimated 
Response 
Probability 
P 

Estimated 
Response 
Probability 
F 

Estimated 
Response 
Probability 
G 

Estimated 
Response 
Probability 
VG 

Weighted 
Average 
Predicted 
SIR 

Scaled 
Squared 
Residuals of 
SIR 

20 26.33 .10 .33 .34 .11 .12 20.115 0.00 

16 16.00 .05 .21 .35 .17 .22 16.74 0.03 

12 2.29 .01 .07 .20 .18 .53 10.73 0.15 

28 5.00 .01 .07 .21 .19 .52 10.99 26.33 

8 .40 .01 .04 .12 .14 .69 8.805 0.07 

12 .42 .01 .05 .16 .16 .62 9.69 0.55 

8 2.67 .01 .07 .20 .18 .53 10.73 0.69 

20 5.00 .01 .07 .20 .18 .54 10.78 7.89 

16 1.00 .01 .05 .17 .17 .60 9.9 3.76 

32 14.67 .04 .18 .33 .18 .26 15.59 17.27 

32 15.00 .06 .24 .35 .16 .20 17.63 11.71 

20 10.57 .02 .12 .28 .20 .39 13.36 3.30 

8 .00 .01 .05 .15 .16 .64 9.61 0.27 

24 3.00 .02 .09 .24 .19 .46 12.095 11.72 

12 .47 .01 .05 .16 .17 .61 9.77 0.51 

24 5.50 .01 .07 .21 .19 .52 10.99 15.40 

12 3.33 .01 .05 .15 .16 .63 9.56 0.62 

36 31.13 .27 .45 .20 .04 .04 25.38 4.44 

28 2.00 .01 .06 .19 .18 .56 10.445 29.50 

20 5.50 .01 .08 .22 .19 .50 11.325 6.65 

16 2.83 .01 .06 .17 .17 .59 10.105 3.44 

16 .00 .02 .10 .25 .20 .44 12.56 0.94 

24 7.50 .03 .14 .30 .19 .33 14.155 6.85 

12 .00 .01 .04 .14 .15 .65 9.095 0.93 

4 .00 .01 .07 .21 .19 .52 10.99 4.45 

8 13.76 .02 .12 .28 .20 .39 13.36 2.15 

12 2.25 .01 .07 .21 .19 .52 10.99 0.09 

12 15.44 .03 .13 .29 .20 .36 14 0.29 

4 1.43 .02 .08 .22 .19 .49 11.63 5.01 

8 .67 .01 .05 .15 .16 .63 9.56 0.25 

8 14.75 .02 .11 .27 .20 .40 12.975 1.91 

8 .00 .01 .05 .17 .17 .60 9.9 0.36 

24 19.00 .04 .19 .34 .18 .25 15.975 4.03 

4 .00 .01 .06 .17 .17 .59 10.105 3.69 

32 36.00 .20 .43 .25 .06 .06 23.645 2.95 
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SIR  Cracking 
(% area 
affected) 

Estimated 
Response 
Probability 
VP 

Estimated 
Response 
Probability 
P 

Estimated 
Response 
Probability 
F 

Estimated 
Response 
Probability 
G 

Estimated 
Response 
Probability 
VG 

Weighted 
Average 
Predicted 
SIR 

Scaled 
Squared 
Residuals of 
SIR 

12 5.78 .01 .07 .19 .18 .54 10.6 0.18 

4 .29 .01 .05 .14 .16 .65 9.48 3.17 

16 10.00 .02 .12 .28 .20 .38 13.31 0.54 

4 .00 .03 .13 .29 .20 .36 14 7.14 

32 22.90 .06 .23 .35 .16 .20 17.375 12.31 

8 10.33 .02 .10 .25 .20 .44 12.56 1.66 

12 16.67 .05 .21 .34 .17 .23 16.61 1.28 

12 1.00 .01 .05 .15 .16 .64 9.61 0.59 

8 4.75 .01 .06 .19 .18 .55 10.395 0.55 

8 .80 .01 .05 .15 .16 .64 9.61 0.27 

8 18.00 .05 .21 .35 .17 .22 16.74 4.56 

4 1.75 .01 .07 .20 .19 .53 10.86 4.33 

28 42.50 .39 .42 .13 .03 .02 27.385 0.01 

28 13.50 .04 .20 .34 .17 .25 16.1 8.80 

20 38.50 .34 .44 .16 .03 .03 26.71 1.69 

20 34.00 .28 .45 .20 .04 .04 25.735 1.28 

32 20.00 .10 .33 .34 .11 .12 20.115 7.02 

20 8.00 .02 .08 .23 .19 .48 11.76 5.77 

24 1.00 .01 .05 .17 .17 .60 9.9 20.08 

20 1.50 .01 .06 .17 .17 .59 10.105 9.69 

28 20.00 .07 .26 .35 .15 .18 18.265 5.19 

24 20.00 .06 .24 .35 .16 .20 17.63 2.30 

24 6.50 .02 .09 .24 .19 .45 12.045 11.87 

28 9.00 .04 .18 .33 .18 .27 15.64 9.77 

8 1.00 .01 .06 .18 .17 .58 10.235 0.49 

12 2.50 .01 .06 .17 .17 .59 10.105 0.36 

20 .00 .01 .06 .18 .17 .58 10.235 9.32 

16 15.00 .03 .16 .32 .19 .30 14.875 0.09 

16 31.00 .28 .45 .20 .04 .04 25.735 3.68 

12 10.00 .02 .11 .27 .20 .40 12.975 0.07 

20 20.00 .04 .17 .32 .19 .29 15.435 1.35 

20 6.23 .02 .10 .25 .20 .44 12.56 4.41 

4 .00 .01 .05 .17 .17 .60 9.9 3.52 
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7. Validation of Ordinal Logistic SIR Model for the SS network 

The predicted probabilities are used from the SPSS outputs. The weighted average SIR (expected SIR) is 
determined by multiplying the predicted probability with the middle value of the corresponding SIR 
category. For RANK2 the mid values are: VG=5, G=15.5, P=25.5, VP=35.5 that are considered for the 
average condition. Then the difference between observed rating (actual rating) and expected rating 
(predicted rating) are compared to validate the developed model using scaled squared residual of each 
pavement segment is estimates as follows: 
    

𝑆𝑐𝑎𝑙𝑒𝑑 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑜𝑓 𝑆𝐼𝑅 =  (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑆𝐼𝑅 –  𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑆𝐼𝑅)2/𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑆𝐼𝑅 

Table B.10  Scaled Squared Residuals of SIR with estimated response probability of each category 

from ordinal logistic regression in the SS Network (RANK2)               

SIR Cracking Estimated 
Response 

Probability 
VP 

Estimated 
Response 

Probability 
P 

Estimated 
Response 

Probability 
G 

Estimated 
Response 

Probability 
VG 

Weighted 
Average 

Predicted SIR 

Scaled Squared 
Residuals of 

SIR 

14 22.66 0.34 0.47 0.18 0.02 26.95 6.22 

17 0.66 0.09 0.34 0.49 0.08 19.86 0.41 

26 8.33 0.14 0.43 0.38 0.05 22.08 0.70 

34 39.67 0.66 0.28 0.06 0 31.50 0.20 

26 27.4 0.43 0.43 0.13 0.01 28.30 0.19 

34 31.2 0.5 0.39 0.1 0.01 29.30 0.76 

20 5 0.12 0.4 0.43 0.06 21.43 0.09 

26 28.16 0.44 0.42 0.12 0.01 28.24 0.18 

23 13.25 0.2 0.47 0.3 0.03 23.89 0.03 

23 1.25 0.09 0.35 0.48 0.08 19.96 0.46 

14 3 0.1 0.37 0.46 0.07 20.47 2.04 

14 0 0.08 0.34 0.5 0.09 19.71 1.65 

14 13.16 0.2 0.47 0.3 0.03 23.89 4.09 

17 15.75 0.23 0.48 0.26 0.03 24.59 2.34 

14 7.5 0.14 0.42 0.39 0.05 21.98 2.89 

11 6.36 0.13 0.41 0.41 0.05 21.68 5.26 

26 2.5 0.1 0.37 0.46 0.07 20.47 1.50 

17 4 0.11 0.39 0.44 0.06 20.97 0.75 

20 0 0.08 0.34 0.5 0.09 19.71 0.00 

20 1.15 0.09 0.35 0.48 0.08 19.96 0.00 

31 7 0.13 0.42 0.4 0.05 21.78 3.91 
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SIR Cracking Estimated 
Response 

Probability 
VP 

Estimated 
Response 

Probability 
P 

Estimated 
Response 

Probability 
G 

Estimated 
Response 

Probability 
VG 

Weighted 
Average 

Predicted SIR 

Scaled Squared 
Residuals of 

SIR 

31 1.25 0.09 0.35 0.48 0.08 19.96 6.11 

31 7.1 0.13 0.42 0.39 0.05 21.62 4.07 

31 1 0.09 0.35 0.48 0.08 19.96 6.11 

11 13.57 0.2 0.47 0.3 0.03 23.89 6.95 

29 42 0.7 0.25 0.05 0 32.00 0.28 

23 10.26 0.16 0.45 0.35 0.04 22.78 0.00 

9 0.66 0.09 0.34 0.49 0.08 19.86 5.94 

9 5.9 0.12 0.41 0.41 0.06 21.37 7.16 

9 3 0.1 0.37 0.46 0.07 20.47 6.42 

20 26.5 0.41 0.44 0.14 0.01 28.00 2.28 

20 12 0.18 0.46 0.32 0.04 23.28 0.46 

20 9.7 0.16 0.45 0.35 0.04 22.78 0.34 

31 30 0.48 0.4 0.11 0.01 29.00 0.14 

29 16.52 0.24 0.48 0.25 0.03 24.79 0.72 

26 4 0.11 0.39 0.44 0.06 20.97 1.21 

11 1.21 0.09 0.35 0.48 0.08 19.96 4.02 

11 2.35 0.1 0.37 0.47 0.07 20.62 4.49 

14 0 0.08 0.34 0.5 0.09 19.71 1.65 

17 2.66 0.1 0.37 0.46 0.07 20.47 0.59 

31 15 0.22 0.48 0.27 0.03 24.39 1.79 

6 0 0.08 0.34 0.5 0.09 19.71 9.54 

23 12.5 0.19 0.46 0.31 0.03 23.43 0.01 

6 1.63 0.09 0.36 0.48 0.08 20.22 10.00 

26 9.4 0.16 0.44 0.36 0.04 22.68 0.49 

23 0 0.08 0.34 0.5 0.09 19.71 0.55 

23 6.88 0.13 0.42 0.4 0.05 21.78 0.07 

14 2 0.09 0.36 0.47 0.07 20.01 1.81 

23 0.94 0.09 0.35 0.48 0.08 19.96 0.46 

34 2.22 0.1 0.36 0.47 0.07 20.37 9.13 

17 0 0.08 0.34 0.5 0.09 19.71 0.37 

29 0.57 0.08 0.34 0.49 0.08 19.51 4.62 
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SIR Cracking Estimated 
Response 

Probability 
VP 

Estimated 
Response 

Probability 
P 

Estimated 
Response 

Probability 
G 

Estimated 
Response 

Probability 
VG 

Weighted 
Average 

Predicted SIR 

Scaled Squared 
Residuals of 

SIR 

17 0 0.08 0.34 0.5 0.09 19.71 0.37 

29 4 0.11 0.39 0.44 0.06 20.97 3.07 

17 2 0.09 0.36 0.47 0.07 20.01 0.45 

23 4 0.11 0.39 0.44 0.06 20.97 0.20 

23 2 0.09 0.36 0.47 0.07 20.01 0.45 

29 5.24 0.12 0.4 0.42 0.06 21.27 2.81 

9 3.33 0.1 0.38 0.45 0.07 20.57 6.50 

23 1.68 0.09 0.36 0.47 0.08 20.06 0.43 

14 2.25 0.1 0.36 0.47 0.07 20.37 1.99 

17 5 0.12 0.4 0.43 0.06 21.43 0.91 

26 11.66 0.18 0.46 0.32 0.04 23.28 0.32 

23 0.67 0.09 0.34 0.49 0.08 19.86 0.50 

20 11.92 0.18 0.46 0.32 0.04 23.28 0.46 

20 17.25 0.25 0.48 0.24 0.02 24.94 0.98 

20 0.53 0.08 0.34 0.49 0.08 19.51 0.01 

31 19.69 0.29 0.48 0.21 0.02 25.89 1.01 

29 1 0.09 0.35 0.48 0.08 19.96 4.09 

26 5 0.12 0.4 0.43 0.06 21.43 0.98 

17 4.86 0.11 0.4 0.43 0.06 21.07 0.79 

23 3.73 0.11 0.38 0.45 0.07 20.92 0.21 

17 0.5 0.08 0.34 0.49 0.08 19.51 0.32 

11 0 0.08 0.34 0.5 0.09 19.71 3.85 

14 5.38 0.12 0.4 0.42 0.06 21.27 2.48 

14 5.44 0.12 0.4 0.42 0.06 21.27 2.48 

11 0 0.08 0.34 0.5 0.09 19.71 3.85 

14 0 0.08 0.34 0.5 0.09 19.71 1.65 

11 2 0.09 0.36 0.47 0.07 20.01 4.06 

11 3.33 0.1 0.38 0.45 0.07 20.57 4.45 

9 10.75 0.17 0.45 0.34 0.04 22.98 8.50 

11 4.5 0.11 0.39 0.43 0.06 20.82 4.63 

20 8.5 0.15 0.43 0.37 0.05 22.28 0.23 
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SIR Cracking Estimated 
Response 

Probability 
VP 

Estimated 
Response 

Probability 
P 

Estimated 
Response 

Probability 
G 

Estimated 
Response 

Probability 
VG 

Weighted 
Average 

Predicted SIR 

Scaled Squared 
Residuals of 

SIR 

20 21.81 0.33 0.47 0.19 0.02 26.75 1.70 

26 36 0.6 0.33 0.07 0.01 30.85 0.76 

9 0 0.08 0.34 0.5 0.09 19.71 5.82 

14 8 0.14 0.43 0.38 0.05 22.08 2.95 

26 50 0.81 0.16 0.03 0 33.30 1.60 

14 7.55 0.14 0.43 0.39 0.05 22.23 3.05 

20 3.5 0.1 0.38 0.45 0.07 20.57 0.02 

14 0 0.08 0.34 0.5 0.09 19.71 1.65 

6 0.92 0.09 0.35 0.49 0.08 20.12 9.90 

11 1 0.09 0.35 0.48 0.08 19.96 4.02 

11 2.67 0.1 0.37 0.46 0.07 20.47 4.38 

26 32.14 0.52 0.38 0.09 0.01 29.60 0.44 

29 10.8 0.17 0.45 0.34 0.04 22.98 1.58 

31 7.5 0.14 0.42 0.39 0.05 21.98 3.71 

40 46.33 0.77 0.2 0.03 0 32.90 1.53 

34 40.5 0.68 0.27 0.05 0 31.80 0.15 

40 47 0.78 0.19 0.03 0 33.00 1.48 

23 0 0.08 0.34 0.5 0.09 19.71 0.55 

29 24.83 0.38 0.45 0.15 0.01 27.34 0.10 

29 12.88 0.19 0.47 0.31 0.03 23.69 1.19 

20 1.64 0.09 0.36 0.48 0.08 20.22 0.00 

17 4.33 0.11 0.39 0.44 0.06 20.97 0.75 

20 5.83 0.12 0.41 0.41 0.06 21.37 0.09 

23 8.5 0.15 0.43 0.37 0.05 22.28 0.02 

17 2.25 0.1 0.36 0.47 0.07 20.37 0.56 

29 1.66 0.09 0.36 0.48 0.08 20.22 3.82 

26 7.21 0.13 0.42 0.39 0.05 21.62 0.89 

29 3.5 0.1 0.38 0.45 0.07 20.57 3.46 

23 0.63 0.08 0.34 0.49 0.08 19.51 0.63 

23 0 0.08 0.34 0.5 0.09 19.71 0.55 

34 8.16 0.14 0.43 0.38 0.05 22.08 6.44 
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SIR Cracking Estimated 
Response 

Probability 
VP 

Estimated 
Response 

Probability 
P 

Estimated 
Response 

Probability 
G 

Estimated 
Response 

Probability 
VG 

Weighted 
Average 

Predicted SIR 

Scaled Squared 
Residuals of 

SIR 

17 5.33 0.12 0.4 0.42 0.06 21.27 0.86 

37 10 0.16 0.45 0.35 0.04 22.78 8.88 

29 4.25 0.11 0.39 0.44 0.06 20.97 3.07 

23 3 0.1 0.37 0.46 0.07 20.47 0.31 

23 1.17 0.09 0.35 0.48 0.08 19.96 0.46 

17 1 0.09 0.35 0.48 0.08 19.96 0.44 

23 17.25 0.25 0.48 0.24 0.02 24.94 0.15 

23 7.5 0.14 0.42 0.39 0.05 21.98 0.05 

37 28 0.44 0.42 0.13 0.01 28.40 2.61 

29 2.14 0.09 0.36 0.47 0.07 20.01 4.04 

34 5.88 0.12 0.41 0.41 0.06 21.37 7.46 

40 14.8 0.22 0.47 0.28 0.03 24.29 10.17 

29 6.82 0.13 0.42 0.4 0.05 21.78 2.40 

14 1 0.09 0.35 0.48 0.08 19.96 1.78 

20 5.71 0.12 0.41 0.42 0.06 21.53 0.11 

17 0 0.08 0.34 0.5 0.09 19.71 0.37 

23 0 0.08 0.34 0.5 0.09 19.71 0.55 

34 15 0.22 0.48 0.27 0.03 24.39 3.79 

9 0 0.08 0.34 0.5 0.09 19.71 5.82 

23 1.67 0.09 0.36 0.47 0.08 20.06 0.43 

23 3 0.1 0.37 0.46 0.07 20.47 0.31 

34 4.31 0.11 0.39 0.44 0.06 20.97 8.10 

37 12.5 0.19 0.46 0.31 0.03 23.43 7.86 

17 5.66 0.12 0.41 0.42 0.06 21.53 0.95 

26 6 0.12 0.41 0.41 0.06 21.37 1.00 

14 0 0.08 0.34 0.5 0.09 19.71 1.65 

14 1.44 0.09 0.35 0.48 0.08 19.96 1.78 

17 3.5 0.1 0.38 0.45 0.07 20.57 0.62 

29 3.6 0.1 0.38 0.45 0.07 20.57 3.46 

26 1.67 0.09 0.36 0.47 0.08 20.06 1.76 

26 8.8 0.15 0.44 0.37 0.05 22.53 0.53 
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SIR Cracking Estimated 
Response 

Probability 
VP 

Estimated 
Response 

Probability 
P 

Estimated 
Response 

Probability 
G 

Estimated 
Response 

Probability 
VG 

Weighted 
Average 

Predicted SIR 

Scaled Squared 
Residuals of 

SIR 

17 2.6 0.1 0.37 0.46 0.07 20.47 0.59 

29 1.98 0.09 0.36 0.47 0.07 20.01 4.04 

37 6.06 0.12 0.41 0.41 0.06 21.37 11.43 

23 0 0.08 0.34 0.5 0.09 19.71 0.55 

23 0 0.08 0.34 0.5 0.09 19.71 0.55 

37 4 0.11 0.39 0.44 0.06 20.97 12.25 

26 3.83 0.11 0.38 0.44 0.07 20.77 1.32 

26 5 0.12 0.4 0.43 0.06 21.43 0.98 

40 8.44 0.15 0.43 0.37 0.05 22.28 14.10 

26 5 0.12 0.4 0.43 0.06 21.43 0.98 

23 5.5 0.12 0.4 0.42 0.06 21.27 0.14 

29 5 0.12 0.4 0.43 0.06 21.43 2.68 

26 2 0.09 0.36 0.47 0.07 20.01 1.79 

17 6 0.12 0.41 0.41 0.06 21.37 0.89 

29 6.26 0.13 0.41 0.41 0.05 21.68 2.48 

23 2.92 0.1 0.37 0.46 0.07 20.47 0.31 

40 17.69 0.26 0.48 0.24 0.02 25.29 8.56 

29 6 0.12 0.41 0.41 0.06 21.37 2.72 

29 8.19 0.14 0.43 0.38 0.05 22.08 2.17 

29 5.54 0.12 0.4 0.42 0.06 21.27 2.81 

20 1.6 0.09 0.36 0.48 0.08 20.22 0.00 

29 9.88 0.16 0.45 0.35 0.04 22.78 1.70 

26 5.33 0.12 0.4 0.42 0.06 21.27 1.05 

17 0.5 0.08 0.34 0.49 0.08 19.51 0.32 

17 0 0.08 0.34 0.5 0.09 19.71 0.37 

17 0 0.08 0.34 0.5 0.09 19.71 0.37 

23 0.92 0.09 0.35 0.49 0.08 20.12 0.41 

20 0 0.08 0.34 0.5 0.09 19.71 0.00 

17 2.83 0.1 0.37 0.46 0.07 20.47 0.59 

14 4.25 0.11 0.39 0.44 0.06 20.97 2.32 

14 3 0.1 0.37 0.46 0.07 20.47 2.04 
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SIR Cracking Estimated 
Response 

Probability 
VP 

Estimated 
Response 

Probability 
P 

Estimated 
Response 

Probability 
G 

Estimated 
Response 

Probability 
VG 

Weighted 
Average 

Predicted SIR 

Scaled Squared 
Residuals of 

SIR 

29 9.33 0.15 0.44 0.36 0.04 22.33 2.00 

34 19.24 0.28 0.48 0.22 0.02 25.69 2.69 

31 45 0.75 0.21 0.04 0 32.60 0.08 

31 7 0.13 0.42 0.4 0.05 21.78 3.91 

23 5.6 0.12 0.4 0.42 0.06 21.27 0.14 

37 42 0.7 0.25 0.05 0 32.00 0.78 

20 15.63 0.23 0.48 0.27 0.03 24.74 0.91 

17 7.7 0.14 0.43 0.39 0.05 22.23 1.23 

34 3.07 0.1 0.37 0.46 0.07 20.47 8.95 

26 37.5 0.62 0.31 0.06 0.01 30.90 0.78 

34 8.09 0.14 0.43 0.38 0.05 22.08 6.44 

9 0.77 0.09 0.35 0.49 0.08 20.12 6.14 

17 0.83 0.09 0.35 0.49 0.08 20.12 0.48 

17 2.08 0.09 0.36 0.47 0.07 20.01 0.45 

 
Table B.11  Probability Table from the Ordinal Logistic Model for SIR in SS Network (RANK2) 

Cracking 
(%area 
affected)  

Logit 
(VP) 

Probability 
(VP) 

Logit  
(P) 

Probability 
(P) 

Logit  
(G) 

Probability 
(G) 

Probability 
(VG) 

0 -2.427 0.081137 -0.337 0.335402 2.359 0.497109 0.086353 

2 -2.271 0.093553 -0.181 0.36132 2.515 0.470314 0.074813 

4 -2.115 0.107647 -0.025 0.386103 2.671 0.441543 0.064706 

6 -1.959 0.123575 0.131 0.409128 2.827 0.411414 0.055882 

8 -1.803 0.141486 0.287 0.429775 2.983 0.380539 0.0482 

10 -1.647 0.161515 0.443 0.447459 3.139 0.349499 0.041527 

12 -1.491 0.183772 0.599 0.461656 3.295 0.318829 0.035743 

14 -1.335 0.208334 0.755 0.471934 3.451 0.288994 0.030739 

16 -1.179 0.235232 0.911 0.477973 3.607 0.260379 0.026416 

18 -1.023 0.264443 1.067 0.479583 3.763 0.233287 0.022687 

20 -0.867 0.295879 1.223 0.476712 3.919 0.207935 0.019474 

22 -0.711 0.329378 1.379 0.469452 4.075 0.184461 0.016708 

24 -0.555 0.364705 1.535 0.458032 4.231 0.162934 0.01433 

26 -0.399 0.401553 1.691 0.442803 4.387 0.143359 0.012285 

28 -0.243 0.439547 1.847 0.424227 4.543 0.125696 0.010529 

30 -0.087 0.478264 2.003 0.402848 4.699 0.109866 0.009022 

32 0.069 0.517243 2.159 0.379264 4.855 0.095764 0.007729 
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34 0.225 0.556014 2.315 0.354098 5.011 0.083268 0.00662 

36 0.381 0.594114 2.471 0.327969 5.167 0.072247 0.005669 

38 0.537 0.631114 2.627 0.301465 5.323 0.062566 0.004854 

40 0.693 0.666634 2.783 0.275116 5.479 0.054094 0.004156 

42 0.849 0.700357 2.939 0.249384 5.635 0.046701 0.003558 

44 1.005 0.732041 3.095 0.224646 5.791 0.040268 0.003046 

46 1.161 0.761514 3.251 0.201195 5.947 0.034684 0.002607 

48 1.317 0.788682 3.407 0.17924 6.103 0.029846 0.002231 

50 1.473 0.813513 3.563 0.158915 6.259 0.025662 0.00191 

52 1.629 0.836033 3.719 0.140284 6.415 0.02205 0.001634 

54 1.785 0.856313 3.875 0.123354 6.571 0.018934 0.001398 

56 1.941 0.874462 4.031 0.108091 6.727 0.01625 0.001197 

58 2.097 0.890611 4.187 0.094424 6.883 0.01394 0.001024 

60 2.253 0.904909 4.343 0.08226 7.039 0.011954 0.000876 

62 2.409 0.917511 4.499 0.071491 7.195 0.010248 0.00075 

64 2.565 0.928575 4.655 0.062001 7.351 0.008783 0.000642 

66 2.721 0.938254 4.811 0.053672 7.507 0.007525 0.000549 

68 2.877 0.946698 4.967 0.046386 7.663 0.006446 0.00047 

70 3.033 0.954043 5.123 0.040034 7.819 0.005521 0.000402 
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APPENDIX C 

 

 

Figure C.1  Automated cracking survey report sample (M Moffatt & Hassan, 2006). 
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Figure C.2  Automated rutting survey report sample (Michael Moffatt, 2007a). 

 


