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Abstract 

As Australia is exposed to severe droughts and floods, seasonal rainfall forecasting is 

crucial for water resources management, food production and mitigating flood risks. 

However, rainfall prediction models have not been very satisfactory in terms of 

accuracy. The main focus of this study is the development of a non-linear rainfall 

forecast model for Victoria, Australia using antecedent large-scale climate predictors. 

Artificial Neural Network (ANN) was chosen as the primary modelling technique due to 

its capability to extract complex relationships from the data. ANN has been rarely used 

in rainfall forecasting in Australia in conjunction with the use of large-scale climate 

modes. In order to compare the forecast results of ANN models with those of linear and 

non-linear models, Multiple Linear Regression (MLR) models and Adaptive Network-

based Fuzzy Inference System (ANFIS) were developed respectively. To the best of the 

author’s knowledge, this research is the first study using ANFIS technique in 

conjunction with large-scale climate modes to forecast rainfall in Australia.  

Australian climate is highly influenced by the large scale-climate modes. The large-

scale climate modes taking place in the Pacific and Indian Oceans were considered in 

this study as potential rainfall predictors; El Nino Southern Oscillation (ENSO) and 

Interdecadal Pacific Oscillation (IPO) which occur in the Pacific Ocean and Indian 

Ocean Dipole (IOD) which occurs in the Indian Ocean were examined as rainfall 

predictors when developing the models. Furthermore, this study investigated the 

concurrent and antecedent relationship between seasonal rainfall and large-scale climate 

modes; classification analysis and Pearson correlation analysis were used in this regard. 

Three distinct regions in Victoria, Australia were considered as case studies; from each 

region three rainfall stations were selected. The classification analysis revealed that the 

dry phases of each climate modes consistently result in dry conditions, while the wet 

phases of these phenomena are highly variable. With the use of Pearson correlation 

analysis the magnitude of the strength of the effective phases of climate modes on 

Victoria’s seasonal rainfall was shown. Pearson correlation analysis was further used in 

order to find the relationship between spring seasonal rainfall and lagged climate modes 

prior to spring. It was revealed that only three months of June, July and August of 

climate modes have statistical relationship with spring rainfall. The statistical significant 
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lagged climate modes were used as model inputs when developing ANN, MLR and 

ANFIS models. 

Two different scenarios where considered in choosing the ANN model inputs. In order 

to evaluate the extent in time where the antecedent climate modes can affect rainfall 

predictability, the first scenario was developed based on two different input sets: a) 

three months’ single climate indices and b) nine months’ single climate indices as 

rainfall predictors. The results revealed that nine months single IOD models outperform 

the ANN models with three antecedent months’ climate modes (ENSO/IOD) as model 

inputs. In order to evaluate the potential of combined ENSO-IOD and ENSO-IPO in 

rainfall forecasting the second scenario was defined based on combined climate modes. 

The results of the second scenario revealed that antecedent combined ENSO-IOD are 

better predictors for seasonal rainfall forecasting than combined ENSO-IPO. Comparing 

the results of the first and second scenario revealed that in east Victoria, ANN models 

based on combined ENSO-IOD are superior to single climate mode models. As east 

Victoria is closer to the Pacific Ocean where ENSO occurs, the effect of both ENSO 

and IOD can therefore be felt in this region. However, towards central and west Victoria 

and closer to the Indian Ocean, the models based on nine antecedent single IOD were 

showing better forecasts compared to the combined ENSO-IOD models.   

The results of the MLR  models revealed that MLR models were able to forecast spring 

rainfall with acceptable errors for some stations, while showing less accurate results for 

the others. It was shown that MLR modelling approach has many statistical limitation 

and care needs to be taken when developing reliable models. By comparing ANN and 

ANFIS models, it was found that ANN models have lower errors in east Victoria, and 

the results of ANN and ANFIS models are comparable for central and west Victoria.  

The results of the nonlinear models (ANN and ANFIS) were compared with the 

Predictive Ocean Atmosphere Model for Australia (POAMA) which is the official 

model used by the Australian Bureau of Meteorology (BoM) to produce daily to 

seasonal forecasts. By comparing the forecasts of the ANN and POAMA models, it was 

shown that the ANN models are comparable with the POAMA in regards to model 

errors, but in most stations the ANN models are superior to the POAMA model in 
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regards to correlation coefficient of the models. It was shown that the ANFIS models 

outperform the POAMA model in west and part of central Victoria. In  summary, this 

research has revealed the potential of artificial intelligence techniques in seasonal 

rainfall forecasting in Australia.  
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Chapter 1 

Introduction 

1.1 Background 

The Australian climate is highly affected by changes of sea surface temperature (SST) 

and sea level pressure (SLP) in the surrounding oceans, particularly the Pacific and 

Indian Oceans. The El Nino Southern Oscillation (ENSO) occurring in the Pacific 

Ocean and the Indian Ocean Dipole (IOD) which takes place in the Indian Ocean are 

among the most important climate drivers of Australia. Australia is also affected by the 

Southern Annular Mode (SAM), which is the principal mode of atmospheric variability 

in the mid and high latitudes (Risbey et al. 2009). It is also believed that the 

Interdecadal Pacific Oscillation (IPO), a low frequency (15–35 years) form of 

variability of the tropical and extra-tropical Pacific Ocean (Verdon-Kidd &Kiem 2009a) 

modulates Australian rainfall.  

The relationship between large-scale climate modes (ENSO, IOD, SAM and IPO) 

which take place in the surrounding oceans and the Australian climate has been studied 

for many years. Although some insight into the effect of large-scale climate modes on 

Australia has been gained after years of research, due to the complexity of these 

relationships, many aspects of these phenomena remain unknown. One main component 

of the atmosphere which is affected by the SSTs and SLPs of oceans around Australia is 

Australian rainfall. Australia is a vast continent where different regions experience 

different climate, and the climate can vary significantly from one year to another (BoM, 

2014). Australian rainfall is highly variable both in space and time.  Previous studies 

have examined the simultaneous relationship between Australian rainfall and large-scale 

climate mode(s) in different parts of Australia. However, less consideration has been 

given to understanding the effect that these phenomena have on rainfall prediction.  

Forecasting and monitoring of rainfall values are highly important for numerous aspects 

of human life. Unforeseen flash floods produced by severe rainfall result in natural 

hazards threatening human lives and properties. Of the significant natural causes of 

national disasters and famines around the world, large-scale floods and droughts 

account for a large percentage of the calamities. 
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Furthermore, Australia’s agriculture and population are highly concentrated in the 

south-east of the continent (Murphy & Timbal 2008). With the effect of rainfall on 

water resources as a foregone conclusion, more accurate prediction of rainfall would 

enable more efficient utilization of water resources and power generation. The 

Australian Bureau of Meteorology (BoM), together with the Commonwealth Scientific 

and Industrial Research Organization (CSIRO), has developed a dynamic prediction 

model by the name of Predictive Ocean Atmosphere Model for Australia (POAMA). 

POAMA is a complex dynamic model with the initial focus of forecasting ENSO (Kiem 

& Verdon-Kidd 2009). POAMA is a state-of-the-art dynamic model which produces 

daily to seasonal rainfall and temperature forecasts.  

Generally, rainfall prediction models are categorized into either dynamic prediction 

models or statistical models. Dynamic models are deterministic and do not require 

information about a specific situation beyond the initial and boundary conditions. 

Although significant improvement has been made in the dynamic modelling of rainfall 

patterns, dynamic models are still much below their desired level of accuracy. In 

contrast, with statistical methods one does not know the dynamic relationship between 

the cause and effect of the system, nor one retains certain conceptions about the related 

roles of different processes that govern a phenomenon (Chakraverty & Gupta 2008). 

Statistical forecasts are an active area of research and with the use of non-linear 

techniques new developments are promised. While statistical prediction systems rely on 

the relationships between the variables, dynamic prediction systems are based on 

numerical simulation of the physical processes. However, in spite of considerable 

research effort and technological advances, sophisticated dynamic prediction systems 

are not able to out-perform simple statistical prediction systems (Schepen et al. 2012).  

The Artificial Neural Network (ANN) approach is a non-linear statistical technique that 

has become popular among scientists as an alternative technique for predicting and 

modelling complicated time series, weather phenomena and climate variables. The 

performance of non-linear mapping between inputs and outputs has made ANN a 

suitable candidate for the prediction of rainfall which its formation involves rather 

complex physics. ANN is an adaptive system which changes its structure based on 

external or internal information that flows through the network during the learning 
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phase and can deal with large amounts of dynamic and non-linear noisy data (Nourani et 

al. 2009).  

1.2 Statement of Problem 

As Australia is exposed to severe droughts and floods, seasonal rainfall forecasting is 

crucial for water resources management, food production and mitigating flood risks. In 

recent years, Australia has experienced dramatic flood events due to inclement climate 

conditions. From December 2010 until early 2011, major floods due to heavy rainfall 

occurred in several states, including Victoria, New South Wales and Queensland 

(AbdulRauf &Zeephongsekul 2014).  According to the Australian Bureau of 

Meteorology (BoM) flooding is Australia’s most costly natural disaster. Although 

floods do not have as wide an effect on Australia as droughts, they still cause damage to 

dwellings, transportation networks, and other infrastructure. In Victoria, flooding occurs 

mostly in winter and spring.  Seasonal rainfall forecasting for Victoria in south-east 

Australia has not been as successful as in other parts of Australia, particularly 

Queensland (Verdon-Kidd & Kiem 2009b). The relationship between the major large-

scale climate modes affecting the Australian climate and simultaneous daily to monthly 

rainfall has been studied for many years. However, a strong relationship between 

simultaneous climate mode(s) and rainfall does not essentially mean that there is also 

lagged relationship. For the purpose of rainfall forecasting, knowledge of the significant 

lagged relationships is essential, but very few studies have examined the lagged 

relationship between large-scale climate mode(s) and Australian rainfall. On the other 

hand, using antecedent climate modes as potential predictors of future rainfall has not 

received enough attention. Therefore, further research in this area is necessary for the 

following reasons: firstly, the findings are not yet conclusive about the time extent in 

which the climate modes influence rainfall prediction in different seasons and different 

regions. Secondly, the seasonal forecast results for Victoria are poor compared to other 

parts of Australia. According to Verdon-Kidd and Kiem (2009b), in comparison to 

eastern Australia and particularly Queensland, the performance of past studies on 

Victorian seasonal rainfall predictability have been low and a maximum predictability 

of only 30% was achieved. Finally, non-linear methods have been rarely used in the 

area of seasonal forecasting using large-scale climate mode(s) in Australia; most studies 

have used linear regression analysis or probabilistic/categorical analysis between 
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rainfall and simultaneous large-scale climate modes. Of the limited studies focused on 

the relationship between rainfall and past values of climate modes, only a few have used 

non-linear techniques (Schepen et al. 2011; Abbot and Marohasy 2012; Mekanik et al. 

2013).  

Furthermore, seasonal rainfall prediction models have not been very satisfactory in 

terms of accuracy when compared with daily or monthly rainfall prediction models. The 

probable reasons that make conducting seasonal rainfall prediction difficult are the 

complexity of the atmospheric processes and the uncertainty of the relationships 

between rainfall and hydro-meteorological variables. In addition, seasonal rainfall 

prediction with the use of numerical models has not demonstrated useful performance 

since rainfall prediction from such models is an average over grid point values, and 

therefore is a function of the model’s spatial resolution only; in this case neglecting the 

temporal variation will lead to consistent inaccuracies since rainfall is highly variable 

both in space and time. Hence, there is a need to develop seasonal rainfall prediction 

models using new data-driven tools like Artificial Neural Networks to represent the 

non-linear dynamic relationships among the data. Thus, the development of a 

sophisticated non-linear forecast model for Victoria using the potential climate modes 

as predictors is essential for accurate rainfall forecasting for this region.  

1.3 Aims and Objectives 

The main objective of this study is the development of a reliable seasonal rainfall 

prediction model for Victoria with the use of large-scale climate modes as potential 

predictors. The Artificial Neural Network (ANN) technique is chosen as the main 

modelling approach, followed by the Adaptive Network-based Fuzzy Inference System 

(ANFIS) and Multiple Linear Regression (MLR) modelling as bench marks for 

comparison with the developed ANN models. To the best of the author knowledge the 

present study is the first study in Australia that applies ANFIS approach for rainfall 

forecasting in conjunction with the use of large-scale climate modes. The detailed 

objectives of the study are as follows: 

 To find the relative contributions of concurrent and antecedent large-scale 

climate modes (i.e. ENSO, IOD, and IPO) on Victoria’s seasonal rainfall 
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 To classify and investigate the effects of different climate mode phases on 

Victoria’s seasonal rainfall  

 To investigate how these contributions vary by location across Victoria 

 To develop reliable nonlinear ANN models for seasonal rainfall forecast in 

Victoria 

 To develop MLR models for comparison with ANN results 

 To develop ANFIS model for the first time for Victoria in order to examine its 

potential in forecasting seasonal rainfall and also to have a nonlinear benchmark 

for comparison with the ANN models 

 To investigate the extent in time (e.g. one month, three months or further 

antecedent (lagged) climate modes) for which the antecedent months’ climate 

modes are able to provide more accurate rainfall forecasts  

 To compare the results of the developed model with the official forecast model 

of the Australian Bureau of Meteorology (BoM) in order to explore the 

shortcomings, effectiveness and advantages of each model. 

1.4 Research Scope 

The research scope of this study is as follows:  

Three distinct regions in Victoria are selected as case studies, and monthly rainfall data 

for three rainfall stations in each region are obtained. Monthly climate modes data are 

also gathered and pre-processing of the data is done, based on the requirements of each 

model. Rainfall anomalies are constructed based on different phases of climate modes in 

order to investigate the effect of different climate phases on seasonal rainfall in Victoria 

and classification analysis is carried out. Further, the simultaneous and antecedent 

relationships between large-scale climate modes (ENSO, IOD, etc.) are investigated 

with the use of Pearson correlation analysis.  

MLR, ANN and ANFIS models were developed. As a pioneer study, the model 

development is initiated by selecting the appropriate inputs for each type of model 

based on linear correlation analysis. The models are then calibrated and tested and the 

best models for each region is selected. The author acknowledges that with the use of a 

more sophisticated input selection techniques (e.g. genetic algorithm, partial mutual 
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information, etc.) better forecast results might be achieved. The results of the non-linear 

models (ANN and ANFIS) are then compared with the results of the official forecast 

model of the BoM and the advantages and limitations of the developed models are 

discussed. Due to software limitation, the rainfall forecasts in this study are achieved 

based on rainfall stations as opposed to grid rainfall forecasts. With the use of grid data 

set and more sophisticated software this study can be expanded in order to produce grid 

rainfall forecasts.  

1.5  Outline of the Thesis 

The thesis outline is as follows: 

A thorough literature review is conducted and discussed in Chapter 2. Chapter 3 

introduces the study area and the model verification criteria. The analysis of the effect 

of phases of climate modes on rainfall is discussed in Chapter 4. Chapter 5 discuses the 

MLR modelling approach and results. The ANN and ANFIS modelling methodology 

and results are discussed in Chapter 6 and 7 respectively. Chapter 8 discusses the 

comparison between ANN and ANFIS models with the POAMA forecasts followed by 

summary, conclusion and recommendation in Chapter 9.    
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Chapter 2 

Literature Review 

2.1 Introduction 

One of the most important challenges for sustainable water resources management in 

many parts of the world is managing a greatly variable climate in conjunction with 

increasing demand for natural resources; the rainfall and stream flow regimes of 

Australia rank among the most variable and therefore Australia is no exception 

(Nicholls et al. 1997). This variability happens during different time scales, from annual 

to multidecadal and possibly longer (Verdon-Kidd & Kiem 2009b). The variation of 

climate around the globe is related to the variation of sea surface temperatures (SSTs) 

and sea level pressures (SLPs) of the oceans around the world. The fluctuation between 

SSTs and SLPs create the so called large scale climate modes. Among the most 

influential large scale climate modes are the El Nino southern Oscillation (ENSO) and 

the Indian Ocean Dipole (IOD) which occur  in Pacific and Indian Ocean respectively. 

In addition to these two major modes, the Interdecadal Pacific Oscillation (IPO) and 

Southern Annular Mode (SAM) also affect the world climate. IPO is a form of 

variability similar to ENSO which takes place in Pacific Ocean on a multidecadal time 

scale. SAM is another important climate mode affecting mostly the southern 

hemisphere. Many studies have tried to investigate the existent relationship between 

these modes and the climate (particularly rainfall) around the world (Lau et al. 2001; 

Yufu et al. 2002; Barsugli & Sardeshmukh 2002; Hartmann et al. 2008; Chattopadhyay 

et al. 2010; Shukla et al. 2011). In the following sections a brief description of each 

mode is given, followed by a review of the studies which have examined the relative 

and independence role of these phenomena around the world. Finally, the research on 

the impact of large scale climate mode in Australia and particularly southeast Australia 

is reported. 

2.1.1 El Nino Southern Oscillation  

El Nino Southern Oscillation (ENSO) which results in climatic changes across the 

tropics and subtropics, refers to the influences of a band of sea surface temperatures that 

http://en.wikipedia.org/wiki/Sea_surface_temperature
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are unexpectedly warm or cold for long periods of time which develops off the western 

coast of South America. Deviations in the temperature of the surface of the tropical 

eastern Pacific Ocean and in air surface pressure in the tropical western Pacific Ocean is 

referred to as the Southern Oscillation (Bamston et al. 1997). Warming and cooling of 

the tropical eastern Pacific Ocean are known as El Nino and La Nina, respectively. The 

variations in surface temperature and air surface pressure are joined together; the El 

Nino (the warm oceanic phase) is accompanied by the high air surface pressure in the 

western Pacific and the La Nina (the cold oceanic phase) is accompanies by the low air 

surface pressure in the western Pacific (Verdon et al. 2004;) It is this ocean-atmosphere 

fluctuation that is referred to as the El Nino Southern Oscillation. It should be noted that 

mechanisms which result in the oscillation still remain under study. Extreme weather 

such as floods and droughts which happens in many regions of the world is caused by 

the extremes of this climate pattern's oscillations.  

The initiating reasons of an ENSO warm or cool event are not exactly recognized. 

However, sea surface temperature and atmospheric pressure as the two components of 

ENSO are intensely correlated. ENSO is generally represented by two types of 

indicators, the SLP indicator and the SST indicator. ENSO conditions are monitored in 

3 geographic regions of the equatorial Pacific using SST anomalies defined as Nino3 

(5
o
S – 5

o
N, 150

o
– 90

o
W), Nino3.4 (5

o
 S – 5

o
N, 170

o
 – 120

o
W) and Nino4 (5

o
S – 5

o
N, 

160
o
 – 150

o
W) (Risbey et al. 2009).  

The SLP indicator is defined as a bimodal variation in sea level barometric pressure 

between observation stations at Darwin, Australia and Tahiti and is referred to as the 

Southern Oscillation Index (SOI). SOI is a standardized difference between the two 

barometric pressures. According to Australian Bureau of Meteorology (BoM) SOI is 

calculated as follow:               

        
               

         
                     (1-1)             

where  

Pdiff = (average Tahiti mean SLP for the month) - (average Darwin mean SLP for the 

month) 

http://en.wikipedia.org/wiki/Surface_pressure
http://en.wikipedia.org/wiki/El_Ni%C3%B1o
http://en.wikipedia.org/wiki/La_Ni%C3%B1a
http://www.ncdc.noaa.gov/teleconnections/enso/enso-definitions.php#anomalies
http://www.ncdc.noaa.gov/teleconnections/enso/enso-definitions.php#bimodal
http://www.ncdc.noaa.gov/teleconnections/enso/enso-definitions.php#slp
http://www.ncdc.noaa.gov/teleconnections/enso/indicators/soi.php
http://www.ncdc.noaa.gov/teleconnections/enso/enso-definitions.php#standardized
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Pdiff(av) = long term average of Pdiff for the month in question 

SD(Pdiff)   =   long term standard deviation of Pdiff for the month in question.  

The complicated interactions between the ocean, atmosphere and neighbouring regions 

across the Pacific indicate that ENSO events have influences on weather in areas 

outside the tropical Pacific region. The different climatic conditions around the Pacific 

are related to El Nino and La Nina events (Hoerling & Kumar 2000). ENSO’s warm 

phase (El Nino) conditions refers to SST anomalies equal to or greater than 0.5°C in the 

Nino 3.4 region including portions of Nino regions 3 and 4. However, cool phase (La 

Nina) conditions are related to anomalies less than or equal to –0.5°C. Generally, lower 

pressure over Darwin and higher pressure over Tahiti causes a circulation of air from 

east to west, drawing warm surface water westward and bringing precipitation to 

Australia and the western Pacific. El Nino conditions are intensely coincidental with 

reduction in the pressure difference which causes severe drought in parts of the western 

Pacific, such as Australia. However, the west coast of equatorial South America can 

experience flooding due to the heavy precipitation across the ocean (NOAA-2014). The 

ocean near Australia is cooler than usual during El Nino events which causes lower than 

average winter–spring rainfall over eastern and northern regions. Most significant 

Australian droughts have been linked with El Nino events. However, presence of an El 

Nino does not definitely results in a prevalent drought (Verdon-Kidd & Kiem 2009a; 

Gallant et al. 2012) 

The most important driver of ENSO is the temperature gradients both at the surface and 

below the surface across the Pacific and particularly at the thermocline. Thermocline is 

a Greek term meaning the heat slope; thermocline  refers to the region separating warm 

and well-mixed surface water from cool and deep ocean water. In general water 

temperatures above the thermocline are more than 25°C while those below the 

thermocline are 15°C or less. Greater convection over the warmer ocean to north of 

Australia are connected with La Nina events which usually result in higher than average 

rainfall and occasionally causing floods across much of Australia, specifically inland 

eastern and northern regions. In the case of having neither El Nino nor La Nina (a 

neutral state) trade winds blow east to west across the surface of the tropical Pacific 

Ocean. In the neutral state the western Pacific experiences warm moist air and warmer 

surface waters, while the central Pacific Ocean remains reasonably cool. The trade 
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winds are the east to southeasterly winds in the Southern Hemisphere which affect the 

northern areas of Australia. 

In other words, warm sea surface temperatures in the western Pacific bring heat and 

moisture into the atmosphere above. Atmospheric convection refers to the process of 

rising this warm air into the atmosphere. When the air is sufficiently humid, it results in  

cumulonimbus clouds and rain. The air which is now drier moves to east before falling 

over the cooler eastern tropical Pacific. The Walker Circulation is referred to the pattern 

of air rising in the west and descending in the east with westward moving air at the 

surface. Trade winds become less strong or may even reverse during an El Nino event 

which allows the movement of the area of warmer than normal water into the central 

and eastern tropical Pacific Ocean. Deepening of the thermocline in the central to 

eastern Pacific are linked with these warmer than normal ocean temperatures. Warmer 

sea surface temperatures are related to a weaker upwelling of cooler ocean waters from 

below. SST around northern Australia are cooler than normal; the convection drifts 

away from Australia eastward towards the central tropical Pacific Ocean and thereby, 

causing more rainfall for regions such as Kiribati and Peru, but less rainfall over 

Australia. Inside eastern Australia usually has the greatest influences; however, areas 

such as  southwest Western Australia and coastal New South Wales can experience 

different impacts from event to event. In western Tasmania effects are usually less felt 

(BoM-2014).   

The Walker Circulation strengthens during a La Nina event, with stronger trade winds 

and more convection over the western Pacific. The pool of warmer water is restrained to 

the far western tropical Pacific when the trade winds intensify which leads to warmer 

than usual SST in north of Australia. SST over the central and eastern tropical Pacific 

Ocean become cooler than usual and the thermocline migrates closer to the surface. As 

upwelling intensifies, cool waters from the deep ocean are drawn to the surface. 

Stronger winds deliver more moisture to the overlying atmosphere and the Walker 

Circulation increases, resulting in increase in convection and also cloudiness over the 

north of Australia. This situation intensifies the Australian monsoon. Further, if the 

conditions are right, it increases humidity and rainfall over Australia. Increased rainfall 

over much of northern and eastern Australia are linked with La Nina events. The effects 



11 

 

of La Nina is superior to that of El Nino in parts of northern and central Australia.(Cai 

et. 2011; Murphy & Timbal 2008; Nicholls 1989 ) 

2.1.2 Indian Ocean Dipole 

Indian Ocean Dipole (IOD), similar to ENSO, is a coupled oceanic atmospheric event in 

the equatorial Indian Ocean (Saji et al. 1999). The IOD is represented by the difference 

in SST between two poles (i.e. a dipole) in which a western pole is in the western Indian 

Ocean and an eastern pole is in the eastern Indian Ocean south of Indonesia. The IOD 

has significant effects on climate and rainfall variability in Australia and other countries 

surrounded by the Indian Ocean Basin. Similar to an ENSO event, the variation in 

temperature gradients across the Indian Ocean changes the preferred regions of rising 

and descending moisture and air. 

The IOD and ENSO events are interrelated through an extension of the Walker 

Circulation to the west and associated Indonesian warm tropical ocean water flowing 

from the Pacific into the Indian Ocean. According to Meyers et al. (2007), the IOD and 

ENSO can sometimes occur together in such a way that strengthens each other. 

Therefore, positive IOD events are frequently linked with El Nino, while negative 

events are associated with La Nina. When the IOD and ENSO are out of phase the 

influences of El Nino and La Nina events can be weakened. However, if they are in 

phase the effects of El Nino and La Nina events are commonly extreme over Australia 

(BoM-2014). 

According to Risbey et al. (2009) the IOD usually peaks in Australian spring 

(September-November), nevertheless it can occur from May to November. The dipole 

mode index (DMI) is a measure of the IOD. Saji et al. (1999) defined DMI as the 

difference in SST anomaly between the tropical western Indian Ocean (10
o
S–10

o
N, 

50
o
–70

o
E) and the tropical south-eastern Indian Ocean (10

o
S–equator, 90

o
–110

o
E). 

There are arguments over the independence extent of IOD from ENSO (Saji et al. 1999; 

Ashok et al. 2003; Meyers et al. 2007). An index of IOD was developed by Meyers et 

al. (2007) using a lagged empirical orthogonal function (EOF) approach in which 

variation in ENSO in defining the IOD is taken into account.  
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The understanding of the dynamics of the IOD has improved rapidly; this has been 

comprehensively summarized by Yamagata et al. (2004). Similar to ENSO, the growth 

and maintenance of positive and negative patterns are significantly influenced by the 

change of subsurface temperature in the depth range of the thermocline. According to 

Yamagata et al. (2004), based on evidences from coupled, numerical models the IOD 

can grow by ocean–atmosphere interaction involving the thermocline. Although there 

are limited number of observational studies on the depth of the thermocline; however, it 

has been demonstrated through these observations that the thermocline experiences 

large vertical displacements beneath both poles of the dipole. Further, the displacements 

are correlated to the local SST anomalies (Meyers 1996; Rao et al. 2002; Feng and 

Meyers 2003). Similar to ENSO, it is shown in the previous studies that the depth of the 

thermocline is mainly forced by remote winds, from both the Indian and the Pacific 

Oceans (Wijffels & Meyers 2004). According to Feng and Meyers (2003), the remote 

forcing and the local wind are elements in the generation of the SST of the eastern pole, 

in such a way that cool SST anomalies (i.e., positive IOD) develop when the 

thermocline is shallow due to remote forcing and the easterly wind is helping the 

upwelling along the coast of Java. Therefore, similar to ENSO, upwelling in the Java–

Sumatra region appears to be a vital controlling process in the growth of IOD 

anomalies. 

Positive IOD event results in warmer SST in the western Indian Ocean relative to the 

east and easterly wind anomalies across the Indian Ocean. It also leads to less 

cloudiness to northwest of Australia as well as less rainfall over southern Australia. On 

the other hand, negative event are associated with cooler sea surface temperatures in the 

western Indian Ocean relative to the east, bringing more westerly winds, increasing 

cloudiness to Australia's northwest, and more rainfall in the southern Australia (Murphy 

& Timbal 2008; Gallant et al. 2012). 

2.1.3 Southern Annular Mode 

The Southern Annular Mode (SAM), also known as the Antarctic Oscillation (AAO), 

refers to the north–south movement of the westerly wind belt that circles Antarctica. 

According to Thompson and Solomon (2002), the SAM is the governing mode of 

atmospheric variability in the mid-and high latitudes of the Southern Hemisphere. The 
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SAM represents the north–south shifts in mass between the pole and mid-latitudes and 

zonal wind anomalies between about 30
o
 and 60

o
 latitude. Thompson (2014) defines the 

positive (i.e. high index) SAM phase as where pressures are lower than normal in the 

polar region with improved westerly winds along 55
 o 

and 60
 o

 latitude. A simple index 

of the SAM was defined as the difference between normalized monthly zonal mean sea 

level pressure at 40
 o

 and 65
 o

S which has been calculated from station pressures by 

Marshall (2003) for the period from 1957 to the present (Gong & Wang 1999).  

It is believed that variations in the SAM are associated with rainfall variability in each 

of the Southern Hemisphere regions (Hendon et al. 2007). An analysis of SAM 

contributions to rainfall variability in Australia has been carried out by Hendon et al. 

(2007). A daily SAM index was used and it was found that up to about 15% of weekly 

rainfall variance in parts of south-western and south-eastern Australia are explained by 

the SAM. Hendon et al. (2007) noted that although ENSO has substantial rainfall 

relationships for broader sections of the continent; however, SAM contribution in 

rainfall variance is comparable to the amount of rainfall variance associated with ENSO 

for these regions.  

The belt of strong westerly winds contracts towards Antarctica during positive SAM 

events, which leads to weaker than normal westerly winds and higher pressures over 

southern Australia. Further, it limits the penetration of cold fronts inland. On the 

contrary, an expansion of the belt of strong westerly winds towards the equator 

indicates a negative SAM event. Stronger storms and low pressure systems over 

southern Australia occur as a result of this shift in the westerly winds. A positive SAM 

value during autumn and winter translates to elimination of rainfall in southern 

Australia. On the other hand, a strong positive SAM during spring and summer 

indicates that southern Australia is affected by the northern half of high pressure 

systems; thereby, more easterly winds carry moist air from the Tasman Sea which could 

bring more rain as the winds hit the coast. An important contributor to the “big dry” 

observed in southern Australia from 1997 to 2010 has been a high positive SAM 

dominating during autumn–winter in the recent years (Hendon et al. 2007; Risbey et al. 

2009). 
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2.1.4 Interdecadal Pacific Oscillation 

Similar to ENSO, a sustained pattern of Pacific climate variability is referred to as the 

Interdecadal Pacific Ocean (IPO) (Power et al. 1999) and Pacific Decadal Oscillation 

(PDO) (Zhang et al. 1997). According to Mantua et al. (1997), PDO (IPO) is the 

phenomenon responsible for these multi-decadal step changes in climate. Variable 

periods of warming (i.e. positive phase) and cooling (i.e. negative phase) in both 

hemispheres of the Pacific Ocean are associated with the PDO and IPO (Folland et al. 

2002). However, the persistence of PDO/IPO periods (15–30 yr) and the fact that the 

climatic fingerprint of the PDO is most prevailing in the north Pacific sector with a 

secondary signature in the tropics are the two characteristics differentiate the PDO (and 

IPO) from ENSO (Mantua & Hare 2002). Decadal and annual-scale fluctuations in 

maximum temperature, rainfall,  water volume transport and wheat crop yield and the 

general climate variability in Australia are linked to the IPO/PDO phenomena (Power et 

al. 1999; Kiem et al. 2003;  Verdon et al. 2004). According to Folland et al. (2002), the 

IPO/PDO mainly affects the eastern Australian climate during the austral spring, 

summer and autumn by inducing variations in the South Pacific Convergence Zone that 

tends to be active during these months. During the mid-1940 through to the mid-1970 a 

period of higher rainfall and stream flow has occurred across much of eastern Australia 

(Verdon-Kidd & Kiem 2009b) which is related to IPO. Climate patterns around the 

world are also influenced by the PDO and IPO (e.g. Kiem et al. 2003; Verdon et al. 

2004). From at least the 15th Century the IPO/PDO has been known as a dominant 

climate mode in the Pacific sector. Therefore, climate in the future is likely to continue 

to be influenced by the IPO/PDO (Verdon-Kidd & Kiem 2009a). 

The IPO/PDO indirectly controls the eastern Australian climate by modulating the 

magnitude and frequency of ENSO effects (Power et al. 1999; Kiem et al. 2003; Verdon 

et al. 2004). The relationship between ENSO and Australian rainfall is declining when 

the IPO/PDO is in a warm phase. However, it is reinforced during the cool phase 

(Power et al. 1999).  

An increased response of rainfall and streamflow to La Nina events during a cool 

IPO/PDO phase is the utmost impact of this modulation. Wet events are possibly to be 

wetter and more frequent during the negative (i.e. cool) IPO/PDO phase compared to a 
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neutral or warm IPO/PDO phase; which increases the flood risk in the Murray darling 

Basin (MDB) located at southeast Australia (Kiem et al. 2003; Verdon et al. 2004). On 

the contrary, wet events are less frequent and not as wet as they are during the IPO/PDO 

cool phase during the positive (i.e. warm) IPO/PDO phase. This leads to an elevated 

risk of drought across the MDB and other parts of eastern Australian (Verdon-Kidd & 

Kiem 2009a). Examining paleoclimate reconstructions of the two climate modes 

confirmed that the relationships between IPO/PDO phase and the frequency of ENSO 

events is consistent over the past 450 year. According to Lough (2007), the relationship 

between ENSO, IPO and rainfall/streamflow in northeast Queensland is consistent for at 

least the last 400 year. 

2.2 Effect of Large Scale Climate Modes on Global Rainfall 

Rainfall, evapotranspiration, temperature and humidity are considered as hydro-climate 

variables. Rainfall is the most significant and most investigated hydro-climate variable. 

Several research have been carried out to evaluate rainfall characteristics, mechanisms, 

their spatiotemporal changes, pattern and variability around the world (Ventura et al. 

2002; Cheng et al. 2004; Rio et al. 2005; Kim et al. 2008; Grimm 2011; Niu 2013). The 

variability of rainfall around the world has been linked to large scale climate modes 

(Ashok et al. 2001; Mason & Goddard 2001; Manatsa et al. 2012). Researchers have 

used different methods and modelling techniques in order to extract and model the 

relationships between these large-scale climate modes and rainfalls in different parts of 

the world (Lau et al. 2001; Yufu et al. 2002; Barsugli & Sardeshmukh 2002; Hartmann 

et al. 2008; Chattopadhyay et al. 2010; Shukla et al. 2011). In this section some of these 

studies are reviewed.  

The most significant source of variability for South American summer rainfall is known 

to be ENSO (Grimm 2011). According to Niu (2013), the main variabilities of rainfall 

were shown to be related to the IOD phenomenon in the Pearl River basin in China, 

particularly in the central and eastern part of the basin. The effect of large-scale climate 

oscillations such as ENSO and PDO on rainfall of the Colorado River basin is 

recognized by Kim et al. (2008) . Barsugli and Sardashmukh (2002) evaluated the 

global atmospheric response to SST anomalies’ sensitivity via the general circulation 

model (GCM) through the tropical Indian and Pacific Ocean basins. For a uniform array 



16 

 

of 42 localized SST anomaly patches the responses of the model in January over the 

domain were calculated. To produce sensitivity maps, a statistically based smoothing 

procedure was used to combine the results from the individual forcing experiments. 

Target quantities of interest comprise the geopotential height response over the Pacific–

North American (PNA) region and regional precipitation responses over North 

America, South America, Africa, Australia, and Indonesia. The analysis results revealed 

that that many significant targets for seasonal forecasting, comprising the PNA 

response, are most sensitive to SST anomalies in the Nino4 region of the central tropical 

Pacific. However, they have lesser and sometimes opposite sensitivities to SST 

anomalies in the Nino3 region of the eastern tropical Pacific. On the other hand, certain 

important targets including Indonesian rainfall are most sensitive to SST anomalies 

outside both the Nino4 and Nino3 regions. These results were also pertinent in 

evaluating atmospheric sensitivity to variations in tropical SSTs on decadal to 

centennial scales related to natural and anthropogenic forcing. The authors also revealed 

that warm SST anomalies in one-third of the Indo-Pacific domain result in a decrease of 

global mean precipitation.  

Lau and Weng (2001) recognized three coherent modes of summertime rainfall 

variability over China and global SST during 1955–98 using Singular Value 

Decomposition. The influences of the El Nino in 1997-98 on main drought and flood 

incidences over China were evaluated according to these modes. The first mode, 

determined with the growing phase of El Nino superimposed on a warming trend since 

the mid-1950s, significantly affects rainfall over northern China. The second mode 

included a quasi-biennial (QB) variability manifested in alternate wet and dry years over 

the Yangtze River Valley (YRV) of central China. The third mode which had an 

opposite trend in southern China, was dominated by a quasi-decadal oscillation in 

eastern China between the Yangtze River and the Yellow River. The effects of these 

three modes on the 1997 and 1998 observed rainfall anomalies were assessed based on a 

mode-by-mode reconstruction. The results revealed that the influence of anomalous 

SST forcing during the growing phase of the 1997–98 El Nino possibly resulted in 

severe drought in northern China and the flood in southern China in 1997. It was also 

found that the severe flood over YRV in 1998 is related to the biennial tendency of 

basin-scale SST anomaly throughout the transition from El Nino to La Nina in 1997–98. 
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Moreover, it was revealed that the extended dry pattern over northern China and wet 

trend over YRV since the 1970s could be due to a long-term warming pattern in the 

tropical Indian Ocean and western Pacific. The long-term dry background intensified 

the drought situation over northern China in 1997. The wet background worsened the 

flood situation over YRV in 1998 due to the influences of the 1997–98 El Nino. On the 

other hand, neither El Nino nor QB signals showed clear dominance on the rainfall 

variability in southern China. Lau and Weng (2001) also discussed the significance, 

reliability and stability of the aforementioned results. 

Guo et al. (2004) also studied the relationships between the floods in the Yangtze River 

valley and SST anomalies in the Pacific and Indian Oceans in 1998. According to their 

findings, their model was able to produce the heavy precipitation in the summer of 1998 

over the valley of Yangtze River affected by global observational SST. It was revealed 

that the main characteristics of the observed subtropical high anomalies over the 

western Pacific was also possible to be produced by the model. For the different areas 

of the ocean and different periods the experiments with the observed SST were 

produced. Comparison of the influence of SST anomalies of different ocean areas on the 

floods revealed that they are significantly influenced by SST anomalies in the Indian 

Ocean. Based on their findings a much closer relationship exists between the SST 

anomalies in the Indian Ocean and the western Pacific and the strong anomalies of the 

subtropical high over the western Pacific compared to the SST anomalies in other 

concerned regions. Moreover, it was found out that the floods and subtropical high 

anomalies in the summer of 1998 were more influenced by the concurrent summertime 

SST anomalies compared to SST anomalies in the preceding winter and spring seasons.  

Murphy et al. (2014) examined the relationship between monthly rainfall in the Panama 

Canal and SST anomalies. According to Murphy et al. (2014) in regards to monthly 

accumulated rainfall, the tropical Panama Canal Watershed has the largest inter-annual 

variability in December with the recorded wettest month being December 2010. They 

found that the December accumulated rainfall is associated with the SST anomalies in 

both the tropical North Atlantic and equatorial Pacific oceans. Nevertheless, a 

significant relationship with different SST anomalies were found. The flux of low-level 

moisture over the Caribbean Sea, southern Central America, and the eastern Pacific 

Ocean was found to be significantly influenced by the configuration of SST anomalies 
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in these two ocean basins during December. This effect is through the modification of 

the Caribbean Low-Level Jet (CLLJ) and the Chorro del Occidente Colombiano 

(CHOCO) jet. Murphy et al. (2014) found out that cool SST anomalies in the tropical 

Pacific, a fading (reinforcing) of the CLLJ (CHOCO jet), and increased moisture 

convergence over and around Panama are related to wet Decembers in the watershed. 

On the other hand, the opposite conditions are associated with dry Decembers. In other 

words, dry Decembers in the watershed are associated with warm SST anomalies in the 

tropical Pacific (North Atlantic) and increased moisture convergence over and around 

Panama. During December the distribution of daily rainfall is differently influenced by 

the SST anomalies in these two ocean basins. In other words, the SST anomalies in the 

Pacific (Atlantic) are mainly associated with variations in the frequency of heavier 

(lighter) rainfall.  

In South America the variation of modern and past spatiotemporal precipitation is 

intensely influenced by ENSO cycles. The exact spatiotemporal rainfall pattern is 

complicated. However, in parts of the west coast of South America rainfall is usually 

increased during positive ENSO anomalies (El Nino). On the other hand, increased 

rainfall in parts of central South America and in the Amazon drainage basin is 

associated with negative ENSO anomalies (La Nina). Since precipitation affect erosion 

processes and discharge; thereby, in the Andes and in the neighbouring regions the 

global-scale ENSO phenomenon significantly influences sediment flux and 

aggradations/deposition cycles. On the other hand, there are only a limited number of 

rain- and river gauge networks in the remote areas of the Andes and Amazon drainage 

basin. Therefore, the variation in magnitude of the spatiotemporal rainfall and discharge 

remains weakly restrained between contrasting ENSO cycles (Bookhagen & Strecker, 

2010). Mariotti et al. (2002) demonstrated that effect of ENSO on rainfall is significant 

in the Euro-Mediterranean areas in which their characteristics change seasonally. 

Similar to the ENSO-Europe connection in the spring, Mariotti et al. (2002) found a 

considerable correlation in the autumn. The absolute anomalies are small compared to 

tropical regions. However, the influence is relevant particularly for the regions around 

the Mediterranean with rare rainfall occurrence. 

Several attempts have been made in the past to recognize the influence of Indian 

monsoon and large scale climate modes over the Indian continent. It has been shown 
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that there is a dominantly inverse relationship between ENSO and Indian rainfall using 

different methods and analysis of datasets comprising the last 140 years. However, in 

recent decades the dominant coupling between the ENSO and Indian rainfall is 

weakened. Sarkar et al. (2004) analysed pattern of rainfall over the Indian subcontinent 

and its relation with ENSO. Their results revealed a stronger circulation trend over the 

Indian region in the last two decades. It was also found that in recent years the effect of 

ENSO has increased; however, it has failed to influence the Indian rainfall due to the 

stronger circulation pattern dominant over India during this time. Sarkar et al. (2004) 

suggested that the effect of ENSO on Indian precipitation has increased in recent times. 

Further, it is proposed that the effect of ENSO is secondary to the local dynamics in the 

area. According to Sarkar et al. (2004), the strength of ENSO is only recognized during 

low bipolarity over the Indian Ocean which is when the local dynamics declines and the 

Walker circulation over this area becomes weak. The Walker circulation is further 

weakened with a stronger ENSO with the moving of the circulation cell towards the 

central Pacific which results in an overall low rainfall year. A strong local dynamics and 

circulation pattern has offset any impact of ENSO in the last two decades as a result of 

typically strong and persistent development of bipolarity in the Indian Ocean. The 

increased land-sea thermal contrast observed in recent years and a stronger dipole mode 

activity in the Indian Ocean (Sarkar et al. 2004) have possibly worked together; thereby, 

a good rainfall during the last few ENSO events is confirmed (Sarkar et al. 2004).  

Ashok et al. (2001) examined the effect of the IOD on the inter-annual variability of the 

Indian summer monsoon rainfall (ISMR) from 1958 to 1997. The ISMR has been 

affected by the ENSO and the IOD during the last four decades. Whenever, the ENSO-

ISMR correlation is low, the IOD-ISMR correlation is high. On the other hand, if the 

ENSO-ISMR correlation is high, the IOD-ISMR correlation is low. The IOD, as a 

modulator of the Indian monsoon rainfall, has significant impact on the correlation 

between the ISMR and ENSO. According to Ashok et al. (2001), the Indian summer 

monsoon is affected by the IOD events on their own. Thereby, it seems that IOD 

declines or reinforces the effect of the ENSO on the ISMR. The effect on ISMR relies 

on the phase and amplitude of the IOD and ENSO due to presence of positive and 

negative events in the two major tropical climate phenomena. It is probable that some 

IOD events could be associated with some ENSO events. However, Ashok et al. (2001) 
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found out that the approach in which considers the IOD as one of the main coupled 

modes in the tropics appears to be effective in assessing the effect of IOD on ISMR. 

Further studies on ISMR was conducted by Ashok et al. (2004). They examined the 

comparative effects of ENSO and the IOD events on the ISMR through analysing 

observations and experimental results. During the pure IOD years, pure ENSO years, 

and co-occurring years, composite analysis of the ISMR anomalies revealed that the 

influence of the El Nino on the Indian monsoon is significantly decreased by positive 

IOD. However, negative IOD considerably reduces the impact of the La Nina on the 

Indian monsoon. This endorses the hypothesis proposed by Ashok et al. (2001). In order 

to assess the effect of the El Nino, the IOD, and their combined influence on the ISMR 

and related circulation, numerous multi-ensemble sensitivity experiments were 

conducted using an AGCM with different types of SST fields as lower boundary 

forcing. It was found that both poles of the IOD contribute to the excess rainfall over 

India during the positive IOD event; thereby it decreases the effect of ENSO. Using 

AGCM experiments, it was also revealed that positive IOD events intensify the ENSO-

induced subsidence and rainfall deficiency over the Indonesian region. As noted in 

Ashok et al. (2001), the net combined effect of these ocean processes relies on the 

relative phases and it strengths. The IODMI is a potentially suitable predictor for the 

Indian summer monsoon rainfall due to the fact that the IOD seems to weaken the 

relationship between ENSO and monsoon. 

It is well recognized that SST anomalies in the central-eastern Pacific which are related 

to the ENSO, act as the main forcing of the rainfall variability. Nevertheless, it is 

difficult to simulate the aforementioned fact. Chattopadhay et al. (2010) evaluated the 

relationship between rainfall and SST anomalies for the period of the winter monsoon 

over India by means of scatter plot matrices and autocorrelation functions. It was 

revealed that the coefficient of determination for the linear trend was very low even 

when a six degree polynomial trend was adopted. In order to forecast the average winter 

monsoon rainfall of a given year an exponential regression equation and an artificial 

neural network (ANN) were produced. Substantial variables were selected and the 

rainfall amounts and the SST anomalies in the winter monsoon months of the previous 

year were chosen as predictors. Levenberg- Marquardt algorithm was used to produce 

the regression coefficients for the multiple exponential regression equation. The ANN 
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in the form of a multilayer perceptron with sigmoid non-linearity and genetic-algorithm 

based variable selection were made. The Willmott’s index, percentage error of 

prediction, and prediction yields were used to evaluate both predictive models 

statistically and the potential of ANN over exponential regression was demonstrated.  

2.3 Effect of Large Scale Climate Modes on Australian Rainfall 

The significance of rainfall for sustainable water, agriculture and ecological 

management is well recognized In Australia; thereby, rainfall is the most significant and 

most investigated hydro-climate variables. Several research have been carried out to 

evaluate rainfall mechanism in Australia and the simultaneous relationships between 

large scale climate modes and Australian rainfall (Nazemosadat & Cordery 1997; 

Chambers 2003; Murphy & Timbal 2008; Chowdhury & Beecham 2010; Beecham & 

Chowdhury 2010; Evans et al. 2009). In general, rainfall in Australia has a high degree 

of spatiotemporal variability (Chowdhury & Beecham 2010) and demonstrates  

persistence characteristics (Simmonds & Hope 1997) which are affected by several 

natural climate phenomena originating from the Pacific, Indian and Southern Oceans. 

SST variability in the Pacific and Indian Ocean,  the Southern Annular Mode (SAM) 

and the Interdecadal Pacific Oscillation are considered as key climate drivers in 

Australia (Cai et al. 2011; Chowdhury & Beecham 2010; McBride & Nicholls 1983; 

Drosdowsky 1993; Drosdowsky & Chambers 2001; Hendon et al. 2007; Meneghini et 

al. 2007; Power et al. 1999). According to Cai et al. (2011), eastern and southern 

Australian rainfall are considerably influenced by the ENSO and IOD phenomena, 

respectively. The current research interest in Australia is focused on  the relative effects 

of these climate phenomena on rainfall and their teleconnection pathways which vary 

spatially within Australia. According to Cai et al. (2011), ENSO affects the Australian 

climate; nevertheless, it is still unclear whether SST variations of Pacific Ocean in the 

tropics is accountable for climate variability or that of Indian Ocean. According to Saji 

et al. (1999), the following two mechanisms are well identified: The development of the 

Southern Oscillation in the Pacific Ocean influences the lower latitudes of eastern 

Australia; however, the Indian Ocean SST anomalies affect higher latitudes. The SST in 

the tropical Indian Ocean and in the tropical Pacific Ocean change relatively during 

ENSO phenomena (Cai et al. 2011). Chowdhury and Beecham (2013) found that during 

the El Nino phenomenon winter rainfall is reduced in the western and southern parts. 
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However, upon removal of covariance with the IOD the effect of El Nino on SA rainfall 

disappears. (Chowdhury & Beecham 2013). Some of these studies will be discussed in 

more details. 

Operational seasonal prediction schemes in Australia, forecast regional rainfall and 

temperature probabilities in Australia either based on SOI phases (Stone et al. 1996) or 

SST variability trend in the Pacific and Indian Ocean (Drosdowsky & Chambers, 2001). 

Nicholls (1989) found that ENSO affect rainfall over most of Australia. They found that 

based on a rotated principal component analysis of Australian winter (June-August) 

rainfall two large-scale variation patterns are responsible for more than half of the total 

rainfall variance. A broadband which stretches from the northwest to the southeast 

corners of the country was introduced as the first pattern, while the second pattern was 

centered in the eastern third of the continent. These two patterns were associated with 

the SST in the Indian and Pacific oceans. The difference in SST between Indonesian 

region and the central Indian Ocean is related to the first pattern, while the equatorial 

Pacific SST is associated to the second rainfall pattern. This relationship indicates the 

effect of the Southern Oscillation on both SSTs and  Australian rainfall. However, the 

relationship between the difference between Indonesian and central Indian Ocean SSTs 

and the first rainfall pattern is mainly independent of the Southern Oscillation. The 

SSTs variation which is relatively distinct from the well-known effect of the Southern 

Oscillation could be another factor which affects rainfall in Australia (Nicholls 1989).  

Equatorial Pacific SSTs directly influences one of the two principal modes of Australian 

inter-annual rainfall variability which is regionally centered on central eastern Australia. 

According to McBride and Nicholls (1983), in the winter and spring months rainfall is 

significantly influenced by ENSO. For the period December 1932 to November 1974 

McBride and Nicholls (1983) calculated the correlations between indices of the 

Southern Oscillation (SO) and areal average rainfall for 107 Australian rainfall regions. 

According to simultaneous correlations between the SO and rainfall, there was a clear 

annual cycle in which the best relationship happened in spring (September­November). 

Summer (December-February) had the weakest relationship. They found that in some 

parts of Australia seasonal rainfalls in all seasons were considerably correlated with the 

SO in the preceding season. The highest lag correlation occurred with spring rainfall. 

For some regions this correlation was also significant with the SO two seasons (six 
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months) earlier. McBride and Nicholls (1983) also calculated the correlations with the 

data divided into two subseries from 1932 to 1953 and from 1954 to 1974. It was found 

that there was a westward shift with time of the correlation pattern. This was associated 

with considerable changes in the magnitude of the correlations in some regions.  

In both the observations and during June–December in the coupled general circulation 

model (CGCM) Power et al. (2006) found that the relationship of all-Australia rainfall 

and temperature with ENSO as measured by Nino4 or the SOI was found to be 

nonlinear which is responsible for rainfall and temperature changes over Australia. 

Australia usually becomes much wetter with a large La Nina SST anomaly or a large La 

Nina SOI excursion. However, the magnitude of an El Nino SST or SOI anomaly is not 

a good indicator of how dry Australia will essentially become. Although Australia 

certainly dries out during El Nino events; however, the degree of drying is not 

significantly associated with the magnitude of the El Nino SST anomaly. With respect 

to climate prediction, the surprising results of Power et al. (2006) has significant 

implications. In other words, for many parts of the world where the response is linear 

the magnitude of El Nino SST anomalies has considerable impact on climate 

predictions. However, in Australia the magnitude of El Nino SST anomalies could be 

less influential as a large El Nino SST signal does not increase the risk of severe 

drought (at least in terms of continental average rainfall) compared to the risk associated 

with a more modest El Nino SST anomaly (Power et al. 2006). The “El Nino of the 

century” during 1997–1998 had only a weak effect on SEA rainfall, while in the east 

Pacific Ocean it had very large SST anomalies. On the other hand, the worst drought in 

Australian’s recorded history was possibly the relatively weak event occurred during 

2002–2003, as temperatures were very warm and rainfall was recorded low (Watkins, 

2002). According to Wang and Hendon (2007), during El Nino Australia usually 

experiences drought particularly during austral spring (September–November) across 

the eastern two-thirds of the continent. Nevertheless, there were some exceptions from 

this pattern. For instance, the near-record-strength El Nino during 1997 was linked with 

near-normal rainfall. On the contrary, during the modest El Nino in 2002 eastern 

Australia experienced near-record drought. This obvious contrast brings the attention to 

the issue that  how the magnitude of the drought is associated with the magnitude and 

character of El Nino as measured by the broad-scale SST anomaly in the equatorial 
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eastern Pacific. One of the underlying reasons for this contrasting behaviour during 

these El Nino events is the internal and unpredictable atmospheric noise. According to 

Wang and Hendon (2007), rainfall in Australia is sensitive to the zonal distribution of 

SST anomalies during El Nino. Specifically, the highest sensitivity is to the SST 

variations on the eastern edge of the Pacific warm pool compared to that of the eastern 

Pacific where there are usually largest El Nino variations. In 1997 maximum anomalies 

were moved well into the eastern Pacific; thereby having less effect on rainfall in 

Australia. On the other hand, positive SST anomalies increased near the date line in 

2002. They revealed  that these results offer a  possible physical basis that predicting the 

strength of El Nino is not adequate to precisely forecast rainfall variations across 

Australia.  Murphy and Timbal (2008) also mentioned that  the decade-long rainfall 

deficiencies seem to be independent of the ENSO-rainfall influence. A little beyond 

average rainfall during the 1998–1999 La Nina did little to relieve long-term 

deficiencies in southeast Australia. It was also understood that the main fall in rainfall 

has happened in autumn when the influence of ENSO on rainfall is weak in southeast 

Australia. Furthermore, although there is a relationship between Indian Ocean SSTs and 

rainfall in southeast Australia; however, it is not evident whether rainfall of southeast 

Australia is truly a response to SST forcing, mainly in autumn. 

Verdon and Franks (2005) investigated the relationship between SST variability 

happening over the Indian Ocean and winter rainfall variability in eastern Australia. 

They compared Six indices of SST variability and determined their relationship to 

rainfall over eastern Australia. It was found that there is a strong relationship between a 

number of these indices and winter rainfall through an analysis of historical rainfall data 

for Queensland, New South Wales, and Victoria. Particularly, a good indication of 

winter rainfall variability in eastern Australia can be provided through anomalous SSTs 

over the Indonesian area. Further, it was shown that regardless of potential influences 

on rainfall by ENSO, this relationship is true. Verdon and Franks (2005) proposed a 

probable physical process in which the Indian Ocean SST anomalies might affect winter 

rainfall. This possible process involves the impact of the Indian Ocean SST anomalies 

on the nature of the northwest Australian cloud band. Verdon and Franks (2005)’s study 

revealed noticeable controls on winter climate variability similar to that induced in 
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summer by the better known ENSO processes, thereby, provides enhanced 

understanding of year-round seasonal climates.  

Changes in the magnitude and spatial extent of inter-annual variations in Australian 

wheat yield was also found by Potgieter et al. (2005). They discovered that in between 

El Nino events this variation is significant and it is related to variation in rainfall with 

other variables based on the timing and location of SST anomalies. Power et al. (2006) 

further indicated that a simple proof of changes of rainfall in Australia by ENSO is that 

the east of the continent  has the tendency to have rainfall in the lowest tercile virtually 

everywhere along the coast east of the Great Dividing Range. However, rainfall over the 

same area tends to be in the upper tercile during La Nina years. The mean El Nino 

response is weaker in autumn and summer. The pattern toward a drier southeast 

Australia (SEA) climate is possibly not associated with ENSO variations due to limited 

influence of ENSO on SEA in autumn. Nicholls et al. (1997) found that the strength of 

the SOI-rainfall link varies significantly with time. It was also found that the SOI–

rainfall relationship had the greatest change in the southeast after the early 1970s. Power 

et al. (2006) also found that the effect of ENSO on rainfall in Australia changes 

significantly on inter-decadal time scales. In both the model and the observations the 

relationship between ENSO and climate of Australia as measured by correlation 

coefficients is strong in some decades, while it is weak in other decades. It was shown 

by a series of decadal-long perturbation experiments with the coupled general 

circulation model (CGCM) that the level of predictability is low. According to Mantua 

et al. (1997), the Interdecadal Pacific Oscillation (IPO) is an interdecadal El Nino–like 

SST trend which is closely associated with the interdecadal component of an index for 

the Pacific Decadal Oscillation (PDO). It was demonstrated by Power et al. (1999) that 

during the twentieth century an index for the PDO, IPO, is statistically connected with 

variations in ENSO’s influence on the climate in Australia. Power et. al (1999) revealed 

that the influence of ENSO on Australia is increased when the IPO is in a negative 

phase. Power et al. (2006) used a simple nonlinear stochastic model to show that, at 

least in theory even in the case where it is not possible to forecast more than 1 year, the 

interdecadal excursions in ENSO indices will have the tendency to be statistically 

coherent with interdecadal variations in ENSO teleconnections measures. In Power et 

al. (2006)’s model, the interdecadal component of ENSO variability demonstrates a 
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residual ENSO-like SST trend due to random ENSO variations. For instance, a given 

interdecadal period might include a larger number of El Nino events compared to La 

Nina events. Or if for a given interdecadal period frequency of the El Nino and La Nina 

events is identical, then the SST anomalies of the El Nino events might have been larger 

compared to the SST anomalies related with the La Nina events that happened in the 

same interdecadal period. Obviously, this also implies that indices similar to low 

frequency excursions in ENSO indices seem to change ENSO teleconnections without 

the necessity of predictability of more than 1 year. When the impact of ENSO on 

Australia is usually greatest, the IPO of CGCM is statistically associated with 

interdecadal variations in the effect of ENSO on Australia during the period of June to 

December. On the other hand, in both the model and the observations IPO indices 

estimate interdecadal changes in Nino4. Thus, though the IPO or PDO just reflects 

random variations in ENSO statistics on interdecadal time scales they can appear to 

change ENSO teleconnections in the presence of nonlinear teleconnections. Although 

modulations can happen without nonlinearity, however, the chance of changes 

occurrence will be increased by nonlinearity.  It should be pointed out that although in 

the Australian context nonlinearity is an significant characteristic; however, nonlinearity 

is not essentially of great importance for the appearance of clear changes of ENSO 

teleconnections by the IPO or PDO in all areas. In the linear case, during IPO positive 

phases, the influences of El Nino will be increased, while the effects of La Nina will be 

weakened. On the other hand, during IPO negative phases effects of La Nina will be 

improved, while the influence of El Nino will be decreased. Moreover, different forms 

of nonlinearity can cause increase in different forms of obvious modulation. For 

instance, IPO positive phases will increase the influences of ENSO in a particular area, 

if the El Nino SST anomalies compared to La Nina SST anomalies were closely 

associated with changes in that region. Nonlinear ENSO teleconnections are not limited 

to Australia. This pattern can be seen, as an important example, in the nonlinear nature 

of ENSO teleconnections in the southwestern United States and northern Mexico. In 

this area the magnitudes of La Nina SST anomalies are apparently less associated with 

the rainfall anomalies’ magnitudes compared to those of the El Nino SST anomalies. 

Although the risk of dry conditions will be increased by La Nina SSTs; however, the 

degree of drying is not strongly associated with the SST anomaly’s magnitude. Thereby, 

the above conclusions is relevant in this area as well (Power et al. 2006). 
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The rainfall probabilities produced by the Australian Bureau of Meteorology’s 

operational seasonal prediction scheme also demonstrates the limited effect of ENSO in 

autumn (Drosdowsky & Chambers 2001). According to Murphy and Timbal (2008), the 

loading on the second mode in SSTs used, do regulate southeastern Australia rainfall 

probabilities in autumn. However, the loadings of the first mode of SST variability do 

little to regulate the rainfall probabilities for south east Australia in this season. The 

loadings of the first mode of SST variability reflect El Nino-like SST anomalies in the 

Pacific Ocean, while the loading on the second mode in SSTs used corresponds to 

Indian Ocean SST variability. Therefore, SST variability in the Indian Ocean has a 

superior influence on SEA rainfall in autumn. According to Saji et al. (1999), equatorial 

SSTs also illustrate Indian Ocean SST variability. As discussed earlier Indian Ocean 

Dipole (IOD) is defined as the development of cold SSTs in the eastern Indian Ocean 

near Indonesia and warm SSTs in the west which causes droughts over Indonesia and 

heavy rains in eastern Africa. The IOD also has influence  on Australian rainfall. For the 

6 years of extreme positive IOD events corresponding to cool eastern Indian Ocean 

SSTs Saji et al. (1999) identified rainfall deciles for the March–November period; it 

was revealed that in south east Australia, virtually all of western and central Victoria 

showed the maximum rainfall deficiencies corresponding to very much below average 

rainfalls. However, most of southern Australia with the exception of the east coast 

exhibited below average rainfall. These results are in good agreement with those of 

Ashok et al. (2003). 

Ashok et al. (2003) studied the effect of the IOD on the Australian winter rainfall using 

an atmospheric general circulation model and observed datasets of SST and rainfall. It 

was found that over the western and southern regions of Australia the IOD has 

substantial negative partial correlations with rainfall which extend south-eastward from 

Indonesia all the way to south east Australia. According to Ashok et al. (2003)’s 

atmospheric general circulation model sensitivity experiments, during the positive IOD 

events cold SST anomalies dominate west of the Indonesian archipelago which 

introduces an anomalous anti-cyclonic circulation over much of the Australian continent 

and at lower levels over the eastern tropical and subtropical Indian Ocean. Moreover, 

they discovered that in this region the response of the atmosphere to the IOD is 
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baroclinic. Over the affected areas of Australia this baroclinic response leads to 

anomalous subsidence and anomalous decrease in the rainfall. 

In further studies comprehensive classification methods were used by Meyers et al. 

(2007)  to identify IOD positive, negative and neutral years and similar ENSO classes 

and the response of rainfall in each group over Australia.  The method proposed by 

Meyers et al. (2007) identified when the positive or negative extrema of the El Nino 

Southern Oscillation and IOD happen. Each year from 1876 to 1999 was classified 

using this method. Although this method is statistical in nature; however, it is strongly 

based on the oceanic physical mechanisms which control the variability of the near-

equatorial Indo-Pacific basin. Meyers et al. (2007) found that some years could not be 

evidently categorized as a result of strong decadal variation. Nevertheless, these years 

must be identified and the reason for their ambiguity must be recognized. Meyers et al. 

(2007) tested the sensitivity of the years classification through calculating composite 

maps of the Indo-Pacific SST anomaly and the probability of below median Australian 

rainfall for dissimilar groups of the El Nino–Indian Ocean relationship. Cai et al. (2009) 

showed a slight different classification; according to Meyers et al., (2007) classification, 

three (1972, 1982 and 1997) of the six years used in Cai et al. (2009) calculations were 

also El Nino years and three (1961, 1967 and 1994) were not. Nevertheless, other 

researchers have categorized 1994 as an El Nino year. It was found that 1982 was the 

driest year on record for southeastern Australia. The second driest year on record for 

southeastern Australia was 1967. Although there are some dissimilarities in the 

response of rainfall for these two subsets (i.e. El Nino and non-El Nino); however, the 

demonstrated trend is very similar over most of southeastern Australia for both of them 

with the exception of the far northeast of the region. Through existing observations and 

re-analyses, Cai et al. (2009) showed that the positive IOD (pIOD) events increase from 

about four per 30 years early in the 20th century to about 10 over the last 30 years. On 

the other hand, the number of negative Indian Ocean Dipole (nIOD) events drops from 

about 10 to two over the same periods, respectively. A systematic trend in this 

parameter can be seen commencing early in the 20th century using a skewness measure 

which is defined as the difference in happenings of pIODs and nIODs. It was found that 

there exist more pIODs than nIODs, with consistent mean circulation variations in the 

pIOD-prevalent seasons after 1950. According to Cai et al. (2009), these changes 
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potentially explain much of the observed austral winter and spring rainfall decrease 

since 1950 over southeastern Australia. Moreover, These features are in good agreement 

with expected future climate change and therefore with what is projected from global 

warming. (Cai et al. 2009) 

Ummenhofer et al. (2009)  also examined the effect of the phases of ENSO and IOD on 

southeast Australia.  According to Ummenhofer et al. (2009) over southeast Australia 

the sign of the rainfall anomalies is very inconsistent during pure La Nina and positive 

IOD events. However, El Nino years consistently lead to dry conditions and negative 

IOD years consistently result in wet conditions. Further, an absence of negative IOD 

events was seen throughout most of the multi-year droughts of the 20th century, and 

especially was a noticeable feature of the present Big Dry. However, the same is not 

true about ENSO, with both negative and positive phases happening during all of the 

major 20th century droughts. Ummenhofer et al. (2009) demonstrated that over the past 

120 years in the region of southeastern Australia, Indian Ocean variability more than 

ENSO is the key driver of the main droughts. Particularly the IOD has remained 

consistently ‘positive’ or ‘neutral’ during  almost all of Australia’s iconic droughts, 

comprising the Federation Drought (1895–1902), the World War II drought (1937–

1945), and the present ‘‘Big Dry’’ (post-1995). An interaction between the tropics and 

the temperate zone increases regional moisture advection. Thereby unexpectedly wet 

conditions dominate across southern regions of Australia during the IOD negative 

phase. Therefore, during the major droughts the noticeable lack of the ‘‘negative’’ phase 

of the IOD prevents normal rainfall quota of southeast Australia. Although, the Indian 

Ocean has a noticeable role in driving southeastern droughts; however, the ‘‘Big Dry’’ 

has still an outstanding severity which seems to be related to recent large increases in air 

temperature (Ummenhofer et al. 2009).  

Further, it was revealed that climatic influence of ENSO on middle latitudes west of the 

western Pacific, for example southeast Australia, during austral spring (i.e. September–

November) is conducted through the tropical Indian Ocean (TIO) (Cai et al. 2012). 

Nevertheless,  it is not clear whether this pathway is symmetric in regards to the 

positive and negative phases of ENSO and the IOD. Cai et al. (2012) showed in their 

study that  a strong asymmetry exists. In regards to ENSO, only the influence of El 

Nino is conducted through the TIO pathway. Moreover, the effect of La Nina was 



30 

 

delivered through the Pacific–South America pattern. Regarding the IOD, a greater 

convection anomaly and wave train response happens during positive IOD (pIOD) 

events compared to the negative IOD (nIOD) events. This impact asymmetry is in 

agreement with the positive skewness of the IOD. This is mainly attributed to a negative 

skewness of SST anomalies in the east IOD (IODE) pole. According to Cai et al. 

(2012), convection anomalies in the IODE region are more sensitive to a per unit 

change of cold SST anomalies compared to the same unit change of warm SST 

anomalies. The study of Cai et al. (2012) demonstrated that despite the greater damping, 

the IOD skewness happens due to a breakdown of this damping as recommended by 

previous studies. Much of the spring rainfall decrease over southeast Australia during 

the 2000s can be explained via this IOD impact asymmetry. They concluded that the 

main cause of this decrease in rainfall is the increased happenings of pIOD events, 

rather than the lack of nIOD events (Cai et al. 2012).  

Gallant et al. (2012) questions the independence of ENSO and IOD. They argue that 

Indian Ocean SSTs, in particular those in the far eastern tropics, undoubtedly have a 

relationship with rainfall in southeast Australia. However, it is not evident whether 

these SSTs actually lead to the rainfall anomalies. In general in a given year the IOD 

forms from May onwards, yet in early autumn of IOD positive years strong rainfall 

shortages are already evident over southeast Australia, which is before the IOD forms. 

Hence, the IOD may be a response to the same atmospheric forcing as the southeast 

Australia rainfall anomalies, so that both may be originated by a third, preceding 

mechanism. This claim is yet to be further investigated. 

Other than southeast Australia, southwest Australia is also affected by IOD. High-

pressure anomalies over Australia in which result in low rainfall in southwest Western 

Australia (SWWA) produce anomalous easterly winds over the eastern Indian Ocean 

which cause upwelling and, thereby, cool SSTs (England et al. 2006). Inter-annual 

rainfall extremes over SWWA through  observations, reanalysis data, and a long-term 

natural integration of the global coupled climate system was investigated by England et 

al. (2006).  A characteristic dipole pattern of Indian Ocean SST anomalies was revealed 

during extreme rainfall years. Although this pattern was surprisingly consistent between 

the reanalysis fields and the coupled climate model, however, it was different from most 

previous SST dipoles definitions in the area. Particularly, the dipole demonstrates peak 
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amplitudes in the eastern Indian Ocean next to the west coast of Australia. Anomalously 

cool waters appear during dry years in the tropical/subtropical eastern Indian Ocean 

which are close to an area of unusually warm water in the subtropics off SWWA. The 

sign of this dipole of anomalous SST keeps changing between dry and wet years. This 

dipole seems to happen in phase with a large-scale reorganization of winds over the 

tropical/subtropical Indian Ocean. The wind field changes SST by anomalous air–sea 

heat fluxes in the subtropics and by anomalous Ekman transport in the tropical Indian 

Ocean. The large-scale advection of moisture onto the SWWA coast is also altered by 

the winds. At the basin scale, the anomalous wind field can be understood as an 

acceleration of the Indian Ocean climatological mean anticyclone during dry years. 

Similarly, the anomalous wind field can also be inferred as deceleration of the Indian 

Ocean climatological mean anticyclone during wet years. Furthermore, they discovered 

that dry (wet) years see a strengthening (weakening) and coinciding southward 

(northward) shift of the sub-polar westerlies causing a comparable southward 

(northward) shift of the rain bearing fronts linked with the sub-polar front. England et 

al. (2006) further revealed that there is also a relationship between extreme rainfall 

years and the IOD. In other words, in some years the IOD acts to strengthen the eastern 

tropical pole of SST explained above, and to reinforce wind anomalies along the 

northern flank of the Indian Ocean anticyclone. In this way, in the Indian Ocean both 

tropical and extra-tropical processes produce SST and wind anomalies off SWWA that 

result in moisture transport and rainfall extremes in the area. An analysis of the seasonal 

evolution of the climate extremes demonstrated a progressive anomalies increase in SST 

and atmospheric circulation toward a wintertime maximum, which correspond to the 

season of highest SWWA rainfall. The SST anomalies can appear as early as the 

summertime months which may have significant effects on forecasting of SWWA 

rainfall extremes. 

Chowdhury and Beecham (2013) investigated the effect of climate drivers such as SOI, 

DMI and Nino3.4 on South Australian rainfall. They analyzed recent records of 

monthly rainfall and climate driver index values from 1981 to 2010 for 53 rainfall 

stations. These stations were located across eight South Australian natural resources 

management (NRM) regions. They applied the Pearson, Kendall and Spearman 

correlation tests between rainfall and climate drivers and between the climate drivers 
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themselves. It was found that neither South Australian summer (December to February) 

nor autumn (March to May) rainfalls were considerably affected by climate indices. It 

was found that in the south and east parts of South Australia winter rainfall specifically 

in July and August was significantly influenced by both SOI and DMI. Moreover, they 

found that in winter both SOI and DMI were inter-correlated. Spring rainfall 

specifically in September and October was found considerably affected by DMI in the 

south and east parts of South Australia. With regards to ENSO phenomena, it was found 

that while both SOI and Nino3.4 were correlated; however, for South Australian winter 

and spring rainfall SOI was more effective on the region. The authors indicated that the 

results of the study are beneficial for producing stochastic rainfall and for developing 

downscaling techniques to produce rainfall projections in the region.  

Recently it has been demonstrated that the Southern Hemisphere annular mode (SAM) 

is  associated with Australian rainfall. According to Thompson and Wallace (2000), the 

SAM as the main mode of large scale variability in the southern hemisphere extra-

tropical circulation, is a regionally symmetric varying mass exchange between the polar 

regions and the mid-latitudes. During the high phase of the SAM index corresponding 

to a southward contraction of the mid-latitude storm track, daily rainfall and surface 

temperatures over Australia were compared to that during the low phase corresponding 

to equator-ward expansion of the storm track. Using observations for the period 1979–

2005, daily changes in Australian rainfall and surface temperature linked with the SAM 

were documented by Hendon et al. (2007). A poleward contraction of the mid-latitude 

westerlies categorizes the high index polarity of the SAM. During winter, the high index 

polarity of the SAM is linked with reduced daily rainfall over southeast and southwest 

Australia. However, during summer it is connected with intensified daily rainfall on the 

southern east coast of Australia and reduced rainfall in western Tasmania. Up to 15% of 

the weekly rainfall variance in these regions can be described by the changes in the 

SAM, which especially during winter is similar to the variance accounted for by the 

ENSO. The most prevalent temperature anomalies linked with the SAM take place 

during the spring and summer seasons, when the high index polarity of the SAM is 

related with anomalously low maximum temperature over most of central/eastern 

subtropical Australia. The areas of reduced maximum temperature are also linked with 

increased rainfall. Gillett et al. (2006) discussed possible effects of recent trends in 
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Australian rainfall and temperature. A positive pattern in the SAM index for summer 

was found that can consider up to half the observed positive rainfall pattern in southeast 

Australia in summer. Although there is a trend toward the positive phase in autumn, 

however, absence of relationship between the SAM and autumn rainfall in the southeast 

prevents any direct attribution. It was also found that during the positive phase of the 

SAM the monthly means of both rainfall and temperature in southeast Australia are 

below average. Previous studies on the effect of the SAM on surface climate have 

focused mostly on individual countries. In this study station observations of temperature 

and rainfall were used to recognize the effect of the SAM on land regions over the 

whole of the Southern Hemisphere. It was demonstrated that the positive phase of the 

SAM is related to a significant cooling over Antarctica and much of Australia, as well 

as a significant warming over the Antarctic Peninsula, Argentina, Tasmania and the 

south of New Zealand. Due to the southward shift of the storm track, the positive phase 

of the SAM is also connected with anomalously dry conditions over southern South 

America, New Zealand and Tasmania; it is also associated with anomalously wet 

conditions over much of Australia and South Africa. These effects on populated areas of 

the Southern Hemisphere may have effects on weather and seasonal forecasting and 

future climate change (Hendon et al. 2007). 

Other researchers have also found strong trends in the SAM index towards higher 

values (i.e. more southerly storm track) in summer and autumn. It was demonstrated 

that the resulting changes to the circulation are commonly confined to the south polar 

areas and they attributed the trend bulk to variations in stratospheric ozone (Thompson 

and Solomon 2002). Evidence was presented that recent patterns in the Southern 

Hemisphere tropospheric circulation can be taken as a bias toward the high-index 

polarity of this trend, with stronger westerly flow encircling the polar cap. It was 

discovered that the largest and most considerable tropospheric patterns can be traced to 

recent patterns in the lower stratospheric polar vortex, that are mainly attributed to 

photochemical ozone losses. The pattern toward stronger circumpolar flow during the 

summer-fall season has contributed considerably to the observed warming over the 

Antarctic Peninsula and Patagonia and to the cooling over eastern Antarctica and the 

Antarctic plateau. Although Marshall et al. (2004) also found comparable trends; 

however, they concluded that increase of greenhouse gas has also played a significant 
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role. It was revealed that recent observed patterns in the annual and austral summer 

SAM are improbable to be attributed to internal climate variability as they exceed any 

equivalent-length patterns in a millennial General Circulation Model (GCM) control run 

with constant forcings. However, It was demonstrated that observed patterns in the 

SAM are consistent with the combined influences of anthropogenic and natural forcings 

in GCM simulations. The assertion that this process is mainly responsible for changes in 

the SAM was challenged since these patterns originate earlier than stratospheric ozone 

depletion. Furthermore, anthropogenic forcings have a larger influence on the austral 

summer SAM combined with natural forcings compared with when acting in isolation.  

Meneghini et al. (2007) used an index of the pressure difference between 40oS and 

65oS which was only covering the Australian area (90
o
–180

o
E) and was comparable to 

SAM index. It was found that in winter this index was more closely associated with 

rainfall than the SOI in the south of the country. Furthermore, in summer this index was 

more closely related with rainfall in the southeast Australia north of the Great Dividing 

Range. However, in autumn little relationship was found when the trend in their 

regional index was strongest. Their regional index was not inevitably directly similar to 

the hemispheric SAM index and was claimed to be closely aligned with the latitude of 

the Australian subtropical ridge (STR). In more details, Meneghini et al. (2007) 

explored the relationships between seasonal Australian rainfall and the SAM. Two 

seasonal indices of the SAM comprising the Antarctic Oscillation Index (AOI), and an 

Australian regional version (AOIR) were produced using ERA-40 mean sea-level 

pressure (MSLP) reanalysis data. The seasonal rainfall data were supplied by the 

Australian Bureau of Meteorology based on gridded monthly rainfall. An important 

inverse relationship was found between the SAM and rainfall in southern Australia for 

the period 1958-2002. However, in northern Australia a significant in-phase relationship 

was found between the SAM and rainfall. Moreover, in winter in southern Australia 

widespread significant inverse relationships were only observed with the AOIR. In 

comparison with the SOI, the AOIR is responsible for more of winter rainfall variation 

in southwest Western Australia, southern South Australia, western and southern 

Victoria, and western Tasmania. According to the Meneghini et al. (2007)’s results,  the 

changes in SAM affect southern South Australia, Victoria, and Tasmania and may be 

partially accountable for the current decline in winter rainfall for these regions. 
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However, it is not responsible for the long-term decline in southwest Western 

Australian winter rainfall. 

2.4 Seasonal Rainfall Forecasting in Australia 

The seasonal rainfall predictions and streamflow forecasts are valuable for management 

of land and water resources, specifically in Australia since the streamflow variability is 

higher compared to most parts of the world (Chiew et al. 1998). Seasonal rainfall 

predictions are valuable for users such as irrigators and water managers to aid in 

developing risk-management strategies and to inform decisions. Both statistical and 

dynamical climate forecast systems are broadly used in practice to generate seasonal 

rainfall predictions up to a year in advance (Goddard et al. 2001). Statistical forecast 

systems are based on empirical relationships between observed variables and thereby 

depend on the availability of long data records and stationary relationships between the 

variables. On the other hand, dynamical forecast systems are based on numerical 

simulations which directly model physical processes, however they are more expensive 

to implement and operate compared to statistical climate forecast systems (Anderson et 

al. 1999; Schepen et al. 2012). In spite of considerable research studies and 

technological advances, complicated dynamical forecast systems are still not capable to 

consistently outperform simple statistical prediction systems for forecasting ENSO and 

other climate variables (Barnston et al. 1999; Halide & Ridd 2008; Quan et al. 2006). 

Until dynamical forecast systems progress considerably, statistical forecast systems will 

continue to be enhanced and play a role in seasonal rainfall estimation (Rajeevan et al. 

2007; Schepen et al. 2012). 

As discussed in section 2.3 several studies have tried to explain the relationships 

between oceanic and atmospheric circulation anomalies and Australian monthly or 

seasonal rainfalls (Meneghini et al. 2007; Murphy & Timbal 2008; Risbey et al. 2009; 

Wang & Hendon 2007). Simultaneous relationships are usually quantified through 

linear regression analyses between rainfalls and a variety of climate indices which 

represent anomalies in climate variables such as SST, upper ocean heat content, 

atmospheric pressure, and zonal wind. The strengths of the relationships change with 

season and location. For estimating next seasonal rainfall, climate indices which have a 

strong simultaneous relationship with seasonal rainfall are natural candidates to be used 
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as predictors in a statistical forecast system. However, for the purpose of prediction it is  

the lagged relationships between seasonal rainfall and climate indices that are of 

particular importance. A strong simultaneous relationship does not essentially result in a 

strong lagged relationship (Schepen et al. 2012). Hence, quantifying the evidence which 

supports the use of various lagged climate indices for seasonal rainfall predictions is 

unavoidable. Previous research studies have shown the usefulness of lagged indices of 

the Southern Oscillation for predicting Australian seasonal rainfall in some areas and 

seasons (Chiew et al. 1998; McBride & Nicholls 1983; Stone et al. 1996). McBride and 

Nicholls, (1983) found that in all seasons, in some parts of Australia seasonal rainfalls 

are considerably correlated with the SO in the preceding season. Based on the reported 

results the strongest lag correlations happen with spring rainfall, which for some regions 

is also considerably correlated with the SO previous two seasons (former six months). 

Drosdowsky (1993) examined the lagged relationships between winter rainfall over 

Australia and Indian Ocean SST anomalies. It was found that it was feasible to predict 

early winter (April to July) rainfall over parts of southern and eastern Australia from 

summer to early autumn (December to March) by using an index of SST anomalies in a 

region off the west Australian coast. Comparable results were found with the anomalous 

pressure gradient between the west coast and central Indian Ocean, which aids as an 

estimation to the meridional component of the geo­strophic wind. It was suggested that  

the SST and rainfall anomalies were forced by the anomalous atmospheric circulation. 

Cheiw et al. (1998) presented a summary of the relationship between ENSO and 

rainfall, drought and stream flow in Australia. The teleconnection between ENSO and 

the hydroclimate of Australia was studied by evaluating the lag correlations between 

rainfall and streamflow and the ENSO indicators of several former months. According 

to the analyses, it was found that in Australia dry conditions are associated with El 

Nino. Moreover, it was revealed that in most parts of Australia the relationship between 

rainfall and streamflow and ENSO was statistically important, while it was not 

adequately strong to consistently and precisely forecast rainfall and streamflow. It was 

found that the teleconnection was stronger in the second part of the year, and spring 

rainfall in eastern Australia as well as summer rainfall in north-east Australia can be 

estimated with some success several months in advance using the ENSO indicators. It 

was indicated that the indicators of ENSO can similarly be used to assist in estimating 
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spring runoff in south-east Australia and summer runoff in north-east and east coasts of 

Australia. According to the analysis, it was revealed that in the streamflow data the 

serial correlation, unlike rainfall, is usually comparable or higher than the lag stream 

flow-ENSO correlation. Furthermore, it was noted that the former months’ streamflow 

must be used together with the indicators of ENSO to develop stream flow prediction 

models.  

For the prediction of Australian seasonal rainfall changes an operational system was 

introduced by Drosdowsky and Chambers (2001) which used SST anomaly pattern over 

the Indian and Pacific Oceans. Rotated principal components with individual monthly 

values at 1- and 3-month lead times as predictors represented the SST anomalies. For 

instance, in order to predict March to May seasonal rainfall, November and January 

SST anomalies were used. Rotated principal components of a gridded 18 rainfall dataset 

were also used to represent the historical seasonal rainfall with using the principal 

component loadings as weights to project the predictions back to the original 18 grid 

points. Linear discriminant analysis were used to produce the predictions of seasonal 

rainfall in two (above/below median) or three categories (terciles). The linear error in 

probability space (LEPS) skill score was used to measure hindcast skill which was 

assessed by cross validation. To select the best model or the best combination of 

predictors, experiments were also carried out by using a double or nested cross 

validation procedure. To maintain continuity of estimation probabilities between the 

overlapping 3-month seasons for every season and location, the first two rotated SSTA 

components lagged by 1 and 3 months as predictors were used by the model selected for 

operational seasonal forecasts. SST analysis of either the Bureau of Meteorology’s or 

the National Centers for Environmental Prediction was projected onto the set of SST 

principal components to calculate current values of the principal component amplitudes.  

According to Drosdowsky and Chambers (2001), over the 5-yr period from January–

March 1994 to December–February 1998/99 the hindcasts and experimental real-time 

predictions  using the SST-based schemes demonstrate enhanced skill over parts of 

southern Australia during the autumn period compared to forecasts using the SOI alone.  

Moreover, correlations between several other climate indices averaged over the 

preceding two months and Australian seasonal rainfalls for the four main seasons were 

investigated by Kirono et al. (2010). Based on the season and location, statistical 
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significant correlations were found between the lagged climate indices and seasonal 

rainfalls using Pearson correlation coefficient. Nevertheless, in depth quantitative 

results were only presented for southeast Australia. The lag relationships between 

rainfall across Australia and runoff across southeast Australia versus 12 atmospheric-

oceanic predictors and how the relationships vary over time were investigated in the 

work of Kirono et al. (2010). Based on the rainfall data analysis, it was found that the 

greatest relationship is in spring and summer in northeast Australia and in spring in 

southeast Australia. It was found that regarding spring rainfall in eastern Australia the 

best predictors are Nino4 (SST in western Pacific) and thermocline (20
o
C isotherm of 

the Pacific). With regards to summer rainfall in northeast Australia, the best predictors 

were proved to be Nino4 and SOI (pressure difference between Tahiti and Darwin). In 

northern Australia the greatest relationship is in spring and autumn with Nino4 as the 

best predictor. The relationship is significant in summer in western Australia, where 

SST2 (i.e. SST over the Indian Ocean) and II (SST over the Indonesian region) is the 

best predictor in the southwest and northwest, respectively. According to the runoff 

analysis across southeast Australia, the greatest predictability of runoff in the southern 

parts is in winter and spring, with antecedent runoff as the best predictor. The 

relationship between spring runoff and Nino4, thermocline and SOI is also relatively 

high which can be used together with antecedent runoff for spring runoff prediction. 

The study revealed that the atmospheric-oceanic variables in the northern parts of 

southeast Australia are superior runoff predictors to antecedent runoff. They also have 

considerable correlation with winter, spring and summer runoff. The runoff serial 

correlation is reduced for longer lead times particularly over the northern regions. 

Moreover, the atmospheric-oceanic variables are possibly superior predictors for runoff 

prediction. The correlations between runoff versus the predictors change with time, this  

has implication in developing prediction models which presume stationary in the 

historical data. 

As can be seen from the reviewed studies,  most seasonal rainfall forecasts with the use 

of antecedent months’ climate indices as predictors use linear  methods. Among the few 

nonlinear seasonal rainfall forecast available is the work of  Schepen et al. (2012). 

Schepen et al. (2012) applied a rigorous Bayesian joint probability modelling approach 

to find the cross-validation predictive densities of gridded Australian seasonal rainfall 
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totals by means of lagged climate indices as predictors over the period of 1950-2009. 

They quantified the evidence which supports the use of each climate index as a 

predictor of seasonal rainfall by means of the pseudo-Bayes factor based on cross-

validation predictive densities. The results revealed that the use of climate indices from 

the Pacific region was significantly supported by these evidences. However, there was 

weaker, but positive, evidence for the use of climate indices from the Indian region and 

the extra-tropical region. For each climate index they mapped and compared the spatial 

structure as well as seasonal variation of the evidence. With regards to seasonal 

variation, the strongest evidence was found from August–October to November–

January. However, the weakest evidence was found from March–May to May–July. In 

terms of spatial structure, the strongest supporting evidence was found for prediction in 

northern and eastern Australia. Nevertheless, in some areas and seasons there was little 

evidence which supports the use of climate indices for estimating seasonal rainfall. It 

was found that climate indices resulting from SST anomalies in the Pacific region 

exhibit stronger relationship with Australian seasonal rainfall totals compared to climate 

indices resulted from SST anomalies in the Indian region. If climate indices resulting 

from atmospheric variables represent the large scale circulation, they are also strongly 

supported. According to Schepen et al. (2012), many climate indices demonstrate 

comparable supporting evidence for predicting Australian seasonal rainfall which result 

in the view of combining climate indices in multiple predictor models and/or model 

averaging.  

Combining predictions from multiple models has the capacity to merge the strengths of 

individual models and to better represent prediction uncertainty compared to the use of 

a single model. Wang et al. (2012) developed a Bayesian model averaging (BMA) 

method for combining forecasts from multiple models which gives greater weights to 

better performing models. The objective of this study was to develop a BMA method 

that had the capacity to produce relatively stable weights in the presence of significant 

sampling variability, which result in robust predictions for future events. The BMA 

method was applied to combine predictions from multiple statistical models for seasonal 

rainfall predictions over Australia. Climate indices were used as predictors. It was 

revealed that the fully combined forecasts successfully merge the best models skills to 

maximize the spatial coverage of positive skill. Although the skill was generally low for 
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the first half of the year; however, it was more positive for the second half of the year. It 

was found that models in the Indian and extra-tropical groups produce suitable and 

occasionally different skills, while models in the Pacific group produce the most skill. 

Prediction uncertainty spread was found to be reliably presented through the fully 

combined probabilistic predictions. It was also found that when forecast lead time was 

increased from 0 to 1 month, the prediction skill held well. According to Wang et al. 

(2012), the BMA method was superior to the approach of using a model with two fixed 

predictors chosen a priori. The BMA method was also better than the approach of 

selecting the best model based on predictive performance. 

Abbot and Marohasy (2012) reviewed the application of artificial neural networks to 

rainfall predictions. By inputting recognized climate indices, monthly historical rainfall 

data, and atmospheric temperatures into a prototype stand-alone, dynamic, recurrent, 

time-delay, artificial neural network, Abbot and Marohasy (2012) evaluated the 

application of artificial intelligence to monthly and seasonal rainfall prediction in 

Queensland, Australia. Monthly rainfall predictions 3 months in advance for the period 

1993 to 2009 were selected as outputs. The outputs were compared with observed 

rainfall data in terms of time-series plots, root mean squared error (RMSE), and Pearson 

correlation coefficients. Comparison of RMSE values of the model with forecasts 

generated by Predictive Ocean Atmosphere Model for Australia (POAMA) revealed 

that the model achieved a lower RMSE for 16 of the 17 sites compared. POAMA is the 

general circulation model (GCM) used by Australian Bureau of Meteorology. Abbot 

and Marohasy (2012) also considered the preliminary model design with possible 

considerable enhancement such as inclusion of output from GCMs and experimentation 

with other input attributes. Later in 2014, Abbot and Marohasy used artificial neural 

networks to evaluate the utility of climate indices with regards to their capacity to 

estimate rainfall as a continuous variable. The significance of the Inter-decadal Pacific 

Oscillation as an index which have never been used in the official seasonal predictions 

for Queensland was highlighted through the ANN results. Before this study, the official 

seasonal forecasts for Queensland were based on statistical models. For three 

geographically different areas within Queensland, the ANN estimations were exhibited 

to be superior to predictions from the POAMA model in terms of lower Root Mean 

Square Errors (RMSE), Mean Absolute Error (MAE) and Correlation Coefficients (r).  
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Mekanik et al. (2013) investigated the application of Artificial Neural Networks (ANN) 

and Multiple Linear Regression analysis (MLR) to forecast  seasonal spring rainfall in 

Victoria, Australia ENSO and IOD as potential predictors.  The use of dual (combined 

lagged ENSO-IOD) input sets for calibrating and validating ANN and MLR Models 

was proposed to investigate the simultaneous effect of past values of these two major 

climate modes on long-term spring rainfall prediction. The MLR models that did not 

violate the limits of statistical significance and multicollinearity were selected for future 

spring rainfall forecast. The ANN was developed in the form of multilayer perceptron 

using Levenberg-Marquardt algorithm. Both MLR and ANN modelling were assessed 

statistically using mean square error (MSE), mean absolute error (MAE), Pearson 

correlation (r) and Willmott index of agreement (d).The developed MR and ANN 

models were tested on out-of-sample test sets; the MLR models showed very poor 

generalization ability for east Victoria with correlation coefficients of -0.99~ -0.90   

compared to ANN with correlation coefficients of 0.42~0.93; ANN models also showed 

better generalization ability for  central and west Victoria with correlation coefficients 

of 0.68~0.85 and 0.58~0.97 respectively. The ability of multiple regression models to 

forecast out-of-sample sets is compatible with ANN for Daylesford in central Victoria 

and Kaniva in west Victoria (r=0.92 and 0.67 respectively). The errors of the testing sets 

for ANN models are generally lower compared to multiple regression models. The 

statistical analysis suggest the potential of ANN over MLR models for rainfall 

forecasting using large scale climate modes. 

2.5 Summery  

Large-scale climate modes like ENSO and IOD affect the climate and particularly 

rainfall around the world. Australia is influenced by these phenomena as well. The 

nature of simultaneous relationships between climate indices and rainfall have been 

studied in numerous theoretical research  for Australia. To date, majority of the studies 

on the relationship between simultaneous large scale climate modes and the Australian 

rainfall have adopted either the linear regression analysis (Cai et al. 2011, 2012; Risbey 

et al. 2009) or probability/categorical analysis (Power et al.1999; Verdon et al. 2004; 

Kiem & Verdon- Kidd 2009; and Gallant et al. 2012). The use of antecedent climate 

modes for the purpose of future predictions is proposed only in few studies and non-

linear techniques have rarely been used. The aim of the present study is to address the 
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existing gap in seasonal rainfall prediction in Australia.  On the other hand, research on 

Victoria’s seasonal rainfall variability has not received enough attention. According to 

Verdon-Kidd and Kiem (2009b), in comparison to eastern Australia and particularly 

Queensland, the performance of past studies on Victorian seasonal rainfall predictability 

have been low and a maximum predictability of only 30% was achieved. Therefore, 

there is a need to further examine the relationship between seasonal rainfall in Victoria 

and the effective large scale climate modes in order to develop a reliable seasonal 

rainfall forecast model.   
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Chapter 3 

Data and Study Area 

3.1 Study Area  

Victoria in Australia is the second smallest state, and covers 227,600 square kilometers. 

Roughly 36% of Victoria is forest and the main forest belt is located in the east. The 

highest mountains in Victoria are Mount Bogong and Mount Feathertop, at 1986 m and 

1922 m respectively. Temperature in Victoria varies widely across the seasons, however 

most parts of Victoria are characterized by a warm, temperate climate, with the south-

east corner of Australia having cool to mild wet winters and warm and dry summers. 

Normal daily summer temperatures vary between 14
o
C to 23

o
C in the coastal areas, 

16
o
C to 31

o
C in the inland and 11

o
C to 20

o
C in the mountains. During winter, 

temperatures vary between 7
o
C to 14

o
C in coastal areas, 5

o
C to 16

o
C in the inland and 

0
o
C to 5

o
C in the mountains. Snow settles on the Australian Alps from June to 

September in the north-east of Victoria.  

In recent years, Australia has experienced dramatic flood events due to inclement 

climate conditions. From December 2010 until early 2011, major floods due to heavy 

rainfall occurred in several states in Australia including Victoria, New South Wales and 

Queensland (AbdulRauf & Zeephongsekul, 2014). According to the BoM, flooding is 

Australia’s most costly natural disaster. Although floods do not have as wide an effect 

on Australia as droughts, they still cause damage to dwellings, transportation networks, 

and other infrastructure. In Victoria, flooding occurs mostly in winter and spring. In this 

study, three distinct regions of east, central and west Victoria are considered as case 

studies. Nine stations with maximum records of data were selected from these regions. 

Figure 3.1 shows the location details of the stations considered in this study. Monthly 

records of rainfall for 110 years (1900-2009) were obtained from the BoM for this 

study. Spring (September-November) rainfalls were obtained from the monthly rainfall 

data. Table 3.1 gives the geographical locations of the stations, their annual mean 

rainfall and the percentage of missing values for each station. Buchan, Daylesford, 

Heathcote and Kaniva each had a single missing value, Rainbow two missing values 
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and the rest of the stations had no missing values for spring rainfall. The missing values 

were in-filled using long-term averages of each station over the period 1900-2009. 

 

 

Figure  3-1. Schematic map of the study area 

 

Table  3.1. Details of geographical location and recorded data of rainfall stations of the 

study 

Region Site No. Site Name Latitude Longitude Annual Mean 

Rainfall (mm) 

% of Missing 

Observations 

East 084003 Bruthen 37.71°S 147.83°E 759.5 0 

084005 Buchan 37.50°S 148.17° E 824.2 0 

084030 Orbost 37.69°S 148.46° E 845.1 0 

Center 088042 Malmsbury 37.2 °S 144.37° E 726.0 0 

088020 Daylesford 37.34°S 144.16° E 879.3 1 

088029 Heathcote 36.96°S 144.69° E 575.9 1 

West 079023 Horsham 36.66° S 142.07° E 447.3 0 

078078 Kaniva 36.37° S 141.24° E 452.1 1 

077051 Rainbow 35.94° S 141.94° E 349.0 2 
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The climate modes investigated in this study are chosen because they show 

simultaneous relationships with monthly or seasonal rainfalls across Australia. As 

discussed in Chapter 2, the dominant climate modes affecting Australia’s climate are the 

El Nino Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), the Southern 

Annual Mode (SAM) and the Interdecadal Pacific Oscillation (IPO). The Southern 

Oscillation Index (SOI), which is a measure of Sea Level Pressure (SLP) anomalies 

between Darwin and Tahiti is a quantitative indicator of ENSO. ENSO is also 

represented by the Sea Surface Temperature (SST) anomalies in the equatorial Pacific 

Ocean. The SST anomalies vary depending on their region; the most important ones 

include Nino3 (5
o
S – 5

o
N, 150

o
– 90

o
W), Nino3.4 (5

o
 S – 5

o
N, 170

o 
– 120

o
W) and Nino4 

(5
o
S – 5

o
N, 160

o 
– 150

o
W) (Risbey et al. 2009). SOI and Nino3.4 are the most common 

ENSO indicators used in analyzing this phenomenon.  

IOD is the other coupled ocean-atmosphere phenomenon taking place in the Indian 

Ocean. A measure of IOD is the Dipole Mode Index (DMI), which is the difference in 

average SST anomalies between the tropical Western Indian Ocean (10
o
S - 10

o
N, 50

o 
- 

70
o
E) and the tropical Eastern Indian ocean (10

o
S - Equator, 90

o 
- 110

o
E) ( Kirono et al. 

2010).  

The IPO, which is a low frequency (15–35 years) form of variability of the tropical and 

extra-tropical Pacific Ocean, modulates the relationship between ENSO and rainfall on 

a multi-decadal scale in some parts of Victoria. In this study, monthly values of 

Nino3.4, SOI and DMI were obtained from Royal Netherlands Meteorological Institute 

(KNMI) Climate Explorer website (http://climexp.knmi.nl/). The monthly IPO index 

was derived from Parker et al. (2007). Table 3.2 summarizes the climate indices used in 

this study, and Figure 3.2 to 3.4 show the intensity of the climate modes during the 

period of study.  

 

 

 

 

http://climexp.knmi.nl/
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Table  3.2. Climate indices investigated as potential predictors of Victoria’s seasonal 

rainfall 

Predictors Predictor Definition Region Data source 

SOI Anomaly of mean sea level pressure (MSLP) difference 

between Tahiti and Darwin 

Pacific KNMI Climate 

Explorer 

Nino3.4 Average SST anomaly over 5oS–5oN and 170o – 120oW Pacific KNMI Climate 

Explorer 

DMI West Pole Index - East Pole Index: (Average SST anomaly over 10oS - 

10oN, 50o - 70oE)-(Average SST anomaly over 10oS - Equator, 90o - 110oE) 

Indian KNMI Climate 

Explorer 

IPO empirical orthogonal function (EOF) of SST anomalies in Pacific Ocean Pacific Parker  et al., 

(2007) 

 

 

Figure  3-2. SOI five month running mean for the period 1900-2009  (Data source: 

http://climexp.knmi.nl/)  
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Figure  3-3. IOD monthly values for the period 1900-2009  (Data source: http://climexp.knmi.nl/)  

 

Figure  3-4. IPO monthly values for the period of 1900-2009 (Data source: Parker et al., 

2007) 

3.2 Data preprocessing  

According to Maier and Dandy (2000) data pre-processing have significant effect on the 

model performance as different input variables could span different ranges and 

normalization of the variables insures that all variables receive equal attention during 

the calibration process of the modelling process. In general, in any model development 

process it is best to know the type of data considered in the model building stage. For 

example in the case of ANN models, some activation functions used in the output layer 
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of ANN have some limits in their range and the data must therefore be scaled within 

their range. For example, if the outputs of the logistic transfer function are between 0 

and 1, the data are generally required to be scaled within the range of  0.1-0.9 or 0.2-0.8. 

It should be noted that if the transfer function of the output layer is unbounded (e.g. 

linear) scaling is not strictly required (Maier et al. 2010). 

In the present study the data are normalized in the range of 0 to 1 using Eq. 3-1. 

    
       

         
          (3-1) 

where,     is the normalized value,    is the observation value, and        and      are 

the maximum and minimum of the data respectively. 

3.3 Model Verification 

The performance criteria and error statistics  used in this study are mean square error 

(MSE), root mean square error (RMSE), mean absolute error (MAE), and Pearson 

correlation (r).These criteria are described as follows:  

a) Mean square error : 

MSE=
        

  
   

 
                      (3-2) 

b) Root mean square error or RMSE: 

      
        

  
   

 
                                                                                                 (3-3) 

where xi and    are observed and simulated data of the ith observation, respectively; and 

n is the total number of observations. The RMSE accords extra importance to the 

outliers in the data set and is therefore biased towards errors in the simulation of high 

values (Dawson et al., 2006). 

c) Mean Absolute Error or MAE: 
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                                                                                                                    (3-4) 

MAE computes all deviations from the original data regardless of sign and is not 

weighted towards high values (Abrahart et al. 2004). 

d) Correlation Coefficient (r): 

 

     (3-5) 

where, r is the correlation coefficient between variables x and y;  and   are the 

average values of x and y, respectively and n is the number of data points. r ranges 

within the domain [-1, 1] where the values of 1 and -1 indicate positive and negative 

perfect linear correlation respectively, while r = 0 is an indication that there is no 

correlation between the two data series.  
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Chapter 4 

 

Analysis of the Effect of Climate Mode Phases on rainfall 

4.1 Classification Analysis 

The El Nino Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) are two 

ocean-atmospheric climate modes which change phase on a seasonal to inter-annual 

scale.  The cool (positive) phase of ENSO, which is associated with cooler than average 

sea surface temperatures (SSTs) in the central and eastern tropical Pacific Ocean, is 

called La Nina. La Nina conditions (events) generally result in above-average rainfall 

over much of Australia (Verdon et al. 2004). In contrast, the warm (negative) phase of 

ENSO is associated with warmer than  average SSTs in the central and eastern tropical 

Pacific Ocean. This phase of ENSO is known as El Nino, the occurrence of which 

generally result in below-average rainfall over much of eastern Australia (Wang & 

Hendon 2007). A neutral phase also exists, which is neither El Nino nor La Nina 

conditions.  

The IOD also has three different conditions. The positive IOD (pIOD) is related to 

cooler than normal water in the tropical eastern Indian Ocean and warmer than normal 

water in the tropical western Indian Ocean.  pIOD conditions are linked with decreased 

rainfall over the southern and central parts of Australia . On the other hand, a negative 

IOD (nIOD) brings warmer than normal water in the tropical eastern Indian Ocean and 

cooler than normal water in the tropical western Indian Ocean. nIOD conditions are 

linked to increased  rainfall over parts of southern Australia (Gallant et al. 2012). The 

neutral IOD is the normal condition, where neither pIOD nor nIOD occur. It is believed 

that ENSO and IOD affect cool season (spring-winter) rainfall in Australia (Cai et al. 

2011). Meyers et al. (2007) proposed a method to identify when the negative or positive 

phase of ENSO and IOD occur and applied the method to classify each year from 1876 

to 1999 into the different phases of ENSO and IOD. Later, Ummenhofer et al. (2009) 

extended the classification to 2009; the classification is shown in Table 4.1. While some 

studies have investigated the effect of the phases of ENSO and IOD on some regions in 
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Australia (Ummenhofer et al. 2009; Cai et al. 2011, 2012), Victoria’s rainfall has not 

been studied specifically.  

Table  4.1. The years of  ENSO and IOD based on the Ummenhofer et al. (2009) 

classification 

 Negative IOD Neutral IOD Positive IOD 

El Nino 1930 
1877, 1888, 1899, 1905, 1911, 1914, 1918, 1925, 

1940, 1941, 1965, 1972, 1986, 1987 

1896,  1902, 

1957,1963, 1982, 

1991, 1997, 2009 

Neutral 

ENSO 

1915, 1958, 

1968, 1974, 

1980, 1985, 

1989, 1992 

1880, 1881, 1882, 1883, 1884, 1895, 1898, 1900, 

1901, 1904, 1907, 1908, 1912, 1920, 1921, 1927, 

1929, 1931, 1932, 1934, 1936, 1937, 1939, 1943, 

1947, 1948, 1951, 1952, 1953, 1953, 1959, 1960, 

1962, 1966, 1967, 1969, 1971, 1976, 1977, 1979, 

1983, 1990, 1993, 1995, 2001, 2002, 2003, 2005, 

2006, 

1885, 1887, 1891, 

1894, 1913, 1919, 

1923, 1926, 1935, 

1944, 1945, 1946, 

1961, 1994, 2004, 

2008 

La Nina 

1906, 1909, 

1916, 1917, 

1933, 1942, 

1975 

1878, 1879, 1886, 1889, 1890, 1892, 1893, 1897, 

1903, 1910, 1922, 1924, 1928, 1938, 1949, 1950, 

1954, 1955, 1956, 1964, 1970, 1973, 1978, 1981, 

1984, 1988, 1996, 1998, 2000 

1999, 2007 

 

In order to evaluate the effect of different phases of ENSO and IOD on cool season 

rainfall in Victoria, seasonal rainfall anomalies are constructed for the three regions of 

the case study (east, central and west Victoria) based on Eq. 4-1: 

                        (4-1) 

where           is the anomaly of seasonal rainfall at year i ,    is the value of seasonal 

rainfall at year i, and    is the long-term average rainfall for the particular season under 

study. The long-term average is calculated for the years 1900-2009 and the anomalies 

are created for this period.   

The anomalies constructed for spring and winter rainfalls are categorized based on the 

six phases of ENSO and IOD (Neutral, El Nino and La Nina for ENSO  and Neutral, 
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pIOD and nIOD  for IOD).  In this way, six groups of rainfall anomalies are 

constructed, based on the six phases of ENSO and IOD in order to evaluate whether the 

median of each group is statistically different from zero. A statistically significant zero 

median is referred to as normal climate condition and normal rainfall (BoM-2014).  

Figures 4.1 and 4.2 show the six categories of rainfall anomalies in colour-coded bars 

for spring and winter rainfall respectively. The neutral years of ENSO and IOD are 

colour-coded gray and are in the middle of each figure with El Nino and pIOD on the 

left and La Nina and nIOD on the right. The middle horizontal line in each bar shows 

the median rainfall. The Wilcoxon Signed Rank test is applied on each category to 

determine whether the median rainfall is statistically distinguishable from zero during 

the six phases. Tables 4.2 and 4.3 show the results of the Wilcoxon Signed Rank test for 

spring and winter rainfall anomalies respectively. Based on Table 4.2, in spring the 

median is significantly different from zero in east, central and west Victoria during El 

Nino and pIOD events; other than in east Victoria, the median is significantly different 

from zero during La Nina and nIOD events. This shows that the dry phases of ENSO 

and IOD have more effect on east Victoria than the wet phases. Table 4.3 shows that in 

winter the median is only distinguishable from zero in central Victoria during El Nino 

and nIOD events and in west Victoria during nIOD events. No other phases have 

significant effects in Victoria during winter. By comparing Table 4.2 and 4.3 it can be 

concluded that in Victoria spring rainfall is more under the influence of ENSO and IOD 

than winter rainfall. Therefore,  more emphasis needs to be placed on predicting spring 

rainfall in Victoria based on large-scale climate modes. 
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Table  4.2. Testing for significant difference of median from zero for spring rainfall 

(Wilcoxon Signed Rank test) 

Region LN EN Neutral-ENSO IOD+ IOD- Neutral-IOD 

East --- 0.027* --- 0.004* --- --- 

Centre 0.015* 0.006* --- 0.000* 0.020* --- 

West 0.028* 0.003* --- 0.002* 0.007** --- 

*The significance level is 0.05 

Table  4.3. Testing for significant difference of median from zero for winter rainfall 

(Wilcoxon Signed Rank test) 

Region LN EN Neutral-ENSO IOD+ IOD- Neutral-IOD 

East --- --- --- --- --- --- 

Centre --- 0.033* --- --- 0.013* --- 

West --- --- --- --- 0.039* --- 

*The significance level is 0.05 

 

 



54 

 

 

Figure  4-1. Spring  rainfall anomalies for the different ENSO/IOD categories for 

Victoria. The neutral years of ENSO and IOD are colour-coded gray and are in the 

middle of each figure with El Nino and pIOD on the left and La Nina and nIOD on the 

right. The middle line in each bar shows the median rainfall. 
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Figure  4-2. Winter  rainfall anomalies for the different ENSO/IOD categories for 

Victoria. The neutral years of ENSO and IOD are colour-coded gray and are in the 

middle of each figure with El Nino and pIOD on the left and La Nina and nIOD on 

the right. The middle line in each bar shows the median rainfall. 
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After investigating the effect of separate phases of ENSO and IOD on cool season 

rainfall in Victoria, the combined effect of ENSO/IOD on Victoria’s seasonal rainfall 

was investigated. Since IOD is strongly correlated with ENSO in austral spring and less 

correlated with ENSO in winter, the independent and dependent impacts of IOD and 

ENSO are felt in both seasons in Australia (Cai et al. 2011). The dependence and 

independence effect of IOD and ENSO in Victoria in particular are investigated in this 

section. In order to show the strength of the relationship between IOD and ENSO in 

different seasons, Pearson correlations between Nino3.4, SOI (ENSO indicators) and 

DMI (IOD indicator) were calculated for the four seasons (Figure 4.3). It can be seen 

from this figure that there is a moderate to weak relationship between IOD and ENSO 

in spring and winter, but in summer and autumn no relationship exists between these 

two climate modes. Based on Figure 4.3, the relationship between ENSO and IOD in 

spring is stronger than in winter, with a maximum correlation coefficient of 0.59 

compared to -0.40. According to Meyers et al. (2007), the IOD and ENSO can occur 

together such that they reinforce each other, but this need not happen; conditions may 

 

 

Figure  4-3. Pearson correlations (r) of climate indices a) spring b) summer c) fall 

d) winter. Significant correlations are shown in red 
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exist that a phase of ENSO is accompanied by a phase of IOD. For example, an El Nino 

event can occur while IOD is in its positive phase. This condition will reinforce the 

effect of ENSO and IOD. In the classification of Meyers et al. (2007) and Ummenhofer 

et al. (2009),  this situation is considered by categorizing ENSO and IOD into nine 

categories, of which two seldom occur (Meyers et al. 2007). These categories are El 

Nino –pIOD, pure El Nino, pure pIOD, Neutral, pure La Nina, La Nina-nIOD and pure 

nIOD. The term “pure” is used in the present study to identify that the only active phase 

of climate is the phase where the term “pure” is associated with and the other mode is in 

neutral condition. In general, El Nino–pIOD, pure El Nino, and pure pIOD are 

accompanied by dry (below-average rainfall) conditions, while pure La Nina, La Nina-

nIOD and pure nIOD are accompanied by wet (above-average rainfall) conditions. To 

investigate the reinforcement effect of ENSO and IOD on rainfall, this classification 

was used to categorize Victoria’s spring and winter rainfall anomalies (see Figures 4.4 

and 4.5). The Wilcoxon Signed Rank test is applied to determine whether the median of 

each category of anomalies is statistically significant from zero (Table 4.4). It can be 

seen from Table 4.4 that for east Victoria El Nino-pIOD co-occurrence is statistically 

significant; a median rainfall anomaly of -20 mm is recorded for east Victoria during the 

co-occurrence of El Nino-pIOD with all but one event out of seven showing below 

average rainfall. For central and west Victoria, a median rainfall anomaly of  -22 and -

15 mm respectively is recorded during pure El Nino events with all but two events out 

of eleven having below average rainfall. Also, a median of  -20 mm and -12 mm is 

recorded for central and west Victoria respectively, during pure pIOD events with all 

but one event out of twelve showing below average rainfall. For central Victoria, with a 

median of + 12 mm during pure La Nina, sixteen out of twenty-one events have above 

average rainfalls. The only region in Victoria with six events out of seven events having 

above average rainfall in spring during the co-occurrence of La Nina-nIOD is west 

Victoria with a median of +15 mm. 
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Table  4.4. Testing for significant differences of median from zero, spring rainfall 

(Wilcoxon Signed Rank test) 

Region EN,IOD+ EN IOD+ Neutral IOD- LN LN,IOD- 

East 0.028* --- --- --- --- --- --- 

Centre --- 0.026* 0.005* --- --- 0.035* --- 

West --- 0.013* 0.028* --- --- --- 0.043* 

*The significance level is 0.05 

Table  4.5. Testing for significant difference of median from zero, winter rainfall (Wilcoxon 

Signed Rank test) 

Region EN,IOD+ EN IOD+ Neutral IOD- LN LN,IOD- 

East --- --- --- --- --- --- --- 

Centre --- --- --- --- --- --- 0.018* 

West --- --- --- --- --- --- --- 

*The significance level is 0.05 
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Figure  4-4. Spring rainfall anomalies for the different ENSO/IOD categories for 

Victoria. The neutral years are colour-coded gray and are in the middle of each 

figure with El Nino-pIOD, El Nino and pIOD on the left and La Nina-nIOD, La 

Nina and  nIOD on the right. The middle line in each bar shows the median 

rainfall. 
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Figure  4-5. Winter rainfall anomalies for the different ENSO/IOD categories for Victoria. 

The neutral years are colour-coded gray and are in the middle of each figure with El Nino-

pIOD, El Nino and pIOD on the left and La Nina-nIOD, La Nina and  nIOD on the right. 

The middle line in each bar shows the median rainfall. 

 In general, the results show that rainfall anomalies during pure nIOD events, pure La 

Nina events and when they both occur at the same time (i.e. wet phase) are mostly 

variable; however, pure El Nino years, pure pIOD events and the co-occurrence of El 

Nino-pIOD (i.e. dry phase) consistently result in dry conditions during spring in 

Victoria. Based on Table 4.5, during winter none of the ENSO and IOD events affect 

Victoria, except for central Victoria where La Nina-nIOD occurring at the same time 
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affects the rainfall. As discussed earlier, it appears that winter rainfall in Victoria is not 

as much affected by different phases of ENSO and IOD and their co-occurrence 

compared to spring rainfall. The results derived here highlight the importance of spring 

rainfall prediction based on large-scale climate modes for Victoria. Further, the result 

indicate that, although the general conception indicates that  ENSO and IOD affect 

south-east Australia during spring and winter, Victoria is most influenced by the large-

scale climate modes in spring.   

4.1.1 Summary of classification analysis 

In this section the effect of different phases of ENSO and IOD on Victoria’s cool 

seasonal rainfall was investigated. Rainfall anomalies were constructed and classified 

based on the classification of Meyers et al. (2007) and Ummenhofer et al. (2009).  The 

Wilcoxon Signed Rank test was applied in two steps to investigate the significance of 

the median of each category from zero. In the first step, the anomalies were tested based 

on the three phases of ENSO and three phases of IOD. It was discovered that spring 

rainfall in Victoria is more under the influence of these phases than winter rainfall. In 

the next step, the co-occurrence of ENSO and IOD was taken into account and it was 

discovered that the dry phases of ENSO and IOD and their co-occurrence (i.e. pure El 

Nino years, pure pIOD events and the co-occurrence of El Nino-pIOD) consistently 

result in dry conditions, while the wet phases of these phenomena are highly variable. It 

was also revealed that it is only when El Nino and pIOD occur at the same time that the 

events affect east Victoria’s rainfall. The results highlight the importance of dry phases 

of ENSO/IOD on spring rainfall and the necessity of forecasting spring rainfall based on 

large-scale climate modes as potential predictors. 

4.2 Pearson Correlation Analysis 

Categorizing rainfall based on the phases of ENSO and IOD in Section 4.1 revealed the 

effect of each phase of these climate modes on Victoria’s cool season rainfall. It was 

discovered that the dry phases of these climate modes have more significant effects on 

rainfall variations than the wet phases. While classification analysis gives a good 

understanding of the natural causes of the increase or decrease in rainfall over Victoria, 

it cannot show the magnitude of the influence of the climate modes on seasonal rainfall. 

In order to have an understanding of the strength of different climate modes on seasonal 
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rainfall in Victoria, Pearson correlation analysis is used in two separate approaches. In 

the first approach the concurrent relationship between seasonal rainfall and climate 

modes is investigated; the second approach takes into account the relationship between 

seasonal rainfall and antecedent climate modes. The results of the second approach is 

used later as the basis of selecting the appropriate lagged climate modes as inputs for 

seasonal rainfall forecasting models.  

4.2.1 Concurrent relationships 

In order to evaluate the linear relationships between spring, summer, autumn and winter 

rainfalls and spring, summer, autumn and winter ENSO/IOD, a Pearson correlation 

analysis was conducted for the three regions under study. The results are demonstrated 

in Tables 4.6 to 4.9 for spring, summer, autumn and winter respectively.  It can be seen 

from Table 4.6 that the relationship between ENSO and IOD with east Victoria’s spring 

rainfall is very weak (rmax= -0.27) compared to the other regions. In central and west 

Victoria, a significant increase can be seen in the correlation coefficient values between 

ENSO and IOD with spring rainfalls. The maximum correlation coefficient in central 

and west Victoria can be seen with regard to IOD with rmax= -0.44 and -0.45 

respectively.  In summer (Table 4.7) the influence of ENSO is quite weak in Victoria 

and can only be seen in central Victoria with rmax= 0.20.  IOD has no significant 

influence on summer rainfall in this state. In autumn, ENSO has no influence on the 

region and IOD has a minor effect on central and west Victoria with rmax= -0.29 and -

0.20 respectively (Table 4.8). Although the effect of ENSO in winter is increased 

compared to summer and autumn, this effect cannot be seen for east Victoria. ENSO 

affects central and west Victoria in winter with a correlation coefficient of rmax= 0.43 

and 0.38 respectively compared to IOD with rmax= -0.33 and -0.29 respectively. In 

general, it appears that ENSO and IOD influence the cool season rainfalls (spring and 

winter) in Victoria, with IOD being the dominant predictor in spring and SOI in winter; 

the effects of ENSO and IOD are very weak for east Victoria.  
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Table  4.6. Pearson correlation (r) of spring climate indices and spring rainfall  

Region Nino34(S-O-N) SOI(S-O-N) DMI(S-O-N) 

East -0.27** 0.21* -0.25** 

Centre -0.38** 0.43** -0.44** 

West -0.39** 0.43** -0.45** 

**Correlation is significant at the 0.01 level (2-tailed). 

*Correlation is significant at the 0.05 level (2-tailed). 

 

 

Table  4.7. Pearson correlation (r) of summer climate indices and fall rainfall 

Region Nino34(S-O-N) SOI(S-O-N) DMI(S-O-N) 

East ---- ---- ---- 

Centre -0.20* 0.20* ---- 

West ---- ---- ---- 

**Correlation is significant at the 0.01 level (2-tailed). 

*Correlation is significant at the 0.05 level (2-tailed). 

 

 

Table  4.8.  Pearson correlation (r) of autumn climate indices and fall rainfall  

Region Nino34 SOI DMI 

East ---- ---- ---- 

Centre ---- ---- -0.29** 

West ---- ---- -0.20* 

**Correlation is significant at the 0.01 level (2-tailed). 

*Correlation is significant at the 0.05 level (2-tailed). 
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Table  4.9. Pearson correlation (r) of winter climate indices and winter rainfall  

Region Nino34 SOI DMI 

East ---- ---- ---- 

Centre -0.21* 0.43** -0.33** 

West ---- 0.38** -0.29** 

**Correlation is significant at the 0.01 level (2-tailed). 

*Correlation is significant at the 0.05 level (2-tailed). 

 

Analysis of the correlation coefficient between ENSO/IOD and seasonal rainfall in 

Victoria gives some insight into the strength of these relationships in general, but this 

analysis does not reveal the strength of the relationship between rainfall and 

specifically the  phases of climate modes ( i.e. El Nino/ La Nina and pIOD/nIOD). In 

order to examine the strength of the relationship between the effective phases of ENSO 

(El Nino/La Nina) and IOD (pIOD/nIOD) and cool season rainfall (spring/winter), 

further analysis is required. Therefore, seasonal rainfalls associated with the specific 

years of El Nino and La Nina classified by Ummenhofer et al. (2009) were separated 

from the data for each region. The extracted rainfalls were then put in order based on 

the related years. In this way the neutral years are removed from the rainfall series and 

only the El Nino and La Nina years remain. We will call this method merging as the 

years of El Nino and La Nina were merged  to produce a time series of related seasonal 

rainfalls. The same method was applied in order to produce merged rainfalls based on 

pIOD/nIOD. The related Nino3.4 and SOI values were also merged based on the years 

of El Nino and La Nina to produce the series of merged Nino3.4 and SOI;  DMI was 

also aggregated based on the years of pIOD/nIOD to produce the series of merged 

IOD. When the merged series of seasonal rainfall (winter and spring separately) and 

merged climate modes were produced, the relationship between these significant 

phases of climate modes and their related seasonal rainfall could be examined. For this 

purpose Pearson correlations between the merged ENSO indices and rainfalls were 

calculated, and the results are shown in Table 4.10. The results of previous analysis 

with un-merged rainfalls are also shown for comparison. It can be seen from Table 

4.10 that merged rainfalls show much higher correlation coefficients (rmax= 0.35 for 

east, rmax= 0.58 for central and west) for spring rainfall compared to the correlation 
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coefficients of normal rainfalls (rmax= - 0.27 for east, rmax= 0.43 for central and west) 

with ENSO indices. In this way the strength of the two phases of ENSO (El Nino/ La 

Nina) on spring rainfall in Victoria  is shown. For winter rainfalls, Table 4.10 shows 

that merged rainfalls show much higher correlation coefficients (rmax= 0.55 for central 

and  rmax= 0.44 for west) than the correlation coefficients of normal rainfalls (rmax= 

0.43 for central and rmax= 0.38 for west) with ENSO indices. It can be seen that even 

by combining the years of El Nino/La Nina, east Victoria does not show any 

significant relationship with the two phases of ENSO in winter.  

The same analysis was conducted for the phases of IOD and the results are shown in 

Table 4.11. It can be seen from this table that merged rainfalls based on the two IOD 

phases show higher correlation coefficients (rmax= -0.33 for east, rmax= -0.58 for central 

and rmax= -0.54 for west) for spring rainfall than the un-merged rainfalls,  with rmax= -

0.25 for east, rmax= -0.44 for central and rmax= -0. 45 for west. For winter, the results 

show higher correlation coefficients for merged rainfalls compared to normal rainfalls 

(rmax= -0.54 for central and rmax= -0.43 for west compared to rmax= -0.33 for central and 

rmax= -0.29 for west). It appears that even by combining the winter rainfall for east 

Victoria based on pIOD and nIOD,  no relationship can be found between rainfall and 

winter IOD in this region.  

Table  4.10. Comparison between Pearson correlations (r) of merge and un-merge rainfalls 

with ENSO indices 

 Merged El Nino/La Nina rainfalls Un- Merged rainfalls 

Region Spring  Winter  Spring  Winter  

 Nino3.4 SOI Nino3.4 SOI Nino3.4 SOI Nino3.4 SOI 

East -0.33* 0.35* ---- ---- -0.27** 0.21* ---- ---- 

Centre -0.50** 0.58** -0.32* 0.55** -0.38** 0.43** -0.21* 0.43** 

West -0.50** 0.58** ---- 0.44** -0.39** 0.43** ---- 0.38** 

**Correlation is significant at the 0.01 level (2-tailed). 

*Correlation is significant at the 0.05 level (2-tailed). 
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Table  4.11. Comparison between Pearson correlations (r) of merged and un-merge 

rainfalls with IOD indices 

 Merged pIOD/nIOD rainfalls Un-merged rainfalls 

Region Spring Winter Spring Winter 

 IOD IOD IOD IOD 

East -0.33* ---- -0.25** ---- 

Centre -0.58** -0.54** -0.44** -0.33** 

West -0.54** -0.43** -0.45** -0.29** 

**Correlation is significant at the 0.01 level (2-tailed). 

*Correlation is significant at the 0.05 level (2-tailed). 

4.2.2 Lagged relationships 

As discussed in Sections 4.1 and 4.2.1, the season that is most influenced by ENSO and 

IOD in Victoria is spring. Therefore, the development of a forecast model to accurately 

predict spring rainfall based on large-scale climate modes is crucial for Victoria. Any 

modelling process requires the identification of the predictors; in rainfall forecasting 

models it is the past values of the large scale climate modes that are essential for 

forecasting rainfall. In order to evaluate the significant predictors of rainfall, Pearson 

correlation analysis was conducted between monthly climate modes prior to spring and 

spring rainfall in three regions of the case study; Pearson correlations between spring 

rainfall at year n and the Decn-1-Augn monthly values of ENSO and IOD indicators 

(Nino3.4, SOI and DMI) were calculated (“n” being the year for which spring rainfall is 

being predicted). As discussed in Chapter 3, for each region three stations were chosen 

based on the data records.  The results of correlation analyses between rainfall and 

lagged climate modes are shown in Table 4.12. It can be seen from this table that only 

the three months (June, July and August) Nino3.4, SOI and DMI have statistically 

significant correlations with spring rainfalls; this result is consistent with the findings of 

Chiew et al. (1998) and Verdon et al. (2004), substantiating that not only  the highest 

correlations between rainfall and climate indicators are obtained up to three month lags 

i.e. there is no further significant relationship after lag 3; in addition,  these correlations 

are very weak for Victoria (|rmax|=0.30 for east Victoria,  |rmax|=0.39 for central Victoria 

and |rmax|=0.36 for west Victoria). As these relationships are weak based on linear 



67 

 

analysis, a sophisticated modelling approach needs to be applied in order to forecast 

rainfall.  

Table  4.12. Pearson correlations (r) of lagged climate indices and spring rainfall   

Region Station 

Lagged climate indices   

Ni34(Jun) Ni34(Jul) Ni34(Aug) SOI(Jun) SOI(Jul) SOI(Aug) DMI(Jun) DMI(Jul) DMI(Aug) 

East 

Bruthen -0.20* -0.25** -0.28** --- --- --- -0.25** --- --- 

Buchan -0.22* -0.26** -0.24* -0.20* --- --- -0.30** --- --- 

Orbost --- -0.24* -0.26** --- --- --- -0.29** -0.21* --- 

Centre 

Malmsbury -0.22* -0.22* -0.29** --- 0.32** 0.30** --- -0.30** -0.31** 

Daylesford -0.30** -0.28** -0.33** 0.20* 0.37** 0.34** --- -0.29** -0.28** 

Heathcote -0.30** -0.30** -0.38** --- 0.36** 0.39** --- -0.25** -0.28** 

West 

Horsham -0.22* -0.23* -0.31** ---- 0.26** 0.25** --- -0.28** -0.31** 

Kaniva -0.32** -0.32** -0.36** 0.23* 0.33** 0.31** --- -0.30** -0.31** 

Rainbow -0.31** -0.31** -0.36** 0.20* 0.33** 0.33** --- -0.25** -0.26** 

**: correlation is significant at the 0.01 level (2-tailed). 

* : correlation is significant at the 0.05 level (2-tailed). 

 

In addition to ENSO and IOD, IPO and SAM also affect some parts of Victoria. SAM 

was not used in this study due to the limited data records. It is believed that IPO 

enhances the effect of ENSO during the La Nina phase for some parts of Victoria 

(Verdon et al. 2004). Pearson correlation analysis was conducted to find the 

relationships between monthly IPO values prior to spring and spring rainfall for the 

three regions. Table 4.13 shows the result of the correlation analyses;  as can be seen in 

Table 4.13, of the nine stations, only four have significant, although weak, lagged 

relationships between IPO and rainfall. Daylesford in central Victoria correlates with 

IPO (Jun, Jul, Aug) with (|rmax|) of 0.24, while Heathcote and Kaniva only have significant 

correlation with IPO(Jul, Aug) with (|rmax|) of 0.25. Rainbow has only a significant 

correlation with IPO (Aug). It can be seen from Table 4.13 that not only these lagged 

correlations weak,  they also do not cover a common and wide range of months and 

stations. In general, it appears that due to the multi-decadal variability of IPO, a weak 
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relationship exists between monthly IPO and seasonal rainfall for only some parts of 

Victoria.  

Table  4.13. Pearson correlations (r) of lagged IPO and spring rainfall   

Region Station Lagged IPO 

June July August 

East Bruthen ---- ---- ---- 

Buchan ---- ---- ---- 

Orbost ---- ---- ---- 

Centre Malmsbury ---- ---- ---- 

Daylesford -0.19* -0.24* -0.23* 

Heathcote ---- -0.25* -0.20* 

West Horsham ---- ---- ---- 

Kaniva ---- -0.23* -0.22* 

Rainbow ---- ---- -0.21* 

**: correlation is significant at the 99% level  

* : correlation is significant at the 95% level  

4.2.3 Summary of Pearson correlation analysis 

Pearson correlation analysis was conducted for concurrent seasonal rainfalls in Victoria 

and seasonal climate modes. It was discovered that only the cool season rainfalls (spring 

and winter) have statistically significant relationships with climate modes; it was also 

found that these relationships are moderate to weak. Furthermore, by merging the years 

of El Nino/La Nina, and in a separate analysis the years of pIOD/nIOD, the strength of  

the relationship between rainfall and the phases of ENSO and IOD was examined. The 

results showed increased correlation coefficients considering the merged phases of 

ENSO and IOD with spring and winter rainfall for Victoria which revealed the 

magnitude of the strength of the relationships. The relationship between antecedent 

climate modes and spring rainfall was also examined using Pearson correlation analysis. 

It was discovered that only the climate modes of the three months June, July and August 
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have statistically significant relationships with spring rainfall, although these 

relationships are quite weak. 
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Chapter 5 

Multiple Linear Regression (MLR) Analysis 

5.1 Introduction 

Multiple linear regression (MLR) models are commonly used for the prediction of water 

resources and hydrological variables. Many studies of rainfall forecasting (He et al. 

2014; Nicholson 2014; Mekanik et al. 2013) and  flood forecasting ( Latt et al. 2014; 

Chavoshi et al. 2013) have used MLR as a tool for prediction purposes. Rossel and 

Cadier (2009) applied multiple regression models  for the prediction of  monthly rainfall 

in the Ecuador, using as predictors precipitation, sea surface temperature (SST), 

meridional and zonal wind in the eastern equatorial Pacific.  The  developed models 

were used to predict rainfall anomalies in the out-of-sample test set. They discovered 

that there is significant predictive power for the rainy months of the year with the best 

predictability being for the period from March to May. Their revealed that the 

developed multiple linear models explained 60–82% of the monthly precipitation 

variance. The relationship between topography and Korean precipitation was examined 

by MLR models (Um et al. 2011). Sadhuram and Murthy (2008) used MLR to forecast 

Indian summer monsoon rainfall using SST anomalies in Indian Ocean. They noted that 

the developed model was able to forecast the rainfall with good accuracy. Ihara et al. 

(2007) examined the relationship between ENSO and Indian Ocean indices with Indian 

summer monsoon rainfall using MLR. They discovered that the combination of Nino3 

and the zonal wind anomalies over the equatorial Indian Ocean are good predictors of 

rainfall in the region. In the present study, MLR models are developed as a benchmark 

for comparison with the developed ANN models.  

5.2 Methodology 

 MLR is a linear statistical technique that enables finding the best relationship between a 

variable (dependent, predicant) and  several other variables (independent, predictor) 

through the least square method. Multiple regression models can be presented by the 

following equation: 
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Oi =a + b1X1i + b2X2i+c                                                                                      (5-1) 

where, Oi is the dependent variable , X1i and X2i are first and second  independent 

variable respectively , b1 and b2 are  model coefficients of first and second  independent 

variable respectively, a is constant, and c is  the error.  

regression weights (b1 and b1)  are computed in a way to minimize the sum of squared 

deviations defined by the following equation: 

        
  

            (5-2) 

MLR models are linear statistical methods that are based on established statistical 

assumptions. In the process of building regression models, the related assumptions must 

be evaluated and satisfied before the models can be reported as reliable. Among the 

most important statistical assumptions is the evaluation of  the goodness-of-fit of the 

model and the statistical significance of the estimated parameters of the constructed 

regression model. The techniques commonly used to verify the goodness-of-fit of 

regression models are hypothesis testing, R-squared and analysis of the residuals. In the 

present study, for the purpose of evaluating the goodness-of-fit of the models, the F-test 

was used to verify the statistical significance of the overall fit.  

The next statistical criterion that needs to be satisfied while developing a MLR model is 

evaluation of the statistical significance of the individual parameters of the model. Each 

parameter in Eq. 5-1 needs to be statistically significant within the 95% confidence 

level; the test used for this purpose is the t-test,  which evaluates the significance of the 

individual parameters. While the t-test tests the importance of individual coefficients, 

the F-test is used to compare different models to evaluate the model that best fits the 

population of the sample data (Um et al. 2011). 

Verifying the multicollinearity is also an important stage in MLR modelling; 

Multicollinearity occurs when the predictors are highly correlated, which will result in 

dramatic change in parameter estimates in response to small changes in the data or the 
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model. The indicators used to identify multicollinearity among predictors are tolerance 

(T) and variance inflation factor (VIF): 

                and     
 

         
                 (5-3) 

where,    is the coefficient of multiple determination :  

   
   

   
   

   

   
                     (5-4) 

where,  sst is the total sum of squares, ssr is the regression sum of squares and sse is the 

error sum of squares.  According to Lin (2008), a tolerance of less than 0.20–0.10 or a 

VIF greater than 5–10 indicates a multicollinearity problem. 

After the model is developed, the residuals should be examined in order to evaluate the 

independence of the errors of the models. The statistical test used to evaluate residual 

independence is the Durbin-Watson test (DW), which tests the existence of serial 

correlations between the model errors. Field (2009) states that values less than 1 or 

greater than 3 are a matter of concern when the DW test is applied. 

5.3 Results and Discussion 

According to Schepen et al. (2012) potentially suitable predictors for seasonal rainfall 

totals are lagged oceanic and atmospheric climate indices. In the present study, MLR 

was used in order to find the relationship between the significant lagged rainfall 

predictors (i.e. Nino3.4, SOI and DMI) discussed in Section 4.2.2 and spring rainfall. 

IPO will be discussed in Chapter 6. ENSO-IOD input sets were organized based on the 

statistically significant months (June, July and August) as potential predictors of spring 

rainfall for multiple regression analysis. For the purpose of calibration of the models, 

the years 1900-2006 were considered, and the reliable models were then tested on an 

out-of-sample test set of 2007-2009.  The models were developed using SPSS software 

(IBM SPSS-2012). Table 5.1 shows a sample of the models that were developed. It can 

be seen from this table that the combination of ENSO-IOD is based on a single month 

for each climate indicator (e.g. Nino3.4(Jun) –DMI(July)) and multiple lagged models (e.g. 
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Nino3.4(Jun-Jul-Aug) – DMI(Jun-July-Aug)) are not shown in this table. After evaluating all the 

potential combinations of multiple lagged climate modes, it was discovered that only 

single lagged climate mode models (e.g. Nino3.4(Jun) –DMI(July)) produced statistically 

significant results. The other models were not statistically reliable and are therefore not 

reported here.  The non-significant models’ results of this study are stored at Swinburne 

University of Technology library and can be retrieved 

(http://hdl.handle.net/1959.3/355557).  A sample of a single lagged MLR is as follows: 

Rainfall(spring)= -0.24×Nino3.4(Aug) + -0.20×DMI(July)+0.55                (5-5) 

Table  5.1. Multiple regression model sets developed for each station  

 Nino3.4x-DMIy SOIx-DMIy 

Bruthen Jun-Jun, Jul-Jun, Aug-Jun -------- 

Buchan Jun-Jun, Jul-Jun, Aug-Jun Jun-Jun 

Orbost Jul-Jun, Jul-Jul, Aug-Jun, Aug-Jul, -------- 

Malmsbury Jun-Jul, Jun-Aug, Jul-Jul, Jul-Aug, Aug-Jul, 

Aug-Aug 

Jul-Jul, Jul-Aug, Aug-Jul, Aug-Aug 

Daylesford Jun-Jul, Jun-Aug, Jul-Jul, Jul-Aug, Aug-Jul, 

Aug-Aug 

Jun-Jul, Jun-Aug, Jul-Jul, Jul-Aug, Aug-Jul, 

Aug-Aug 

Heathcote Jun-Jul, Jun-Aug, Jul-Jul, Jul-Aug, Aug-Jul, 

Aug-Aug 

Jul-Jul, Jul-Aug, Aug-Jul, Aug-Aug 

Horsham Jun-Jul, Jun-Aug, Jul-Jul, Jul-Aug, Aug-Jul, 

Aug-Aug 

Jul-Jul, Jul-Aug, Aug-Jul, Aug-Aug 

Kaniva Jun-Jul, Jun-Aug, Jul-Jul, Jul-Aug, Aug-Jul, 

Aug-Aug 

Jun-Jul, Jun-Aug, Jul-Jul, Jul-Aug, Aug-Jul, 

Aug-Aug 

Rainbow Jun-Jul, Jun-Aug, Jul-Jul, Jul-Aug, Aug-Jul, 

Aug-Aug 

Jun-Jul, Jun-Aug, Jul-Jul, Jun-Aug, Aug-Jul, 

Aug-Aug 

Note:” x-y” are the lagged months of the climate indices  

As discussed earlier, the MLR technique has some assumptions that need to be satisfied 

before any model can be reported as reliable. In order to verify the statistical 

significance of the overall fit, the F-test needs to be conducted. The F-test is used to 

compare different models in order to evaluate the model that best fits the population of 

the sample data (Um et al. 2011). After the model significance is tested, the significance 

https://outlook.swin.edu.au/owa/redir.aspx?C=vsk2zrGKzEqSYbRTgvra8h-C29ZWa9AITP9CS0bkzbI-KlR9PZmGGkC_f0QokwqgWamkGLvHb0A.&URL=http%3a%2f%2fhdl.handle.net%2f1959.3%2f355557
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of individual predictors and their related coefficients in Eq. 5-4 needs to be investigated 

using a t-test; in this way the importance of individual coefficients can be evaluated.  

After investigating the statistical significance of the parameters and the goodness-of-fit 

of the models,  the indicators used to identify multicollinearity among predictors, 

tolerance (T) and variance inflation factor (VIF), were examined as discussed in Section 

5.2. To evaluate the independence of the errors of the models, the Durbin-Watson test 

(DW), which tests the serial correlations between errors, was applied. According to Lin 

(2008), a tolerance of less than 0.20–0.10 or a VIF greater than 5–10 indicates a 

multicollinearity problem. According to Field (2009), values less than 1 or greater than 

3 are of concern when the DW test is applied. It was discovered that, of the models with 

more than a single predictor for each climate mode (e.g. Nino3.4(Jun-Jul-Aug)-DMI(Jun-Jul-

Aug)), the statistical assumptions were not satisfied, i.e. the t-test and VIF were not 

statistically significant. In addition, it was discovered that, of the models with single 

predictors (e.g. Nino3.4(Aug)-DMI(Aug) ), only some of the models satisfied the statistical 

criteria. After examining all four major statistical factors (i.e. F-test, t-test, 

multicollinearity and DW statistics) the models that did not violate the limits of 

statistical significance were selected and models with lowest errors were chosen as the 

best model for each station. The regression coefficients, variance inflation factors (VIF), 

Durbin-Watson statistics (DW) and the Pearson correlations (r) of the best models are 

shown in Table 5.2. It can be seen from this table that the VIFs for the selected models 

are near one, i.e. there is no multicollinearity among the predictors; in addition, the DW 

statistics show that the residuals of the models have no autocorrelation, confirming the 

goodness-of-fit of the models. The Nino3.4-DMI based models proved to be statistically 

significant and  to have better forecasting ability than the SOI-DMI models for Victoria, 

with a maximum Pearson correlation coefficient of 0.35 for east Victoria, 0.37 for 

central Victoria and  0.39 for west Victoria. Table 5.3 shows the MSE, MAE, RMSE 

and Pearson correlations (r) of the best MLR models for the three regions. It can be seen 

from Table 5.3 that the errors are relatively low for all the stations.  The statistically 

significant models were then tested on an out-of-sample test set, and the results are 

shown in Table 5.4. This table indicates that the models are able to forecast rainfall for 

three consecutive years with good correlation coefficients for Malmsbury, Daylesford 
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and Kaniva. For the rest of the stations, the models do not show good r values. The 

regression models developed are shown in Figures 5.1to 5.3. These models will be 

further compared with ANN models. 
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Table  5.2. Summary of the best regression models 

Region Station Models Coefficient    r VIF DW 

Const. Nino34(Jun) Nino34(Jul) Nino34(Aug) SOI(Jun) SOI(Jul) SOI(Aug) DMI(Jun) DMI(Jul) DMI(Aug)    

East Bruthen Ni34(Jul)-

DMI(Jun) 

0.65 --- -0.24 --- --- --- --- -0.24 --- --- 0.32 1.10 1.90 

Buchan Ni34(Jul)-

DMI(Jun) 

0.51 --- -0.17 --- --- --- --- -0.23 --- --- 0.35 1.10 2.10 

Orbost Ni34(Aug)-

DMI(Jun) 

0.56 --- --- -0.20 --- --- --- -0.27 --- --- 0.35 1.10 2.00 

Centre Malmsbury Ni34(Aug)-

DMI(Jul) 

0.55 --- --- -0.20 --- --- --- --- -0.22 --- 0.36 1.12 1.90 

Daylesford Ni34(Jun)-

DMI(Jul) 

0.62 -0.25 --- --- --- --- --- --- -0.29 --- 0.37 1.10 1.81 

Heathcote Ni34(Jun)-

DMI(Aug) 

0.60 -0.29 --- --- --- --- --- --- --- -0.24 0.37 1.10 1.80 

West Horsham Ni34(Aug)-

DMI(Jul) 

0.55 --- --- -0.24 --- --- --- --- -0.20 --- 0.36 1.12 2.00 

Kaniva Ni34(Jun)-

DMI(Jul) 

0.67 -0.32 --- --- --- --- --- --- -0.27 --- 0.39 1.10 2.00 

Rainbow Ni34(Aug)-

DMI(Jun) 

0.56 -0.29 --- --- --- --- --- --- --- -0.20 0.36 1.10 2.25 
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Table  5.3. Performance of the regression models: calibration set 

Region Station r RMSE MSE MAE 

East Bruthen 0.32 0.22 0.048 0.171 

 Buchan 0.35 0.16 0.026 0.171 

 Orbost 0.35 0.19 0.038 0.157 

Centre Malmsbury 0.36 0.17 0.030 0.140 

 Daylesford 0.37 0.20 0.039 0.155 

 Heathcote 0.37 0.19 0.035 0.153 

West Horsham 0.36 0.18 0.033 0.149 

 Kaniva 0.39 0.20 0.041 0.163 

 Rainbow 0.36 0.18 0.031 0.142 

 

Table  5.4. Performance of the regression models: test set 

Region Station r RMSE MSE MAE 

East Bruthen -0.99 0.13 0.016 0.085 

 Buchan -0.90 0.15 0.023 0.180 

 Orbost -0.99 0.15 0.024 0.150 

Centre Malmsbury 0.48 0.11 0.013 0.100 

 Daylesford 0.92 0.21 0.043 0.205 

 Heathcote -0.50 0.16 0.026 0.158 

West Horsham 0.25 0.17 0.030 0.149 

 Kaniva 0.67 0.23 0.051 0.163 

 Rainbow -0.74 0.17 0.029 0.142 
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Figure  5-1. Multiple regression models for east Victoria 
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Figure  5-2. Multiple regression models for central Victoria 
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Figure  5-3. Multiple regression models for west Victoria 
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5.4 Summary of MLR analysis 

In this section, multiple linear regression (MLR) analysis was conducted in order to 

produce rainfall forecast models based on lagged climate modes as predictors. It was 

discovered that only a few of the single lagged models were statistically significant and 

were used to forecast rainfall. The multiple lagged climate mode models were not 

reliable, as they did not meet the statistical assumptions of the MLR technique.  Due to 

the limitations of the MLR technique, care needs to be taken while developing 

forecasting models; if the statistical assumptions of the MLR technique are not 

examined and are not satisfied, the models developed could be misleading. The MLR 

models developed and tested were able to forecast spring rainfall three consecutive 

years in advance for some stations with acceptable correlation coefficients, while 

showing less accurate results for the others. It should be noted that MLR models are 

linear techniques that cannot model nonlinear complex relationships. This is the main 

drawback of MLR models. Therefore, the use of  nonlinear techniques with fewer 

limitations, such as Artificial Neural Networks (ANNs), is proposed and will be 

discussed in the following sections.  
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Chapter 6 

Artificial Neural Networks 

6.1 Introduction  

Many probabilistic and deterministic modelling approaches have been used by 

hydrologists and climatologists in order to capture rainfall characteristics. Conceptual 

and physically-based models require an in-depth knowledge of complex atmospheric 

phenomena; these models need a large amount of calibration data and they have to deal 

with over-parameterisation effects and parameter redundancy (De Vos & Reintjas, 

2005). On the other hand, due to inaccurate initial conditions, limited spatial resolution, 

and parameterization schemes of subscale phenomena rainfall forecasts with use of 

numerical weather prediction (NWP) models is far from being satisfactory (Ramirez et 

al. 2005). As discussed earlier, the use of numerical models has not demonstrated useful 

performance in  rainfall prediction. The NWP forecasts obtained from these models are 

an average over grid point values, and therefore is a function of the model’s spatial 

resolution only. in this case neglecting the temporal variation will lead to consistent 

inaccuracies since rainfall is highly variable both in space and time. (Ramirez et al., 

2005). These problems lead to investigating the potential of data-driven techniques. A 

variety of new approaches in hydrological modelling has opened since the introduction 

of artificial intelligence-based models such as Artificial Neural Networks (ANNs). A 

comprehensive review on application of ANN in hydrology has been provided by Maier 

and Dandy (2000) and Maier et al., (2010); the reviews highlights the potential of ANN 

as alternative modelling tools worthy of further exploration. 

ANNs are  mathematical models that has the ability to find nonlinear relationships 

between input and output parameters without the need to solve complex partial 

differential equations (Yilmaz et al. 2011). ANNs have been used in many hydrological 

and meteorological applications; for rainfall-runoff modelling (Akhtar et al. 2009; 

Chiang & Chang, 2009; Chiang et al. 2004; De Vos & Rientjes, 2005; Sudheer et al. 

2002; Tokar & Johnson, 1999); for stream-flow forecasting (Campolo et al. 1999; Firat 

& Gungor, 2007; Kisi 2007; Riad et al. 2004; Turan & Yurdusev, 2009), and for 



 

83 

 

groundwater modelling (Coulibaly et al. 2001; Daliakopoulos et al. 2005; Rogers & 

Dowla, 1994). They have also been used for rainfall forecasting (Hsu et al. 1995; Luk et 

al. 2000 and 2001; Mekanik et al. 2011; Rami’rez et al. 2005; Toth et al. 2000).  

Two major advantages of neural networks are (1) their ability to represent both linear 

and nonlinear relationships and (2) to learn these relationships directly from the data 

which they are modelling (Abbot & Marohasy, 2014). The use of ANN can be seen  

frequently in modelling and forecasting Indian monsoon rainfall. Iyengar and Raghu 

Kanth (2005) showed that the nonlinear characteristic of Indian monsoon rainfall can be 

modeled using ANN techniques, whereas the linear part is amenable for modelling 

through simple regression concepts. It was found that the proposed model explained 

between 75 to 80% of the interannual variability of eight regional rainfall series 

considered in the study. It was demonstrated that the model was capable of 

foreshadowing the drought of 2002, with the help of only antecedent data. Chakraverty 

and Gupta (2008) also predicted Indian summer monsoon rainfall 6 years in advance 

with the use of ANN. Different networks was constructed and compared with the results 

of previous studies. It was revealed that the developed ANN model had better results 

than those of previous studies.  

While many studies have used antecedent rainfall values to forecast rainfall using ANN 

modelling technique, some studies around the world have taken into account the large 

scale climate variables as ANN inputs. Chattopadhyay (2007) used a three layer ANN 

with backpropagation learning for predicting the average summer monsoon rainfall over 

India. Nine predictors consisting of  the monthly summer monsoon rainfall totals, 

tropical rainfall indices and sea surface temperature anomalies were used as inputs for 

the ANN model. The results showed supremacy to the persistence forecast and MLR 

prediction. Chattopadhay et al. (2010)  predicted the average winter monsoon rainfall of 

a given year using  exponential regression equation and  ANN model. Substantial 

variables were selected and the rainfall amounts and the SST anomalies in the winter 

monsoon months of the previous year were chosen as predictors. Levenberg-Marquardt 

algorithm was used to produce the regression coefficients for the multiple exponential 

regression equation. The ANN in the form of a multilayer perceptron with sigmoid non-
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linear function and genetic-algorithm based variable selection was developed. The 

Willmott’s index, percentage error of prediction, and prediction yields were used to 

evaluate the performance of the predictive models; the potential of ANN over 

exponential regression was then demonstrated.  

Shukla et al. (2011) further tried to improve the seasonal forecast skill of the Indian 

Summer Monsoon Rainfall Index (ISMRI) using ANN approach. In this regard, the 

influence of SST indices of Nino1+2, Nino3, Nino3.4 and Nino4 regions on ISMRI 

were evaluated using correlation analysis with a lag period of 1–8 seasons. Considerable 

positive correlations were found between ISMRI and Nino3 and Nino3.4 indices with a 

lag of 4 (June–July–August) and 5 (March–April–May) seasons and Nino4 index with a 

lag of 5 seasons before the start of monsoon. They reported that the level of confidence 

for the correlations was above 99%. Multiple linear regression models was also used to 

predict ISMRI using SST indices. Comparison of the results revealed the superior 

prediction skills of the ANN models to all the linear regression models. Based on the 

results of the developed ANN models, it revealed that the relationship between the Nino 

indices and the ISMRI is non-linear in nature. 

Other than India, many studies has focused on the application of ANN for rainfall 

prediction around the world. French et al. (1992) represented an ANN model which 

consisted of a three layer neural network to forecast rainfall intensity in space and time. 

They compared the results of their model with a space-time mathematical rainfall 

simulation model. They discovered that neural networks are capable of learning the 

complex nonlinear relationships of rainfall and they perform well in multi-site rainfall 

forecasting. Later in 1998, Lee et al. (1998) proposed a divide-and-conquer approach 

for predicting the daily rainfall at 367 locations in Switzerland  based on the daily 

rainfall at nearby 100 locations. Based on their approach, the region was split into four 

sub-areas and for each sub-area  different techniques were proposed. Based on the 

location information, radial basis function (RBF) neural networks were used for the two 

larger areas. Since it was assumed that for the two smaller areas precipitation is 

implemented by the orographic effect, therefore a simple linear regression model which 

used elevation as its only information was applied. For the two larger areas RBF 
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networks produced acceptable predictions while for the smaller areas the linear 

regression models produced large errors. Hartmann et al. (2008) forecasted summer 

rainfall in the Yangtze River basin using ANN technique. The input variables for the 

ANN included the SOI, the East Atlantic/Western Russia (EA/WR) pattern, the 

Scandinavia (SCA) pattern, the Polar/Eurasia (POL) pattern and several indices 

calculated from SST, sea level pressures (SLP) and snow data from December to April 

of 1993 to 2002. The precipitation from May to September of 1994 to 2002 was selected 

as the output variable of the ANN model. Using a principal component analysis (PCA), 

the output variable was classified into six different regions and rainfall was forecasted 

from May to September 2002. The results revealed that winter SST and SLP indices are 

the most significant predictors of summer rainfall in the Yangtze River basin. However, 

it seemed that the Tibetan Plateau snow depth, the SOI and the other teleconnection 

indices did not have significant effect on accurate rainfall forecast. The authors 

indicated that this could be attributed to the length of the available time series, which 

does not permit a deeper analysis of the influence of multi-annual oscillations. The 

results proved the capability of the ANN algorithms in forecasting most of the rainfall 

variability in the Yangtze River basin. The ANN model was able to show more than 

77% of the total variance of the measured rainfall for five out of the six investigated 

regions.  

Multilayer perceptron is not the only type of ANN being used in rainfall forecasting. 

Lin and Wu (2009) proposed a hybrid Self Organizing Map (SOM) and multilayer 

perceptron network to forecast typhoon rainfall. SOM technique was used for input 

selection while multilayer perceptron was used for the purpose of training and 

forecasting. The model was applied to Tanshui River Basin for the purpose of 

forecasting one hour a head typhoon rainfall for ten rain gauges. It was concluded that 

the proposed model has advantage over the conventional model used to forecast 

typhoon rainfall. Luk et al.  (2001) conducted three types of ANN namely multi layer 

feed-forward neural network (MLFN), Elman partial recurrent neural network (Elman) 

and time delay neural network (TDNN) to forecast rainfall for an urban catchment. 

They showed that all the mentioned networks have the ability to forecast rainfall 15 
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minutes ahead for 16 rain gauges. The results showed that there is a relation between the 

optimal complexity and the number of the hidden nodes and the lag of the series. It was 

concluded that networks with lower lags outperforms the ones with higher lags which 

reveals the short term memory characteristics of rainfall at the mentioned rain gauges. 

As discussed in Chapter 2, the application of nonlinear techniques for rainfall 

forecasting using antecedent climate modes has not widely been explored for Australia. 

Among the few studies focusing on this aspect of rainfall forecasting only three studies 

have used ANN modelling approach; Abbot and Marohasy (2012) developed ANN 

models to forecast monthly and seasonal rainfall in Queensland, Australia. The input 

sets considered for their model were climate indices, monthly historical rainfall data, 

and atmospheric temperatures. They compared their forecast results in regards to RMSE 

values with forecasts generated by the Australian Bureau of Meteorology’s Predictive 

Ocean Atmosphere Model for Australia (POAMA)-1.5 general circulation model 

(GCM). It was concluded that the prototype achieved a lower RMSE for 16 of the 17 

sites compared. In 2014, Abbot and Marohasy expanded their study and introduced the 

IPO into their model. After input selection and developing the ANN models, the results 

of the models were compared with POAMA and was found that for Queensland, ANN 

models outperform the forecasts obtained by POAMA model (Abbot & Marohasy 

2014). Mekanik et al. (2013) also developed ANN models for spring rainfall forecast in 

Victoria, southeast Australia. The results of ANN models were compared with Multiple 

Linear Regression (MLR) models and they were proved to be superior to the developed 

linear models.  

6.2 Methodology 

ANN has been inspired by biological neural networks; it consists of simple neurons and 

connections that process information in order to find a relationship between inputs and 

outputs. ANN is generally classified based on the direction of the flow of information 

into two classes: feedforward networks and recurrent networks. Abbot and Marohasy 

(2012) classified neural network rainfall models into three approaches: function models, 

time series models and classification models. Function models are static models, which 
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use sets of inputs with the aim of forecasting a corresponding rainfall value. Time series 

networks forecast rainfall over discrete intervals of time, and classification models are 

less used in rainfall prediction. In the present study, the developed models are a 

combination of static models in terms of model development and time series models in 

terms of input organization.  

6.2.1 Determination of Network Architecture 

Determining the network architecture is the most difficult task in the model building 

process, and includes determining the number of connection weights and the way 

information flows through a network. Feedforward networks have been used in a wide 

range of forecasting and prediction applications (Maier et al. 2012). In this type of 

network, neurons (nodes) in one layer are only connected to the neurons of the next 

layer without any backward connections. Another type of network is the recurrent 

network,  where the connections of the neurons  are not only to the next layer’s neurons, 

but also to the previous layer, to the same layer and even to themselves. In feedforward 

networks, dynamic systems need to be treated explicitly by including lagged inputs, 

whereas in recurrent networks the system can be analyzed implicitly. The advantage of 

a feedforward network over a recurrent network is that it is capable of capturing long-

term dependencies, and this characteristic is crucial  when inputs at high lags have a 

significant effect on the network output (Maier & Dandy 2000). Multi Layer Perceptron 

(MLP) is now one of the most popular network architectures used by researchers. Figure 

6.1 shows a schematic feedforward MLP network. As Figure 6.1 shows, three different 

layers construct a simple MLP. The first layer, known as the input layer, simply serves 

to introduce the values of input variables (in the case of this study the inputs are lagged 

climate modes) to the network. The number of  nodes in this layer is fixed based on the 

number of inputs. The last layer is the output layer. The number of nodes in the output 

layer represents the number of the output of the model. The hidden layer, which serves 

as the nonlinear part of the network, is the layer between the input and the output layer. 

A network without a hidden layer constructs a linear relationship among the available 

input and output.  
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Figure  6-1. A typical feedforward MLP network with one hidden layer. 

The number of hidden layers can vary according to the type of problem being solved. It 

has been shown that ANN with one hidden layer can approximate any function, given 

that sufficient degrees of freedom are provided (Hornik 1991).The number of hidden 

nodes is a critical aspect of the  network geometry. There should be enough hidden 

nodes in order to enable representation of the function to be approximated. Too many 

hidden nodes on the other hand can result in over-fitting the network. 

Traditionally, optimal network geometry has been found by trial and error, but recently 

some systematic approaches have been evolved, including pruning and constructive 

algorithms. The basic idea of a pruning algorithm is to start with a network that is large 

enough to capture the desired input-output relationship and to subsequently remove or 

disable unnecessary weights and/or nodes. A constructive algorithm approaches the 

problem of optimizing the number of hidden layer nodes from the opposite direction to 

pruning algorithm. The smallest possible network is used at the start of training; hidden 

layer nodes and connections are then added one at a time in an attempt to improve 

model performance. In this study, a constructive algorithm has been used. 

Input layer  

Hidden Layer 

Output Layer 



 

89 

 

6.2.2 Training (optimization) 

Training a network is the process of optimizing the connection weights. This phase is 

equal to parameter estimation in conventional statistical models like regression. The 

mean square error (MSE) is the common error function used. Training can be done 

using either global or local methods. Local methods fall into two major categories: first-

order and second-order. First-order methods are based on a linear model (Gradient 

descent), whereas second–order models are based on a quadratic model (e.g Newton’s 

method). In both cases, iterative techniques are used to minimize the error function. 

ANN-based models in hydrology over the past years have shown that there is great 

interest in the use of multi-layer feedforward neural networks (FNNs) trained by the 

standard back-propagation (BP) algorithm. One of the major disadvantages of BP is its 

slow convergence, which leads to sub-optimal solution. This shortcoming makes FNN 

trained with BP fail to find solutions to even rather simple pattern classifications. 

Second-order nonlinear techniques are usually faster and more reliable than any BP 

variant (Coulibaly et al. 2000). Therefore in the present study, Levenberg-Marquardt 

back-propagation training (LMBP) for multi-layer feedforward neural network training 

was chosen in the model development phase. More details of the Levenberg-Marquardt 

algorithm are given in the next section. 

6.2.3 Levenberg-Marquardt Back-Propagation Training 

When prediction is of interest, it is common practice to provide input-output examples 

to a multi-layer feedforward neural network (FNN) and minimize the error function 

using either a first-order or second-order optimization method. This is called supervised 

training, and can be formulated as the sum of nonlinear least squares between the 

observed and the predicted outputs defined by: 

  
 

 
            

  
   

 
            (6-1) 

where, n is the number of observations (patterns) and m is the total output units, y is the 

target output and    is the predicted output. In our case, where there is only one output 

unit (m=1), Eq. 6-1 reduces to: 
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                         (6-2)                                                                                             

This is the common function which is minimized in least square regression. In the BP, 

minimization of E is done by the use of the steepest descent method. The gradient of the 

error function is then computed by applying the chain rule on the hidden layers of the 

FNN. Consider the multilayer feedforward neural network depicted in Figure 6.1.  If the 

hidden layer consists of M neurons the network can be described mathematically by the 

following equations: 

                             (6-3)                                   

         
 

                 
                                 (6-4)                                                        

where,        is the weighted input into the jth hidden unit, n is the total number of input 

nodes,     is the weight from input unit i to the hidden unit j,     is the value of the ith 

input for pattern p,     is the threshold or bias for neuron j, and          is the jth 

neuron’s activation function, assuming that      is the tansigmoid function. Note that 

the input unit serves only for the receiving of the information and passing it to the 

hidden nodes, and does not perform any operation on the information. After the inputs 

have flown from the input layer to the hidden layer and the activation function in the 

hidden layer is applied, the results are flown to the output layer using the following 

equations: 

          
 
                           (6-5)           

                           (6-6)    

         =                          (6-7) 

where, M is the number of hidden units,     represents the weight connecting the 

hidden node j to the output k,     is the treshold value for neuron k,       is the kth 

predicted output, and  h (.) is the purelin activation function for the output layer.  
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Recall that the ultimate goal of the network training is to find the set of weights     

connecting the input units i to the hidden units j and     connecting the hidden units j to 

output k, that minimize the objective function (Eq. 6-1). Since Eq. 6-1 is not an explicit 

function of the weights in the hidden layer, the first partial derivation of E is evaluated 

with respect to the weights using the chain rule and the weights are moved in the 

steepest-descent direction. This can be represented mathematically as:  

       
  

    
                                                                   (6-8)     

The   is the learning rate, which simply scales the step size.   is chosen according to 

the relationship of 0<     and this is a common approach in BP training. Eq. 6-8 

reveals that BP has the ability to suffer from inherent slowness and the local search 

nature of the first-order optimization method. However, BP is still the most widely used 

supervised training method for FNN. Overall, second-order nonlinear optimization 

techniques are generally more reliable. As a result, algorithms like the Levenberg-

Marquardt (LMBP), which use the second derivative of E, are of more interest. The 

Levenberg-Marquardt algorithm is designed to achieve second-order training speed 

without the need to compute the Hessian matrix. When the performance function has the 

form of a sum of squares (as Eq. 6-1), then the Hessian matrix can be approximated as 

H = J
T
J           (6-9) 

and the gradient can be computed as 

g = J
T
e                                                                                                                        (6-10) 

where, J is the Jacobian matrix that comprises the first derivatives of the network errors 

with regard to the weights and biases, and e is the vector of network errors. The 

Jacobian matrix can be calculated based on a standard back-propagation technique that 

is much less complicated than computing the Hessian matrix. The Levenberg-Marquardt 

algorithm uses this approximation to the Hessian matrix in the following Newton-like 

update: 
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                                      (6-11) 

where, w is the weight vector and k is the index of iterations.
 

The Levenberg-Marquardt algorithm is faster and can deal better with a variety of 

problems than other usual methods. Therefore, in the present study LMBP was used for 

training the network. 

6.2.4 Transfer (activation) function 

Transfer functions are the main mathematical functions of a neural network. The use of 

linear transfer function is equivalent to using a single layer network. To gain the 

advantage of a multilayer network, a nonlinear function must be used. The sum of 

weighted inputs and bias produces the inputs to a transfer function. The most commonly 

used transfer functions are sigmoidal-type functions, such as the logistic or hyperbolic 

tangent function. However, it should be mentioned that, while it is necessary to 

extrapolate beyond the range of the training data, it is more suitable to use sigmoidal- 

type transfer functions in the hidden layer and linear transfer functions in the output 

layer. The types of transfer functions used in this study are tansigmoid function in the 

hidden layer and purelin function in the output layer.  

6.2.5 Epoch size 

The epoch size is equal to the number of training samples presented to the network 

between weigh updates. There are two types of epoch size: batch mode and on-line 

mode. On-line mode is when the epoch size is equal to one, and batch mode is when the 

epoch size is equal to the size of the training set. Generally, batch mode is preferable to 

on-line mode, as it forces the search to move in the direction of the true gradient at each 

weight update. A batch mode is used in this study. 

6.2.6 Error function 

The error function is the function that is minimized during training. Generally, the mean 

square error (MSE) is used as the error function. According to Masters (1993), there are 



 

93 

 

four main advantages of using MSE:  “First of all it is calculated easily. Secondly, it 

penalizes large errors. Third, its partial derivative with respect to the weights can be 

calculated easily and lastly, it lies close to the heart of the normal distribution”. In the 

present study the MSE was used as the performance criteria for deciding when to stop 

the training. To prevent over-training, the error of training and validation set was 

monitored throughout the modelling process. Initially the errors of both training and 

validation set decrease; however, at a certain point during the modelling process the 

error of validation set starts to increase, while the error of the training set is still 

decreasing  (Figure 6.2). This is where the model starts over-fitting the data. The 

minimum point of the validation set is where the optimal weights of the network are 

obtained. This technique is called early-stop training, and in this way the network 

avoids over-fitting (Luk et al. 2000; Sarle 1995). 

 

 

Figure  6-2. Schematic presentation of early-stop technique: avoiding over-fitting 

by monitoring validation error 

6.3 Model development  

Our model is a combination of static models in terms of model development and time 

series models in terms of input organization. As described in Section 6.2, a multi-layer 

perceptron neural network with one hidden layer was developed, and a constructive 
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algorithm (dynamic creation) was used in order to select the best number of hidden 

neurons for each network. The Levenberg-Marquardt algorithm was used to train the 

networks. The transfer function used in the hidden layer is the tansigmoid nonlinear 

function, and the purelin linear transfer function is used in the output layer.  

Climate indicator and rainfall data were normalized within the range of [0,1] as 

discussed in Chapter 3. The data were divided into two sets: calibration (training and 

validation) and testing (out-of-sample test) sets. The calibration samples contained the 

data from 1900-2006, where 85% of the data were allocated to training and 15% were 

allocated to validating the models. The testing set contained data from 2007-2009.   

The parameters for ANN modelling are basically network topology, node 

characteristics, training and learning rules. These rules specify an initial set of weights 

and indicate how weights should be adapted to improve performance. Multi-layered 

perceptrons are feed-forward nets (FNNs) with one or more hidden layers between the 

input and output nodes.  The hidden layers are the most important part in an MLP, since 

they provide the nonlinearity between the input and output sets. More complex 

problems can be solved by increasing the number of hidden layers or neurons in the 

hidden layer. As discussed earlier, the Levenburg-Marquardt back-propagation 

algorithm was used for training the FNN model. The process of developing a suitable 

network is as follows: 

i. Fixing the architecture 

ii. Calibrating the network 

iii. Testing the network 

The general steps in ANN modelling, the definition and improvement of FNNs, the 

Levenburg-Marquardt back-propagation algorithm and its techniques were broadly 

explained in Section 6.2. A model based on feedforward neural network, with one 

hidden layer using tansigmoid function as the transfer function of the hidden layer, and 

purelin transfer function as the transfer function of the output layer was developed. The 

use of the tansigmoid transfer function was to enable nonlinearity of the network.  
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Choosing the number of hidden layers and the hidden neurons in the hidden layers is a 

critical task. These hidden neurons are responsible for mapping the complex nonlinear 

relationship between the inputs and the output. The major concern in developing an 

ANN structure is the determination of the appropriate hidden neurons in the hidden 

layers. There is no systematic way of selecting the best number of hidden neurons while 

developing an ANN and it is basically problem-dependent. Hornik (1991) proved that a 

single hidden layer network with a sufficiently large number of neurons can be used to 

approximate any measurable functional relationship between input data and the output 

variable to any desired accuracy. As discussed earlier, in the present study one hidden 

layer was used. The number of hidden neurons in the hidden layer was determined using 

the algorithm of dynamic creation. Initially, one hidden neuron is used and the training 

process is carried out. The final error is calculated. Then the algorithm progressively 

adds on hidden neurons. The number of hidden neurons which gives the minimum error 

among all other neurons is then accepted. 

6.3.1 Calibrating the Network 

ANN training is a nonlinear optimization process. Basically, the error between the 

network output and the target output is minimized by a predetermined algorithm, which 

repeatedly changes the values of ANN’s connection weights. The ANN model 

implementation was carried out using MATLAB (Mathworks 2012). The model 

parameters were the connection weights, the momentum, learning rate, and the number 

of neurons in the hidden layer. These parameters were adjusted during the training 

process through the minimization of the mean square error (MSE). The trainlm function 

in MATLAB is used for this purpose. This function updates weights and bias values 

according to the Levenberg-Marquardt algorithm. A program in MATLAB was 

developed in order to use MATLAB functions to use the input files, apply the neural 

network, apply the early-stop technique, and calibrate and test the models. A written 

program in MATLAB is called an M-file and the first page of this program is shown in 

Figure 6.3.                                                                                        
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Figure  6-3. The first page of the M-File developed in MALTAB workspace  

The training was stopped using the early-stop technique to decide the optimal learning. 

As discussed in Section 6.2.6, the training was stopped when the MSE over the 

validation set was found to be rising instead of reducing, even though the MSE over the 

training set was still reducing. This technique is used to stop the network from over-

fitting. An over-fitted ANN would perform very well in the training set but fail to 

maintain the same level of accuracy when applied to the test set. Figure 6.4 shows an 

example of the early-stop technique process in MATLAB when developing the models. 
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Figure  6-4. Sample of MSE curve for ANN training in MATLAB using early-stop 

technique  

6.3.2 Testing the Network 

The best model selected was applied to the test set to investigate the model’s ability to 

work with an independent data set that had not been used in the calibration process of 

the model.  The sim function in MATLAB software was incorporated into the developed 

program (written M-file) for this purpose. 

6.3.3 Input Selection  

Although neural networks are capable of handling the extra challenge of choosing both 

the variables and the size of the network simultaneously, prior input selection based on 

physical knowledge is beneficial for a more reliable neural network modelling process. 

ANN belongs to the class of data-driven approaches and can derive the relationship 

between the input and output from the presented data. However, choosing the inputs 

based on the existing knowledge of the physical process that governs the input-output 

set can be beneficial and lead to better modelling results. The input sets needed to 

calibrate and test the models were organized based on two hypotheses (scenarios). In the 
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first scenario only the individual climate modes (ENSO/IOD indicators) were 

considered as rainfall predictors; this scenario consisted of two different sections which 

will be further described in more detail. In the second scenario, the combined climate 

predictors were considered as rainfall predictors; this scenario also contained two 

separate sections. Table 6.1 shows the details of the inputs selected for this study.  

Table  6.1. Input sets selected for developing ANN models 

Scenarios 
Input matrix for 

each category 
Input category 

Scenario 1  Single climate modes 

Scenario 1-a 3×107 Nino3.4 (Jun-July-Aug) SOI (Jun-July-Aug) DMI (Jun-July-Aug) 

Scenario 1-b 9×107 Nino3.4 (Dec-Aug)* SOI (Dec-Aug)* DMI (Dec-Aug)* 

Scenario 2  Dual climate modes 

Scenario 2-a 6×107 Nino3.4 (Jun-Jul-Aug)- DMI(Jun-Jul-Aug) SOI (Jun-Jul-Aug)- DMI(Jun-Jul-Aug) 

Scenario 2-b 6×107 IPO(Jun-July-Aug)-SOI(Jun-July-Aug) 

*Values of months Dec-Jan-Feb-Mar-Apr-May-Jun-Jul-Aug 

More details of the two scenarios and the hypothesis upon which each scenario is based 

are described in the following section. The output of the ANN model for each scenario 

was intended to be the spring rainfall over each corresponding year. 

1.Scenario 1: single climate mode predictors 

In this scenario, the potential of each individual climate mode as spring rainfall 

predictor was investigated. ENSO and IOD indicators were chosen as single predictors 

of rainfall. This scenario comprised two different sets of predictors:  

1-a) Three antecedent months’ climate modes 

As discussed in Section 4.2.2, the strongest statistically-significant relationship between 
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spring rainfall and climate indicators prior to spring occurs in the months of June, July 

and August (Table 4.12). These three months’ climate modes are potential predictors of 

spring rainfall, as they show a statistically-significant linear relationship with the 

seasonal rainfall. Therefore, the input sets developed for scenario 1-a comprised three 

antecedent months (June-July-August) Nino3.4, SOI, and DMI, creating a matrix of 3 × 

107 data for each climate index (i.e. Nino3.4 (Jun-July-Aug) , SOI (Jun-July-Aug) and DMI (Jun-July-

Aug)) as shown in Table 6.1. 

1-b) Nine antecedent months’ climate modes 

Based on Pearson correlation analysis, statistically-significant relationships between 

spring rainfall and climate indicators prior to spring occur in the months of June, July 

and August. However, Pearson correlation is a linear technique that is not capable of 

capturing complex nonlinear relationships. ENSO and IOD episodes start long before 

spring rainfalls occur; therefore, there could be a possibility that spring rainfall is 

influenced by climate modes further than the months of June, July and August. 

According to Risbey et al. (2009), the IOD occurs in May to November; the ENSO 

cycle on the other hand starts in April-May of the first year and continues until March-

April of the following year (Verdon et al. 2004); when spring arrives it is in the middle 

of the ENSO and IOD  cycles. Therefore,  the second scenario is proposed, based on the 

work of Risbey et al. (2009) and Verdon et al. (2004); i.e. for the purpose of predicting 

spring rainfall, the author decided to examine further months of IOD and ENSO prior to 

spring rainfall. In this way, a broader range of antecedent monthly IOD and ENSO 

values were explored in order to investigate their effectiveness as rainfall predictors. 

The second scenario allocates nine months Decn-1-Augn monthly values of ENSO and 

IOD indicators (Nino3.4, SOI and DMI), where “n” is the year for which spring rainfall 

is being predicted. Input data for the second scenario for each index is a 9×107 matrix 

for each climate index, as shown in Table 6.1. 
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2. Scenario 2: combined (dual) climate modes predictors 

2-a) Combined ENSO-IOD  

The performance of seasonal predictability for southeast Australia was projected at only 

30% compared to the successful seasonal forecasting schemes of other regions of 

Australia, such as Queensland. According to Verdon-Kidd and Kiem (2009b), the low 

predictability of southeast Australia’s rainfall is prone to the compound interactions 

among the numerous climatic phenomena that affect this region’s weather. In order to 

investigate the combined antecedent effect of ENSO and IOD on spring rainfall 

predictions, the dual input sets of Nino3.4 (Jun-Jul-Aug)- DMI(Jun-Jul-Aug) and SOI (Jun-Jul-Aug)- 

DMI(Jun-Jul-Aug) were organized (Table 6.1).  

2-b) Combined ENSO-IPO   

According to Power et al., (1999), IPO modulates ENSO and its effect on Australian 

rainfall. Verdon et al. (2004) also found that there is a relationship between ENSO and 

IPO on a multi-decadal time scale; they discovered that the negative phase of the IPO 

amplifies the already increased La Nina rainfall and streamflow. A student t-test was 

used by Verdon et al. (2004) to determine whether rainfalls during an IPO negative-La 

Nina years were significantly higher than all other La Nina years. Based on Figure 6.5, 

adapted from Verdon et al. (2004), it can be seen that in Victoria, some of the 

considered stations have significantly higher rainfalls during the IPO negative phase in 

La Nina years, while others do not show a statistically significant difference. Figure 6.5 

reinforces the results obtained earlier for correlation analysis between lagged IPO and 

rainfall shown in Table 4.13, i.e. only in some parts of Victoria does a relationship exist 

between IPO and rainfall, and this also  applies to the lagged relationships. Therefore, in 

order to examine the effectiveness of IPO on seasonal rainfall forecasting, the use of 

combined antecedent ENSO and IPO in ANN modelling was investigated. A matrix of 

6×107 inputs containing three antecedent months of June-July-August of combined 

ENSO and IPO was developed (IPO (Jun-Jul-Aug) - SOI (Jun-Jul-Aug)) for the four stations 

discussed in Section 4.2.2 which are under the influence of IPO. 
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Figure  6-5. Results of significance test showing stations where the rainfall in IPO 

negative-La Nina years is significantly higher than all other La Nina years 

(adapted from Verdon et al. 2004).  

6.4 Results and discussion 

The results of single and combined climate mode models are discussed in this section. 

The best models from each scenario are selected for each station based on lowest 

forecast errors. Further, the best models are compared in order to find which scenario 

(i.e. single or combined climate modes) produces more accurate results.  

6.4.1 First scenario: Single climate mode predictors 

After arranging the input matrix according to Table 6.1, the inputs were used to develop 

multi-layer perceptron neural network models for each site. After calibrating (training 
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and validating) the models, the best models in regard to the lowest errors were chosen. 

The best ANN model performances for the first scenario are presented in Table 6.2.  

Table  6.2. Performance of the best ANN models: first scenario 

Region Station Model r RMSE MAE MSE 

East Bruthen DMI(Dec to Aug) 0.50 0.22 0.19 0.048 

 Buchan SOI (Jun-July-Aug) 0.50 0.20 0.16 0.040 

 Orbost DMI (Jun-July-Aug) 0.66 0.17 0.14 0.029 

Centre Malmsbury DMI(Dec to Aug) 0.53 0.17 0.12 0.029 

 Daylesford DMI(Dec to Aug) 0.42 0.17 0.14 0.029 

 Heathcote DMI(Dec to Aug) 0.51 0.20 0.16 0.040 

West Horsham DMI(Dec to Aug) 0.74 0.10 0.09 0.010  

 Kaniva DMI(Dec to Aug) 0.65 0.17 0.13 0.029  

 Rainbow DMI(Dec to Aug) 0.30 0.17 0.12 0.029  

 

It can be seen from Table 6.2 that in east Victoria in terms of the extent in time of 

climate modes, three antecedent months’ ENSO/IOD produce more accurate prediction 

of spring rainfall than nine antecedent months’ ENSO/IOD. In this region two different 

climate indices, SOI and DMI, produce the best models, possibly due to the mixed 

effect of ENSO and IOD on east Victorian rainfalls, as east Victoria is close to the 

Pacific Ocean where ENSO occurs. The models for this region show correlation 

coefficients ranging from 0.50 to 0.66. For central Victoria, the models based on nine  

antecedent  months’ IOD show superior model performance compared to the models 

based on three antecedent  months’ climate modes.  The correlation coefficients for 

models in central Victoria vary from 0.42 to 0.53. The same pattern can be seen for west 

Victoria, where the models based on nine antecedent  months’  IOD produce better 

forecasts compared to three  antecedent  months’ IOD or  ENSO indicators. It appears 
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that in general the models based on antecedent months’ IOD indicator out-perform the 

models based on ENSO indicators. This result is consistent with the findings of Lim et 

al. (2011), indicating that the effect of IOD on rainfall can be seen across the southeast 

and southwest of Australia. A physical interpretation of the models could be that not 

only is IOD the dominant lagged predictor of spring rainfall for Victoria compared to 

ENSO, but the wider information of IOD also has more effect on the accuracy of the 

models compared to the lower ones.   

After calibrating (training and validating) the models, the selected best models of all the 

regions were used to forecast spring rainfalls for three consecutive years in advance 

(2007-2009). In this way, the models’ generalization ability was assessed. Table 6.3 

shows the performances of the models on the testing dataset.  

Table  6.3. Performance of the best ANN models (test-set): first scenario 

Region Station Model r RMSE MAE MSE 

East Bruthen DMI(Dec to Aug) 0.49 0.14 0.11 0.020 

 Buchan SOI (Jun-July-Aug) 0.40 0.20 0.16 0.040 

 Orbost DMI (Jun-July-Aug) 0.12 0.17 0.13 0.029 

Centre Malmsbury DMI(Dec to Aug) 0.77 0.22 0.00 0.048 

 Daylesford DMI(Dec to Aug) 0.95 0.17 0.07 0.029 

 Heathcote DMI(Dec to Aug) 0.97 0.14 0.12 0.020 

West Horsham DMI(Dec to Aug) 0.99 0.00 0.05 0.00 

 Kaniva DMI(Dec to Aug) 0.98 0.10 0.06 0.010 

 Rainbow DMI(Dec to Aug) 0.96 0.00 0.05 0.00 

 

It can be seen from Table 6.3 that IOD-based models are able to predict spring rainfall 

in the test set with a very low error (RMSE, MAE, and MSE) and a very high 

correlation for most of Victoria. The generalization ability of the models for east 

Victoria in regard to correlation coefficients is not as good as for other parts of Victoria; 

the correlation coefficients for east Victoria vary from 0.12 to 0.49 compared to central 
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and west Victoria with correlation coefficients from 0.77 to 0.99. The models’ errors are 

also lower for central and west Victoria compared to east Victoria.  The best models are 

shown in Figures 6.6 to 6.8. It can be seen from the figures that the models perform the 

best in west Victoria. In general the models are able to follow the pattern of the 

observation, however, in some cases the peaks and troughs are not captured.  

 

 

 

 

 

 

 

 

 

 

 



 

105 

 

 

Figure  6-6. Single ANN modelling for east Victoria 
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Figure  6-7. Single ANN modelling for central Victoria 
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Figure  6-8. Single ANN modelling for west Victoria 
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6.4.2 Second scenario: combined climate mode predictors 

2-a) ENSO-IOD results 

Two sets of Nino3.4 (Jun-July-Aug)-DMI (Jun-July-Aug) and SOI (Jun-July-Aug)-DMI (Jun-July-Aug) 

were used as inputs for developing ANN models for the three regions, as shown in 

Table 6.1. Table 6.4 summarizes the prediction skills of the combined ENSO-IOD 

models regarding RMSE, MAE, MSE and Pearson correlations (r). The results were 

then compared with MLR models as benchmarks, since combined ENSO-IOD indices 

were also used as inputs for the MLR models. It can be seen from Table 6.4 that the 

correlation coefficients of ANN models for east and west Victoria are significantly 

higher compared to the MLR models, and the errors (RMSE, MAE, and MSE) are 

generally lower. For central Victoria, the correlation coefficients are generally higher 

than the MLR models; however, the performance of the MLR models regarding MSE 

and MAE is better for this region. The higher correlation coefficients of ANN models 

indicate that ANN is more capable of finding the pattern and trend of the observations 

than MLR models. 

Table  6.4. Comparison of performance of combined ENSO-IOD ANN and MLR models 

   ANN models MLR models 

Region Station ANN Model r RMSE MAE MSE r RMSE MSE MAE 

East Bruthen Ni34-DMI 0.75 0.15 0.120 0.023 0.32 0.22 0.048 0.171 

 Buchan Ni34-DMI 0.65 0.17 0.154 0.028 0.35 0.16 0.026 0.171 

 Orbost SOI-DMI 0.64 0.18 0.145 0.034 0.35 0.19 0.038 0.157 

Centre Malmsbury Ni34-DMI 0.54 0.18 0.130 0.034 0.36 0.17 0.030 0.140 

 Daylesford Ni34-DMI 0.36 0.20 0.168 0.039 0.37 0.20 0.039 0.155 

 Heathcote SOI-DMI 0.52 0.21 0.158 0.044 0.37 0.19 0.035 0.153 

West Horsham Ni34-DMI 0.64 0.15 0.193 0.023 0.36 0.18 0.033 0.149 

 Kaniva SOI-DMI 0.56 0.20 0.158 0.042 0.39 0.20 0.041 0.163 

 Rainbow SOI-DMI 0.53 0.15 0.115 0.023 0.36 0.18 0.031 0.142 

 

After calibrating the models, in order to evaluate the generalization ability of the 

developed ANN models, out-of-sample tests were carried out for the years 2007-2009 

(Table 6.5). It can be seen that MLR models show very poor generalization  ability for 



 

109 

 

east Victoria (r = -0.99, -0.90 and -0.99 for Bruthen, Buchan and Orbost respectively) 

compared to ANN, with correlation coefficients of 0.93, 0.76 and 0. 42; the ANN 

models also show better generalization ability for central and west Victoria, with 

correlation coefficients of 0.68 to 0.85 and 0.58 to 0.97 respectively compared to the 

MLR models. However, the ability of MLR models to forecast  out-of-sample sets is 

comparable with ANN for Daylesford in central Victoria and Kaniva in west Victoria 

(r=0.92 and 0.67 respectively). In addition, the errors of the testing sets for ANN 

models are generally lower compared to those for the multiple regression models. 

Figures 6.9 to 6.11 show the comparison between combined ANN models and 

combined regression models. For most of Victoria, the superiority of ANN over MLR 

models in regard to error and pattern recognition can be seen from the figures.  

Table  6.5. Performance of dual ANN models and MLR models for the test set 

Region Station ANN  Regression  

  r RMSE MAE MSE  r RMSE MAE MSE 

East Bruthen 0.93 0.134 0.120 0.018  -0.99 0.126 0.085 0.016 

 Buchan 0.76 0.089 0.080 0.008  -0.90 0.152 0.180 0.023 

 Orbost 0.42 0.122 0.107 0.015  -0.99 0.155 0.150 0.024 

Centre Malmsbury 0.68 0.084 0.080 0.007  0.48 0.114 0.100 0.013 

 Daylesford 0.85 0.182 0.164 0.033  0.92 0.207 0.205 0.043 

 Heathcote 0.71 0.134 0.125 0.018  -0.50 0.161 0.158 0.026 

West Horsham 0.80 0.095 0.080 0.009  0.25 0.173 0.149 0.030 

 Kaniva 0.97 0.114 0.110 0.013  0.67 0.226 0.163 0.051 

 Rainbow 0.58 0.130 0.128 0.017  -0.74 0.170 0.142 0.029 
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Figure  6-9. Comparing combined ANN modelling with combined MLR modelling 

for east Victoria 
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Figure  6-10. Comparing combined ANN modelling with combined MLR modelling 

for central Victoria 
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Figure  6-11. Comparing combined ANN modelling with combined MLR modelling 

for west Victoria 

2-b) ENSO-IPO results  

As discussed in Table 4.13, the lag relationship between IPO and spring rainfall is quite 

weak. This relationship is not consistent throughout Victoria, and only some stations 

show statistically-significant relationships. In order to evaluate the effect of IPO and 

ENSO on rainfall predictability using neural networks, a set of inputs containing 

combined IPO(Jun-July-Aug)-SOI (Jun-July-Aug) was constructed (Table 6.1) and used to train 

and validate ANN models for the stations for which IPO is effective. The results of the 
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combined IPO-SOI models are shown in Tables 6.6 and 6.7 for calibration and testing 

sets respectively. It can be seen from Tables 6.6 and 6.7 that combining IPO with ENSO 

does not improve the rainfall forecasting performance compared to the previously 

discussed models (Tables 6.2 to 6.5). It can be seen from Table 6.6 that the testing 

results are poor, considering the correlation coefficients and error criteria, possibly 

because negative IPO affects only some parts of Victoria and enhances the rainfall 

during La Nina events specifically. Therefore, the use of IPO in seasonal rainfall 

forecasting in Victoria is not recommended. 

Table  6.6. Performance of the combined models (IPO-SOI)  

Region Station r RMSE MAE MSE 

East Bruthen ---- ---- ---- ---- 

 Buchan ---- ---- ---- ---- 

 Orbost ---- ---- ---- ---- 

Centre Malmsbury ---- ---- ---- ---- 

 Daylesford 0.29 0.20 0.15 0.04 

 Heathcote 0.41 0.21 0.15 0.04 

West Horsham ---- ---- ---- --- 

 Kaniva 0.61 0.18 0.14 0.03 

 Rainbow 0.43 0.15 0.11 0.02 

 

Table  6.7. Performance of the combined models (IPO-SOI) for the test set  

Region Station r RMSE MAE MSE 

East Bruthen ---- ---- ---- ---- 

 Buchan ---- ---- ---- ---- 

 Orbost ---- ---- ---- ---- 

Centre Malmsbury ---- ---- ---- ---- 

 Daylesford -0.21 0.27 0.23 0.07 

 Heathcote 0.64 0.18 0.15 0.03 

West Horsham ---- ---- ----  

 Kaniva -0.87 0.37 0.30 0.14 

 Rainbow -0.36 0.22 0.19 0.05 

 

To further evaluate the ability of ANN to model spring rainfall, the peaks and troughs of 

ANN-predicted spring rainfall and actual spring rainfall were cross-plotted (Figures 
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6.12-6.14). Table 6.8 shows the correlation coefficient values for the peaks and troughs.  

It can be seen from the figures and Table 6.8 that ANN is able to capture the peaks with 

a correlation coefficient of 0.41~0.59 for east Victoria. Apart from Bruthen with a weak 

correlation coefficient of -0.03, the Buchan and Orbost models were able to forecast the 

troughs with a correlation coefficient of r=0.46. For central Victoria (Figure 6.13), the 

models were able to forecast the troughs better than the peaks (r=0.42~0.53). For west 

Victoria, the peaks and troughs were modelled better compared to the rest of Victoria 

(r=0.037~0.69) (Figure 6.14).   

Table  6.8. Correlation coefficients of the models for the peaks and troughs 

Station Peak Trough 

Bruthen 0.41 -0.03 

Buchan 0.42 0.46 

Orbost 0.59 0.46 

Malmsbury 0.52 0.53 

Daylesford 0.06 0.42 

Heathcote -0.02 0.42 

Horsham 0.69 0.68 

Kaniva 0.55 0.46 

Rainbow 0.37 0.00 
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Figure  6-12. Evaluating the performance of  ANN models for the peaks and 

troughs-East Victoria 
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Figure  6-13. Evaluating the performance of  ANN models for the peaks and 

troughs-Central Victoria 
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Figure  6-14. Evaluating the performance of ANN models for the peaks and 

troughs-West Victoria 
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6.4.3 Comparison of the models for single and combined climate modes scenarios 

The error criteria (MSE, MAE) and trend criterion (r) differ. While the error criteria 

show the average error of the models, the trend criterion shows how well the model is 

capable of following the pattern of observation. The results of the best single and 

combined (dual) models are shown next to each other for the sake of comparison for the 

validation and test sets in Tables 6.9 and 6.10 respectively. The best model 

performances are shown in bold. It can be seen from Tables 6.9 and 6.10 that for east 

Victoria, the combined models produce forecasts with lower errors and higher 

correlation coefficients compared to the single models. For central Victoria, the 

performance of the validation sets for both single and combined models are similar, 

although the single models show a better generalization ability in the test set; i.e. the 

correlation coefficients of the single models in the test set are higher than those of the 

dual models. However, the errors are almost the same. For west Victoria, a similar 

pattern can be seen. In some cases, these two types of criteria (error and trend) might 

lead to confusion, as a model might show low errors but have a very poor trend 

criterion.  For example, Table 6.10 shows that for Malmsbury, the single model has a 

performance of RMSE=0.22, r= 0.77 while the dual model shows a performance of 

RMSE=0.08 and r= 0.68. It can be seen that, while the trend criterion (r) of the single 

model is higher, the error criterion (RMSE) of the dual model is better. Therefore, 

deciding on which models are better for a station based on both criteria is challenging. 

Therefore, the author proposes the concept of error trend ratio (ETR) criteria, defined as 

follows: 

    
     

     
                    (6-12) 

As lower errors and higher correlation is desirable, the closer the ETR to zero, the better 

the models are.  
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Table  6.9. Comparison of the performance of the best single and combined (dual) ANN 

models: validation                              

  Single models  Dual models 

Region Station r RMSE MAE MSE  r RMSE MAE MSE 

East Bruthen 0.50 0.22 0.19 0.048  0.75 0.15 0.12 0.023 

 Buchan 0.50 0.20 0.16 0.040  0.65 0.17 0.15 0.028 

 Orbost 0.66 0.17 0.14 0.029  0.64 0.18 0.15 0.034 

Centre Malmsbury 0.53 0.17 0.12 0.029  0.54 0.18 0.13 0.034 

 Daylesford 0.42 0.17 0.14 0.029  0.36 0.20 0.17 0.039 

 Heathcote 0.51 0.20 0.16 0.040  0.52 0.21 0.16 0.044 

West Horsham 0.74 0.10 0.09 0.010  0.64 0.15 0.19 0.023 

 Kaniva 0.65 0.17 0.13 0.029  0.56 0.20 0.16 0.042 

 Rainbow 0.30 0.17 0.12 0.029  0.53 0.15 0.12 0.023 

 

Table  6.10. Comparison of the performance of the best single and combined (dual) ANN 

models: test   

  Single models Dual models 

Region Station r RMSE MAE MSE r RMSE MAE MSE 

East Bruthen 0.49 0.14 0.11 0.020 0.93 0.13 0.120 0.018 

 Buchan 0.40 0.20 0.16 0.040 0.76 0.09 0.080 0.008 

 Orbost 0.12 0.17 0.13 0.029 0.42 0.12 0.107 0.015 

Centre Malmsbury 0.77 0.22 0.00 0.048 0.68 0.08 0.080 0.007 

 Daylesford 0.95 0.17 0.07 0.029 0.85 0.18 0.164 0.033 

 Heathcote 0.97 0.14 0.12 0.020 0.71 0.13 0.125 0.018 

West Horsham 0.99 0.00 0.05 0.00 0.80 0.10 0.080 0.009 

 Kaniva 0.98 0.10 0.06 0.010 0.97 0.11 0.110 0.013 

 Rainbow 0.96 0.00 0.05 0.00 0.58 0.13 0.128 0.017 

 

 The ETR based on MSE and MAE is shown in Tables 6.11 and 6.12 for validation and 

testing sets, respectively.  Based on ETR shown in Tables 6.11 and 6.12, the dual 

models for east Victoria have better performance in regard to error and trend criteria 

than the single models.  Recall from Section 6.4.1, in east Victoria both single ENSO 

and IOD indices were shown to affect east Victoria in the single modelling process.  

Therefore, the results of both single and dual models reinforce the assumption that 
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combined ENSO and IOD have more influence on  east Victoria and the use of their 

combined antecedent values for rainfall forecasting provides better forecasting results. 

In relation to central and west Victoria, the results of the wider time frame of IOD 

models (nine antecedent months)  are better in terms of  the forecast accuracy compared 

to the dual models. A possible explanation for this is that, since east Victoria is closer to 

the Pacific Ocean where ENSO occurs, the effect of both ENSO and IOD can be felt in 

this region; however, moving towards central and west Victoria and closer to the Indian 

Ocean, IOD becomes the dominant predictor of rainfall.   

Table  6.11. Comparison of model performance based on the error/trend ratio (ETR). 

Better models are indicated in bold. 

Region Station Dual  climate mode Single climate mode 

  MSE/r MAE/r MSE/r MAE/r 

East Bruthen 0.031 0.160 0.096 0.380 

 Buchan 0.043 0.237 0.080 0.320 

 Orbost 0.053 0.227 0.044 0.212 

Centre Malmsbury 0.063 0.241 0.055 0.226 

 Daylesford 0.108 0.467 0.069 0.333 

 Heathcote 0.085 0.304 0.078 0.314 

West Horsham 0.036 0.302 0.014 0.122 

 Kaniva 0.075 0.282 0.045 0.200 

 Rainbow 0.043 0.217 0.097 0.400 
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Table  6.12. Comparison of model performance based on the error/trend ratio (ETR) (test 

set). Better models are indicated in bold. 

Region Station Dual climate mode Single climate mode 

  MSE/r MAE/r MSE/r MAE/r 

East Bruthen 0.019 0.129 0.041 0.224 

 Buchan 0.011 0.105 0.100 0.400 

 Orbost 0.036 0.255 0.242 1.083 

Centre Malmsbury 0.010 0.118 0.062 0.000 

 Daylesford 0.039 0.193 0.031 0.074 

 Heathcote 0.025 0.176 0.021 0.124 

West Horsham 0.011 0.100 0.000 0.051 

 Kaniva 0.013 0.113 0.010 0.061 

 Rainbow 0.029 0.221 0.000 0.052 

 

6.5 Summary of Artificial Neural Network Analysis 

The Artificial Neural Network technique was used for the purpose of seasonal spring 

rainfall forecasting using antecedent large-scale climate modes. ENSO, IOD and IPO 

were selected as inputs of ANN in two major scenarios. In the first scenario, each 

individual climate mode was considered as a rainfall predictor, while in the second 

scenario combined (dual) climate modes were considered. The first scenario contained 

two sub-sections; the first sub-section of the first scenario was based on three 

antecedent months of each individual climate mode, while the second sub-section 

contained nine antecedent months of individual climate modes. It was discovered that 

the nine antecedent months of IOD are better predictors of seasonal spring rainfall for 

most of Victoria and produce better forecasts compared to three antecedent months of 

ENSO or IOD. It was also discovered that IOD is a better predictor than ENSO for 

seasonal spring rainfall forecasting.  

The second scenario also contained two sub-sections; the first sub-section contained 

combined antecedent three months of ENSO-IOD, while the second sub-section was 

based on combined three antecedent months of ENSO-IPO. It was found that combined 
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three antecedent months of ENSO-IOD are better predictors for spring rainfall 

compared to combined antecedent three months of ENSO-IPO.    

Comparing the results of the two scenarios revealed that the models developed based on 

nine months antecedent IOD have better performance than the combined models in 

central and west Victoria. However, the combined climate mode models perform better 

for east Victoria. The physical reason for this may be the fact that east Victoria is closer 

to the Pacific Ocean where ENSO occurs, and the effect of both ENSO and IOD can 

therefore be felt in this region. However, towards central and west Victoria and closer to 

the Indian Ocean, IOD becomes the dominant predictor of rainfall in Victoria.   
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Chapter 7 

Adaptive Network-based Fuzzy Inference system 

7.1  Introduction 

Fuzzy and ANN theories have been developed to imitate the thinking process of human 

brain to learn analogous strategies or experiences in order to make optimal decisions. 

However, the fundamental mechanisms of these two theories are different.  ANN offers 

an advanced capability to extract significant features from complex databases and are 

capable of learning the relationship between any data pairs, whereas the fuzzy logic is 

based on the way how brains deal with inexact information.  As fuzzy theories lack  the 

ability of learning, it is difficult to tune the fuzzy rules and membership functions based 

on training data. capturing the advantages and strengths of both ANNs and fuzzy logic 

in a single framework. In order to take advantage of both ANN and fuzzy logic in a 

single framework, the neuro-fuzzy system was developed (Chang et al. 2014). In 1993, 

Jang proposed the adaptive network-based fuzzy inference system (ANFIS), which is 

one of the popular neuro-fuzzy systems. To date, ANFIS has been applied to  a wide 

range of hydrological modelling including rainfall-runoff modelling (Nayak et al. 2004; 

Talei et al. 2010; Talei & Chua 2012), flood forecasting (Nayak et al. 2005;  Talei et al., 

2013), water resources management (Abolpour et al. 2007; Chang and Chang, 2006), 

water quality modelling (Yeon et al. 2008), and rainfall forecasting (El-Shafie et al. 

2011). To the best of the author’s knowledge, ANFIS has not been used for rainfall 

forecasting with the use of large-scale climate modes; therefore, this study examines the 

capability of ANFIS in this regard. 

7.2 Methodology 

Fuzzy logic is based on the idea of fuzzy sets. A set with no crisp or clear boundary is 

defined as a fuzzy set which contains elements with only partial membership. Unlike the 

two-valued Boolean logic (e.g. yes-no, one-zero, true-false, etc), fuzzy logic is a multi-

valued logic and it deals with degrees of membership and degrees of truth. A 

membership function (MF) is defined as any curve that identifies how each point in the 
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input space is mapped to a membership value (or degree of membership) between 0 

(completely false) and 1(completely true). Membership functions can be chosen 

arbitrarily based on simplicity, convenience, efficiency and speed. If a classical set is 

expressed as Eq. 7-1, then a fuzzy set A in X when X is the universe discourse with 

elements that are noted as x, are defined by Eq. 7-2:  

A= [x| x > 10]                                                                                                              (7-1) 

A= [x,  
 
    | x € X]                     (7-2) 

where  
 
    is called the membership function of x in A. Each element of X is mapped 

by the membership function to a value between 0 and 1. 

Different membership functions are built based on basic functions like piecewise linear 

functions, the Gaussian distribution function, the sigmoid curve, quadratic and cubic 

polynomial curves. The simplest membership functions are triangular and trapezoidal 

functions. In Fuzzy logic, logical operations such as AND, OR, NOT, etc have their 

own definition based on the membership value concept. Generally fuzzy intersection is 

related to the operator AND, fuzzy union to OR and fuzzy complement to NOT.  

7.3 Fuzzy rules  

Another important component of Fuzzy logic is the Fuzzy rules; in order to express 

knowledge in a fuzzy-based system, conditional statements that comprise logic are used 

as Fuzzy rules. Fuzzy rules relate the fuzzy sets to each other. In the rule: 

IF X is x THEN Y is y 

x and y are linguistic or actual values of the variables X and Y respectively. The if-part 

and then-part of such conditional statements are called the “antecedent” and 

“consequent” respectively. Through fuzzy if-then rules, the inexact and uncertain modes 

of reasoning that have a significant impact on human decision-making ability can be 

captured (Jang 1993). Interpreting the if-then rules requires fuzzifying inputs such that 

all fuzzy statements in the antecedent are mapped to a membership between 0 and 1. If  
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a fuzzy set is only used in the antecedent part of a rule, and the consequent has a precise 

(non-fuzzy) value, then this rule is known as the Takagi-Sugeno fuzzy if-then rule 

(Takagi & Sugeno 1985) This form of if-then rules has an important role in fuzzy 

inference systems and they are used in control and modelling.  

7.4 Fuzzy inference system 

The process of mapping from a given input to an output using fuzzy logic is called 

fuzzy inference. A fuzzy inference system (FIS) is composed of four components: a) a 

set of fuzzy if-then rules; b) fuzzifying inputs which transform crisp values into fuzzy 

values based on the degree to which they belong to appropriate fuzzy sets through 

membership functions; c) an interface engine which performs inference operations on 

the rules; d) deffuzzification, which transforms the fuzzy results into a crisp output 

(Talei 2013). Deffuzzification can be done using different methods including centre of 

area, middle of maximum, largest maximum, and smallest maximum. A basic fuzzy 

inference system is shown in Figure 7.1. 

Fuzzy inference systems are categorized into linguistic and precise models based on the 

method chosen to determine the output. The Mamdani fuzzy inference system 

(Mamdani & Assilian, 1975) is the most widely-used linguistic system. In the Mamdani 

fuzzy inference system the rules in both antecedent and the consequent are defined by 

fuzzy sets.  

 

Figure  7-1. Basic structure of a fuzzy inference system (adapted from Talei, 2013) 
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Of the precise fuzzy models,  the Takagi-Sugeno FIS is one of the most frequently used 

models (Takagi & Sugeno 1985). In the Takagi-Sugeno FIS, a fuzzy rule is composed 

of a weighted linear combination of crisp inputs rather than a fuzzy set. A typical 

Takagi-Sugeno FIS with two fuzzy if-then rules is the first-order Takagi–Sugeno FIS 

denoted as: 

IF (x is A1) AND (y is B1) THEN (f1= p1x + q1y+ r1)                                                (7-3) 

IF (y is A2) AND (y is B2) THEN (f2= p2x + q2y+ r2)     (7-4) 

where A1, A2 and B1, B2 are membership values of the input variables x and y, 

respectively, and p1, q1, r1 and p2, q2, r2 are the parameters of the output functions f1 and 

f2, respectively. A typical Takagi-Sugeno inference system with a triangular 

membership functions producing an output function f from input variables x and y is 

shown in Figure 7.2. 

 

Figure  7-2. A typical Takagi-Sugeno fuzzy inference system (adapted from Talei et 

al. 2010) 
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7.5 Adaptive Network-Fuzzy Inference System (ANFIS) 

The hybridization of artificial neural networks and fuzzy logic has resulted in adaptive 

neuro fuzzy inference systems where the membership functions of a FIS are tuned using 

a back-propagation algorithm. ANFIS has been successfully applied in various 

problems, especially on control processes such as chemical reactors, automatic trains 

and nuclear reactors. However, the main problem with fuzzy logic is that there is no 

systematic procedure to design a fuzzy controller (Chang & Chang, 2006). On the other 

hand, a neural network has the ability to learn from the input-output pairs, self-organize 

its structure, and adapt to it in an interactive manner. Thus, use of the Adaptive 

Network-based Fuzzy Inference system (ANFIS) methodology was proposed to self-

organize the network structure and to adapt parameters of the fuzzy system (Chang & 

Chang 2006).  Neuro-fuzzy systems (NFSs) are categorized into two groups: linguistic 

NFSs and precise NFSs. Linguistic NFSs use a Mamdani-type inference system in their 

structure while precise NFSs use a Sugeno-type (Takagi-Sugeno) inference system. 

ANFIS is the most widely used precise NFS and was developed by Jang (1993). In this 

model the global parameter tuning is done by minimizing the global error of the model 

(Jang 1993). ANFIS has the ability of extracting fuzzy rules from numerical data and 

adaptively constructing a rule base (Chang et al. 2006). A typical ANFIS structure with 

two inputs x and y and one output z is presented in Figure 7.2. The architecture of 

ANFIS consists of a five-layer MLP network. The structure and description  of the 

layers are  as follows (Talei et al. 2010): 

Layer (1):  

In this layer, the fuzzy membership values for an input variable are estimated. The 

output of the node i is defined as: 

)(1 xO Aii                    for i = 1, 2 (7-5) 

)(2

1 yO Bii                   for i = 3, 4 (7-6) 
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where x (or y) is input and Ai  (or 2Bi ) is the fuzzy set associated with this node. 

 

Figure  7-3. A typical ANFIS structure 

This fuzzy set is characterized by the shape of a continuous and piecewise differentiable 

function called membership function. Assuming a triangular membership function, the 

output 
1

iO  can be computed as:  
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where a and b are the parameters that locate the feet of the triangle, while c is the 

parameter that locates the peak of the triangle.  

Layer (2): 

Multiply the incoming signals from the previous layer and calculate the firing strength 

of the rule. The output 
2

iO  of the node i can be computed as:  
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)()( 2

2 yxwO BiAiii             for i = 1, 2       (7-8) 

Layer (3): 

Each node in this layer (denoted by N in Figure 7.2) computes the normalized firing 

strength as: 

21

3

ww

w
wO i

ii


                     for i = 1, 2   (7-9) 

Layer (4): 

The node i in this layer calculates the contribution of ith rule in the model output 

function, which is defined based on the first-order Takagi-Sugeno method as: 

 iiiiiii ryqxpwfwO 4
      for i = 1, 2   (7-10) 

Layer (5): 

The single node of this layer calculates the weighted global output of the system as: 



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ii

fw
w

fw

fO5        

(7-11) 

In this study a back-propagation (BP) algorithm was used to modify the initially chosen 

membership functions and the least mean square (LMS) algorithm was used to 

determine the coefficients of the linear output functions (Jang 1993).  

7.6 Results and Discussion 

While ANFIS is applied to many cases of long-term and short-term rainfall forecasts, 

the use of large-scale climate indicators as potential rainfall predictors has not been 

considered in rainfall modelling using the ANFIS process in any study in Australia. The 

aim of developing ANFIS in the present research is to firstly, have a nonlinear bench 
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mark to compare with the developed ANN models; and secondly, to investigate whether 

the fuzzy logic characteristic of ANFIS, which has not been used previously in rainfall 

modelling using large-scale climate modes, can help improve the forecast accuracy of 

seasonal predictions.  

The input sets chosen for ANFIS models are slightly different from the input sets 

developed for ANN models. ANFIS modelling requires a large amount of hardware 

memory. Owing to the large amount of data and constraints in hardware requirements, 

inputs with nine antecedent single climate modes were not able to be used in ANFIS 

model development, as more sophisticated computers are required. The data were 

classified into the calibration set (1900-1999) and the testing set (2000-2009).  ANFIS 

and ANN models were developed using the calibration set and were later tested on the 

testing set. The input sets used in ANFIS model development comprise single (Nino3.4, 

SOI, and DMI) and combined (Nino3.4 (Jun-Jul-Aug)-DMI(Jun-Jul-Aug), SOI (Jun-Jul-Aug)- 

DMI(Jun-Jul-Aug), IPO(Jun-July-Aug)-SOI(Jun-July-Aug), IPO(Jun-July-Aug)-Nino3.4(Jun-July-Aug)) 

antecedent climate modes and are shown in Table 7.1. 

Table  7.1. Input sets for developing ANFIS models  

Scenarios 

Input matrix 

for each 

category 

Input category 

Scenario 1-a 3×107 Nino3.4 (Jun-July-Aug) SOI (Jun-July-Aug) DMI (Jun-July-Aug) 

Scenario 2-a 6×107 Nino3.4 (Jun-Jul-Aug)- DMI(Jun-Jul-Aug) SOI (Jun-Jul-Aug)- DMI(Jun-Jul-Aug) 

Scenario 2-b 6×107 IPO(Jun-July-Aug)-SOI(Jun-July-Aug) IPO(Jun-July-Aug)-Nino3.4 (Jun-July-Aug) 

 

The ANFIS models developed in this study used the BP algorithm to modify the 

initially chosen membership functions and the LMS algorithm was used to determine 

the coefficients of the linear output functions. Different analyses were carried out to 

identify the appropriate number and type of membership functions for ANFIS. The 
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results showed that using 2 or 3 triangular membership functions is appropriate to 

achieve the best modelling results during calibration of the models.  

 After developing the models based on the input sets discussed above, the best models 

were chosen and tested on an out-of-sample test set. The performance criteria of the best 

models are shown in Table 7.2. Table 7.2 shows that in most of the stations, ANFIS 

models with antecedent single IOD set outperform both single ENSO predictors and 

combined ENSO-IOD predictors. The only region where ENSO index (Nino3.4) 

produces better models than IOD is central Victoria.  For the same testing period, ANN 

models were also examined. The performance of ANN and ANFIS on out-of-sample 

test sets is shown in Table 7.3. The best ANN models are based on combined ENSO-

IOD for east and central Victoria and single IOD for west Victoria. As discussed earlier, 

the nine antecedent months were not used in model building for ANFIS due to hardware 

limitations. In order to have the same benchmark in input selection for both ANFIS and 

ANN modelling, ANN models based on nine antecedent months were also not 

considered. It can be seen from Table 7.3 that, for east  Victoria, ANN generally has a 

better performance than ANFIS. For central and west Victoria the performance of ANN 

and ANFIS are comparable, and both models show almost the same results. 

Table  7.2. Performance of the ANFIS  models 

Region Station Model MF* r RMSE MAE 

East Bruthen DMI 3 0.84 14.4 10.3 

 Buchan DMI 3 0.84 13.6 9.2 

 Orbost DMI 3 0.85 13.7 9.9 

Centre Malmsbury Ni34 3 0.86 14.4 10.2 

 Daylesford DMI 2 0.54 23.8 17.5 

 Heathcote DMI 2 0.63 19.4 15.3 

West Horsham DMI 2 0.60 15.0 11.1 

 Kaniva DMI 3 0.89 7.3 5.2 

 Rainbow DMI 2 0.56 13.0 9.7 

*MF is the number of membership functions 
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Table  7.3. Comparison of the ANFIS and ANN models: testing set 

 ANFIS ANN 

Region Station Model r RMSE MAE Model r RMSE MAE 

East Bruthen DMI 0.53 16.7 14.0 SOI-DMI 0.51 16.6 11.7 

 Buchan DMI 0.29 24.0 22.3 Ni34-SOI 0.30 15.2 12.3 

 Orbost DMI 0.39 18.9 16.9 SOI-DMI 0.32 15.2 12.0 

Centre Malmsbury Ni34 0.55 25.0 23.5 Ni34-DMI 0.23 21.8 15.2 

 Daylesford DMI 0.45 22.6 19.3 DMI 0.47 22.5 19.4 

 Heathcote DMI 0.45 21.9 18.2 SOI-DMI 0.57 21.2 17.3 

West Horsham DMI 0.57 11.4 8.5 DMI 0.62 11.0 9.0 

 Kaniva DMI 0.66 13.6 10.1 DMI 0.56 15.3 12.1 

 Rainbow DMI 0.57 10.9 7.8 DMI 0.62 9.5 7.0 

 

As discussed in Chapter 6, combined ENSO-IPO did not improve the performance of 

ANN models. In order to evaluate whether fuzzy logic is capable of extracting the 

complex relationship among ENSO, IPO and Victoria’s spring rainfalls, ANFIS models 

were calibrated and tested for the four stations (Daylesford, Heathcote, Kaniva and 

Rainbow) where IPO is effective using ENSO-IPO input sets. Tables 7.4-7.7 show the 

performance of the models based on IPO for the four stations. It can be seen that in all 

four stations the combination of ENSO-IPO does not produce acceptable forecast 

results, and the performance of the ANFIS models is very poor in the test set. This result 

is in accordance with the ANN modelling results, where ENSO-IPO input sets did not 

improve the models’ accuracy. In general, monthly IPO values combined with monthly 

ENSO indicators are not suitable predictors of spring rainfall in Victoria. 

Table  7.4. Performance of the ANFIS-based models for Daylesford 

Train Test 

Predictors r RMSE MAE r RMSE MAE 

IPO-SOI 0.99 2.35 1.20 -0.26 54.5 39.6 

IPO-Nino34 0.98 6.33 3.4 -0.13 48.7 42.7 
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Table  7.5. Performance of the ANFIS-based models for Heathcote 

Train Test 

Predictors r RMSE MAE r RMSE MAE 

IPO-SOI 0.99 1.84 1.10 -0.19 42.64 31.77 

IPO-Nino34 0.97 5.80 3.24 0.44 27.25 20.20 

 

Table  7.6. Performance of the ANFIS-based models for Kaniva 

Train Test 

Predictors r RMSE MAE r RMSE MAE 

IPO-SOI 0.99 1.13 0.57 -0.63 43.23 36.00 

IPO-Nino34 0.96 4.26 2.14 -0.13 28.21 23.10 

 

Table  7.7. Performance of the ANFIS-based models for Rainbow 

Train Test 

Predictors r RMSE MAE r RMSE MAE 

IPO-SOI 0.99 1.54 0.79 -0.47 40.89 35.0 

IPO-Nino34 0.96 4.15 2.025 0.14 23.39 18.78 

 

7.7 Summary of Adaptive Network-based Fuzzy Inference System (ANFIS) 

Analysis 

In order to compare the results of ANN modelling with a nonlinear technique, ANFIS 

models were developed for the rainfall stations under study. This is the first time ANFIS 

approach is applied for Victoria’s seasonal rainfall prediction with the use of large-scale 

climate modes. It was discovered that ANFIS models based on three antecedent months’ 

IOD outperform those based on ENSO or combined ENSO-IOD. It was also discovered 

that combining ENSO and IPO does not improve the forecast results. Compared to 

ANFIS, it was found that ANN models have lower errors in east Victoria; however, the 

results of ANN and ANFIS models are almost comparable for central and west Victoria. 

The results show the ability of both ANN and ANFIS in forecasting spring rainfall in 

Victoria. 
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Chapter 8 

Model Comparisons 

8.1 Comparison of ANN and ANFIS forecasts with POAMA 

The Predictive Ocean Atmosphere Model for Australia (POAMA) was developed by the 

Australian Bureau of Meteorology (BoM) together with the Commonwealth Scientific 

and Industrial Research Organization (CSIRO). POAMA is  a coupled atmosphere–

ocean climate prediction model that is based on atmosphere and ocean general 

circulation models (Lim et al., 2011). The first version of POAMA (POAMA-1) went 

operational in 2002 and continued to produced routine forecasts until 2007. In 

September 2007, POAMA 1.5 replaced POAMA-1 and later in 2011 POAMA-2 was 

adapted by BOM to produce routine seasonal forecasts two times a month. (BoM-2014). 

Forecasts are produces every week by running 33 scenarios for the coming 9 month. For 

example if 30 of the 33 ensemble members propose that the condition would be dry 

ahead, it is said that there is about a 90% chance of dry conditions in the next season. 

POAMA forecasts are initialized with observed atmospheric and oceanic conditions. 

According to Lim et al. (2011) the atmospheric initial conditions are provided by a new 

Atmosphere and Land Initialization (ALI) scheme. In  2013, a new version of POAMA-

2 which is considered by BoM to be a state-of-the-art seasonal to inter-annual  forecast 

system has become the new BoM official seasonal forecast model. The results of the 

rainfall forecasts are presented for grid pints of 250×250 km
2
. POAMA produces 

quantitative seasonal and monthly rainfall predictions and present its official forecasts 

as the probability of exceeding the long-term average value (Abbot and Marohasy, 

2014). The POAMA forecasts are used as benchmark for comparison with the results of 

the developed models in this study. 

The POAMA rainfalls obtained from BoM are in the form of anomalies; these 

anomalies were used to calculate the magnitude of POAMA-forecast rainfall for every 

spring by adding the seasonal rainfall climatology of 1981-2010 to each anomaly (E. 

Lim, personal communication, 30 Sep, 2014).  The proposed method can also be found 
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in Cottrill et al. (2013).  

The POAMA forecast results were obtained for the period 2000-2009; the ANN and 

ANFIS results for the out-of-sample test set for the same period are compared with 

those of the POAMA. Table 8.1 shows the comparison between ANN and POAMA 

forecasts. As shown in the table, ANN forecasts are comparable with POAMA forecasts 

in regard to error criteria for most of the stations and show superior results, especially in 

west Victoria. It can be seen from Table 8.1 that ANN models outperform POAMA in 

terms of correlation coefficients in all stations except Malmsbury. The differences 

between the correlation coefficients of ANN models and POAMA  are very significant 

in central and west Victoria. The rmax for the POAMA model in central Victoria is 0.30, 

as opposed to 0.57 for ANN, in west Victoria rmax is 0.19 for the POAMA  as opposed 

to 0.62 for ANN. It can be seen from Table 8.1 that both POAMA and ANN models 

show higher errors in central Victoria compared to east and west Victoria. It seems that 

the process governing central Victoria’s rainfall is very complicated compared to east 

and west Victoria, and more research needs to be done in this region. In order to have a 

more detailed comparison between the models the observed and simulated rainfall 

values by ANN and POAMA  for the period 2000-2009 are plotted and shown in 

Figures 8.1 to 8.3.  

Table  8.1. Comparison of  POAMA and ANN models 

 ANN  POAMA 

Region Station MAE RMSE r MAE RMSE r 

East Bruthen 11.7 16.6 0.51 12.1 15.9 0.21 

Buchan 12.3 15.2 0.30 14.0 15.70 0.26 

Orbost 12.0 15.2 0.32 11.6 15.31 0.20 

Central Malmsbury 15.2 21.8 0.23 19.5 21.2 0.30 

Daylesford 19.4 22.5 0.47 20.7 23.87 0.051 

Heathcote 17.3 21.2 0.57 19.3 23.29 0.23 

West Horsham 9.0 11.0 0.62 11.8 13.86 0.015 

Kaniva 12.1 15.3 0.56 13.5 18 0.19 

Rainbow 7.0 9.5 0.62 13.2 13.67 0.065 
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Table 8.2 shows the comparison between POAMA and ANFIS models. It can be seen 

that POAMA  perform better in east Victoria compared to ANFIS models in terms of 

error, however the correlation coefficient of ANFIS models are better in this region. For 

central and west Victoria, ANFIS models are superior to POAMA. 

Table  8.2. Comparison of  POAMA and ANFIS models 

Station ANFIS POAMA 

 RMSE MAE r RMSE MAE r 

Bruthen 21.0 14.0 0.53 15.9 12.1 0.21 

Buchan 24.7 22.3 0.29 15.70 14.0 0.26 

Orbost 18.9 16.9 0.39 15.31 11.6 0.20 

Malmsbury 25.0 23.5 0.55 21.2 19.5 0.30 

Daylesford 22.6 19.3 0.45 23.9 20.7 0.051 

Heathcote 22 18.2 0.45 23.3 19.3 0.23 

Horsham 11.4 8.5 0.57 13.9 11.8 0.015 

Kaniva 13.6 10.1 0.66 18.0 13.5 0.19 

Rainbow 10.9 7.8 0.57 13.7 13.2 0.065 

 

Figures 8.4 to 8.6 show the results of ANFIS and POAMA forecasts.  As can be seen in 

the figures, the POAMA  tends to give more flat rainfall forecasts when facing extreme 

cases compared to ANN and ANFIS. Since ANN and ANFIS learn from the 

associations they are more responsive against extreme cases. In general, by comparing 

the results of the ANN, ANFIS and POAMA it can be concluded that until POAMA 

further develops, ANN and ANFIS approach are reliable nonlinear statistical options 

which can produce similar and in some cases better forecasts which could be beneficial 

for agriculture  and water management. 
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Figure  8-1. Comparison of ANN models with POAMA  for east Victoria 
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Figure  8-2. Comparison of ANN models with POAMA  for central Victoria 
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Figure  8-3. Comparison of ANN models with POAMA  for west Victoria 
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Figure  8-4. Comparison of ANFIS models with POAMA  for east Victoria 

0.00 

20.00 

40.00 

60.00 

80.00 

100.00 

120.00 

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 

R
ai

n
fa

ll 
(m

m
) 

Years 

Bruthen 

Observation ANFIS model POAMA 

0.00 

20.00 

40.00 

60.00 

80.00 

100.00 

120.00 

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

R
ai

n
fa

ll 
(m

m
) 

Years 

Buchan 

Observation rainfall ANFIS model POAMA 

0.00 

20.00 

40.00 

60.00 

80.00 

100.00 

120.00 

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

R
ai

n
fa

ll 
(m

m
) 

Years 

Orbost 

Observation rainfall ANFIS model POAMA 



 

141 

 

 

 

 

Figure  8-5. Comparison of ANFIS models with POAMA  for central Victoria 
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Figure  8-6. Comparison of ANFIS models with POAMA model for west Victor 
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8.2 Summary 

In this study the results of the developed nonlinear models were compared with the  

Predictive Ocean Atmosphere Model for Australia (POAMA) which is the official 

forecast model used by the BoM. The results revealed that ANN models are comparable 

with POAMA in all of the stations in the case study in terms of error criteria and are 

superior in terms of trend criteria. The results also revealed that ANFIS models are  

better estimators of future rainfall in central and west Victoria compared to POAMA 

however, POAMA performs better in east Victoria. The model comparison suggests that 

nonlinear modelling techniques such as ANN and ANFIS are promising tools for 

forecasting Victoria’s seasonal rainfall.  
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Chapter 9 

Summary, Conclusion and Recommendations 

9.1 Summary 

The main focus of this study is the development of a non-linear rainfall forecast model 

for Victoria, Australia using antecedent large-scale climate predictors. Artificial Neural 

Network (ANN) was chosen as the primary modelling technique due to its capability to 

extract complex relationships from the data. ANN has been rarely used in rainfall 

forecasting in Australia in conjunction with the use of large-scale climate modes. In 

order to compare the forecast results of ANN models with those of linear and non-linear 

models, Multiple Linear Regression (MLR) models and Adaptive Network-based Fuzzy 

Inference System (ANFIS) were developed respectively. The large-scale climate modes 

taking place in the Pacific and Indian Oceans were considered in this study as potential 

rainfall predictors; the El Nino Southern Oscillation (ENSO) and the Interdecadal 

Pacific Oscillation (IPO), which occur in the Pacific Ocean, and the Indian Ocean 

Dipole (IOD) which occurs in the Indian Ocean were examined in this study. 

Furthermore, this study investigated the concurrent and antecedent relationship between 

seasonal rainfall and large-scale climate modes; classification analysis and Pearson 

correlation analysis were used in this regard. Three distinct regions in Victoria, 

Australia were considered as case studies; from each region three rainfall stations were 

selected. Monthly rainfall and climate mode data were obtained from the Australian 

Bureau of Meteorology (BoM) and the Royal Netherlands Meteorological Institute 

(KNMI) Climate Explorer website, respectively. The Nino3.4 and Southern Oscillation 

Index (SOI) were chosen as ENSO indicators and the Dipole Mode Index (DMI) was 

chosen as the IOD indicator.  The IPO index was obtained from Parker et al., (2007).  

In the classification analysis, seasonal rainfall anomalies were constructed and classified 

based on the phases of ENSO and IOD in two different steps. In the first step, the 

anomalies were classified based on the years of El Nino, La Nina and Neutral for ENSO 

and the years of positive IOD (pIOD), negative IOD (nIOD) and Neutral for IOD. 
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Wilcoxon Signed Rank tests were applied to the classified anomalies in order to 

examine the significance of the median of each category from zero. Categories with 

zero median are known as normal rainfalls. It was revealed that spring rainfall is 

affected by the phases of ENSO and IOD; however, winter rainfall is less influenced by 

these phases. It was also revealed that east Victoria is only influenced by El Nino and 

pIOD, which are both related to decreased rainfall and dry conditions in Australia.  

In the next step of classification analysis, the co-occurrence of the phases of ENSO and 

IOD and their effect on Victoria’s seasonal rainfall was investigated. Seasonal rainfall 

anomalies were classified based on the years of El Nino–pIOD, pure El Nino, pure 

pIOD, Neutral, pure La Nina, La Nina-nIOD and pure nIOD. In the present study, the 

term “pure” is used to identify that the only active phase of climate is the phase with 

which the term “pure” is associated and the other climate mode is in neutral condition. 

The Wilcoxon Signed Rank test was applied to examine the statistically significant 

median from zero in each category. It was revealed that the dry phases of ENSO and 

IOD and their occurrence (i.e. pure El Nino events, pure pIOD events and the co-

occurrence of El Nino-pIOD) consistently result in dry conditions, while the wet phases 

of these phenomena (La Nina, nIOD and the co-occurrence of La Nina-nIOD) are 

highly variable. It was also revealed that the only phase of climate affecting east 

Victoria’s rainfall is the co-occurrence of El Nino and pIOD. The results highlight the 

importance of the dry phases of ENSO/IOD for spring rainfall and the necessity of 

forecasting spring rainfall based on large-scale climate modes as potential predictors. 

While classification analysis gave a good understanding of the natural causes of the 

increase or decrease in rainfall over Victoria, it could not show the magnitude of the 

influence of the climate modes on seasonal rainfall. In order to gain an understanding of 

the magnitude of strength of different climate modes on seasonal rainfall in Victoria, 

Pearson correlation analysis was further used in two separate approaches. In the first 

approach, the concurrent relationship between seasonal rainfall and climate modes was 

investigated. The first approach consisted of two sections; in the first section the 

correlation coefficient between seasonal rainfall and seasonal climate modes was 

calculated. It was revealed that only the cool season rainfalls (winter and spring) have 
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statistically significant relationships with the climate modes, and these relationships 

proved to be moderate to weak. In the second section of the concurrent correlation 

analysis, the rainfalls based on the years of El Nino/La Nina were merged in order to 

remove the neutral years;  rainfalls based on pIOD/ nIOD were also merged and Neutral 

IOD years were removed. Nino3.4, SOI and DMI were also merged separately based on 

the years of El Nino/La Nina and pIOD/nIOD. Pearson correlation analysis between the 

merged rainfall and merged ENSO and IOD indices was conducted in order to examine 

the strength of the relationship between rainfall and the effective phases of ENSO and 

IOD. It was discovered that the correlation coefficients between the merged rainfalls 

and merged climate modes increased significantly, which revealed the magnitude of the 

strengths of these relationships.  

In addition to examining the concurrent relationship between rainfall and climate 

modes, the relationship between spring rainfall and antecedent climate modes was also 

examined using Pearson correlation analysis. It was discovered that only the climate 

modes in the three months of June, July and August have statistically significant 

relationships with spring rainfall, although these relationships are quite weak. It was 

also found that IPO is only effective in some parts of Victoria and not all stations show 

significant lagged relationships with IPO. 

The statistically significant lagged climate modes were used as the basis of input 

selection for seasonal rainfall forecasting models using MLR, ANN, and ANFIS 

techniques. MLR models were constructed based on combined antecedent ENSO-IOD 

to forecast rainfall for the three regions under study. It was revealed that, due to 

statistical limitations, the MLR models with the multiple lagged climate mode (e.g. 

Nino3.4(Jun-Jul-Aug)-DMI(Jun-Jul-Aug))  were not reliable, as they did not meet the statistical 

assumptions of the MLR technique;  only some of the single month ENSO-IOD (e.g. 

Nino3.4(Aug)-DMI(Aug)) models were statistically significant. After calibrating the 

models, the models were tested and used to forecast spring rainfall three consecutive 

years in advance in the stations under study; the models were able to forecast spring 

rainfall with acceptable errors for some stations, while showing less accurate results for 

the others. As MLR is a linear technique, it is not able to capture complex non-linear 
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relationships. ANN models were therefore further developed in order to forecast spring 

rainfall based on antecedent large-scale climate modes.  

In developing ANN models, two scenarios were considered in selecting the inputs. The 

first scenario consisted of two different input sets; the first set was developed based on 

the results of lagged correlation analysis, i.e. antecedent single climate modes (Nino3.4, 

SOI, DMI and IPO) were considered, which took into account the three months of June, 

July and August (e.g. Nino3.4(Jun-Jul-Aug)). As Pearson correlation is a linear technique 

and does not capture the non-linear relationships, the second input set was developed in 

order to examine a broader range of climate modes. The second set consisted of single 

climate modes for nine antecedent months from December in the previous year until 

August of the current  year (e.g. Nino3.4(Dec- Aug)). It was revealed that ANN models 

based on the wider time frame of climate modes (nine antecedent months) showed 

superior results compared to models based on three months’ climate modes.  It was also 

found that models based on nine months’ IOD outperformed models based on ENSO 

indicators.  

The second scenario of input development was based on combinations of climate 

modes. Two sets of combined antecedent ENSO-IOD and ENSO-IPO based on the 

three months of June, July and August (e.g. Nino3.4(Jun-Jul-Aug)-DMI(Jun-Jul-Aug))  were 

developed and used in ANN modelling for forecasting spring rainfall in the stations 

under study. It was discovered that the combined ENSO-IOD models outperform the 

combined ENSO-IPO models. Comparing the results of single climate mode models 

with combined climate mode models revealed that other than in east Victoria, where 

combined climate mode models show superior results, for the rest of Victoria single 

IOD models based on nine antecedent months outperform the combined climate mode 

models. It was concluded that, for most of Victoria, IOD is the dominant predictor of 

spring rainfall. The physical reason for this may be the fact that east Victoria is closer to 

the Pacific Ocean where ENSO occurs, and the effect of both ENSO and IOD can 

therefore be felt in this region. However, towards central and west Victoria and closer to 

the Indian Ocean, IOD becomes the dominant predictor of rainfall in Victoria.   
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In order to compare the results of ANN models with another non-linear technique, 

ANFIS models were developed. As ANFIS modelling requires sufficient hardware 

memory, it was not possible to use the nine antecedent climate modes in the modelling 

process due to hardware restrictions. The results of ANFIS models based on single three 

antecedent month climate modes and combined antecedent months ENSO-IOD and 

ENSO-IPO revealed that models based on three antecedent months’ IOD outperform 

those based on ENSO. It was also revealed that combining ENSO-IOD and ENSO-IPO 

does not improve the forecast results. By comparing ANN and ANFIS models, it was 

found that ANN models have lower errors in east Victoria, and the results of ANN and 

ANFIS models are comparable for central and west Victoria.  

In order to evaluate the accuracy of the developed models with an official benchmark, 

the Predictive Ocean Atmosphere Model for Australia (POAMA) was considered. 

POAMA is the official forecast model used in the Australian Bureau of Meteorology 

(BoM) for daily to seasonal rainfall forecasts. POAMA is a dynamic model which uses 

a variety of ocean and atmosphere variables in order to forecast rainfall. The POAMA 

seasonal forecasts for the stations under study were obtained from the BoM and 

compared with the results of ANN and ANFIS models. It was revealed that ANN 

forecasts are comparable with POAMA forecasts in regard to error criteria for most of 

the stations, and show superior results especially in west Victoria. It was found that 

ANN models outperform POAMA in terms of correlation coefficients in all stations 

except one. The superiority of the correlation coefficients of ANN models compared to 

POAMA is very significant in central and west Victoria. The results show that both 

POAMA and ANN models produce higher errors in central Victoria than in east and 

west Victoria. It appears that the process governing central Victoria’s rainfall is very 

complicated compared to east and west Victoria, and more research needs to be done in 

this region. In general, by comparing the results of the ANN and POAMA models it can 

be concluded that until POAMA further develops, with a simpler non-linear statistical 

technique like ANN with fewer input variables  similar and even much better results can 

be obtained compared to using a complex dynamic model such as POAMA.  
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The results of ANFIS models were also compared to those of the POAMA. It was 

discovered that in terms of error criteria, POAMA performs better in the east and part of 

central Victoria than ANFIS models.  In west and part of central Victoria, ANFIS 

models are comparable with if not better than the POAMA. In terms of the correlation 

coefficients of the models, ANFIS models are better than POAMA in all the stations 

studied.  In general, the POAMA  tends to give more flat rainfall forecasts when facing 

extreme cases compared to ANN and ANFIS. Since these two artificial intelligence 

techniques learn from the associations, they are more responsive to extreme cases. The 

forecast of extreme cases is crucial for flood management and drought mitigation; 

ANFIS and  ANN models are more reliable in this regard than POAMA. 

9.2 Conclusion and Recommendations 

The cool season rainfall (winter and spring) in Victoria, Australia is under the influence 

of large-scale climate modes such as ENSO and IOD. The dry phases of large-scale 

climate modes have more effect on Victoria’s rainfall than the wet phases. The linear 

relationships between Victoria’s cool season rainfall and large-scale climate modes are 

not strong. Seasonal rainfall can be modeled and forecast by the use of artificial 

intelligence techniques such as Artificial Neural Network (ANN) and Adaptive 

Network-based Fuzzy Inference System (ANFIS) with good accuracy in Victoria, 

Australia. In the process of forecasting seasonal rainfall in this region, antecedent large-

scale climate modes as potential predictors of rainfall can be used in ANN and ANFIS 

modelling approaches for accurate seasonal rainfall forecasting. The Indian Ocean 

climate mode produces more accurate rainfall forecasts compared to the Pacific Ocean 

climate modes in most of Victoria when used in the developed non-linear models. The 

results of the developed ANN models are comparable with and even better than the 

forecast results of the official model (POAMA) used by the Australian Bureau of 

Meteorology. As a pioneer study, this research has revealed the potential of artificial 

intelligence techniques in seasonal rainfall forecasting in Australia. The study has 

revealed that the use of antecedent large-scale climate modes in non-linear modelling 

techniques can be beneficial for more accurate rainfall forecasting around Australia. 

This research may be extended in future by developing forecasting models for other 
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parts of Australia, improving the models by incorporating genetic algorithm techniques 

for more accurate input selection, and expanding and improving the models for grid 

rainfall forecasts as opposed to station rainfall forecasts. The approach taken in this 

study can be used in official rainfall forecasts. 
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