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This paper demonstrates, using experimental results and theoretical derivations, that some reinforced concrete walls

may be able to carry much higher loads if the flexural cracking strength is considered in the calculation. The paper

presents a theoretical derivation of a formula for estimating the axial load capacities of reinforced concrete walls

subjected to eccentric axial loads as well as uniform lateral loads. A simplified, approximate version of the formula

is also presented. The formula is based on the assumption that the failure of the walls is controlled by the flexural

cracking strength of concrete. The paper also describes an experimental programme and reports test results for four

reinforced concrete walls with varying amounts of reinforcements of varying type, namely, mesh (fabric), bar and

steel fibre reinforcement. The test results show that the amount and type of reinforcement do not have any influence

on the load capacity of the walls but only have an effect on the ductility of the walls. Comparisons are made with

the formula and other commonly used methods of estimation. The formula estimations are much closer to the test

results than the other methods for the type of walls tested.

Notation

A bt

b width of the wall

c parameter defined in equation (16)

e eccentricity of the axial load

e9 parameter defined in equation (20)

f cf flexural cracking strength of concrete

f 9c cylinder compressive strength of concrete at 28

days

L height of the wall

M total bending moment

M(x) bending moment at a distance x

Mcr cracking moment of the wall section without any

axial force

Mmax total bending moment at the middle of the wall

Mp fully plastic moment

M0 bending moment at the middle of the wall

caused by lateral loads

P axial force at failure

PE Euler buckling load as given in equation (9)

t thickness of the wall

t9 parameter defined in equation (14)

x distance measured from the top of the wall

y(x) lateral deflection of the wall at distance x

Z section modulus � bt2=6

ã parameter defined in equation (15)

Ä deflection in the middle of the wall

Introduction

Reinforced concrete walls are commonly used as

load-bearing structural elements. There is a new popu-

larity in the use of reinforced concrete walls in the

form of tilt-up and precast concrete walls. With these

type of construction, the walls used are often very

slender and made with high-strength concrete. The

methods presented in the codes of practices (e.g. ACI

318
1

and AS3600
2

are inadequate for designing these

walls as they are often outside the limits set by the

codes. Designers therefore seek other methods to de-

sign these walls. Some of the most commonly used

methods are those of SEAOSC
3
, Wyatt,

4
Weiler and

Nathan
5

and the Concrete Institute of Australia.
6
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Weiler and Nathan
5

and the Concrete Institute of

Australia
6

present charts for commonly used sizes of

walls. SEAOSC
3

and Wyatt
4

present simplified, ap-

proximate methods to calculate load capacities of slen-

der reinforced concrete walls. All the methods

mentioned above are based on the assumption that the

failure of the wall is controlled by the yielding of the

reinforcing steel.

In the SEAOSC
3

method, the load capacity is calcu-

lated when the moment at mid-height reaches the ulti-

mate moment capacity. The deflection at mid-height is

calculated on the basis of a fully cracked second mo-

ment of area and a parabolic distribution of the bending

moment diagram with the ultimate moment at the mid-

dle. The applied moment at mid-height is calculated as

the sum of the moments caused by lateral loads and of

the moments caused by the axial loads multiplied by

the eccentricity and deflection at mid-height. The axial

load capacity is calculated by equating the applied

moment at mid-height to the ultimate moment capacity.

The Wyatt
4

method is similar in concept except that

the axial load capacity is calculated at the yield mo-

ment. The yield moment is defined as the bending

moment at which the tension steel starts to yield. The

curvature of the cross-section at the time when the

yield moment is reached (the yield curvature) is also

calculated. The deflection at mid-height is calculated

assuming that the curvature distribution of the wall is

sinusoidal along the height of the wall, with the yield

curvature at mid-height. The axial load capacity is

calculated by equating the applied moment (the sum of

the moments caused by lateral loads and Pÿ Ä effects)

to the yield moment.

The other commonly used simplified methods are

the fomulae presented in ACI-318
1

and AS3600.
2

Pre-

viously published research work on estimating the axial

load capacity of walls includes the following: Krip-

anarayanan,
7

Oberlender and Everard,
8

Pillai and

Parthasarathy,
9

Zielinski,
10

and Saheb and Desayi.
11

A

number of formulae have been proposed by these re-

searchers on the basis of a large number of tests on

reinforced concrete walls. Most of the tests were car-

ried out on very-small-size walls (typically 25 mm

thick) and with low concrete strengths (typically

25 MPa).

The present paper sets out to demonstrate that the

mode of failure controlled by the flexural cracking

strength of concrete can be significant in certain types

of walls. The experiments were carried out on 50 mm

thick walls with concrete strengths of about 60 MPa.

Theoretical derivation

The following derivation is based on the assumption

that the failure of the wall is controlled by the flexural

cracking strength of the concrete. Therefore, the steel

reinforcement in the concrete does not participate in

the process of failure, and therefore the following deri-

vation is equally valid for an unreinforced wall. The

wall considered is subjected to an eccentric axial load

P and also a uniformly distributed lateral load, as

shown in Figs 1(a) and 1(b). The bending moments due

to the lateral load have a parabolic distribution, as

shown in Fig. 1(c).

The maximum bending moment will occur at the

middle of the wall. The total bending moment at the

middle of the wall, Mmax, is as given in equation (1):

Mmax � M0 � P(Ä� e) (1)

The stresses across the middle section of the wall will

be the sum of the stresses created by the bending

moment M and the axial force P. At failure the maxi-

mum tensile stress will reach the flexural cracking

strength of the concrete f cf as shown in equation (2):

f cf � M

z
ÿ P

A
(2)

where

z � bt2=6 (3)

is the section modulus,

A � bt (4)

b is the width of the wall, t is the thickness of the wall

and P is the axial force necessary to cause the first

cracking of the concrete.

Substituting equations (1), (3) and (4) in equation (2)

and rearranging,

bt2

6
f cf � P(e� Äÿ t=6)� M0 (5)

The left-hand side of equation (5) is the cracking mo-

ment of the section, Mcr, in the absence of any axial

force. Therefore, equation (5) becomes

Mcr � P(e� Äÿ t=6)� M0 (6)

P

L
y

x

e∆ M0

M0(1–4x2/L2)

(a) (b) (c)

Fig. 1. Axial and lateral loads on wall: (a) eccentrically

loaded wall; (b) uniform lateral load; (c) bending moment

due to lateral loads
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The bending moment at a distance x is as given in

equation (7). Assuming a linear relationship between

bending moment and curvature, the bending moment is

also equal to ÿEI d2 y=dx2, where E is the elastic

modulus of the concrete and I is the second moment of

area of the wall cross-section:

M(x) � M0 1ÿ 4x2

L2

� �
� P[e� y(x)] � ÿEI

d2 y

dx2
(7)

Equation (7) can be solved for y(x), with the boundary

conditions y(L=2) � y(ÿL=2) � 0. The closed-form

solution for this equation is as given in equation (8):

y(x) �
8

ð2

PE

P

M0

P
� e

� �
cos

ðx

L

������
P

PE

r !
sec

ð

2

������
P

PE

r !
ÿ 1

" #

ÿM0

P
1ÿ 4x2

L2

� �
(8)

where

PE � ð2 EI

L2
(9)

PE is also known as Euler buckling load.

By substituting x � 0 in equation (8), the deflection

at the middle of the wall can be obtained:

Ä � 8

ð2

PE

P

M0

P
� e

� �
sec

ð

2

������
P

PE

r !
ÿ 1

" #
ÿ M0

P

(10)

The following approximation can be made to the secant

function:

sec
ð

2

������
P

PE

r !
ÿ 1 � ð2 P

8(PE ÿ P)
(11)

This approximation introduces less than 1% error for

values of P=PE , 0:35, which is the case in the major-

ity of slender walls found in practice. In the range

0:35 , P=PE , 0:65, the error can reach a maximum of

2%; and in the range 0:65 , P=PE , 0:97, the error can

reach a maximum of 3%.

Using the approximation (equation (11)), equation

(10) can be simplified as given in equation (12):

Ä � ð2 Pe� 8M0

8(PE ÿ P)
(12)

Substituting equation (12) in equation (6) and solving

for P, we obtain equation (13):

P � c

8t9

�������������
1� ã

c2

r
ÿ 1

 !
(13)

where

t9 � t � 3ð2

4
ÿ 6

� �
e (14)

ã � 384PE(Mcr ÿ M0)t9 (15)

c � 24Mcr � 4PE(6eÿ t) (16)

Considering the case ã=c2 � 1, an approximation can

be made as shown in equation (17):�������������
1� ã

c2

r
ÿ 1 � ã

2c2
(17)

The above is a very reasonable approximation for typi-

cal walls used in practice. For example, for the range of

slenderness ratio (L=t) between 20 and 40 and for M0

varying between 0 and 0:8Mcr, the error introduced by

this approximation ranges between 0´1% and 1´6%.

(These error calculations are based on the assumption

that the elastic modulus and flexural strength are ap-

proximately equal to 5056
p

f 9c and 0:6
p

f 9c, respec-

tively, and the load eccentricity is equal to half the wall

thickness.)

With the approximation in equation (17), equation

(13) simplifies to equation (18):

P � ã

16t9c
(18)

By substituting equations (14), (15) and (16), equation

(18) becomes as follows:

P � 1

e9
(Mcr ÿ M0) (19)

where

e9 � eÿ t

6
� Mcr

PE

(20)

Mcr � bt2

6
f cf (21)

Although equation (19) is approximate, it is a very

simplified form of equation (13) and will be useful for

estimating the load capacity of walls governed by the

flexural cracking strength of concrete. The parameters

e9, Mcr and PE are the effective eccentricity, cracking

moment and Euler buckling load, respectively.

Experimental programme

Test specimens

The dimensions of the walls tested were as indicated

in Fig. 2. Walls 1 and 2 were reinforced with a single

square mesh of type F81 (8 mm nominal-diameter bars

at 100 mm centre to centre) at the middle. In addition,

wall 2 was reinforced with twelve reinforcing bars of

12 mm diameter. Wall 3 was reinforced with a single

layer of F52 mesh (5 mm nominal diameter at 200 mm

centre to centre) at the middle. Wall 4 had no conven-

tional reinforcement but was reinforced with steel fibre

reinforcements. The reinforcement details are sum-

marized in Table 1. The reinforcement area, expressed

as a percentage of the total concrete cross-sectional

area, is denoted by px and py in the x and y direction,

respectively.

Load capacity of slender walls
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The walls were cast with eight holes on each loading

edge for the loading points. Additional reinforcements

were provided around the holes to prevent local failure

of the concrete in this region.

Concrete prisms of size 100 mm 3 100 mm in cross-

section and 350 mm long were prepared for testing the

flexural cracking strength of the concrete. Three speci-

mens were prepared and cured for each type of con-

crete. Standard cylinders (100 mm dia. and 200 mm

height) were also prepared from the concrete testing

the compressive strength of the concrete. All the speci-

mens were prepared and cured according to the Austra-

lian Standard AS 1012´8.
12

Test set-up

The specimens were tested in a horizontal position.

The specimens were set up such that the self-weight

was in the opposite direction to the eccentricity. Fig. 3

shows schematic drawings of the test set-up. An over-

view of the test frame arrangement is shown in Fig. 4.

Closed loading frames were used to apply an eccentric

in-plane load. Four loading frames, each having a capa-

city of 1000 kN, were used to apply these eccentric in-

plane loads. The frames were located at equal spacings

of 305 mm centre to centre. A manifold system was

used to supply equal oil pressure to all the jacks so that

the applied loads through all jacks were approximately

equal, irrespective of their individual displacements.

Load cells were placed behind the hydraulic jacks to

measure the applied loads in each frame. The eccentric

load from the hydraulic jack was transferred to the steel

plates by a 19 mm dia. high-strength steel rod to ensure

the correct eccentricity. The steel plates were clamped

to the wall by 37´5 mm dia. high-strength bolts with

500 kN pretension force in each, transferring the load

to the wall by friction between the concrete and the

steel plates. This arrangement was designed to avoid

local failure of the concrete at the point of loading by

the hydraulic jacks. A similar arrangement was used on

the opposite edge, but without the hydraulic jacks.

The oil pressure applied to all the hydraulic jacks

was monitored by a pressure gauge. Using the calibra-

tion data available for each hydraulic jack, the load on

each jack was estimated and used as a check of the

values measured by the load cells.

Lateral deflections of the wall specimens were meas-

ured using LVDTs (linear variable differential transfor-

mers) at six points along the length of the wall and

three points across the length at the middle of the wall.

During the tests, the walls were loaded at a slow rate

(approximately 10 kN/min). At every 10 kN increment,

the load was held for approximately one minute before

a further increment was applied.

Eccentric
in-plane
loads

Eccentric load

2 m

1·5 m

25 mm

25 mm

50 mm

y

x

Fig. 2. Dimensions of the test walls

Table 1. Reinforcement details of the walls

Wall No. Reinforcement arrangement Reinforcement, y direction Reinforcement, x direction

Area: mm2 py: % Area mm2 px: %

1 F81 mesh 741 0´99 939 0´94

2 F81 mesh � 12 Y12 bars 2099 2´80 939 0´94

3 F52 mesh 157 0´21 177 0´18

4 Fibre steel 918 1´22 1244 1´22

A A
36 mm dia. macro-alloy bars 

36 mm dia. alloy bars 
50 mm thick wall
specimens 

280

280

58
0

25
0

26
0

Hydraulic jacks Test wall

(a)

(b)

Load cell

Steel plate size
230 × 100 × 25

Steel plate size
230 × 125 × 40

Steel plate size
230 × 130 × 40 Bolt 37·5 mm dia.

Strong floorHydraulic jack

Fig. 3. Schematic diagram of test set-up (dimensions in mm):

(a) plan view; (b) section A±A
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Results

The results of the tests of the material properties are

presented in Table 2. The reinforcement was tested for

tensile strength by testing three samples from the mesh

and bars. The compressive strength of the concrete was

measured by testing cylinders according to the Austra-

lian Standard AS 1012´9.
13

The flexural strengths of

the concretes were obtained by testing the prisms as

simple beams with third-point loading according to the

Australian Standard AS 1012´11.
14

On the basis of the results in Table 2, the first crack-

ing moment (Mcr) and the fully plastic moment (Mp)

were calculated; they are presented in Table 3. The

values give some indication of the relative influence of

the reinforcement and the flexural strength of the con-

crete. It should be noted that these values do not in-

clude the effects of the axial force.

Figure 5 shows a photograph of wall 1 after the test.

The cracks are parallel, in the direction perpendicular

to the loading direction, and are well distributed. In

walls 3 and 4, the cracks were not as well distributed as

in walls 1 and 2. This is due to the low levels of

reinforcement present in walls 3 and 4.

In all walls except for wall 2, the peak load was

reached at the same time as a flexural crack appeared.

Therefore, it appears from the observations that the

peak loads of walls 1, 3 and 4 were governed by the

flexural cracking strength of the concrete.

The total load applied to each wall is plotted versus

the deflection at the middle of the wall in Fig. 6 The

deflections at the middle of the walls were measured at

three points: one at the centre and two close to the

edges on either side. All three deflections were found

to be very close to each other.

Regardless of the varying amounts and type of re-

inforcement in the walls, the peak loads of the walls

are more or less the same. This also indicates that the

load capacity is controlled by the flexural cracking

strength of the concrete rather than the amount or type

of steel reinforcement. In wall 2, it seems that the load

Fig. 4. Overview of test set-up

Table 2. Results for material properties

Wall No. Age at test day: days Strength of concrete at test day: MPa Steel strength: MPa

Compressive strength Flexural strength Yield Ultimate

1 28 58´5 518 648

2 31 59´0 4´88 518 (mesh) 648 (mesh)

450 (bar)

3 31 59´0 506 613

4 35 60´5 5´02

Table 3. First cracking and fully plastic moments

Wall No. 1 2 3 4

First cracking moment

Mcr: kN m

3´05 3´05 3´05 3´14

Fully plastic moment

Mp: kN m

8´61 14´97 1´95 0

Load capacity of slender walls
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capacities provided by the steel reinforcement and by

the flexural cracking strength of the concrete are of

similar magnitude. The post-peak behaviour of the

walls, however, is significantly influenced by the

amount and type of reinforcement. Wall 4, which was

reinforced with fibre reinforcement but had no conven-

tional reinforcement, exhibited the most brittle type of

failure, whereas wall 2, which had the greatest amount

of conventional reinforcement, exhibited a highly duc-

tile behaviour.

Figure 6 also shows the peak load calculated on the

basis of the formula proposed in this paper (equation

(17)). The corresponding deflection at peak load was

calculated using equation (10) for the purpose of plot-

ting the points in Fig. 6. The peak load and deflection

estimated on the basis of the formula are very close to

the peak points obtained from the tests. For the purpose

of these calculations, the elastic modulus was assumed

to be E � 5056
�p
f 9c. It should be noted that the self-

weight of the panel was acting in the opposite direction

to the eccentricity. Therefore, the moment M0 is nega-

tive in equation (17).

Fig. 5. Crack pattern of wall 1

300

200

100

0

0 10 20 30 40 50 60 70 80

Deflection at middle: mm

Lo
ad

: k
N

Equations (12) and (19) (4 points overlapped)

Wall 1

Wall 4

Wall 3

Wall 2

Wyatt
Wall 2

Wyatt
Wall 1

Wyatt
Wall 3

Wyatt
Wall 4

SEAOSC
Wall 1

SEAOSC
Wall 3

SEAOSC
Wall 4

Fig. 6. Load versus deflection for the walls
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Comparisons were also made with estimations of the

load capacity on the basis of the methods recom-

mended by SEAOSC
3

and Wyatt.
4

These comparisons

are presented in Table 4. The estimated peak loads and

deflections are also plotted in Fig. 6 as points, which

are to be compared with the peak points of the experi-

mental curves. As mentioned before, the self-weight

was acting in such a direction as to increase the load

capacity. This is the reason why the load capacity of

wall 4 is not zero, even though the yield and ultimate

moment of the wall are zero according to the Wyatt

and SEAOSC methods.

The SEAOSC method assumes that all the reinfor-

cing steel is yielding at the time the ultimate moment

conditions are reached. This may not be the case in

highly reinforced walls such as wall 2 (2´80% reinforce-

ment). This partially explains the very high value

estimated by the SEAOSC method for wall 2.

Conclusions

Comparisons of experimental results with theoretical

estiamtions show that the formula developed in this

paper gives much better estimations of load capacities

than the other methods. Therefore, it is concluded that,

for certain configurations of a wall (such as the ones

tested), the flexural cracking strength may govern the

load capacity of the wall, rather than the yielding of the

steel reinforcement. This conclusion is also supported

by observations made during the tests.

The amount of reinforcement of the wall does not

seem to have any influence on the load capacity of the

wall. However, significantly higher ductility was ob-

served in the wall with the highest amount of reinforce-

ment (wall 2), compared with all the other walls. It

seems that the amount of reinforcement in this case

was high enough to match the strength provided by the

flexural cracking strength of the concrete.

The type of reinforcement (fibre steel as compared

with mesh and bar reinforcements) does not seem to

have any influence on the load capacity of the walls.

Fibre reinforcement seems to produce a less ductile

wall than the mesh and bar reinforcements.

For walls with a typical amount of reinforcement

(,1%), the commonly used design methods (SEAOSC
3

and Wyatt
4
) may be conservative for certain types of

walls for estimating the load capacity, because the con-

tribution from the flexural cracking strength is not con-

sidered.
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Table 4. Comparison of estimations of load capacity

Wall Experimental Estimated load capacity: kN

No. peak load:

kN Equation (19) Wyatt
4

SEAOSC
3

1 238 210 137 143

2 202 210 260 1437

3 212 210 50 66

4 196 214 18 25

Load capacity of slender walls
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