
A rough comparison of NewReno, CUBIC, Vegas
and ‘CAIA Delay Gradient’ TCP (v0.1)

Grenville Armitage
Centre for Advanced Internet Architectures, Technical Report 110729A

Swinburne University of Technology
Melbourne, Australia

garmitage@swin.edu.au

Abstract—This report presents a preliminary, non-
exhaustive experimental comparison of the relative latency
induced by NewReno, CUBIC, Vegas and ‘CAIA Delay-
Gradient’ (CDG) TCP algorithms under FreeBSD when
run over a variety of home network links. While inducing
less additional latency, CDG generally performs as well
as NewReno and CUBIC over ADSL1, 802.11g WiFi and
HomePlug AV links. All tests utilise FreeBSD-CURRENT
as of May 2011.

Index Terms—TCP, NewReno, CUBIC, Vegas, Delay-
Gradient

I. INTRODUCTION

Loss-based TCP congestion control (CC) algorithms
(such as NewReno [1] and CUBIC [2]) tend to cause
cyclical filling and draining of queues along network
paths1, adding to the latency experienced by all traffic
sharing the path [3], [4]. This is particularly problematic
given the growth of arguably-gratuitous buffering in all
sorts of network devices, interface cards and network
software stacks2.

In contrast, delay-based TCP algorithms tend to min-
imise queuing delays induced at congestion points along
a path (because they monitor delay measurements rather
than packet loss to infer the onset of network conges-
tion). This makes delay-based TCP an attractive propo-
sition where real-time application flows (such as VoIP
and online games) must share congestion points with
TCP flows. However, delay-based algorithms have often
been seen to perform worse than loss-based algorithms
for straightforward data transfer.

As part of CAIA’s NewTCP project [5] we developed
a new, delay-based variant of TCP known as “CAIA

1Filling until packet loss is induced, draining when the sender
temporarily reduces their transmission window.

2Aka ‘buffer bloat’, http://gettys.wordpress.com/category/
bufferbloat/

Delay-Gradient” (CDG3) [6], [7], and implemented it as
a patch to FreeBSD-CURRENT (FreeBSD 9 at the time
of development). Unlike loss-based TCP variants, CDG
adjusts its flow control ‘window’ (and hence transmis-
sion rate) in response to variations in the round trip time
(RTT) observed between source and destination.

With support from the FreeBSD Foundation in late
2010, versions of CUBIC and Vegas (an earlier delay-
based TCP) are now available in FreeBSD-CURRENT
(FreeBSD 9, February 2011) and FreeBSD 8-STABLE
(May 2011). This enables easy comparison between the
‘official’ FreeBSD versions of NewReno, CUBIC and
Vegas against CDG version 0.1.

The rest of this brief report is structured as follows.
Section II begins by highlighting what this report does
not achieve. Section III describes the testing method-
ology, and Section IV summarises results. The report
concludes in Section V.

II. A MAJOR CAVEAT

It is important to note what this report does not do.
TCP congestion control research will often exhaus-

tively evaluate fairness, responsiveness and convergence
of (and between) flows using different CC algorithms.
That is not the goal of this particular technical report.

Instead, we focus on a simple (but not-uncommon)
home use case – a single stream of data briefly traversing
a consumer-grade network link for some tens of seconds.
We evaluate the throughput and increase in RTT experi-
enced with each TCP variant.

You could drive a truck through the holes in some
of our assumptions and/or lack of rigour. The tests are
simplistic, and intended primarily to motivate additional
exploration of our CDG TCP variant. We hope someone
does produce a more detailed followup piece of work.

3We ran out of budget for a cool name.

CAIA Technical Report 110729A July 2011 page 1 of 5

mailto:garmitage@swin.edu.au
http://gettys.wordpress.com/category/bufferbloat/
http://gettys.wordpress.com/category/bufferbloat/

Critical evaluation of CDG and other TCP variants under
more complex heterogeneous and multi-flow scenarios is
definitely a matter for future work.

III. EXPERIMENTAL METHODOLOGY

Three different scenarios are tested: a remote Internet
site sending to a home connected by ADSL1, in-house
host-to-host over a ‘HomePlug AV’ link and in-house
host-to-host over 802.11g WiFi link.

A. Repeated downloads, alternating algorithms

In each scenario we execute an rsync4 file transfer
using one of the four TCP variants (NewReno, CUBIC,
CDG and Vegas) in turn. This process is then repeated
six times. Between each file transfer the path is left idle
for between 5 and 7 seconds.

Each file transfer takes roughly 30 to 50 seconds,
during which we measure the RTT over the link and how
much data arrives at the destination host per unit time
(throughput, roughly speaking). The RTT measurements
reveal how much collateral damage would be caused to
any delay-sensitive application flows (such as VoIP or
online games) that might have been sharing the link [3].
The throughput gives us a sense of how regular end users
might perceive the performance of each TCP variant.

Traffic at both source and destination hosts is captured
using tcpdump. RTT over time is calculated by running
SPP5 across both tcpdump files. Throughput is calculated
using tcpstat6 on the destination host’s tcpdump file
(counting all packet received, including retransmissions).
The source host was also pinged two or five times per
second by the destination host during each file transfer, to
validate SPP’s more finely-grained RTT measurements.

B. Destination and source hosts

In all scenarios the destination host is a Core2Duo
machine on my home LAN running PC-BSD 8.2 (based
on FreeBSD 8.2-RELEASE). The source host is a snap-
shot7 of 64-bit FreeBSD-CURRENT from May 2011,
with its kernel rebuilt from source after applying the
CDG version 0.1 patches.

For ease of deployment, we instantiated the source
host under VirtualBox (rather than wiping and re-
installing FreeBSD on physical machines). The guest

4Representative of regular applications that people might find
themselves using. A future study should probably utilise iperf.

5http://www.caia.swin.edu.au/tools/spp
6http://www.frenchfries.net/paul/tcpstat/
7FreeBSD-9.0-CURRENT-201105-amd64-dvd1.iso

under ftp://ftp.freebsd.org/pub/FreeBSD/snapshots/201105

OS (source host) network interface was bridged to the
physical host’s network interface in each case.

For the ADSL1 scenario the source ran inside Virtual-
Box 3.1.12 under 64-bit PC-BSD 8.2 on a HP Compaq
8000 desktop PC with 8G RAM. For the PowerlineAV
and 802.11g scenarios the source ran inside VirtualBox
4.0.6 under 64-bit Windows 7 Enterprise on a Toshiba
R700 laptop with 8G RAM.

To ensure both PowerlineAV and 802.11g would be
bottlenecks we confirmed that across a wired 1Gbps
ethernet link the R700 laptop’s source host could push
over 100Mbit/sec to our destination host using any of
the four CC algorithms.

C. Selecting source CC algorithms

FreeBSD-CURRENT allows new congestion control
modules to be added, selected or de-selected on-the-fly.
NewReno is always available immediately after reboot-
ing:

sysctl net.inet.tcp.cc
net.inet.tcp.cc.available: newreno
net.inet.tcp.cc.algorithm: newreno
#

Add additional dynamically-loadable CC modules:

kldload cccubic
kldload ccvegas
kldload cccdg

And now the kernel reports multiple available
choices:
sysctl net.inet.tcp.cc
net.inet.tcp.cc.available: newreno, cubic,
vegas, cdg
net.inet.tcp.cc.algorithm: newreno
#

NewReno is the default choice. We can easily change
the active CC algorithm to another of the available
algorithms using the sysctl command. For example,
the following makes all future TCP connections use
CUBIC:
sysctl net.inet.tcp.cc.algorithm=cubic
net.inet.tcp.cc.algorithm: newreno ->
cubic
#

D. Internet to home over ADSL1

The home broadband service is ADSL1 with a phys-
ical layer synchronised at 1536Kbps downstream (from
ISP to home), and 256KBps upstream. The IP link
between home and Internet is PPPoE.

The source host was located at the University, on
CAIA’s own 136.186.229/24 subnet. An IP-over-TCP/IP

CAIA Technical Report 110729A July 2011 page 2 of 5

http://www.caia.swin.edu.au/tools/spp
http://www.frenchfries.net/paul/tcpstat/
ftp://ftp.freebsd.org/pub/FreeBSD/snapshots/201105

tunnel over the public Internet (using VTUN8) links the
home LAN with the 136.186.229/24 subnet.

This tunnel means the source and destination hosts
appeared to be one hop from each other when in reality
a separate, underlying NewReno-based TCP connection
was carrying their packets over the public Internet. This
‘hidden’ layer of NewReno TCP introduces artifacts of
its own (such as retransmitting packets lost over the pub-
lic Internet). Nevertheless, since this sort of tunnelling
is not uncommon, we felt it would be interesting to see
what differences appeared when running each of the four
CC algorithms across an IP-over-TCP/IP tunnel9.

The idle path between source and destination host has
an RTT of roughly 50ms. Each rsync transferred 4Mbyte
of data and the destination host ping’d the source host
five times per second for the duration of each transfer.

E. HomePlug AV

HomePlug AV is a consumer-oriented technology for
creating bridged Ethernet-like services across electrical
mains-power lines already present in most homes10.

Normal HomePlug AV nodes have a peak physical
layer (PHY) rate of 200Mbps across the powerlines, and
many HomePlug AV devices are marketed using the term
“Powerline AV 200”11, with 100Mbps wired Ethernet
connections to external devices. The bitrate achieved
by Ethernet frames on a HomePlug AV link have been
observed in the 40 - 70Mbps range12, and in practice
depends heavily on the traffic patterns and number of
HomePlug AV devices active at a given time.

The in-house host-to-host link utilised two Netgear
XAVB 2001 “Powerline AV 200” devices in different
rooms to connect the source (Toshiba R700 laptop) and
destination hosts. The Netgear management tool reported
the PHY synchronised at 107 Mbps from source to
destination and 143 Mbps from destination to source.

The idle path between source and destination host has
an RTT of roughly 4ms. Each rsync transferred 40Mbyte
of data. In addition, the destination host ping’d the source
host five times per second for the duration of each rsync
transfer.

8http://vtun.sourceforge.net/
9Similar tunnels also occur when e.g. port-forwarding TCP over

SSH (which itself runs over TCP).
10https://www.homeplug.org/tech/whitepapers/

HPAV-White-Paper_050818.pdf
11To differentiate them from both the original 85Mbps HomePlug

1.0 specification and new 500Mbps HomePlug AV devices that have
started appearing on the market in 2011

12http://www.smallnetbuilder.com/lanwan/lanwan-reviews/
31241-homeplug-av-adapter-roundup

F. 802.11g Wireless LAN

The in-house host-to-host WiFi link consisted of a
FreeBSD 8.0 host with Ralink Technology RT2560 PCI
802.11g adaptor as access point, and the Toshiba R700
laptop as 802.11g client. Disconnecting the laptop’s
wired ethernet port ensured all traffic ran over the WiFi
interface. Wired 1Gbps Ethernet connected the destina-
tion host and access point host. The 802.11g link’s PHY
speed was not recorded, but Windows 7’s link quality
indicator suggested “good” connectivity.

The idle path between source and destination host
has an RTT of roughly 1.5ms. Each rsync transferred
80Mbyte of data. In addition, the destination host ping’d
the source host two times per second for the duration of
each rsync transfer.

IV. RESULTS

Here we summarise the RTT and throughput (band-
width) results for each trial. The median values (RTT or
bandwidth) are shown in each Figure’s legend.

A. Internet to home over ADSL1

Pushing data over a noisy, uncontrolled Internet path
to home reveals a distinct difference between the delay-
based and loss-based algorithms.

Figure 1 shows that both Vegas (median ~73ms) and
CDG (median ~134ms) induced noticeably lower levels
of additional queuing delay than NewReno (median
~492ms) and CUBIC (median ~613ms). Both NewReno
and CUBIC seem quite happy to fill excess buffering
available along the path, with CUBIC being noticeably
worse than NewReno (consistent with previous work
under controlled conditions [3]).

Figure 1. RTT distribution – ADSL1 path

CAIA Technical Report 110729A July 2011 page 3 of 5

http://vtun.sourceforge.net/
https://www.homeplug.org/tech/whitepapers/HPAV-White-Paper_050818.pdf
https://www.homeplug.org/tech/whitepapers/HPAV-White-Paper_050818.pdf
http://www.smallnetbuilder.com/lanwan/lanwan-reviews/31241-homeplug-av-adapter-roundup
http://www.smallnetbuilder.com/lanwan/lanwan-reviews/31241-homeplug-av-adapter-roundup

Although Vegas induces the smallest additional queu-
ing delay, there is a definite cost. Figure 2 shows that
using Vegas (median ~0.96Mbps) incurs something in
the range of a 20% - 25% performance penalty relative
to NewReno, CUBIC and CDG (medians from 1.2 to
1.25Mbps). In this scenario CDG achieves quite cred-
itable latency figures without giving away much by way
of performance.

Figure 2. Bandwidth distribution – ADSL1 path

B. HomePlug AV

The results using HomePlug AV are intriguing. Fig-
ure 3 shows that none of the four CC algorithms really
cause a significant absolute growth in RTT over the link’s
idle RTT of 4ms, with Vegas again inducing the lowest
RTTs.

However, Figure 4 reveals that Vegas suffers a dra-
matic performance hit, achieving ~14Mbps compared to
the ~31 – 36Mbps of the other three CC algorithms.
(Interestingly, Figure 4 shows CDG pushing the link
slightly harder than NewReno or CUBIC, which might
account for its slightly higher median RTT in Figure 3.)

C. 802.11g

Figures 5 and 6 reveal that Vegas appears exceedingly
well adapted to the home 802.11g network’s queuing and
loss mechanisms. CDG induces somewhat less RTT than
NewReno and CUBIC (median ~48ms versus ~53ms
and ~55ms respectively), while Vegas barely nudges the
RTT above the link’s idle state. Despite this, all four
CC algorithms achieve a a similar median throughput of
~18Mbps.

Figure 3. RTT distribution – HomePlug AV path

Figure 4. Bandwidth distribution – HomePlug AV path

V. CONCLUSIONS AND FURTHER WORK

Delay-based TCP algorithms have been tainted with
a reputation for performing worse than loss-based al-
gorithms for straightforward data transfer. In this fairly
rudimentary series of experiments, we compare the be-
haviours of four TCP variants – NewReno, CUBIC, Ve-
gas and “CAIA Delay-Gradient” (CDG) version 0.1 [6],
[7] – under FreeBSD-CURRENT.

We focus on a simple (but not-uncommon) home
use case – a single stream of data briefly traversing
a consumer-grade network link for some tens of sec-
onds – and evaluate the throughput and increase in
RTT experienced with each TCP variant. Three different
scenarios are tested: a remote Internet site sending to a
home connected by ADSL1, in-house host-to-host over

CAIA Technical Report 110729A July 2011 page 4 of 5

Figure 5. RTT distribution – 802.11g path

Figure 6. Bandwidth distribution – 802.11g path

a ‘HomePlug AV’ link and in-house host-to-host over
802.11g WiFi link.

CDG is observed to perform similarly to NewReno
and CUBIC, while usually inducing noticably lower
RTT. Vegas induces the lowest RTT, but has highly
variable performance (often noticably poorer than the
other three TCP variants). It would seem that CDG is
probably safe to deploy for experimental purposes – you
will experience little degradation in performance relative
to using NewReno or CUBIC, yet potentially experience
significantly less RTT-related collateral damage to other
data streams sharing congestion points in your network.

These admittedly simplistic experiments are intended
to stimulate further trials that more comprehensively
evaluate CDG under a variety of controlled home-
network conditions. For example, future work should ex-

plore the behaviour of multiple concurrent flows sharing
the same home network path(s), using different and/or
the same CC algorithms for each concurrent flow. It may
also be interesting to consider how an end-to-end TCP
session’s congestion control interacts with the congestion
control inside an IP over a TCP/IP tunnel, particularly
when the outer and inner TCP control loops use different
CC algorithms.

REFERENCES

[1] S. Floyd, T. Henderson, and A. Gurtov, “The NewReno
Modification to TCP’s Fast Recovery Algorithm,” RFC
3782 (Proposed Standard), Apr. 2004. [Online]. Available:
http://www.ietf.org/rfc/rfc3782.txt

[2] L. X. I. Rhee and S. Ha, “CUBIC for fast long-
distance networks,” North Carolina State University, Tech.
Rep., Aug. 2008. [Online]. Available: http://tools.ietf.org/id/
draft-rhee-tcpm-cubic-02.txt

[3] L. Stewart, G. Armitage, and A. Huebner, “Collateral damage:
The impact of optimised TCP variants on real-time traffic la-
tency in consumer broadband environments,” in Proceedings of
IFIP/TC6 NETWORKING 2009, Aachen, Germany, May 2009.

[4] L.Stewart, D. Hayes, G. Armitage, M. Welzl, and A. Petlund,
“Multimedia-unfriendly TCP Congestion Control and Home
Gateway Queue Management,,” in ACM Multimedia Systems
Conference (MMSys 2011), San Jose, California, 23-25 February
2011. [Online]. Available: http://portal.acm.org/citation.cfm?id=
1943558

[5] “The NewTCP project,” Aug. 2008, accessed 8 Aug 2008.
[Online]. Available: http://caia.swin.edu.au/urp/newtcp

[6] D. A. Hayes and G. Armitage, “Revisiting TCP congestion con-
trol using delay gradients,” in IFIP Networking 2011, Valencia,
Spain, May 2011.

[7] D. A. Hayes, “CAIA Delay Gradient (CDG) Congestion
Control Module for TCP v0.1,” Mar. 2011, accessed 29 March
2011. [Online]. Available: http://caia.swin.edu.au/urp/newtcp/
tools.html

CAIA Technical Report 110729A July 2011 page 5 of 5

http://www.ietf.org/rfc/rfc3782.txt
http://tools.ietf.org/id/draft-rhee-tcpm-cubic-02.txt
http://tools.ietf.org/id/draft-rhee-tcpm-cubic-02.txt
http://portal.acm.org/citation.cfm?id=1943558
http://portal.acm.org/citation.cfm?id=1943558
http://caia.swin.edu.au/urp/newtcp
http://caia.swin.edu.au/urp/newtcp/tools.html
http://caia.swin.edu.au/urp/newtcp/tools.html

	Introduction
	A major caveat
	Experimental Methodology
	Repeated downloads, alternating algorithms
	Destination and source hosts
	Selecting source CC algorithms
	Internet to home over ADSL1
	HomePlug AV
	802.11g Wireless LAN

	Results
	Internet to home over ADSL1
	HomePlug AV
	802.11g

	Conclusions and Further work
	References

