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We construct quantifiable generalizations of Leggett-Garg tests for macro- and mesoscopic realism and
noninvasive measurability that apply when not all outcomes of measurement can be identified as arising from
one of two macroscopically distinguishable states. We show how quantum mechanics predicts a negation of the
Leggett-Garg premises for strategies involving ideal negative-result, weak, and minimally invasive (“nonclumsy”)
projective measurements on dynamical entangled systems, as might be realized with Bose-Einstein condensates
in a double-well potential, path-entangled NOON states, and atom interferometers. Potential loopholes associated
with each strategy are discussed.
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I. INTRODUCTION

In his paradox where a cat is apparently both dead and alive,
Schrödinger raised the possibility of an inconsistency between
macroscopic realism and quantum mechanics [1]. Leggett-
Garg suggested testing macroscopic realism by comparing
the predictions of quantum mechanics with those based on
two classical premises [2]. The first premise is macroscopic
realism per se (MR or MRPS): a macroscopic system with two
macroscopically distinguishable states available to it will at all
times be in one or other of these states. The second premise
is macroscopic noninvasive measurability (NIM): for such a
system, it is possible, in principle, to determine which of these
states the system is in, with arbitrarily small perturbation on
the subsequent dynamics.

Leggett and Garg showed how the two premises (referred to
as macrorealism) constrain the dynamics of a two-state system.
Considering three successive times t3 > t2 > t1, the variable
Si denotes which of the two states the system is in at time
ti , the respective states being denoted by Si = +1 or −1. The
Leggett-Garg premises imply the Leggett-Garg inequality [2,3]

LG ≡ 〈S1S2〉 + 〈S2S3〉 − 〈S1S3〉 � 1. (1)

More recent work shows how the Leggett-Garg premises also
imply the “no disturbance” or “no signaling in time” condition
[4,5]

dσ ≡ 〈S3|M̂2,σ 〉 − 〈S3|σ 〉 = 0. (2)

Here 〈S3|M̂2,σ 〉 (and 〈S3|σ 〉) is the expectation value of S3

given that a measurement M̂2 is performed (or not performed)
at time t2, conditional on the system being prepared in a state
denoted by σ at time t1. The Leggett-Garg inequality and no-
disturbance conditions are predicted to be violated for many
quantum systems where the dynamics involves the formation
of quantum superposition states [2–17]. The work of Leggett
and Garg represented an advance, since it extended beyond the

quantum framework to show how the macroscopic quantum
superposition state defies classical macroscopic reality.

The Leggett-Garg approach raised new ideas about how to
test quantum mechanics even at the microscopic level [5,6,8–
11]. Failure of the inequalities implies no classical trajectory
exists between successive measurements: either the system
cannot be viewed as being in a definite state independent
of observation, or there cannot be a way to determine that
state, without interference by the measurement. Noninvasive
measurability is “vexing” to justify, however, because of
the plausibility of the measurement disturbing the system.
Leggett and Garg countered this problem by proposing an
ideal negative-result (INR) measurement: the argument is
conditional on the first postulate being true, e.g., if a photon
does travel through one slit or the other, a null detection beyond
one slit is justified to be noninvasive [2,9,10,14]. A second
approach is to perform weak measurements [18–21] enabling
calculation of the moment 〈S2S3〉 in a limit where there is
a vanishing disturbance to the system [11–13,20,22]. A third
approach is to justify certain projective measurements as being
minimally invasive, or “nonclumsy (NC)”, if indeed the system
is in one state or the other. Related methods test modified
Leggett-Garg inequalities that quantify the invasiveness of
“clumsy” projective and/or quantum nondemolition (QND)
measurements [4,17,23]. So far, experimental investigations
have mainly focused on superconducting circuits or small
systems (e.g., single atoms or photons). Recent developments
include theoretical proposals for mechanical oscillators [16]
and macroscopic states of atoms [17].

An illuminating Leggett-Garg test would involve a meso-
scopic or macroscopic massive system in a quantum super-
position of two states with different centre-of-mass locations
[24]. In fact, as of yet, there has to our knowledge been no
Leggett-Garg test involving a mesoscopic system (of several
atoms or photons, or more) that is at time t2 in a quantum
superposition of spatially separated states. An example of
such a superposition is the path-entangled NOON state, writ-
ten as |ψ〉 = 1√

2
{|N〉a|0〉b + |0〉a|N〉b} where |N〉a/b is the
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N -particle state for two spatially separated modes denoted
by a and b [25–27]. In this case the ideal negative-result
measurement can be applied and justified as noninvasive by the
assumption of Bell’s locality [28]. For massive systems, this is
especially interesting [24]. The NIM premise is then based on
the assumptions that the system must be located either “here”
or “there,” and that there is no disturbance to a massive system
due to a measurement performed on a vacuum at a different
location.

In this paper, we show how such tests may be possible on
a mesoscopic scale. As one example, in Secs. II and III, we
show that violations of Leggett-Garg inequalities are predicted
for weakly linked Bose-Einstein condensates (BECs) trapped
in two separated potential wells of an optical lattice. Here
dynamical oscillation of large groups of atoms to form macro-
scopic superposition states is predicted possible for sufficient
nonlinearity [29–35]. We also note that, to date, there has
been no Leggett-Garg test based on matter-wave interference
with BECs, despite that these systems exhibit entanglement
[36–43], have demonstrated Josephson oscillation [29], and
are likely candidates for mesoscopic superpositions of states
with a distinct center of mass [31].

A problem, however, for an experimental realization is
the fragility of the macroscopic superpositions. Under spe-
cific conditions, NOON states can be generated, allowing
an ideal negative-result strategy. Otherwise, for less frag-
ile macroscopic superposition states, we derive in Sec. IV
modified s-scopic Leggett-Garg inequalities that can be used
to test Leggett-Garg premises for superpositions of the type
|ψ〉 = 1√

2
{|N − n〉a|n〉b + |n〉a|N − n〉b} (n < N). These su-

perpositions deviate from the ideal NOON superposition by
allowing mode population differences not equal to −N or N .
The modified Leggett-Garg inequalities are thus useful where
outcomes are not always constrained to being “dead” or “alive”
and allow a quantification of the degree of realism that is being
tested. In the proposals of this paper, the relevant measure of
macroscopicity is the mass difference given by smA (in each
mode) of the two states forming the superposition, mA being
the mass of each atom.

The ideal negative-result strategy may be difficult to apply
where there are residual atoms in both modes, or where spatial
separation at time t2 is not possible. We thus develop (in
Secs. III B and III C) strong and weak measurement strategies
for testing the Leggett-Garg premises in these cases. This
opens the way to violate Leggett-Garg inequalities and to
demonstrate mesoscopic quantum coherence in experiments of
the type performed by Albiez et al. [29]. Albiez et al. observed
oscillation of the relative populations of two weakly linked
BECs across the two wells of a double-well potential created
in an optical lattice and separated by ∼5 μm.

The strategies and inequalities developed in this paper are
applicable to atomic and photonic interferometers involving
multiparticle bosonic states. In Sec. IV we show how to test
the Leggett-Garg premises where mesoscopic states are created
at the time t2 within the interferometer, and a subsequent
measurement is made at time t3 of the population differ-
ence after passage through the interferometer. This approach
can be applied to either nonlinear interferometers where the
bosons are subject to nonlinearity due to a medium, or to
linear interferometers that use only beam splitters, conditional

measurements, and phase shifts. In this context, we discuss
violations of the s-scopic Leggett-Garg inequalities in which
the two premises of MRPS and NIM are asymmetrically
quantified, being specified by two different parameters s2 and
s3.

For linear interferometers, while violation of mesoscopic
Leggett-Garg inequalities may be difficult, it is nonetheless
possible in principle to test the Leggett-Garg premises as ap-
plied to individual particle trajectories. This provides an avenue
for a Leggett-Garg test using matter waves passing through
an interferometer, that would demonstrate the “no classical
trajectories” result for atoms. By exploiting different spatial
separations and atomic species, such tests would enhance the
experimental tests of Robens et al., which showed violation
of a Leggett-Garg inequality for a cesium atom performing a
quantum walk [10]. In that case, the spread in distance of the
atomic wave function was reported to be ∼2 μm.

To conclude, in Sec. V we give a discussion of loopholes
for each of the strategies presented in this paper, as seen from
the perspective of a macrorealist committed to the premises of
Leggett and Garg. Loopholes arise from the need to make a
measurement at the time t2 in order to evaluate the two-time
correlation function 〈S2S3〉 correctly. For each of the three
strategies, there are additional assumptions justifying that
the measurement employed in the experiment will give the
same correlation function for the Leggett-Garg inequality as
the noninvasive measurement defined by the NIM Leggett-
Garg premise. These additional assumptions imply that for
each strategy, a somewhat different model for macrorealism is
tested.

II. QUANTUM DYNAMICS OF A MESOSCOPIC
TWO-STATE OSCILLATION

The Hamiltonian HI for an N -atom condensate con-
strained to a double-well potential reveals a regime of macro-
scopic two-state dynamics. The two-well system has been
reliably modeled by the two-mode Josephson Hamiltonian
[29–39,41–44]:

HI = 2κĴx + gĴ 2
z . (3)

Here Ĵ z = (â†â − b̂†b̂)/2, Ĵ x = (â†b̂ + b̂†â)/2, Ĵ y = (â†b̂ −
b̂†â)/2i are the Schwinger spin operators defined in terms of
the boson operators â†,â and b̂†,b̂, for the modes describing
particles in each of the wells, labeled a and b, respectively.
The κ represents interwell hopping and g the nonlinear self-
interaction due to the medium. For high interaction strength
(Ng/κ � 1), regimes exist where a mesoscopic two-state
oscillation (of period TN ) takes place (Fig. 1) [30,31,33]. For
such regimes, if the system is prepared in |N〉a|0〉b, then at a
later time t ′ the state vector is to a good approximation (apart
from a phase factor)

|ψ(t)〉 = cos(t)|N〉|0〉 + i sin(t)|0〉|N〉, (4)

where t = E�t ′/h̄ and E� is the energy splitting of the energy
eigenstates |N〉|0〉 ± |0〉|N〉 under HI . In one state, |N〉a|0〉b,
all N atoms are in the well a, and in the second state,
|0〉a|N〉b, all atoms are in the well b [33]. The interaction
HI also describes Josephson effects in superconductors [45],
superfluids [46], and exciton polaritons [47].
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(a)

(b) (c)

FIG. 1. Two-state NOON dynamics: (a) The probability P (n) of n

atoms in well a at times 0, TN/6, TN/3. Here N = 100, g/κ = 1. TN

is the two-state oscillation period. The system undergoes oscillation
between two states, where all atoms are in one or other well. The
probability of obtaining results other than n = 0 or 100 is negligible.
The Leggett-Garg inequality (1) is violated with LG = 1.5 for states
distinct by s = 100 atoms in each well. (b) P (n) versus time t for the
system described in (a). (c) An upper bound on the backaction δ due
to the ideal negative-result (INR) measurement that can be tolerated
for an Leggett-Garg violation. Here δ is plotted versus N , the total
number of atoms in the system.

The quantum solution (4) predicts a violation of the Leggett-
Garg inequality [34]. Here we denote the sign of the outcome
Jz of the spin measurement Ĵz at time ti by Si (Si = 1 if Jz � 0;
Si = −1 if Jz < 0). The associated quantum measurement is
denoted Ŝi . The two-time correlation 〈SiSj 〉 = cos [2(tj − ti)]
is independent of the initial state, whether |N〉|0〉 or |0〉|N〉.
Choosing t1 = 0, t2 = π/6, t3 = π/3 (or t3 = 5π/12), the
quantum prediction is LG = 1.5 (1.37), which gives a viola-
tion of (1) [2]. We have solved the Hamiltonian (2) for N = 100
andg/κ = 1 (Fig. 1), confirming the ideal correlations that give
violation of the Leggett-Garg inequality in this regime.

The oscillation times TN however are impractically high
for proposals based on Rb atoms [29,33,48]. The fragility
of the macroscopic superposition state and the measured
decoherence times for a BEC suggest such an experiment
to be infeasible [49]. It is known, however, that practical
oscillation times can be obtained using a different initial state
|N − nL〉|nL〉 (0 < nL < N), where initially there are atoms
in both wells [29,33]. The dynamical solution presented in
Fig. 2 with nL = 10 reveals a two-state oscillation over reduced
time scales, mimicking the experiment of Albiez et al. [29] for
N = 1000 atoms where coherent oscillations were observed
over milliseconds.

FIG. 2. Mesoscopic two-state oscillations, where N = 100,
g/κ = 1. The initial state has 90 atoms in mode a. The Leggett-Garg
inequality (1) is violated with LG = 1.43, assuming a non-clumsy
measurement of S2 at t2.

The objective of this paper is to propose strategies for testing
Leggett-Garg inequalities in such experiments. There are two
questions to be addressed. The first is how to perform (or access
the results of) the noninvasive measurement, which is assumed
to exist according to the Leggett-Garg premises (NIM). The
second is how to test macrorealism when (as in Fig. 2) the
values of Si do not always correspond to macroscopically
distinct outcomes.

III. STRATEGIES FOR ACCESSING THE RESULT
OF THE NONINVASIVE MEASUREMENT (NIM)

The first question has been discussed quite extensively in the
literature [2]. The measurement at t1 can be made noninvasively
by the preparation of a fixed number of particles in each of the
modes. The 〈S1S2〉 and 〈S1S3〉 can hence be inferred using
deterministic state preparation and projective measurements
at t2 and t3, based on the Leggett-Garg premise that the system
was in a state with definite S at time ti , and that the projective
measurement will reveal which state the system was in (and
hence the value of Si) [2]. To measure 〈S1S3〉 no intervening
measurement is made at t2, based on the assumption that the
noninvasive measurement (NIM) at t2 will not affect the subse-
quent statistics. For 〈S2S3〉, S3 is measured projectively, but the
evaluation of S2 is difficult, since with any practical measure-
ment it could be argued that a measurement M̂ made at t2 is not
the actual noninvasive measurement, and does indeed influence
the subsequent dynamics. The following three strategies may
be used to counter this objection: (A) Ideal negative-result
measurements, (B) minimally invasive (nonclumsy) projective
measurements, and (C) weak measurements.

A. Ideal negative-result measurement (INR) strategy

A strong test is possible if the two modes of the NOON
superposition (4) correspond (at time t2) to spatially separated
locations. In this case, the INR strategy outlined by Leggett
and Garg can be applied. A measurement apparatus at time
t2 couples locally to only one mode a, enabling measurement
of the particle number na . Either na = 0 or na = N . Based
on the first Leggett-Garg premise, if one obtains na = 0, it is
assumed that there were prior to the measurement no atoms
in the mode a. Hence the measurement that gives a negative
result is justified to be noninvasive. The 〈S2S3〉 can be evaluated
using only negative-result outcomes, as described in Leggett
and Garg’s original paper [2]. In such an experiment, there is
implicit the assumption of locality: that there is no change
to one mode because of measurement on the other. In the
double-well example, the modes associated with each well can
in principle be further separated for the counting measurement
on one mode at the time t2 [29], and recombined for the
subsequent evolution (see Sec. IV).

It might be argued (based on experiments that confirm vio-
lation of Bell’s inequality) that the measurement on one mode
can induce a nonlocal backaction effect on the macroscopic
state of the other mode, so that there may be a change of the
state of the second mode of up to δ particles, where δ � N . The
change δ may be microscopic, not great enough to switch
the system between macroscopic states at t2, but might alter the
subsequent dynamics, to induce a macroscopic change at t3. If
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we assume quantum states at t2, then changes to the dynamics
can be established within quantum mechanics, to give a range
of prediction for 〈S2S3〉. We have performed this calculation
and plot the effect of δ for various N in Fig. 1(c), noting that
a moderately small backaction δ to the quantum state of one
mode will destroy violations of the Leggett-Garg inequality
even for large N .

B. Nonclumsy projective (NCP) measurement strategy

A second strategy constructs a measurement M̂ that can
be shown to give a negligible disturbance to the system being
measured, if it is indeed in one of the two macroscopically
distinguishable states [4,17]. This strategy is useful if the
modes are co-located or if both modes are occupied at t2 (as in
the experiment of Ref. [29]).

Suppose the state at time t2 is a superposition

|ψ〉 = c−|ψ−〉 + c+|ψ+〉 (5)

of states |ψ+〉 and |ψ−〉 that give, respectively, outcomes for Ŝ2

of S2 = ±1. Here c± are probability amplitudes. We apply the
Leggett-Garg premises in this case, assuming the two states
are macroscopically distinguishable. The first Leggett-Garg
premise asserts that the system is in a state of either positive or
negative Si , at any given time ti . The second premise assumes
there is no change to the value of S3 at t3, due to the noninvasive
measurement (NIM) at t2.

According to quantum mechanics, an appropriately selected
nondestructive projective measurement M̂ of Ŝ2 will not
change the state of the system at time t2 (and hence not change
the outcome at time t3), if the system at time t2 is indeed in
one of the states |ψ+〉 and |ψ−〉 (which are eigenstates of Ŝ2).
Such a measurement is referred to in this paper as a minimally
invasive, or “nonclumsy”, projective (NCP) measurement of
Ŝ2. The INR measurement discussed in Sec. III A is an
example of a nonclumsy measurement of Ŝ2, for systems
prepared in the NOON state. The nonclumsy projective (NCP)
measurement strategy requires a control experiment, in order
to experimentally establish that states with a definite value
of S2 are indeed unchanged by the measurement [4,23]. The
noninvasiveness of the measurement is then justified by the
first Leggett-Garg premise, that the system is in a state of either
positive or negative S2.

In fact, for any realistic “clumsy” measurement, a small
change may arise, which can be experimentally measured. One
can experimentally quantify this change, if the system is indeed
in one or other of the two macroscopically distinguishable
states at t2, by preparing the system in one or other state,
and measuring any change to the dynamics at time t3 as a
consequence of the measurement [4,17,23]. Hence, the NCP
strategy is to measure the probabilities P± for the outcomes
S2 = ±1 respectively. The prediction is P± = |c±|2. Then one
prepares the system in the state |ψ+〉 at time t2, measuring S3

at the later time t3, without the measurement M̂ being made
on the state at t2. This allows measurement of the moment
〈S2S3〉+ where the system at time t2 is indeed in the state |ψ+〉
at time t2. Similarly, one prepares the system in the state |ψ−〉
to measure 〈S2S3〉−. If the Leggett-Garg premises are correct,
then the conclusion is that

〈S2S3〉 = P+〈S2S3〉+ + P−〈S2S3〉−, (6)

and this is the same result for 〈S2S3〉 that is measured using
the nonclumsy measurement M̂ . The measurement of 〈S2S3〉
is repeated, but this time with the measurement M̂ being
made on the prepared state |ψ±〉 at the time t2 (prior to the
evolution to the later time t3), to give a moment that we
call 〈S2S3〉MC . If the measurement M̂ is nonclumsy, then ε ≡
〈S2S3〉MC − 〈S2S3〉 = 0. The change due to a clumsy measure-
ment can be quantified and thus be accounted for, through extra
terms in the inequalities [4,17,23]. This type of experiment
has been carried out recently for superconducting circuits
[4]. Figure 2 gives predictions of Leggett-Garg violations
using such a NCP measurement approach, for the two-well
system.

It could be argued that the NCP measurement approach is
limited to test a modified Leggett-Garg assumption, that the
system is always in a quantum state with definite S2 at the time
t2. This is because of the possibility that the predetermined
states (with definite values of S2) are hidden variable states,
and are not able to be represented as quantum states. It is
therefore difficult to prove that all hidden variable states with
definite outcome of S2 are not changed by the NCP measure-
ment. The individual quantum states |ψ±〉, on the other hand,
can be prepared accurately, and the effectiveness of preparation
verified by quantum tomography. An analysis of the different
models tested by the Leggett-Garg inequalities is given by
Maroney and Timpson [50]. Regardless, if the Leggett-Garg
inequalities are violated, the NCP measurement strategy rigor-
ously demonstrates the quantum coherence between the states
|ψ+〉 and |ψ−〉. This is because the Leggett-Garg inequalities
cannot be violated if the system, at time t2, is described
probabilisitically as being in one or other of the two states
|ψ±〉.

We now consider a specific quantum model for a nonclumsy
projective measurement strategy that applies to the two-well
atomic system. The NCP measurement (labeled M̂) is modeled
by the Hamiltonian

HQ = h̄GĴzn̂c, (7)

which for atomic spin describes a measurement of Ĵz based on
an ac Stark shift [51]. An optical “meter” field c is prepared in
a coherent state |γ 〉 and coupled to the atomic system for a time
τ0. The meter field is a single mode with boson operator ĉ and
number operator n̂c = ĉ†ĉ. The quantum model for this mea-
surement is given in more detail in Refs. [22,51]. Writing the
state of the atomic system at time t2 as

∑N
m=0 dm|m〉a|N − m〉b

(dm are probability amplitudes), the output state immediately
after measurement is (setting τ0 = π/2NG + 2πK where K

is a nonegative integer)

|ψ〉 =
N∑

m=0

dm|m〉a|N − m〉b|γ eiπ(N−2m)/2N 〉c. (8)

Homodyne detection on the optical system enables measure-
ment of the meter quadrature phase amplitude p̂ = (ĉ − ĉ†)/i.
For γ large, the different values of Ĵz (and hence Ŝ2) are
measurable by outcomes for p̂ and the atomic system after
the homodyne measurement collapses to a state of definite Jz.
Unless the atomic system is initially in a NOON state, this is
a “clumsy” measurement of Ŝ2. The nonclumsy measurement
of Ŝ2 leaves eigenstates of Ŝ2 (the sign of the atomic spin Ĵz)
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unchanged. The nonclumsy measurement thus discriminates
only the sign of p̂ and collapses the superposition state at time
t2 into one or other state, |ψ+〉 or |ψ−〉. For the case of Fig. 2,
Leggett-Garg violations are predicted, with γ large, for the
nonclumsy measurements.

C. Weak measurement strategy

The limit γ → 0 of the NCP measurement (7) enables the
weak measurement (WM) strategy [11–13,19,21]. Here the
entire quantum state of the system at t2 is undisturbed by the
measurement. If the system at time t2 is in a NOON state (4),
then the relation

〈S2S3〉 = − 1

2γ
〈pS3〉 (9)

holds for all γ . This relation is derived in Ref. [22] and can
be experimentally verified for the purpose of a Leggett-Garg
test. Although in the weak measurement limit there is no clear
resolution of the value S2 (values can exceed the eigenvalue
range [18], a phenomenon known as quantum weak values),
the value of 〈S2S3〉 as given by projective measurements can be
obtained by averaging over many runs [11,12]. The term “weak
measurement” is here used in the sense of the measurements
defined by Aharonov, Albert, and Vaidmann, which yield
quantum weak values [18]. This contrasts with measurements
weak in the sense of a weak meter-system coupling (e.g., a
coupling to only one of many system modes), but that are
nonetheless projective measurements collapsing the system
into a definite eigenstate [2,7,52].

The weak measurement strategy enables an interesting and
important Leggett-Garg test, since one can experimentally
demonstrate (independently of the quantum prediction) the
noninvasiveness of the weak measurement, by showing the
invariance of 〈S1S3〉 as γ → 0 when the measurement is
performed at t2. This implies a zero disturbance as γ → 0

dσ ≡ 〈S3|M̂2,σ 〉 − 〈S3|σ 〉 = 0, (10)

where dσ is defined in the Introduction. Different to the
previous strategies, the three measurements can therefore be
carried out in a time-ordered sequence for each given run: the
preparation at time t1, the weak measurement at time t2, and
the final projective measurement at t3. This sequence yields
for each run the values of the spin products S1S2, S1S3, and
S2S3 required for the Leggett-Garg inequality. The moments
〈SiSj 〉 are evaluated by averaging over all runs. However,
the weak measurement is not an actual measurement of S2

(because it does not yield the value of S2 being either +1 or
−1) and one is surmising the measured 〈S2S3〉 to be that of
the noninvasive measurement (NIM), which exists according
to the Leggett-Garg premises.

Experiments using a weak measurement strategy to demon-
strate violation of Leggett-Garg inequalities have been carried
out for systems of a single photon and for superconducting
circuits. Violation of the Leggett-Garg inequality in this case is
linked to the observation of quantum weak values and occurs
only in the weak measurement limit where γ is sufficiently
small. The detailed study of quantum weak values for this
system has been given in a different paper [22]. This strategy

is useful where generalized NOON states are generated at time
t2, and where an INR measurement cannot be performed.

For γ sufficiently large, the weak measurement becomes
a projective measurement, and the violation of the Leggett-
Garg inequality is lost, if one uses the WM strategy of three
successive measurements. This is clear, since the projective
measurement will at any time yield the result of either 1
or −1, thus ensuring LG � 1. References [3,22] calculate
the threshold γ > 0.52 for the loss of violation in the ideal
case given by Eq. (4), if one chooses t1 = 0, t2 = π/6 and
t3 = 5π/12. For projective measurements, the violation of the
Leggett-Garg inequality is achieved using the NCP or INR
approaches, where 〈S2S3〉 and/or 〈S1S3〉 is inferred, based on
the validity of the Leggett-Garg premises, as described in Secs.
III A and III B.

The violation that is possible using projective measurements
in one case (NCP or INR strategies), but not the second case
(WM strategy), strengthens the argument for failure of the
Leggett-Garg premises. The interpretation is that the projective
measurement “collapses” the wave function at the time t2,
because, immediately prior to the measurement at time t2, the
system cannot be regarded as being in one state or the other.
For systems where the quantum state at time t2 can be shown
to be in a classical mixture of the two states |ψ+〉 and |ψ−〉,
the difference between the two cases does not occur, and there
is no violation of the Leggett-Garg inequality.

IV. LEGGETT-GARG TESTS USING INTERFEROMETERS
AND THE s-SCOPIC LEGGETT-GARG INEQUALITIES

Leggett-Garg tests can be carried out using a nonlinear
or linear interferometer. This is depicted schematically in
Fig. 3(a). Predictions for violations of Leggett-Garg inequal-
ities using a linear interferometer are given in Figs. 3(b)
and 3(c). Figures 2 and 4 show violations using a nonlinear
interferometer. In Fig. 3(a), the input state at time t1 is a
two-mode state with N bosons in one mode (implying S1 = 1).
The two-mode state undergoes a unitary transformation BS1
realized as either a beam splitter (with transmission intensity
given by cos2 θ ), or as the nonlinear beam splitter given by
the nonlinear Josephson Hamiltonian HI [Eq. (3)]. After the
interaction BS1, at time t2, the sign S2 of the mode population
difference Ĵz may be measured, by the measurement we label
M̂ . Subsequently, the two-mode system evolves according to
a further unitary transformation. This is realized as a second
nonlinear Josephson interaction HI , or else as a second beam
splitter (BS2, with transmission intensity given by cos2 φ). The
unitary interaction BS2 may also be realized as a phase shift
φ followed by a 50/50 beam splitter. At the output of the
interferometer, the population difference Ĵz (and hence S3) is
measured at the final time t3. A nonlinear interferometer of this
type has been realized for atoms in the BEC experiments of
Gross et al., based on the interaction HI [37]. Figure 3(b) (solid
blue and red dashed curves) plots predictions for Leggett-Garg
tests in the linear case, where HI = 0.

The Leggett-Garg inequalities might also be tested when
mesoscopic superposition states are created at a time t2 as
heralded states, produced conditional on a certain outcome
being obtained for a preparation measurement P̂ . For example,
the macroscopic Hong-Ou-Mandel technique passes N bosons

042114-5



ROSALES-ZÁRATE, OPANCHUK, HE, AND REID PHYSICAL REVIEW A 97, 042114 (2018)

FIG. 3. Leggett-Garg tests using multiparticle interferometers: (a)
N bosons pass through an interferometer. A measurement M̂ (purple
shading) is made on the state created at t2 and the outgoing fields
are combined across a beam splitter BS2 with transmission intensity
cos2 φ. Jz of the outputs at time t3 is measured. (b, c) Results for the
case of a simple linear interferometer where the bosonic modes are
not coupled by the Josephson nonlinear interaction HI . The blue solid
curve and red dashed curve of (b) plot LG given by (1) for optimal
angles θ , φ where the state at time t2 is created by a simple beam
splitter BS1 (transmission intensity cos2 θ ). The red dashed curve
of (b) shows LG for odd N where M̂ is a nonclumsy measurement
of S2. The blue solid curve is where M̂ measures Ĵz and hence the
number of particles in arm c. This is a nonclumsy measurement of
S2 only when the number of particles in each arm is fixed. The green
dotted-dashed curve shows the disturbance dσ = 2 for optimal angles
and N odd, where mesoscopic superposition states |ψ�〉 are created at
t2 by conditioning on |JZ| > �/2, as described in the text. Here M̂ is a
nonclumsy measurement of S2. The green dotted-dashed curve shows
the disturbance dσ for all values of � � N − 1, including where a
NOON state is created at t2. (c) Leggett-Garg where a NOON state is
created at t2, and where the final BS2 represents a phase shift φ and a
50/50 BS2 (for optimal τ = θ ). Here M̂ is a nonclumsy measurement
of S2.

through a beam splitter BS1 (of transmission intensity cos2 θ )
[26]. A nondestructive measurement is made of Ĵz at the time
t0, and an output state |ψ�〉 is then heralded on the result Jz

being |Jz| > �/2 (here � is an integer, � < N). This creates
at t2 a mesoscopic superposition

|ψ�〉 = c−|ψ−〉 + c+|ψ+〉 (11)

FIG. 4. Violation of s-scopic Leggett-Garg inequalities: The
NOON state (4) is created at time t2 (N = 5, t = π/6) and evolves for
a time t3 according to HI with nonlinearity g. (Note here we have set
t2 = 0 for convenience). (a) Schematic of the probability distribution
for results 2Jz at t3. (b) Contours show regimes for violation of
the s-scopic inequality (12) with s = s2 = s3, where (dark to light)
s = 4,2,0.

of two states |ψ+〉 and |ψ−〉 that are distinct by � + 1 (or more)
particles in each arm of a two-mode interferometer [53]. Here
c± are probability amplitudes. In this case, the time t1 that
is needed for the Leggett-Garg test is the time t0, that of the
preparation outcome |Jz| > �/2. For the heralded state, this
outcome is deterministic. Hence S1 is specified +1 if the result
of the measurement P̂ is |Jz| > �/2, and−1 otherwise. For the
heralded state, S1 is always +1. We note that for � = N − 1,
a generalized NOON state of type (4) is created by at time t2
using this method.

Figures 2, 3(b), 3(c), and 4 show predictions for Leggett-
Garg violations where a mesoscopic superposition |ψ�〉 (or
a NOON state) has been created at time t2, either by the
conditional method or by the dynamics HI . In Figs. 2 and
4, it is supposed that subsequently, after the measurement
M̂ , the system evolves according to the Josephson nonlinear
interaction HI . A measurement Ĵz is then made at t3. This
gives an Leggett-Garg test using a nonlinear interferometer.
In Fig. 3(b) (dotted-dashed green curve) and Fig. 3(c), it is
supposed that between t2 and t3, HI = 0, which corresponds
to a linear interferometer.

With these different strategies, however, the outcomes for Ĵz

at the times t3 are not always restricted to ±N/2 [Fig. 4(a)]. Be-
fore discussing the implications of the Leggett-Garg violations
shown in Figs. 2, 3, and 4, and to fully explore the possibilities
for Leggett-Garg tests using interferometers, we address this
case by deriving modified Leggett-Garg inequalities. To do
this, we expand on previous work [2,54].

A. The s-scopic Leggett-Garg inequalities

We consider a measurement Ĵz made on the system at
time ti and define three regions of outcome: region “1,”
Jz < −si/2; region “0,” −si/2 � Jz � si/2; and region “2,”
Jz > si/2. Where the probability P0 for a result in region 0
is zero, the regions 1 and 2 are distinct by si . The premise of
si-scopic realism (siR) asserts that the system at time ti (prior
to measurement) is either in a state with an outcome in region
“1,” or in a state with an outcome in region “2.”

Generalizing toP0 
= 0 [Fig. 4(a)], the meaning of siR is that
the system at time ti is in one or other of two overlapping states:
the first that gives outcomes in regions “1” or “0” (denoted
by S̃ = −1); the second that gives outcomes in regions “0”
or “2” (denoted by S̃ = 1) [2,54]. This premise adequately
describes quantum superpositions of states that give outcomes
of Ĵz different by up to si , but not (necessarily) superpositions
of states with greater separations. The premise allows for
an indeterminacy in the predetermination of the result of a
measurement of Ĵz by an amount up to ∼si , since any such
indeterminate state can be described as either S̃ = 1 or S̃ =
−1. Macroscopic superpositions where there is the possibility
of interpretation that the system would not comply with
this restricted indeterminacy are not (necessarily) consistent
with the premise. This approach was suggested originally
by Leggett and Garg [2] and has been developed to provide
tests of mesoscopic quantum coherence and mesoscopic Bell
nonlocality [54,55].

A measurement Ĵz gives the value of S̃ for regions 1 and 2,
there being ambiguity only in the region 0. The second Leggett-
Garg premise is generalized to (s2,s3)-scopic noninvasive
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measurability [(s2,s3)-NIM]. This premise asserts that such a
measurement can be made at t2, without changing the result Jz

at time t3 by an amount s3 or more. Any change or back-action
due to the measurement by an amount up to s3 will not alter the
recorded value S̃ at time t3, provided the experimenter takes
into account that results in the region 0 cannot be distinguished
as being either S̃ = +1 or S̃ = −1. Combined, we will refer to
the siR and (s2,s3)-NIM premises as the s-scopic Leggett-Garg
premises.

The s-scopic Leggett-Garg premises imply a quantifiable
inequality, because any effects due to the ambiguous region
are limited by the finite probability of observing a result there.
Defining the measurable marginal probabilities of obtaining a
result in region j ∈ {0,1,2} at the time tk by P

(k)
j , the s-scopic

premises are violated if

LGs ≡ P
(2)
2 − P

(2)
1 + 〈S2S3〉 − (

P
(3)
2 − P

(3)
1

)
− 2P

(3)
0|M − P

(3)
0 > 1, (12)

where P
(3)
j |M (P (3)

j ) is the probability with (without) the mea-
surement M performed at t2. The details of the derivation
are given in Appendix A. We have assumed that the system
is prepared initially in region 2 and restrict to scenarios
satisfying P

(2)
0 = 0. The 〈S2S3〉 is to be measured using a

noninvasive measurement at t2, as described in Sec. III. The
P

(k)
j are measurable by projective measurements. A similar

modification can be given for the disturbance inequality.

B. Nonlinear interferometer

Figures 2 and 4(b) show violations of the s-scopic Leggett-
Garg premises for nonzero s, using the nonlinear interaction
HI . In the case given by Fig. 2, we obtain violations of the
Leggett-Garg inequality (12) with s = s2 = s3 = 80. Figure 2
depicts the example of the nonlinear interferometer where the
parameters N , g, κ and the initial condition are selected to
maintain a mesoscopic superposition throughout the evolution.
Josephson oscillations similar to this have been realized in the
experiments of Albiez et al. based on a BEC with Rb atoms
[29]. A relevant measure of macroscopicity in this case is the
mass difference given by smA (in each mode) of the two states
forming the superposition, mA being the mass of each atom.
Figure 4(b) shows the violation of the s-scopic Leggett-Garg
inequalities for smaller N , where the NOON state (N = 5)
is created at time t2, followed by evolution according to the
nonlinear Hamiltonian HI until time t3. Here the state created
at t3 need not be a NOON state, depending on the value of g.

C. Linear interferometer

Leggett-Garg tests are also possible where HI = 0 (Fig. 3).
First, we consider the simplest case depicted by the diagram
of Fig. 3(a), where an N -boson state at time t2 is created by
the simple beam splitter BS1 (transmission intensity cos2 θ ),
or alternatively a polarizer beam splitter rotated at angle
θ . Here it is possible to test the hypothesis of individual
classical trajectories for the bosons traveling through the linear
interferometer.

At time t1, N bosons are prepared in the single mode a.
After t1, the N bosons pass through the polarizer beam splitter
(or equivalent) (BS1) rotated at angle θ . For the evaluation

of 〈S2S3〉, a nondestructive measurement M̂ of Jz is made at
time t2. The number difference Jz indicates the value of Jθ

(and hence S2) at t2. The spin Si is defined as in Sec. II at
each time ti to be the sign of Jz. The outgoing particles are
then incident on a second polarizer beam splitter BS2 at angle
φ (or alternatively, a beam splitter with transmission intensity
cos2 φ) whose output number difference Jz gives Jφ and hence
S3 at t3. We invoke the Leggett-Garg premise, that the system
is always in a state of definite Jz immediately prior to the
measurement M̂ at t2. This is based on the hypothesis that
each atom (boson) goes one way or the other, through the
paths of the interferometer. A second Leggett-Garg premise is
invoked, that a measurement M̂ could be performed of Jz at
t2 that does not disturb the subsequent evolution. The second
premise can be supported by experiments that create a spin
eigenstate, and then demonstrate the invariance of the state
after the number measurement M̂ . If the premises are valid,
the Leggett-Garg inequalities (1) will hold, but by contrast
are predicted violated by quantum mechanics (Fig. 3(b), blue
solid curve). We assume fixed number inputs, achievable for
photons [11] and likely in the future for atoms given the recent
demonstrations of quantum correlated atomic beams [27,56].

For this case, the violation is given only for s = 0, and
NOON states are not created at the time t2. While not the
macroscopic test Leggett and Garg envisaged, this nonetheless
allows a test of the “classical trajectories” hypothesis that can
be applied to atoms in a two-mode interferometer [37,38,49].
The violation of the Leggett-Garg inequality demonstrates
the absence of individual classical trajectories, as in each
atom passing through one arm or mode of the interferometer.
Potential loopholes associated with the second premise are as
for the NCP measurement strategy, discussed in Sec. III B and
in the Conclusion. The details of the calculations are given in
Appendices B and C, which include a table of the angles θ and
φ required for the maximum violation.

The same experiment can be performed with a nonclumsy
measurement M̂ of S at time t2. This corresponds to detecting
the sign of the outcome for Ĵz at time t2, without projecting
the state into individual eigenstates of Ĵz. Rather, the system
after measurement is collapsed into the one of the states |ψ〉+
or |ψ−〉 which have a non-negative or negative outcome for Ĵz

respectively. Such an experiment tests the following Leggett-
Garg premises: the system is at any given time in one of the
states |ψ+〉 or |ψ−〉 prior to measurement, and the measurement
M does not influence the dynamics to the extent that the state
of the system is changed from |ψ+〉 to |ψ−〉 (vice versa) at
the time t3. We see from the results plotted by the red dashed
curve of Fig. 3(b) that Leggett-Garg violations are possible
(for s = 0). Here the two states |ψ±〉 are not mesoscopically
distinct, except in the limit of N → ∞ where the violation
vanishes (LG → 1). Violations of the s-scopic Leggett-Garg
inequalities with s > 0 are not given in this case.

Where a NOON state is prepared at time t2 and there is a
spatial separation of the two trajectories at that time, stronger
Leggett-Garg tests are possible. This is because the assumption
of noninvasiveness of the measurement M̂ at time t2 can
be strengthened by using an INR method (refer to Sec. II).
Violations of the Leggett-Garg inequality are shown for this
case in Figs. 3(b) and 3(c). The green dashed curve of Fig. 3(b)
shows dσ = 2. This implies violation of the disturbance
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equality (2), where the mesoscopic superposition |ψ�〉 of
Eq. (11) is created at time t2, and where the measurement
at time t3 is of Jφ , defined in the second paragraph of this
subsection. The detailed calculations are given in Appendix C.
Similar violations are possible for the Leggett-Garg inequality
(1), with the calculations also given in Appendix C. We see
from those calculations that the violations of the Leggett-Garg
inequality (1) are enhanced where a NOON state is created
at the time t2, the violations increasing with N , for odd N .
Figure 3(c) shows violations of the Leggett-Garg inequality
where a NOON state is created at time t2, but where the
measurement at time t3 is replaced with the phase shift φ

followed by a beam splitter. Violations are obtained with
s2 = N . All violations shown in Fig. 3 are, however, for s3 = 0.
Details of the calculations are provided in Appendix D.

V. CONCLUSION

In this paper, we have developed strategies for tests of
Leggett and Garg’s mesoscopic realism using multiparticle
interferometers, based on the nonlinear Josephson interaction
model HI . By deriving modified inequalities that apply where
not all outcomes are mesoscopically distinct, we find the tests
are enhanced over a wider range of parameter values. The
interaction HI is fundamental not only to Bose-Einstein con-
densates but describes Josephson effects in superconductors
[45], superfluids [46], and, more recently, exciton polaritons
[47]. We have also proposed tests of Leggett-Garg realism at
a microscopic level suitable for application to multiparticle
linear interferometers where HI = 0.

Finally, to conclude the paper, we summarize potential
loopholes for the strategies outlined in this paper. For the
INR and NCP strategies given in Secs. III A and III B, the
violation of macrorealism arises in effect because the value
of 〈S1S3〉 depends on whether the measurement M̂ is made at
time t2. Specifically, the disturbance dσ defined by Eq. (2) is
nonzero. These tests are therefore only convincing when the
measurement M̂ that is used to evaluate the 〈S2S3〉 can be jus-
tified as macroscopically noninvasive. The macrorealist, who
believes the system is always in one of two macroscopically
distinguishable states ψ+ and ψ−, will most likely challenge
this justification.

For the NCP strategy of Sec. III B, the noninvasiveness of
M̂ is justified by preparing the system in the states ψ± and
demonstrating no-disturbance dσ = 0 in each case. Assuming
the quantum states |ψ±〉 can be reliably prepared, the violation
of the Leggett-Garg inequality using this strategy then gives a
convincing demonstration that the system is not in one or other
of the quantum states |ψ±〉 at the given time. The experiment
thus demonstrates macroscopic quantum coherence: the sys-
tem is not in a classical mixture of the states |ψ±〉. However, the
macrorealist is not restricted to quantum mechanics and would
be ready to consider alternative descriptions of ψ± that are
consistent with macrorealism. The macrorealist may argue that
alternative (nonquantum) realizations of the states ψ± exist,
the measurement M̂ being invasive for such a realization. A
related loophole is the difficulty of preparing all realizations
of the macroscopic state ψ±, this being a many-body state for
which there can be many microscopically different realizations
possessing the same value for a macroscopic parameter. The

macrorealist may also argue that the system at time t2 is
in a state microscopically different to either |ψ+〉 or |ψ−〉,
the measurement M̂ being microscopically invasive for this
state (causing the collapse to |ψ+〉 or |ψ−〉). The microscopic
change at time t2 brought about by M̂ may lead to a macro-
scopic change at time t3, thus explaining the violation of
the Leggett-Garg inequality in a way that is consistent with
macrorealism. In short, the macrorealist would want to be
convinced that the experimentalist can prepare all relevant
quantum (and nonquantum) states for the test of nonclumsiness
of the measurement.

The weak measurement (WM) strategy in Sec. III C has
the advantage that justification of noninvasiveness is not
required, the disturbance dσ being zero in the ideal limiting
case of a weak measurement. The smallness of dσ (dσ → 0) is
verifiable experimentally. There is no need to assume anything
about the nature of the state at time t2 to demonstrate the
noninvasiveness. Rather, the test of macrorealism uses the
Leggett-Garg inequality for three sequential measurements.
The spins S1, S2, and S3 are measured consecutively for each
run, and the moment 〈S2S3〉 is verifiable as that given by strong
measurements. The macrorealist is left to argue that, being an
ineffectual measurement of S2 (that does not yield a value of
+1 or −1 for a given run), the weak measurement is not the
noninvasive measurement implied by the Leggett-Garg NIM
premise.

In our view, the INR strategy given in Sec. III A, based on
a spatial separation of the modes, provides the strongest test
of macrorealism. This strategy does not rely on the re-creation
of the states ψ± for demonstrating noninvasiveness. Rather,
the assumption of noninvasiveness is based on the assumption
of locality. However, local realism has been shown to fail
for microscopic systems, and the macrorealist would likely
argue that the measurement M̂ does indeed cause a nonlocal
microscopic change to the system at the second location. The
macrorealist would argue that this microscopic change at time
t2 leads to a macroscopic change at time t3, thus explaining
the violation of the Leggett-Garg inequality consistently with
macrorealism. The realist’s argument, however, relies on more
macroscopic aspects of nonlocality for atomic systems that
have not yet been verified.
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APPENDIX A: DERIVATION OF s-SCOPIC
LEGGETT-GARG INEQUALITIES

According to the premise sR, the system can be described
by a model in which the system is in one of the states S̃ = −1
or S̃ = +1 at each ti . We denote the probability of the system
being in state S̃ = +1 (−1) at a given time by P̃+ (P̃−), noting
that P̃+ + P̃− = 1. This defines a sequence of values S̃i such
that the values are unchanged by the sNIM. Following the
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original derivation of Leggett-Garg inequality (1), this leads
to −3 � S̃1S̃2 + S̃2S̃3 − S̃1S̃3 � 1. Thus, where Kij = 〈S̃i S̃j 〉,
the inequality K12 − K13 + K23 � 1 of the form (1) holds.

However, the moments 〈KiKj 〉 are not directly measurable,
because an outcome between −s/2 and +s/2 could ambigu-
ously arise from either state, S̃ = −1 or +1. Regardless,
P1 � P̃− � P1 + P0 and P2 � P̃+ � P2 + P0, where P1, P2,
and P0 are the measurable probabilities of obtaining a result
for Jz in regions 1, 2, and 0, respectively. Hence, we are able
to establish bounds on the two-time moments if the P0 are
measured. The modified inequality is

LGs = K lower
12 + K lower

23 − K
upper
13 � 1. (A1)

Here K lower
ij is a lower bound to Kij , and K

upper
ij is an upper

bound to Kij . We see that suitable such bounds are given by
K lower

ij = P2,2(ti ,tj ) + P1,1(ti ,tj ) − P10,20(ti ,tj ) − P20,10(ti ,tj )
and K

upper
ij = P20,20(ti ,tj ) + P10,10(ti ,tj ) − P1,2(ti ,tj ) −

P2,1(ti ,tj ). We introduce the notation that P20,10(t1,t2), for
example, is the joint probability of an outcome Jz in regions
2 or 0 at time t1, and an outcome Jz in regions 1 or 0 at
time t2.

It is assumed that a measurement has been made of the
moment 〈S2S3〉 where Sj is determined by the sign of Jz at time
tj . For example, the moment 〈S2S3〉 can be measured using a
weak measurement at time t2. Alternatively, the moment might
be evaluated using the INR method. We wish to express the
inequality (A1) in terms of this moment. We proceed by noting
the following relations:

K lower
23 = 〈S2S3〉 − 2P

(2)
0 − 2P

(3)
0|M,

K
upper
13 = P

(3)
0 + P

(3)
2 − P

(3)
1 ,

K lower
12 = P

(2)
2 − P

(2)
1 − P

(2)
0 . (A2)

Here P
(k)
j is the probability of an outcome for Jz in region

j (j = 0,1,2) at the time tk . We denote P
(3)
0|M (P (3)

0 ) as the
probability of a result in the region 0 at t3 if the measurement
M̂ is performed (or not performed) at t2. We note that the P

(3)
0

and P
(3)
0|M can be evaluated experimentally for a particular M̂ .

For the weak measurement as γ → 0 the difference between
P

(3)
0 and P

(3)
0|M becomes zero.

Using the above results and the LGS inequality defined by
Eq. (A1), we obtain

LGs ≡ P
(2)
2 − P

(2)
1 − (P (3)

2 − P
(3)
1 ) + 〈S2S3〉

−3P
(2)
0 − 2P

(3)
0|M − P

(3)
0 � 1, (A3)

which reduces to Eq. (12). The proof is given below.
Proof. First, we prove K lower

23 = 〈S2S3〉 − 2P
(2)
0 − 2P

(3)
0 .

We note K23 = P (+,+) + P (−,−) − P (+,−) − P (−,+)
where P (i,j ) is the joint probability the system is in state i

and j at times t2 and t3, respectively, and + and − are the
states with S̃ = +1 and −1. Hence

K23 = P2,2 + P0|+,0|+ + P0|+,2 + P2,0|+
+P1,1 + P0|−,1 + P1,0|− + P0|−,0|−
−P1,2 − P0|−,2 − P0|−,0|+ − P1,0|+
−P2,1 − P2,0|− − P0|+,0|− − P0|+,1. (A4)

Here P2,2 is the joint probability of a result in region 2 at times
t2 and t3. P0|+,1 is the joint probability of an outcome at time t1
in the region 0, given the system is in the state + (at time
t1), and an outcome in region +1 at time t3. The remaining
probabilities are defined similarly. Defining 〈S+

2 S+
3 〉 = P2,2 +

P1,1 − P1,2 − P2,1 and simplifying we obtain

K23 � 〈S+
2 S+

3 〉 − P0|−,2 − P0|−,0|+ − P1,0|+ − P2,0|−
−P0|+,0|− − P0|+,1

� 〈S+
2 S+

3 〉 − P
(2)
0|− − P

(2)
0|+ − P

(3)
0|+ − P

(3)
0|−

� 〈S+
2 S+

3 〉 − P
(2)
0 − P

(3)
0 . (A5)

HereP
(k)
0|(±) is the probability of an outcome in the region 0 given

the system is in the state (±) at time tk . P
(k)
0 is the probability

of an outcome in region 0 at time tk . Now we note that the
measurable moment is

〈S2S3〉 = P2,2 + P0+,0+ + P0+,2 + P2,0+
+P1,1 + P0−,1 + P1,0− + P0−,0−
−P1,2 − P0−,2 − P0−,0+ − P1,0+
−P2,1 − P2,0− − P0+,0− − P0+,1, (A6)

where P0+,0+ is the probability of a positive outcome in region
0 for both times. The other probabilities are defined similarly.
Then we simplify

〈S2S3〉 = 〈S+
2 S+

3 〉 + P0+,0+ + P0+,2 + P2,0+ + P0−,1

+P1,0− + P0−,0− − P0−,2 − P0−,0+ − P1,0+
−P2,0− − P0+,0− − P0+,1

� 〈S+
2 S+

3 〉 + P0+,0+ + P0+,2 + P2,0+ + P0−,1

+P1,0− + P0−,0−

� 〈S+
2 S+

3 〉 + P
(2)
0+ + P

(3)
0+ + P

(2)
0− + P

(3)
0−

� 〈S+
2 S+

3 〉 + P
(2)
0 + P

(3)
0 . (A7)

Hence, we obtain the result K23 � 〈S2S3〉 − 2P
(2)
0 − 2P

(3)
0

where P
(k)
0 is the probability of an outcome in region 0 at time

tk . From this we obtain that K lower
23 = 〈S2S3〉 − 2P

(2)
0 − 2P

(3)
0|M

where we have inserted the |M to remind us that the marginal
probabilities of a result in the regions at time t3 in this case are
taken after the measurement M̂ at time t2.

We next consider K13. Here we wish to prove that
K

upper
13 = P

(3)
0 + P

(3)
2 − P

(3)
1 . This can be done using

projective measurements. We see from above that K
upper
ij =

P20,20(ti ,tj ) + P10,10(ti ,tj ) − P1,2(ti ,tj ) − P2,1(ti ,tj ). Here
K

upper
13 = P20,20(t1,t3) + P10,10(t1,t3) − P1,2(t1,t3) − P2,1

(t1,t3), which reduces to

K
upper
13 = P

(3)
0 + P

(3)
2 − P

(3)
1 , (A8)

where we have used that the system at t1 is initially prepared in
region 2, so that P

(1)
2 = 1. Here we infer that the measurement

at time t3 is made without the measurement M̂ at t2.
Similarly, we next consider K12. We have from above

that K lower
ij = P2,2(ti ,tj ) + P1,1(ti ,tj ) − P10,20(ti ,tj ) − P20,10

(ti ,tj ), which implies K lower
12 = P2,2(t1,t2) + P1,1(t1,t2) −
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P10,20(t1,t2) − P20,10(t1,t2). This reduces to

K lower
12 = P

(2)
2 − P

(2)
1 − P

(2)
0 . (A9)

Thus, using the above results, and applying the LGs inequality
given in Eq. (A1), we obtain the required result (A3).

APPENDIX B: N BOSONS THROUGH
A LINEAR INTERFEROMETER

We give details of the proposal of Fig. 3(a) where results are
shown by blue solid curve of Fig. 3(b). In this case, there is no
nonlinear Hamiltonian evolution. The particles travel through
two successive polarizer beam splitters (PBSs). The first beam
splitter is set at angle θ . A measurement can then be made of
the two-mode number difference, defined as

Ĵθ (t2) = (ĉ†ĉ − d̂†d̂)/2 = Ĵz cos 2θ + Ĵx sin 2θ. (B1)

The normalized Ŝ2 = Ĵθ (t2)/(N/2) gives the value of the
Leggett-Garg observable Ŝ2. The PBS measurement can be
realized by different physical means, including using a PBS
(with phase shifts) followed by a photon difference measure-
ment, or, for atom interferometers, as a Rabi rotation followed
by an atom number-difference measurement [37,57,58]. Here
Ĵz and Ĵx are defined in terms of the initial modes â and b̂ [e.g.,
Ĵz = (â†â − b̂†b̂)/2], and the rotated operators are given by

ĉ = â cos θ + b̂ sin θ,

d̂ = −â sin θ + b̂ cos θ. (B2)

The measurement M̂ of the number difference (ĉ†ĉ − d̂†d̂)/2
is made at time t2 after the rotation denoted by θ (achieved
by the PBS). In terms of the Leggett-Garg inequality, the
rotation denoted by θ in the linear proposal plays the role of the
evolution denoted by t2 in the nonlinear proposal. A subsequent
similar rotation (denoted φ) and number measurement at
time t3 gives the outcome Ŝ3 = Ĵφ(t2)/(N/2) as illustrated in
Fig. 3(a).

We suppose the initial state is the two-mode number state
|N〉a|0〉b. The output state at time t2 after the first beam splitter
with rotation θ is

|N〉a|0〉b →
N∑

n=0

cn|n〉c|N − n〉d , (B3)

where

cn =
√

N !

n!(N − n)!
cosn θ (− sin θ )N−n. (B4)

After the second beam splitter with rotation φ, the output state
(in terms of the output modes we call the ê and f̂ modes) is
(assuming no measurement M̂ is made at t2)

|N〉a|0〉b →
N∑

n=0

cn

N∑
p=0

c(n)
p |p〉e|N − p〉f , (B5)

where

c(n)
p =

min (N−n,p)∑
k=max (0,p−n)

√
n!(N − n)!

√
(N − p)!

√
p!

(p − k)!(n − p + k)!k!(N − n − k)!

×(−1)n−p+k{cos(N−n+p−2k) φ sin(n−p+2k) φ}. (B6)

FIG. 5. The optimal angles θmax (solid blue line) and φmax (dashed
red line) that maximize the Leggett-Garg inequality for different
values of N .

Calculation gives

〈S1S2〉 =
N∑

n=0

sgn(2n − N )c2
n,

〈S1S3〉 =
N∑

p=0

sgn(2p − N )

(
N∑

n=0

cnc
(n)
p

)2

, (B7)

〈S2S3〉 =
N∑

n=0

sgn(2n − N )c2
n

N∑
p=0

sgn(2p − N )
(
c(n)
p

)2
,

where sgn(x) = 1 if x � 0 and −1 of x < 0. The calculation
of 〈S2S3〉 assumes the collapse of the wave function at time
t2 due to the projective measurement of Ĵz at t2. The moment
is then calculated as the weighted average of the individual
moments based on all the possible projected eigenstates of Ĵz

(number), which are then the initial states for the second PBS.
Using the above results, we maximize the Leggett-Garg

inequality violation and obtain the corresponding optimal
angles θmax and φmax. Results are shown in Fig. 3(b) (blue
solid curve) and Fig. 5.

To understand the nature of the Leggett-Garg violations
in the linear case, we plot the probability distributions for
the outcome Jz at the different times t . We assume the
measurement of Ŝ2 is made as a nondestructive projective
measurement of Ĵz. The measurement if made at time t2
thus collapses the state into the associated two-mode number
state. For N = 50 the optimal angles are θ = 0.14518π ,
φ = 0.14522π . After the rotation BS1 with θ , the state created
at time t2 has the number distribution plotted in the top graph of
Fig. 6. This corresponds to 〈S1S2〉 = 1. After the rotation with
θ + φ, the state created at time t3 has the number distribution
plotted in the middle graph of Fig. 6. This corresponds to
〈S2S3〉 = −0.927. After the measurement at t2, the resulting
collapsed state is passed through the interferometer with
angle φ. The number distributions at time t3 for the three
different collapsed states are plotted in the lower graph. Here
we take the three most likely measurement results at time
t2 (n = 41 is the most likely, as shown in the top figure).
The correlations for the three cases are n = 40, p(n) =
0.139022426845, 〈S2S3〉 = 0.39867944914; n = 41,
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FIG. 6. Plots of the probability distributions of number n = Jz +
N/2 at the time t2 (top), and at t3 if a measurement is made at t2
(lower) or if not (middle). Here N = 50 (the total particles in the
interferometer), and n is the number of particles in one arm. The lower
graph plots the distributions given that at time t2 a measurement of
n is performed with the outcome n = 40 (dashed green line), n = 41
(solid blue line), or n = 42 (dash-dotted red line).

p(n) = 0.140876075688, 〈S2S3〉 = 0.440046798966; n =
42, p(n) = 0.125419972345, 〈S2S3〉 = 0.442832855968.
Here p(n) is the probability of the result n at the time t2. The
total correlation averaged over all outcomes is 〈S2S3〉 = 0.434
and the Leggett-Garg violation is LG = 2.361.

APPENDIX C: MESOSCOPIC SUPERPOSITION AT TIME
t2 IN A LINEAR INTERFEROMETER

We suppose we create at time t2 a superposition of two
states |ψ+〉 and |ψ−〉 mesoscopically distinct (at time t2),
using, for example, a macroscopic Hong-Ou-Mandel effect.
This effect employs a conditional measurement to create a
mesoscopic superposition. We first evaluate the output state as
created from the beam splitter BS1. We write the output state
as a superposition ψ = √

P−|ψ−〉 + √
P0|ψ0〉 + √

P+|ψ+〉 of
three states defined by a positive parameter � that specifies
a middle region of Jz of width � and centered about 0. Here
|ψ±〉 has outcomes Jz in region Jz > �/2 and Jz < −�/2,

respectively, and |ψ0〉 is a central state where outcomes for Jz

satisfy |Jz| � �/2. Here

|ψj 〉 = 1√
Pj

∑
n∈Rj (�)

cn|n〉c|N − n〉d , (C1)

where j ∈ {−, + ,0}, Pj = ∑
n∈Rj

|cn|2, and the regions are
defined as R−(�) = {2n < N − �}, R+(�) = {2n > N +
�}, R0(�) = {N − � � 2n � N + �}. The coefficients cn

are given in Eq. (B4). Before time t2 (at a time we call t1)
a measurement is made that determines whether |Jz| is in
the central region or not. We assume this is a nonclumsy
measurement, in the sense that the superposition state

|ψ�〉 = 1√
P− + P+

(
√

P−|ψ−〉 +
√

P+|ψ+〉) (C2)

is prepared at the time t1, by conditioning the future evolution
on an outcome |Jz| > �/2 at time t1. With this preparation, the
result for S1 is always 1. Note the time t1 is defined differently to
the above proposals, where the time t1 refers to the preparation
of N particles in the interferometer and no other conditional
measurements are made.

1. Evaluation of the Leggett-Garg inequality

First, we evaluate

〈S1S2〉 = P+ − P−
P+ + P−

. (C3)

A measurement of S2 at time t2 is made on the state |ψ�〉,
to determine whether the system is in state |ψ+〉 or state
|ψ−〉 (according to the Leggett-Garg premise). The nonclumsy
measurement of S2 corresponds to a measurement at t2 that
measures S2 but does not resolve the precise number. To
perform the calculation of 〈S2S3〉, we consider the system has
collapsed to either |ψ+〉 (if the result at t2 is S2 = +1) or |ψ−〉
(if the result at t2 is S2 = −1). At time t3 the final state for each
of the functions |ψ〉± is given by

|ψ(t3)〉j =
∑

n∈Rj (�)

cn√
Pj

N∑
p=0

c(n)
p |p〉e|N − p〉f . (C4)

Here the coefficients c(n)
p are given in Eq. (B6). Using these

values we find

〈S2S3〉 = P+
P+ + P−

〈S2S3〉+ + P−
P+ + P−

〈S2S3〉−

= P+
P+ + P−

〈S3〉+ − P−
P+ + P−

〈S3〉−, (C5)

where 〈S3〉± is the expectation value of S3 at the time t3 after
the passage through the second BS2 set at angle φ, given
the input state to the second beam splitter BS2 is |ψ〉±. We
note that

〈S2S3〉 = 1

P+ + P−

⎡
⎣ N∑

p=0

⎛
⎝ ∑

n∈R+(�)

cnc
(n)
p

⎞
⎠

2

−
N∑

p=0

⎛
⎝ ∑

n∈R−(�)

cnc
(n)
p

⎞
⎠

2⎤
⎦.
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FIG. 7. The top graph shows the violation of the Leggett-Garg
inequality (1), as described in the text, for odd N and for the optimal
choice of � and angles θ and φ. The optimal violation is achieved
when the NOON state is created at time t2. The lower graph shows
the LG value for N = 15, versus �.

Here R−(�) = {2n < N − �}, R+(�) = {2n > N + �},
R0(�) = {N − � � 2n � N + �}.

The moment 〈S1S3〉 is evaluated without the measurement
Ŝ2 at t2, based on the superposition |ψ�〉 created at time t1. This
means we evaluate the expectation value of S3 after a rotation
given by beam splitter BS2 set at angle φ, for the full input
state |ψ�〉.

The violation of the Leggett-Garg inequality (1) with no
conditioning (� = 0) is shown by the red dashed curve in
Fig. 3. The violations improve for nonzero �. Figure 7 shows
the violation versus N for the optimal choices of angles θ and
φ, and for the optimal value of � = N − 1. The violation is
maximized by selecting � = N − 1, which corresponds to a
NOON state at time t2. Table I shows the values, including the
optimal angles, for the case N = 11. For N = 15, Fig. 7 shows
the violation versus �.

2. Evaluation of the disturbance inequality

We now outline the calculation of the disturbance inequality.
To evaluate 〈S3|M̂,σ 〉 we calculate the expectation of S3 given
that a projective (NCP or INR) measurement is made at time
t2, with the state preparation at time t1 as above for the
macroscopic Hong-Ou-Mandel effect. Specifically

〈S3|M̂,σ 〉 = P+
P+ + P−

〈S3〉+ + P−
P+ + P−

〈S3〉−

= P+
P+ + P−

〈S2S3〉+ − P−
P+ + P−

〈S2S3〉−, (C6)

where 〈S3〉± are the expectation values for the states defined
as |ψ±〉. To evaluate 〈S3|σ 〉, we find the expectation of S3

TABLE I. Maximum values of the violation of the Leggett-Garg
inequalities on optimizing the choice of angles θ and φ, for fixed �

and N .

� N θopt φopt LGmax

1,2 3 0.578973 0.495912 2.33291
1,2 5 0.628767 0.33428 2.11778
1,2 7 0.655977 0.254457 1.9855
1,2 9 0.673675 0.206237 1.89226
1,2 11 0.68629 0.17377 1.82165
1,2 13 0.695819 0.150344 1.76568
3,4 5 0.619339 0.475729 2.67167
3,4 7 0.649188 0.356205 2.51489
3,4 9 0.667305 0.287775 2.39912
3,4 11 0.680023 0.24249 2.30743
3,4 13 0.689619 0.210043 2.23205
5, 6 7 0.64078 0.465008 2.83173
5, 6 9 0.662639 0.36856 2.73091
5, 6 11 0.676442 0.3087 2.6466
5, 6 13 0.686464 0.266797 2.57372
7, 8 9 0.654105 0.458346 2.91181
7, 8 11 0.671783 0.376633 2.84982
7, 8 13 0.683173 0.323265 2.79288
9, 10 11 0.663216 0.45379 2.95311
9, 10 13 0.678323 0.382401 2.91581

without the measurement at time t2. From the calculations for
the Leggett-Garg inequality

〈S3|σ 〉 = 〈ψ�|S3|ψ�〉. (C7)

Applying the above results, we obtain that dσ = 2 for N =
3, . . . ,13 and � = N − 1, using the values of the optimal
angles. We also evaluate dσ for N = 13,11 and any value of �

and we have obtained that dσ = 2. The results are consistent
with a violation of the disturbance equality (2): dσ 
= 0.

APPENDIX D: NOON STATE AT TIME t2 IN A LINEAR
INTERFEROMETER WITH PHASE SHIFT

We consider where a NOON state is created at time t2, either
by dynamical evolution or by using conditional methods as
described above. The NOON state with spatially separated
modes enables an INR result measurement M̂ at time t2.
In Fig. 3(c) we give results for the scheme where, after the
measurement at time t2, the system passes through the linear
interferometer modeled by a phase shift φ followed by a
50/50 beam splitter. The transformations differ from the linear
interferometer described above, which is based on a PBS.

At time t2 we suppose therefore that the state has evolved
to a NOON state given by

|ψ(t2)〉 = α|N〉c|0〉d + β|0〉c|N〉d , (D1)

where α and β are normalization coefficients. We take α =
cos ϑ and β = sin ϑ . We note that the NOON state can in
principle be prepared using the conditional approach described
in Appendix B and in the main text, in which case ϑ is
determined by the beam splitter angle θ . We also comment
that phase factors associated with β can change depending on
the method of preparation, as seen on comparison with Eq. (4).
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If necessary, such phase factors can be manipulated after the
initial state preparation using phase shifts. At t3 the output state
is in ê and f̂ modes as given by

|ψ(t3)〉 = 1√
2N

N∑
m=0

√
N !√

m!(N − m)!

×(α + βeiNφ(−1)N−m)|m〉e|N − m〉f . (D2)

The probability of detecting m photons at mode e and N − m

photons at d is

Pm,N−m = 1

2N

(
N

m

)
[1 + 2αβ(−1)(N−m) cos(Nφ)]. (D3)

We obtain

〈S1S2〉 = α2 − β2 = cos 2ϑ,

〈S1S3〉 =
N∑

m=0

sgn(2m − N )Pm,N−m. (D4)

For even N , 〈S1S3〉 = 0. Noting that

N∑
m=0

sgn(2m − N )
1

2N

(
N

m

)
(−1)N−m = XN, (D5)

where

XN = (−1)(N−1)/2�(N/2)√
π�((N + 1)/2)

we can simplify the correlation to (since αβ = 1
2 sin 2ϑ)

〈S1S3〉 = XN sin 2ϑ cos Nφ. (D6)

The final correlation is obtained by evaluating the weighted
average where |N〉|0〉 and |0〉|N〉 are taken to be the initial
state. This is based on the prediction for a nonclumsy projective
measurement that collapses the state at time t2, to either |N〉|0〉
or |0〉|N〉. Thus

〈S2S3〉 = α2
N∑

m=0

sgn(2m − N )|h(N)|2

−β2
N∑

m=0

sgn(2m − N )|h(0)|2, (D7)

where

h(N) = 1√
2N

√
N !

m!(N − m)!
.

h(0) = 1√
2N

√
N !

m!(N − m)!
eiNφ(−1)N−m. (D8)

We find that for all values of N , 〈S2S3〉 = 0. For example, for
N = 3,

|3〉|0〉 → 1√
8

(|0〉|3〉 +
√

3|1〉|2〉 +
√

3|2〉|1〉 + |3〉|0〉),

|0〉|3〉 → ei3ϕ

√
8

(−|0〉|3〉 +
√

3|1〉|2〉 −
√

3|2〉|1〉 + |3〉|0〉).

TABLE II. Maximum values of the violation of the Leggett-Garg
inequalities on optimizing the choice of angles ϑ and φ.

N LGmax ϑopt φopt

3 1.11803 −0.231824 π/3
5 1.068 0.179385 π/5
7 1.04769 −0.151442 π/7
9 1.03671 0.1333456 π/9
11 1.02984 −0.120649 π/11
13 1.02513 0.110936 π/13
15 1.0217 −0.103244 π/15
19 1.01705 −0.0916934 π/19
21 1.0154 0.0872034 π/21
51 1.00628 −0.0559035 π/51
101 1.00316 0.0397109 π/101

Hence

〈S2S3〉 = α2

8
(1 + 3 − 3 − 1) + β2

8
(1 + 3 − 3 + 1) = 0.

For N even, there is no violation of the Leggett-Garg
inequality (1) since 〈S2S3〉 = 0 and 〈S1S3〉 = 0. Thus the
Leggett-Garg inequality for even N reduces to LG = 〈S1S2〉 =
cos 2ϑ < 1. For odd N , the Leggett-Garg correlation is

LG = cos 2ϑ − XN sin 2ϑ cos Nφ. (D9)

Here, it is possible to obtain violations of the Leggett-Garg
inequality. The angles ϑopt and φopt that maximize the value of
LG are

ϑopt = 1
2 arctan[XN ],

φopt = π/N. (D10)

Substituting this into the expressions for 〈S1S2〉 and 〈S1S3〉, we
obtain for the maximum value

LG =
√

1 + X2
N . (D11)

Table II indicates the maximum Leggett-Garg violation and the
optimal values of φ and ϑ . The maximum violation is plotted
in Fig. 3(c) and in Fig. 8, in this case for N up to 19.

FIG. 8. Violation of the Leggett-Garg inequality up to N = 19,
for the optimal values of ϑ and φ as given in Table II.
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TABLE III. The panel on the left gives the maximum violation of
the Leggett-Garg inequalities where ϑ is optimized at ϑopt for the fixed
angle φ = π/4. The panel on the right gives the maximum violation
of the Leggett-Garg inequality where the angle ϑ is optimized at ϑopt,
given the constraint φ = ϑ .

N LGmax ϑopt N LGmax ϑopt

3 1.06066 −0.169918 3 1.08875 0.159386
5 1.03456 0.1296 5 1.0457 −0.107283
7 1.02412 0.108738 7 1.02943 0.0817553
9 1.01852 −0.0954964 9 1.02113 −0.0663958
11 1.01503 −0.0861447 11 1.01618 0.0560665
13 1.01264 0.0790904 13 1.01295 −0.0486131
15 1.01091 0.0735252 15 1.01068 0.0429661
19 1.00856 −0.0652016 19 1.00776 0.0349518
21 1.00773 0.0619757 21 1.00877 0.139267
51 1.00315 −0.0396122 51 1.00622 −0.0610179
101 1.00158 −18.8214 101 1.00302 0.031722

It is also possible to get violations of the Leggett-Garg
inequality for fixed choice of angle φ. Here we select φ = π/4
and find the optimal choice for ϑ is given by

ϑopt = −1

2
arctan

[
XN cos

(
πN

4

)]
. (D12)

With these values we get the maximum violation

LG =
√

1 + X2
N

2
. (D13)

The corresponding values are given in Table III. We also
consider the case where ϑ = φ. Here we obtain violations of
the Leggett-Garg inequality for a suitable choice of φ as given
in Table III. Figure 3(c) gives a summary of the violations of
the Leggett-Garg inequality that are possible.
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