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Abstract
In many competitive business domains, software systems have become vital to achieve

the business objectives efficiently. In such software systems, maintaining performance

properties such as response time and throughput at runtime is important to avoid cus-

tomer dissatisfaction and violation of service level agreements. This is a challenging task

as service providers typically need to share computing resources between service consumers

in order to deliver those services efficiently under dynamic and unpredictable environmen-

tal conditions. Managing such systems using human-in-the-loop decision making methods

at runtime is neither efficient nor cost-effective. As a result, runtime performance man-

agement tasks need to be automated.

Closed-loop approaches based on control engineering methodologies have been widely

investigated, as a way to achieve relative and absolute performance management objectives

at runtime, while sharing a limited amount of resources. These approaches are based on

linear modelling and control methods. However, linear approaches neglect the prominent

nonlinear dynamics of the relative and absolute performance management systems and

provide effective control only in a limited operating range.

In this thesis, we classify the nonlinearities that exist in the relative and absolute per-

formance management schemes. We then introduce two novel nonlinear feedback control

methods to reduce the runtime impact of nonlinearities on the control system. In the

first approach, compensators are integrated into the control system to reduce the impact

of nonlinearities. In particular, a Hammerstein-Wiener block-oriented model is used for

relative performance management while a MIMOWiener model is used for absolute perfor-

mance management. In the second approach, we represent the dynamics of the nonlinear

system with multiple linear models. Multiple models and multiple linear controllers are

implemented together with a switching scheme, to select the most suitable controller to

provide control under the current operating conditions. In addition, we present a class

library of control components, to facilitate the implementation of complex control systems

for software systems.

The evaluations conducted using simulation studies and experimental real-world case

studies indicate that the proposed nonlinear approaches can significantly improve the

performance and resource management capabilities compared to other state-of-the-art
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approaches. We further demonstrate that the class library significantly improves the

efficiency of the control system engineering process.
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Chapter 1

Introduction

Software systems and services have become an essential part of business operations today

to achieve the business objectives in a more efficient and cost-effective manner. For in-

stance, banking, online trading and medical services are some of these businesses. In such

competitive business domains, it is essential to provide the correct functional services,

while maintaining the performance properties such as response time and throughput at

acceptable levels throughout the entire operations. This is because poor performance

management can lead to customer dissatisfaction and violation of the legal requirements,

which would ultimately cause significant financial loses. Due to the complex business re-

quirements, the increasing customer base and the dynamic, unpredictable nature of the

operating environments, managing the performance properties of these software systems

during operations is a complex task. As a consequence, the runtime management decisions

are still made by the IT staff of many business organizations. However, this human inten-

sive management approach have proven to be error-prone, inefficient and costly [47, 80].

In order to reduce the human involvement, the automation of runtime performance man-

agement of software systems is a promising alternative, which subsequently led to many

research challenges in the past decade.

Among the challenges, one is to maintain the performance properties at runtime while

efficiently and effectively sharing the limited amount of resources. This has become an

active research area with the popularity of the shared resource software environments

operating under the utility computing model. In traditional resource environments, a

dedicated physical machine or machines are allocated for customers to deploy their soft-
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ware stack (see, Figure 1.1a). Consequently, there is no sharing of resources between

different customers leading to significant resource under-utilization, high operating costs

and scalability issues [129, 177]. In contrast, the vision of the emerging utility computing

model is to deliver hardware, middleware and software services as a utility similar to the

delivery of the electricity and water supplies in the modern world [12, 14]. The cloud

computing data centers and multi-tenanted software platforms are realizations of the util-

ity computing model, which serves multiple customers using and sharing common pools

of resources at the hardware, middleware and application levels of the system stack as

shown in Figure 1.1b. Utility computing is increasing rapidly [31] because there are many

other advantages to all the stakeholders and addresses issues that exist in the traditional

resource environments as described below.

Operating 
system (OS)

Middleware
(MW)

Software
Application (SP)

Operating 
system (OS)

Middleware
(MW)

Software
Application (SP)

....

Customer1 Customern

Physical Machine 1 Physical Machine n

(a) Dedicated resources for each customer

OS

MW

SP

....

Customer1

Physical Machine 1 Physical Machine n

OS

MW

SP

....

OS

MW

SP

OS

MW

SP

....

Customerk Customern-j Customern

(b) Resources shared between customers

Figure 1.1: Resource settings in software environments serving multiple customer classes

A data center provider can reduce the operational costs by maintaining a shared re-

source environment and by allocating the hardware resources required by a particular

customer for a given time during which the customer pays only for the hardware resources

they have used. Therefore, consolidation of multiple customers into one machine reduces

the number of machines that have to be operated to provide services to n customers (see,

Figure 1.1b), thereby reducing the operating costs and improving resource utilization and

sharing. However, the data center provider has to maintain the performance properties

of customer applications by dynamically managing resources in physical machines. This

dynamic performance and resource management problem does not exist in the traditional

method (Figure 1.1a), which maintains and calculates the fee for a fixed amount of hard-

ware resources for the entire period regardless of whether the resources have been used or
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not.

An application service provider on the other hand, can use a multi-tenanted shared

resource software architecture to provide services to multiple customers by maintaining a

single infrastructure. This approach significantly reduces the source code, infrastructure

management costs and scalability issues in comparison with maintaining separate code-

bases and infrastructures. In this situation as well, one of the main objectives is to deliver

agreed or acceptable performance properties at runtime for all the customers sharing the

same resources.

In order to deliver the required performance properties in a shared resource environ-

ment serving multiple customer classes, efficient and timely resource allocations have to be

performed at runtime (so-called dynamic resource management). There are many factors

and characteristics of such an environment that inhibit the design and implementation of

a runtime performance and resource management system.

1.1 Key Characteristics of Shared Resource Software Envi-

ronments

As illustrated in Figure 1.1b, a shared resource software system serves the service

requests of n number of customer classes simultaneously. In this work, we call such a

software environment a multi-class shared resource software system as defined below:

If a software or hardware service provider maintains a single environment to achieve

the business objectives of multiple customers or organizations, then the environment given

by the service provider is called a multi-class shared resource software system. At the same

time, each customer/organization perceives the system as they have their own dedicated

environment.

In order to design and implement a runtime performance and resource management

system for a multi-class shared resource software environment, the relevant key character-

istics are discussed as follows.

1. The shared resource software system needs to provide services to multiple client

classes and achieve the service level agreements (SLAs) associated with these classes.

These SLAs may specify the required values for the performance properties or prior-

ity levels of the classes, which need to be maintained by the shared resource software

system.

3
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2. The workloads (request rates) from these different client classes may vary overtime

in a dynamic and unpredictable fashion. These variations could happen in a short

or a long period of time with different magnitudes. The stochastic nature of the

workload makes it hard to predict or create a model of the incoming workload.

3. When multiple clients are sharing the resources of a single system, a resource alloca-

tion decision for one client class ideally should not affect the performance attributes

of the other classes (so-called performance isolation) or should provide differenti-

ated service levels depending on the priority of the client class [108, 145, 150]. For

instance, an aggressive/malicious client class could overload the system, leading to

degradation of the performance for the other client classes. Such situations should

be minimized or avoided.

4. The available resources are limited, so that these resources have to be efficiently

allocated at runtime by taking into account the total available resources in order

to ensure a viable service delivery to each individual client class. Furthermore, one

of the objectives is to improve the resource utilization and minimize the required

resources as much as possible.

5. The resources of a software system could be shared at multiple levels. Typically, a

software system stack is composed of hardware, middleware and software entities.

The resource sharing could happen at any one of these levels depending on the

deployment strategy used. Figure 1.2 illustrates the possible deployment options.

Hardware level: With the significant improvements in the virtualization technology,

the modern data centers or hardware providers offer virtual machines (VMs), which

compartmentalize a single physical machine into multiple separate hosting environ-

ments. These VMs could be used to deploy software stacks of different customers

as shown in Figure 1.2a. As a consequence, the CPU, memory and disk of a phys-

ical machine are shared between multiple customers, making such environments,

multi-class shared resource systems at the hardware level.

Middleware level: Middleware is a software environment that lie between the soft-

ware applications and the operating system or hardware. It provides development

and deployment support for software applications. For instance, web servers, appli-
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Figure 1.2: Deployment options of the multi-class shared resource environments at different
levels of the system stack

cation servers and enterprise service buses are such middleware. A single middleware

deployed in virtual or physical machines can also be used to host software applica-

tions and serve several customer classes as shown in Figure 1.2b. With this option

therefore, the environment can be further consolidated compared to the shared in-

frastructure option, because a single virtual machine can be used to run application

instances of multiple customers. Unlike at the hardware level, it is hard to allo-

cate hardware resources (e.g., CPU, memory) at the middleware level because the

underlying operating system is not aware of the existence of the multiple customer

applications. This makes it difficult to control hardware resources at the granularity

of the customer applications. Due to this fact, the resources that could be dynami-

cally allocated are soft-resources such as worker threads, communication connections,

message queues and middleware-level cache.

Software application level: In this option, any software application instance can

handle the workload of any or many customers. As shown in Figure 1.2c, the same

5



Chapter 1. Introduction

application instance created out of a single codebase serves multiple customer work-

loads. Therefore, this option delivers further consolidation of customer environments

compared to the previous two options when the software application instances are de-

ployed on middleware, virtual or physical machines. However, in this option as well,

allocating the hardware resources between customer classes is impractical because

customer classes are an abstraction at the software application level. A possibility is

to share bottlenecked soft-resources at the application level. Such resources may be

worker-threads provided by the middleware, database connections or other business

domain specific resources.

It is evident that depending on the level of the stack at which the multi-class shared

resource system is deployed, the resources that need to be dynamically managed

vary.

6. Unlike other engineering disciplines, there are no underlying physical laws (such as

mass balance and electrical laws) to describe the behavior or the performance of

a software system and the interactions between the layers it is composed of [81].

In addition, as shown by the existing works [179, 266] the performance properties

are nonlinearly related to the shared resource allocation. This inherent nonlinear

characteristic and dynamic behavior of the software system impose difficulties to

model the behavior of the system either at the design time or runtime [81, 108, 238].

1.2 An Overview of Existing Solutions in a Nutshell

Many techniques have been proposed in the literature to address some of the prob-

lems characterised in Section 1.1. In this section, an overview of the existing solutions is

presented. In general, there are two mainstream approaches: open-loop and closed-loop,

which also have their own sub-streams. A detailed analysis of the literature is given in

Chapter 2.

Open-loop approaches

In open-loop approaches, the feedback of performance properties is not considered at run-

time. The simplest approach is to maintain dedicated, fixed resources or to provide best

effort performance to each client. For instance, many of the shared hardware resource

environments such as data centers still allocate fixed and dedicated hardware resources
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to deploy the software applications of each customer. The fixed resource partitioning

strategy is also implemented by many state-of-the-art virtualization platforms, namely

Xen and VMware to allocate hardware resources such as CPU, network bandwidth and

memory between virtual machines (VMs) in order to maintain performance isolation [19].

Although some of the scheduling mechanisms are implemented to adjust the resource al-

locations at runtime, the feedback of performance properties of the customer applications

are not considered. Therefore, the required performance levels by each customer may not

be maintained. This management strategy provides isolation among the customers, how-

ever, at the expense of resource utilization, sharing and scalability [12, 177]. In addition,

most of the middleware platforms (e.g., web servers, database servers, business process

engines), which can be used to host software applications of multiple customers or organi-

zations, still provide best-effort performance by treating all service requests equivalently

[101, 241, 256, 257]. Consequently, there is less emphasis on performance management of

different customers while sharing the resources in an efficient way.

Closed-loop approaches

In closed-loop approaches, the feedback signals of the performance properties are con-

sidered in the design and implementation of the performance and resource management

system. There are many such techniques proposed for shared resource environments.

These approaches can be classified as admission control and dynamic resource manage-

ment strategies. The admission control strategies reject or abort requests, when the

workload of the system exceeds a certain threshold, in order to maintain the performance

properties such as response times below certain bounds (e.g., [51, 101, 137, 163, 241, 256]).

These approaches also require detailed knowledge about the workload models (including

service time, request arrival rates) and have assumptions on the workload distributions

[81, 177]. In contrast to the admission control and fixed resource partitioning, the dynamic

resource management adjusts the resource partitions of client classes in order to maintain

the performance properties such as response time and improves the resource sharing under

changing workloads and resource demands (e.g., [4, 107, 108, 145, 177, 178, 180, 257]).

However, it sacrifices the performance isolation in comparison with the fixed resource par-

titioning techniques. Even though performance isolation and resource utilization/sharing

are competing aspects in deciding the management scheme, a hybrid resource management

approach of fixed and dynamic resource partitioning may lead to a much more effective
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management scheme as mentioned in [55].

Furthermore, in the shared resource environments, closed-loop approaches are used

to achieve mainly the absolute and relative performance management objectives by ad-

justing the resource partitions. The objective of the absolute management scheme is to

maintain the performance properties of each client class at or around the specified value

(for example, the works [41, 105, 108, 118, 145, 177, 178, 180, 231]). In contrast, the

relative management scheme maintains the ratios of the performance properties of two or

more client classes at or around a specified ratio (see works in [41, 145, 150, 177, 180]).

The main challenge in realizing these schemes is to achieve the prescribed management

objective while dynamically adjusting the resource partitions of each client class with the

characteristics listed in Section 1.1 [145].

The existing works that propose approaches to achieve the absolute and relative per-

formance management objectives while dynamic resource allocation are based on either

control engineering and non-control engineering methodologies. Two of the dominant

methods in non-control engineering approaches involve either simple rule-based tech-

niques (e.g., [17, 20, 35, 86, 110, 138, 160]) or complex optimization techniques (e.g.,

[109, 127, 170, 220]). These are useful techniques because of their ability to handle complex

policies/constraints and are relatively easy to design and implement. However, they suffer

from a lack of well-founded design processes in selection of important design parameters

(for example, thresholds and weights in utility functions) and a lack of systematic pro-

cesses to guarantee system stability. In contrast, the control engineering methods provide

the formal systematic design process and the ability to achieve the diversified management

objectives under highly unpredictable operating conditions using the feedback principle,

which is also tolerant to a certain degree of model uncertainty [29, 81, 143]. As a re-

sult, feedback control engineering techniques have been identified in recent years as one

of the major enabling techniques to automate runtime management of software systems,

in particular to realize the runtime resource management in shared resource environments

[4, 29, 37, 121, 145, 177, 178, 203, 231, 233].

The control system design generally consists of two main steps. The first step is to

establish the dynamics of the system as a mathematical model of inputs and outputs of

the system (so-called system model). The model of the system is then utilized in the

second step, which includes controller design, simulation, analysis, implementation and
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validation. The characteristics of software systems mentioned in Section 1.1 present many

challenges to the general control system design methodology. As mentioned before, one

of the characteristics of the software system is the lack of first principle models. Conse-

quently, significant research efforts have been put to investigate black-box models of the

software performance management system with respect to certain operating conditions

[81, 189] using model estimation techniques. Typically, in such model estimation tech-

niques, the input-output data gathered from an experiment is used to derive the system

model. These efforts have focused only on linear black-box models and estimation tech-

niques, neglecting the inherent nonlinear dynamics of the software systems. In the case

of a shared resource environment and with respect to absolute and relative management

objectives, the relationship between the performance properties such as response time and

throughput (the performance variable controlled) of a single client class and the resource

allocation (the manipulated variable) is known to be nonlinear [41, 81, 106, 150]. In ad-

dition, the characteristics of the nonlinearity depend on the workload intensity as well as

the level of the system stack the resource being shared (for instance, hardware and mid-

dleware) [177]. Consequently, the aforementioned linear control engineering approaches

that have neglected the nonlinear dynamics become inadequate when the system operation

condition changes, which frequently occurs in a software performance management system.

In order to design and implement a performance management system for shared resource

software systems that works in a spectrum of operating regions with unpredictable work-

load conditions and operates with different resources at different levels, the nonlinearity

in the system dynamics must be addressed adequately in the process of modelling and in

the process of control system design.

1.3 Contributions

The motivation of this thesis is to investigate novel nonlinear modelling and feedback

control system design techniques in managing performance and resources of multi-class

shared resource software systems or environments at runtime. More specifically, the man-

agement system will possess the following attributes:

• to achieve the required absolute or relative performance management objectives of

multiple customers or organizations served by the shared resource environment self-

adaptively under changing unpredictable operating conditions with less or no human
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interventions.

• to adjust the resource partitions of each client class efficiently under dynamic un-

predictable resource demands honouring any constraints on the resources,

• to provide performance isolation between client classes,

• to provide mechanisms to change the control objectives and requirements at runtime

with less or no overhead of redesign or reimplementation of the management system,

• to provide a systematic design approach and tool support to implement the man-

agement system.

The major contributions in this thesis, associated with the design and development of

this software performance management system are listed as follows.

I. Modelling the nonlinear dynamics Due to difference in the management objectives

of the absolute and relative performance management schemes, the nonlinear character-

istics illustrated are significantly different from each other. In the case of relative perfor-

mance management objectives, consideration of ratios of performance properties (system

output) and resource allocations (system input) between the client classes creates severe

nonlinear dynamics at the system input and output. In the case of the absolute per-

formance management scheme, unlike the relative management scheme, the performance

property of each individual client class and the corresponding resource allocation shows

a nonlinear relationship. Furthermore, when all the client classes are considered together

in a single shared resource system there are multiple objectives that have to be achieved

under resource constraints.

In this thesis, we have presented two novel model identification techniques to estimate

the nonlinear dynamics of software systems, namely, non-linear block-oriented estimation

and multiple linear model estimation. We have applied these techniques to characterize

the dynamic relationship between resource inputs and performance outputs in both the

relative and absolute performance management schemes. We give an overview of these

techniques below.

1) Nonlinear block-oriented model based estimation

Firstly, the nonlinearities that exist in the relative performance and resource manage-

ment scheme are characterized into separate blocks of input, output nonlinearities and
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the rest of the dynamics. Then, each block is estimated by a mathematical model. This

block-oriented model is known as the Hammerstein-Wiener model in the control literature.

A systematic identification process is presented in Chapter 4 to enable the modelling of

the relative performance management system as the Hammerstein-Wiener model.

Secondly, the nonlinearities that exist in the absolute performance management scheme

are also characterized as output nonlinearities and represented as a multiple-input and

multiple-output Wiener model structure. A new model identification procedure is pre-

sented for this estimation in Chapter 4.

This thesis shows for the first time that the above nonlinear block-oriented modelling

techniques can be successfully used to model the dynamics of multi-class shared resource

software systems.

2) Multiple linear model based estimation

Instead of using a single linear model to represent a wide range of dynamics as in the

existing work, we present a multiple linear model based technique to estimate the dynamics

of the relative and absolute performance management systems. In this work, we have

presented effective methods to divide the operating region into manageable sub-regions

depending on the management requirements and nonlinearities. Then, the dynamics of

each of these sub-regions are identified separately to represent the dynamics of the system

with multiple models.

II. Nonlinear control system design

After the estimation of nonlinear models, the next step is to design the suitable con-

trol systems to provide performance and resource management decisions at runtime. For

the two types of modelling techniques, we present two nonlinear control system design

methodologies as follows:

1) Control system with compensators

With the estimated input and output nonlinear components of the Hammerstein-

Wiener model, pre-input and post-output compensators are designed and integrated to the

control system in order to reduce the impact of the nonlinearities on the relative perfor-

mance management system at runtime. The management system is composed of a linear

controller designed using well-established control system design techniques.

Using the estimated multi-input multi-output Wiener model, compensators are de-

signed and connected at the each output of the absolute performance management system
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in order to mitigate the issues of nonlinearity. The absolute performance management

scheme also necessitates complex multiple objectives to be achieved at runtime. We for-

mulate a multi-input multi-output control and constraint optimization problem and then

solve it using a model predictive controller equipped with a quadratic programming solver.

The above described control systems based on the compensator frameworks are novel

control system architectures in the area of software system management. Furthermore,

these nonlinear control systems have shown significant improvements in the performance

management of relative and absolute schemes compared to the linear control approaches.

2) Control system with switching capabilities

As mentioned above, the system dynamics can also be represented by multiple linear

models. Then, multiple controllers can be developed from these models, where each in-

dividual controller is most suitable to operate in certain operating conditions. Although

there are multiple suitable controllers, only a single controller can be connected to the

control system to make the decisions at a given time instance. Thus, the most appropriate

model and controller have to be selected and then connected to the system autonomously,

without any human intervention. Therefore, switching decisions are paramount to achieve

the control objectives with multiple models under changing operating conditions. Further-

more, when these controllers are switched back and forth, most suitable control algorithms

have to be selected and implemented in order to reduce the transient responses and over-

head of porting the runtime state data in-between the controllers. In this thesis, we have

successfully developed effective switching schemes and control algorithms in order to in-

tegrate multiple models and controllers into the control system of relative and absolute

performance management schemes.

III. Implementation and evaluation of control system

Following the systematic control system design process presented in this thesis, we have

implemented control systems to achieve relative and absolute performance management

objectives of simulation and several real-world shared resource software environments,

sharing resources at different levels of the system stack (e.g., application and middleware

level). In addition, the evaluations of the implemented nonlinear control systems presented

in this thesis are conducted in both simulation and real-world shared resource environments

serving multiple customers or organizations under different settings, which include
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1. unpredictable workload variations (based on time varying, step like, ramp like and

real-world workload traces),

2. changing agreements or priorities of the customer requirements,

3. number of customer classes deployed in the shared-resource environment, and

4. changes to the tuning parameters of the proposed management system.

Further to evaluate that the simulation parameters have no impact on the results and

conclusions of the experiments, we also conduct Monte-Carlo simulations.

In these evaluations, we use the existing linear control strategies as a bench-mark to

compare the improvements delivered by each proposed nonlinear control approach. These

evaluations conducted on both simulation and real-world systems illustrate the external

and internal validity of the presented approaches. From the outcomes of these evaluations,

we can conclude that the nonlinear approaches presented in this thesis have significantly

outperformed the existing state-of-the-art management approaches in many cases.

IV. Tool support

The proposed management system architectures rely on the formal and rigorous con-

trol system design and implementation methodologies. However, the development of such

management systems requires specialized knowledge and substantial design, development

and testing efforts by the software engineers. To aid this design and implementation

process, we have implemented a configurable, extendible and cost-effective off-the-shelf

software class library, which provides implementations of different control components.

This off-the-shelf class library will reduce the development efforts and knowledge require-

ments in the design and deployment of runtime management systems for shared resource

software environments.

An empirical study conducted with a group of software engineers has shown that

this class library has facilitated the control system implementation process significantly

compared to the implementations from scratch.

1.4 Thesis Outline

Figure 1.3 shows the high-level structure of the thesis using a flow chart.
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Chapter 2

Literature review 

Chapter 4
-Identification of relative management system
-Identification of absolute management system

Chapter 5
-Relative management with nonlinear control
-Absolute management with nonlinear control

Chapter 7

-Implementation and tool support

Chapter 8
-Experimental case study 1
-Experimental case study 2

Chapter 9
-Conclusions
-Future work

Chapter 3
-Problem formulation
-Approach overview 
-Simulation model

Chapter 6
-Multi-model control system design for relative management 
-Multi-model control system design for absolute management 

Figure 1.3: Thesis outline
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Chapter 2 overviews the existing literature related to resource management of shared

resource software environments.

Chapter 3 formulates the research problem followed by the approach taken by this the-

sis. Chapter 3 concludes with the details of the simulation environment and experimental

case studies.

Chapter 4 presents the block-oriented nonlinear modeling approaches for relative and

absolute performance management systems.

Chapter 5 is divided into two segments. The first segment presents and evaluates

the new control architecture design methodology for the case of relative performance

management. In the second segment nonlinear control system design techniques proposed

for absolute performance management will be presented and evaluated.

Chapter 6 proposes and evaluates the techniques to integrate multiple controllers and

switching schemes to design management schemes based on multiple models for both

relative and absolute performance management systems.

Chapter 7 covers the design and implementation details of the off-the-shelf class library

built to assist the development of control systems for software systems. The details of an

empirical study, which evaluates this class library will be presented at the end of the

Chapter 7.

Chapter 8 gives the details of two experimental case studies investigated in this thesis.

The first case study focuses on a production multi-class business process server called

WSO2 Stratos, while the second case study focuses on a real-world travel reservation

system. Chapter 8 covers experiment setup and results of these case studies.

Chapter 9 presents possible directions for future research and concluding remarks.
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Chapter 2

Literature Review

This chapter overviews the literature related to the work of this thesis. The general

background and work related to multi-class shared resource systems will firstly be dis-

cussed before going into the details of the existing performance and resource management

methodologies. We then present a taxonomy of the literature, which also highlights the

focus areas of this thesis.

2.1 Multi-class Shared Resource Systems

Multi-class shared resource systems, particularly at the middleware and software levels

are still new areas of study. There are many challenges that have to be faced in order to

design, develop and deploy such systems. These challenges include

1. selecting a maturity level,

2. enabling configurability and customizability of the customer applications,

3. designing the database,

4. placing customer application in the environment,

5. maintaining (security and performance) isolation properties,

6. managing performance and resource at runtime.

This section overviews the work proposed to address the first five challenges, while work

on the performance management will be reviewed in Section 2.2.

Four maturity levels are proposed in [43] to implement multi-class shared resource

environments. A suitable maturity level could be selected by the shared resource service
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providers in order to realize their environment. The selected maturity level impacts on the

way the system is designed, deployed and how the above described challenges can be ad-

dressed. In maturity Level-1 there is a separate customized source codebase and dedicated

hosting instance for each customer class. The Level-2 has a single source codebase, which

is configured and deployed in a dedicated hosting instance for each customer class. In the

third level again a single codebase is maintained, but only a single hosting instance exists

for all the customer classes. In the final level a single codebase deployed in multiple shared

hosting instances provides services to all the customer classes. It is evident that levels 1

and 2 show limitations of high operation costs, maintenance costs and resource underuti-

lization issues that existed in the traditional methods. In contrast, maturity levels 3 and 4

address these issues by consolidating the environment and improving the resource sharing

and utilization. However, the main challenge in such implementations is providing cus-

tomized business functionalities to each customer, maintaining isolation and management

of performance properties. It follows that if maturity levels 3 and 4 are to be achieved,

then techniques such as those described in this thesis will need to be developed.

Several approaches have been proposed to address other challenges described above

in recent years. The works in [162, 187, 213, 244] have proposed techniques to enable

configurability and customizability in shared resource environments. In order to design

the database of multi-class shared resource systems, a set of patterns are given in [239] and

successful real-world implementation details can be found in [187, 244]. The techniques

to enable security isolation is investigated in [75, 187]. In the aforementioned maturity

level 4, when there are multiple hosting instances that can be used to deploy customer

applications, the tenant placement problem occurs. The optimization solutions to address

this problem have been proposed in [55, 122].

Although there are many important challenges on the different aspects of multi-class

shared resource environments, the focus of this thesis is to investigate the other vital issue

of managing performance and resources of multi-class shared resource environments at

runtime.

2.2 Performance and Resource Management

In this section, the work related to performance and resource management is reviewed

in detail. The two mainstream approaches: open-loop and closed-loop are covered in
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Sections 2.2.1 and 2.2.2 respectively.

2.2.1 Open-loop Approaches

In the open-loop approaches the feedback of the performance properties are not con-

sidered in the decision making. The sub-streams of this mainstream approach are capacity

planning, fixed resource allocation and scheduling.

2.2.1.1 Capacity Planning

Capacity planning involves estimation of the hardware or software resources required for

a future period of time. Traditionally, the estimation is performed by the historical re-

source demands extracted from the workload traces of customer software applications.

In addition, the expert knowledge could be taken into account to further optimize the

estimation. However, these estimations are done offline or infrequently due to the costs

and manual work required for conducting such approximation procedures [102, 202]. After

this estimation, the next step is to solve a complex multi-variable optimization problem to

place these different applications into minimal number of physical servers [122, 202]. The

outcome of these approaches is to maintain a fixed capacity till the next capacity planning

is carried out, which may lead to significant under or over utilization of resources when

the capacity is over- or under-estimated respectively.

In multi-class shared resource systems, capacity planning approaches are impractical

to use as a dynamic resource allocation technique because the workload patterns of a class

may vary significantly in short time periods. Consequently, fixing resource limits for each

class depending on the peak workload demand may lead to resource wastage. However,

capacity planning is still required in the current IT infrastructures to specify a limit on

the maximum amount of resources, because there are costs involved on the resource usage

and there is no possibility to accrue unlimited amount of resources. However, dynamic

distribution of the resources among client classes is hard to achieve using capacity planning

under significant variations in workloads.
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2.2.1.2 Fixed Resource Reservation

The simplest approach is to maintain a fixed amount of resources in a hosting instance

for each customer class irrespective of the changing resource demands. This is still the

dominant approach of resource allocation in the multi-class shared resource systems at the

hardware level. The major scheduling algorithms used in the state-of-the-art virtualization

platforms such as Xen and VMware allocate hardware resources in fixed amounts between

VMs in order to maintain the isolation properties [19]. This approach has the shortcoming

of resource underutilization because there is no dynamic resource management.

2.2.1.3 Scheduling Methods

The existing production middleware platforms (e.g., web servers, database servers and

business process engines) do not provide all the necessary features required to be a multi-

class shared resource environment. In particular, in the case of performance and resource

management, the popular web servers such as Apache provide best-effort performance by

implementing simple First-In-First-Out (FIFO) scheduling, treating all requests equiva-

lently [101, 241, 256, 257]. Other types of scheduling such as strict priority, earliest dead-

line first and shortest remaining time first are also proposed in works [24, 72, 77, 204, 256]

for web servers. These techniques are also open-loop approaches because they do not

consider the performance properties in scheduling. Instead they assume that the service

times and deadlines are known when a request arrives and the requested contents are

static. These assumptions are not valid in the current distributed software environments

that provide versatile and dynamic business functionalities.

2.2.2 Closed-loop Approaches

In closed-loop approaches, the feedback of the performance properties is directly con-

sidered in the performance management at runtime. As a consequence, compared to open-

loop approaches, the performance properties requested by the different customer classes

can be achieved using a closed-loop approach. Therefore, the management objective has

to be specified using the performance properties, so that the responsibility of the designed

management system is to achieve that objective under changing conditions. We provide

details and the brief history of the major performance management objectives investigated
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in the literature below.

With the development and popularity of the internet, providing quality of service (QoS)

in the communication over networks and routers was a vital issue in 1990’s. The openness

and dynamicity of the internet hindered such delivery of QoS, which led to demand for

different levels of QoS for different user classes [263]. The best-effort service model imple-

mented with resource reservation in the network equipment and software systems was not

able to deliver differentiated levels of QoS, consequently new techniques were required for

QoS provisioning.

Two major QoS differentiation architectures were proposed by Internet Engineering

Task Force (IETF1), namely Integrated service in 1994 (IntServe) [28] and Differentiated

service in 1996 (DiffServe) [25]. In IntServe, the network resources are reserved along

the path for a particular user who needs QoS guarantees. This approach faced many

issues, in particular the scalability and requirement of all the network providers along

the path should agree to reserve the resources. As a result, this architecture did not

become popular [263]. The DiffServe proposed in 1996 provided the features of maintaining

different QoS levels depending on the priority of the user class, which was implemented in

the communication resources.

The DiffServe standard distinguished two types of performance guarantees: Absolute

DiffServ, where minimum service rate is guaranteed based on the workload and Relative

DiffServ, which provides better performance to the higher priority user class compared to

the lower priority classes. These developments in network communication or network layer

were not sufficient to provide end-to-end differentiated services to the different user classes

because a significant amount of communication delay is also induced by the software sys-

tem or the service. Therefore, effective management methodologies were required for the

software systems and services as well. There have been many approaches that attempted

to apply the above differentiation schemes to software layers. A survey can be found in

[263]. However, application of such schemes is difficult at the software layer because of the

complex business requirements and versatility of software applications or functionalities

compared to the network layer which has a standard way of communication. This fact

makes the management at the software layer difficult and different to the network layer.

In a nutshell, from the existing work the major performance management objectives of

1www.ietf.org/
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multi-class shared resource software environments are commonly specified using absolute

and relative performance management schemes [145].

The following subsections review the closed-loop approaches, which are classified as

admission control approaches (Section 2.2.2.1) and dynamic resource management ap-

proaches (Section 2.2.2.2).

2.2.2.1 Admission Control Approaches

The idea behind admission control is to adjust the admission rates of requests to the system

when the current workload is above the system capacity (so-called overloaded situation).

Firstly, based on the content or customer class, the requests are classified. Secondly, a de-

cision is taken whether to accept or reject the request based on the management objectives

and workload conditions. Under the overloaded conditions requests will be rejected in or-

der to maintain the performance properties and the integrity of the software environment

based on the priority of the classes. Such admission control techniques have been widely

investigated to manage performance properties of software systems in the last decade. The

details on these approaches can be found in [7, 64, 263]. Many of these works rely on the

assumptions related to the workload arrival distributions (typically, Poisson distribution)

and service rate distributions (e.g., [7]). Such assumptions rarely hold in the real-world

workloads [81, 177]. Several other approaches are based on the analytical queuing models

or networks (e.g., [101, 218, 219]). These analytical models require structural details of

the software architecture and approximations of various parameters such as request arrival

and service rates in order to be effective [53].

In multi-class shared resource environments, the total workload is a composition of dif-

ferent classes. As a consequence, the arrival and service rate monitoring has to be done for

each class, which makes it a computationally expensive approach. In addition, represent-

ing the dynamics of the shared resource environments using a queuing model have shown

low accuracy under changing dynamics [30]. Furthermore, the queuing models are not

fine grained enough to capture the transient behavior of the system due to unpredictable

operating conditions in short time periods [81, 177].

The admission control is a vital methodology for the multi-class shared resource envi-

ronments, because under persistently overloaded conditions, the incoming requests have
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to be rejected in order to maintain the system stability and integrity. Otherwise, per-

formance properties such as response time may increase significantly, while the software

system may end up crashing. In this work, we implement simple policy based admission

control. However, we adjust the resource capacities of each class so that the provisioning

of resources is performed to cater the demand of the workload of each class. Consequently,

the above assumptions on the arrival request and service rates are not required. In ad-

dition, we treat the system as a black-box, thus the structural details of the system are

abstracted away compared to the analytical models.

2.2.2.2 Dynamic Resource Management Approaches

The idea behind this approach is to allocate the required amount of resources depend-

ing on the workload variations in short time periods (in minutes if not seconds), thereby

maintaining the required performance objectives throughout the operations. As a con-

sequence, in contrast to the fixed resource allocation techniques, the dynamic resource

allocation improves the resource utilization and sharing. However, under sudden workload

bursts, performance isolation many not be achieved during the transient period because

the time taken to reallocate the resources. In [75], a hybrid mechanism of fixed and dy-

namic resource allocation is recommended due to these issues of both schemes to achieve

the required performance management objectives effectively.

The related works that propose approaches to achieve the performance management

objectives using the dynamic resource allocation techniques can be further divided in to

control engineering and non-control engineering methodologies.

Non-control engineering approaches

The dominant methods under this approach are either based on heuristics, simple rules

(e.g., [17, 20, 35, 86, 110, 138, 160]) or complex optimization techniques (e.g., [109, 127,

170, 220]). These are useful techniques because of their ability to handle complex poli-

cies/constraints and are relatively easy to design and implement. However, the design

parameters (for example, thresholds and weights in the utility functions) of these ap-

proaches have to be decided based on the trial and error procedure. These approaches

consequently suffer from a lack of well-founded design processes in deciding important

design parameters and require assumptions to be made regarding system variables (e.g.
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workload distributions and arrival rates) [231]. In some approaches, complex policies can

result in computationally expensive optimization problems that need to be solved in every

sampling instance [109].

Such heuristic and simple rule based approaches are hard to apply in multi-class sys-

tems, which demand multi-objective control and constraint optimization at runtime. This

is because implementing if-then rules or approximating threshold levels in the context of

multi-variant competing demands, requirements and operating conditions is a challenging

task. Furthermore, there is no way to test, validate and analyze the performance and

guarantee stability of such techniques due to lack of formal grounding.

Control engineering approaches

In contrast to non-control engineering approaches, the control engineering methods provide

a formal systematic design process and the ability to achieve the diversified management

objectives under unpredictable operating conditions. These feedback based approaches

are also tolerant to a certain degree of model uncertainty [29, 81, 143]. As a result,

feedback control engineering techniques have been identified in recent years as one of

the major enabling techniques to automate runtime management of software systems, in

particular to realize the runtime resource management in shared resource environments

[4, 29, 37, 121, 145, 177, 178, 203, 231, 233].

Controller-

Set point 
(r)

Control 
error 
(e)

SA Target
system

Control 
input

(u)

Measured 
output

(y)

Actuator Sensor

Figure 2.1: Block diagram of a control system

Figure 2.1 shows a block diagram of a feedback control system. The software system

controlled by the controller is referred to as the target system. The target system provides

a set of performance metrics as properties of interest (e.g. response time) referred to as

measured outputs or simply outputs. Sensor monitors the outputs of the target system,

while the control inputs are send to the actuator to adjust the system inputs (e.g. resource

allocation) to change the behavior of the system. The controller is the autonomous decision

making unit of the control system. The main objective of the controller is to maintain the

outputs of the system sufficiently close to the desired values, by adjusting the inputs in
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response to disturbances. The desired values are translated into the control system terms

as set point signals. These set point signals give the option for the control system designer

to specify the goals or values of the outputs that have to be maintained at runtime. In each

sample instance k, the controller calculates the difference between the measured outputs

and the set points, which is called as the control error (e(k)). Because of the unpredictable

disturbance and un-modelled dynamics, the absolute value of |e(k)| maybe greater than

zero. This means that the controller has not achieved the control objective. Consequently,

a formal algorithm implemented in the controller will take into account the control error

and come up with the input to be applied in the system at the current sample instance.

This process continues in each sample instance in order to achieve the desired control

objectives.

Depending on the type of system and control problem at hand, the design of the control

system could be a single-input-single-output (SISO) or multi-input-multi-output (MIMO).

That is if the system has a single input, output and set point, a SISO control system has

to be designed. In contrast, if a system has multiple inputs, outputs and set points, a

MIMO control system has to be designed.

To design a control system in a systematic way, two main steps have to be carried

out. First, a sufficiently accurate model to represent the dynamics of the system has to

be constructed. Second, a controller has to be selected, tuned and tested. More details

about these steps are given in Appendix A. There are different types of control algorithms

and control systems that can be implemented to achieve the required control objectives.

These include fixed gain (PID), model predictive (MPC), adaptive, gain scheduling and

reconfiguring control systems. An overview of these control systems can be found in

Appendix B.

2.3 Control Engineering Approaches to Manage Software

Systems

This section, firstly reviews the control engineering approaches proposed for software

systems in general. Secondly, the control engineering approaches applied to manage per-

formance and resources in multi-class shared resource environments will be reviewed.
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2.3.1 General Applications of Control Engineering Methods

Although control engineering approaches provide useful and systematic design mech-

anisms, the application of such control approaches in software environments is still an

emerging field of study [177]. Our systematic survey [191] comprehensively analyses many

research efforts that have been made in the last decade. In [191], we also present a taxon-

omy to classify the applications of control engineering approaches based on the different

software application areas and managed performance variables. The application areas

include the data centers, virtual machine environments, middleware platforms, data stor-

age and real-time systems. In addition, the managed performance variables are response

time, throughput, power utilization, processor utilization and so on. Furthermore, the

taxonomy also covers the characteristics of the control engineering solutions proposed in

the literature, including the model (black-box or other), dimension of the control sys-

tem (SISO, multiple-SISO or MIMO) and control scheme (e.g., fixed (PID), adaptive and

model predictive) utilized. A detailed quantitative analysis based on this taxonomy could

be found in [191].

Tables 2.1, 2.2 and 2.3 present the clustering patterns of existing works based on some

of the major subcategories of control engineering approaches proposed to manage different

software systems.

From Table 2.1, it is evident that the control engineering approaches have been applied

in many different application domains2. An interesting observation is that depending on

the application domain, the performance variable has to be selected carefully to design

the control system. With respect to the performance variables, the response time is one

of the major performance properties considered in the existing work. The reasons for this

could be that the response time is (1) the user perceived performance attribute of the

system (2) one of the attributes specified in agreements and (3) useful to formulate a set

point tracking control problem [191]. The processor and power utilization are the other

performance variables looked at by a large number of papers, in particular in data center

environments.

Table 2.2 provides an interesting classification based on the modelling mechanism used.

The black-box modelling mechanism is the dominant modelling mechanism used in most

2Some of these works relate to multi-class shared resource systems, which will be covered in Section
2.3.2
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of the existing work compared to the analytical and queuing models. Black-box models

(typically, linear time invariant models) are useful because there are no first principle

models to describe the versatile behaviors of software systems. Analytical and queuing

models, which can be classified as first principle models, make assumptions with regard

to the workload distributions and behavior of the underlying software system, while their

complexity imposes practical difficulties in the application of classical control engineering

techniques.

Table 2.2: Classification of paper references according to the modeling mechanism

Queuing Black-box Analytical

[1, 22, 23, 50, 78,
92, 93, 94, 111,
112, 113, 118, 119,
120, 121, 126, 134,
139, 150, 198, 201,
206, 224, 225, 235,
236, 242, 246, 249,
262]

[3, 6, 8, 9, 10, 36, 37, 38, 39, 46, 48, 49,
52, 56, 57, 58, 59, 61, 62, 63, 71, 71, 74,
82, 83, 84, 85, 95, 96, 97, 98, 99, 100, 103,
104, 106, 107, 114, 120, 124, 128, 130, 132,
133, 134, 135, 139, 140, 141, 142, 144, 145,
147, 151, 152, 153, 158, 161, 169, 176, 178,
179, 180, 181, 182, 184, 185, 186, 189, 193,
194, 197, 198, 200, 205, 208, 209, 210, 212,
216, 217, 226, 231, 232, 233, 234, 235, 236,
237, 238, 243, 247, 248, 251, 252, 253, 254,
255, 255, 259, 261, 264, 266, 267]

[2, 11, 54, 58, 60,
79, 82, 116, 118,
119, 121, 123, 131,
136, 146, 148, 154,
157, 172, 199, 214,
225, 227, 228, 229,
230, 260]

A classification of related works based on the dimension of the control system and

control scheme or algorithm is presented in Table 2.3. There are three major observations.

Firstly, the single-input-single-output (SISO) control systems are typically implemented

with the variations of PID control. This is because PID control is more suitable to achieve

SISO control objectives due to the simplicity and robustness of that scheme. Secondly,

the complex multi-input-multi-output (MIMO) control systems are implemented using

the model predictive controllers (MPC) or linear quadratic regulators (LQR), which have

optimization programmers inbuilt in the controller to compute the control decisions under

the competing multiple objectives. Thirdly, when there are MIMO control objectives to

be achieved, either multiple SISO control systems or a single MIMO controller have been

implemented in the existing works.

It is worth noting that none of these control approaches have investigated methodolo-

gies to represent the nonlinear dynamics of the software systems explicitly. This research

gap is one of the main focuses of this thesis.
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Table 2.3: Classification of paper references according to the control system dimension
and type of control scheme

SISO Multi-SISO MIMO

Fixed (PID) [3, 11, 22, 36, 52, 57, 62,
71, 78, 79, 85, 88, 95, 96,
111, 112, 113, 114, 124,
130, 131, 132, 133, 136,
141, 144, 154, 169, 176,
180, 182, 184, 201, 209,
211, 217, 246, 248, 250,
264]

[8, 9, 26, 84, 97,
115, 134, 145, 147,
150, 153, 179, 181,
206, 229, 237, 242,
249, 261, 262]

[58, 229, 231, 232]

Adaptive [6, 49, 107, 126, 139,
141, 151, 152, 185, 186,
238, 247, 253]

[10, 179, 235, 236,
243]

[63, 71, 74, 103,
104, 106, 108, 128,
140, 142, 161, 178,
254, 255, 255]

MPC [1, 93, 197] [23, 224, 229] [37, 54, 58, 94,
118, 119, 120, 121,
148, 193, 225, 226,
227, 228, 229, 230,
231, 233, 260]

LQR [234] [38, 39, 46, 48, 60,
61, 63, 71, 74, 83,
98, 99, 103, 106,
123, 128, 140, 142,
158, 178, 234, 252,
254, 255, 255]

Reconfiguring [189, 208, 215] [97, 146, 147, 243,
259]

[212, 232]

2.3.2 Applications of Control Engineering Approaches in Multi-class

Shared Resource Environments

In this section, we focus on the related work that proposes dynamic resource manage-

ment techniques to achieve the absolute and relative performance management objectives

in multi-class shared resource environments.

Absolute performance management approaches

Many of the existing approaches address absolute performance management problem.

However, most approaches focus on a single control objective (non multi-class systems)

[47, 61, 81, 182, 208, 238, 266]. Absolute performance management techniques for the

case of multi-class shared resource environments can be found in [41, 145] for connection

delay management in web servers and in [180] for database connection pool management.
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However, these approaches design multiple independent SISO control loops to manage

the performance and resources in a multi-class system. They also ignore the interactions

between the inputs and outputs in modelling and control, which could lead to the perfor-

mance issues [46]. For instance, in systems with a limited amount of resources, increasing

the resources for one class implies reduction of resources of another class. These depen-

dencies are not captured in such SISO approaches. Another shortcoming is that they use

linear modelling and linear fixed gain control methodologies, disregarding the nonlinear

behavior of the system.

The MIMO model based adaptive control is proposed in [105, 108] with the equal-

ity constraints on the total resources3. However, the equality constraints make it hard

to design system identification experiments because of the dependencies between inputs.

Furthermore, absolute performance control is also utilized to manage data centers with

three or less customer classes in [118, 177]. Work of Kusic et al. in [118] relies on accurate

measurements of arrival rates of all classes. Due to the stochastic nature of the workloads

obtaining accurate measurements is problematic, which may lead to runtime management

issues and temporal instabilities. In addition, the computational and time complexity

increases exponentially when the range of input and the prediction horizon increases, be-

cause of the large state space exploration problem that has to be solved at each sample

instance. Consequently, they require large sampling intervals even to produce sub-optimal

solutions. Padala et al. in [177] proposed an adaptive control approach to manage perfor-

mance properties and hardware level resources of the multi-tire web applications deployed

in virtualized data centers. This work suffers due to the limitations of adaptive control,

in particular when the workload conditions change rapidly and the requirement of persis-

tence of excitation conditions [13] are violated, the system may encounter large transient

responses and instabilities [186, 189].

Relative performance management approaches

The relative performance management scheme is important but a hard control problem,

due to the consideration of the ratios of independent system outputs of multiple classes.

The relative performance management schemes with feedback control have been utilized to

manage web servers [41, 145, 150, 180], storage systems [151] and data centers [177]. The

3That is the summation of resource capacities computed for each class has to exactly equal to the total
resource amount. More details can be found in Chapter 3.
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works in [41, 145, 150, 177, 180], utilize linear model and feedback control, limiting the

operating range of the controller to a narrow region that can be linearized, disregarding

the severe nonlinearities that exist in the relative management scheme. This approach

becomes an issue when the sudden disturbances and conditions move the system to operate

away form that the narrow region. Ying et al. in [150] discuss the nonlinearities in

the input-output relationship and related issues of relative management scheme. They

investigated three different ways to formulate the input and output valuables of the relative

management scheme in order to reduce the nonlinearity, while maintaining the scalability

of that scheme and the applicability of feedback control. Their final results indicated that

taking the ratios of the response time and resource capacities of consecutive client classes

based on the priority is the most suitable and effective setting. As a result, that approach

was used in their subsequent publications [145]. However, their work was limited to linear

fixed gain control. Furthermore, [151, 177] utilize adaptive control in their work to design

relative performance management systems.

From the classifications of Section 2.3.1 for general software systems and the analysis

in this section with respect to multi-class shared resource environments, typically the

control system design approach taken by the existing work is based on a linear model and

linear controller. However, to achieve the absolute and relative performance management

objectives of multi-class shared resource environments, the control system has to deal with

the nonlinear behavior of the system. This is because with respect to the absolute and

relative management objectives, the relationship between the performance properties such

as response time and throughput (the performance variable controlled) of a single client

class and the resource allocation (the manipulated variable) is known to be nonlinear

[41, 81, 106, 150]. In addition, the characteristics of the nonlinearity depend on the

workload intensity as well as the level of the system stack at which the resources being

shared (for instance, hardware and middleware). Consequently, by neglecting nonlinear

dynamics, the linear SISO and MIMO control engineering approaches become inadequate

when the system operation condition changes.

Adaptive control approaches, both SISO [81, 151, 265] and MIMO [108, 178] can be

categorized as nonlinear approaches, since they identify a linear model online capturing the

change of operating conditions. However, these approaches also assume persistently excit-

ing conditions and the operating conditions to change slowly. These conditions cannot be

31



Chapter 2. Literature Review

assumed in multi-class shared resource environments due to the unpredictable and sudden

variations in workloads and operating conditions. As mentioned before, under violations

of these assumptions, the management provided by an adaptive control system may show

large transient responses and temporal instabilities leading to significant performance and

resource management issues [13, 186, 189, 247].

Therefore, in order to design and implement absolute and relative performance man-

agement systems for shared resource software systems that share resources at different

levels of the system stack and work in a wide spectrum of operating regions with unpre-

dictable workload conditions, nonlinearity in the system dynamics must be sufficiently

addressed in the process of modeling and in the process of control system design.

2.4 Off-the-Shelf Design Support for Control Systems

A major impediment for building control systems for software platforms is the lack

of implementation frameworks supporting the use of control engineering techniques [203].

These support tools could significantly reduce the knowledge, time and cost required to

develop control-based management systems from scratch. Currently, the existing research

uses the general purpose software such as Matlab4, Mathematica5 and LabVIEW6 which

provide extensive design, analysis and simulation support in the initial stages of the de-

sign of a control system. However, it is hard to deploy the executables of the control

systems implemented out of these general purpose tools directly into the production soft-

ware systems. This is because the additional components and runtime environments have

to be installed in order to successfully deploy these executables, which is an added runtime

performance and management overhead (see work in [149, 177]).

ACME [16] provides a model driven engineering support to generate code for basic con-

trollers with configuration capabilities in different programming languages. However, the

extendibility is limited because the code interpreter may require significant modifications

to consume new extensions. In [47] an approach is described to automate the design of a

control loop by encapsulating the control engineer’s expertise into several software agents.

Based on the complexity of the requirements and system characteristics such an approach

is difficult to apply without a human expert in the design process of even a simple control

4http://www.mathworks.com/products/matlab/
5http://www.wolfram.com/mathematica/
6http://www.ni.com/labview/
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system. So that, instead of automating the entire design process, providing supporting

tools is more useful to aid the development of control systems.

2.5 Extending State-of-the-Art

This section compares the work proposed in this thesis with the state-of-the-art ap-

proaches reviewed in previous sections.

We formulate the multi-objective absolute performance and resource management

problem with inequality constraints on the total available resources. Then, well-established

MIMO system identification technique is used to model the system, which captures the

interactions between the inputs and outputs. This modelling approach therefore does

not have assumptions on the arrival rates or probabilistic distribution of the workloads

compared to the existing work. However, the main difference of our work is the consider-

ation of the nonlinear behavior of the system explicitly in the design of the MIMO control

system. In particular, we investigate two approaches, which include the implementation

of nonlinear block-oriented model or multi-model based control systems. Further, model

predictive control is used in this work because of its ability to manage MIMO systems

with complex constraints.

With respect to relative management objectives in multi-class shared resource envi-

ronments, this thesis also proposes two nonlinear control system design approaches. Here,

the relative performance management problem formulation recommended by Ying et al.

in [150] will be used. In addition, avoiding the aforementioned limitations of the linear

fixed gain or adaptive control approaches, we propose a nonlinear block-oriented model

and a control system with compensators to reduce the impact of severe nonlinearities on

the management system. As a consequence, the system can be effectively linearized and

a gain-scheduling control mechanism (see, Appendix B) can be implemented avoiding the

requirements and assumptions of adaptive control. As the second approach, we investigate

a multi-model control system design approach to improve the performance of the control

system in multiple distinguishable regions, while maintaining the robustness of the system.

These novel approaches also satisfy all the solution characteristics listed in Section

1.3. Furthermore, most importantly these approaches have shown that they sufficiently

address the dominant nonlinear issues exist in the multi-class shared resource environments

compared to state-of-the-art approaches.
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Apart from the investigation of nonlinear control approaches, one of the outcomes

of this thesis is an off-the-shelf class library to support the design, implementation and

deployment of control systems proposed in this thesis. However, the development support

of the class library is not only limited to multi-class shared resource systems. It can also be

used in the development of control system for other types of software systems. We present

a general engineering process to build control systems using the class library, and illustrate

the extensibility and configurability of the class library. In addition, it also facilitates the

engineering process of the control systems by reducing the implementation effort plus the

knowledge required of the software engineers. The class library can be directly used for

the implementations and deployments in the systems build in Java and .Net, without any

additional components or runtime environments.

2.6 Summary

This chapter analyzed the existing work that proposed techniques to design, implement

and manage multi-class shared resource software environments. Figure 2.2 illustrates a

taxonomy which is the analytical framework we used to classify and review the exist-

ing work. Firstly, we looked at the general non-performance management aspects such

as maturity levels, customizability, data design and so on. Then, we moved to the per-

formance management approaches, which were divided into open-loop and closed-loop

mechanisms. From the closed-loop approaches, dynamic resource management is our fo-

cus area. Those approaches were further divided into non-control and control engineering

approaches. Control engineering approaches can be classified as linear or nonlinear. Com-

pared to the existing nonlinear approaches, the novelty of the proposed approaches in

this thesis is that we focus on block-oriented model based control and multi-model based

control systems to manage the performance properties and resources of multi-class shared

resource systems. None of the existing work has investigated such techniques. In addition,

we presented an overview of the support tools in the existing literature to design, develop

and deploy control systems in software environments.
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Management in multi-class shared resource software systems

Non-performance management aspects Performance  management aspects

Open-loop approaches Closed-loop approaches

Admission control 
approaches

Dynamic resource 
management approaches

Non-control engineering 
approaches

Customization 

Configurability

Database design

Tenant placement

Control engineering 
approaches

Heuristic rule based

Optimization

Linear control Nonlinear control

Adaptive 
control

Block-oriented 
nonlinear control

Multi-model switching 
control
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General purpose 
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Fixed allocation

Sheduling

Capacity planning

Figure 2.2: Taxonomy of existing research and the focus of this thesis
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Chapter 3

Research Methodology

3.1 Introduction

This chapter overviews the research methodology followed in this thesis. We begin with

the formulation of the runtime performance and resource management problem for multi-

class shared resource software systems. The approach and validation mechanisms adopted

are then presented briefly. Finally, we cover the details of the simulation environment and

experimental case studies.

3.2 Runtime Management Problem Formulation

Section 3.2.1 lists the assumptions and requirements of this work, while Section 3.2.2

defines the management problems that are the focus of this thesis.

3.2.1 Assumptions, Scope and Requirements

We make the following assumptions with respect to multi-class shared resource envi-

ronments. Based on the assumptions, the requirements and scope of this work will be

discussed.

• Type of the multi-class system. We focus on the multi-class shared resource

environments exist at the application or middleware levels1. At the software level,

we assume a software application receives workloads from different client classes

(classified according to the business objectives), and the available software level

resources (e.g., threads and database connection pools) have to be shared between

these classes to achieve the performance objectives. Similarly, at the middleware

1Although the proposed approaches in this thesis have been already applied for hardware level resource
management (see [192]), it is out of the scope of this thesis.
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level, we assume a middleware system is providing the ability to deploy software

applications and services of multiple customers or organizations.

• Type of the scheme. We assume that depending on the performance management

objectives, a suitable management scheme is selected and known at the design time.

Two dominant types of management schemes are investigated in this work, namely

the absolute and relative management schemes. However, the control objectives

within these schemes can change at runtime.

• Performance property. In this work, we use the response time as the performance

property that has to be maintained by the management system. It is the main

performance property perceived by the end users of a software system, consequently

it is the main performance parameter controlled by most of the existing works (e.g.,

[32, 40, 81, 108, 118, 145, 178]). According to the survey results in [191], response

time is one of the major performance variables used to design control systems in the

existing literature.

• Measurements and decision implementation mechanisms. We assume that

the system has mechanisms to compute the response time of each class in predefined

time intervals. This means that the sensors have to be provided either by the target

system or the target system itself has the capability to deploy sensors without a

significant impact to the rest of the business functionalities. Similarly, we assume

that the system has the capability to adjust the partitions of the bottlenecked re-

sources at runtime without restarting the system. For instance, the state-of-the-art

vitalization products such as Xen and VMware have already implemented such par-

titioning schemes in order to enable runtime management by the external entities.

In the case of the middleware and software levels, such partitioning and scheduling

schemes may not be available. In that case we implement a proportional resource

partitioning and scheduling scheme adopted by existing work [145]. See, Section

3.5.2 for more details.

• Dimension of the system. The number of classes (say n) served by a single

instance of a multi-class system is known at the design time. In this work, we focus

on a control system with a static architecture. In the cases where the number of
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tenants changes over time the control architecture has to be dynamically reconfigured

[191]. Such dynamically reconfigurable control systems will not be considered in this

thesis.

• Limits of resource. We also assume that system profiling has been performed, and

the number of total available resource units (say Stotal) in the system is determined

based on the response time requirement of each class. This property is important to

maintain the response time within acceptable bounds.

• Overload management. We assume that when a class has overloaded a single

instance of a multi-class system, a portion of the workload will be rejected to avoid

instabilities due to unbounded growth of the workload. If this assumption is not

acceptable for the application, an alternative approach would be to migrate the

aggressive class to another under-loaded multi-class system instance with sufficient

resources or dividing the workload between multiple instances. These techniques are

out of the scope of this thesis.

• Major bottlenecked resource. There might be multiple resources as the can-

didates for runtime management. In the ideal scenario, all these resources have to

be allocated efficiently between all the classes. However, in such situations the di-

mensionality of the problem becomes complex. In this work, we only consider the

management of a single and the main bottlenecked resource at the level of the system

stack where the resource sharing occurs.

3.2.2 Management Problem Definitions

Assume that n customers (here on we refer to them as classes 0, 1 . . ., n-1) are interested

in the services provided by a multi-class shared resource system. A performance objective

of the service provider is to maintain the specified response time levels or those based on

priorities of these classes. These objectives are derived from the business requirements

and are to be achieved using the Stotal number of resources available in the system to

service the incoming time varying workloads of these classes. In addition, some amount

of resources is reserved during the entire period of operations for each class, in order to

avoid starvation of resources and to provide minimum amount of service levels. That is,

the management system must reserve a minimum number of resources (say, Si,min, where
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i = 0, 1, . . . n) that have to be maintained for a specific class i, where

n−1∑
i=0

Si,min < Stotal.

However, under sudden workload changes the discretionary resources Stotal−
n−1∑
i=0

Si,min > 0

are shared among these classes in order to achieve the required performance objectives.

Therefore, this resource management approach is a hybrid approach of resource reservation

and dynamic partitioning. Such hybrid techniques are used in [177, 257] and recommended

by [75, 145] in the cases of multi-class shared resource systems. An assumption in this

hybrid resource management scheme is that there are sufficient discretionary resources

(i.e. Stotal −
N∑
i=1

Si,min > 0) to achieve the required performance objectives when the

workloads of these classes exceed the normal workload conditions. Otherwise, the resource

management scheme converges to a pure fixed resource allocation scheme.

Control objective: The main objective of this management system is to main-

tain the average response times R0(k), R1(k), . . ., Rn−1(k) under varying/unpredictable

workload conditions of n classes based on the absolute and relative performance manage-

ment objectives (see Sections 3.2.2.1 and 3.2.2.2), while dynamically adjusting the resource

partitions or caps (S0(k), S1(k), . . ., Sn−1(k)), where k is the sample time period. Fur-

thermore, the management system should honour the following constraints related to the

total amount of resources and per-class resource reservations at all times.

S0(k) ≥ S0,min, S1(k) ≥ S1,min, . . . , Sn−1(k) ≥ Sn−1,min

S0(k) + S1(k) + . . .+ Sn−1(k) ≤ Stotal (3.1)

Using the above general problem definitions, we now specify the absolute and relative

performance management objectives in the following subsections.

3.2.2.1 Absolute Performance Management Scheme

In the absolute performance management scheme, we assume that n classes are interested

in the services provided by the shared resource environment. The business objective of

the system is to maintain the average response time of the workloads R0, R1, . . ., Rn−1

of these classes at an agreed level RSLA,0, RSLA,1, . . ., RSLA,n−1 as defined in the service

level agreements. This objective will be achieved by calculating the resource caps S0(k),

S1(k), . . ., Sn−1(k), without violating the constraints defined in equation (3.1).
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SA Target
system
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.

.

Figure 3.1: Block diagram of a target system controlled by the absolute performance
management scheme

In order to achieve these objectives, as illustrated in Figure 3.1 a sensor and actuator

have to be deployed in the target system, which provides response time measurements and

implements resource allocation decisions in the system respectively.

3.2.2.2 Relative Performance Management Scheme

SA Target
system

Control inputs
(u)

Measured outputs
(y)

Actuator Sensor

.

.

R0

R1

Rn-1

S0

S1

SNn-1
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Adapter

R1/R0

R2/R1

Rn-1/Rn-2

Individual resource 
share calculation 

Algorithm

S0/S1

S1/S2

Sn-2/Sn-1

Figure 3.2: Block diagram of a target system controlled by the relative performance man-
agement scheme

Let Ri, Pi be the response time and the specified differentiation factor respectively of

a class i = 0, . . . n − 1. Between the pair of classes i and j, the objective of the relative

performance management scheme is to maintain
Rj

Ri
=

Pj

Pi
(i = 0 . . . n−1, i ̸= j) at runtime

under varying workload conditions. For instance, P1
P0

= 2 means that the response time

of class1 is to be maintained twice as of class0 (i.e., class0 has high priority compared to

class1). In order to achieve this objective, the resource cap ratio Si
Sj

will be calculated

and then converted to individual resource caps S0(k), S1(k), . . ., Sn−1(k) adhering to the

constraints given by equation (3.1).

Figure 3.2 illustrates the inputs and outputs required to achieve the relative manage-

ment objectives. Similar to absolute management scheme, a sensor and actuator have to
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be integrated to the target software system. However, in this scheme, the inputs and out-

puts have to be transformed to ratios. Firstly, the values of the differentiation factors of

these classes are arranged in the ascending order (i.e., descending order of priority). Then,

each consecutive class is paired and the ratios are computed between these pairs at the

input and the output as shown in Figure 3.2. Two adaptors are connected to the system

before the actuator and after the sensor to implement these conversions. The adaptor

before the actuator also decodes the ratios back to the individual resource caps using an

algorithm2.

3.3 Approach Overview

To address the management problem set out in Section 3.2.2, a management system

needs to be designed and implemented. In this section, the management system architec-

ture and the high-level approach taken by this thesis will be described briefly.

Figure 3.3 illustrates the abstract architecture of a multi-class shared resource software

system and its’ control loop. This is the same abstract architecture used in the existing

works as defined in survey [263]. We start from the top of Figure 3.3 and describe the

responsibilities of key components in this system.
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Figure 3.3: Abstract architecture of the multi-class shared resource system and control
loop for dynamic performance and resource management

2This algorithm is covered in Appendix D in detail.
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Workloads. Depending on the behavior of the clients, the workloads of n classes invoke

the business operations of the shared resource software system.

Classifier. When a request for service reaches the system, the classifier component

classifies the request according to the class and pushes it into the relevant class queue.

The classification is performed using the class-specific unique identifier sent with each

request of the workload.

Multi-queue system. The multiple queues act as a container of requests of each class

waiting to be served by the system. This multi-queue based setting is called class-aware

queuing, which is important to avoid interference between classes and addresses limitations

of the single queue based setting. The moment a request is received, the admission control

is also performed looking at the length of each queue to maintain the response time within

bounds. The maximum queue length is specified by the designer after looking at the

maximum tolerable response time of each class.

Scheduler. The scheduler schedules the requests in a FIFO fashion depending on the

resource availability. A responsibility of the scheduler is to schedule the requests within

the available resource caps prescribed by the management system accurately in the regular

time periods (called the sample time period).

Sensor. A sensor is deployed in the system to measure the average response time of

each class. The sensor also sends these measurement data to the management system at

predefined time periods.

Actuator. An actuator is implemented in order to inform the scheduler about the

resource allocation decisions in each sample time.

Management system. The management system in Figure 3.3 is responsible for mak-

ing the resource allocation decisions by looking at the measurement data, management

objectives and constraints defined in Section 3.2.2.

The main focus of this work is to design and implement such a management system

which makes the resource allocation decisions while achieving the absolute and relative

performance management objectives at runtime under changing conditions. Our approach

is to treat the multi-class shared resource environment as a target system and then compose

the management system with a feedback control system. Consequently, the advantages of

the well-established control engineering techniques can be used to design the management

system in a systematic way. However, in contrast to the existing approaches that are
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based on linear design methodologies, the main novelty of the proposed feedback control

methodology is that it explicitly considers the nonlinear dynamics in the management

system design, which had not been looked at in the existing literature thus far.

In particular, we present nonlinear control system development techniques based on

the variations of Hammerstein and Wiener block oriented model to explicitly capture

the nonlinear dynamics of the relative and absolute management systems. Furthermore,

instead of representing the system with a single model and controlling the system using

a single controller, we present methods to implement the control systems consisting of

multiple models and controllers together with the dynamic switching capabilities.

3.4 Validation Mechanism

This section overviews the methodologies used to validate and quantify the effectiveness

of the management schemes proposed in this thesis.

Selection of the target system. In order to investigate and characterize the be-

havior and design a control system, a target software system is essential, i.e. a multi-class

shared resource system under study. For this purpose, the existing works have utilized

either simulation or experimental case studies of physical software environments (see our

survey [191] for quantitative analysis). These two techniques have their own advantages

and disadvantages. A simulation environment is useful to evaluate and compare the ex-

isting control methodologies with the proposed technique in a controlled environment and

conditions. This is because multi-class shared resource environments deployed in physical

hardware resources provide variable conditions, even under same settings/inputs due to

the noisy and jittery condition of the underlying hardware, operating systems and virtual-

ization platforms. A limitation of simulation environments is that it abstracts away some

of the random behavior/noise from the analysis.

As a consequence, this thesis utilizes both simulation studies and experimental case

studies to investigate the behavior and then implement and evaluate the proposed manage-

ment system. For this purpose, a representative simulation system and several multi-class

shared resource case study systems sharing resources at different levels of the system stack

(e.g., software application, middleware level) have been built in this thesis. The details

of these target systems are presented in Sections 3.5 and 3.6. Furthermore, in the evalu-

ations, different control objectives, workload conditions and operating conditions (called
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‘Cases’) are simulated to investigate the behavior of the control system, under versatile

settings.

Benchmark to compare. In order to compare the improvements, effectiveness and

efficiency of the proposed nonlinear control solutions, we use linear control methodolo-

gies, which are the current state-of-the-art. However, different control algorithms can be

used to implement a control system (see Appendix B). Although the proposed modelling

mechanisms do not depend on the selected control algorithm, different control algorithms

might behave slightly differently at runtime under certain operating conditions. Investi-

gation of such effects is out of the scope of this thesis. We used the survey results [191] as

a basis to select the appropriate control algorithm based on the problem at hand. With

respect to the existing research, in this work, the proportional-integral-derivative (PID)

control algorithm will be used to design SISO control solutions, and for MIMO control

solutions, model predictive control (MPC) formulations will be used (see Appendix B for

more details about these controllers and [191] for statistics).

Comparison metrics. Another important parameter in the validation is the metrics

of comparison. We use the control error and system output signals for this purpose. The

control error is the difference between set point signals (desired values) and measured

output signals (obtained values). If a control system has achieved the specified manage-

ment objectives, the control error should be as low as possible. We use a Sum of Square

Error (SSE) statistic to evaluate and compare the management provided by the designed

control systems. This statistic includes the capabilities of the control system for reacting

to the disturbances (overshooting, settling time) and steady sate behavior. Furthermore,

we use Minimum (MIN) and Maximum (MAX) statistics of the measured output signals

to investigate the variations under sudden disturbances. These two statistics are widely

adopted as a measure of overshooting and disturbance rejection capabilities.

Expected outcomes of the validation. The expected outcome for a particular

target software system (simulation or case study) under different operation conditions is

that the proposed nonlinear control solution should provide better or no-worse statistics

for most conditions compared to the linear control counterpart. The better control system

for a given experiment shall produce the lowest SSE and MAX, and the highest MIN

statistics.

Validation of supporting tools. One of the contributions of this thesis is the
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off-the-shelf class library of control components to aid the design of control systems for

shared resource software environments. In order to validate this claim, we also conduct

an empirical study with a group of software engineers to quantify the facilitation provided

by this class library to reduce the control system implementation costs and knowledge

requirements. The experiment settings are briefly explained below (see Chapter 7 for

more details and results).

First, a control system implementation task is documented and given to each par-

ticipant (software engineer). Each participant has to complete this implementation task

in two ways: 1) without using any support tool and 2) with the support of our class li-

brary. When the participants complete the task both ways, the source code used in each

implementation will be used to compute the lines of code required in each implementa-

tion. Furthermore, the time taken for each implementation is also considered. Finally, the

average statistics of all the participants are used to make conclusions on the facilitation

provided by the class library as opposed to a case where there is no support tool. The

expected outcome of this experiment is when our class library is used, the lines of code and

the time required for the implementation task is less than when the same implementation

is carried out without any support tools.

3.5 Simulation Environment

In this section, we introduce a simulation environment to construct different forms of

multi-class shared resource environments, which will be used to investigate the nonlinear

characteristics and apply the nonlinear control methodologies proposed in this thesis. Since

we consider shared resource environments at multiple levels, in particular at the shared

middleware (resources shared are worker threads, cache) and the software application

level (resources shared are database connections, domain specific resources), implement-

ing a single case study to cover all these levels is difficult. Consequently, a simulation

model is used to represent the general characteristics of these multi-class shared resource

environments.

3.5.1 Characteristics and Requirements of a Simulation Model

The main purpose of the simulation system is to represent a model of a multi-class

shared resource environment, which can be used to generate measurements and draw

conclusions from those measurements.
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The requirement for a general simulation model is as follows:

1. same consistent behavior under same input settings,

2. ability to validate the correctness of the simulation model,

3. accurate average statistics of the required system parameters,

4. modifiability, extendibility and scalability,

5. fast and efficient execution.

The requirements of a simulation model, which represents the abstract architecture of a

multi-class system (see Figure 3.3) are as follows:

1. simulate multiple (n) classes,

2. accurate measurements of the system outputs (e.g. response times) of each class,

3. valid implementation of the resource allocation decisions,

4. ability to simulate different types of workloads in different intensities over the period

of simulation.

3.5.2 Implementation of the Simulation Model

The operations of the multi-class shared resource environments are driven by events

occurring in a chronological order. For instance, response to a single request can be

described in several events, including request arrival event, request scheduling event and

end of resource utilization event. These events in turn update the state of the system as

well. One of the tools available to build simulations of such systems driven by events is

discrete event simulation [18]. Discrete event simulation is widely used to test and analyze

new systems and policies before they are implemented as production systems.

A DES model of a system consists of entities (e.g., requests, queues and resources),

attributes, events (e.g., request arrival and departure) and activities (operation invoca-

tions, statistic collection). For a given time instance, the DES model has a snapshot of the

system, which is updated based on the events that is scheduled to happen in that time in-

stance. After the relevant events have taken place, the model is advanced to the next time

instance, and the same process is continued till the end of the simulation. During the sim-

ulation or at the end of the simulation, the statistics can be gathered to analyze the results
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of the simulation. Generally, the DES model can be designed in an event-oriented and a

process-oriented point of view. In the event-oriented technique the DES model designer

takes the events of the system and how they affect the system state variables as major

concerns. On the other hand, the process oriented point of view enables to model the

entities, their processes and how the inter-process communication takes place. The event-

oriented design produces simulations that can execute faster compared to process-oriented

design, however at the expense of modularity, extendibility and the understandability of

the model.

3.5.2.1 DES Model of a Multi-class Shared Resource Environment

In this section, we provide implementation details of the simulation environment developed

following the guidelines provided in [18]. Here, we have taken the process oriented design

technique because it provides modularity, extendibility and convenience to design using the

general purpose object-orient programming languages such as Java and C#.Net. We use

stochastic inputs and variables in this simulation to represent the behavior of a multi-class

shared resource system.

Request

-ClassId : string
-StartTime : long
-EndTime : long

ClientClassWorkloadGenerator

StatisticCalculator

MasterClock

-tick : int
ResourceUnit

1

1

1

1

1

Queue

-ClassId : string

1

1

Scheduler

1..*
1

1..*

1

1..* 1

1..*

1

Figure 3.4: High-level class diagram of the simulation model

Figure 3.4 shows the high-level UML (Unified Modeling Language) class diagram of the

DES model. The DES model consists of the following entities (components) corresponding

to the abstract architecture of Figure 3.3.

MasterClock. This component keeps track of the current time instance of the system
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and advances the time after all events and activities specific to the current time instance

have taken place. It triggers events on the tick (smallest time unit) and major tick (i.e.,

1000 ticks), which are similar to a millisecond and a second respectively.

Request. This represents a client request flowing through the simulation model. It

has the properties of ClassId, start time, end time and processing time. The processing

time is determined by a probabilistic distribution specified by the designer.

ClientClassWorkloadGenerator. This component generates workloads for a spe-

cific class. It needs a ClassId, workload script and the corresponding queue instance at

the initialization. Then, this component analyses the workload script at each time tick

and generates the required number of requests that have to be sent to the system. This

component can be configured to simulate deterministic, stochastic and real-world work-

loads.

Queue. The Queue component is used to represent the client queues. It is a container

for the requests generated by the ClientClassWorkloadGenerator and ordered in a first-

come-first-out fashion. A simulation model of a multi-class system needs n such Queue

instances to represent n classes. Further, the designer can implement the bounds for each

queue, which limits the length of the queue. The requests will not be admitted to the

queue if this limit has reached.

ResourceUnit. The ResourceUnit entity is an abstraction of a resource unit in a

multi-class system. It simulates the time period a resource is reserved, occupied or pro-

visioned to serve a request. For instance, a resource could be worker threads, processing

instances, CPU cycles or cache. It has the currently served request, serviced ClassId and

status (idle or working) as attributes. At each tick, a ResourceUnit instance simulates

the processing time specified on the request it is currently serving. When the request has

utilized the resource for the specified period of time, it is assumed to be sent back to the

client after stamping the end time.

Scheduler. The scheduler implements the required resource allocation decisions. For

instance, if the decision is to maintain 15 and 5 resource units for classes 0 and 1 respec-

tively, this component implements these decisions until the next decision is made. It has

the access to the Queue instances of each class, resource units and other state variables.

In each tick it executes the following algorithm for each class.

Say Si and iutil are integer variables representing the allocated resources of the ith class
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and currently utilized resources by the ith class, respectively. The number of resources that

can be allocated for ith class at the current time instance is calculated by Difi = Si− iutil.

The Scheduler gets the Difi > 0 amount of requests from the ith Queue component and

then the ResourceUnit instances are initialized with those requests. At the same time,

iutil variable is updated.

StatisticCalulator. This is the component that computes the measurements required

by a management system to observe the status of the system. In particular, it calculates

the average response time, throughput and resource utilization for each class on specified

time periods. It also has a list of completed requests for each class, which is populated by

the ResourceUnit class after servicing the requests. The designer specifies the time interval

(so-called sample period) to calculate the statistics. The statistic report generated will be

sent to the management system in order to make resource allocation decisions.

The following equations summarize how some of these statistics are calculated for class

i.

Given the completed request list for class i, say Listi, the throughput of that class is

TPi = Count(Listi), i.e., the number of items in the list. The response time of the jth

request in Listi is ri,j = ri,j .endtime− ri,j .starttime.

The total response time of all requests in the list is calculated as follows:

Toti =

Count(Listi)−1∑
j=0

ri,j (3.2)

The average response time is then calculated by Ri =
Toti
TPi

MainProgram. The designer can use this class to implement the required multi-class

system simulation and experiments depending on the requirements. The number of classes

and Queue instances has to be created and then the required workload scripts have to be

specified in class specific workload generator objects. In addition, the number of resource

units that is available in the system has to be specified in the scheduler. Furthermore, the

probability distributions to simulate resource reservation time and sample period has to

be given depending on the simulation objectives.

3.5.2.2 Assumptions

The assumptions made in the implementation of this DES model are as follows:
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1. Typically, the resource allocation decisions for each class have to be implemented

at each sample instance. However, some of the resource units may be utilized to

serve the requests of a certain other class at that time instance. There are two

different ways to implement the resource allocation decisions in such a situation,

i.e., preemptive and non- preemptive. In the preemptive setting, the number of

over utilized resources is forcefully taken away in order to allocate them to the

specified class. This is a complex policy, which will cause jittery behavior in the

system measurements, inconsistent states in the transactions and additional overhead

on the shared resource system (e.g., state management) at runtime [143, 145]. In

contrast, in the non-preemptive setting, the resource is taken away once the request

being processed has been completed. The non-preemptive setting is a desirable

configuration for shared resource environments [145]. Thus, we have implemented

this non-preemptive setting in the scheduler of this simulation model. However, the

inaccuracy in decision implementation can be reduced by selecting the processing

(resource reservation) times comparatively smaller than the sample period. For

instance, if the processing time varies in ticks range, the sample period can be

selected in major ticks. This means the decision made will be implemented during

the current sample period before the next decision is made.

2. The end-to-end response time is not considered. The end-to-end response time

consists of the communication (or network) delay, connection delay and processing

time. The communication delay is hard to control because clients may request ser-

vices from different locations in the world using different internet connections (e.g.,

dialup, broadband). Similarly, the connection delay also depends on the connection

scheduling techniques implemented by the underlying operating system. Therefore,

in this work, we only consider the processing time, which is the controllable com-

ponent of the end-to-end response time. This is the same approach taken by many

existing work (e.g., [145, 150, 226, 229, 231]).

3. Time taken to reschedule the resource is assumed to be negligible. Some types of

resources may require time to be rescheduled. For instance, if a virtual machine

has to be taken from one class and rescheduled for another class, it may require

restarting the virtual machine and installing the client specific application. In this
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simulation we assume such delays are negligible.

4. Overhead from the scheduler and the statistic calculator is negligible. The sched-

uler and the statistic calculators may impose the computational overhead in the

real system implementations. However, this simulation model abstracts away such

overheads.

3.5.3 Validation of the DES Model

In the general software engineering process, when the implementation phase completes,

the next step is to test the implementation. For instance, black-box and white-box testing

methods are typically utilized. We also conducted such testing, which showed that this

DES simulation model achieves many of the requirements set out in Section 3.5.1. However,

in this work, we are interested in the runtime performance characteristics of the system

under changing conditions. We have also conducted validations on the runtime behavior

of the system theoretically, which is also a major step in the simulation environment

development process. For this validation, the queuing theory was used. It is worth noting

that to apply the queuing theory, certain assumptions on the system structure, arrival

workloads and processing time probability distributions should hold. Although many of

these assumptions do not hold in real world systems, we implemented a simulation system

adhering to the assumptions of the queuing theory in order to validate the implementation

of the simulation model. These validations have shown that the results of the simulation

model conform to the theoretical results of queuing theory, which further indicate the

validity of this implementation. Details of the validation settings and results are listed in

Appendix C.

3.5.4 Simulation Settings

Using the above DES model, we setup a simulation system to apply and validate the

proposed nonlinear control theoretic approaches in this thesis. The variables that need to

be set and configured are 1) the workload profile of each class, 2) the resource reservation

time probability distributions and 3) the total number of available resources (Stotal).
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3.5.4.1 Workload Profiles

The workloads that multi-class shared resource systems may face cannot be generalized.

The workload a system can manage depends on the capacity of resources, management

requirements and the type of resource being shared (e.g., hardware versus middleware). In

addition, the workloads are time-varying, instead of staying constant for the entire period

of operations. Such variations in the system inputs are not only limited to software sys-

tems, but to other types of physical systems as well. As a consequence, control engineering

provides a set of well-established input signals to validate the control systems. They are

as follows:

Assume, Wn is the nominal workload that system receives.

Impulse input signal. Formally, Wimpulse(k) = 1 when k = 0 and Wimpulse(k) = 0

k ̸= 0. i.e., the impulse input signal increases the workload to some value greater than Wn

for a single sample period. In a real workload this can be considered as a workload spike

for a very short time period. However, such spikes for a very short period of time may not

affect the performance attributes (e.g., average response time) drastically, consequently

the impulse input signal may not be useful for the validations of the control systems for

software systems.

Step input signal. Step input signal models a sudden jump in the workload from

Wn to some value Wstep and stays at that value for more than a single sample period.

This is one of the widely used input signals to validate the performance of the control

systems in control engineering. In addition, most of the applications of feedback control

in software systems, including multi-class systems have used step workload changes to

validate the performance and resource management capabilities. This is because, such

workload changes of even a single class for a long period of time affect the performance

attributes (e.g., response time) in a shared resource environment. As a consequence, the

control system is forced to redistribute the available resources among classes efficiently,

in order to achieve the required performance objectives. The delay in response to such

workload variations may cause large transient responses and temporal instabilities in the

system.

Ramp input signal. Ramp input linearly increases the workload from Wn to Wramp

during a sometime interval. This signal models a gradual increase of workload instead of
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instantaneous increment of the workload in the case of step input signal.

The main advantage of these input signals is given a linear model of a system, there

are well-known design and analysis techniques in control theory to compute performance

specifications and behavior of the system. Consequently, after constructing a linear model

of a system, we can investigate the load variations that the system can maintain without

leading to instabilities. However, a linear model of a system is an estimation of its behavior

(not a 100% accurate representation), so that these theoretical evaluations may not be

100% correct. This is also true for systems demonstrating nonlinearities such as the system

under investigation in this thesis. Combinations of workload input signals (in particular,

step input profiles in time varying fashion) will be used as heuristics to validate and

compare the performance of the control systems. In addition, the workloads generated

from the real-world workload traces will also be used.

3.5.4.2 Total Resource Amount and Resource Reservation Time Distribution

The following settings have been used in the simulations to represent the behavior of the

multi-class shared resource system. The settings will remain the same unless otherwise

specified.

The total amount of resources simulated Stotal = 30. The processing time of each

resource unit is selected from a uniform distribution as follows:

r(x) =
1

rmax − rmin
for rmin ≤ x ≤ rmax (3.3)

= 0 for x < rmin and x > rmax (3.4)

where, rmin = 100 ticks and rmax = 700 ticks.

The above settings are selected in order to achieve the tractability of resource allo-

cations between the classes under different experimental conditions. The rmin and rmax

were selected after careful investigation of system outputs under different workload con-

ditions. That is, when the system is running close to the full capacity, the system output

should remain within some bounds, according to theoretical and practical system behav-

ior. Figure 3.5 shows a comparison when 30 resource units are allocated to two classes

with 30 requests/sec workloads for each class. When the selected bounds are rmin = 100

and rmax = 700 ticks, the system is at a steady state. However, under the same settings,

when the bounds are rmin = 100 and rmax = 900 ticks, the steady state behavior is highly
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Figure 3.5: System behavior under 3.5a) rmin = 100 and rmax = 700 ticks 3.5b) rmin = 100
and rmax = 900 ticks

variable and unbounded. This is because the variability around the average response time

leads to large transient response in the system, even under a constant workload. To avoid

such behavior, the resource capacity and the workload intensity have to be selected de-

pending on the bounds. rmin = 100 ticks and rmax = 700 are suitable bounds for the

selected workload rates and the resource capacity. However, in each chapter we conduct

Monte-Carol simulations under different rmin, rmax and Stotal values to investigate the

impact of these parameters on the presented results.

Furthermore, the uniformly distributed processing time means that any operation in-

voked in the system is equally likely, which gives a fair weight for each invocation. This is

done because there is neither evidence nor a generalization available to represent the in-

vocation patterns of the operations and their system output (e.g., response time) bounds.

The uniform distributions have been selected in the existing works [11, 42, 54, 99, 118,

143, 224].

In addition, 2000 ticks (milliseconds) were selected as the sampling time period of the

statistic calculation process. The selection of the sample time period has to be carefully

done in physical systems. For instance, a small sample time invokes the statistic calcu-

lations frequently leading to additional overhead on the system. Furthermore, a short

sampling interval affects the variability of the measured average statistics. In contrast, a

large sampling time may cause decision delays leading to instabilities under sudden changes

of the workloads or other short-term disturbances. These trade-offs have to be considered

in the selection of the sample time interval. We selected 2000 ticks after analysis of the

workload rates and changes the system may encounter. Further, it reduces the effects of
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the assumption (1), listed in Section 3.5.2.

3.6 Summary of Experimental Case Studies

As mentioned previously, in addition to the simulation studies, a couple of case studies

on real-world physical systems will be also utilized in the validation of this thesis. One

of our objectives was to select case studies that share resources at different levels of the

system stack. The selected case studies are briefly introduced below. Further details on

the architecture and experimental results of these case studies can be found in Chapter 8.

WSO2 Stratos. WSO2 Stratos3 is a production business process server (BPS) enabling

deployments of business processes for its consumers. The latest version of this BPS also

supports multi-tenanted deployments, so that, it is a multi-class shared-middleware plat-

form. Although it provides many properties (e.g., security, data isolation) required by a

multi-tenanted middleware platform, the performance and resource management capabili-

ties are not provided thus far. Therefore, this middleware platform is a suitable candidate

to apply and evaluate the performance management approaches proposed in this thesis.

This case study also enables us to investigate the resource management capabilities

of the nonlinear control approaches with respect to the existing linear approaches at the

middleware level. The resource that has to be shared between client classes is the business

process instances. In addition, being an open-source project helps us to perform the nec-

essary architectural modifications to the BPS easily (e.g., adding per-class queues, sensors

and actuators), before integrating the performance and resource management capabilities

into the system.

Travel reservation system. The real-world travel reservation system architectures can

use the shared application multi-tenanted option to gain many advantages. However,

currently, these systems use the traditional method of maintaining separate infrastructure

for each client class. In this thesis, we build an experimental case study following the real-

world travel reservation architectures in order to investigate the behavior of the proposed

nonlinear approaches at the application level. In this system, application domain specific

resources have to be shared between client classes to achieve the required performance

objectives.

Both these multi-tenanted environments are deployed on hardware (physical or virtual

3http://wso2.com/cloud/stratos/
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machines) platforms similar to production deployment environments. The distributed

components of these environments are connected using isolated networks to avoid unpre-

dictable network interferences. The evaluations conducted on these experimental case

studies follow the same validation settings described in Sections 3.4 and 3.5. However,

in order to reach conclusive results under noisy and uncontrollable conditions, the same

experiment is run multiple (10) times and the average results are compared and analyzed.
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Chapter 4

Control-oriented Nonlinear

System Identification

4.1 Introduction

One of the major contributions of this thesis is the successful application of novel non-

linear model structures and model identification methodologies to represent the relative

and absolute performance management schemes compared to the existing linear identi-

fication mechanisms. The focus of this chapter is to present the model identification

procedures used, which estimate the existing dominant nonlinearities in the relative and

absolute performance management schemes. This enables the feedback control systems

developed using these nonlinear models to achieve the management objectives of a multi-

class shared resource environment as defined in Chapter 3.

According to the analysis in Chapter 2, the relative performance management scheme

has already been adopted by many researchers who work in the field of performance and

resource management of multi-class systems. As mentioned, the existing works realize the

relative performance management by developing a control system composed of a linear

model and controller. However, due to the consideration of the ratios between the system

outputs and resource caps (see Section 3.2.2.2), the relative management scheme inher-

its a highly nonlinear behavior [150]. Furthermore, the target system controlled by the

management system also exhibits nonlinear behavior. Due to these reasons, when such

linear control systems are deployed in a dynamic environment, it is difficult for them to

achieve the business and control objectives under highly varying workloads, resource de-
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mands, changing business requirements (priority levels) and disturbances. Consequently,

linear modelling techniques are insufficient to capture the nonlinear dynamic behavior,

thereby fail to achieve the control objectives of the relative management system. To mit-

igate the issues of nonlinearities, Section 4.2 of this chapter characterizes the dominant

nonlinearities of relative management scheme and presents a SID method to estimate the

nonlinearities explicitly.

Section 4.3 of this chapter deals with the absolute performance and resource manage-

ment scheme as introduced in Section 3.2.2.1. In a nutshell, the absolute performance

management scheme controls resources at runtime in order to achieve the specified tar-

get values of the system outputs of each class served by the multi-class shared resource

system. Therefore, this is a multiple-variable and multiple-objective control problem. In

addition, the behavior of system outputs with respect to the variations of the resources (in-

puts) is nonlinear. Furthermore, there are interactions between workloads of the multiple

classes because all classes are served by a limited amount of resources. As a consequence,

the above described factors necessitate a runtime performance and resource management

methodology that can achieve multiple control objectives under constraints, which also

takes into account the nonlinear behavior of the system. In order to achieve these objec-

tives, in Section 4.3 a nonlinear Multi-Input-Multi-Output (MIMO) model structure and

model identification technique is presented to estimate the nonlinearities that exist in the

absolute management scheme.

4.2 Identification of Relative Performance Management

Scheme

This section firstly overviews the formulation of relative management system and ana-

lyzes the characteristics of the nonlinear behavior of the relative management scheme and

target system, which will affect the closed-loop performance of a linear control system.

Secondly, an estimation technique is presented to model the nonlinear dynamic behavior

which is subsequently deployed to compensate the identified nonlinearities in order to re-

duce the impact of the nonlinear behavior on the management system. The results of this

new nonlinear SID process are covered at the end of this section.
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4.2.1 Formulation of Relative Management System

Section 3.2.2.2 presented the definition of the relative management system for n classes.

In order to understand how a relative management system is formulated, we examine the

following two cases from the existing literature. The first example presents a case where

we have two classes.

Example 1 : Let us consider two classes, class0 and class1. R0(k) and R1(k) are the

response times of these classes respectively at the kth sample. Further, S0(k) and S1(k) are

the resource caps, where S0(k) + S1(k) = Stotal = 30 and S0,min, S1,min = 6. As defined

in the management problem in Section 3.2.2, Stotal is the number of resources available in

the system and Si,min, where i = 1, 2 are the reserved minimum number of resources for

each classes at all times.

In the relative management and proportional resource allocation schemes, the control

input is the ratio of resource caps, represented by S0(k)
S1(k)

and the output variable is the ratio

of average response time of the workloads, represented by R1(k)
R0(k)

. For notational simplicity

let us denote S0(k)
S1(k)

and R1(k)
R0(k)

as u(k) and y(k) respectively. The control objective of

this control system is to maintain the response time ratio (y(k)) around P1(k)
P0(k)

(i.e. the

reference or set point) depending on the performance differentiation factors (P0(k), P1(k))

of two classes. Here, it is clearly seen that in order to maintain the response time ratio

around the prescribed reference signal, the input signal u(k) = S0(k)
S1(k)

is to be manipulated.

In particular, when the workload conditions from these two classes change, the output

variable that is the response time ratio will be affected. Because of the unpredictable

nature of the workload conditions, they act like stochastical disturbance to the system.

From the systems point of view, this relationship can be represented by the block diagram

shown in Figure 4.1a.

The second example examines the case of three classes in a relative resource sharing

problem.

Example 2 : In this case, we consider three classes, class0, class1 and class2. Similar

to example 1, R0(k), R1(k) and R2(k) are the response times at the kth sample and S0(k),

S1(k) and S2(k) are the resource caps of these classes, where S0(k) + S1(k) + S2(k) =

Stotal = 30 and S0,min, S1,min, S2,min = 6. According to the definitions, the input variables

of the system are u1(k) =
S0(k)
S1(k)

and u2(k) =
S1(k)
S2(k)

and output variables of the system are
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y1(k) =
R1(k)
R0(k)

and y2(k) =
R2(k)
R1(k)

. The main objective of the control system is to maintain

the outputs (y1(k), y2(k)) around P1(k)
P0(k)

and P2(k)
P1(k)

(i.e. the reference signals) depending

on the performance differentiation factors of the classes (P0(k), P1(k), P2(k)). Figure 4.1b

shows the block diagram of this system.

Target
system

Control inputs
(u)

Measured outputs
(y)

R1/R0S1/S0

Workload disturbance 
from two classes

(a) Two classes

Target
system

Control inputs
(u)

Measured outputs
(y)

R1/R0S0/S1

Workload disturbance 
from three classes

S1/S2 R2/R1

(b) Three classes

Figure 4.1: Open-loop relative management system with two and three classes

4.2.2 Classification of Nonlinearities of Relative Management Scheme

In order to analyze the runtime behavior of the relative management scheme, here we

continue with the Example 1 in Section 4.2.1.

When the requirements and policies in Example 1 are embedded in the design, the

control input u = S0(k)
S1(k)

can only take certain discrete values that can be implemented in

the system. These values can be computed as follows:
S0
S1

=
S0

Stotal − S0
(4.1)

Then, by choosing S0 = 6, 7, 8, . . . , 24, with Stotal = 30, the control variable u = S0
S1

takes

value at 6
24 ,

7
23 , . . . ,

23
7 ,

24
6 . Figure 4.2 shows the operating points that the controller can

choose. These operating points are unequally spaced. The region where class0 workload

gets more resources compared to the other is represented by region 0. Similarly, the region

in which class1 gets more resources is represented by region 1. The nominal operating

point is when both classes get equal number of resources. In region 0, spacing increases

towards the right end of the entire operating range whereas in region 1 spacing decreases

towards the left end of the operating range. These nonlinearities caused by the restricted

operating points generated due to considering the ratios of the system inputs, exhibit the

characteristics of static input nonlinearities. This is because the aforementioned nonlin-

earities do not vary with time. Such static input nonlinearities may affect the performance

of a linear controller when it is operating away from the nominal operating region.

Similarly, let us consider the controlled variable y = R1(k)
R0(k)

that is the ratio of the

system outputs. However, unlike the way we computed the range of the control input u
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Figure 4.2: Possible discrete operating points (control input)

(i.e., by using the linear relationship), the range of output cannot be predetermined. This

is because R0 and R1 can take large range of values, causing R1
R0

ratio to have a large set of

values depending on the workloads of the corresponding classes. For instance, if R0 = 0.4

(sec) and R1 = 1 (sec) then R1
R0

= 2.5. Similarly, if R0 = 1 (sec) and R1 = 0.4 (sec) then

R1
R0

= 0.4. This characteristic could also be shown experimentally by applying a sinusoidal

input in the system under constant workloads for both classes 0 and 1. Figure 4.3 shows

the input signals, outputs (R0(k) and R1(k)) of the system and measured output (y).

Figure 4.3b indicates that R0 and R1 show similar behavior when resources are increased

and decreased. When resources are adequate the response time remains at steady state,

however when inadequate it increases drastically. Figure 4.3c shows R1
R0

calculated from

the data in Figure 4.3b. It is seen that when R1 increases, R1
R0

increases at a high rate. In

contrast, when R0 increases, R1
R0

decays at a high rate.

This behavior of the system output is clearly nonlinear. In addition, even though R0

and R1 values have similar symmetrical behavior with respect to the change of the corre-

sponding resource cap, the divider operator in the controlled output (y = R1
R0

) creates an

asymmetric behavior leading to this nonlinearity. Thus, it is evident that there are out-

put nonlinearities in the system. Such output nonlinearities may also cause performance

degradation in a linear controller. This is because, due to a disturbance of class0 the out-

put behaves in a totally different way compared to a disturbance of class1. Consequently,

a single linear controller may behave differently in both regions leading to significant per-

formance and resource management issues. Furthermore, setting the controller parameters

(gains) are difficult to provide satisfactory control in both regions.

Based on the above characterization of the relative management scheme, the input and

output nonlinearities may become a significant issue in designing a management system

and providing robust control at runtime. A possible way to reduce the impact of the

nonlinear behavior on the management systems is by designing a compensation frame-
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Figure 4.3: The output nonlinearity

work to compensate the existing nonlinearities at runtime. With respect to the relative

management scheme, such compensation framework needs to reduce the impact of the

aforementioned input and output nonlinearities.

In this work, we utilize a nonlinear modelling approach called Hammerstein-Weiner

model for the first time in the literature of performance management of software systems

to design such a compensator framework and reduce the impact of static input and output

nonlinearities on the management system.

4.2.3 Hammerstein and Wiener Block Structure Model

Hammerstein and Wiener model is a well known nonlinear block-structure model in

control literature [15, 69, 70, 173, 195, 221]. As shown in Figure 4.4, the Hammerstein-

Wiener block structure model has a linear block surrounded by two nonlinear blocks.

The entire model can be divided into two segments called Hammerstein and Wiener.
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4.2. Identification of Relative Performance Management Scheme

The Hammerstein model has a nonlinear component preceding a linear component. In

contrast, the Wiener model has a linear component followed by a nonlinear component.

The combination of these two schemes is referred as the Hammerstein-Wiener model. The

input and output nonlinear blocks are assumed to model the static input and output

nonlinearities in the system respectively, while the linear block captures the rest of the

system dynamics. u and y denote the input and output of the Hammerstein-Wiener block

structure respectively. The intermediate variables v and w are not measurable.

Control 
input

(u)

Measured 
output

(y)Input
Nonlinear 
block ( f )

Linear 
component 

(LTI)

Intermediate 
input variable

(v)

Target system

Output
Nonlinear 
block ( g )

Intermediate 
output variable

(w)

Hammerstein Wiener

Hammerstein – Wiener

Figure 4.4: Block diagram of Hammerstein and Wiener block structure model

The identification of Hammerstein-Wiener block structure model is complex because

of the additional nonlinear blocks compared to the identification of a single linear model.

Typically, a linear model of the system is constructed using the input-output (u− y) data

gathered form a SID experiment [125]. In contrast, the complexity arises in the estimation

of Hammerstein-Wiener model due to the structure selection and parameter derivation of

the nonlinear blocks. The nonlinear blocks can be represented by many different nonlinear

functions, including piecewise linear, polynomial with degree r, nonlinear-ARMA models

and splines [15, 68, 91, 195, 221]. Even though, there are additional parameters to derive,

only the input-output (u− y) data can be used in this identification process, because the

intermediate (v, w) variables are not measurable. In addition, due to the characteristics of

the nonlinearities that exist in the systems, it is hard to provide a identification technique

with significant generality or systematic process [87]. Thus, it is important to validate

the identified model. However, if some details about these static nonlinearities are known

at the design time, from the prior knowledge or an analysis of the system, the modelling

process could be simplified.
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4.2.4 Model Identification Procedure of Relative Management Scheme

The discussions in Section 4.2.2 indicates that the Hammerstein-Wiener model is a

suitable candidate to model the characterized input and output nonlinearities of the rel-

ative management scheme. This section presents the model identification methodology

based on the Hammerstein-Wiener model for the relative management system.

To estimate the dynamics of the target system as Hammerstein-Wiener model the

two nonlinear components have to be represented by the formal relationships with the

respective variables at the model estimation stage. After the estimation of the nonlinear

components, their inverse functions are estimated to design compensators, which will be

used in the implementation of the control architecture at the later chapters to compensate

the existing input and output nonlinearities. As mentioned, different types of functions

can be used in the design of the compensators. The desirable properties when finalizing

the inverse functions are as follows:

Property 1 : the relationship of the dependent and independent variables should be mono-

tonic ( i.e., there should not be multiplicities).

Property 2 : low computational overhead1.

After the integration of the compensators, the open-loop system architecture is shown

in Figure 4.5. With the integration of the pre-compensator and the post-compensator,

the structure of the target system has transformed significantly. In particular, compared

to the original target system variables u(k) and y(k), this new structure transforms the

system to operate with intermediate variables v(k) and w(k) as the input and output

respectively.

As mentioned before, estimating the Hammerstein-Wiener model for this system is a

complex process, due to the additional parameters that have to be approximated for the

input and output nonlinear blocks. There are different approaches taken in the literature

with various assumptions. There are many approaches focusing on the Hammerstein

model [5, 68, 89] or Weiner model [65, 66, 91, 174, 207] individually. However, only few

SID approaches estimate the combined Hammerstein-Wiener model.

In this work, we propose a novel approach to reduce the modelling complexity that

exists in the relative management system. This estimation process of the Hammerstein-

1The computational overhead has to be considered in particular when there are multiple candidates to
model the data with similar accuracies.
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Figure 4.5: Hammerstein-Wiener model based system after the integration of the com-
pensator

Wiener model consists of three steps. In the following sections, we present the estimation

process of the two nonlinear components and linear component respectively. Furthermore,

the modelling process covered in these sections is for a multi-class shared resource system

serving n number of classes, with Stotal number of resources as defined in Section 4.2.1. It

is also noteworthy that the modelling approach treats the software system as a black-box,

disregarding the architectural and implementation details of the software system.

4.2.5 Estimating Input Nonlinearity

The input nonlinear component is to capture the relationship between the input (u)

and the intermediate linear variable (v). Since the intermediate input variable (v) is

not measurable, the estimation of this relationship is not straightforward. Consequently,

there are many SID techniques to estimate the Hammerstein model using input-output

data (u − y). For instance, [15, 68, 69] propose algorithms to derive parameters for

different functions from input and output data. These techniques have used different

nonlinear functions including piecewise linear, polynomials and splines [173] to represent

the input nonlinear component. However, if the nonlinearity is known at the design time

the nonlinear function selection and its parameter estimation process becomes easier. From

the analysis in Section 4.2.2, the discontinuous operating points shown in Figure 4.2 may

induce significant static input nonlinearity. If we implement equally spaced operating

points, a linear controller may provide better performance in the entire operating region.

Therefore, assuming that the input nonlinearity is known at the design time, a method is

proposed to estimate the nonlinearity avoiding the complexity of estimation based on a

nonlinear SID experiment.

Firstly, in order to compute the possible operating points (or the range of u) for the

controller in the original system, we can utilize equation (4.1) and calculate points for

S0 ∈
{
S0,min, Stotal −

∑n−1
j=1 (Sj,min)

}
. Here, we have computed the operating points for a
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controller of first pair of classes, assuming that the rest of the classes are guaranteed the

required minimum allocation Si,min. Let us represent these p > 1 number of operating

points as u = {u1, u2, . . . up}. The next step is to replace these unequally spaced operating

points u with equally spaced operating points. Since, the range of the intermediate variable

is not known, select an arbitrary vmin ≤ v ≤ vmax for the intermediate input variable v

(the effect of the values selected for vmin and vmax is investigated in Appendix I). With δv

defined as δv = vmax−vmin
p−1 , the intermediate input variable takes its own operating points

as v1 = vmin, v2 = v1 + δv, . . . , vl+1 = vl + δv, . . . , vp = vmax. Thirdly, map the individual

values ul and vl in the u and v sets to create data pairs, where l = 1, 2 . . . , p. Those

data pairs can be directly used in a look-up table for applications such as compensation.

However, for convenience of use, a simple curve fitting may be used to obtain the analytical

inverse function (u = f−1(v)) to design a compensator. More precisely, it is assumed that

the f−1 is a polynomial of order m, and is defined for the kth sample as

u(k) = f−1(v(k))

= α0 + α1v(k) + α2v(k)
2 + . . .+ αmv(k)

m (4.2)

= ϕ(k)T θ

where the coefficient vector θ = [α0 α1 . . . αm]T and the data vector ϕ(i) =

[1 v(k) . . . v(k)m]T . The least squares estimate of the coefficient vector θ̂ is given by

θ̂ = (

p∑
i=1

ϕ(k)ϕ(k)T )−1
p∑

k=1

ϕ(i)u(k) (4.3)

which derives the coefficients of the polynomial.

After f−1 function is estimated, it is used to implement a compensator component and

integrated to the system as shown in Figure 4.5 at the input. The same compensation is

done for each controller, managing the class pair i−1 and i according to the relative man-

agement scheme. With integration of this pre-input compensator, the system modelling

problem is now reduced to a Wiener structure.

4.2.6 Estimating Output Nonlinearity

The output nonlinearity cannot be estimated using the same approach in Section 4.2.5,

because the static output nonlinearity is not known and cannot be decoupled from the

other dynamics of the system. In addition, there is no knowledge about the intermediate

output variable at the design time. Consequently, the model structure and order of the

output nonlinear and linear component have to be estimated as a black-box using SID
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Figure 4.6: Wiener model

experiments.

Now, let us look at the Wiener model structure as shown in Figure 4.6 to understand

the parameters that need to be estimated during the model identification process. The

output can be represented as a function of w(t) and η as follows

y(t) = g(w(t), η) (4.4)

where, w(t) is the intermediate output variable, η is the parameter vector and t is the

time instance. Similarly, the linear function l can be represented as

w(t) = l(v(t), θ) (4.5)

where, v(t) is the intermediate input variable and θ is the parameter vector of the linear

model.

The main focus of the Wiener model identification is to compute the best η and θ

vectors that represent the data from the SID experiment with sufficient accuracy. The

predication error method [125] is one of the popular methods used to estimate the required

parameters in SID. The prediction error method can be formulated as a minimization

problem of function V given below.

VN (η, θ) =
1

N

N∑
t=1

(y(t)− ŷ(t, η, θ))2

(η̂, θ̂) = arg(η,θ)minVN (η, θ) (4.6)

where, y(t) is the measured output data, ŷ(t, η, θ) is the predicted output and N is the

number of data samples.

This predication error minimization problem can be solved using Gauss-Newton search

method [76]. However, the Wiener model is over-parameterized when parameters of both

linear and nonlinear components are considered simultaneously. Consequently, numerical

problems will be encountered. In order to overcome this issue a simple solution is to fix

some of the parameters of one of the components of the model (i.e., in l or g) during the

optimization search process [76].
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There are different types of identification strategies proposed and adopted in the liter-

ature to identify the Wiener model based on the above methodology, including single step

and two step approaches [33, 66, 173]. Basically, in the two step process the nonlinear

and linear components are approximated in two stages. In [66, 173, 174], the nonlinear

component is identified first followed by the linear component, where as in [33] the linear

block is identified first and then the nonlinear block. These two step approaches are known

to capture the static nonlinearities much better, however some of the linear or nonlinear

dynamics are coupled up to some extent in the component estimated at the first stage.

In contrast, single step approaches [87, 90, 91] estimate both components simultaneously.

This approach requires less effort in identification, but model accuracy is a trade-off [173].

In this work, a two step identification process is utilized, which consist of two experi-

ments to identify the Wiener system. The first is to identify the static output nonlinearity

together with the dynamics. Then, the inverse of the static output nonlinearity is approx-

imated and integrated into the system as shown in Figure 4.5. Afterwards, the second

experiment is conducted to identify the linear gains (see Section 4.2.7). This is because

the first experiment is not sufficient to identify the gains of the linear system as stated by

Kalafatis et al. in [91].

For the first SID experiment a sinusoidal input signal is used, because of its sufficient

excitation2 [13]. The main difference is now the input signal is designed using v instead

of u in the original system. The possible values of v are applied as a sinusoidal, with a

suitable switching frequency. The system is assumed to be in the idle state before the

start of the experiment, with no workloads from both classes. Suitable workloads are

then applied for each class and the output is observed for a sufficient amount of time.

Afterwards, gathered (v − y) data pairs are divided into two sets called estimation set

and the test set for cross validation [125, 155]. The nlhw command in the Matlab: system

identification toolbox [159] implements an iterative Gauss-Newton search method to come

up with the model parameters from the input-output data using the prediction error

method described above. In order to resolve the issue of over-parameterization, the

Matlab implementation fixes some of the coefficients of the linear component to unity.

In addition, it is a single step estimation technique, which derives parameters of both

2The input signal should consist of frequency components to ensure the excitation of important dynamics
of the system.
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linear and output nonlinear components simultaneously. The derived linear model is only

utilized to approximate the structural details of the linear component and to calculate

the intermediate output variable data to estimate the inverse of the output nonlinearity.

To represent the linear block of the Wiener structure we use an autoregressive exogenous

input (ARX) model. Standard ARX model is as follows:

ARX(n,m,d)

y(k) =

n∑
i=0

aiy(k − i) +

m∑
j=0

aju(k − d− j) (4.7)

where, n,m - the order of the model, (ai, bj) - the parameters of the model, d - delay, k -

the current sample instance.

A polynomial is a preferred choice to represent the output nonlinearity and widely

adopted in the literature (e.g., [70, 90, 173]). Consequently, to represent the output non-

linear block, a polynomial of degree r is used. Then, different model structures (n,m, d, r)

are fitted to the input-output (v− y) data of the estimation set using the nlhw command.

(n,m, d, r) indicate the model structure, where (n,m, d) represents the structure of the

linear block and (r) represents the polynomial order of the output nonlinear block. After

this model fitting process, the model structure and parameters have to be decided, in order

to derive a sufficiently accurate model.

The linear block estimated in this identification process is a function of v and w and

the output nonlinear block is a function of w and y, y = g(w). However, to compensate

the estimated output nonlinearity, the inverse of the output nonlinearity has to be derived,

i.e., w = g−1(y). For this particular purpose, the data of the intermediate variable w has

to be calculated. Using the input signal data (v) of the SID experiment, the estimated

linear model is simulated to calculate the data points for w. The (w − y) data pairs are

then used to estimate an inverse of the output nonlinearity g−1(y) using a suitable type

of function. Afterwards, g−1(y) function is implemented and integrated to the software

system as a software component at each output (see Figure 4.5).

To summarize, in this identification procedure 1) data from the SID experiment is used

to estimate the Wiener model (i.e., both linear and nonlinear components), 2) identified

linear model is then simulated to compute intermediate output variable data set (w(k))

and 3) w(k)−y(k) data set is then used to estimate the inverse output nonlinear function.
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4.2.7 Estimating the Linear Dynamics With Nonlinear Compensation

After integration of both input and output compensators the existing static non-

linearities can be effectively compensated. The gains of the linear component of the

Hammerstein-Wiener model is estimated in this step using an experiment conducted under

a wide spectrum after applying suitable workloads for each class. The gathered (v − w)

data is then used to construct a ARX model (see equation (4.7)). With this step, the

Hammerstein-Wiener model estimation procedure of the relative performance and resource

management system is complete.

4.2.8 Model Identification Results of Relative Management Scheme

This section covers the model estimation results of the inverse nonlinear functions and

the linear component of Hammerstein-Wiener block oriented model. A shared resource

system with two classes (namely, class0 and class1) is considered. The resource caps are

denoted by S0(k) and S1(k) where S0(k) + S1(k) = Stotal = 30 and S0,min, S1,min = 6.

R0(k) and R1(k) and P0(k) and P1(k) are the response times and differentiation factors

of these two classes respectively at the kth sample.

The estimated models are validated with goodness of fit (R2/variance accounted for

[81]) index, which is defined as follows:

R2 =

1−

√√√√ N∑
i=1

(z − ẑ)√√√√ N∑
i=1

(z2)

 (4.8)

where N, z, ẑ are the number of samples, measured output and model output respectively.

Estimation of input nonlinearity and its inverse: The first step is to imple-

ment the input nonlinear compensator (or pre-input compensator). Using the proce-

dure explained in Section 4.2.5, the set of operating points for the control input u can

be computed as 6
24 ,

7
23 , . . . ,

23
7 ,

24
6 (see Figure 4.2) for the shared resource environment.

Let us select vmin and vmax as -9 and 9 respectively, deriving δv = 1. This formulates

v = −9, − 8, . . . , 0, . . . , 8, 9. The mapping of the points of u and v are shown in Figure

4.7. Then, the relationship of u and v are modelled using a suitable function without

violating the properties, in particular the property 1 introduced in Section 4.2.4. From

our investigation polynomials and logarithm functions can model the relationship shown

in Figure 4.7 with sufficient accuracy. A polynomial is used in this work, which provides
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Figure 4.7: Mapping of the ul and vl data pairs

much better fitting for larger ranges. As a result, f−1 was estimated using a 4th order poly-

nomial with a goodness of (R2) fit of 0.99. The equation (4.9) shows the model structure

and Figure 4.7 shows the model fit.

u(k) = f−1(v)

= 7.468× 10−5v(k)4 + 0.001v(k)3 + 0.008v(k)2 + 0.124v(k) + 1.005 (4.9)

Estimation of output nonlinearity and its inverse: With the integration of

input static nonlinear compensator, the estimation for the system is focused on the Wiener

model. The input signal design is an essential part of this stage. We investigated three

different input signals, which include the pseudo binary random, sinusoidal and pseudo

random signals. Sinusoidal signals showed higher model fits (R2 > 0.8), compared to

the other two signals (see, Tables 4.1 and 4.2 for model validation results). This may

be because of the sufficient excitation of the sinusoidal signal. As a result, a sinusoidal

signal was designed with possible values of v and a switching frequency of 2 samples.

30 requests/sec workloads for each class were applied and the output was observed for

600 sample periods. Data samples between the 1st to 400th samples were included in the

estimation set, which was used to construct the model of the system. The rest of the data

samples were used as the test set to validate and assess the quality of the model. The

model validation results are shown in Table 4.1, where n is the model order for the linear

system without time delay, r is the polynomial order for the static output nonlinearity.

From Table 4.1, it is evident that the best model structure for the Wiener system is a

second order linear model with a fifth order static polynomial model. The lower order

models have poor model fits, while higher orders did not improve the fit significantly.

Figure 4.8 shows the predicted output from this model in comparison with the test set

data.
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Table 4.1: Model validation results with a sinusoidal test signal

(n,r) (1,5) (2,1) (2,4) (2,5) (2,7) (3,5)

R2 Fit 53.4 53.9 80.4 81.7 81.1 81.1

Table 4.2: Model validation results with random input signals

Signal type (n,r)=(1,5) (n,r)= (2,5)

Pseudo binary random 66.7 66.8

Pseudo random 70.1 71.5
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Figure 4.8: Model fit for the case of (n,r) = (2,5)

In order to estimate the inverse static nonlinear model at the output, the estimated

linear model was simulated to compute the intermediate output variable data w. The

data of set w and the measured output data (y) was then used to model the inverse static

nonlinear function. We investigated the suitability of different nonlinear functions in order

to implement the inverse static nonlinear component adhering to the properties mentioned

in Section 4.2.4. Figure 4.9 illustrates the mode fit for a polynomial, logarithm of the form

w = a× log(y(k)) + c and power function of the form w = a× y(k)b + c.

The polynomial fit indicates that there is no monotonic relationship for w = g−1(y),

which violates the property 1. The logarithm and power functions show monotonic re-

lationships, however the logarithms are much suitable because of the low computational

overhead. As a consequence, we modelled the inverse output nonlinear function with a
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Figure 4.9: The model fit of the inverse output nonlinearity with different function types

logarithm function. The estimated model with R2 =0.98 fit is as follows:

w = g−1(y)

= 20.63log(y(k))− 0.45331 (4.10)

Estimation of the linear model: The linear model estimated in the previous section

with the nlhw command had a unit coefficient on the input, which means linear system

gain has been lumped together with the static nonlinear gains3. In order to find the exact

gain of the linear system, a second identification experiment is designed after integration

of the compensators at the input and output. A pseudo random input signal was used and

a 20 requests/sec were used to simulate the workload of each class. A first order model

showed high model fit with R2 = 0.95. The estimated linear model is shown in equation

(4.11) and Figure 4.10 shows the model fit with the test set data.

w(k + 1) = 0.85w(k) + 1.97v(k) (4.11)

In order to compare the quality of this model, a linear model was also estimated using

3This is to avoid the issue of over-parameterization exist in the identification of Wiener model, See
Section 4.2.6
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Figure 4.10: Input and the model fit of the linear component of Wiener model

the data gathered to construct the linear component of the Hammerstein-Wiener model.

However, u − y data was used to estimate the single linear model of the system. The

estimated model with R2 = 0.88 fit is shown in equation 4.12. Figure 4.11 shows the

model fit. One of the main observations is that due to the output nonlinearity, the model

fit is poor in the region where output decays compared to region where output increases

at a rapid rate.

y(k + 1) = 0.81y(k) + 0.72u(k) (4.12)
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Figure 4.11: The linear model fit

To further evaluate the model estimation process presented in this section, the estima-

tion results for a system with more than two classes are listed in Appendix F, while the

experimental results of real-world case studies can be found in Chapter 8. These results

also yield the same conclusions presented in this section.
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4.3 Identification of Absolute Performance Management

Scheme

This section presents the details of the model estimation procedure for absolute man-

agement scheme. Subsections 4.3.1, 4.3.2 and 4.3.4 cover the system architecture for

absolute performance management scheme, classification of the nonlinearities that exist

in the system and new estimation mechanism respectively. Finally, the model validation

results will be given in 4.3.7.

4.3.1 Formulation of Absolute Management System

The general settings of the absolute management scheme for a system with n classes

can be found in Section 3.2.2.1. In order to explain how the absolute management system

is formulated, we take the following example of a system serving two classes.

Example : Let us consider two classes, class0 and class1. R0(k) and R1(k) are the

response times of these classes respectively at the kth sample. Further, the resource caps

are S0(k) and S1(k) where S0(k) + S1(k) ≤ Stotal = 30 and S0,min, S1,min = 6. Stotal

is the total available resources and S0,min, S1,min are the minimum resource limits of

each class. According to the absolute performance and resource management scheme,

the objective is to maintain, R0(k) and R1(k) around the specified values RSLA,0(k) and

RSLA,1(k), while manipulating S0(k) and S1(k) in each sample instance. This is because

when the workloads of different classes change unpredictably, the output variables will be

significantly affected. In addition, when the input S0(k) changes, the output R1(k) will be

affected. Similarly, R0(k) will be affected when S1(k) changes. This indicates that there

are interactions between the system variables. In addition, there are tight constraints on

the system inputs as well. The open-loop absolute management system is shown in Figure

4.12.

Target
system

Control inputs
(u)

Measured outputs
(y)

R0S0

Workload disturbance 
from two classes

S1 R1

Figure 4.12: Open-loop absolute management system with two classes

77



Chapter 4. Control-oriented Nonlinear System Identification

4.3.2 Classification of Nonlinearities of Absolute Management Scheme

In this section, we take the example in Section 4.3.1 to identify the nonlinearities that

may affect the runtime management system.

In order to investigate the behavior of the inputs (S0(k), S1(k)) and outputs

(R0(k), R1(k)) we conduct the following experiment. Let us observe the behavior of

R0(k) when S0(k) is changed from 18 to 6 while maintaining the workload of class0

constant (e.g., 30 requests/sec). Meanwhile, S1(k) is fixed at 6 under a constant workload

maintaining R1(k) at a steady state. Therefore, the effects of variations in S0(k) is

minimal on R1(k). Figure 4.13 shows the behavior of the output signal for two such

workloads.
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Figure 4.13: Behavior of the output with respect to varying resource cap under different
workloads

From Figure 4.13 it is evident that the relationship between the input and output

is nonlinear. In addition, depending on the workload intensity the nonlinear behavior

changes as well. Furthermore, there are two regions in these curves. Firstly, when the

resource cap is sufficient to manage the applied workload the response time (or the output)

remains at a steady state. This region is called as the insensitive region because there

are multiple operating points that the management system can select to settle down,

without affecting the response time. For instance, for a 30 requests/sec workload a control

system can settle to 12 resources or more without affecting the response time. Secondly,

in the sensitive region, the response time increases at a high rate when the resource cap is

insufficient to cater the workload. This means, queues of the system start to fill up. If the

resources are not managed efficiently the performance of a particular class may degrade
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or a large workloads may get rejected while leading to system failures.

Another observation apart from the nonlinear behavior is the resource cap Si is in-

versely related to output Ri. i.e., Si ∝ 1
Ri
. Further, the response time curves in Figure 4.13

show that in the sensitive region, the gap between consecutive points increases rapidly.

This means, under a sudden workload variation, produced feedback signals miss a lot of

information in-between due to the rapid variations of the output signal. The initial inves-

tigation with the linear control methodology indicated that such information loss affects

the modelling of the system and the runtime control. To reduce the impact of this factor

the output is inverted, that is 1
Ri

is considered as the output. This conversion damps

out such high variations. Consequently, inverting the response time reduces the numerical

sensitivity leading to better model fits and runtime control. This conversion has been used

in many existing works (e.g., [238, 265]) to improve runtime performance management.

The same conversion will be used in this work as well. For notational simplicity let us

represent 1
Ri(k)

as yi(k) and Si(k) as ui(k), where i = 0 . . . n − 1. However, it is worth

noting that this simple inversion does not remove the nonlinear behavior exhibited by the

absolute management system illustrated in Figure 4.13.

The above case examines when a single class changes its workload or resource cap.

However, typically the workloads of different classes vary in unpredictable fashion over

time, which demand an efficient management scheme to alter the resource caps at runtime

in order to achieve the control objectives. The nonlinear behavior may also impact on the

performance management capabilities of a control system. Initial investigations to design

a linear MIMO control system to solve the above management problem indicated fair

performance and resource management capabilities [193]. However, the idea behind this

work is to investigate whether we can further improve the efficiency of this management

scheme by considering the nonlinear behavior explicitly at the design time compared to

the existing linear control scheme.

Similar to Section 4.2, in this work, the motivation is to estimate the nonlinearities

that exist in the target system and then compensate them by integrating a compensator

framework. However, the absolute performance management scheme does not incorporate

ratios in the inputs and outputs compared to the relative management scheme. As a result,

if the inputs (ui, i = 0, 1, . . . n− 1) are examined they have equal spacing in-between the

consecutive operating points. Therefore, we assume that there are no input nonlinearities,
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avoiding the need of estimating the Hammerstein component in the modelling process.

This means that the model structure considered is a MIMO Wiener block-oriented model.

4.3.3 Wiener Model

Control 
input

(u)

Measured 
output

(y)Linear 
component 

(LTI)

Target system

Output
Nonlinear block 

( F )

Intermediate 
output variable

(w)

(a) SISO Wiener model

u0

un-1

w0

wn-1

Linear MIMO 
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y0

yn-1

g0

gn-1

.. ..

(b) MIMO Wiener model

Figure 4.14: Block diagrams of SISO Wiener model and MIMO Wiener model

As covered in Section 4.2, the Wiener model consists of a linear component followed

by a nonlinear component (see Figure 4.14a). The nonlinear component captures the

static output nonlinearities, while the linear component captures the rest of the dynamics.

Section 4.2 provided details about the single and two step identification techniques for SISO

Wiener model. Compared to the SISO Wiener model identification, the MIMO Wiener

model identification is significantly difficult. This is because if there are interactions

between the intermediate variables and the outputs, those have to be estimated in the

nonlinear component of the Wiener model [27, 171]. Due to this difficulty, different model

structures have been utilized by the existing literature [27, 33, 45, 171, 174, 207, 245]. Some

approaches have captured these interactions (e.g., [27, 171]), while some have ignored them

(e.g., [45, 174, 207]).

4.3.4 Model Identification Procedure of Absolute Management Scheme

In this work, we use two step design approach similar to Section 4.2. In addition, we

make the working assumption that the interactions are negligible between the intermediate

variables and the outputs of the system to achieve some convenience in the model iden-

tification. Figure 4.14b illustrates the block diagram of MIMO Wiener model considered

in this work (similar to work in control engineering literature [45, 174]). The nonlinear

component at the each output represents the static nonlinear relationship between the
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intermediate output variable and the corresponding output variable. In order to compen-

sate the estimated nonlinearities their inverse functions are then estimated. Using the

inverse function a set of compensators is developed and integrated into the system before

MIMO linear model is estimated to capture the rest of the dynamics using the inputs and

intermediate output variables.

In the following sections we introduce the estimation procedures of the nonlinear com-

ponent at each individual output and MIMO linear model to represent the absolute man-

agement system using MIMO Wiener model.

4.3.5 Estimating the Output Nonlinear Components

In order to estimate the output nonlinear block at the each output (see, Figure 4.14b),

the MIMO system with n classes can be decomposed into n SISO subsystems. Then, the

same estimation methodology presented in Section 4.2.6 can be applied to estimate each

SISO subsystem as a SISO Wiener model. This application can be performed in two ways:

1) decompose the system to n subsystems and identify each one individually or 2) use a

single subsystem as a representation of all subsystems and identify that specific subsystem.

The design complexity of the first approach in a case of a shared resource environment

serving multiple classes is high. In contrast, the second approach reduces the design com-

plexity significantly, however makes the assumption that all subsystems illustrate similar

nonlinear behavior. Due to low design cost, we adopt the second approach, but in order

to validate the assumption of similar nonlinear behavior by all classes, we conduct the

following statistical test in a shared resource system serving three classes.

Here we utilize the example in Section 4.3.1 to explain the simulation setup. The

resource cap (ui) of the ith class, where i = 0, 1, 2 is changed from 18 to 6 while ap-

plying a constant workload and the respective output (yi) is observed during that time

period. Meanwhile, the resource caps (uj), j ̸= i, are fixed at 6 under constant workloads

maintaining the respective outputs at the steady states. Thus, changes of the resource

allocation settings of the treatment class have low impact on the other classes and vice

versa. The same experiment was conducted for all these classes under 5 different work-

loads. The gathered output data (yi(k), i = 1, 2, 3) from each of these experiments is

used to conduct a Kruskal-Wallis statistical test [44], in order to validate the hypothesis

that the nonlinear behavior illustrated is similar or significantly different. Here, the null
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Table 4.3: Kruskal-Wallis test results comparing data of three classes under different
workload conditions

Workload (requests/sec) p-Value

40 0.9275

30 0.9949

20 0.9101

18 0.8955

12 0.2722

hypothesis (H0) is that the gathered data from different classes is different, i.e. nonlinear

behavior is different from one class to another. The alternative hypothesis (H1) is that

the gathered data from different classes is similar, i.e. the nonlinear behavior is similar

between different classes.

The results of the Kruskal-Wallis test shown in Table 4.3 indicate that the p-values

are greater than 0.01 for all workload settings. This means that the data sets of all

three classes do not show any significant difference. Hence, we can reject (H0) and accept

(H1) concluding that the outputs of different classes illustrate similar behavior at different

workload rates.

The similar nonlinear behavior of each class justifies that design of a single compensator

may be enough to compensate the nonlinear behavior of each class. As mentioned before,

we use the same design procedure covered in Section 4.2.6 to design this compensator.

Select an arbitrary class to conduct a SISO Wiener model based experiment. Without

loss of generality let us select class0. Then, design a suitable input signal for u0(k) to

conduct the nonlinear SID experiment. A sinusoidal signal is selected similar to Section

4.2.6. The design of this experiment has to be done without violating any of the hard

constraints of the system (see, Section 4.3.1). Then, a suitable workload is applied on

the system for the resource caps selected in the signal which would move the system to

the sensitive and insensitive regions (see, Figure 4.13). However, maintaining the output

in each region for a long time has to be avoided. This is because the estimated data

will have multiplicities, which leads to the violation of property 1 listed in Section 4.2.4.

Meanwhile other control inputs ui(k), i = 1 . . . n − 1 are fixed at Si,min, i = 1 . . . n − 1

under a constant workload maintaining their outputs at a steady state. The SISO Wiener

modelling procedure presented in Section 4.2.6 is then applied on the input-output (u0(k)−

y0(k)) data gathered from this experiment to estimate the linear and nonlinear components
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of the SISO Wiener model. Afterwards, the intermediate variable w0(k) data is computed

followed by the estimation of the inverse nonlinear function w = g−1(y) (lower order

polynomial are used in this work).

After the derivation of this inverse output nonlinear function g−1, it is implemented as

a software component and integrated just after each output of the system as the nonlinear

compensator. The open-loop system with the compensators is shown in Figure 4.15.

u0

un-1

w0

wn-1

Linear MIMO 
component

y0

yn-1

g-1(y)
.
. ..

g-1(y)

Figure 4.15: MIMO Wiener open-loop system with the compensators

4.3.6 Estimating the MIMO Linear Component

After the integration of the nonlinear compensators at the each output of the system,

the system is assumed to be linear, hence the next step is to approximate the rest of the

dynamics into linear component of the MIMO Wiener model (see Figure 4.14b).

There are two main techniques. The first technique is to change or excite a single

input at a time keeping other inputs at desired (steady state) values and observe the

outputs. The same process is then applied for other inputs. Afterwards, the MIMO model

is constructed based on the gathered data. The drawbacks of this approach are the time

taken to construct the model, high level of manual work, insufficient capture of the input-

output interactions in the model and merging of data or models to arrive at the final

model [222]. The second technique is to simultaneously excite all the inputs in the system

and observe all outputs. The gathered data is then fitted into a model using multivariable

regression. This approach addresses most of the above limitations, but conducting such an

experiment may not be always possible in some systems due to safety reasons. However, if

it is possible to conduct such an experiment, this second approach produces a high quality

model as recommended in [46, 222] and proved in [67]. The design of the input signal

in SID is important to excite the dynamics of the system. The pseudo random binary

(PRB), sinusoidal or pseudo random signals are extensively used as input signals in the

literature. When designing these input signals, the hard (input) constraints should not be

violated.
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In this work, using the second approach described above, a MIMO linear SID

experiment is designed simulating all the inputs using pseudo random binary (PRB)

signals. As a consequence, here we estimate the linear model capturing the interactions

between the inputs and the transformed outputs. The levels of the input signal have

to be carefully selected without violating any of the hard constraints on the inputs.

Suitable workloads have to then be selected in order to maintain the outputs in the

required region of operations. This region is selected based on the desired values

of the response times (RSLA,i, i = 0, 1, . . . n − 1). The experiment is conducted to

gather input-output u(k) and w(k), where u(k) = [u0(k) u1(k) . . . un−1(k)] , w(k) =[
g−1(y0(k)) g

−1(y1(k)) . . . g
−1(yn−1(k))

]
, which will be used in multi-variable regression

to construct MIMO ARX model (see, equation (4.13)).

w(k) =

p∑
i=0

Aiw(k − i) +

q∑
j=0

Bju(k − d− j) (4.13)

where, p, q - the order of the model, (Ai, Bj) are the parameter matrices with n × n

dimension, d - is the delay and k is the current sample instance.

4.3.7 Model Identification Results of Absolute Management Scheme

In this section, we use the settings of the example in Section 4.3.1 and the design

procedure covered in Section 4.3.5 to estimate the nonlinear compensator at each output.

The MIMO linear model is then identified.

Estimation of output nonlinear component and its inverse: We designed the

SISO Wiener SID experiment using a sinusoidal signal in order to simulate the input

of class0. The resource caps from 9 to 13 were selected to design the input signal. 25

requests/sec workload was applied by class0 and the output R0 data was gathered for 600

samples. Meanwhile, the class1 was maintained at the steady state without affecting the

behavior of class0. The gathered data pairs were used to estimate a SISO Weiner model

and the inverse nonlinear function as explained in Section 4.3.5. Figure 4.16 shows the

model fit and equation (4.14) shows the inverse nonlinear function.

w0(k) = f−1(y0)

= −12.85y0(k)
2 + 82.76y0(k)− 90.82 (4.14)

The equation (4.14) was then implemented and integrated to the system as a compo-

nent at each output, transforming the open-loop system as shown in Figure 4.15.
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Figure 4.16: Model fit of the inverse output nonlinear funciton

Estimation of MIMO linear model: After the integration of the output compen-

sators, the next step is to estimate the MIMO linear model capturing the relationships

between u0, u1 and w0, w1. Here, we designed a pseudo binary signal selecting 8 and 10

as the resource caps for each of the input, with a switching frequency of 2 samples. 20

requests/sec workloads were applied for both class0 and class1 for 600 samples. The gath-

ered data was then used to estimate a MIMO ARX model. The finalized model is shown

in equation (4.15).

w(k + 1) =

 0.5592 −0.0316

−0.0101 0.6014

w(k) +
 2.9253 −1.4053

−1.3768 2.6580

u(k), (4.15)

where w(k) = [w0(k)w1(k)]
T and u(k) = [u0(k)u1(k)]

T .

The model fits for each output are shown in Figure 4.17. The model fit is sufficient,

however, R2 = 0.5. The second or higher order models did not improve the model fit over

R2=0.5.

In order to compare the nonlinear model, we estimated a MIMO linear model as well.

A linear model was estimated under the same settings used to construct the MIMO linear

component of the Wiener model (see, Section 4.3). The equation (4.16) shows the model

and Figure 4.18 illustrates the model fits. Although the Wiener model has improved the

model fit, it is important to note that both models show lower model fits compared to the

general model fit threshold qualify as a good model fit (i.e, R2 > 0.7). Chapter 5 further

evaluates the performance management capabilities of the control systems implemented
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Figure 4.17: Model fit of MIMO linear components

out of these models. In addition, Appendix F covers model validation results of a system

serving more than two classes. Chapter 8 presents the model estimation details of absolute

management system for a real-world case study.

y(k + 1) =

 0.4817 −0.0145

−0.0146 0.5131

 y(k) +
 0.1446 −0.0110

−0.0079 0.1323

u(k), (4.16)

where y(k) = [y0(k)y1(k)]
T and u(k) = [u0(k)u1(k)]

T .
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Figure 4.18: Model fit of MIMO linear model

4.4 Conclusion

This chapter has presented the nonlinear block-oriented model identification ap-

proaches to represent the relative and absolute performance management schemes. The

model identification procedures have been put forward to capture the characterized
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nonlinear dynamics of each scheme explicitly, which subsequently enabled the devel-

opment of nonlinear compensators, reducing the impact of the nonlinear dynamics on

the management system. In particular, for case of relative performance management

system, the Hammerstein-Wiener model has been used to represent the existing input

and output nonlinear dynamics, while a MIMO Wiener model has been used to represent

the nonlinear dynamics of absolute management system. This is the first time such

models and compensator frameworks have been used to represent multi-class shared

resource software system in the literature. In addition, this chapter also provides model

validation results of these approaches, which have indicated better model fits compared

to the existing linear model estimation methods.
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Chapter 5

Performance Management Using

Nonlinear Feedback Control

5.1 Introduction

The previous chapter has presented the system identification procedures, to estimate

nonlinear block-structure models of the relative and absolute performance management

systems. This chapter presents the design and implementation steps of the new control

system architectures based on those nonlinear models. The main novelty of the control

systems proposed in this thesis is the integration of compensators that will reduce the

impact of nonlinear dynamics on the feedback control systems. This is new in the field

of performance and resource management studies of software systems. The experimental

results will show that the proposed nonlinear control systems provide much better perfor-

mance and resource management in a multi-class shared resource system in comparison to

the traditional linear control methods. Although the nonlinear compensators are added to

the control systems, well established control system design methodologies can still be used

to provide a systematic and formally grounded processes in the design and implementa-

tion of these control systems. This is one of the attractive features of the block-oriented

nonlinear models utilized in this work.

Section 5.2 of this chapter covers the Hammerstein-Wiener control system design pro-

cess, followed by its evaluation in Section 5.3 for the case of relative performance manage-

ment scheme. Section 5.4 presents the details of MIMO nonlinear control system design

method for absolute management scheme while its evaluation is given in Section 5.5.
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5.2 Relative Performance Management Using Nonlinear

Control

In this section, first, we explain the existing linear control system architecture of the

relative management system (see Section 5.2.1). The architecture and design details of

the nonlinear control system based on the Hammerstein-Wiener block-oriented model is

presented in Section 5.2.2.

5.2.1 Linear Control System Design for Relative Performance Manage-

ment

Here, we continue with the two examples covered in Section 4.2. For a system serving

two classes (i.e., the Example-1 ), the closed-loop linear control system architecture is illus-

trated in Figure 5.1a. The control objective according to the relative management scheme

is to maintain the response time ratio y(k) = R1(k)
R0(k)

of (0) and (1) classes around P1(k)
P0(k)

while computing the resources cap ratio u(k) = S0(k)
S1(k)

. Furthermore, the hard constraints

on the total number of resources and reserved per-class resources (S0,min, i = 0, 1) have to

be maintained by this control system.

The main challenge under these specifications is maintaining the output around per-

formance differentiation ratio by calculating the resource cap ratio dynamically under

unpredictable workload conditions of two classes [145]. To address this challenge, Lu et

al. proposed a dynamic propositional resource allocation approach in [145] to achieve the

aforementioned relative performance management objectives in a shared resource environ-

ment (web server) with multiple classes. Their approach was to develop a linear feedback

control system, which automates the computation of resource cap ratio
Sj

Si
at runtime.

For the case of a system serving two classes, a single SISO controller is sufficient to

achieve the required control objectives. It is also worth noting that, as shown in Figure

5.1a, at each sample instance, computed resource cap ratio u(k) by the controller is sent

to the individual resource cap calculation algorithm proposed in [145] for the calculation

of individual resource caps Si(k) (i= 0, 1). This algorithm is listed in Appendix D, which

also takes into account the constraints imposed on the management system.

In contrast, for the case of three classes as presented in Example-2 in Section 4.2, the

target system becomes a MIMO system (see, Figure 4.1b). As a result, a control system

with two loops as illustrated in Figure 5.1b is utilized in the existing literature. Each
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S2 R2

(b) Three classes

Figure 5.1: Linear control system for relative management with two and three classes

loop c = 1, 2 maintains the specified output ratios (yc(k) = Ri(k)
Ri−1(k)

) around (Pi(k)
Pi−1

(k))

by computing the resource cap ratios uc(k) = Si−1(k)
Si(k)

. Finally, at each sample instance,

calculated resource cap ratios uc(k) by each controller is sent to the individual resource

cap calculation algorithm, in order to compute the individual resource caps Si(k) (i= 0,

1, 2).

A possible question is why multiple SISO controllers have been utilized in the relative

management scheme compared to a single MIMO controller. This is because the relative

management scheme is complex due to consideration of the ratios, which transforms system

inputs and outputs significantly. As a consequence, to calculate the individual resource

caps using the algorithm listed in Appendix D, the summation of the individual resource

caps should exactly equal to the total number of resources. i.e., S0 + S1 . . . Sn = Stotal.

This means, when we calculate the resource cap ratios of multiple classes, they become

linearly dependent. As a result, conducting a MIMO system identification experiment

using Si(k)
Sj(k)

as inputs becomes mathematically ill-conditioned.

The advantage of this formulation is that it enables maintaining the system outputs

according to priority levels under versatile workload conditions and it reduces the dimen-

sion of the system to n − 1. So that, the assumption of the relative management system

design is the interactions between inputs and outputs are insignificant as stated in the ex-

isting literature [145, 150, 180]. Therefore, we will treat each relative management system
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controlling a pair of classes as a SISO system.

5.2.2 Hammerstein-Wiener Control System Design

This section overviews the development of the closed-loop system equipped with the

compensators based on the Hammerstein-Wiener model. In Section 4.2, the input and

output nonlinear compensators were introduced into the system, subsequently the system

can be assumed to be linear. As a result, we do not have to design a complex nonlinear

(e.g., fuzzy, neural network based [81]) controller for the system under consideration. With

the linear system model identified in Section 4.2.7, we can design a linear controller using

the existing design techniques. Any type of linear controller can be used in such a design

(see Appendix B), including proportional-integral (PI) and predictive controllers. For this

SISO control system design we will use a PI controller, due to its robustness, disturbance

rejection capabilities and simplicity [81].

Before explaining the design of the Hammerstein-Wiener nonlinear control system, let

us overview the well-established design process of PI controller. Figure 5.2 shows the

structure and variables involved in a typical control system. For the simplicity of analysis

we have represented the variables in z-transforms [81].

Y(z)
Target 

System S(z)
Controller

C(z)

U(z)R(z)
-

E(z)

Figure 5.2: Block diagram of a standard control system

The reference (or set point), output and control input variables are represented by R(z),

Y(z) and U(z) respectively. E(z) represents the control error, computed by R(z) − Y (z).

The transfer function of the target system and controller are represented by S(z) and C(z)

respectively. The model of the target system estimated by system identification can be

used to formulate S(z). Assuming, the model is a first order ARX model, we can represent

S(z) as follows:

S(z) =
Y (z)

U(z)
=

b1
z + a1

(5.1)

The representation of C(z) depends on the selected controller. For the case of PI controller,

the standard equation is as follows:

C(z) =
U(z)

E(z)
= Kp +

Ki

1− z−1
=

(Ki +Kp)z −Kp

z − 1
(5.2)

where, Kp (proportional gain) and Ki (integral gain) are called the gains of the PI con-
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troller. Deriving suitable gains is paramount to maintain the stability and tune the perfor-

mance of the controller to a satisfactory level. As opposed to the trial and error methods,

there are systematic and formal techniques in control engineering to compute the controller

gains depending on the performance requirements. The pole-placement design methodol-

ogy [81] is one such method to compute the gains of the PI controller. In this work, we

follow the pole-placement design method as described below.

First, the closed-loop transfer function has to be derived using the equations (5.1) and

(5.2) as shown in equation (5.3).
Y (z)

R(z)
=

C(z)S(z)

1 + C(z)S(z)
(5.3)

The roots of the polynomial in the denominator of equation (5.3) are called the closed-

loop poles. Theoretically, for closed-loop stability these poles should be within the unit

circle or less than 1 in magnitude [81].

Second, according to the above theory, the control system designer can specify the

desired locations for the closed-loop poles. This can be done by defining two poles (say, α

and β) and deriving the so-called desired closed-loop polynomial according to the perfor-

mance specifications (e.g., settling time and overshooting). The structure of the desired

closed-loop polynomial is shown in equation (5.4).

Dcl(z) = z2 − (α+ β)z + αβ (5.4)

Third, by equating the denominator of equation (5.3) to the desired closed-loop poly-

nomial equation (5.4), we can calculate the gains of the PI controller as follows.

z2 + (b1(Kp +Ki)− 1 + a1)z − b1Kp − a1 = z2 − (α+ β)z + αβ

Kp =
αβ + a1
−b1

(5.5)

Ki =
(α+ β) + 1− a1

b1
−Kp (5.6)

With this background let us now move on to the implementation of Hammerstein-

Wiener control system. As shown in Figure 5.3, the Hammerstein-Wiener control system

operates with transformed variables. With the addition of the nonlinear compensators, the

target system is represented by the linear component of the Hammerstein-Wiener model

(see Section 4.2.7). Hence, the transfer function of the target system S(HW )(z) can be

represented as follows:

S(HW )(z) =
W (z)

V (z)
=

b1
z + a1

(5.7)

The main difference in equation (5.7) compared to equation (5.1) is the input and
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output variables. Similarly, the transfer function (C(HW )(z)) of the PI controller based on

the Hammerstein-Wiener model can be represented by equation (5.8).

C(HW )(z) =
V (z)

E(HW )(z)
=

(Ki(HW ) +Kp(HW ))z −Kp(HW )

z − 1
(5.8)

SA

Controller

-

e(HW) or E(HW) (z)

u(k) or U(z) y(k) or Y(z)

Actuator Sensor

Target system
Pre-input 

compensator 
f-1(v)

v(k) or V(z)
Intermediate input 

variable

r(k) or R(z)

Post-output 
compensator

g-1(y)

Post-output 
compensator

g-1(y)

w(k) or W(z)
Intermediate output 

variable

Transformed
Set point 

r(HW) or R(HW)(z)

Figure 5.3: Block diagram of the Hammerstein-Wiener control system

The main changes from the standard form are the transformation of controller error

e(k) (or E(z)) and controller input v(k) (or V(z)). e(HW )(k) is computed by r(HW ) −

w(k), where r(HW )(k) = g−1(r(k)) is the transformed reference signal from the original

reference signal r(k) and w(k) = g−1(y(k)). g−1 is the estimated inverse output nonlinear

function (see Section 4.2.6). It is also important to note that v(k) computed by the

Hammerstein-Wiener controller has to be converted to the original system input u(k)

before applying it in the target system. This conversion is performed by the pre-input

compensator using u(k) = f−1(v(k)), where f−1 is the estimated inverse input nonlinear

function (see Section 4.2.5). For, notational consistency the gains of Hammerstein-Wiener

model based controller are represented by Kp(HW ) and Ki(HW ). Although the target

system and controller transfer equations are formulated by the transformed variables, we

can still use the above described formal control system design methodology (i.e., pole-

placement) to compute Kp(HW ) and Ki(HW ) using equations (5.5) and (5.6) respectively.

α and β have to be decided by the control system designer, while a1 and b1 are estimated

by the system identification method presented in Chapter 4.

Furthermore, the control system is also constrained by the resource limits of the target
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system. The input limits of the original system is umin and umax, which are the minimum

and maximum values of the input u (see Section 4.2.5 for definition of u). These limits also

have to be translated and implemented in the Hammerstein-Wiener control system. In the

Hammerstein-Wiener controller, these limits correspond to vmin and vmax. Consequently,

the control inputs v(k) generated by each controller is compared with vmin and vmax in

each sample and rounded-off to the corresponding limit if they are exceeded.

Finally, the resource cap ratios uc(k), c = 1, . . . n − 1 calculated by the controllers

managing class pairs i − 1 and i have to be decoded back to the individual resource cap

for each class Si(k), i = 0, 1, . . . n− 1. The algorithm used for this calculation is listed in

Table 5.1. This algorithm has extended the algorithm presented in [145] (see Appendix

D). The major modification is the conversion of values (vc(k)) computed by the nonlinear

control system to the original system inputs uc(k) using f
−1 function, before computing

the individual resource caps for each class. This algorithm is then implemented in the

actuator of the Hammerstein-Wiener control system. After the integration of the PI

controller, the final closed-loop control system takes the structure of Figure 5.3.

Table 5.1: Algorithm for resource cap calculation extending [145]

RSi: normalized resource allocation of class i relative to
class n− 1, i = 0, 1, . . . n− 1.

RSi(k) =
Si(k)

Si−1(k)
, where k - sample instance.

sum: the sum of the normalized process budgets of all classes.
M : total number of resource units.
Begin Algorithm
RSn−1 = 1
sum = 1
for(int j = n− 2; j ≥ 0; j −−) {
//Call the Hammerstein controller to get ratio Vj+1(k)
between QoS class j and j+1.
//Convert Vj+1(k) into original share ratio Uj+1(k)
using the equation estimated in Section 4.2.5)

Uj+1(k) = f−1(Vj+1(k))
RSj(k) = RSj−1(k) ∗ Uj+1(k)
sum = sum+RSj(k)

}
for(int j = n− 1; j ≥ 0; j −−) {

Sj(k) =M ∗ (RSj(k)/sum)
}
End Algorithm
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5.3 Evaluation of Hammerstein-Wiener Control

In this section, we evaluate the relative performance and resource management capabil-

ities of the nonlinear Hammerstein-Wiener model based control approach. The simulation

environment and the settings covered in Chapter 3 is utilized to implement and evaluate

the control systems. Furthermore, the criteria set out in Section 3.4 will be used in the

comparative analysis.

The evaluation is based on a system with two classes as described in Section 4.2.8

of Chapter 4. In particular, the resource caps are denoted by S0(k) and S1(k) where

S0(k) +S1(k) = Stotal = 30 and S0,min, S1,min = 6. R0(k) and R1(k) and P0(k) and P1(k)

are the response times and differentiation factors of these two classes respectively at the

kth sample.

In order to implement the Hammerstein-Wiener control system, the pre-input and

post-output compensators and the estimated linear model in Section 4.2.8 will be uti-

lized. As mentioned in Section 5.2.2, the PI control algorithm is used to implement the

Hammerstein-Wiener controller to provide control at runtime. Using the linear model

estimated (see equation (4.11) in Chapter 4) and the pole-placement design methodology,

the gains (Ki(HW ) and Kp(HW )) are calculated. The closed-loop poles were placed at

(α = 0.5, β = 0.5) after analysing the stability, settling time and overshooting specifica-

tions1. Also, vmin = −9 and vmax = 9 are implemented as the saturation limits of the

controller. Afterwards, the controller is integrated into the system constructing the final

control system architecture shown in Figure 5.3.

To compare and contrast the management capabilities of the Hammerstein-Wiener

nonlinear control system (namely, HWCS) under different operating conditions and re-

quirements, we use following two control systems.

1) Hammerstein model based control system - a control system with just the pre-input

nonlinear compensator. This control system enables us to understand the problems of the

output nonlinearity in isolation.

2) Linear model based control system - a control system without any nonlinear compen-

sators. This control system shows the performance of the existing linear methods and

1Depending on the selected values for α and β, the behaviour of the control system varies because of
the nonlinear characteristics of the system. Therefore, simulations have to be conducted in order to finalize
the values for α and β.
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illustrates the issues of the input and output nonlinearities in tandem.

The details of the above two control systems are as follows:

Hammerstein model based control system: As shown in Figure 5.4, the Hammer-

stein model based control system (namely, HCS) has only the input nonlinear compensator.

Thus, it only compensates for the input nonlinearities characterized in the relative man-

agement scheme. The same input nonlinear compensator designed in Section 4.2.8 was

integrated to the system before the identification of the linear model. The linear model

identification setting is same as the linear component identification of the Hammerstein-

Wiener model covered earlier (see Section 4.2.7). In fact, the same identification data can

be utilized, however, the linear model is constructed using v−y data pairs. The estimated

linear model of the Hammerstein model with R2 = 0.87 is as follows:

y(t+ 1) = 0.90y(t) + 0.24v(t) (5.9)

The PI controller of HCS operates with the control equation as follows:

C(H)(z) =
V (z)

E(H)(z)
=

(Ki(H) +Kp(H))z −Kp(H)

z − 1
(5.10)

where E(H)(z) = R(z) − Y (z), which is similar to a linear model based control error.

However, v(k) is the transformed control signal, which has to be converted to u(k) using

f−1 function. Kp(H) and Ki(H) are the gains of the HCS. These gains were also computed

by the same settings used in the Hammerstein-Wiener control system design. The final

structure of the HCS is shown in Figure 5.4.

SA

Controller-

Control 
input

(u)

Measured 
output

(y)

Actuator Sensor

Nonlinear 
component 

f(u)

Linear 
component 

(LTI)

Target system

Pre-input 
compensator

f -1(v)

v Set point 
(Pi/Pi-1)

Figure 5.4: Hammerstein model based control system

Linear model based control system: The linear control system (namely, LCS) does

not compensate any of the input and output nonlinearities. The linear model estimated in

Chapter 4 (see equation (4.12)) is used to derive the gains for the PI controller following

the pole-placement procedure covered in Section 5.2.2. A PI controller was then integrated

to the control system similar to the structure shown in Figure 5.1a.
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Table 5.2: Parameters of the control systems

Parameter HWCS HCS LCS

Kp 0.30 2.06 0.73

Ki 0.12 0.78 0.32

Min saturation limit -9 -9 0.25

Max saturation limit 9 9 4

Initial input v(0) = 0 v(0) = 0 u(0) = 1

The summary of the configuration parameters of the above control systems are listed

in Table 5.2. The saturation limits and initial control input set in all the control systems

correspond to the same values in relation to the original system input. The differences

of values are because the controllers in the nonlinear control systems operate with trans-

formed variables.

In following sections we evaluate the performance of HWCS, HCS and LCS in different

conditions and requirements. In Section 5.3.1, we compare the performance when the

system is running full capacity or lower. By full capacity we mean that all the resource

units are occupied during the entire period. In contrast, in Section 5.3.2 the performance

is evaluated when the system is running with an extreme overload. That is the system

is facing heavy workloads, which cannot be managed even all the resources are utilized

100% of the time. Consequently, admission control has to be implemented to maintain the

stability of the system. Also note that, Appendix E covers a number of other conditions.

Table 5.3 provides a brief description and the objectives of all the cases investigated in

this evaluation.

Tables 5.4 and 5.52 quantify the quality of the runtime performance and resource

management of all three control systems, which includes the following statistics:

• Sum of squared errors (SSE) =
∑t̄

j=1 e(j)
2,

• Max (maximum output recorded) = max(Y),

• Min (minimum output recorded) = min(Y),

where, e(k) = r(k) − y(k), that is the control error at each sample k, Y =

[y(0), y(1), . . . , y(t̄)] is the measured output vector during the experiment conducted for t̄

number of samples.

2For completeness, they also includes the results of the cases covered in Appendix E.
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Table 5.3: The operating conditions and description

Workload near full capacity or lower

Case Set point Description

A 1 Behavior away from the nominal operating point,
where the input nonlinearity is dominant. The
disturbance rejection capabilities are also investi-
gated, which show the effects of output nonlinear-
ities.

B 1.5 class0 is more important than class1. The set
point is placed in the region where output signal
increases at a high rate under sudden disturbance.
The disturbance rejection capabilities are investi-
gated under sudden workload disturbances from
two classes. This case shows the issues of input
nonlinearity.

C 0.6 class1 is more important than class0. The set
point is placed in the region where output signal
decays at a high rate under sudden disturbance.
The disturbance rejection capabilities are investi-
gated. This case shows the issues of output non-
linearity.

Workloads of extreme overloads

D 1 This is similar to Case A. However, the workloads
of classes are increased to extremely high magni-
tudes to overload the system. It illustrates the
issues of the input and output nonlinearities to-
gether.

E 2 This is similar to Case B. One class overloads the
system while the workload of other classes remains
at a nominal rate. This case shows the issues of
input nonlinearity.

H 1.5 → 2.25 Investigate the behavior when the set point signal
is changed at runtime abruptly.

5.3.1 Workloads of Full Capacity or Lower

In this section, we maintain the workload conditions at the level that the system can

cope with the available resources, meaning that, if the control system reacts accurately and

fast the long term performance issues can be avoided under changing workload conditions.

As mentioned in Chapter 3, the simulation model with 30 resources can handle 60-65

requests/sec. The cases investigated under these settings are as follows.

Case A: Performance away from the nominal region

In this case, we test the performance of the control systems when the resource demands
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are away from the nominal region (see region 0 and region 1 in Figure 4.2). That is at

the end of region 0 or region 1, where the input nonlinearity is severe. In order to force

the system to operate in these regions an experiment is conducted with the workloads of

class0 and class1 being increased to the highest capacity separately. Till the 30th sample

workload of 20 requests/sec is applied for class0 and class1. Then, at the 30th sample

the class0 workload increases to 45 requests/sec. This could be a scenario where a high

resource demand for class0, while class1 is at a normal workload rate. Afterwards, at the

80th sample, class0 workload reduces to 20 requests/sec. At the 100th sample, the class1

workload increases to 45 requests/sec from 20 requests/sec. Furthermore, we specify the

set point P1
P0

= 1, assuming both classes are equally important. The desired responses

of the control systems should be to see overshooting at the output due to the sudden

workload disturbances. However, the controllers must reject these disturbances and come

up with the suitable resource caps under changing resource demands to maintain the

required reference/set point value.
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(f) Control signal of HWCS

Figure 5.5: Performance of the control systems away from the nominal region (Case A)

The output signals of all the control systems are shown in Figure 5.5. At the start-

up workload conditions, the system remains in the nominal region. Therefore, imple-

menting resource caps greater than the minimum resource allocation is sufficient. i.e.,
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5.3. Evaluation of Hammerstein-Wiener Control

S0(k), S1(k) > S0,min, S1,min. Then, let us analyse the performance of the control systems

in the region where class0 demands more resources (between 30th and 80th sample). The

settling times of LCS, HCS and HWCS are approximately 11, 12 and 8 sample periods

respectively. Similarly, the overshooting are 0.7, 0.7, 0.45 respectively. Therefore, the

performance of the HWCS is significantly better compared to LCS and HCS. The control

signals indicate that the resource caps have been adjusted at the 30th sample by all control

systems, due to the disturbance. However, after settling down, all control systems provide

similar steady state behavior, achieving the set point with small errors. In contrast, after

the 100th sample when class1 demands more resources, the steady state performance of

LCS is significantly poor compared to other control systems. It shows highly oscillatory

and unstable behavior with a large steady state error after the high workload disturbance

of class1. This is an indication that LCS cannot provide effective performance and resource

management in region 1, when the workload of class1 is high. In addition, performance

isolation in that region is significantly poor as well. When the control signal in Figure

5.5d is investigated, there are significant oscillations. The reason for this behavior is the

issue of input nonlinearity discussed in Section 4.2.2. The small gaps between the points

in region 1 (see Figure 4.2) affect the control provided by LCS under noisy operating

conditions making LCS to jump between several operating points without settling down.

However, the performance in this region can be improved by reducing the aggressiveness

(gains) of the controller. This adversely affects the performance management and distur-

bance rejection capabilities when the workload of class1 is high. Consequently, LCS fails to

achieve effective performance management in the entire operating region under changing

conditions. Furthermore, the discriminative behavior in different regions leads to model

uncertainties and loss of flexibility in control system design.

In contrast, HCS and HWCS provide highly satisfactory steady state performance after

the disturbance at the 100th sample without affecting the stability. This is because of the

integration of the input nonlinear compensator into the control system that reduces the

effect of input nonlinearity. However, HWCS settles down 3 samples before with 0.45

less overshooting compared HCS at the 100th sample. Similar improvements have been

achieved by the HWCS at the 30th sample as well. As mentioned in Section 4.2.2, how

output reacts to class0 disturbance is different from class1 disturbance, which leads to

the output nonlinearity. This nonlinearity is compensated by HWCS providing better
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Chapter 5. Performance Management Using Nonlinear Feedback Control

disturbance rejection in both regions compared HCS.

Therefore, the proposed Hammerstein-Wiener model based nonlinear control method-

ology provides much better performance and resource management in the entire operating

region while providing design flexibility compared to other control systems.

Case B: When class0 is more important

In this case, we maintain different priority levels assuming that class0 is more impor-

tant. This is translated into the control system by setting reference signal P1
P0

> 1. This

means, the control system provides fewer resources to the less important class, reserving

more resources to the most important class anticipating a high workload demand. Here, we

set P1
P0

= 1.5 and check how the control system maintains the specified differentiation lev-

els. The experiment starts with 20 and 20 requests/sec for class0 and class1 respectively.

Then, at the 50th sample class1 increased its workload to 40 requests/sec. Figure 5.6

shows the performance of the control systems, while Table 5.4 summarizes the statistics3.

The performance of LCS is significantly poor in this case when the high workload dis-

turbance of class1 is applied at the 50th sample. The control signal in Figure 5.6d shows

the oscillations similar to what was observed in Case A. This is because when class1 de-

mands more resources, LCS has to operate with the control points which show significant

input nonlinearity. Consequently, the performance of the control system degrades signifi-

cantly compared to the nonlinear control systems. The settling time and overshooting are

less in HWCS compared to HCS (see Table 5.4). However, the steady state performance

of the HCS is better because the output noise affects the compensator performance of the

HWCS.

Case C: When class1 is more important

In this case, we maintain the different priority levels, assuming that class1 is more

important. This is translated into the control system by setting the reference signal

P1
P0

< 1. Here, the reference is set to P1
P0

= 0.6, which is in the region, where the output

signal decays when the sudden disturbances are encountered. The experiment starts with

20 and 20 requests/sec for class0 and class1 respectively. Then, at the 50th sample class0

increased its workload to 40 requests/sec. Figure 5.7 shows the outputs of the control

3Another case under these settings is covered under Case H in Appendix E.1, where class0 increases
workload instead of class1.
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(e) Control signal of HCS
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(f) Control signal of HWCS

Figure 5.6: Performance of the control systems when class0 is more important (Case B)

systems.

In this case the control systems have to perform in region 0 (see Figure 4.3) where the

output is damped out due to the output nonlinearity (see Figure 4.3). All the control sys-

tems show some steady state error due to the effect of queuing delays generated by class0.

The main characteristic to look at in this case is the disturbance rejection capabilities at

the 50th sample due to the high workload of class0. Under this disturbance, even though

R0 increases at a rapid rate, the output of the control system changes relatively slowly. As

a consequence, LCS and HCS, which do not compensate the output nonlinearity, show sig-

nificantly poor disturbance rejection capabilities, leading to high overshooting and settling

times. In addition, the output signal of LCS shows an interesting change of behavior, be-

fore and after the disturbance at the 50th sample. This is because of the input nonlinearity.

That is before the 50th sample, LCS operates in the region where input nonlinearity is se-

vere, thus the control signal shows oscillatory behavior. However, unlike in Case A and B,

it has not affected the performance adversely because the output nonlinearity damps out

the variations of the output signal. Then, after the high workload disturbance of class0,

LCS has to operate in the region where the gaps between the operating points are larger.

Again, the output nonlinearity affects the performance of LCS and the responsiveness of
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(e) Control signal of HCS

0 20 40 60 80 100
0

1

2

3

4

Sample Id
C

on
tr

ol
 s

ig
na

l

 

 

u u
max

u
min

(f) Control signal of HWCS

Figure 5.7: Performance of the control systems when class1 is more important (Case C)

LCS decreases. Such unpredictable changes in behavior are also an indication that it is

hard to provide consistent performance using LCS under changing workload settings. The

input and output nonlinearity compensated HWCS on the other hand, provides better

performance management with significantly lower overshooting, settling time and steady

state error compared to LCS and HCS4.

5.3.2 Workloads of Extreme Overload

In this section, we the compare the performance of the control systems under the

extreme overloaded cases. In such conditions, the queues of one or more classes may

grow rapidly, affecting the performance variables. If this behavior remains for a long time

the entire system may become unstable, subsequently leading to system failures. Thus,

to avoid such undesirable effects we specify a queue length of 30 for each queue. This

is done to avoid the queues growing unboundedly due to the extreme overloads for a

long time periods, which will increase the response time unboundedly. The queue limit

has to be decided based on the maximum tolerable response times of all classes. When a

queue has reached the specified limit, the subsequent incoming requests will be rejected by

4The numerical improvements indicated in Figure 5.7 is small because in this region of operation the
output damps out. However, when the response time signal of each class is investigated individually,
significant improvements can be seen for the case of HWCS.
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5.3. Evaluation of Hammerstein-Wiener Control

the management system. Hence, this is a simple rule based admission control mechanism.

However, such simple admission control is sufficient because we adjust the resource caps at

runtime, which will effectively achieve the required management objectives under changing

workload conditions.

In following cases, we maintain the workload mix of two classes exceeding 200% of the

maximum capacity of the system. The average request rejection or loss rates are listed

in Table 5.5 for all these cases. The less rejection rates indicate better performance and

resource management. A large difference may not be observed because the average loss

rate per second is calculated over the total period of overload.

Case D: Performance in away from the nominal region under overload

This case is similar to Case A, where control systems are forced to operate in the

regions that the nonlinearities are severe. We maintained the same workload settings

of Case A, however, in order to overload the system at the 30th sample, the workload

of class0 is increased to 100 requests/sec while maintaining the workload of class1 at

nominal 20 requests/sec. Similarly, at the 100th sample class1 workload is increased to

100 requests/sec overloading the system. Figure 5.8 shows the outputs of the control

systems.
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(f) Control signal of HWCS

Figure 5.8: Performance in away from the nominal region under overload (Case D)
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When a class overloads the system, some portion of requests has to be rejected in

order maintain the response times of both classes within bounds. Further, under such

a condition the response time of the overloaded class increases significantly. However,

since the other class is treated equally, even though the workload of that class is less, its

response time has to be increased as well by reducing the resource cap. However, the

minimum resource reservation is guaranteed for the class running with low workload, in

order to progress without total starvation of resources. All the control systems achieve the

specified control objective, but as explained in Case A, the input and output nonlinearities

of the system significantly affect the performance of LCS and HCS. In particular, the

disturbance rejection capabilities are poor in LCS and HCS at the 30th sample due to the

output nonlinearity. Again, the input nonlinearity affects the performance of LCS after

the 100th sample. In contrast, the input and output nonlinearity compensated HWCS

provides significantly better overshooting and settling time without sacrificing the steady

state performance compared to HCS and LCS. Table 5.5 compares the average request

loss rates of the control systems. LCS shows additional 3 requests/sec workload loss for

class1 compared to HWCS and HCS, which means that there are higher request losses

during the overloaded period.

Case E: Performance under overload when class0 is more important

In this case, we set P1 : P0 = 1 : 2, making class0 as the most important class.

Hence, depending on the workload mix class0 should have relatively less workload losses

compared to class1. The experiment starts with a 40 and 75 requests/sec for class0 and

class1 respectively, which means the less important class has overloaded the system. Figure

5.9 shows the outputs and the control signals of the control systems5.

The output and control signal of LCS show significant performance issues, including

the highly unstable behavior. It is hard to reason this behavior. One possible reason

could be due to the initial workload disturbance, LCS hits the umin limit, and the

control error generated by that behavior saturates the control input at umax. The same

behavior continues in subsequent samples, leading to this unstable performance. When

the performance of HCS and HWCS is compared there is no significant difference. Both

control systems achieve the required control objectives significantly better than LCS

5Another case under these settings is covered under Case I of Appendix E.1. In that case, both classes
increase their workloads simultaneously.
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(e) Control signal of HCS
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(f) Control signal of HWCS

Figure 5.9: Performance under overload when class0 is more important (Case E)

(also compare the SSE statistics of Table 5.4). Further, the loss rates listed in Table 5.5

indicate that LCS rejects additional 8 requests/sec workload of the most important class,

where as the nonlinear control systems show no workload losses for that class. Similarly,

LCS rejects higher amount of requests of class1 as well, compared to the nonlinear control

systems.

Case F: Change of differentiation levels (or set point) at runtime time

This case evaluates the adaptability of the control systems when the business objec-

tives change at runtime. That is when a differentiation level of one class changes, the

management objective of the control system has to be changed as well at runtime. This

objective can be achieved by changing the reference signal of the control system during

the operations. Such changes can be done at runtime by the system administrator without

any overhead of restarting the control system, which is an advantage of the relative man-

agement scheme. In this case, we maintain the differentiation factors P1 : P0 = 1 : 1.5 till

the 100th sample and change it afterwards to P1 : P0 = 1 : 2.25. 40 and 75 requests/sec

workloads are applied for class0 and class1 respectively, which means that the less impor-

tant class has overloaded the system. This is similar to Case E conditions. Figure 5.10
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shows the outputs and the control signals of the control systems.
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(f) Control signal of HWCS

Figure 5.10: Change of differentiation levels at runtime time (Case F)

The results of this condition are similar to Case E. LCS totally fails to achieve the

control objectives. At the same time no adaptability is shown at the 100th sample when the

new differentiation level is implemented in the system. Consequently, the performance of

LCS in this condition is highly unstable and unsatisfactory. In contrast, HCS and HWCS

achieve the required control objectives and adjust rapidly to the change of differentiation

levels by tracking the set point signal effectively. Both nonlinear control systems adjust

to the change in reference signal in approximately less than 5 samples.

5.3.3 Summary of Results

The performance evaluations conducted in versatile operating conditions and business

requirements have indicated that the proposed nonlinear Hammerstein-Wiener control

technique provides significantly better runtime performance management compared to

the existing linear control approaches under many cases. In particular, when either input

or output nonlinearity is severe, the linear control system has shown poor disturbance

rejection capabilities and stability issues. As a consequence, designing a single linear con-

troller to operate in the entire operating region is difficult. In contrast, the compensations

performed by the Hammerstein-Wiener control system has enabled better disturbance re-
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Table 5.5: Summary of average loss rates of the control systems managing two classes

Case,Type LCS HCS HWCS

class0 class1 class0 class1 class0 class1
D 45 49 46 46 45 46

E 8 85 0 79 0 79

Cases covered in Appendix E.1

I 41 107 42 107 41 108

J 80 0 80 0 79 0

K 108 41 105 46 107 41

jection without sacrificing the stability of the managed system. This also helps to establish

design flexibility compared to the linear control method. When the Hammerstein-Wiener

control system is compared with the Hammerstein control system, which compensates only

the input nonlinearities indicates that compensation of output nonlinearities is important

to achieve better performance in most of the cases. However, the noisy conditions affect

the output nonlinear compensation compared to the Hammerstein control system in few

cases.

Further evaluations were conducted in Appendix E.1 covering a number other cases.

Appendix H investigates the management of a multi-class system having a large amount

of resources with significantly more operating points and severe nonlinearities. The evalu-

ation results listed in Appendix H also indicate the superior management provided by this

new nonlinear control system compared to the linear counterpart. Moreover, Appendix F

covers the model estimation, control system design and evaluation of the Hammerstein-

Wiener control approach for a multi-class system with three classes. This evaluation has

also shown similar results observed previous section. In the above evaluations, the config-

uration parameters of the simulation environment were set at the fixed values mentioned

in Chapter 3. The effects of the simulation environment variables are also examined in

Appendix G using Monte-Carlo simulations in order to investigate the robustness of the

proposed nonlinear control system compared to a linear control system. This investigation

has demonstrated the robustness of proposed nonlinear control approach and the validity

of the results presented in previous sections. Finally, one of the design parameters of the

proposed nonlinear estimation and control approach is the range of V (vmax, vmin). This

range was selected arbitrarily in the design of Hammerstein-Wiener control system. The

impact of the selected range is investigated and the design guidelines are provided in Ap-
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pendix I. The applications and evaluations of the Hammerstein-Wiener nonlinear control

approach for relative performance management in the real-world shared resource systems

are covered in Chapter 8 in more detail.

5.4 Absolute Performance Management Using Nonlinear

Control

In Section 4.3 of Chapter 4, the nonlinear dynamics of absolute management scheme

were identified using MIMO Wiener model structure. A compensator was designed and

connected at each output to compensate the nonlinear dynamics. Afterwards, a MIMO

linear model was estimated. This section presents the MIMOWiener control system design

procedure for absolute performance management.

5.4.1 Linear Control System Design for Absolute Performance Manage-

ment

In this section, we continue the example system with two classes covered in Section 4.3

to illustrate the linear control system architecture for absolute performance management.

The main objective of the absolute performance management system is to maintain the

system outputs R0(k) and R1(k) of two classes around RSLA,0(k) and RSLA,1(k) respec-

tively under unpredictable workload conditions, while adjusting the resource caps S1(k)

and S1(k). In addition, the scheduler should work within the following constraints6.

S0 ≥ S0,min, S1 ≥ S1,min

S0 + S1 ≤ Stotal (5.11)

Figure 5.11 shows the control system architecture for absolute performance manage-

ment. It is clear that the controller should have the ability to deal with multiple control

objectives and constraints at runtime. The inputs to the controller are the set point sig-

nals (RSLA,0(k), RSLA,1(k)) and feedback signals from the system (R0(k), R1(k)). The

outputs of the controller are the resource caps (S0(k), S1(k)), adhering to the constraints

specified above.

Unlike the case of relative scheme, the absolute scheme incorporates the system inputs

and outputs directly without any transformations. Therefore, a general MIMO controller

can be utilized. In addition, especially, when the system is encountering overloaded work-

6The equality condition is relaxed with inequality condition in order to avoid the mathematical ill-
conditioning. See [193] for experimental results.
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Figure 5.11: Block diagram of absolute performance and resource management system

load conditions, the absolute performance management scheme may not always be able to

maintain the outputs at the prescribed fixed values (RSLA,0(k), RSLA,1(k)). Consequently,

the absolute performance management can be only performed under a limited range of

workload conditions compared to the relative performance management [108, 145].

5.4.2 MIMO Wiener Model Based Control System Design

The control problem is to maintain the agreed levels of response time RSLA,i, i ∈

{0, . . . , n−1} of each class under varying workloads and resource demands while allocating

the limited amount of resources among them without violating the hard constraints on the

system. To deal with such multi-objective constrained control problems, model predictive

control (MPC) is widely adopted [21, 223] (see Appendix B). Therefore, MPC is well

suited for absolute performance and resource management in multi-class systems, which

has multi-input and multi-output configuration and operational constraints. However, as

opposed to the linear MPC, the MIMO Wiener MPC operates with transformed feedback

signals due to the integration of compensators (see, Section 4.3). An attractive feature of

the Wiener model is that it integrates static nonlinearity into the control system design

by preserving some of the numerical properties of the original linear MPC design and

the constraint problem [173]. This means that we can use a linear MPC formulation and

standard quadratic programming solver.

As mentioned, the Wiener MPC operates with transformed variables, in particular, the

standard output variable y(k) has to be replaced by the intermediate variable w(k). As a

consequence, the cost function of the standard MPC has to be transformed as follows.

J(k)(W ) = (Rs(w) −W )Q(w)(Rs(w) −W )T +∆UR(w)∆U
T (5.12)

where, Rs(W ) = g−1(Rs) is the transformed reference signal fromRs = [RSLA,0 . . . RSLA,n−1]

that is the data vector for the future reference signal, W = [w(k + 1|k)T w(k +
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2|k)T . . . w(k+Np|k)T ]T is the transformed output vector, that is the data vector for the

predicted output, and ∆U = [∆u(k)T ∆u(k + 1)T . . . ∆u(k + Nc − 1)T ]T is the control

input. The weight matrices Q(W ) and R(W ) are assumed to be symmetric, non-negative

and positive definite. Np is the prediction horizon and Nc is the control horizon.

The first-term in equation (5.12) incorporates the deviation or error of the system

output compared to the desired values. The second-term incorporates the controller effort.

The objective is to minimize the error with minimal control effort. This objective has to

be achieved by minimizing the cost function J subject to the hard constraints on the

resources as follows:

Minimize J

Subject to: 
1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1


n×n︸ ︷︷ ︸

α

u(k) ≥


S0,min

S1,min

...

Sn−1,min


︸ ︷︷ ︸

β

(5.13)

[
1 1 . . . 1

]
1×n︸ ︷︷ ︸

ω

u(k) ≤ Stotal (5.14)

However, since the optimization is performed based on ∆u, these constraints will be

converted into functions in terms of the parameters ∆u(k)T ,∆u(k+1)T , . . . , u(k+Nc−1)T .

In addition, to solve this constraint problem using a standard quadratic programming

solver, the constraints have to be represented in the form of M∆U ≤ γ. These considera-

tions are incorporated as follows:

u(k) = u(k − 1) + ∆u(k) (5.15)

Then, using equation (5.15), equation (5.13) can be converted to
α∆u(k) ≥ β − αu(k − 1),

−α∆u(k) ≤ −β + αu(k − 1), (5.16)

and similarly, equation (5.14) can be converted to

ω∆u(k) ≤ Stotal − ωu(k − 1) (5.17)

Finally, the above formulated constraints in equations (5.16) and (5.17) are represented
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in compact M∆U ≤ γ form as follows: −α

ω


︸ ︷︷ ︸
M

∆u(k) ≤

 −β

Stotal

+

 α

−ω

u(k − 1)

︸ ︷︷ ︸
γ

(5.18)

The problem of minimizing equation (5.12) subject to equation (5.18) imposes con-

straints on the current input u(k) only (i.e. assuming Nc = 1), but the constraints can be

applied on the inputs of a even larger control horizon Nc. Such constraints can be also

implemented by extending equation (5.18).

It is also useful to note that MPC can handle soft constraints on the outputs and state

variables. This is out of the scope of this work. However, if the output constraints are

considered they have to be converted to the intermediate output variables wi as follows:

g−1(Ymin) ≤W (k) ≤ g−1(Ymax),

where, Ymin = [ymin,0(k) ymin,1(k) . . . ymin,n−1(k)]
T and

Ymax = [ymax,0(k) ymax,1(k) . . . ymax,n−1(k)]
T are the vectors containing bounds of the

output for each class.

5.4.3 Implementation and Tool Support

In this section, we present the details of MPC design, which includes the state-space

model transformation, controller development and quadratic programming solver imple-

mentation.

Formulation of the state-space model

In Chapter 4, we estimated a MIMO transfer function model for the case of absolute

performance management using system identification. However, the standard state-space

model is a popular method used to design MPC in the existing literature because of

the simplicity to handle multi-variable systems [223]. We therefore convert the MIMO

transfer function model to the state-space realization as follows. The standard form of the

state-space model is shown in equation (5.19).

xm(k + 1) = Amxm(k) +Bmu(k),

w(k) = Cmxm(k) (5.19)

where, w is the intermediate output variable of the Wiener model, u is the manipulated

variable (control input) and x is the state variable vector. In this work, a technique called

non-minimal state space realization presented in [223] is used to convert MIMO ARX
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model into the above state space model. The advantage is that the state space vector can

be formulated by measurable inputs and outputs, so that we can avoid the requirement of

having an observer [223].

Let us represent the MIMO ARX model of order n as

w(k + 1) + F1w(k) + F2w(k − 1) + . . .+ Fnw(k − n+ 1) = (5.20)

H1u(k) +H2u(k − 1) + . . .Hnu(k − n+ 1) (5.21)

Then, by selecting the state space vector

x(k) =
[
w(k)T . . . w(k − n+ 1)T u(k − 1)T . . . u(k − n+ 1)T

]
, the non-minimum state

space realization can be represented as follows:

x(k + 1) = Ax(k) +Bu(k),

w(k) = Cx(k) (5.22)

where7,

A =

 A1 A2

A3 A4

 , B =

 B1

B2

 , C =
[
C1 C2

]
,

A1 =


−F1 −F2 . . . −Fn

I o . . . o
...

...
. . .

...

o o . . . o

 , A2 =


H2 H3 . . . Hn

I o . . . o

. . . . . . . . . . . .

o o . . . o



A4 =



o o . . . o

I o . . . o

o I . . . o

. . . . . . . . . . . .

o o . . . o


B1 = [H1 o . . . o]T , B2 = [I o . . . o]T , C1 = [I o . . . o]T .

Example: For the first order MIMO ARX model shown in equation (4.16), the non-

minimum state-space realization is given below.

A =

 0.4817 −0.0145

−0.0146 0.5131

 , B =

 0.1446 −0.0110

−0.0079 0.1323

 , C =

 1 0

0 1


where, x(k) = [w0(k) w1(k)]

T .

Implementation of the MPC using Laguerre functions

As mentioned at the start of this section, the basic idea behind MPC is to compute the

7o is a matrix of zeros in corresponding dimensions, A3 is a zero matrix.
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future control trajectory. This control trajectory can be regarded as an impulse response

of a stable dynamic system. A Laguerre model based on Laguerre functions can be also

used to describe the impulse response of a stable system. Based on this concept, (Wang,

2009) proposed a MPC implementation framework based on Laguerre functions [223]. The

advantage of this approach is that when there is rapid sampling and complicated dynamics

in the system, the computation of control inputs does not require a large number of

parameters. Furthermore, the computational overhead can be reduced for MIMO systems.

In this work, we use the MPC formulation in [223] to implement MIMO MPC. Here, we

briefly describe the design of Laguerre functions based MPC, however, for more details

refer [223].

The incremental input, for a future sample instance can be described using Laguerre

functions as follows:

∆u(k + ki) = L(ki)
T η (5.23)

where, ki is a future sample, L(k) = AlL(k−1) and η = [c1 c2 . . . cN ]T . L(0)T is computed

by
√
β
[
1 − a a2 −A3 . . . (−1)N−1aN−1

]
, where 0 < a < 1 is the pole of the discrete

time Lageurre network, N is the number of terms in the network and β = (1− a2). Al is

a N ×N matrix and a function of a and β. c1, c2 . . . cN are Laguerre coefficients.

Then, according to the formulation in [223], the B matrix of equation (5.22) is par-

titioned into n columns (B1, B2 . . .Bn). The incremental vector for n inputs is repre-

sented by ∆u(k) = [∆u1(k) ∆u2(k) . . .∆un(k)]
T , where ith incremental input ∆ui(k) =

Li(k)
T ηi. This means each control signal is expressed by a Lageurre function with a pole

ai and number of terms Ni. Using these variables, the properties of Lageurre functions

and state variable data at the kth sample, the future state information can be predicted

for a future time instance p using equation (5.24).

x(k +m|k) = Apx(k) +

p−1∑
j=0

Ap−j−1
[
B1L1(j)

T B2L1(j)
T . . . BnLn(j)

T
]
η (5.24)

where, ηT =
[
ηT1 ηT2 . . . ηTn

]
.

Afterwards, the minimum value of the cost function in equation (5.12) is computed

and translated into the Laguerre function terms with the idea of computing the optimal

solutions for the cost function. The optimal solution without considering any constraints
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is given by

η = −Ω−1ψx(k) (5.25)

where,

Ω =
∑Np

m=2 ϕ(m)Qϕ(m)T +Rw,

ψ =
∑NP

m=1 ϕQA
m,

ϕ(m)T =
∑p−1

j=0 A
p−j−1

[
B1L1(j)

T B2L1(j)
T . . . BmLm(j)T

]
, Q = CTC and Np is the

prediction horizon. Finally, the computed η is used to calculate the input vector ∆u(k)

as follows.

∆u(k) =


L1(0)

T oT2 . . . oTn

oT1 L2(0)
T . . . oTn

...
...

. . .
...

oT1 o2(0)
T . . . Ln(0)

T

 η (5.26)

where, oTj , j = 1, 2 . . . n is a row vector of zeros with the same dimension to Lk(0)
T . Using

∆u and equation (5.15), u(k) can be computed which is applied in the system as the

resource allocation.

Implementation of the quadratic programming solver

The definition of the quadratic programming problem with respect to Laguerre func-

tions formulation is as follows:

J = ηTΩη + 2ηTψx(k) (5.27)

Mη ≤ γ (5.28)

where, J is the cost function, and equation (5.28) represents the constraint set.

The active set method is one of the widely adopted methods based on Lagrange mul-

tipliers to solve such standard quadratic optimization problems. In the active set method,

the constraints are categorized into active and inactive constraints at each stage. The

active constraints are the constraints where equality (=) conditions are satisfied at the

current stage of optimization. The inactive constraints are the constraints where in-

equality (<) conditions are satisfied. The Lagrange multipliers enable us to perform this

categorization. The formula to calculate Lagrange multipliers is given below.

λ = −(MΩ−1MT )−1(γ +MΩ−1ψx(k)) (5.29)

If elements of λ are positive, then the corresponding constraints are categorized as active,

else the constraint is inactive. Once, this categorization is performed the inactive con-
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straints are removed from the problem, while active constraints are used as the working

constraint set of the optimization problem. Iteratively, the constraint problem is reformu-

lated and solved till all constraints are satisfied. The solution for η is then calculated by

equation (5.30).

η = −Ω−1(MTλ+ ψx(k)) (5.30)

The active set method is hard to program and the computational overhead is large when

there are many constraints [223]. In addition, the active set method can lead to termination

of the runtime optimization process, because it requires matrix inversions, which may not

always be invertible.

In this work, we implement a quadratic programming solver called Hildreth’s quadratic

program, which can be classified under primal-dual method [223]. This algorithm is rela-

tively easy to program compared the active set method. Furthermore, Hildreth’s quadratic

programming solver does not require matrix inversions, and consequently the optimiza-

tion process can be carried out without interruptions, which is important in real-time

optimizations to avoid critical failures in the control system. However, the drawback is

that under conflicting constraints/situations, suboptimal solutions can be generated.

The details of Hildreth’s quadratic programming procedure are as follows. After ob-

taining the Lagrange multipliers (λ) vector, we focus on just one component (say λi)≥ 0 at

each step. This means at each stage cost function is optimized using a single component.

To minimize the objective function, λi will be adjusted, however, in order to reach the

minimum value if λi is required to be < 0, λi is set 0. Then, the algorithm proceeds to

i + 1 element and continues the same process. Once the final λ is computed, equation

(5.30) can be used to compute the optimal solution. The algorithm in detail can be found

in [223].

The above discussed MPC formulation and quadratic program solution implemen-

tations are available in our configurable C#.NET and Java class library, which will be

introduced in Chapter 7. In addition, a MATLAB implementations can be found in [223].

A limitation of the proposed controller design technique is that the control decisions

generated by the control system are continuous values. As a consequence, rounding-off

policies have to be implemented to convert the continuous values to the discrete values

(resource caps) that can be implemented in the software system.
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5.5 Evaluation of MIMO Wiener Control System

In this section, we evaluate the performance of the MIMO Wiener nonlinear control

system (namely, WMPC) under different operating conditions and business requirements.

The same system configurations used in Section 5.3 are used in this evaluation as well.

Here, we continue with the compensator and models estimated in Section 4.3.7. In

order to implement the MIMO Wiener controller, the transfer function model in equation

(4.15) was converted into the non-minimum state space model as described in Section 5.4.3.

The control and the optimization program covered in Section 5.4.3 were then configured

with the tuning parameters after careful investigation of the performance. The parameters

of the Laguerre functions based MPC for a system with two inputs were set at (a1 = 0.45,

a2 =0.45 and N1, N2 = 1). In addition, Np = 15 and u(0) = [15 15]T . It is worth noting

that the controller showed poor performance at low gains (Rw) because of the low model

fits (see Section 5.3). As a result, Rw was set to 500× I(2×2).

In order to compare the performance, we designed a MIMO linear model based control

system (namely, LMPC) as well. The MIMO linear model estimated in Chapter 4 is

utilized in this implementation. All the parameters of LMPC were set to the same values

as WMPC apart from Rw, which was set to 0.2× I(2×2).

In following cases we evaluate the performance of WMPC and LMPC in different condi-

tions and requirements. Table 5.6 lists the details of cases investigated and their objectives.

Note that, the workload conditions utilized in the following cases are the same workload

conditions used in Section 5.3 for the evaluation of the relative performance management

scheme. As mentioned, the LMPC shows fair performance without instabilities in the case

of absolute performance management scheme because of less intensive nonlinearities that

exists in the system compared to the relative performance management scheme. In the

following cases we compare the performance of the proposed nonlinear control technique

to investigate whether further improvements can be made compared to the linear counter-

part. Our main conjecture is that when the system has to operate in the sensitive region

due to the sudden workload variations, the performance management can be improved

due to the compensation of the nonlinearities at each output. In particular, we claim that

WMPC provides better disturbance rejection capabilities, without sacrificing the steady

state behavior. Table 5.7 and 5.8 summarize the results.
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Table 5.6: Operating conditions and objectives of absolute performance management

Case Description

A Workloads of both classes are increased in separate time pe-
riods. Investigating disturbance rejection capabilities under
sudden workload variations. Both set points are placed in
the ‘insensitive’ region.

B Workloads of both classes are increased simultaneously.
Here both classes are competing for equal amount of re-
sources. This is a condition with high interactions between
the inputs and outputs. Both set points are placed in the
‘insensitive’ region.

C Set points are placed in the ‘sensitive’ and ‘insensitive’ re-
gions, investigating the performance differentiation and dis-
turbance rejection capabilities together.

D Behavior of the control systems under extreme overloads.

5.5.1 Performance Management Under Different Cases

Case A : High workloads separately

In this case, we place the reference signals of both classes in the insensitive region,

making RSLA,0, RSLA,1 = 0.41 seconds. In order to evaluate the efficiency of resource

cap adjustments at runtime under varying workloads we change the workload of class0

and class1 to the highest capacity separately. Till the 30th sample a workload of 20

requests/sec is applied for class0 and class1. Then, at the 30th sample, class0 workload

increases to 45 requests/sec. Afterwards, at the 80th sample the class0 workload reduces to

20 requests/sec. At the 100th sample, class1 workload increases to 45 requests/sec from 20

requests/sec. Such, workload changes necessitate the control systems to efficiently adjust

the resource caps, otherwise the delays may lead to the degradation of performance of

both classes.

Figure 5.12 shows the performance of the MIMO linear and nonlinear control systems.

The general observation of both LMPC and WMPC is that when the high workloads are

applied at the 30th and 100th sample there is overshooting at the corresponding outputs.

This is the expected behavior because the controllers take time to adjust the resource

caps according to the new resource demands. However, when the two control systems are

compared, the overshooting and the settling time of LMPC at the disturbances are higher

than WMPC. The Max statistics of R0 in LMPC is around 1.7 seconds compared to 1.4

seconds of WMPC (see Table 5.7 and 5.8). This is a reduction of 300 (18%) milliseconds
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Figure 5.12: Performance management under high separate workloads (Case A)

of overshooting. Similarly, close to 200 milliseconds of overshooting has been reduced by

WMPC compared to LMPC at the 100th sample. Now, a possible question is did WMPC

sacrifice the steady state behavior (or error) while reducing the overshooting. This is

because, the overshooting and steady state behavior are typically, competing performance
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attributes of a control system. Table 5.9 and 5.10 illustrate the steady state error as SSE

for 1000 samples. That is we maintained the same high workload after the disturbance

for 1000 samples to examine the steady state error. It indicates that better steady state

performance of WMPC. As a consequence, our claim of better steady state behavior and

less overshooting is justified by this experiment. When the control signals are compared

it is evident that LMPC shows vulnerability to noisy conditions, leading to oscillations in

both control signals at the steady state compared to WMPC. Further, it is worth noting

that the implemented MPC and optimization solutions have not violated any of the hard

constraints imposed on the system during this experiment (see Figures 5.12e, 5.12f, 5.12g,

5.12h).

Case B: High workloads simultaneously

In this case, we increase the workload of both classes simultaneously to the highest

capacity. Consequently, in this condition there are significant interactions between the

inputs and outputs, because both classes are competing for an equal amount of resources.

Here, class0 and class1 start-off by sending 20 requests/sec each till the 50th sample and

afterwards both classes increase their workloads to 30 requests/sec simultaneously. RSLA,0

and RSLA,1 = 0.41 seconds.

Figure 5.13 indicates that the both outputs show overshooting due to the disturbance

at the 50th sample. For instance, LMPC shows a large overshooting in R1, while WMPC

shows a overshooting in R0. As a result, the statistics in Table 5.7 and 5.10 indicate

slightly better performance of LMPC for the case of R0 but much poor performance for

R1 compared to WMPC. However, both controllers settle to 15:15 resource caps after the

50th sample because both classes are applying the same workload. The control signals of

LMPC show oscillations indicating vulnerability to noisy conditions at the steady state

compared to WMPC. This is further justified by the long-term steady state error statistics

in Table 5.9 and 5.10. Although this is a condition where high interactions exist between

the inputs and output, WMPC has not shown any performance issues.

Case C: Different response time requirements

In this case, we set the response time requirements of different classes in different

regions. That is in the sensitive and insensitive regions by setting RSLA,0 = 0.41 (sec)

and RSLA,1 = 0.6 (sec) respectively. Therefore, class0 gets much better response time,

while class1 gets relatively higher response time. The experiment starts with 20 and 20
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Figure 5.13: Performance management under simultaneously high workloads (Case B)

requests/sec for class0 and class1 respectively. Then, at the 50th sample class1 increases

its workload to 40 requests/sec.

Figure 5.14 shows the responses of the control systems. In this condition, we assumed

that class0 is more important. Furthermore, reference signal (set point) of class1 is placed
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Figure 5.14: Performance management under different reference values (Case C)

in the sensitive region of the response time curve (see Figure 4.13). Consequently, the

resource allocation is delayed for class1 in order to maintain the response time in the

sensitive region. There is not much difference in the case of R0 in both control systems

(WMPC shows a slight improvement, see Table 5.7). In contrast, the steady state perfor-
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mance of LMPC is much poor compared to WMPC for the case of R1. This is because

R1 is operating in the sensitive region where queuing delays and nonlinearity affect the

performance of the control system. The compensation of the nonlinearity has reduced

these effects producing much better performance in the sensitive region. In particular, the

overshooting and the settling time have been improved with significantly better steady

state behavior. See Tables 5.7, 5.8, 5.9 and 5.10.

Case D: Extreme overloaded condition

In this work, the absolute performance and resource management problem was formu-

lated as a set point tracking problem using feedback control. A main known issue of the

absolute management scheme is that the steady state value of the response time signal

depends on the workload disturbance of each class under overloaded conditions [108, 145].

As a result, it is hard to specify a set point, because the controllability is lost for some

workloads. In this case, we examine the performance management capabilities of the

above control systems with an overloaded workload setting. Although the set point spec-

ified is not achieved, the optimization capabilities of the model predictive control system

implemented in this work provides performance differentiation under changing workload

conditions. We set RSLA,0 = 0.41 and RSLA,1 = 1 seconds and then overload the system

by applying 75 requests/sec for each class.

The responses of both control systems shown in Figure 5.15 indicate similar perfor-

mance and resource management capabilities. It is evident that the control objectives

or set points of both classes are not achieved. However, the performance differentiation

characteristics have been illustrated by the proposed control solution, because they have

maintained R1 much higher than R0. An important observation is that the control signals

have saturated (i.e., hit the maximum or minimum levels) indicating that this is the best

possible resource allocation setting to achieve the prescribed optimization and control

objectives. We will therefore not compare the management capabilities of WMPC and

LMPC, under overloaded cases for absolute performance management scheme.

5.5.2 Summary of Results

In the above evaluations, the proposed nonlinear control system has shown significant

performance improvements compared to the existing linear control system in all cases. In

particular, we observed efficient disturbance rejection capabilities without sacrificing the
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Table 5.7: Summary of statistics of class0 output (R0) under different cases

Case LMPC WMPC Dif(WMPC -LMPC)

SSE MIN MAX SSE MIN MAX SSE MIN MAX

A 5.47 0.353 1.69 3.505 0.353 1.381 -1.965 0 -0.309

B 0.258 0.319 0.602 0.331 0.319 0.732 0.073 0 0.130

C 0.251 0.319 0.642 0.202 0.334 0.604 -0.049 0.015 -0.038

Cases covered in Appendix E.2

D 0.993 0.317 0.732 0.524 0.317 0.59 -0.469 0 -0.142

E 26.977 0.155 1.287 23.217 0.155 1.518 -3.760 0 0.231

Table 5.8: Summary of statistics of class1 output (R1) under different cases

Case LMPC WMPC Dif(WMPC -LMPC)

SSE MIN MAX SSE MIN MAX SSE MIN MAX

A 18.707 0.340 2.288 12.041 0.340 2.087 -6.666 0 -0.201

B 0.492 0.340 0.928 0.161 0.340 0.589 -0.331 0 -0.339

C 18.066 0.340 2.515 6.395 0.340 1.715 -11.671 0 -0.800

Cases covered in Appendix E.2

D 0.928 0.335 0.839 0.603 0.335 0.668 -0.325 0 -0.171

E 24.527 0.216 1.526 22.787 0.216 1.526 -1.740 0 0

Table 5.9: Steady state statistics of class0 output (R0) under different cases

Case LMPC WMPC Dif

SSE Max SSE Max SSE Max

Case A after class0 disturbance 1.507 0.659 1.153 0.679 -0.969 -0.260

Case A after class1 disturbance 3.264 0.819 1.962 0.798 -1.188 -0.145

Case B 1.795 0.683 1.148 0.683 -0.643 -0.315

Case C 2.552 0.798 1.679 0.695 -19.171 -0.800

Table 5.10: Steady state statistics of class1 output (R1) under different cases

Case LMPC WMPC Dif

SSE Max SSE Max SSE Max

Case A after class0 disturbance 2.477 0.876 1.658 0.656 -0.819 -0.220

Case A after class1 disturbance 1.032 0.561 0.998 0.625 -0.034 0.064

Case B 1.371 0.635 1.075 0.613 -0.296 -0.022

Case C 36.312 1.290 27.053 1.139 -9.259 -0.151
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(h) Control signal u1 of MIMO WMPC

Figure 5.15: Performance management under overload (Case D)

steady state behaviour of the system. When the reference signals (SLAs) have been placed

in the sensitive region, the disturbances have been rejected efficiently under large workloads

variations by the new MIMO Wiener MPC, showing low overshooting and settling time

compared to the linear MPC.
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Further evaluations of absolute performance management under different workload

patterns (e.g., ramp and real-world workloads) can be found in Appendix E.2. In addition,

a MIMO Wiener controller is designed, developed and evaluated in a multi-class system

with three classes as well. The results are listed in Appendix F. Moreover, in order

to investigate the effects of the configuration parameters of the simulation environment,

further simulations are conducted in Appendix G using Monte-Carlo simulations. The

results under these conditions did not invalidate the results presented in the above section.

Chapter 8 further applies and validates the MIMOWiener control approach in a real-world

software environment.

5.6 Conclusion

This chapter have presented the design and development details of the new nonlinear

control systems equipped with nonlinear compensators to achieve the relative and absolute

performance management objectives of multi-class shared resource systems.

For the relative performance management, a new management system architecture

based on the Hammerstein-Wiener model and equipped with pre-input and post-output

compensators was used, in order to reduce the impact of the input and output nonlinear

dynamics respectively. We also formulated the MIMO absolute performance and resource

management problem of a multi-class system using a MIMO Wiener model predictive

control. The nonlinearities at each output was represented using a MIMO Wiener model,

and then compensators were designed and integrated at each output to reduce the impact

of the nonlinearities on the management system. The runtime control and optimization

problem of the transformed system was solved by MPC formulated with the transformed

variables.

In summary, compared to the existing linear control techniques, the proposed nonlinear

control techniques have successfully achieved the desired attributes required by the man-

agement system of a multi-class shared resource software environment, listed in Section

1.3. In addition, although the nonlinearities were explicitly considered in the design, we

were still able to use well-established control engineering techniques to design the proposed

nonlinear control systems providing systematic and formal design processes.

However, the nonlinear block-oriented models are most useful in the cases where non-

linearities are static. If this is not the case, integrated nonlinear blocks may amplify the
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non-static nonlinearities degrading the performance of the system [91]. Such behavior was

observed in some of the cases where the output noise impacted the operations of the com-

pensator, subsequently affecting the performance of the nonlinear control system. In such

situations, the on-line approximation techniques (e.g., [65, 91]) that estimate the output

nonlinearity or its inverse may provide improvements. Furthermore, one of the concerns in

the self-managed software systems is the computational demand of the management sys-

tem (for example, the Hammerstein-Wiener model control system with respect to relative

management) [203]. The nonlinear control systems impose an additional computational

overhead compared to a linear control system because of the integration of the nonlinear

compensators. The computational efficiency also depends on the selected nonlinear func-

tion type (e.g., polynomial and log). We have quantified the computation overhead in

[194].
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Chapter 6

Performance Management Using

Multi-Model Self-Managing

Control Schemes

6.1 Introduction

In Chapter 4 and 5, we illustrated the nonlinear characteristics of relative and absolute

management schemes. A single linear model typically captures the system behavior in a

particular operating region under certain operating conditions. The experimental results in

Chapter 4 and 5 indicated such linearization is inherently problematic because a software

system has to work in a spectrum of operating regions with changing conditions and

un-modelled system dynamics. However, in different operating regions, different models

may estimate the system dynamics much better, while different controllers may achieve

the required performance objectives effectively. We refer to the nature of a software

system needing to operate across multiple regions and therefore needing multiple models

to characterize the system behavior as the multi-model characteristic of the target system.

In order to improve the efficiency of a single linear model based control system, the ear-

lier chapters proposed nonlinear block-oriented modelling techniques and control systems

equipped with nonlinear compensators, which showed significant improvements compared

to a linear control system. However, compensation of nonlinearity is not the only way to

capture the multi-model (or nonlinear) characteristics. Other types of nonlinear modelling
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approaches could be: (i) design multiple static models that can capture and cope with the

system behavior in different operating regions; (ii) develop models and algorithms that

can adapt and learn at runtime; (iii) combination of (i) and (ii). After capturing the

behavior, multiple controllers have to be designed and integrated to the control system,

including the ability to detect the change of the operating regions and to switch between

the appropriate controllers at runtime. These solutions demand control systems that can

dynamically reconfigure themselves and select the suitable model and controller with little

or no human intervention. We call such control systems self-managing control systems.

A self-managing control system provides a high-level of adaptive capability, because it

reconfigures the structure of the control system at runtime, according to the changes in

the operating regions. However, deciding on the stable switching algorithms and its vari-

ables is a significant challenge under disturbances and changing dynamics. The focus of

this chapter is to investigate suitable control engineering approaches to design new self-

managing control system architectures to manage performance and resources of multi-class

shared resource environments.

Designing a multi-model self-managing control system for relative performance man-

agement is a challenging task. As characterized in Chapter 4, there are input and output

nonlinearities which affect the control system at runtime. From the cases studied in

Chapter 5, we observed that for some cases, a single or both nonlinearities could affect

the performance of the target system depending on the region of the input and output the

control system is operating in. As a consequence, selecting just a single state variable of

the system as the switching variable is problematic. Therefore, the relationships between

input and output have to be considered together to represent the dynamics of the target

system in multiple regions.

An approach called Multi-Model Switching and Tuning (MMST) adaptive control

[117, 164, 166] has been proposed by (Narendra and Balakrishnan, 1993) to overcome

the limitations of linear control and to address problems of adaptive control when the

conditions change fast and frequently. MMST adaptive control enables integration of

multiple models and controllers, and automates the selection of the appropriate model or

controller to achieve the desired control objectives in a way that takes account of different

operating regions of a target system. As such, MMST adaptive control can be categorized

as a self-managing control technique. The existing performance management studies of
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software systems have used either linear or adaptive control techniques. However, due to

the multi-model characteristics and fast changing conditions, MMST adaptive control is

a suitable candidate to implement management systems for software systems.

In the first part of this chapter, we investigate and evaluate a relative management sys-

tem design methodology based on the MMST adaptive control. The objective of this work

is to investigate whether MMST adaptive control provides any performance improvements

over the existing linear or adaptive control schemes. In order to achieve this objective,

based on the input and output regions of relative management system, two models are de-

signed and corresponding controllers are implemented, followed by integrating them into a

MMST switching scheme. This new self-managing control system has shown the capability

to autonomously detect the change of operating regions and then select the most suitable

controller to provide control decisions in that particular operating region at runtime for

most experimental conditions.

The second part of this chapter examines a switching scheme to achieve absolute per-

formance management objectives. For the case of absolute performance management, the

steady state error is higher when an output is operating in the sensitive region compared

to when it is operating in the insensitive region. In order to provide satisfactory perfor-

mance in both regions under disturbances, a single linear model based controller has to

sacrifice performance in both regions to some extent. In this chapter, we propose a new

rule-based multi-model self-managing control system design method to implement the ab-

solute management system. The switching is performed by observing the reference signals

of each class (i.e., RSLA,i, i = 0, 1, . . . , n). The management capabilities of this scheme are

also evaluated later on in this chapter and have shown significant design flexibility and

performance improvements. Furthermore, in contrast to MMST adaptive control, this

rule-based approach makes the switching decisions based on the reference signals, which

do not depend on the environmental conditions.

6.2 Relative Performance Management Using Multi-Model

Control

This section overviews a multi-model control system design mechanism for relative

performance and resource management. The proposed design methodology is based on

the MMST adaptive control [117, 164, 166]. Firstly, we introduce the basic concepts
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of MMST adaptive control. Secondly, we formulate the problem and then the design

methodology of the relative management system according to the MMST adaptive control

will be covered.

6.2.1 A Brief Overview of MMST Adaptive Control

SA

Actuator Sensor

Target system

Model (M1)

Model (Mn)

.

.

Controller  (Cn)

Controller  (C1)

.

.
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Algorithm

Σ

Σ

Switch

yu

ŷnŷ1

u1

un

en

e1

Figure 6.1: Block diagram of MMST adaptive control system

The MMST adaptive control was proposed by (Narendra and Balakrishnan, 1993)

to improve the transient response of adaptive control systems in the presence of model

uncertainties [166]. It is a concept inspired by biological systems [117]. Biological systems

have the ability to select an appropriate action for a specific situation from a collection

of behaviors. MMST uses the same concept by selecting the most suitable controller for

the current environment that the system is in. Figure 6.1 shows the main components of

MMST adaptive control.

The input and output of the target system are represented by u and y respectively.

There are n number of models (M1,M2, . . .Mn) describing the relationship between u

and y for different operating conditions, which provide estimations for the system output,

simultaneously. The estimates from these n models are denoted by ŷ1, ŷ2, . . . ŷn. Similarly,

there may be maximum of n controllers, with each corresponding to a model. Although

there are multiple controllers, only a single controller can be connected in the control loop

to make the control decisions at a given time instance. Thus, the most appropriate model
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and controller for the system and environment condition have to be selected to make the

control decisions at runtime. The responsibility of the switching algorithm is to select the

appropriate model and corresponding controller based on some criteria that will improve

the performance of the target system. There are multiple switching algorithms discussed in

[168]. All of these algorithms are based on the prediction errors of the models (e = y− ŷ).

The prediction error provides the indication that at the current instance, which model fits

the current operating conditions of the system. Hence, the integration of this model and

the corresponding controller into the control loop should improve the performance of the

control system [168]. The model evaluation and selection steps of the switching algorithm

are summarized as follows:

Model evaluation:

Ji(k) = αe2(k) + β
k∑

r=0

e2(r),∀i = 1, 2, . . . n (6.1)

Model selection:

Jmin(k) = min{ji(k)}, i = 1, 2, . . . n (6.2)

k is the time instance. α, β ≥ 0 are parameters that should be carefully decided by the

designer. The first and second term of equation (6.1) are called the instantaneous-term

and long-term components respectively. If α > 0, β = 0, only the instantaneous part

is utilized. In this case switching may be frequent, leading to performance degradation

[166]. If α = 0, β > 0 only the long-term component is active, hence the switching may be

infrequent, again possibly lead to performance degradation [166]. In the model evolution

step, the J index of each model is calculated based on equation (6.1) using the prediction

error data of each model. In the model selection step, the model that produces minimum

J index (Jmin) is selected and the corresponding controller is integrated into the control

loop. In addition, Tmin is another parameter called waiting time period which specifies

the time that the control system has to wait before selecting the next controller to control

the system [164, 166]. The index in equation (6.1) is most suitable in time-invariant

environments. For time-varying environments long term error accumulation will affect the

J indexes. In such conditions the performance of the MMST adaptive control systems can

be improved by calculating the performance index in a finite window (T ≥ 0) as illustrated
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in equation (6.3).

ji(k) = αe2(k) + β

k∑
r=k−T+1

e2(r),∀i = 1, 2, . . . n (6.3)

The above discussion presents the general concepts of the MMST adaptive control. Going

further, different types of multi-model schemes have been evaluated and formal stability

proofs are provided in [164, 165]. These multi model schemes are as follows.

Type 1: All adaptive models- in this scheme all the system models (Mi, i = 1, 2, . . . n)

are estimated by the on-line identification (estimation) algorithms [13, 125]. The corre-

sponding controllers use the parameter estimations to come up with the control input

u. This scheme is computationally inefficient. In addition, if the environment remains

unchanged for a long time, all the adaptive models will converge to the same parameter

neighbourhood which reduces the advantage of having multiple models. In addition, when

a sudden disturbance occurs, models may not react to it rapidly, without re-initialization

due to the inherent characteristics of adaptive control [117].

Type 2: All Fixed models- This scheme addresses some of the limitations in the type

1 scheme by integrating fixed models and fixed gain controllers. Fixed gain control is

generally not regarded as an adaptive technique, but because of the switching capabilities

this scheme can be considered as an adaptive reconfiguring control technique. However,

fixed models can only represent a finite number of operating regions or conditions. As

such, this scheme assumes that there is always one of the models that closely approximate

the system behavior. Therefore, to satisfy this assumption and the stability requirements

we may have to build a large number of fixed models.

Type 3: One Adaptive model and one Fixed model - In this scheme, initially the fixed

model may be selected since the adaptive model takes time to converge at the startup.

However, when the adaptive model converges, it will often outperform the fixed model.

This scheme is simple and addresses some of the limitations in the above two schemes,

however the same limitations of adaptive control exist under fast changing conditions.

Consequently, much improvement in the performance may not be achieved compared to a

single adaptive model based control.

Type 4: Adaptive models and Fixed models- Different types of schemes can be for-

mulated combining adaptive and fixed models. Two main configurations are discussed

in [117, 164]. The first configuration includes n-1 fixed models and one adaptive model.
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From prior knowledge of the system’s operating and environment conditions, n−1 number

of fixed models can be designed. Then, the adaptive model is run free of interference to

capture the system dynamics that is not captured by the fixed models. On the other hand,

the second configuration includes another adaptive model, i.e., involving n-2 fixed models

and 2 adaptive models. The second adaptive model is re-initialized with the parameters

of the best model in the current time instance. The main purpose of this adaptive model

is that after re-initialization it may converge faster to the new model parameters so that

the transient responses may be improved under sudden disturbances. To achieve effective

performance under these two configurations, the design of the fixed models has to be done

after carefully analyzing the available prior knowledge on the system and its environment.

The above discussion provides the objectives, features and some limitations of different

MMST adaptive control schemes. MMST adaptive control is an indirect adaptive control

[13] scheme since it depends on the model selection or estimation before providing the

control decisions. Furthermore, it is a form of reconfiguring control (see Appendix B)

because MMST adaptive control changes the models, controllers, components and the

architecture of the control system at runtime, depending on the changing conditions.

Interested readers are referred to [164, 168] for the details of simulation studies and the

stability proofs of these MMST schemes in guaranteeing that the system will not be

unstable due to the switching and tuning behavior.

6.2.2 Analysis of MMST Adaptive Control for Management of Software

System

Several papers have illustrated the problems of fixed [107, 151] and adaptive [92, 189]

control to manage software systems. MMST adaptive control combines the qualities of

both of these regimes. In general, MMST adaptive control can be used to represent a

software system with multiple models. Furthermore, it can self-manage the control sys-

tem without any human intervention, reducing the system administration effort. However,

there is a set of questions in the design of such a scheme for a software system. The main

questions are: (i) which schemes to use, (ii) how many fixed or adaptive models and how

to identify them and (iii) how to configure the switching algorithm. Answers to these ques-

tions are application or requirements dependent. At the design time, suitable models and

controllers have to be formulated, depending on the available knowledge about the oper-
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ating conditions, system behavior and physical analysis [117]. However, precise knowledge

is not required, because the models are estimations of system dynamics, which are not

always 100% accurate. Considering the characteristics of the software systems, type-2 and

type-4 schemes may be most suitable. This is because, type-1 is computational inefficient

and type-3 may not provide improvements compared to the basic adaptive control. For

systems where some prior knowledge is available about the operating conditions, different

fixed models can be approximated and integrated utilizing MMST type-2 scheme. If there

is little or no prior knowledge about the system or the systems that change often, there

is the need to integrate adaptive models together with the fixed models using the MMST

type-4 scheme. However, if there is little prior knowledge, fixed models can be uniformly

placed in the model parameter space as proposed in [167]. It is also recommended to start

with a small number of models and include more models depending on the performance

observed. Since software systems investigated in this thesis are typically nonlinear and

time-varying [81], the switching scheme in equation (6.3) may be most suitable by setting

α = 0 , β = 1 to achieve predictable and consistent switching. T is recommended to be

set to a small value to avoid large transient responses if the conditions are fast varying.

6.2.3 Relative Performance Management Using MMST Adaptive Con-

trol

In Chapter 4, the nonlinear characteristics of the relative management system were

conceptualized as the input and output nonlinearities. Instead, in this section, after con-

ceptually fragmenting the dynamics of the system into multiple regions, a linear model is

used to represent the dynamics of each region. Then, using the identified models a MMST

adaptive control system is implemented.

6.2.3.1 Model Identification

Figure 4.2 and 4.3 in Chapter 4 illustrate two regions of the input and output of the relative

management system, namely region (0) and (1). In these two regions the dynamics of the

system are significantly different. As a result, representing the system with a single linear

model and then designing a single controller indicated significant performance issues. In

this section, the system dynamics in these two regions will be estimated with two linear

models. For this purpose, two system identification experiments have to be conducted.
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Firstly, to compute the possible operating points (or the range of u) of the system, we

can utilize equation (4.1) and calculate the points for S0 ∈
{
S0,min, Stotal −

∑n−1
j=1 (Sj,min)

}
.

These computed operating points are for a controller managing the first pair of classes,

assuming that the rest of the classes are guaranteed the required minimum allocation

Si,min. The point that both class0 and class1 get equal amount of resources is called

as nominal operating point. The rest of the operating points are grouped into region

0 and region 1 where class0 or class1 workloads get more resources respectively. The

first system identification experiment is conducted using the operating points in region

0, by applying high workload disturbance for class0 and a nominal workload for class1.

As a consequence, the system output will remain in region 0 (see, Figure 4.3). The

gathered u − y data is then used to estimate the dynamics of the system. Similarly, the

dynamics in the region 1 is estimated using a second system identification experiment.

Let us denote the models estimated from the first and second experiment as model-0 and

model-1 respectively.

6.2.3.2 MMST Adaptive Control System Design

As discussed in Section 6.2.2, MMST-Type 2 and 4 schemes are more suitable to implement

control systems for software systems. In this section, using the two models identified in

Section 6.2.3.1, implementation steps of MMST-Type 2 and 4 schemes are covered. The

design procedure is similar to Chapter 5, where a control system is designed for the first

pair of classes in the system. The same MMST adaptive control system is then integrated

to manage the performance and resources of each consecutive pair of classes.

Implementation of MMST-Type 2 scheme

As shown in Figure 6.2a, MMST-T2 scheme requires integration of the fixed models rep-

resenting different operating regions and the respective controllers. After identification of

the models (see Section 6.2.3.1), the next step is to construct the suitable controllers and

configuring the switching parameters. Two types of discrete PI control laws are listed in

Appendix B. Equation (B.1) illustrates the position/full-value form of the PI control law,

which is widely used to manage software systems (e.g., see [61, 81, 183]). However, in the

switching control systems this control law may cause performance issues. For instance,

when the control is switched from one controller to another due to a large disturbance, the
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integral term (the second term) in equation (B.1) may have different values, which may

lead to implementation of different or unsuitable control inputs by the new controller. As

a consequence, there may be large transient output responses, failing to achieve bump-less

transfers [258]. In contrast, the velocity/incremental form of the PI law illustrated in

equation (B.2) is well known in implementing bump-less transfers in the case of mode and

controller switching systems [258]. This is because the control input of the previous sample

(u(k − 1)) is used as a relative point and the incremental part (computed by summation

of the second and third terms) is added to it. Consequently, u(k) may not have large

deviations from u(k − 1) even after the controllers are switched. As a consequence, in

this work, the velocity form of PI control is implemented to achieve smooth or bump-less

transfers, when the controllers are switched abruptly in and out of the control system.

This is the same PI control algorithm presented in Chapter 5.

Next, the gains (Kp, Ki) for the two controllers have to be decided, which provide the

control in region 0 and region 1. As seen from the experimental results and observations in

Chapter 4 and 5, it is hard for a single PI controller to satisfy the performance objectives

and stability of the system under many different conditions. An aggressive controller (with

large gains) is needed to achieve the performance objectives in region 0 (called controller-

0 ), whereas a comparatively less aggressive controller (with smaller gains) is needed to

provide control in region 1 (called controller-1 ). The aggressive controller will take larger

steps in region 0 and reach the desired control inputs in region 0, which has larger gaps

between the operating points. However, in region 1 because of the spacing between the

control inputs is small (see Figure 4.2), the large steps taken by the aggressive controller

will create instabilities. In contrast, the less aggressive controller taking smaller steps

settles to appropriate operating points in region 1, avoiding such instabilities. But the less

aggressive controller will show large settling times and performance degradation when it

is operating in region 0. The gains for these regions can be finalized using the simulation

studies by integrating each controller separately to the control system. The pole-placement

design methodology introduced in Chapter 5 can be used here as well1.

After finalizing the models and controllers, {controller-0, model-0} and {controller-1,

model-1} are grouped together. The final step is to configuration of the switching al-

1In order to adjust the gains for each controller, the α and β values of the desired closed-loop equation
have to be changed.
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gorithm. This step includes, selection of the parameters of the switching algorithm, α,

β, (T ) and the start-up controller2. The model evaluation algorithm with a finite win-

dow illustrated in equation (6.3) is used, because of the time-varying operating conditions.

Extensive simulations and testing have to be conducted in order to fine tune these configu-

ration parameters. Consequently, design heuristics have to be used in this implementation

to reduce the development costs (see, Section 6.3.3).

Implementation of MMST-Type 4 scheme

MMST-Type 4 (from here on, MMST-T4) scheme is a complex scheme compared to

MMST-T2 because of the addition of the adaptive models. Figure 6.2b shows MMST-T4

scheme with a free running adaptive model integrated together with the estimated two

fixed models. Hence, this is a MMST-T4 configuration with n − 1 fixed models and an

adaptive model.

The controller is a single self-tuning PI controller (with a similar structure to Figure

B.1b), which computes the controller gains given the parameters of the model and the

design specifications. The two fixed models (model (0) and (1)) and a first order ARX

adaptive model (implementing the recursive least squares algorithm [13, 125]) are evalu-

ated by the switching algorithm using equation (6.3) and subsequently the best model is

selected at each switching period. The parameters of the selected model are then given

to the controller design component to compute the gains of the self-tuning PI controller.

Furthermore, the design specification includes the desired closed-loop equation with α and

β. The velocity form is used in the self-tuning PI controller as well (see [81] for more de-

tails). Afterwards, model-0, model-1 and the adaptive model are integrated to the control

system, with the self-tuning PI controller as the controller. In addition to the design pa-

rameters of MMST-T2, here the parameters of the adaptive model (e.g., forgetting factor

[13]) have to be set as well.

Finally, the selection of the suitable switching algorithm parameters is paramount after

conducting the simulations to avoid chattering and instabilities.

2controller-0 or controller-1 can be selected as the start-up controller to provide control till the first
switching decision is made by the MMST control system. The start-up controller operates in the first T
samples.
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6.3 Evaluation of MMST Adaptive Control Systems

In this section, we provide the implementation details and evaluation results of MMST-

T2 and T4 control systems designed for relative performance management. The simulation

settings used in Chapter 5 will be used here as well.

Model identification. The first step is to compute the input range and fragment it

into region 0 and region 1. Using the procedure explained in Section 6.2.3.2, the set of op-

erating points for the control input u is 6
24 ,

7
23 , . . . ,

23
7 ,

24
6 (see Figure 4.2). region 0 includes

operating points 15
15 ,

16
14 , . . . ,

23
7 ,

24
6 and region 1 includes operating points 6

24 ,
7
23 , . . . ,

14
16 ,

15
15 .

A system identification experiment is then conducted to capture the dynamics in each of

these regions, simulating the suitable workloads. The points in region 0 were used to

design a pseudo random signal for the system identification experiment. 45 requests/sec

and 15 requests/sec were selected to simulate class0 and class1 workloads respectively, in-

dicating high workload and resource demands for class0. This experiment was carried out

for 600 sample periods and the gathered input-output (u − y) data was used to estimate

the model for region 0. The data samples till the 400th period were included in the esti-

mation set and the rest of the data samples formed the test set. A first order ARX model

was used to fit the data with sufficient accuracy (i.e., model-0 ). A similar experiment was

carried out in the region 1 as well. Again, a first order ARX model was used to fit the data

with sufficient accuracy (which we call model-1 ). The model parameters and structure

of model-0 and model-1 are shown in equations (6.4) and (6.5) respectively, with R2 fit

over 75%. When these two models are compared, although the output coefficients are

similar, the input coefficients are significantly different. As a result, the step responses of

these models are significantly different from each other. This means that these two models

represent different dynamics, therefore they are suitable to implement multi-model control

systems.

y(k + 1) = 0.63y(k) + 0.14u(k) (6.4)

y(k + 1) = 0.64y(k) + 0.96u(k) (6.5)

MMST-T2 implementation. As mentioned in Section 6.2.3.2, aggressive

143



Chapter 6. Performance Management Using Multi-Model Control Schemes

Table 6.1: Parameters of the control systems

Parameter controller -0 controller-1

Kp 0.84 0.24

Ki 0.42 0.06

Min situation limit 0.25 0.25

Max situation limit 4 4

Initial input u(0) = 1 u(0) = 1

(controller-0)3 and relatively less aggressive (controller-1)4 controllers were designed to

provide control in region 0 and region 1 respectively. The controller parameters are

shown in Table 6.1. It is worth noting that controller-0 is more aggressive than the linear

controller used in the simulation studies of Chapter 5. On the other hand, controller-1 is

significantly less aggressive than the linear controller used in Chapter 5.

We set α and β to 0 and 1 respectively to achieve consistent switching under noisy

conditions. (T ) was set to 3, to trade-off between chattering and reaction time to changing

conditions/regions. Furthermore, without loss of generalitycontroller-0 was set as the

start-up controller.

MMST-T4 implementation. The same parameters specified in Section MMST-T2

were used in this implementation as well. The forgetting factor of the adaptive model

was set to 0.94 (around the standard value recommended by [13]). The specifications to

the control design component is the desired pole locations of the self-tuning PI controller,

which were placed at (0.7 and 0.7). It is important to emphasize that due to the highly

dynamic operation conditions, tuning of the adaptive controller was significantly difficult

and the performance was poor in most cases.

In the following sections we validate the performance of MMST-T2 and T4, under the

operating conditions and business requirements used in Chapter 5. See Section 5.3 for the

details of the settings used in the following cases. In order to compare the performance of

a single linear model based control system, the results produced by LCS in Chapter 5 are

presented here as well. We also present the results of a standard self-tuning PI adaptive

controller (namely, ACS ) implemented with the same settings used in the MMST-T4

control system. It is also worth noting that the results for only some cases will be presented,

however, a summary of the statistics for all cases is listed in Tables 6.2 and 6.3. The rest

3by placing poles of the desired closed-loop equation at α = 0.45 and β = 0.45
4by placing poles of the desired closed-loop equation at α = 0.8 and β = 0.8
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of the evaluations can be found in Appendix E.3.

6.3.1 Workloads of Full Capacity or Lower

Case A: Performance away from the nominal region
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Figure 6.3: Performance of the control systems away from the nominal region (Case A)

In this case, LCS showed significant performance issues and instabilities after the

disturbance at the 100th sample. This issue has been resolved by MMST-T2 control

system, which combines the performance of two controllers particularly designed to operate

in each region. The model switching signal in Figure 6.3e illustrates that controller-0

designed to operate in region 0 was selected by the switching scheme autonomously, by

detecting the change of workload conditions at the 30th sample. Similarly, model-1 and

controller-1 were selected to operate after the 100th sample, reducing the effect of poor

performance illustrated by LCS.

Although MMST-T4 shows poorer performance compared to MMST-T2, it shows much

better control compared to LCS and adaptive control in this case. The adaptive controller

shows large transient error after the disturbance at the 100th sample. This is because of

the inherent limitation of adaptive control in reacting to sudden changes in conditions.

However, model-1 was selected by the MMST-T4 switching algorithm most of the time

after the 100th sample which captures the dynamics sufficiently in region-1, improving the
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performance compared to the standard adaptive controller. It is interesting to note that

the adaptive model has been selected by MMST-T4, when the adaptive model has settled

to the new parameter estimates after the disturbances.

Case B: When class0 is more important

0 20 40 60 80 100
0

1

2

3

4

5

Sample Id

R
es

po
ns

e 
tim

e 
ra

tio

 

 

y Set point

(a) Output of LCS

0 20 40 60 80 100
0

1

2

3

4

5

Sample Id

R
es

po
ns

e 
tim

e 
ra

tio

 

 

y Set point

(b) Output of MMST-T2

0 20 40 60 80 100
0

1

2

3

4

5

Sample Id

R
es

po
ns

e 
tim

e 
ra

tio

 

 

y Set point

(c) Output of MMST-T4

0 20 40 60 80 100
0

1

2

3

4

5

Sample Id

R
es

po
ns

e 
tim

e 
ra

tio

 

 

y Set point

(d) Output of ACS

0 20 40 60 80 100

0

1

Sample Id

M
od

el

(e) Model switching signal of
MMST-T2

0 20 40 60 80 100

0

1

RLS

Sample Id

M
od

el

(f) Model switching signal of
MMST-T4

Figure 6.4: Performance of the control systems when class0 is more important (Case B)

In this case, all control systems show deviations from the set point, in particular at the

50th sample due to the workload disturbance (see Figure 6.4). The statistics in Table 6.2

indicates that MMST-T2 scheme provides better performance compared to LCS, adaptive

and MMST-T4 schemes. Although chattering was observed in the case of MMST-T2

scheme (see Figure 6.4e), controller-1 was selected most of the time after the 50th sample

indicating model-1 is closer to the conditions in this case. However, the noise of the output

signal leads the control system to falsely detect the change of dynamics, subsequently to

select controller-0 abruptly. The bump-less transfers implemented by the PI controller

mitigate the issues of chattering to some extent, indicating to better performance compared

to LCS. Both control systems that included an adaptive model showed significant issues

under these conditions.

Case C: When class1 is more important

Figure 6.5 shows the performance of the control systems under Case C settings.
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Figure 6.5: Performance of the control systems when class1 is more important (Case C)

MMST-T2 outperforms MMST-T4 and ACS, while providing similar performance to LCS.

Again chattering was observed during the first 50 samples till the disturbance, however

model-0 and controller-0 were selected afterwards. Even though combination of the two

controllers led to chattering, the performance has not significantly affected compared to

LCS, because of the bump-less transfers. The poor performance of the MMST-T4 control

system is caused by the poor performance of the adaptive model and chattering under the

changing conditions.

6.3.2 Workloads of Extreme Overload

Case D: Performance in away from the nominal region under overload

The results of the control systems shown in Figure 6.6 and Table 6.2 indicate that

MMST-T2 has outperformed LCS, ACS and MMST-T4 control systems. The better per-

formance is achieved by the combined performance of the controller-0 and controller-1,

which are autonomously selected depending on the operating conditions (See Figure 6.6e).

Further, no chattering was observed in this case. MMST-T4 also provides better perfor-

mance compared to LCS and ACS. The model switching shown in Figure 6.6f indicates

that the adaptive model was selected infrequently compared to other two models. As a

result, MMST-T4 shows similar behavior to MMST-T2 scheme. Further, less workload
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Figure 6.6: Performance of the control systems away from the nominal region under
overload (Case D)

was rejected by the two MMST control systems compared to two other control systems

(see Table 6.3).

Case E: Performance under overload when class0 is more important

Figure 6.7 shows the performance of the control systems under Case E settings. MMST-

T2 control system has selected the model-1 most of the time providing better performance

compared to LCS, MMST-T4 and ACS. Although the results summarized in Table 6.2

indicate improvements for this case, the long-term execution of the MMST-T2 control

system showed instabilities similar to LCS. This is because, selection of the controller-0

which is even more aggressive than the LCS, led to instability which the MMST-T2 control

system was unable to recover from. A possible solution to improve the performance in

this case was to change the T parameter of the switching algorithm to as short as 1 or 2,

instead of 3 used in this case. However, such small T values affects the results of the other

cases examined earlier.

In summary, when MMST-T2 and LCS is compared, the general observations are

MMST provides better performance in cases where output noise is lower (e.g., Case A,

D), avoiding the instabilities and performance degradation of a single linear controller.
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Figure 6.7: Performance under overload when class0 is more important (Case E)

However, the issues inherit to switching control systems such as chattering were observed

in the cases that show noisy output signals (e.g., Case B, C, E and F), subsequently

leading to transient responses. Although the velocity form of the PI controller substantially

mitigated the repercussions of chattering, the other parameters of the switching algorithm

have to be still selected properly depending on the case. Therefore, MMST-T2 scheme has

to be tuned and used only after careful analysis based on the simulations. It is also worth

noting that, MMST-T2 control approach was less effective in tackling the nonlinearities

that exist in the relative performance management system compared to the Hammerstein-

Wiener approach presented in Chapter 5.

When MMST-T2, MMST-T4 and ACS are compared, the general conclusion from the

results in Table 6.2 is that MMST-T2 provides better performance. The problems of the

other control systems are because of the fast changing dynamics, noise and nonlinearities

that exist in the relative management system affect the closed-loop model estimation at

runtime when there are sudden variations in operating conditions. Consequently, the

gains computed at runtime by MMST-T4 and ACS are either too high or too low causing

instabilities or larger transient responses compared to LCS and MMST-T2. As a result,

incorporating an adaptive model in these cases leads to many performance management
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problems.

6.3.3 Impact of the Tuning Parameters of MMST Adaptive Control

In this section, we illustrate the importance of selecting suitable tuning parameters

of the MMST adaptive control in order to achieve the required performance objectives

avoiding the limitations inherent to switching control systems. Furthermore, a set of

guidelines is specified for deciding the tuning parameters in such implementations. We

use ‘Case A’ settings, which provided consistent performance and model switching to

investigate the effects of these parameters.

6.3.3.1 Impact of Number of Models

Theoretically, for the case of MMST-T2 scheme, when the number of fixed models in-

creases the performance may become much better [117]. However, the downside is the

computational overhead and chattering under fast changing conditions. Consequently, the

suitable number of models has to be decided carefully, after investigating the prior knowl-

edge available on the system. We investigated the behavior of MMST-T2, when another

model is added to explicitly represent the nominal input and output region (model-2) of

relative management system. In addition, another controller was designed to operate in

that region as well (controller-2).

Figure 6.8a shows the output and model switching signals of the control system. The

interesting observation is that controller-2 was selected till the 30th sample because it

was explicitly designed to represent the nominal region. The overall performance was

satisfactory, however abrupt model switching was observed compared to the performance

of Case A in Section 6.3. In particular, when the control system operates in region 1,

chattering occurs for short time period affecting the steady state behavior slightly. Conse-

quently, compared to the performance with two models, addition of another model led to

chattering, thereby indicating slight performance degradation for Case A and other cases

as well.
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6.3. Evaluation of MMST Adaptive Control Systems
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Figure 6.8: Performance of MMST2 with the different parameter settings
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6.3.3.2 Impact of Short Finite Time Window

For this experiment, the time window T was set at 1 and 15. Figure 6.8c shows the

performance and switching behavior for the case of T = 1. Compared to the results in

Section 6.3, which used T = 3, the performance under low T causes frequent chattering.

The performance in region-0 (after 30th sample) is much better compared to region 1 (i.e.,

after the 100th sample). This is mainly because less chattering occurred during the time

period from the 30th sample to the 100th sample. However, due to highly discontinuous

operating points in region 1, controller switching occurs frequently, leading to high steady

state error and oscillatory behavior. The high switching period of 15 on the other had

delays the selection of the suitable controller, leading to the performance issues (see, Figure

6.8e). However, issues related chattering are significantly less.

The general heuristic is that if the system has fast varying dynamics it is better to

have low T , but if it is not that fast varying, relatively high T can be used. The simulation

studies may provide a means to evaluate such performance characteristics before setting

this parameter in a real system.

6.3.3.3 Impact of the start-up controller

For the experiments in Section 6.3, controller-0 was used as the start-up controller to

provide control till the first switching decision is made by the control system. In this

section, we set controller-1 as the start-up controller to check if it has an effect on the

switching behavior initially or afterwards. The performance and switching behavior shown

in Figure 6.8g is similar to the results of Section 6.3. Although after brief selection of

controller-0 at the 3rd sample, the controller-1 was used till the 30th sample. However,

the overall performance under this setting is identical to the output of Case A of Section

6.3. Therefore, the selected start-up controller has not affected the performance of the

control system apart from the initial switching behavior. Based on this result, we conclude

that the selection of the start-up controller can be done arbitrarily.
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6.3.3.4 Impact of Using Only the Instantaneous Component of the Switching

Algorithm (When α= 1 and β = 0)

In this experiment, we only use the instantaneous component of the switching algorithm

compared to those in Section 6.3, which used only the long-term component. The output

of the system (see Figure 6.8i) illustrates high settling time compared to the performance

in Section 6.3. The switching behavior in Figure 6.8j is also different from that of Section

6.3. Especially, at the 100th sample, chattering can be observed causing slight deviations

in the output. In addition, there is an inconsistent model switch before the 30th sample.

Such inconsistent and unpredictable switching behavior is caused because of the utilization

of only the instantaneous component. However, when the long-term component is added

to the switching logic, this effect can be removed. The simulations that had β = 1 and

small values of α (=0.1 to 0.3) showed model switching and performance similar to Case

A in Section 6.3.

Further evaluations of MMST adaptive control can be found in Appendix F.3 for the

case of a system serving three classes. Monte-Carlo simulations are also conducted to

check the impact of the simulation settings, on the result presented in this section (see

Appendix G). Furthermore, experiment results of MMST adaptive control in a real-world

case study can be found in Chapter 8.

6.4 Absolute Performance Management Using Multi-Model

Control

In this section, we present a switching control system design technique based on multi-

ple models to improve the performance of the absolute performance management scheme.

From the results of linear MIMO control system in Chapter 5, the controller showed

high steady state error when the set points are placed in the sensitive region (see Fig-

ure 4.13). In order to capture the behavior in the both insensitive and sensitive regions

the linear model was designed limiting the range of the system outputs in a narrow region

spanning both insensitive and sensitive regions. As a consequence, in the model estimation

and controller tuning processes, trade-offs had to be made to provide satisfactory perfor-

mance in both regions. For instance, if only one class operates in the sensitive region, a

model could be estimated and a controller could be implemented to provide performance
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for that specific requirement, without estimating the behavior in both regions. Afterwards,

these models and the linear MIMO controllers can be combined with a simple rule-based

switching algorithm, instead of using the complex switching rules such as in MMST adap-

tive control. The following subsections provide details of the model identification and

switching algorithm design steps.

6.4.1 Model Identification

Depending on the possible requirements, models can be estimated based on the system

dynamics in different regions. For instance, Figure 6.9 shows whereRSLA, i.e. the reference

could be placed in the output regions. The possible cases include, both classes having set

points in just insensitive or sensitive regions and one class specifying the set point in

the sensitive region, while the other in the insensitive region. Once the required RSLA

is decided, the operating output regions can be finalized. Subsequently, models have to

be estimated to capture the dynamics in those output regions using the MIMO system

identification procedure presented in Section 4.3.6. According to Figure 6.9, four models

have to be estimated to cover all possible combinations. However, two models are enough,

after RSLA,1 and RSLA,2 have been defined. Finally, the step responses of these models

have to be analysed to check whether these models show similar characteristics. If the

models are similar, the number of models can be reduced by removing the similar models.
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Figure 6.9: Output regions where the set points (RSLA) could be placed for two classes

6.4.2 Switching Control System Design

In order to design the switching control system, the individual MIMO linear MPC

controllers have to be developed from the finalized number of models and then tuned

after the simulation studies depending on the operating conditions and requirements. It is
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worth noting that the MPC control and constraint problem formulations are the same as

in Chapter 5 for all these controllers. After the design of controllers, the switching rules

have to be implemented to switch between the controllers. As mentioned in the previous

section, the set point signals are the suitable scheduling variables to make the switching

decisions at runtime.

Example: For a system with two classes, let us say two models are estimated for case

1 and case 2 shown in Figure 6.9. Then, two controllers are designed based on those

models, namely LMPC1 and LMPC2 respectively. Subsequently, the switching rules are

implemented as follows.

If (RSLA,0(k) < level1 and RSLA,1(k) < level1) then execute LMPC1 to compute the input

vector of that controller, i.e., U1(k)

Else If (RSLA,0(k) < level1 and RSLA,1(k) ≥ level1) then execute LMPC2 to compute the

input vector of that controller, i.e., U2(k).

where, level1 is the variable which divides the output region into insensitive and sensitive

regions, U1(k) = [u0(k) u1(k)] and U2(k) = [u0(k) u1(k)]. u0(k), u1(k) are the resource

caps of class0 and class1 respectively. Although there are abrupt switching between the

controllers when the set point signals change, bump-less transfers can be achieved because

the MPC operates with incremental input variable ∆u(k), similar to the velocity form of

PI controller. See, Chapter 5 for the formulation and implementation of MPC.

The above example covers only a limited number of rules, however, depending on the

requirements more models and controllers can be integrated to the control system. Even

though the design complexity is high at design time, the on-line computational overhead

is quite low, because only one controller solves the control and constraint problem at a

given time.

6.5 Evaluation of Multi-model Control System for Absolute

Management

In this section, we design a multi-model self-managing control system for absolute

performance management. We use a system with two classes in this study with the same

settings of Chapter 5. Here, we continue with the example covered in the previous section.

Model identification and control system design

The output region of each class is divided into two regions by selecting level1 variable
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Table 6.4: Controller parameters of two controllers

Parameter LMPC1 LMPC2

a1, a2 0.45, 0.45 0.45,0.55

N1,N2 1,1 1,1

Rw 0 1.5

u(0) [15 15]T [15 15]T

as 0.5 (sec). The linear model and linear control system used in Chapter 5 (see equation

(4.16)) were used to represent the dynamics in the region below level1. To represent the

dynamics in the region above level1, another model was identified (see equation (6.6)).

When the models in equation (4.16) and equation (6.6) are compared there are differences

in the pole locations and step responses.

y(k + 1) =

 0.4730 −0.0130

−0.0614 0.6650

 y(k) +
 0.1400 −0.0053

−0.0534 0.1188

u(k), (6.6)

Then, two MIMO predicative controllers were designed based on the methodology pre-

sented in Section 5.4. Table 6.4 lists the tuning parameters of the two controllers called

as LMPC1 and LMPC2. a1 and a2 are the poles of Laguerre network, while N1 and N2

are the number of terms in the network. The main difference to the controller designed in

Section 5.4 is that LMPC1 is operating with much higher gain (Rw). This would reduce

the overshooting when the set points are placed in the insensitive region. In contrast,

LMPC2 operates with a lower gain (Rw), in order to improve the steady state behavior in

the sensitive region.

Finally, the following switching logic was implemented in the control system.

If (RSLA,0(k) < 0.5 and RSLA,1(k) < 0.5) then execute LMPC1 and implement U1(k)

Else If (RSLA,0(k) < 0.5 and RSLA,1(k) ≥ 0.5) then execute LMPC2 and implement U2(k).

Now, we evaluate the absolute performance and resource management capabilities

of this new multi-model self-managing control system (namely, MMMPC). Here, we use

combined operating conditions of Case A and C described in Chapter 5 to evaluate absolute

performance management. We start-off with Case A, where references of two classes are

set to 0.41 seconds (i.e., the references are placed according to case 1 in Figure 6.9). Then,

at the 200th sample reference of class1 is increased to 0.6 seconds, while workload settings

of Case C is applied on the system (i.e., references are placed according to case 2 in Figure
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6.9). These operating conditions provide an effective way to validate the capability of the

multi-model self-managing control system in different regions (see Table 6.5 for statistics).

Figure 6.10 shows the performance of the control systems. This figure also includes the

outputs of individual LMPC1 and LMPC2 for comparison purposes.
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Figure 6.10: Performance management of multi-model self-managing control system for
absolute management

When LMPC1 performance is compared with the other control systems, it is evident

that output of class1 has higher steady state error after the 200th sample. In contrast,

performance of LMPC2 shows larger overshooting due to the disturbances of Case A before

the 200th sample. The MMMPC on the other hand combines the performance of these
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Table 6.5: SSE statistics of the control system at different set points

R0(SSE) R1(SSE)

RSLA,0 = 0.41, RSLA,1 = 0.5

LMPC1 5.718 92.937

LMPC2 19.464 122.723

MMMPC 5.884 91.668

RSLA,0 = 0.41, RSLA,1 = 0.6

LMPC1 5.71 143.222

LMPC2 19.395 163.544

MMMPC 5.921 134.247

RSLA,0 = 0.41, RSLA,1 = 0.7

LMPC1 5.76 207.291

LMPC2 19.288 220.986

MMMPC 5.859 192.302

control systems and provides better performance under both cases. In addition, Table 6.5

summarizes the SSE statistics of both output signals, when the reference signal of class1

is set at different levels. It is evident that when the set point signal of class1 is close to the

insensitive region the improvements obtained by MMMPC is small (e.g., 0.5), compared

to the cases where the set point is placed further away from the insensitive region (e.g.,

0.7). Another observation is that SSE for R0 signal is slightly high in MMMPC compared

to LMPC1. This is because, at the 200th sample LMPC2 is integrated to the control

system abruptly by the MMMPC, which has the start-up settings. As a consequence,

there is a deviation for the case of R0 from the reference value compared to the stand-

alone LMPC1. However, even with such abrupt switching, the steady state behavior has

not affected significantly and MMMPC settles down fast without showing any instabilities.

Furthermore, because of the simple switching mechanism, chattering will not occur based

on the changes in operating conditions. This is because switching will only happen if the

references of the classes are changed by the system operator.

In addition, it is worth noting that this multi-model approach shows relatively poor

performance compared to the nonlinear MIMO Wiener model based control. However,

this is simple and intuitive approach compared to the MIMO Wiener control.

6.6 Conclusion

This chapter has presented new approaches based on the multiple models, controllers

combined with switching capabilities to manage performance and resources of multi-class
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shared resource systems.

Firstly, the relative management system was formulated with two different regions and

then two models were estimated, subsequently two controllers were designed to provide

control in each region. A switching scheme was then implemented based on MMST adap-

tive control to select the most suitable controller at runtime. This is the first time such

an approach has been used in the software performance management literature. The eval-

uations comparing the MMST-T2 and T4 schemes with traditional linear and adaptive

control have indicated successful performance of MMST-T2 control system for a limited

set of cases. However, in some cases chattering was observed, which is an inherent is-

sue that exist in the switching control systems. Chattering is caused by the noise in the

output signals, which leads the control system to falsely detect the change of operating

conditions and subsequently switch to an inappropriate controller at runtime. If we com-

pare the performance of MMST-T2 control system with the Hammerstein-Wiener control

system, former provides better performance in Cases H, I and M, while the later provides

better performance for the other cases. From the above evaluations, the overall perfor-

mance of the Hammerstein-Wiener control system is much better and stable compared to

MMST-T2 control system. However, MMST-T2 provides satisfactory performance when

noise does not affect the output signals, and it is easy to design and develop compared to

the Hammerstein-Wiener control system, which requires nonlinear system identification

methods.

Secondly, the absolute performance and resource management problem was also for-

mulated by a multi-model and multi-controller based control system with simple switching

logic. The reference signal (RSLA specification) was used as the switching decision variable,

which provided effective way to select the appropriate controller based on the operating

region. The evaluation results also indicated improvements in performance and resource

management compared to an individual linear control system.

The main limitation of the proposed multi-model switching control approaches is the

design complexity compared to a single linear control system. In both proposed ap-

proaches, multiple models and controllers have to be designed which is a manual design

task. In addition, there is a slight computational overhead compared to a linear control

system due to the requirement of evaluating the switching logic at each sample interval.

Furthermore, as observed, chattering is a vital problem at runtime, which may lead to
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temporal instabilities or large transient responses. In order to mitigate this issue, the

selection of the parameters of the switching algorithm has to be performed carefully by

using simulation studies. A set of heuristics are also provided in this chapter, which would

be useful in tuning of MMST adaptive control schemes.
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Chapter 7

Support Tools to Build Control

Systems for Software

Environments

7.1 Introduction

In the previous chapters, we presented a set of nonlinear control engineering techniques

to implement performance management systems for multi-class shared resource environ-

ments. In order to build adaptive software systems based on such control engineering

methodologies, a designer needs to construct and test a range of models and associated

controllers and then integrate these components into the software system. This is not

a straight-forward task because the background knowledge required of the software en-

gineer is substantial due to the need for rigorous mathematical foundations of control

theory [265]. This skills barrier combined with the complexity of the task means that the

engineering cost of control systems is high. These barriers to building self-adaptive soft-

ware systems could be lowered if the software engineers had well tested and extendable

implementation tools and frameworks [203]. In this chapter, we describe a process for

developing basic or self-managing control systems with the support of an extendable and

configurable off-the-shelf class library implemented based on a reference model.

The class library basically provides control components to implement a range of differ-

ent control regimes including PID, predicative and self-tuning controllers. These control
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components can be also used to implement the nonlinear Hammerstein-Wiener and Multi-

Model Switching control systems with little implementation overhead. Furthermore, tailor

made control systems for a specific software system can be implemented by using a com-

bination of control components included in this class library. Consequently, the proposed

step by step engineering process and the class library reduce the engineering costs and

abstract away some of the knowledge required in building control systems for software

systems.

We start-off by introducing an engineering process for control system development

in Section 7.2. Section 7.3 presents the reference model and design of the class library.

Section 7.4 covers example use cases to illustrate how the engineering process and class

library can be used to design self-managing control systems. Section 7.5 evaluates the

extensibility, configurability and the facilitation provided by our class library.

7.2 An Engineering Process for Developing Self-managing

Control Systems

Analysis of the system 
or control requirements 
and operating condition

Decide / design the self-
managing control 

system 

Implementation of self-
managing control 

system  

Integration and testing 
of self-managing control 

system  

Details about conditions and 
system characteristics

Software implementation of the self-
managing control system  

Control engineer

support of our control library

Software engineer + Control engineerSoftware engineer

1 2 3 4

Control architecture specification 
(Details about models, controllers and other 

configuration parameters)

Figure 7.1: The design process

Figure 7.1 illustrates the steps involved in the design process of the self-managing

control system. Similar engineering processes are followed in other industries such as

chemical and manufacturing [73]. It is also worth noting that, in this section we mainly

focus on the implementations of self-managing control systems introduced in Chapter 6,

because such control schemes require different complex control components (e.g., adaptive

models, controllers and switching schemes). Although the emphasis is given to complex

self-managing control systems, the same steps can be followed to implement the basic

control systems as well. The implementation of a control system based on the formal

control engineering techniques requires a wide range of knowledge in that discipline, which

the software engineers are not generally familiar with. As such, the first two phases of the
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design process require the skills of a control engineer.

The first phase is to establish the control requirements of the system. Here, the details

of control objectives, system requirements, and the environmental conditions need to be

investigated in order to identify the distinct operating regions of the target system. In

addition, data traces from the production systems or special offline experiments need to

be conducted to collect data. The objective of phase 2 is to determine the suitable control

architecture. This involves the analysis and investigation of the control objectives together

with the collected data to determine the type of control system required for the particular

software system. Subsequently, the components required to build a control system have to

be identified. For instance, if it is a MMST scheme, the mathematical models to capture

the behavior in different operating conditions have to be estimated followed by the design

of the controllers.

The third phase is to implement the control system as software components, following

the software engineering principles. However, a control engineer typically does not have

enough expertise to do this implementation. Similarly, a software engineer does not have

enough expertise to engage in the previous two steps. Using our class library, this knowl-

edge gap can be reduced. The design specification document (namely, control architecture

specification) with a particular self-managing control scheme, parameters of the models

and controllers will be given to the software engineer by the controller engineer after the

second stage. Given the control architecture specification, the software engineer can use

our class library and create and configure the required models and controllers with the

specified parameters. In addition, if the required control scheme is supported off-the-shelf

by the class library, that scheme can be used without any new implementation effort. Oth-

erwise, an existing scheme can be extended or a new scheme can be implemented using

the basic control components provided by our class library.

In the fourth and final phase, the implemented control system has to be connected to

the sensors and actuators of the software system, followed by rigorous testing with sim-

ulations of desired operating conditions to validate the suitability of the implementation.

This step needs to be conducted by the control engineer in conjunction with the software

engineer. After the test and validation of the control system, the final fine tuning of the

configuration parameters of the self-managing control scheme has to be done. If the de-

signed system fails to achieve the control objectives, the control engineer should go to the
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first stage again and redesign an appropriate control scheme.

7.3 Reference Model and Class Library

This section presents the reference model used as the basis to build our class library

and its implementation details.

7.3.1 Reference Model of Class Library

+EvaluateModelPredictions ()
+ReconfigureControlLoop ()

SwitchingBox

+PredictOneStepAhead ()
+GetCurrentPerdictionError ()

Model

+CalculateControlInput ()
+Reintialize ()

Controller

+Reset()
+Change()

TuningParameterContainer

ModelControlPair

+Model
+Controller

1 1..*

1
1

1111

Figure 7.2: The reference model

Figure 7.2 shows the class diagram of the proposed reference model for the class library

in Unified Modelling Language (UML). The Model is an abstract class which represents

the behavior of the target system. Typically, it is represented using an ARX model.

The abstract methods such as PredictOneStepAhead and GetCurrentPredictionError are

implemented according to the model structure and parameters. This component will be

especially useful to implement multi-model self-managing schemes presented in Chapter

6. The Controller is also an abstract class representing the control algorithms that need

to be implemented. The CalculateControlInput method has to be extended to implement

the specific control algorithm, which will return the control input for the current sample

instance. Furthermore, the sensor variables and actuator variables have to be connected to

this component. The TuningParameterContainer is another abstract class which is used

by the Controller class to represent the tuning parameters (e.g., gains) of the controller.

It helps to abstract away the different configurable parameters of different controllers from

the main implementation of the control algorithm. It also provides additional convenience

to make the reconfigurations of the tuning parameters of the controller at runtime without

affecting the state of the controller. The ModelControlPair class associates the models
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representing different conditions and the respective controllers designed to provide control

under those conditions. It is particularly useful to implement multi-model self-managing

control systems.

The SwitchingBox class is the main component which implements the reconfiguration

decisions of the control loop. For instance, in order to implement the MMST adaptive

control schemes, EvaluateModelPredictions method in this class can be extended to eval-

uate the model predications according to the model evaluation algorithm and select the

best model based on the model selection criteria. The ReconfigureControlLoop method on

the other hand can be used to implement the control loop reconfiguration logic required

by a control system at runtime.

7.3.2 Implementation of the Class Library

Amajor contribution of this chapter is the implementation of the above reference model

with a rich set of standard control components and algorithms that can be effectively used

in the implementations of different types of control systems for software systems. Figure

7.3 shows the UML class diagram of the library in detail.

The current implementation provides the following off-the-shelf standard control com-

ponents:

Control algorithms and schemes

1. PID controller (algorithm [81])

2. Model predictive controller (algorithm [223])

3. Indirect self-tuning regulator (algorithm [13])

4. Self-tuning PID controller (algorithm [81])

5. All four MMST schemes (algorithm [168])

Models

1. First order and Higher order models

2. Adaptive model (recursive least square algorithm [13])

This class library is currently implemented using Java and C#.Net1. It can readily

1available from http://www.ict.swin.edu.au/personal/tpatikirikorala/dowloads/

SwinMMSTFramework_dll.zip

167



Chapter 7. Support Tools to Build Control Systems for Software Environments

+EvaluateModelPredictions ()
+ReconfigureControlLoop ()

SwitchingBox
MMSTSwitchingBoxT2

MMSTSwitchingBoxT3 MMSTSwitchingBoxT4

+PredictOneStepAhead()
+GetCurrentPerdictionError ()

Model

+CalculateControlInput ()
+Reintialize ()

Controller

+Reset()
+Change()

TuningParameterContainer

+Model
+Controller

ModelControlPair

1

1 1
1111

MMSTSwitchingBoxT1

PIDController PredictiveController

FirstOrderModel

AdaptiveModel

SelfTuningRegulator
-Kp
-Ki
-Kd

PIDContainer

-Rw
-Nc
-Np

PredictiveContainer

Figure 7.3: UML class diagram of the library

be integrated into a software system implemented in Java or any of the programming

languages supported by the .Net framework.

7.4 Example Use Cases

In this section, we illustrate how the above class library and the engineering process

introduced in Section 7.2 can be used to implement two different self-managed control

systems for relative performance management (similar to Chapter 6). Here, we assume

that the first two steps of the design process have been already carried out by the control

engineer. As shown in Chapter 6, these two initial steps include identifying the models

(model-0 and model-1 ), deciding the tuning parameters of the controllers (controller-

0 and controller-1 ) and configuring the switching algorithm. The next step involves

implementation of the control system using software components. For this purpose, our

class library can be used. However, in order to show different use cases of the library, let us

assume that the control engineer decided to implement and test two types of self-managing

schemes, one based on MMST-type 2 scheme (same as in Chapter 6) and the other based

on a gain-scheduling scheme equipped with a model predictive controller. Let us further

assume that the details of the components and parameters have been documented as a
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control architecture specification by the control engineer at the end of the second stage

and then given to the software engineer in order to carry out the third stage of the design

process. The main contents of the control architecture specification are summarized in

Tables 7.1 and 7.2.

For the first use case, the software engineer can use our control library directly to

implement the required MMST-Type 2 scheme. This is because, as shown in Figure 7.3,

the class library provides off-the-shelf implementations of all MMST schemes. The steps

involved in this implementation are 1) initiating two first order ARX model instances with

the model parameters as specified in Table 7.1, 2) initiating two instances of PI controllers

conforming to the specified tuning parameters, 3) pairing the relevant models and con-

trollers in a collection of ModelControlPair instances, 4) initiating MMSTSwitchingBoxT2

instance with the parameters of the MMST-Type 2 scheme and finally 5) connecting the

sensors and actuators to the instance of MMSTSwitchingBoxT2 class. The next step is to

test the implementation under different operating conditions.

In order to complete the second use case of implementing a gain-scheduling scheme with

a MPC, the software engineer has to extend our class library. Such schemes are not offered

off-the-shelf by the class library, because it is hard to generalize the logic and the variables

involved in the gain-scheduling schemes. There are two ways to implement this scheme

using the class library. The first way is to extend the SwitchingBox class and implement

the model prediction evaluation and selection algorithms and the reconfiguration logic of

MPC from scratch. However, this is unnecessary because MMSTSwitchingBoxT2 class

already provides some of the required functionalities. Alternatively, the software engineer

can override the ReconfigureControlLoop method in the MMSTSwitchingBoxT2 class and

implement the new functionalities of the gain-scheduling logic shown in Table 7.2, while

reusing the rest of the functionalities provided by that class as is. Therefore, with a little

extension, the new control architecture can be implemented without a major engineering

overhead.

7.5 Evaluation

In this section, we discuss the configurability and extensibility of our class library and

evaluate the facilitation provided by it in the development of a complex control system.
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Table 7.1: Control architecture specification for MMST-T2 scheme

Switching algorithm
T = 3, α=0, β = 1 (see equation 6.3,6.2) ,
Startup controller - Controler-0
Models
Two first order ARX models for region 0 and 1
Model-0 : y(k+1)= 0.63 y(k)+ 0.14u(k)
Model-1 : y(k+1)= 0.64 y(k)+ 0.96 u(k)
Controllers
Two PI controllers in velocity form, for region A and B
Controler-0 :Kp = 0.84, Ki = 0.42
Controler-1 : Kp = 0.24 , Ki = 0.06

Table 7.2: Control architecture specification for gain scheduling scheme

Switching algorithm
T = 3, α=0, β = 1 (see equation 6.3,6.2),
Startup controller settings- Setting 0 (see below)
Models
ARX models for region 0 and 1
Model-0 : y(k+1)= 0.63 y(k)+ 0.14u(k)
Model-1 : y(k+1)= 0.64 y(k)+ 0.96 u(k)
Controller parameters
Single MPC with tuning parameters
Setting 0: Rw =0.5, Np =10, Nc=5
Setting 1: Rw =8.0, Np =10, Nc=5
Gain scheduling rule/logic
At each T th time instance
If (model 0 is selected) change MPC parameters to Setting 0
Else change MPC parameters to Setting 1

7.5.1 Configurability

The off-the-shelf implementations of the controllers, models and the self-managing

control schemes offered by the class library can be configured with the required design

parameters by populating the exposed properties of each control component. As shown

in the first use case of Section 7.4, when the control engineer comes up with the tuning

parameters of the controllers, models and self-managing control schemes, the software

engineer has to select the suitable classes and instantiate them by populating the properties

according to the specifications of the control engineer. Thus, the engineering and testing

effort and the mathematical knowledge required of the software engineer can be minimized

to a large degree, compared to the implementation of these components from scratch.
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Although this thesis focuses on more complex self-managing control schemes, the basic

control components available from the library (see Figure 7.3) could also be readily used

to create simpler control schemes if deemed appropriate by the control engineer.

7.5.2 Extensibility

+EvaluateModelPredictions ()
+ReconfigureControlLoop ()

SwitchingBox

+PredictOneStepAhead ()
+GetCurrentPerdictionError ()

Model

+CalculateControlInput ()
+Reintialize ()

Controller

+Reset()
+Change()

TuningParameterContainer

+Model
+Controller

ModelControlPair

11..*

111
111

PIDController PredictiveController FirstOrderModel

+ReconfigureControlLoop ()

GainSchedulingSwitch

Figure 7.4: Gain-scheduling scheme with a predictive controller extending the reference
model

The reference model and the associated class library can also be extended to imple-

ment different types of self-managing control schemes. Figure 7.3 shows many different

extensions performed to the reference model, in order to implement the class library.

In addition, Figure 7.4 shows how this reference model and class library can be further

extended to implement the multi-model gain-scheduling control system described in Sec-

tion 7.4. The GainSchedulingSwitch class either can extend the SwitchingBox class as

shown in Figure 7.4 or extend MMSTSwitchingBoxT2 class to implement the required

gain-scheduling scheme. Alternatively, to implement other gain-scheduling schemes with

different scheduling variables, the required scheduling logic can be implemented by ex-

tending the SwitchingBox class and adding reference to the runtime data of the scheduling

variables.

This class library provides many degrees of freedom for extensions. The controllers,

models and self-managing control schemes that are not provided by our class library can

be plugged-in and used without affecting the rest of the implementation. For example,

if a linear quadratic controller [81] is needed, the implementation of that controller can

be done, extending the Controller class. Similarly, if a nonlinear neural network model is
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needed, the same approach can be taken to enrich the class library by extending the Model

class. Even with these extensions, the existing self-managing schemes can be configured

to use the new components without affecting their implementations. Similarly, if new

switching schemes have to be implemented the SwitchingBox class can be extended. For

instance, the gain-scheduling configuration, which is not offered by the class library off-

the-shelf, can be implemented with little engineering effort by extending the available

components. In addition, any of the controllers available from the library can be used

to design self-managing control schemes by mixing the capabilities of different control

algorithms. For example, PID controllers and model predictive controllers can be combined

in a scheme depending on the requirements, operating conditions and constraints.

7.5.3 Facility

Quantifying the extent to which a software framework, such as the class library pre-

sented in this chapter facilitates software engineering practice is a challenging task. The

source lines of code (SLoC) is one of the basic proxy measures of the engineering effort

[40]. The .Net version of class library consists of 16,000 SLoCs, which do not have to

be implemented again in order to design a self-managing control system for a software

system. However, SLoCs do not measure either the knowledge required of the engineer,

the complexity of the task or the subsequent time taken to come up with a design and

implementation.

To further evaluate the extent of facilitation, we conducted an experiment with a group

of software engineers, in order to capture the knowledge requirements, time and effort

needed to implement a self-managing control scheme. The task was to implement the

self-managing control architecture shown in Figure 6.2a, given the parameters in Table

7.1. All participants were software engineers with more than 2 years of experience of

developing production software systems.

This experiment was conducted in three stages. In the first stage, each participant

received a control architecture specification describing the control system to be imple-

mented. They then participated in an oral presentation delivered by a control engineer

and the business analyst, which described the details of the control architecture specifica-

tion followed by a question and answer session. In the second stage, the participants were

familiarized with the experimental setup by preparing the workstation of the participant
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with the experiment instrumentation. The instrumentation included a simulation of a

target software system with a sensor and actuator, graphing tool (to check the output of

the target system), a test case, the class library with the documentation and a time sheet

to enter the start time and end time of tasks.

After setting up the environment the third and main stage of the experiment was per-

formed. Each participant had to implement the specified control system in two ways: 1) to

implement it from scratch (called T1) and 2) to implement it using our class library (called

T2). The order in which these tasks were undertaken was altered between participants.

This is done in an attempt to account for any learning effect that would allow a participant

to complete the second task in a quicker time than they would have done without prior

experience of the problem and a solution. An implementation was regarded as complete

when the test case ran successfully. During the third stage a control engineer was available

to ask any question related to control theory or control architecture specification. These

questions were collected during the experiment for a qualitative analysis. Apart from the

standard documentation, no additional information related to our class library was given

to the participants. After the completion of the experiment, the time sheets and the source

code implemented by the participants were collected for further analysis.

Table 7.3: Results of the experiment

ID Experience (years) order
Time (Mins) SLoCs
T1 T2 T1 T2

1 4 T1-T2 78 47 163 109

2 2 T2-T1 107 55 397 95

3 3 T1-T2 67 23 169 93

4 3 T2-T1 91 48 326 125

5 2 T1-T2 130 43 189 92

6 5 T1-T2 180 35 233 87

7 2 T2-T1 115 45 283 108

8 3 T2-T1 199 63 314 121

9 3 T2-T1 142 48 219 108

10 3 T1-T2 184 65 152 98

11 9 T1-T2 119 34 179 93

12 4 T2-T1 142 56 311 137

13 5 T1-T2 167 39 222 92

14 4 T1-T2 158 40 217 97

Avg. 134 46 241 104

Diff. 88 137
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Table 7.3 summarizes the findings of the experiment. The prominent observation is

that the time taken to complete T2 (using the library) is low compared to T1, irrespective

of the order in which the tasks were done. In addition, in all cases the SLoCs written

were lower for T2 than T1. However, while SLoCs required for T1 varied drastically, the

SLoCs for T2 across participants was much more consistent. The analysis of the code

indicated that SLoCs were high for some participants (e.g., P2) because the implementa-

tion was extendable and configurable compared to other implementation which lack those

characteristics (e.g., P3). It is also interesting to note that, the design for T1 produced

by the participants who did the implementation with the class library (T2) first, showed

the high-level design characteristics of our class library. This is an indication that there

is an effect on the design depending on the order of the tasks. The time consumed for

both T1 and T2 on the other hand varied a lot from the participant to participant. This

is because of the speed of coding, debugging and testing varied between the participants.

In summary, on average 88 minutes in time and 137 SLoCs in implementation effort have

been reduced when the class library is used compared to implementing the entire task

from scratch.

Apart from the above time and source code related comparisons, we also analysed

the questions asked of the control engineer during the implementations, to get an idea

of the knowledge requirements for control system implementations. From the collected

questions in the case of no library support (T1), the control engineer had to engage in

the testing of the implementation by answering many questions till the test case was

successfully run. Thus, the test and validation cost was significantly high in T1. In

addition, the lack of understanding of the sampling time caused selection and retention

of inappropriate data in the models and the switching algorithms leading to erroneous

outcomes. Furthermore, differentiating the system output, input, and controller input,

output and the model prediction and the original system output was an issue for some

participants.

In contrast, in the case where the library was used (T2), none of the above problems

were observed in relation to the mathematical background of the implementations. This

is because such details are encapsulated inside the control components. The documen-

tation provided the required information on these components and how to use them in

an implementation. Some questions were asked about the technical terms used in the
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documentation with respect to the terms in the control architecture specification.

Although the scheme that the participants had to implement in this experiment was one

of the simplest self-managing control systems, the findings of this experiment indicate the

use of the library facilitated the assigned task by lessening the time, effort and knowledge

requirements. For schemes with higher complexities and mathematical foundations (e.g.

adaptive, MPC control) we can speculate that even greater benefits would accrue from

using this class library.

7.6 Conclusion

To build self-adaptive software systems based on the control engineering methods pro-

posed in this thesis, the software engineers have to design, implement and test complex

control components from scratch. This is a challenging task because the background

knowledge required of the software engineer is substantial due to the need for rigorous

mathematical foundation behind the control components. In order to reduce the engineer-

ing costs of control systems for software systems, in this chapter we have put forward an

engineering process and a class-library. This class library provides many standard control

components useful to implement deferent control regimes and it can be easily configured

and extended to accommodate new requirements. An empirical study conducted with a

group of software engineers has shown that this library facilitates the implementations of

control systems significantly compared to implementing such systems from scratch.
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Chapter 8

Experimental Case Studies

8.1 Introduction

This chapter shows the applicability of the nonlinear control approaches presented in

this thesis to the real-world multi-class shared resource systems. In particular, we study

two different multi-class shared resource software environments sharing resources at the

middleware and application levels of the system stack1 (see Chapter 1). These studies

therefore help us to demonstrate the management capabilities of the proposed approaches

across different levels of the system stack. These systems are built using well-established

programming languages and software components. We introduce the business scenarios

and objectives briefly below, before going into the details of the system architectures

and experimental results. Firstly, we cover WSO2 BPS which is a shared middleware

environment. Secondly, the details of a travel reservation system are presented which

shares resources at the application level.

WSO2 BPS. WSO22 is one of the leading open-source enterprise software platform

providers, offering services to companies such as ebay3. From their product suite, WSO2

Stratos business process server (BPS)4 is a multi-tenanted middleware environment which

provides out of the box support to deploy software workflows for multiple clients (or ten-

ants) using a single instance. It is a shared-middleware system, in terms of the definitions

1Another case study, investigating the hardware level resource management capabilities of proposed
approaches can be found in [192]. A VM environment built based on the RUBiS benchmark application
is used in that case study, with the objective of managing response times of two RUBiS applications by
controlling CPU capacities of two VMs at the hypervisor level.

2http://wso2.com/
3http://www.ebay.com/
4http://wso2.com/cloud/stratos/
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in Chapter 1. WSO2 BPS already provides data, security and execution isolation, how-

ever, performance isolation is not so far provided [187]. In this work we extend the WSO2

BPS to manage performance of multiple customers while sharing the resources effectively

at runtime. More details are provided in Section 8.25.

Travel reservation system. The travel reservation systems depend on Global Dis-

tribution Systems (GDS) which have information about the flight availabilities and their

tax and fare rules. There are different GDS providers dominating in different parts of the

world. Amadeus, Sabre and Galileo are some of these leading large scale GDS providers

in the business today. The information services of a particular GDS can be used by the

travel solution development organizations to build travel solutions for travel agencies. The

communication between the GDS and travel solution is enabled by communication ses-

sions. Only a limited number of sessions is available for each travel solution due to the

costs involved in purchasing them. The travel solution provider exposes a standard web

service interface which can be used to design the travel reservation websites for travel

agencies. This web service platform, maintained by the travel solution provider is a multi-

class shared resource system. As a consequence, the resources available at the level of

web service platform have to be shared by the travel solution provider to maintain the

performance properties of the travel agent websites. The main bottlenecked resource in

this system is the sessions provided by the GDS6.

In the following subsection, we use WSO2 BPS case study to present the applicability

and experimental results of the approaches proposed for relative performance manage-

ment. Similarly, the travel reservation case study is used to show the applicability and

experimental results of the approaches proposed for absolute performance management.

8.2 Relative Performance Management at the Middleware

Level

In this study, we use the WSO2 Stratos Business Process Server to share and con-

trol resources at the middleware level to achieve relative management objectives. WSO2

Stratos Business Process Server7 is a multi-tenanted workflow engine which executes busi-

5We would like to thank Mr. Waruna Ranasinghe and Mr. Denis Weerasiri from WSo2 for collaborating
in this work.

6We would like to thank Mr. Dharshana Batagoda (senior architect at GoQuo) and Mr. Kushan
Chathuranga (senior software engineer at CodeGen) for assisting us in the development of this scenario.

7http://wso2.com/products/business-process-server/

178



8.2. Relative Performance Management at the Middleware Level

ness processes compliant with WS-BPEL standard, and is built on top of WSO2 Carbon

platform8. WSO2 Stratos BPS also supports data and execution isolation for multiple

tenants [187]. Figure 8.1 shows its high level architecture. Tenant administrators and

authorized users can manage and monitor the business process deployments and business

process instances via the graphical administrative console. A user of a tenant can con-

sume a business process via a business process endpoint, which is a standard web service

endpoint. WSO2 Stratos Identity Server (IS) provides security services such as authenti-

cation and authorization of tenants and users. WSO2 Manager is used to provision and

manage tenants, including their subscriptions and billing. Business process artefacts for

each tenant are kept in WSO2 Stratos Governance Registry which is a multi-tenanted

governance tool that follows the shared database and shared schema multi-tenanted data

architecture pattern defined in [43]. WSO2 Stratos BPS uses Apache ODE9 as its BPEL

execution run-time. ODE-Axis2 Integration Layer provides three main services: i) BPEL

process and process instance management, ii) tenant-aware request dispatching, and iii)

communication with partner services defined in a BPEL process. Integration Layer is

also responsible to expose a BPEL process as an Axis210 Web Service. In the current

multi- tenanted BPS instance, a single ODE process engine is shared by multiple tenants.

Therefore, a workload of a single tenant may adversely affect the performance of other

tenants. Consequently, a mechanism is required to manage the performance, resources and

workloads of different tenants in a single BPS instance, which is the focus of this study.

8.2.1 Implementation

In order to enable the performance and resource management in the BPS many

modifications had to be done. In particular, tenant-aware queues, response time mon-

itors/sensors for each tenant and resource partition scheduler were integrated. Figure 8.1

shows the architecture of the BPS after these modifications, which corresponds to the stan-

dard multi-class shared resource system architecture presented in Chapter 3. The Tomcat

transport layer receives the requests from the users of tenants, and forwards the requests

to Axis2 message handler chain. Upon processing the request in the handler chain, an

Axis2 message context is created, and the information about the tenant (so-called tenant

8http://wso2.com/products/carbon/
9http://ode.apache.org/

10http://axis.apache.org/axis2/java/core/
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Figure 8.1: Block diagram of WSO2 BPS

domain) from the request is used to identify the corresponding BPEL process. When

ODE-Axis2 Integration Layer receives an Axis2 message context, the message context is

classified based on the available tenant information and puts it into the message queue

corresponding to the tenant. The thread that processed the request waits until a noti-

fication of the result is available, in order to send back the response to the client. The

management system informs the Scheduler via the actuator about the process instance

caps for each tenant. Here, the scheduler takes in to account the process instance caps

(Si, i = 0, 1, . . . n−1) and current usage to schedule the requests from each tenant’s queue

to be sent to ODE runtime. In addition, the average response time of requests in a 2

seconds sample window is calculated by the sensor for each tenant (Ri, i = 0, 1, . . . n− 1)

and sent to the management system. The response time of a request includes the waiting

time in the tenant’s queue and execution time in the ODE runtime.

8.2.2 Experiment Setup

Here, we consider a BPS with two tenants (n = 2). The BPS and database was

deployed in a virtual machine (VM) with two 2.67 GHz CPUs and 3 GB memory. We
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used the LoanProcess11 as the deployed business process for each tenant, which invokes

three partner services sequentially. The workload generators and partner web services

were deployed in two VMs each with a 2.67 GHz CPU and 2 GB memory. After initial

profiling the maximum concurrent process instances Stotal was set to 20. Although higher

Stotal increases the throughput, the response time was significantly affected as well (e.g.,

Stotal = 30 increased response time around 100 ms). In addition, S1,min, S2,min = 4.

8.2.3 Hammerstein-Wiener Control System Design

This section gives the design details of the Hammerstein-Wiener control system, includ-

ing the two compensators and controller to achieve the relative performance management

objectives. We follow the design process presented in Chapter 4 and 5.

Firstly, to design the pre-input compensator the possible operating points for u were

calculated as 4
16 , . . . , 1, . . . ,

16
4 . Then, the points of the intermediate variable v were selected

as values −6,−5, . . .− 1, 0, 1 . . . 5, 6 by setting δv = 1,vmin = −6 and vmax = 6. Following

the design process in Chapter 4, a fourth order polynomial was used in the estimation of

the inverse input nonlinear function (see equation (8.1)) with a goodness of fit of 0.99.

Figure 8.2a shows the model fit. This function was then implemented as a software

component/compensator and integrated into the BPS.

u = f−1(v) = 0.0003828 ∗ v4 + 0.003445 ∗ v3 + 0.01722 ∗ v2 + 0.1857 ∗ v + 1.006 (8.1)

With the integration of the input static nonlinear compensator, the next step is to

design the output nonlinear compensator. Following the design process in Chapter 4, a

sinusoidal signal was designed with possible values of v and 40 requests/sec workloads

were applied for each tenant to gather output data for 500 sample periods. Data samples

between the 1st to 350th samples were included in the estimation set and the rest were

used as the test set. 1st order ARX model and 4th order polynomial was sufficient to

represent the system as a Wiener model with a R2 fit of 0.86. After computing the w

data, the output inverse nonlinear function was then represented by the equation (8.2),

with close to 0.97 fit (see Figure 8.2c for the model fit).

w = g−1(y) = 7.48log(y)− 0.08 (8.2)

For the second SID experiment, a pseudo random input signal and 35 requests/sec

workload for each tenant were used. The estimated linear model is given in equation (8.3)

11It is a sample BPEL process available at https://svn.wso2.org/repos/wso2/branches/carbon/3.2.
0/products/bps/2.1.2/modules/samples/product/src/main/resources/bpel/2.0/LoanProcess/
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Figure 8.2: The model fit of the inverse input and output nonlinearity

with R2 = 0.81 model fit.

w(t+ 1) = 0.79w(t) + 0.58v(t). (8.3)

The final step is to implement the Hammerstein-Wiener control system (namely, HWCS)

using the linear model and pole-placement design method (see Chapter 5). The finalized

parameters after placing poles at (α, β= 0.7) are Kp = 0.47, Ki = 0.16 and v(0) = 0.

8.2.4 MMST-T2 Control System Design

In this section, we present the details of MMST-T2 control system design based on

the approach presented in Chapter 6. The idea is to design two models and controllers to

represent the region 0 and region 1 and then implement the switching scheme of MMST-

T2 control system. Firstly, to capture the behaviour of the system when tenant0 gets

more resources the operating points of 10
10 ,

11
9 , . . . ,

16
4 were selected to design a pseudo

random signal. A high workload for tenant0 was applied keeping the workload of tenant1

at a low rate. Gathered data samples from this experiment was used to estimate the

model for region 0 with R2 fit of 93% (see equation (8.4)). A similar experiment was

conducted for region 1 with the input set 9
11 ,

8
12 , . . . ,

4
16 to estimate the model shown in

equation (8.5). Two controllers were then designed to provide control in each region. An
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aggressive controller with Kp = 1, Ki = 0.44 and u(0) = 1 and less aggressive controller

with Kp = 0.22, Ki = 0.11 and u(0) = 1 were used for region 0 and region 1 respectively.

In addition, the configuration parameters of MMST-T2 were set as α = 0, β = 1, and

Tmin = 3.

y(t+ 1) = 0.84y(t) + 0.05u(t) (8.4)

y(t+ 1) = 0.71y(t) + 0.77u(t) (8.5)

8.2.5 Experiment Results

This section compares the performance and resource management capabilities of the

control systems designed in Sections 8.2.3 and 8.2.4, under different settings.

In order to compare the management provided by the HWCS and MMST-T2 we also

implemented a linear control system (namely, LCS), using the linear model in equation

(8.6). The same data used in the second SID experiment was used to construct this model

with a fit of 0.67. Furthermore, similar to HWCS implementation, the poles were placed

at 0.7 and a controller was designed with Kp and Ki 0.64 and 0.25 respectively and u(0)

= 1.

y(t+ 1) = 0.72y(t) + 0.36u(t). (8.6)

8.2.5.1 High Workload Separately

This experiment compares the performance of the control systems when the total workload

from two tenants is within the system capacity. Here, each tenant increases its workload to

a high level requiring more resources than the other at separate time periods. Till the 20th

sample, a workload of 25 requests/sec is applied for tenant0 and tenant1. Then, at the

20th sample tenant0 workload increases to 60 requests/sec. This could be a scenario where

a high resource demand for tenant0, while tenant1 is at a lower workload rate. Afterwards,

at the 90th sample tenant0 workload reduces to 25 requests/sec. At the 120th sample,

tenant1 workload increases to 60 requests/sec from 25 requests/sec. The set point (P1
P0
)

is fixed at 1, where both classes are treated equally. Further, the workload settings are

such that both tenants require more than Smin,i process instances to cater the workload

demand. Otherwise the performance isolation is automatically implemented due to the

hybrid resource management. Under these conditions, the expected behavior is to adjust

the process instance caps efficiently so that, the tenant with high workload rate gets more

183



Chapter 8. Experimental Case Studies

resources. The outputs and control signals are shown in Figure 8.3.
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Figure 8.3: Performance of the control systems under high workloads of each tenant
separately

In this case study also we see the performance issues observed in the previous chapters

for the case of LCS. The settling time and overshooting due to the disturbance at the

20th sample is significantly high compared to HWCS and MMST control systems. This

is because when tenant0 workload increases, the output signal decays due to the output

nonlinearity in that region. Then, when LCS operates in the region where the input non-

linearity is severe, an oscillatory behavior is observed at the output after the disturbance

of tenant1 at the 120th sample.

In contrast, HWCS and MMST provide much better control in this experimental set-

ting with no significant instabilities. In the case of HWCS the compensators have reduced

the impact of the nonlinearities providing better performance than LCS. In addition,

MMST has effectively selected the appropriate controller for the particular region avoid-

ing the instabilities observed in LCS. The switching behaviour is shown in Figure 8.3g.
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Table 8.1 summarizes the statistics of all the control systems. It is evident that HWCS

has provided better performance compared to the other two control systems. MMST on

the other hand has outperformed LCS significantly. Although chattering is not observed

in this case, the combined performance of two linear controllers of MMST have shown

transient responses, when the operating regions are changed abruptly.

8.2.5.2 Different Priority Levels Between Tenants

In this case, we assess the performance of the above designed controllers in the case of

different differentiation factors, which needs effective performance differentiation when

the system is running under the full capacity. The performance of the control systems is

compared in this section when the set point is P1
P0
= 1.5. For this case 25 and 55 requests/sec

are applied for tenant0 and tenant1 respectively. Table 8.1 shows the results of the control

systems.

The performance of LCS is similar to what was observed in Section 8.2.5.1. In par-

ticular, due to high workload of tenant1, LCS has to operate in the region where input

nonlinearity is severe. Consequently, LCS produces highly oscillatory outputs and unsta-

ble behavior in the system showing larger SSE among the control systems. In contrast,

the nonlinearity compensated HWCS provides significantly better steady state behavior

compared to LCS with the lowest SSE. In the case of MMST, the SSE statistics are higher

than HWCS, because of the chattering. The model1 and corresponding controller was

selected most of the time, however switching to the other model led to the temporal insta-

bilities. The performance of MMST is therefore, significantly poor for this case compared

to HWCS. This behavior was also observed in the simulation studies presented in Chapter

6.

8.2.5.3 Overloaded Condition

In this case, we compare the performance of the control systems in the case of persistent

overload of a single tenant. tenant0 sends 25 requests/sec workload, while tenant1 sends

150 requests/sec workloads. This means that tenant1 has overloaded the system. We fixed

the set point at P1
P0
= 3, providing better performance to tenant0.

The results under this condition is also similar to Section 8.2.5.1 (see Table 8.1).
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HWCS outperforms both other control systems providing much stable and satisfactory

performance. MMST also provide better performance, however chattering was observed

for short periods of time leading to temporal instabilities.

Table 8.1: The statistics of LCS, HWCS and MMST

Section LCS HWCS MMST

SSE MIN MAX SSE MIN MAX SSE MIN MAX

8.2.5.1 601.8 0.45 6.48 12.41 0.52 3.42 18.19 0.46 3.57

8.2.5.2 997.74 1.2 7.8 16.81 0.98 2.88 85.57 0.66 4.31

8.2.5.3 561.52 1.43 8.88 17.13 1.71 4 45.22 1.41 4.62

Further experimental results of the above approaches can be found in our previous

publications [189, 190, 194].

8.3 Absolute Performance Management at the Application

level

In this study our focus is on the absolute performance management of aforementioned

travel reservation system. In this system, the resources that have to be shared and con-

trolled are at the application level. In particular, the limited set of sessions provided by

the third party GDS has to be controlled. The details of the implementation of the travel

reservation system and experiment results are covered in the following sections.

8.3.1 Implementation
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Figure 8.4: Architecture of the travel reservation system

Flight reservation system was developed implementing the architecture shown in Figure

8.4. The main difference of this implementation compared to the system in Section 8.2

is that the source code of the reservation system should also include the tenant or class
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specific implementations. This is because the classes exist at the application level. As a

consequence, the tenant-specific queues, schedulers, sensors and actuators are implemented

in the same source code.

A client of a travel reservation system can access the services of the reservation system

by connecting to the server socket. After connection is made, the clients can send different

messages invoking different service methods. When a message is received at the message

queue, a time stamp (t1) is applied and then the request is classified according to the

client class and put to the relevant client queue. The scheduler accesses these queues in a

first-come first-serve (FIFO) fashion, and assigns these messages to a virtual application

instance with client specific method pointers and virtually partitioned session handlers

to be sent to the 3rd party supplier. When the server receives the response from the 3rd

party supplier, it is sent back to the client through the socket. Another time stamp (t2)

is applied before the response is written to the client socket.

8.3.2 Experiment Setup

The system was deployed on a machine with a Intel Core(TM)2duo E8400 CPU@3.00

GHz 2.99 GHz processor and 2 GB memory. To simulate workloads of two agents (namely,

A and B), we used tailor made workload generators which was deployed on a separate ma-

chine with Core(TM)2duo E6550 CPU@2.33 GHz 2.33 GHz processor and 3 GB memory.

The target software system and the controllers were built in C#.Net and the 3rd party

supplier component was designed using Java as a web service deployed in a Tomcat 5.5

with Axis 2 web service engine. The two machines were connected via 1 Gps Ethernet.

The total amount of sessions Stotal
12 was set to 30 and the minimum resource allocation

settings are S1,min, S2,min = 6. With these setting the prototype system can handle a 65

requests/sec workload without overloading the system. For notational simplicity y1 =
1
R1

and y2 = 1
R2

denote outputs, where R1 and R2 are the response time of agent A and B,

while u1 and u2 denote their session caps respectively.

8.3.3 MIMO Wiener control system design

Estimation of output nonlinear compensator: Here, following the modelling

approach proposed in Chapter 4, the nonlinear compensator is designed. To gather input-

output data, we designed a SID experiment changing u1 from 9 to 13 in a sinusoidal

12Typically, for small scale travel agents subscribe from 5 to 15 sessions, while large scale travel agents
subscribe with larger (e.g., 30) sessions.
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fashion and workload of 28 requests/sec for agent A. u2 was kept fixed at 6 applying

10 requests/sec workload for agent B. Then output y1 was observed for 600 samples.

The gathered data set was used to estimate the SISO Wiener model. A second order

ARX model and 4th order polynomial was used to fit the data with goodness of fit (R2)

0.74. Figure 8.5a, shows the model fit. The next step is to estimate the inverse of the

estimated nonlinear component. For that, estimated ARX model was simulated with the

input signal to calculate the data of intermediate variable w1. Then, (w1- y1) data pairs

were used to estimate an inverse of the output nonlinearity using curve fitting. Figure

8.5b shows the fit for a 3rd order polynomial with R2 over 0.95. The equations (8.7)

shows the inverse nonlinear polynomial. Afterwards, this equation was implemented as a

software component and integrated at the each output of the system to compensate the

nonlinearities.
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Figure 8.5: Model fit of SISO Wiener model

w(k) = f−1(y1)

= 4.954y1(k)
3 − 47.64y1(k)

2 + 148.1y1(k)− 118.8 (8.7)

Estimation of MIMO linear component: The next step is to approximate the

rest of the dynamics into the linear component of the Wiener model. For this purpose,

a MIMO SID experiment was designed simulating both inputs using a pseudo random

binary signals. We selected 10 and 14 sessions as the levels for both u1 and u2 signals with

switching frequency of 5 samples. Then, the workloads of 25 requests/sec were applied

to simulate agent A and B workloads. With these settings, an experiment was conducted
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and the outputs w1 and w2 were observed for 600 samples. The gathered data was used

to construct the MIMO model using multivariable regression. Equation (8.8) shows the

transfer function of the model with close to R2 = 0.7.

w(k + 1) =

 0.3744 0.0795

0.0764 0.3492

w(k) +
 1.2823 −0.0439

−0.0005 1.3017

u(k), (8.8)

where, w(k) = [w1(k) w2(k)]
T and u(k) = [u1(k) u2(k)]

T .

Controller implementation: Using the above MIMO model and the MPC desgin

procedure proposed in Chapter 5, a MIMO MPC controller was designed, which also takes

into account the constraints imposed on the system. The Np and Nc are set to 15 and 1

respectively in the implemented controller. The parameters of the Laguerre network for

the two input case were set at (a1 = 0.3, a2 =0.3 and N1, N2 = 1). The R(w) was set to

225× I(2×2). u(0) = [15 15]T .

8.3.4 Experiment Results

Here, to provide a comparative performance analysis a linear model predictive con-

trol (LMPC) system is introduced. Equation (8.9) shows the linear MIMO model. All

parameters of LMPC were same as WMPC, but (a1 = 0.35 , a2 =0.3) and R was set to

0.5× I(2×2).

y(k + 1) =

 0.4244 0.1504

0.1314 0.3726

 y(k) +
 0.0881 −0.0115

−0.0081 0.0971

u(k) (8.9)

The following subsections show the performance of the control system under different

conditions.

8.3.4.1 High Workloads Separately

In this section, the performance of the control systems is evaluated by setting RSLA,A and

RSLA,B to 0.41 seconds, i.e. both set points are placed in the insensitive region. This

setting shows how the available resources are allocated to achieve the desired performance

when workloads of agent A and B are increased to the maximum capacity of the system

in separate time periods. The experiment begins with A and B sending 15 requests/sec.

These workload settings require the controller to allocate resources more than the min-

imum allocation allowed (i.e. u1, u2 ≥ 6) to achieve the set points. Then, at the 30th

sample, agent A workload increases from 15 to 47 requests/sec, maintaining the maxi-

mum workload capacity. At the 80th sample workload of agent A reduces to the nominal
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request rate of 15 requests/sec. Finally, at the 100th sample, B workload increases to 47

requests/sec from 15 requests/sec. The outputs and control signals of the control systems

are shown in Figure 8.6.

The results observed in this experiment are similar to the simulation results of Chap-

ter 5. The overshooting at the disturbances is significantly reduced by WMPC without

affecting the steady state behavior compared to LMPC, in particular at the disturbance

of agent B. Although the disturbance rejection can be improved by increasing the aggres-

siveness of LMPC, the steady state behaviour is adversely affected. Table 8.2 shows the

summary of the results, indicating performance improvements of WMPC for R1 and R2.

8.3.4.2 High Workloads Simultaneously

In this experiment, agents A and B start off by sending 15 requests/sec each till the 50th

sample and afterwards both agents increase their workloads to 30 requests/sec simulta-

neously. Here, both workloads are demanding and competing for an equal amount of

resources at the same time. The outputs and control signals are shown in Figure 8.7.

The common behavior of both control systems is that at the 50th sample there is

a small overshooting in the output signals due to the disturbance applied. Till the 50th

sample, WMPC and LMPC resource allocation setting varies and settles at multiple levels.

However, the system output is not affected in both control systems. The reason for this

is in the under-loaded workload conditions (here, the system is running half the capacity)

the system can settle to many resource allocation settings without causing any control

error. However, for the simultaneous increment of workloads at the 50th sample, the

desired allocation is only around S1 : S2 = 15 : 15. Both control systems achieve this

desired resource allocation setting and maintain it consistently after the 50th sample. It

is important to note that, under these settings there are significant interactions between

inputs and outputs of the control system. Although we ignored these interactions in the

nonlinear block of WMPC, it has not affected the performance of WPMC. In fact, when

statistical results are compared (see Table 8.2), there are improvements in the case of

WMPC compared to LMPC.
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8.3.4.3 With Different SLAs (set points)

In this section, set points are fixed at RSLA,A = 0.41 seconds and RSLA,B = 0.6 seconds,

to evaluate the performance differentiation capabilities of the control systems when there

are differences in SLAs. i.e. a one set point is placed in the sensitive region while the

other in the insensitive region. For this case, 20 requests/sec workload was applied for

both agents till the 50th sample. At the 50th sample, agent B workload was increased to

40 requests/sec. Figure 8.8 shows the system response and the control signals.

The response of both control systems illustrate the common characteristic of high

overshooting at the 50th sample due to high workload of agent B. However, the steady state

performance of R2 is oscillatory in both control systems. This is because RSLA,B = 0.6

is located in the sensitive region of the response time curve. As a consequence, there

is no single resource allocation setting that will maintain the R2 at the required value.

WMPC performance illustrates significant reduction in overshooting and settling time

at the 50th sample. The statistical comparison in Table 8.2 shows that performance

of R2 is significantly better in the case of WMPC, indicating much better steady state

and disturbance rejection characteristics compared to LMPC. However, there is a slight

impact on R1 in the case of WMPC compared to LMPC. This is because WMPC reacts

aggressively to the high disturbance of agent B, subsequently affecting the resource cap of

agent A for a short period of time.

Table 8.2: The statistics of LMPC and WMPC

Case Output WMPC LMPC Diff (LMPC-WMPC)

SSE MAX SSE MAX SSE MAX

8.3.4.1
R1 1.874 1.296 5.170 1.700 3.30 0.40
R2 13.489 2.445 30.807 2.981 17.32 0.54

8.3.4.2
R1 0.067 0.580 0.252 0.705 0.19 0.13
R2 0.047 0.522 3.777 0.687 3.73 0.16

8.3.4.3
R1 0.197 0.699 0.038 0.539 -0.16 -0.16
R2 8.227 1.656 11.542 2.216 3.32 0.56

8.3.5 Multi-Model Switching Control

Together with the general linear model shown in equation (8.9) and the controller

(namely, LMPC1), we combined another model and a controller (namely, LMPC2) to

operate in the region when the agent B’s set point is placed in the sensitive region (0.5
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to 0.8 seconds) (see equation (8.10)). LMPC2 was designed with the same settings of

Np and Nc set to 15 and 1 respectively. The parameters of the Laguerre network were

set at (a1 = 0.4 , a2 =0.7 and N1, N2 = 1). The R(w) was set to 0.001 × I(2×2). In

addition, the R(w) of the LMPC1 was set to 0.1, to provide better disturbance rejections

in the insensitive region. The switching logic is similar to the rules in Chapter 6. This

multi-model switching control system is called MMPC.

y(k + 1) =

 0.4478 0.0218

−0.1915 0.7755

 y(k) +
 0.0631 0.0386

−0.0201 0.0999

u(k) (8.10)

The same workload conditions and operating conditions of Section 8.3.4.1 were used in

the experiment till the 200th sample. Thereafter, the workload of agent A and B was set

to 20 requests/sec and 40 requests/sec respectively, while altering the set point of agent

B to 0.6 seconds. The results are shown in Figure 8.9.

The LMPC1 provides better performance till the 200th sample for both R1 and R2,

but the steady state error of R2 after the 200th sample is significantly high compared

to both other control systems. Similarly, although LMPC2 provides better performance

after the 200th sample, the performance before the 200th sample is poor for the case of

R1 when the sudden workloads disturbances are encountered for both agents separately.

MMPC which combines the performance of both control systems provides better results

compared to both individual linear control systems. Furthermore, the simple switching

rules implemented in this control system have provided stable switching behavior and have

not created any issues inherent to switching control systems.

8.4 Conclusion

This chapter has applied the proposed nonlinear control approaches in two real-world

experimental case studies: the first shares the resources at the middleware level, while the

second shares the resources at the application level. The relative performance manage-

ment capabilities of Hammerstein-Wiener and MMST adaptive nonlinear control methods

have been investigated using the first experimental case study. In addition, the absolute

performance management capabilities of MIMO Wiener and multi-model nonlinear con-

trol schemes have been compared with the exiting linear MIMO control approaches using

the second case study. The results of these studies have shown that these new nonlinear

control approaches outperform the existing linear approaches in many cases. These results
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have also illustrated the applicability of the proposed approaches in the real-world shared

resource environments that exist at different levels of the system stack.
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Figure 8.6: Performance management under high separate workloads
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Figure 8.7: Performance management under simultaneously high workloads
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Figure 8.8: Performance management under different reference values
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Figure 8.9: Performance management of LMPC1, LMPC2 and MMPC

197



Chapter 8. Experimental Case Studies

198



Chapter 9

Conclusions

Due to the popularity of shared resource software environments, dynamically managing

a limited amount of resources between multiple customer classes, to deliver the required

performance properties such as response time has become a challenging research problem.

This is because, a management system of a multi-class shared resource software envi-

ronment has to be designed 1) to achieve diverse performance objectives of the multiple

customers under highly dynamic and unpredictable workload conditions, 2) to honour the

limits and constraints on the resources, 3) to operate at the different levels of the system

stack (e.g., middleware and application levels) and 4) to handle the nonlinear dynamics

of the system and control schemes. Addressing this research problem has been the main

focus of this thesis.

The primary research focus has been to investigate nonlinear feedback control method-

ologies to automate the control of resources at runtime to achieve relative and absolute

performance management objectives of multi-class shared resource software environments.

A literature review on the existing performance and resource management techniques has

been performed to identify the research gaps. The research goal and method were then for-

mulated to characterize the nonlinear dynamics of the relative and absolute performance

management systems. As major research contributions of this thesis, novel nonlinear model

estimation techniques and control architectures have been proposed to implement the rel-

ative and absolute performance management systems. The proposed approaches have

been evaluated using simulation studies and real-world experimental case studies. From

these evaluations, the proposed nonlinear approaches have shown significant improvements
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compared to the existing control methods. Furthermore, we have also presented a config-

urable and extensible supporting tool to implement complex control systems for software

environments in a cost-effective manner.

The following sections present a summary of work and summary of findings of this

thesis, followed by the limitations and directions for future research.

9.1 Summary of Work

In this thesis, we have presented novel nonlinear control approaches, which have made

several contributions to the field of performance management of multi-class software sys-

tems. In particular, these new approaches have reduced the impact of nonlinearities on

the management system by explicitly considering the nonlinear dynamics in the system

modelling and control system designing stages. In a nutshell, the research work presented

in this thesis is as follows.

Control-oriented nonlinear system identification

I For relative performance management, due to consideration of ratios of the performance

properties (response time) and the resource caps between classes, severe nonlinear dy-

namics exist at the system inputs and outputs. In this work, we have characterized the

existing nonlinear behavior as input and output nonlinearities for the first time using

a block-oriented model called the Hammerstein-Wiener model. A system identifica-

tion method is then presented to explicitly model the input and output nonlinearities

together with the rest of the dynamics.

I For absolute performance management, the nonlinear dynamics exist because of the

nonlinear behavior of the performance property with respect to the resource cap of each

class. In this case, since the management system is MIMO, the system identification

of these nonlinear dynamics was a challenging task. A new modelling approach based

on a simplified MIMO Wiener model has been proposed in this thesis. This approach

decomposes the MIMO system into SISO subsystems and subsequently identifies the

nonlinear dynamics at each output individually. Afterwards, a MIMO linear model is

used to represent the rest of the dynamics.

I In addition to the above modelling approaches, another simple and intuitive approach

to capture the nonlinear dynamics of a system is to estimate multiple linear models to

represent the dynamics of multiple regions. In this thesis, we have also investigated this
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approach to represent the nonlinear dynamics of the relative and absolute management

systems and proposed methods to divide a wide operating region into multiple regions,

which are represented by multiple linear models.

Nonlinear control system design and management

I Based on the estimated Hammerstein-Wiener model, a control system architecture

equipped with nonlinear compensators has been put forward for the first time, to reduce

the impact of input and output nonlinearities of the relative scheme, on the manage-

ment system. These compensators were integrated externally to the target system and

consequently no modifications were required to the target system. A PI control system

based on the transformed variables has been implemented to automate the management

of resources of multiple classes at runtime.

I A MIMO MPC control technique based on the estimated MIMO Wiener model struc-

ture has been presented for absolute performance management in this thesis. This

control architecture also consists of nonlinear compensators at each output of the tar-

get system. In addition, after integration of the compensators, the conventional MIMO

MPC and constraint problems have been transformed to operate with the intermediate

output variables. Furthermore, a MPC system based on the Laguerre functions and a

quadratic programming solver based on the primal-dual method have been presented

to implement the MIMO Wiener control system, in order to automate the absolute

performance management of multiple classes at runtime.

I Using the estimated multiple linear models to capture the dynamics of the system

in multiple regions, a control system consisting of multiple controllers and switching

schemes has been proposed for relative management. The switching scheme was de-

signed based on an adaptive control scheme called multi-model-switching and tuning

adaptive control. In contrast, a different rule-based switching scheme equipped with

multiple controllers has indicated better performance for the case of absolute manage-

ment. The simple rule-based scheme has been designed using the reference signal of

each class as the scheduling variable.

Implementation support tools

I In order to support the engineering process of control systems, a class library with a

set of standard control components has been developed as one of the outcomes of this

thesis. This class library can be readily integrated to the software systems developed
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using Java and .Net platforms. This class library consists of models, control algorithms

and optimization programs which can be configured or extended in a cost effective

manner.

Evaluations using simulation, experimental and empirical studies

I The above mentioned modelling and control solutions have been also evaluated com-

paring them to existing linear and adaptive control methods using simulation studies,

as well as two real-world experimental case studies sharing resources at different levels

of the system stack. In these evaluations, the benchmark multi-class systems serving

two and three classes have been utilized. In addition, to show that these results do not

depend on the simulation parameters, we have conducted and presented the results of

Monte-Carlo simulations.

I In order to evaluate the facilitation provided by the aforementioned class library, we

have also conducted an empirical study involving a group of software engineers.

9.2 Summary of Findings

This section lists the findings of this thesis.

I The nonlinear Hammerstein-Wiener control technique presented to achieve the rela-

tive performance objectives has shown that the input and output compensators have

effectively reduced the impact of nonlinearities that exist in the relative performance

management system, compared to the linear control counterpart. In particular, for ma-

jority of cases, much better steady state behavior has been shown when the system is

operating in the region where input nonlinearity becomes severe while the disturbances

have been rejected efficiently in the region where the output nonlinearity damps out

the output signal. However, the noisy conditions have affected the performance of the

output compensator indicating slight performance degradations for some cases.

I The nonlinear MIMO Wiener control system has achieved the absolute performance

management objectives significantly better compared to a MIMO linear controller. The

integrated compensators at the each output have reduced the impact of the nonlinearity

on the absolute management system providing significantly better disturbance rejection

capabilities, without sacrificing the steady state performance for all cases.

I The proposed multi-model scheme based on the MMST adaptive control has shown

better performance in the cases where noise does not affect the output signal. In
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such cases, MMST control scheme has selected the suitable model and controller au-

tonomously under fast changing unpredictable conditions delivering better performance

compared to the linear and adaptive control approaches. However, a major observation

was that the noisy output signals led the control systems to falsely detect the change of

conditions, thereby leading to chattering and large transient responses. It is also worth

noting that the velocity form of the PI controller, which operates with the incremental

control input has implemented bump-less transfers, contributing to better performance

even under frequent switching of controllers. Although the multi-model approach is a

simple and intuitive approach, the overall performance comparison has indicated that

the Hammerstein-Wiener control approach is much more stable and efficient approach

for relative performance management.

I The multi-model approach presented for absolute performance management has shown

that the simple rule-based switching algorithm provides effective control in the insen-

sitive and sensitive regions of the system output compared to an individual controller

tuned to operate in a single region. In addition, this approach has provided design

flexibility and stable switching under changing conditions.

I Referring to Chapter 1 where we have listed the quality attributes, a management sys-

tem of multi-class shared resource systems need to possess, it is evident that proposed

nonlinear control approaches (i) achieve the absolute and relative performance objec-

tives under unpredictable disturbances and events significantly better compared to the

existing linear approaches in most cases, (ii) adjust the resource caps efficiently at run-

time under sudden workload changes and resource demands, (iii) provide performance

isolation between classes, (v) enable dynamic resource management at different levels of

the system stack and (v) provide systematic and formally grounded design processes1.

I The empirical study conducted with a group of software engineers has indicated that

the engineering process and the class library presented in this thesis have facilitated

software engineers in the implementations of complex control systems compared to

implementing them from scratch. The results have shown that the class library has

significantly reduced the implementation time and costs together with the knowledge

required of the software engineer.

1However, in the cases of MMST adaptive control the parameters of the switching algorithm have to
be selected using a set of heuristics.
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9.3 Limitations

Although proposed nonlinear control approaches have shown significant improvements,

there are some limitations encountered during the design stages of the control systems and

during the runtime operations of the control systems.

I Model estimation effort. The identification procedures of block-oriented models are

relatively complex compared to the linear SID. In particular, to identify the output

nonlinear and linear components of the block-oriented models, two SID experiments

have to be conducted. Similarly, several SID experiments have to be carried out, in

order to identify the required models for the multi-model schemes as well. Therefore, the

model estimation effort is high for the approaches proposed in this thesis compared to

the linear SID approaches. However, the existing design support tools (e.g., Matlab SID

toolbox2) can still be used for all the proposed nonlinear model estimations, avoiding

the need of additional implementation efforts.

I Computational overhead at runtime. The control systems equipped with compensators

induce additional computational overhead due to the compensator framework compared

to a linear control system. Similarly, the switching control systems require execution of

the switching logic/algorithms, which impose computational overhead in comparison to

a linear control system. However, all these additional components require computations

of simple mathematical operations, which introduce only an insignificant overhead in

the current state-of-the-art software environments.

I Tuning of MMST adaptive control schemes. There is no formal process to derive the

switching algorithm parameters of MMST adaptive control. To mitigate this limitation,

a set of design heuristics has been presented in Chapter 6.

I Chattering. Chattering is a well-known issue that exists in switching control systems

such as MMST adaptive control. To overcome this issue, the tunning parameters of

the switching algorithm have to be selected carefully after simulation studies.

9.4 Future work

In this thesis, we have presented new nonlinear control engineering approaches to

implement performance management systems for shared resource environments. This is

still a new area of study in the software performance management literature. There is

2http://www.mathworks.com.au/products/sysid/
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more work to be done in the future to address the existing limitations and further improve

these nonlinear techniques. This section overviews the directions for future research.

The proposed model estimation approach for absolute performance management ne-

glected the interactions between the intermediate output variables and system outputs.

However, it is important to further investigate the impact of this assumption. New nonlin-

ear identification methods have to be devised to capture these interactions in a systematic

way, which is a major future work.

One of the assumptions of Hammerstein-Wiener model estimation method was that

the output nonlinear dynamics do not change over time. However, in some cases, we

observed that noisy signals affect the compensation, subsequently the controller reacts to

those conditions aggressively. This is because output nonlinearity is not always static. In

order to mitigate this issue, on-line identification of the output nonlinearity may be useful.

Such a technique has been proposed in [91].

The investigated case studies shared resources only at the application and middleware

levels. In the future we also intend to apply the proposed nonlinear approaches at the

hardware level using the virtualization technology.

In order to mitigate the design overhead of MMST adaptive control, the online model

learning and model retention techniques have been proposed in [167, 196]. The investiga-

tion of such techniques is another future research direction.
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Appendix A

Control System Design

Two main design steps have to be carried out in order to design a control system in a

systematic way. First, sufficiently accurate model of the system has to be estimated. Sec-

ond, a suitable controller has to be selected, tuned and tested. Following two subsections

of this appendix provide the general background on these two steps of designing a control

system.

A.1 System Modeling
In order to design a control system, a formal relationship between the control inputs

and the outputs has to be constructed. In control theory this relationship is referred to

as the model of the system. Many physical systems are governed by first principle models

(such as mass, Newtonian, electricity laws) which can be used to model the behavior of the

system. However, when the software systems are considered, such first principle models do

not exist or highly complex limiting the use of well-established control engineering method-

ologies to design a controller, unless linearization or other approximation techniques are

used to simplify the model. Some work, use queuing models as such analytical model to

describe the behavior of software systems. The limitations of queuing models are they are

not fine grained enough to capture the behavior of the system [81, 177]. In addition, the

performance of the queuing models is significantly poor, when they are used in runtime

control with small time intervals [81, 177]. Moreover, the complexity and the performance

of such models drastically degrade in multi-class systems under changing workload condi-

tions [30]. Furthermore, assumptions have to be made on arrival, service rates and their

distributions which may not hold in certain dynamic software environments [81, 177].

The other possible solution is to treat the entire system as a black-box and conduct

a system identification experiment. System identification (SID) provides a rich body

of literature and methodologies to represent the behavior/dynamics of the system with

mathematical models using experimental input-output data [125]. In a SID experiment,

to gather input-output data, a specially designed (persistently exciting [125]) input signal

is applied on the system and output is observed for a sufficient period of time. The pseudo
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random binary (PRB), sinusoidal or pseudo random signals are extensively used as input

signals in the literature. Then, the input-output data is fitted into a suitable model

with sufficient accuracy using linear regression. For this purpose, typically Linear Time

Invariant (LTI) models are used [81]. Autoregressive Exogenous input (ARX) models

have been used to represent the behavior of software systems widely [81]. The standard

equation of ARX model is shown in equation (A.1).

y(k) =

n∑
i=0

aiy(k − i) +

m∑
j=0

bju(k − d− j) (A.1)

where, n and m are the order of the model, ai and bj are the parameters of the model, d

is the delay (time intervals taken to observe a change of input in the output) and k stands

for the current sample instance. The order and other parameters of this model are derived

using linear regression techniques [81, 125]. These are the basic concepts behind a SISO

SID experiment.

In a MIMO system, however, the above system identification process becomes complex

due to the involvement of multiple variables. There are two main techniques. The first

technique is to change/excite a one single input at a time keeping other inputs at desired

(steady state) values and observe the outputs. The same process is then applied to other

inputs. Afterwards, the MIMO model is constructed based on the gathered data. The

obvious drawbacks of this approach are the time taken to construct the model, high level

of manual work, insufficient capture of the input-output interactions in the model and

merging of data/models to arrive at the final model [222]. The second technique is to

simultaneously excite all the inputs in the system and observe all outputs. The gathered

data is then fitted into a model using multivariable regression. This approach addresses

most of the above limitations of the first approach. But, conducting such an experiment

may not be always possible in some systems due to safety reasons. However, if it is possible

to conduct such an experiment, this second approach produces a high quality model as

recommended in [46, 222] and proved in [67]. The MIMO ARX model is generally utilized

to represent the behavior of software systems. The standard equation of MIMO ARX

model is as follows:

y(k) =
n∑

i=0

Aiy(k − i) +
m∑
j=0

Bju(k − d− j) (A.2)

where, n,m - the order of the model, (Ai, Bj) are the parameter matrices with N × N

dimension (assuming, there are N inputs and outputs), d - is the delay and k is the current

sample instance.

A.2 Controller Design and Specifications
After modeling the behavior of the system, the second step includes controller selection,

design, simulation and testing. There are many types of controllers available in control

literature including proportionalintegralderivative (PID) and predictive controllers. These

controllers are most suitable to control, linear systems. However, with a good feedback
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mechanism and tuning these controllers may provide satisfactory performance in the sys-

tems with nonlinearities [81]. More details of these controllers will be provided in Appendix

B.

After the selection of a particular type of controller, the controller has to be configured

according to the system characteristics and target system model. All of these controllers

have the tuning parameters (also called controller gains), which have to be set to suitable

values to achieve the required runtime performance specifications and maintain the stabil-

ity of the system. There are several well established formal techniques to aid the designer

to select the gains of the controller while analyzing the closed-loop performance of the

system. The pole-placement design and root locus design are such techniques (for more

details refer [81, 175]). Both these techniques have been used to derive the gains of the

controllers in the literature. The theoretical range for each controller gain can be decided

given the model of the system, however the final controller gains are decided depending on

the ability to achieve the performance specifications after running the simulations and test

cases. There are four major performance specifications widely considered in the control

system design. They are stability, settling time, overshooting and steady state error (for

more details refer [81, 143]).

Another important design concern is so-called saturation limits of the control input

(signal). For instance, consider a volume controller of a television. A volume controller has

the minimum and maximum limit of volume. The volume can only be controlled between

these limits. Similarly, in a shared resource system, there are minimum and maximum

resource limits that have to be honoured when the resources are allocated between multiple

classes. These limits are often called saturation limits in the control literature. These

saturation limits have to be imposed as hard constraints in the controller after u(k) is

computed by the controller in each sample time instance. i.e., umin < u(k) < umax, where

umin and umax are the lower and upper bounds of the control input u(k) respectively.

These limits are typically implemented as rules or by running an optimization algorithm.
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Appendix B

Different Control Schemes

In this appendix, we provide a brief introduction to some of the widely used control

schemes.
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Figure B.1: Block diagrams of different feedback control schemes

Fixed-gain control

The structure of a fixed-gain control scheme is the same to that of Figure 2.1. For in-

stance, different variations of the Proportional Integral Derivative (PID) controller is one

such fixed-gain controller widely used in existing work due to their robustness against mod-

eling errors, disturbance rejection capabilities and simplicity [81]. Two different formations

of the PI control algorithm are shown in equations (B.1) and (B.2), called position/full-

value form and velocity/incremental form respectively. Kp (proportional gain) and Ki
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(integral gain) are the tuning parameters of the PI controller, which have to be selected

to achieve the desired system performance specifications.

u(k) = Kpe(k) +Ki

k∑
j=0

e(j) (B.1)

u(k) = u(k − 1) + (Kp +Ki)e(k)−Kpe(k − 1) (B.2)

Fixed gain control design has a number of advantages. The fixed gain controllers are

useful to automate parameter tuning tasks of the software system and to achieve perfor-

mance goals with less human interventions. In addition, such controllers are relatively easy

to design and formal techniques exist for stability analysis and tuning of the controller.

They can deliver the desired performance to a limited extent under varying workloads and

changing operating conditions. However, fixed-gain controllers have some limitations. The

model of the system often captures the dynamics in a particular operating region under

certain operating conditions that can be characterized using a single linear model [81].

The target system usually exhibit complex behavior, including different behaviors under

different operating conditions. If there are a number of dimensions across which operating

conditions can vary, constructing a signal model and selecting gains to satisfy all operating

conditions can be difficult [107]. Consequently, under dynamic and unpredictable varia-

tions, the performance of a fixed-gain controller can degrade because the control algorithm

and the gains remain unchanged at run time. Thus, the single fixed gain controller alone

cannot provide an effective solution to provide control under multiple operating regions of

a software system [151, 177, 189].

Model predictive control

The general idea behind Model predictive control (MPC) is to optimize the future

behavior of the system output by computing the trajectory of the control inputs. Firstly,

using the model of the system and the feedback signals, the behavior of the system output

is predicted over k+Np, where k is the current time sample and Np is called the prediction

horizon. Then, the objective of the predictive control is to maintain the predicted future

output sufficiently close to the desired set point value, subject to various constraints

on input, output or combination of them that have to be optimized within the predic-

tion horizon. MPC produces a sequence of control inputs (∆u(k),∆u(k + 1|k),∆u(k +

2|k) . . .∆u(k + Nc|k)) that would achieve these objectives. Nc is called the control hori-

zon. Note that the MPC operates with change/increment of input ∆u(k). Given u(0) the

control input, (u(k)) for each sample k can be calculated by u(k) = u(k − 1) + ∆u(k).

However, only ∆u(k) is used to calculate the control input u(k)(= u(k − 1) + ∆u(k)),

which will be implemented on the system in the current time sample, while discarding

the rest of the sequence according to the receding horizon control principle [21, 223]. The

same process continues in the next sample intervals by sliding the prediction horizon one

time step ahead while incorporating the feedback signal.
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The algorithm of MPC involves a cost function and constraint problem as follows:

J = (Rs − Y )T (Rs − Y ) + ∆UTRw∆U (B.3)

where

Y =
[
y(k + 1|k)T y(k + 2|k)T . . . y(k +NP |k)T

]T
,

U =
[
∆u(k)T ∆u(k + 1)T . . . ∆u(k +Nc − 1)T

]T
,

Rs =
[
1 1 . . . 1

]
r(k)T , is the reference/set point signal, and

Rw = rw(m×m)I(m×m), where rw is the control penalty vector to alter the aggressiveness

of the controller.

The first term in equation (B.3) incorporates the deviation of the system output com-

pared to the desired value. The second term incorporates the controller effort. The

objective is to minimize the deviation with minimal control effort. This objective can be

achieved by minimizing the cost function J subject to constraints as follows:

Minimize J:

Subject to : (B.4)

umin ≤ u ≤ umax

∆umin ≤ ∆u ≤ ∆umax

ymin ≤ y ≤ ymax (B.5)

The imposed constraints depend on the system requirements. Typically, hard con-

straints on control input are implemented as shown in equations (B.5), to impose satura-

tion limits as discussed in Appendix A. Figure B.1a shows that MPC requires a model

predictor to predict the future behavior and a standard quadratic programming solver to

solve the constrain problem online.

Model predictive control is useful because of its ability to optimize future behavior

under complex constraints. In addition, it is highly suitable and efficient for controlling

multi-variable (MIMO) systems with large constraint sets. However, it requires sufficiently

accurate model because it depends on the model predictions to predict the future behavior

of the system. In addition, under conflicting constraints the quadratic optimization may

fail to achieve the optimal solutions leading to sub-optimal decisions.

Self-tuning adaptive control

Self-tuning (adaptive) control addresses some of the limitations of fixed gain controllers

by dynamically estimating the model parameters and gains of the controller to achieve the

high-level design objectives. As shown in Figure B.1b, adaptive controllers have a pa-

rameter adjustment loop, which derives these required parameters at runtime [13]. The

parameters of the target system’s model are estimated by the Estimation component, while

the Controller design component uses these estimated model parameters and high-level

control objectives provided by the user to compute the gains of the controller. The Self-

tuning Regulators (STR) [13, 81] have been often applied as an adaptive control scheme

in software systems. There are two types of STR designs. The indirect-STR uses the
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estimations of the system model to subsequently derive the controller parameters. In con-

trast, the direct-STR reformulates the model estimation algorithm to compute controller

parameters directly [13, 107].

In this sense adaptive control captures the behavior in multiple operating regions of

the target system. However, a basic assumption of adaptive control is that the model

parameters remain constant or vary slowly over time [13, 117]. This means adaptive con-

trol does not cope well with rapid or large changes in operating conditions [166, 265].

Fast changing conditions can be seen in software systems, such as sudden workload spikes,

‘slashdot’-effects, component failures and the garbage collection process. Adaptive con-

trol also has other limitations, such as computational cost due to online estimation and

design. The start-up performance may not be satisfactory since it takes time to come up

with the estimations. Furthermore, adaptive control methods require the input signal to

contain a sufficient range of frequencies to excite the system (so-called persistently exciting

condition) for fast and accurate model estimation [13, 107].

Gain scheduling

Figure B.1c shows the block diagram of a gain scheduling control system. The operat-

ing regions or states are decided based on the scheduling variables exposed by the target

system. For instance, the request arrival rate can be used as the scheduling variable and

rules can be formed to describe the operating regions and the controller gains for a par-

ticular operating region [81]. Then, these rules are implemented in the gain scheduling

component. At runtime when the rules are satisfied the relevant controller gains are up-

dated in the controller by the gain scheduling component. In contrast to adaptive control,

gain scheduling does not have a model estimation component. Instead, it uses a predefined

logic/rule based evaluation to change the controller online. Thus,the computational load

may be less. Furthermore, some design flexibility can be achieved by changing the gains

of the controller depending on the operating regions of the target system compared to

fixed gain control. However, an issue with this technique is that the target system has to

provide the required useful scheduling variables. The performance of a software system is

influenced by complex interactions between different factors (e.g., workload arrival rates

and the CPU usage), and their relationship to different operating regions makes it difficult

to establish reliable heuristics, rules and thresholds that can determine which gains are

appropriate at any given time. In addition, there are no systematic or well defined ways

to implement the scheduling logic or rules [81].

Reconfiguring control:

The adaptive control schemes provide more flexibility compared to the non-adaptive

scheme by adjusting the controller parameters online. However, the controller algorithm

and the organization of the components in the control loop stays fixed overtime [156]. For

different operating conditions and disturbances different control algorithms may provide

better control [208]. Reconfiguring control scheme is a conceptual approach with the main

216



idea to change the control algorithms, models and architecture of the control system to

deal with the changing operating regions of the target system. Figure B.1d illustrates

the conceptual layered architecture of reconfiguration control. The control layer consists

of the control system (including the controller) providing the control in the current time

instance. The responsibility of the reconfiguration layer is to reconfigure the architecture

of the control layer so that the control objectives of the target system can be achieved

under requirement or environmental changes. This approach is useful to provide control

under multiple operating regions of the software system. For instance, multiple fixed gain

controllers can be integrated into this scheme with a mechanism of selecting a suitable

one at runtime. However, there are tradeoffs between the design complexity and the run-

time overhead on the system due to the additional reconfiguration layer [81]. In addition,

to come up with different control schemes prior information about the system and en-

vironmental conditions may be required. Chattering is another issue that can occur in

reconfiguring control, i.e., the control system frequently changes between controllers or

different loop configurations without providing desired control. This could lead to drastic

performance degradations [156].

217



Appendix B. Different Control Schemes

218



Appendix C

Validation of the DES model

This appendix presents the validation details and results of the DES model used to rep-

resent the multi-class shared resource environment. Well-established queuing theory will

be used in this validation.

C.1 Conformant to Little’s Law
One of the fundamental results of queuing theory was developed by John Little in

1960’s, which is used as a basic building box in the development of theories for large scale

queuing systems. Little’s law is defined as follows:

For a queuing system in steady state, if the mean time waiting in the system is W =

E(T ), and the mean number of customers entering the system is λ, then the mean number

of customers in the system is given by E(L) =W × λ.

This result applies to any queuing system and even to systems within a system. How-

ever, system has to be at steady state, meaning that the arrival rate should be less than

the service rate of the system. The architecture of a multi-class shared resource system is

composed of queues (see Figure 3.3), therefore the simulation model presented in Chapter

3 can be validated using Little’s law. In addition, this validation also confirms whether

there are any message losses in the simulation.

In order to conduct the validation, we constructed a queuing simulation using the con-

structs introduced in Section 3.5.2. We used two class workload generators and queues for

each class with 5 resource units in this validation. We used 18 combinations of stochastic

arrival and service rates for the exponential distribution to simulate the workloads and

processing times of both classes, which provide sufficient data to conduct a statistical test

to compare the results. All these combinations were selected while maintaining the system

at the steady state. Each experiment was conducted for 50,000 ticks. The StatisticCalu-

lator instance was used to compute the final statistics of the experiment including, the

average response time, average arrival rates and average number of customers in the sys-

tem. In these calculations the system was considered composed of two sub systems, each

providing services to a single class. The total number in these two sub systems computed
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using the Little’s law was compared with the measured total number in the system when

both sub systems considered together.

A summary of results are listed in Table C.1. The results indicate that the measured

number in the system is equal to the theoretical calculations of the Little’s law. Hence,

the multi-class system simulations implemented from the DES model described in Section

3.5.2, conform to the Little’s law. This result also indicates that all the requests input

to the system have left the system. Furthermore, the implementation of the DES model

including the statistical calculations is also correct.

Table C.1: A comparison based on Little’s law

Average
waiting
time Class
1(W1)

Average
waiting
time Class
2(W2)

Total num-
ber of
customs
class 1(N1)

Total num-
ber of
customs
class 2(N2)

Measured
average
number of
customers
in the
system

Calculation
of little’s
lawW1×N1

+ W2 ×N1

54.537 51.490 93 104 0.208 0.208

46.253 49.351 999 993 1.904 1.904

28.235 29.221 1238 1243 1.425 1.425

14.127 14.392 1676 1658 0.950 0.950

17.091 17.265 2030 1944 1.365 1.365

14.42547 14.40802 2536 2468 1.442 1.442

C.2 Conformant to Other Queuing Principles
In addition to the above validations, we also conducted other validations using general

queuing system principles, comparing the simulation behavior to a single-server queuing

system (M/M/1) and multi-server queuing system (M/M/c). The results indicated there is

no statistically significant difference between the simulation results and theoretical result.

Interested readers can refer [188] for more details.
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Appendix D

Algorithm for Resource Cap

Calculation in Relative

Management System

This appendix presents the algorithm proposed in [145] to compute individual resource

caps for each class in a multi-class shared resource system.

Table D.1: Algorithm for resource cap calculation proposed in [145]

RSi: normalized resource allocation of class i relative to
class n− 1, i = 0, 1, . . . n− 1.

RSi(k) =
Si(k)

Si−1(k)
, where k - sample instance.

sum: the sum of the normalized process budgets of all classes.
M : total number of resource units.
Begin Algorithm
RSn−1 = 1
sum = 1
for(int j = n− 2; j ≥ 0; j −−) {
//Call the controller to get ratio Uj+1(k)
between QoS class j and j+1.

RSj(k) = RSj−1(k) ∗ Uj+1(k)
sum = sum+RSj(k)

}
for(int j = n− 1; j ≥ 0; j −−) {

Sj(k) =M ∗ (RSj(k)/sum)
}
End Algorithm
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Appendix E

Additional Cases For Multi-class

Shared System With Two Classes

In this appendix, we present further evaluation results of relative and absolute performance

management systems designed in previous chapters to control shared resource system with

two classes. Section E.1, Section E.2 and Section E.3 cover results related to Hammerstein-

Wiener, MIMO Wiener and MMST control systems respectively.

E.1 Relative Performance Management of Two Classes Us-

ing Hammerstein-Wiener Nonlinear Control
This section follows a similar structure to Section 5.3, but provides additional cases

not covered in Section 5.3 under workloads of, full capacity or lower, extreme overloads

and different patterns.

E.1.1 Workloads of Full Capacity or Lower

Case G: Performance in the nominal region

In this case the performance of the controllers are compared in the nominal operat-

ing region (see Figure 4.2) where resource demands for both classes are similar. In the

under-loaded conditions, one of the possible requirement is to treat both classes as equally

important which can be translated in the relative control scheme using performance dif-

ferentiation factors P1, P0 = 1. This is because, since the system has enough resources

to cater the both workloads, it is fair to provide similar performance for both classes.

Consequently, in order to maintain the control systems in the nominal regions we apply

same workloads for both classes and fix the set point at P1
P0

= 1. The class0 and class1

start off by sending 20 requests/sec each till the 50th sample and afterwards both classes

increase their workloads to 30 requests/sec simultaneously. The performance and resource

management of the HWCS, HCS and LCS are shown in Figure E.1.

Although the statistics listed in Table 5.4 indicate that there are differences in the

control system outputs, these differences are insignificant. The control signals of the con-

trol systems show the variations around the operating point S0
S1

= 1 or S0 : S1 = 15 : 15,
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(f) Control signal of HWCS

Figure E.1: Performance of the control systems in the nominal region (Case G)

which is the nominal operating point. The system output is not affected even due to

the high workload disturbance at the 50th sample because all controllers settle down to

resource caps S0 : S1 = 15 : 15 at the startup, which is sufficient to cater the workload

disturbance at the 50th sample. As expected the LCS provides satisfactory performance

in this region, however HCS and HWCS does no worse. Therefore, all control systems

achieve the performance objectives under this condition.

Case H: When Class0 is more important

All the settings are same as Case B in Section 5.3. The experiment starts with 20 and

20 requests/sec for class0 and class1 respectively. Then at the 50th sample class0 increases

its workload to 40 requests/sec. The set point is at 1.5.

All control systems show some oscillatory behavior because of the noise generated in the

output due to queuing delays of less important class. The SSE statistics shown in Table 5.4

indicate slightly better performance of LCS compared to nonlinear control systems. This

is because the control system operates in region 0 where the spacing in-between operating

points is large. Hence, the LCS shows less effect to the output noise compared to HWCS.

The output noise further affects the performance of the post-output compensator, leading

to slight performance degradations. This is because the output nonlinearity is not always

static compared to the input nonlinearity. However, the MIN and MAX statistics are still

better for the case of HWCS compared to LCS. The HCS on the other hand provides

best performance under this condition because the noise at the output does not affect the

performance of the controller.
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E.1.2 Workloads of Extreme Overload

Case I: Performance under overload when Class0 is more important

All the settings are same as Case E in Section 5.3. In this case, both classes overload

the system by applying 75 requests/sec each.
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(f) Control signal of HWCS

Figure E.2: Performance under overload when Class0 is more important (Case I)

In this case, there is no much difference in the performance management (see Figure

E.2). All control systems achieve the required control objectives. The slightly better

performance of LCS is because, since class0 overloads the system, the operating points lies

in region 0, where the input nonlinearity does not affect the LCS under noisy conditions.

Case J: Performance under overload when Class1 is more important

In this case, we set the reference signal to be P1
P0

= 0.5, making class1 as the most

important class. In this experiment, 75 and 40 requests/sec for class0 and class1 are

applied respectively, which means that the less important class has overloaded the system.

Figure E.3 shows the outputs and the control signals of the control systems.

Here, the control systems are operating in the region where output nonlinearity damps

out the variations of the output signal. Further, since class0 has overloaded the system the

resource allocation points are in the nominal region and region 1. These factors contributes

to the better performance of LCS, however it is apparent that it reacts slowly to the

changes in the output due to the effects of the output nonlinearity. Similar, behavior is

observed in HCS as well, because it does not compensate for any output nonlinearities. In

contrast, HWCS efficiently detects the variations in the output due to the compensation of
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(f) Control signal of HWCS

Figure E.3: Performance under overload when Class1 is more important (Case J)

the output nonlinearity and efficiently achieves the control objectives compared to other

control systems. However, due to the noisy conditions the inaccuracies in the output

compensation make HWCS to over react, creating somewhat oscillatory behavior.

Case K: Change of differentiation levels (or set point) at runtime time

All the settings are same as Case F in Section 5.3. However, both classes overload the

system by applying 75 requests/sec each.

All control systems achieve the required control objectives and adapt at the 100th

sample to the change of reference signal. There is not much difference in the performance

management. However, HWCS adapts to the change of reference signal faster compared

to LCS and HCS. It settles to the new differentiation level in 6 samples compared to 12

and 10 samples taken by LCS and HCS respectively. The longer settling times of LCS and

HCS are due to input and output nonlinearities respectively. However, the better steady

state performance of LCS is because the control systems are operating with control points

in region 0. However, the same reason affects the reaction time to the set point signal,

because it settles down slower than HWCS and HCS.

E.1.3 Workloads Following Different Patterns

In Section 5.3 and the above cases, we utilized time varying workload conditions to

force the operating system to operate in different regions. In particular, we used step like

workload disturbances to compare the performance management under sudden changes

in workload mixes of two classes. In this section, we apply different workload patterns to

further investigate the performance and resource management capabilities of the control
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(f) Control signal of HWCS

Figure E.4: Change of differentiation levels at runtime time (Case K)

systems. We use the control objectives of Case A in Section 5.3.1. This setting gives

us an effective way to investigate the performance management of the control systems

and how they deal with the input and output nonlinearities together, when the system is

running in different operating regions.

Case L: Performance and resource management under ramp workloads

The definition of the ramp workload is presented in Section 3.5.4.1. In this case, we

increase the workload gradually in a ramp like fashion. The experiment starts with both

class0 and class1 applying 20 requests/sec workloads till the 10th sample. From the 10th

to 100th sample workload of class0 is increased from 20 to 45 requests/sec, at a rate of 0.25

requests/sec2. The 45 requests/sec workload is maintained till the 150th sample and then

it drops to 20 requests/sec soon after. At the same point workload of class1 is increased

from 20 to 45 requests/sec till the 250th, at a rate of 0.25 requests/sec2. The workload

remains at that level till 300th sample and drops back to 20 reuqests/sec. Figure E.5

shows the outputs and control signals of the control systems.

Performance management under gradual workload increase of class0 is satisfactory

in all the control systems. Under gradual workload changes the resource caps are also

adjusted gradually in order to achieve the control objectives. However, LCS shows small

overshooting just after the 100th sample. This is because, the gap between consecutive

operating points becomes larger due to input nonlinearity in region 0, so that the time

taken to move to the consecutive points becomes larger as well. Similar overshooting is

observed in HCS at the same stage, which is caused by the output nonlinearity. Then,
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(f) Control signal of HWCS

Figure E.5: Performance and resource management under ramp workloads (Case L)

when class1 workload increases gradually, the performance of the LCS starts to degrade

around 230th sample. This is again due to the severe input nonlinearity in the region 1 of

the operating points. Thus, the control signal shown in Figure E.5d becomes oscillatory

around that time period. In contrast, HCS and HWCS provides much better performance

management under ramp workloads of class1. However, HWCS provides much better

performance due to the compensation of input and output nonlinearity under gradual

workload changes of both classes.

Case M: Performance and resource management under real-world workload

In this case, we apply a workload composed from a real-world workload trace of a

software system. Many workload traces from real world applications can be accessed

from http://ita.ee.lbl.gov/html/traces.html. These workload traces are also used

in the existing literature to evaluate the performance management capabilities of the

control systems designed to manage software systems. For this experiment we used the

workload traces of EPA web server http://ita.ee.lbl.gov/html/contrib/EPA-HTTP.

html, which has workload rates that can be managed by the shared resource environment

used in the previous sections, without any modifications or scaling to the workloads. After

decoding the workload rates of the files, the workloads were composed for 2250 samples

for class0 and class1 as illustrated in Figure E.6. Figure E.7 shows the outputs and control

signals of the control systems.

The statistics of the control systems are summarized in Table 5.4. It is evident that

both nonlinear control systems provide better performance (see SSE statistics) compared
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Figure E.6: Real world workloads for class0 and class1
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(f) Control signal of HWCS

Figure E.7: Performance management under real world workload (Case M)

to LCS. Further, overshooting or the output bounds are much larger in the case of LCS as

well. A performance degradation is caused around the 1500th sample when class1 workload

demands more resources, where LCS shows vulnerability. The SSE statistics of HCS is

slightly smaller compared to HWCS however, min and max statistics are much better in

the case of HWCS.
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E.2 Absolute Performance Management of Two Classes Us-

ing MIMO Wiener Nonlinear Control
In this section, additional cases are investigated for absolute management using MIMO

Wiener control system designed in Chapter 5. The same settings used in Section 5.5 will

be used here as well.

Case E: Performance and resource management under ramp workloads

In this case, we increase the workload gradually in a ramp like fashion. Workload

conditions of Case L in Section E.1.3 will be used. Figure E.8 shows the output and

control signals of the control systems.

Under the ramp workload the resources caps are gradually increased in order to achieve

the control objectives by both control systems. The statistics in Tables 5.7, 5.8 indicate

better performance and resource management provided by WMPC. Further, the control

signals generated by the WMPC is less oscillatory compared LMPC, consequently much

better steady state behavior and disturbance rejection capabilities can be observed. The

compensation of nonlinear behavior has improved the performance management under the

ramp workload conditions as well.

Case F: Performance and resource management under real-world workload

In this case, we apply a workload trace from a real-world web server (same as in Case

M of Section E.1.3). Figure E.9 shows the outputs and control signals of the control

systems.

The noisy workloads of the real-world workload trace demand efficient disturbance

rejection capabilities from the management systems. The control signals of LMPC shows

significant oscillatory behavior compared to WMPC under these workload conditions as

well. The steady state performance of WMPC is better compared to LMPC from the

statistics of the Tables 5.7, 5.8. However, there are only slight improvements in statistics

because the workload did not have sudden fluctuations making the control systems to

operate in the sensitive region of the response time curve, where the compensation of the

WMPC becomes more useful.

E.3 Relative Performance Management of Two Classes Us-

ing MMST Adaptive Control
In this section, further cases are investigated for relative management based on MMST

adaptive control. The same settings of Chapter 6 will be used. These cases also corre-

sponds to the cases in Section E.1.

Case G: Performance in the nominal region

Figure E.10 shows the performance of the control systems. It is evident that the

MMST-T2 and ACS provide better performance in this case even with the sudden workload

increase at the 50th sample. There are deviations from the set point in the case of MMST-

T4 around the 50th sample. The model switching signal shown in Figure E.10d indicates
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that the MMST-T2 has used model-0 and controller-0. In contrast, MMST-T4 has used

the adaptive model most of the time (see Figure E.10e). This is an indication that the

adaptive model has captured the dynamics not covered by either model 0 and 1. Although

MMST-T2 has used model-0 which estimates the dynamics of region-0, the performance

of that control system is much better under changing workload conditions. In the case

of MMST-T2, a model switching was observed around the 24th sample. However, the

performance was not affected because of the selection of velocity form which implements

bump-less transfers.

Case L: Performance and resource management under ramp workloads

The results under this case are shown in Figure E.11 and Table 6.2. In contrast to Case

A, where workload conditions change instantaneously, here the workload conditions change

gradually. Such conditions could lead to significant performance issues in the switching

algorithm because the overlapping of the regions, which the models were estimated. How-

ever, none of those issues were observed in the case of MMST-T2. The frequent chattering

occurred during the short time periods of this experiment did not cause any performance

degradation, indicating much better performance compared to LCS. In addition, the grad-

ual changes in the workload improved the performance of MMST-T4 and ACS. However,

when the system gradually moves to region-1, where the input nonlinearity is severe both

control systems showed large transient responses compared to MMST-T2. The transient

responses of ACS are significantly larger than MMST-T4, because the switching algorithm

selected model-1 which is suitable to operate in that region, improving the performance

of MMST-T4.

Case M: Performance and resource management under real-world workload

In this case, MMST-T2 control system which combines two models and controllers

shows better performance than LCS, MMST-T4 and ACS. Due to the noisy workload

the switching decisions made by MMST control systems show chattering (see Figures

E.12d and E.12e). The bump-less transfers implemented by the controllers improved the

performance of MMST-T2 compared to the other control systems. The MMST-T4 and

ACS also provides better performance in this case. Although MMST-T4 showed significant

chattering it shows better performance compared to both LCS and ACS.
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(h) Control signal u1 of MIMO WMPC

Figure E.8: Performance management under Ramp workload (Case E)

232



E.3. Relative Performance Management of Two Classes Using MMST Adaptive Control

0 500 1000 1500 2000
0

1

2

Sample Id

R
es

po
ns

e 
tim

e

 

 

R
0 Set point

(a) Output R0 of MIMO LMPC

0 500 1000 1500 2000
0

1

2

Sample Id

R
es

po
ns

e 
tim

e

 

 

R
0 Set point

(b) Output R0 of MIMO WMPC

0 500 1000 1500 2000
0

1

2

Sample Id

R
es

po
ns

e 
tim

e

 

 

R
1 Set point

(c) Output R1 of MIMO LMPC

0 500 1000 1500 2000
0

1

2

Sample Id

R
es

po
ns

e 
tim

e

 

 

R
1 Set point

(d) Output R1 of MIMO WMPC

0 500 1000 1500 2000
5

10

15

20

25

Sample Id

C
on

tr
ol

 s
ig

na
l

 

 

u
0

u
max

u
min

(e) Control signal u0 of MIMO LMPC

0 500 1000 1500 2000
5

10

15

20

25

Sample Id

C
on

tr
ol

 s
ig

na
l

 

 

u
0

u
max

u
min

(f) Control signal u0 of MIMO LMPC

0 500 1000 1500 2000
5

10

15

20

25

Sample Id

C
on

tr
ol

 s
ig

na
l

 

 

u
1

u
max

u
min

(g) Control signal u1 of MIMO LMPC

0 500 1000 1500 2000
5

10

15

20

25

Sample Id

C
on

tr
ol

 s
ig

na
l

 

 

u
1

u
max

u
min

(h) Control signal u1 of MIMO WMPC

Figure E.9: Performance management under real-world workload trace (Case F)
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Figure E.10: Performance of the control systems in the nominal region (Case G)
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Figure E.11: Performance and resource management under ramp workloads (Case L)
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Figure E.12: Performance management under real-world workloads (Case M)
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Appendix F

Nonlinear Control of Multi-Class

System With Three Classes

In Chapters 4, 5 and 6, the proposed nonlinear model estimation and control system

design approaches were applied in a multi-class system with two classes. In order to show

how these approaches scale for a system with more than two classes, in this appendix

we utilize a multi-class shared resource system with three classes to apply the nonlinear

model estimation and control system design techniques and then evaluate the management

capabilities of the control systems under versatile conditions. The configuration details of

the shared resource system with three classes are as follows.

Assume a shared resource environment with three classes, namely class0, class1 and

class2. Let us denote the resource caps as S0(k), S1(k) and S2(k), where S0(k) + S1(k) +

S2(k) = Stotal = 30 and S0,min, S1,min, S2,min = 6. R0(k), R1(k) and R2(k) are the

response times of these classes respectively at the kth sample.

F.1 Relative Performance Management of Three Classes

Using Hammerstein-Weiner Nonlinear Control
This section validates the scalability of the proposed Hammerstein-Wiener model based

control approach, by applying it on a system serving three classes defined above. The input

variables of the system are defined as u1(k) =
S0(k)
S1(k)

and u2(k) =
S1(k)
S2(k)

and output variables

of the system are defined as y1(k) = R1(k)
R0(k)

and y2(k) = R2(k)
R1(k)

with respect to relative

management scheme. The main control objective of the control system is to maintain the

outputs (y1(k), y2(k)) around
P1(k)
P0(k)

and P2(k)
P1(k)

(i.e. the reference signals) depending on the

performance differentiation factors of the classes (P0(k), P1(k), P2(k)).

Section F.1.1 covers the model estimation and control system design process. Section

F.1.2 presents the comparative evaluation of the designed nonlinear control system with

the existing linear control system.

237



Appendix F. Nonlinear Control of System With Three Classes

F.1.1 Model Identification and Control System Design

With the settings of three classes the system becomes MIMO, compared to a system

serving two classes. However, as described in Chapter 4, the control system design is

performed considering only two classes. Then, the same control system is used to control

consecutive pairs of classes in the system. The model estimation process, explained in

Section 4.2.4, can be used for this design as well. Here, we design a control system for

class0 and class1 pair, assuming that the S2,min = 6 resource cap is guaranteed for class2.

This is the only alteration to the design process, rest of the design procedure remains the

same as for the case of a system with only two classes.

Input nonlinear compensator design: When S2,min = 6 is guaranteed, class0 and

class1 pair gets total of 24 resources to share. Then, the same procedure explained in

Section 4.2.4 is followed, where the set of operating points for the control input u can be

computed as 6
18 ,

7
17 , . . . ,

17
7 ,

18
6 . Lets select vmin and vmax as -6 and 6 respectively, deriving

δv = 1. This formulates v = −6, − 5, . . . , 0, . . . , 5, 6. The mapping of the points of u and

v is shown in Figure F.1. The relationship of u and v is then modeled using a 4th order

polynomial (f−1) with a goodness of (R2) fit of 1. Equation (F.1) shows the structure of

the model and Figure F.1 shows the model fit.

u(k) = f−1(v)

= 0.0001v(k)4 + 0.0016v(k)3 + 0.0130v(k)2 + 0.1620v(k) + 1.0010 (F.1)

−5 0 5

1

2

3

v

u

 

 

u
l
 vs. v

l fit

Figure F.1: Mapping of the ul and vl data pairs for system with three classes

Output nonlinear compensator design: After the integration of input static non-

linear compensator, a sinusoidal signal was designed with the possible values of v and a

switching frequency of 2 samples. A 25 requests/sec workload for each class was applied

and the output was observed for 600 sample periods. First order ARX model with a fifth

order polynomial was sufficient to represent the Wiener model with R2 = 0.84. Figure F.2

shows the predicted output in comparison with the test set data.

The inverse static nonlinear model at the output (w = g−1(y)) was then estimated
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Figure F.2: Model fit for the case of (n,m,d,r) = (1,1,0,5)
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Figure F.3: Model fit of inverse nonlinear compensator function

using the w − y data with R2 =0.95 fit (see Figure F.3) as follows:

w = g−1(y)

= 11.48log(y)− 0.36 (F.2)

Linear model estimation: The second identification experiment was designed after

the integration of the compensators at the input and output to estimate the gains of the

linear component. A pseudo random input signal and 25 requests/sec was used to simulate

each class workload in this experiment. A first order ARX model was fitted to the data

with R2 = 0.90. The estimated linear model is shown in equation (F.3).

w(t+ 1) = 0.81w(t) + 1.65v(t) (F.3)

Controller design: Using the linear model estimated (see equation (F.3)) and the

pole-placement design methodology, we calculated the gains (Ki andKp) for the controller.

The closed-loop poles were placed at (α = 0.5, β = 0.5). Also, vmin = −6 and vmax = 6

were set as the saturation limits in the controller.

According to relative management scheme as defined in Chapter 5, subsequent to the
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Appendix F. Nonlinear Control of System With Three Classes

implementation of two nonlinear compensators and controller for class0 and class1 pair,

a similar closed-loop system is integrated to manage class1 and class2 pairs as well. The

final control system is shown in Figure F.4.

Controller1-

Set point 
(P1/P0)

Controller2-

SA Target
system

Actuator Sensor

R1

R2

S1

S2

R1/R0

R2/R1

Individual resource 
share calculation 

Algorithm

u1

Set point 
(P2/P1)

S0 R0

g-1(y)

g-1(y)

g-1(y)

g-1(y)

f-1(v)
v1

f-1(v)

v2 u2

Figure F.4: The closed-loop control system for a system with three classes

F.1.2 Evaluation

This section evaluates the performance of the Hammerstein-Wiener nonlinear control

system, which includes two controllers (namely, HWCS1 and HWCS2) under different

operating conditions and business requirements. In order to compare the performance,

we also implemented a Hammerstein model based control system, which includes two

controllers (namely, HCS1 and HCS2) and a linear model based control system which also

includes two controllers (namely, LCS1 and LCS2). The parameters of the controllers are

listed in Table F.1.

Table F.1: Parameters of the control systems

Parameter HWCS1, HWCS2 HCS1, HCS2 LCS1, LCS2
Kp 0.34 2.71 0.78

Ki 0.15 1.04 0.35

Min situation limit -6 -6 0.33

Max situation limit 6 6 3

In the following subsections, the management capabilities of the above control systems

are investigated under different conditions. These cases also corresponds to the operat-

ing conditions and objectives listed in Table 5.3 of Chapter 5, which includes workload

condition near full capacity and workloads of extreme overloads.

F.1.3 Workloads of Full Capacity or Lower

Here, we evaluate the performance management of the designed control systems in

different workload conditions and system objectives, while maintaining the workloads at

the full capacity or lower.
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F.1. Hammerstein-Weiner Control of System With Three Classes

Case A: Performance in the nominal region

In this case, all the classes are assumed to be equally important, that is P0 : P1 :

P2 = 1 : 1 : 1. In order to maintain both controllers integrated to the control system in

the nominal region (where the input and output nonlinearities are not prominent), similar

workload intensities are maintained. Experiment starts with all three classes applying

10 requests/sec workload till the 50th sample, and then all increase their workload to 20

requests/sec. Figure F.5 shows the responses of the control systems.

0 50 100
0

1

2

Sample Id

R
es

po
ns

e 
tim

e 
ra

tio

 

 

R
1
/R

0
P

1
/P

0

(a) Output of LCS1

0 50 100
0

1

2

Sample Id

R
es

po
ns

e 
tim

e 
ra

tio

 

 

R
1
/R

0
P

1
/P

0

(b) Output of HCS1

0 50 100
0

1

2

Sample Id

R
es

po
ns

e 
tim

e 
ra

tio

 

 

R
1
/R

0
P

1
/P

0

(c) Output of HWCS1

0 50 100
0

1

2

Sample Id

R
es

po
ns

e 
tim

e 
ra

tio

 

 

R
2
/R

0
P

2
/P

0

(d) Output of LCS2

0 50 100
0

1

2

Sample Id

R
es

po
ns

e 
tim

e 
ra

tio

 

 

R
2
/R

0
P

2
/P

0

(e) Output of HCS2

0 50 100
0

1

2

Sample Id

R
es

po
ns

e 
tim

e 
ra

tio

 

 

R
2
/R

0
P

2
/P

0

(f) Output of HWCS2

0 50 100
0

1

2

3

Sample Id

C
on

tr
ol

 s
ig

na
l

 

 

u
1

u
max

u
min

(g) Control signal of LCS1

0 50 100
0

1

2

3

Sample Id

C
on

tr
ol

 s
ig

na
l

 

 

u
1

u
max

u
min

(h) Control signal of HCS1

0 50 100
0

1

2

3

Sample Id

C
on

tr
ol

 s
ig

na
l

 

 

u
1

u
max

u
min

(i) Control signal of HWCS1

0 50 100
0

1

2

3

Sample Id

C
on

tr
ol

 s
ig

na
l

 

 

u
2

u
max

u
min

(j) Control signal of LCS2

0 50 100
0

1

2

3

Sample Id

C
on

tr
ol

 s
ig

na
l

 

 

u
2

u
max

u
min

(k) Control signal of HCS2

0 50 100
0

1

2

3

Sample Id

C
on

tr
ol

 s
ig

na
l

 

 

u
2

u
max

u
min

(l) Control signal of HWCS2

Figure F.5: Performance management in the nominal region (Case A)

Table F.2 summarizes the statistics of the outputs of all control systems. There is not

much difference in performance management in this case, because both controllers in each

control system operate around the nominal region where input and output nonlinearities
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are not that severe. Therefore, the linear and nonlinear control systems provide similar

performance in this condition.

Case B: Performance away from the nominal region

Again we set P0 : P1 : P2 = 1 : 1 : 1 and make the system to operate in high work-

load demands of each class separately. The experiment starts off with each class0, class1

and class2 applying 18 requests/sec workloads and remains at that level unless otherwise

specified. During the 30th to 80th sample class0 increases its workload to 30 requests/sec.

Afterwards, during the 100th to 150th sample workload of the class1 increases to 30 re-

quests/sec. Finally at the 170th sample class2 workload is increased to 30 requests/sec.

These workload settings force the control systems to operate in the regions where input

and output nonlinearities are severe. The performance of the control systems is shown in

Figure F.6.

The management issues observed in Section 5.3.1 are also evident when the linear

control system operates away from the nominal region. In addition, the performance

at the startup is also significantly poor in LCS1 and LCS2. This is because, LCS2

moves to the region where input nonlinearity is severe due to the startup disturbance

affecting both control systems. Then, when the workload of class0 is introduced into the

system, the controllers take time to adjust the resource caps for all classes and settle to

the appropriate resource caps. Overshooting in both outputs of the linear controllers

are observed due to this reason. Then, again at the 100th and the 170th samples both

LCS1 and LCS2 shows oscillatory behavior, because of the input nonlinearity. When the

control signals of LCS1 and LCS2 are examined a highly oscillatory behavior is observed

which led to the unstable behavior in both outputs y1 and y2. In contrast, the input

nonlinearity compensated HCS1 and HCS2 shows much better steady state behavior

with satisfactory performance after the workload disturbances of class1 and class2 at

the 100th and the 170th sample instances respectively. However, the same controllers

show less disturbance rejection capabilities at all the disturbances, due to the output

nonlinearities, leading to large settling times and overshooting. The input and output

nonlinearity compensated Hammerstein-Wiener control system shows significantly better

steady state performance and disturbance rejection capabilities compared to both linear

and Hammerstein control systems. See, Table F.2 for statistics.

Case C: When Class0 is more important

In this case, we implement performance differentiation factors as P0 : P1 : P2 = 1 :

1.5 : 2.25, specifying the importance of the classes 0, 1 and 2 in the descending order. The

experiment starts off with workload for class0, class1 and class2 as 10, 20, 20 requests/sec

respectively. However, at the 50th sample class2 increases its workload to 30 requests/sec.

Therefore, the performance of class0 should not be affected by the high workloads of lower
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Figure F.6: Performance management away the nominal region (Case B)

priority classes. Figure F.7 shows the responses of the control systems.

The LCS1, HCS1 and HWCS1 achieves the set point with some steady state error.

This is due to the queuing delays generated for the less priority class (class1). Thus, the

performance of the important class is maintained by these control systems. However, the

LCS2 shows significant performance issues for least priority class. The set point is not

tracked at all after the workload disturbance of class2 at the 50th sample, which leads to

larger response time for class2. This is again caused by the input and output nonlinearities

exist in the system, which leads to highly oscillatory control signals in both controllers

(see Figures F.7g and F.7j). In contrast, the nonlinear control systems show significantly

better performance even under workload variations by tracking the reference signal of
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Figure F.7: Performance management when Class0 is more important (Case C)

both outputs. However, HCS1 and HCS2 shows better performance since the output

noise affect the nonlinear compensator in this condition (see Table F.2).

Case D: When Class2 is more important

In this case, we implement performance differentiation factors as P2 : P1 : P0 = 1 :

1.5 : 2.25, specifying the importance of the classes 0, 1 and 2 in the ascending order. These

requirements are translated in to control systems as reference signals, where the reference

signal for the controller managing class0 and class1 become P1
P0

= 0.67 and the reference

signal for the other controller is P2
P1

= 0.67. The experiment starts off with workload for

class0, class1 and class2 as 20, 20, 10 requests/sec respectively. At the 50th sample class0

increases its workload 30 requests/sec. Figure F.8 shows the performance of the control
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systems.
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Figure F.8: Performance management when Class0 is more important (Case D)

In this case, the reference signals are placed in the output region where variations

damp out due to the output nonlinearity. Consequently, the control systems that do

not compensate for the output nonlinearity perform poorly at the 50th sample due to

the workload disturbance. For instance, Linear and Hammerstein control systems show

large settling times because they take a large time to adjust the resource caps after the

disturbance. This effect of the output nonlinearity is compensated by the HWCS1 and

HWCS2 by tracking the reference signal much better, with significantly better reactions

to the disturbances at the 50th sample (also see Table F.2).
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F.1.4 Workloads of Extreme Overload

This section covers the cases when the workloads has persistently overloaded the sys-

tem.

Case E: Performance in away from the nominal region under overload

This case is similar to Case B, where control systems are forced to operate in the

regions that the nonlinearities are severe. In this case we maintained the same workload

settings of Case B. However, in order to overload the system at the 30th sample workload

of class0 is increased to 60 requests/sec. Similarly, at the 100th and 170th samples class1

and class2 workloads are increased to 60 requests/sec, respectively to overload the system.

Figure F.9 shows the outputs of the control systems.

The performance of LCS1 and LCS2 is again significantly poor in this case as well.

When the large workloads of class0 is applied on the system performance of the linear

control system provides satisfactory performance because the system is operating in the

region where input nonlinearities are not that severe (see behavior of the control signals

of LCS1 and LCS2 till the 80th sample). However, with the disturbances of class1 and

class2, the controllers are operating in the region where input nonlinearity affects the

performance of the linear controllers, which leads to highly oscillatory control signals

affecting the outputs subsequently. Due to the disturbances at the 100th and 170th

sample, the reference signal was not maintained by both linear controllers leading to

unstable behaviors. In contrast, the both nonlinear control systems achieve the required

control objectives, however the oscillatory behavior in the outputs is because when a

class overloads the system the performance of other classes have to be degraded as well

to maintain equal response times for all classes. The disturbance rejection capabilities of

HCS1 and HCS2 are poor compared to Hammerstein-Wiener control system because of

the output nonlinearity. In particular, at the 30th and 170th samples larger overshooting

were observed for the Hammerstein control system. The steady state performance of

HWCS1 and HWCS2 is oscillatory because of the noisy output conditions compared to

Hammerstein control systems. The same reason leads to large spikes at the outputs of

Hammerstein control system because of the less reaction to the noisy conditions. The

input and output nonlinearity compensated Hammerstein-Wiener control system provides

much effective performance when the system is forced to operate in the regions where

the nonlinearities are severe. Further, it provides less request rejection rates compared to

both other control systems (see Table F.3).

Case F: Performance under overload when Class0 is more important

In this case, we implement performance differentiation factors as P0 : P1 : P2 = 1 :

1.5 : 2.25, specifying the importance of the classes 0, 1 and 2 in the descending order. The

experiment starts off with workload for class0, class1 and class2 as 20, 50, 50 requests/sec

respectively. That is the more important class sends less workload, while other two classes
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Figure F.9: Performance management when system is operating away from nominal region
under overload (Case E)

have overloaded the system with high workloads. Figure F.10 shows the output and input

signals of the control systems.

Again, the LCS1 and LCS2 do not achieve any of the specified control objectives. This

is because, the LCS1 has to deal with the resource caps which locate in the region where

input nonlinearity is severe. This behavior ultimately affects the performance of the LCS2

as well. However, both control systems with the input nonlinearity compensation provide

significantly better performance management. The performance of Hammerstein-Wiener

control system is slightly poor compared to Hammerstein control system, because of the

noisy conditions affecting the performance of the output nonlinear compensation.
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Figure F.10: Performance management when Class0 is more important (Case F)

Case G: Performance under overload when Class2 is more important

In this case, we specify the importance of classes 0, 1 and 2 in the ascending order,

implementing performance differentiation factors as P2 : P1 : P1 = 1 : 1.5 : 2.25. The

experiment starts off with workload for class0, class1 and class2 as 50, 50, 20 requests/sec

respectively. That is the more important class2 sends less workload, while class0 and class1

have overloaded the system with high workloads. Figure F.11 shows the output and input

signals of the control systems.

The first observation is that, the linear and Hammerstein control systems provides

much poor disturbance rejection at the startup due to the output nonlinearity. In this

case, the control systems have to operate in the region of output where the variations are
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Figure F.11: Performance management of three class system when Class2 is more impor-
tant (Case G)

damped out, consequently the controllers take time to detect the variations at the outputs

and adjust the resource caps. This is one of the contributing reasons for the LCS1 to

operate without oscillatory behavior even if it is operating in the region where input

nonlinearity is severe. In contrast, the output nonlinearity compensated Hammerstein-

Wiener control system provides much better performance at the steady state by reacting

to the noisy conditions and adjusting the resource caps in order to achieve the specified

control objectives.
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Table F.2: Statistical summary of control systems managing three classes

Case LCS HCS HWCS

y1 y2 y1 y2 y1 y2
A 1.888 1.884 1.65 1.551 1.64 1.543

B 13.858 70.78 15.602 11.582 8.021 11.108

C 34.895 92.152 31.156 107.811 40.932 74.042

D 57.386 2529.547 36.429 82.191 54.24 94.95

E 82.5 161.444 39.257 26.463 42.442 46.115

F 116.185 234.661 29.154 60.26 43.666 94.028

G 71.024 188.531 66.72 96.333 42.906 116.434

Table F.3: Summary of average loss rates of the control systems managing three class
system

Case LCS HCS HWCS

Class 0 1 2 0 1 2 0 1 2

E 21 22 22 21 21 21 20 21 21

F 0 18 30 0 16 29 0 0 16 30

G 32 14 0 31 15 0 0 31 14 0

F.2 Absolute Performance Mmanagement With Three

Classes Using MIMO Wiener Nonlinear Control
This section validates the scalability of the proposed MIMO Wiener model based con-

trol approach for absolute performance management by applying it on a shared resource

environment with three classes described at the start of this appendix. The main con-

trol objective of the absolute management system is to maintain the response times R0(k),

R1(k) and R2(k) of the workloads of class0, class1 and class2 around RSLA,0(k), RSLA,1(k)

and RSLA,2(k) respectively.

F.2.1 Model Identification and Control System Design

As illustrated in Section 4.3.4, a Wiener SISO experiment does not have to be con-

ducted because the nonlinear behavior of these three classes was similar under high work

load conditions. As a result the inverse output nonlinear compensator implemented in

Section 4.3.7 can be used to compensate the nonlinearities of each class. A MIMO SID

experiment is then conducted to capture the rest of the dynamics of inputs, outputs and

their interactions. This MIMO linear model captures the relationships between u0, u1, u2

and w0, w1, w2. Similar to the case of two classes, a pseudo binary signal was designed

selecting 8 and 10 as the resource caps for each of the input, with a switching frequency of

2 samples. 20 requests/sec workloads were applied for class0, class1, class2 for 600 samples.

The gathered data was used to design a first order MIMO ARX model as follows:
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w(k + 1) =

 0.5698 −0.0309 −0.0284

0.0042 0.6037 −0.0278

−0.0075 0.0084 0.6326

w(k) +

 3.1353 −1.1425 −0.4338

−0.9014 3.1412 −0.9476

−1.2425 −1.9075 4.1422

u(k), (F.4)

where w(k) = [w0(k) w1(k) w2(k)]
T and u(k) = [u0(k) u1(k) u2(k)]

T .

MIMO MPC design: Following the implementation process covered in Chapter 5,

MPC (namely, WMPC) was developed using the model in equation (F.4) and relevant

constraints. The parameters of the Laguerre network for the three input case were set at

(a1 = 0.5 , a2 =0.55 , a2 =0.6 and N1, N2, N3 = 1) and Np = 15 and u(0) = [10 10 10]T .

Rw was set to 1000× I(3×3) after careful analysis because of the low model fit.

F.2.2 Evaluation

For the comparison purposes we designed a linear control system as well. The details

are as follows:

MIMO linear model based control system: The linear model was estimated under

the same settings used to construct the MIMO linear model of WMPC. Model fit was also

low in this case as well (see equation (F.5).

y(k + 1) =

 0.4818 −0.0189 −0.0397

−0.0058 0.5172 −0.0494

−0.0606 −0.0052 0.5207

 y(k) +

 0.1429 −0.0131 0.0144

−0.0011 0.1354 −0.0018

−0.0112 −0.0385 0.1784

u(k), (F.5)

where y(k) = [y0(k) y1(k) y2(k)]
T and u(k) = [u0(k) u1(k) u2(k)]

T .

All the parameters of the linear MPC were set to same values as WMPC. However,

the parameters of the Laguerre network were set at (a1 = 0.45, a2 =0.45, a2 =0.5). The

Rw was set to 2× I(3×3).

Case A: High separate workloads from each class

In this case, the references of all classes are set to 0.41 seconds. The experiment starts

with class0, class1 and class2 applying 15 requests/sec workloads each and remains at

that level unless otherwise specified. During the 30th to 80th sample class0 increases its

workload to 35 requests/sec. Afterwards, during the 100th to 150th samples, the workload

of the class1 increases to 35 requests/sec. Finally at the 170th sample class2 workload is

increased to 35 requests/sec. With these disturbances the control systems are moved

to sensitive region of the response time curve requiring effective disturbance rejection

capabilities. Again the hypothesis is that WMPC provides much better performance with

low overshooting without affecting the steady state behavior. The performance of the

control systems is shown in Figure F.12.

In this case as well we see the issues observed in Chapter 5. When the high disturbances

of all three classes are applied on the system separately, the disturbance forces the control

systems to operate in the sensitive region. The nonlinearity compensation done by the

WMPC control system effectively rejects the disturbance faster than the LMPC without
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Figure F.12: Performance management under high separate workloads (Case A)

adversely affecting the steady state behavior.

Case B: Different response time requirements

In this case, we implement performance differentiation by setting RSLA,0 = 0.41,

RSLA,1 = 0.5 and RSLA,2 = 0.6 seconds, specifying the importance of classes 0, 1 and

2 in the descending order. The reference signals are placed in the insensitive (class0) and

sensitive regions (class1 and class2) of the response time curve. The experiment starts off

with workload for class0, class1 and class2 as 10, 20, 20 requests/sec respectively. However,

at the 50th sample class2 increases its workload 30 requests/sec. Figure F.13 shows the

responses of the control systems.

The behavior of the most important class (R0) is similar in both control systems, which

is placed in the insensitive region (see, Table F.4). However, again it is evident that the

better performance of WMPC, in particular when the classes are placed in the insensitive

region of the response time curve. It provides better disturbance rejection capabilities

with lower steady state error for R1 and R2 compared to LMPC.
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Figure F.13: Performance management under different response time requirements (Case
B)

F.3 Relative Performance Management of Three Classes

Using MMST Adaptive Control
In this section, we present the design details of MMST adaptive control scheme for

relative performance management system of a system with three classes. The same design

process covered in Section 6.2.3 is followed. That is a control system is designed for

the first pair of classes, assuming that the minimal resource amounts are maintained

for the other class. The control inputs for this control system are computed as u =
6
18 ,

7
17 , . . . ,

17
7 ,

18
6 . Then, these operating points are divided into two regions similar to

the case of system with two classes. Afterwards, two SID experiments are conducted

and then models are estimated to represent region 0 and 1. Finally, two controllers,

i.e., one aggressive controller and less aggressive controller are designed. The details of

these controllers can be found in Table F.5. The next step is to decide the parameters of
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Table F.4: Summary of statistics of absolute management system with three classes

LMPC WMPC Dif(WMPC-LMPC)

Output Case SSE MIN MAX SSE MIN MAX SSE MIN MAX

R0 G 2.464 0.284 1.392 1.844 0.283 1.222 -0.62 0 -0.17

R0 H 0.139 0.319 0.519 0.14 0.319 0.519 0 0 0

R1 G 1.947 0.327 1.237 1.122 0.327 1.05 -0.824 0 -0.186

R1 H 2.824 0.34 1.099 1.484 0.34 0.881 -1.34 0 -0.218

R2 G 1.78 0.333 1.132 1.043 0.333 1.004 -0.737 0 -0.128

R2 H 7.405 0.345 1.737 3.996 0.371 1.36 -3.409 0.02 -0.377

the MMST switching scheme and implement the control system and integrate it into the

software system as in Figure F.14. The α and β was set to 0 and 1 and T = 3 same as in

the MMST control system for two classes.

MMST1-

Set point 
(P1/P0)

MMST2-

SA
Target
system

Actuator Sensor

R1

R2

S1

S2

R1/R0 (y1)

R2/R1(y2)

Individual resource 
share calculation 

Algorithm

u1

Set point 
(P2/P1)

S0 R0

u2

Figure F.14: The MMST control system for system with three classes

Table F.5: Parameters of the control systems for system with three classes

Parameter controller -0 controller-1

Kp 0.80 0.38

Ki 0.39 0.08

Min situation limit 0.33 0.33

Max situation limit 3 3

Initial input u(0) = 1 u(0) = 1

F.3.1 Evaluation

In this section, we show the performance and resource management capabilities of the

MMST adaptive control scheme. In particular, here we only present the results of MMST-

T2 scheme and compare it with the single linear model based control system designed in

Section F.1.2. This is because of the poor performance of the MMST-T4 and Adaptive

control systems. It is worth noting that the operating conditions and business requirements

used in this section are same as to Section F.1.2.
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F.3.2 Workloads of full capacity or lower

Case A: Performance in the nominal region
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Figure F.15: Performance management in nominal region (Case A)

In the nominal condition MMST-T2 control system indicates similar performance to

a single linear model based control system (see Figure F.15 and Table F.6). The model

switching signals shows stable behavior in both MMST-T21 and MMST-T22 control sys-

tems. Some chattering was observed in MMST-T21 because there is no explicit model

to represent the dynamics in the nominal region. One of the other contributing factors

for stable performance under chattering is the bump-less transfers implemented by the

MMST-T2 control system.

Case B: Performance away from the nominal region

The result of this case is shown in Figure F.16. It illustrates that the models and con-

trollers integrated to the MMST-T2 scheme have combined to provide better performance

than LCSs (see Table F.6). In particular, when the workloads of class1 and class2 are high

the control systems have to operate in the region where the input nonlinearities are severe.

However, the model switching enables selecting the controller-1, which provides much bet-

ter performance in that region. For instance, MMST-T21 control system has selected

controller-1 between the 104th to 150th samples. The operation of controller-0 during the

100th to 104th samples led to high overshooting similar to LCS1 but recovered after 27

samples due to the selection of controller-1. Similarly, in the case of MMST-T22 control

system selected controller-0 before the 100th sample, while controller-1 was selected be-

tween the 180th to 225th samples most of the time, providing better performance under
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Figure F.16: Performance management of three class system away the nominal region
(Case B)

large disturbance in region-0. As a consequence, settling time has improved compared to

LCSs. The sudden deviation after the 200th sample settled down in 15 samples, when

the experiment is run further time periods. This is because of the chattering occurred in

MMST-T22 control system.

Case C: When Class0 is more important

In this case, LCS showed significant performance management issues. In contrast,

the MMST-T2 control system which combines two controllers provide significantly better

performance with stable behavior. The model switching signals shown in Figures F.17c

and F.17d indicates that MMST control systems have used both controllers during the

operations, in particular controller-1. Therefore, the performance issues caused by the

nonlinearities have been reduced by the combined performance of two controllers with

switching capabilities. Although some chattering was observed in MMST-T21 control

system because of the noisy output signals, it did not lead to significant performance

degradation (see Table F.6). However, the suitable model and control have been used to

deliver the better results in the case of MMST-T22 reducing the unstable behavior of LCS.

F.3.2.1 Workloads of Extreme Overload

Case F: Performance under overload when Class0 is more important

In this case, as well the LCSs indicated significant performance issues due to input

and output nonlinearities. Again, the MMST-T2 control systems show significant per-
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Figure F.17: Performance management when Class0 is more important (Case C)
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Figure F.18: Performance management of three class system when Class0 is more impor-
tant (Case F)

formance improvements by combining the performance of two controllers with different

gains. MMST-T21 has operated with controller-1 during the entire operations without

any chattering (See Figure F.18c). Similarly, Figure F.18d shows that MMST-T22 has
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operated with controller-0, providing much better performance compared to LCS. That is

two MMST control systems have autonomously selected different models and controllers

with significantly different gains. This behavior indicates that designing and tuning a

single controller to provide control is significantly different for this condition.

Apart from these conditions presented in this section, results of the other cases are

summarized in Tables F.6 and F.7. In all other cases, MMST-T2 control systems have

provided similar performance to LCS indicating that chattering has not led to significant

performance degradations.

Table F.6: Statistical summary of MMST control systems managing three classes

y1 y2

Case MMST2 LCS MMST2 LCS

A 1.791 1.888 1.55 1.558

B 26.925 13.858 22.336 68.017

C 6.057 4.581 5.411 5.007

D 19.992 28.219 75.09 114.306

E 70.739 82.5 41.31 99.162

F 38.266 60.268 30.167 34.368

G 1.806 1.705 4.052 3.94

Table F.7: Summary of average loss rates of MMST control systems managing three classes

MMST2 LCS

Case Class0 Class1 Class2 Class0 Class1 Class2
E 9 10 11 9 10 12

F 0 31 58 0 35 59

G 62 28 0 63 28 0
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Appendix G

Effects of Simulation Parameters

In Chapters 4, 5 and 6, the simulations were conducted in the simulation environment with

configuration parameter set out in Chapter 3. In Chapter 3, we fixed the seeds of different

classes to different values as well as the parameters of the processing time distribution to

fixed values. In this appendix, further simulations are carried out to investigate the effects

of these configuration variables of the simulation environment on the performance of the

nonlinear control techniques. Here, we conduct Monte-Carlo simulations on the same

system with two classes used in previous chapters, in order to statistically validate the

impact of the configuration parameters of the simulation environment for each nonlinear

control technique proposed for relative and absolute management. If these results do not

invalidate the results presented in previous chapters, then we can conclude that those

results were not generator due to pure chance, which also indicate the robustness and

wide applicability of the proposed approaches.

G.1 Effects on Hammerstein-Wiener Nonlinear Control
In this section, we investigate the impact of the configuration parameters on the relative

performance management system.

G.1.1 Effects of Seeds

The seeds selected for a particular class affects the processing times generated randomly

during the simulations. This may have affected the behavior of the control systems. In

particular, the behavior under sudden workload disturbances. In this section, we use

30 randomly selected seeds for each class to generate the processing time delays. All

three control systems, which include LCS, HCS and HWCS are executed for 30 times

with these seed configurations for each case listed in Section 5.3 and Appendix E. The

gathered experiment results of the three control systems are analyzed under the Kruskal-

Wallis non-parametric statistical test1. The Kruskal-Wallis statistical test provides us a

technique to check whether there are significant differences between the outputs produced

1it is noteworthy that the data was initially evaluated with the Kolmogorov-Smirnov test to identify
whether data is normally distributed.
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by three control systems. The null hypothesis is that all control systems provide equal

performance management based on the SSE of the experiments. The statistical result of

Kruskal-Wallis test is called the p-value. If p-value is greater than 0.01, the performance

of the control systems has no significant difference. Therefore, we compare the p-value

for each case and if p-value is less than 0.01, then we conclude that the outputs of three

control systems are different. Finally, in order to investigate which control system is the

best for a particular case, the SSE values are compared for all 30 seed configurations.

Table G.1: P-values of relative management control systems for 30 runs with different
seeds

Case p-value

A 1.90E-14

B 2.63E-05

C 1.31E-16

D 1.29E-13

E 1.65E-15

G 0.420946

H 1.12E-13

I 9.49E-14

J 0.000473

The results of these simulations are listed in Table G.1. From the p-values in Table

G.1, apart from the Case G, the performance of all other cases of three control systems

are significantly different from each other. In order to investigate which control system

provides the best management in each case, Figure G.1 illustrates the box-plots of the

statistical results.

From the box-plots it is evident that there is an impact on the performance man-

agement based on the selected seeds. The SSE statistics are largely affected by how the

disturbance rejection behavior changes with the seeds. The same observations to the re-

sults in Table 5.4 have been produced in these experiments as well. In fact, the SSE

statistics listed in Table 5.4 fall inside the bounds of the SSE statistics shown in the box-

plots produced by the 30 runs. In particular, the cases where LCS showed significant

performance degradation and instabilities in Section 5.3, have shown similar behavior ir-

respective of the seeds used (e.g., Case A, D and E). In summary, HWCS outperforms

LCS in the same cases, where either the input and output nonlinearities were severe. The

HCS and HWCS show similar performance and SSE statistics for many cases. However,

HCS is significantly outperformed by HWCS in the cases where the output nonlinearities

affect the performance (e.g., Case C and I). The HCS outperforms HWCS in Case H, when

the noisy conditions affect the performance of the output compensator. From these obser-

vations, it is evident that the selected seeds for the random processing time distributions

have not invalidate the result presented in Chapter 5.
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Figure G.1: Box-plots of SSE of 30 runs for different cases of relative management

G.1.2 Effects of Limits of the Processing Time Distributions

In Chapter 5, the processing times were generated using a uniform random distribution

with parameters of rmin = 100 and rmax = 700 ticks or seconds (see Chapter 3). In

this section, we investigate the behavior of the control systems when the range of the

processing time distributions is smaller and larger than the aforementioned range. In the

former we set the processing time distribution to be U(100, 300) (a range of 0.2 sec), in

the later we set it to be U(100, 1100) (a range of 1 sec). When the range is high, there

will be larger variations at the system outputs. For instances, a multi-class application

providing versatile business functionalities may show such behaviors. In contrast, small

ranges indicate it’s a small scale system with a limited and similar set of functionalities.

These settings enable us to examine whether the conclusions made in Chapter 5 are valid

for different ranges of processing time. Although for a statistical validation, simulations

for at least 30 different such parameter ranges have to be carried out. Such a large scale

validation is hard to conduct because for each setting all three control systems (90 in

total) have to be designed and workload conditions have to be determined for each case

after profiling the system. As a consequence, such a validation is hard to automate,

requiring a significant amount of manual efforts. In order to mitigate this limitation we
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have conducted simulations for three such ranges and experiments are also conducted in

real-world experimental case-study systems.

It is important to emphasize that with these significantly different settings the behavior

and dynamics of a multi-class shared resource environment changes drastically. As a

consequence, all the control systems have to be built from scratch for each setting. This

includes the design of the input and output inverse nonlinear compensators, linear model

and subsequently the controller for the case of HWCS. A similar process is carried out for

the design of HCS and LCS as well. In addition, the workload settings of these experiments

have to be altered depending on the total workload capacities.

Table G.2: Statistics of the relative management control systems when the processing time
limits are small U(100, 300)

LCS HCS HWCS

Case SSE MIN MAX SSE MIN MAX SSE MIN MAX

A 4715.93 0.34 24.32 9.34 0.37 3.09 6.86 0.54 3.09

B 5587.05 0.91 24.4 44.04 0.51 4.44 41.21 0.88 5.83

C 267.32 0.89 8.58 1935.35 0.74 16.31 46.86 0.88 5.83

D 77.22 0.36 3.11 16.69 0.38 2.75 32.97 0.39 3.02

E 273.63 0.43 4.87 10.93 0.98 3.12 10.93 0.98 3.12

G 0.2 0.88 1.13 0.19 0.88 1.13 0.2 0.88 1.13

I 156.16 0.66 4.19 71 0.94 3.43 30.38 1.1 3.23

Table G.3: Statistics of the relative management control systems when the processing time
limits are large U(100, 1100)

LCS HCS HWCS

Case SSE MIN MAX SSE MIN MAX SSE MIN MAX

A 105.01 0.26 4.98 17.28 0.2 2.64 11.25 0.25 2.71

B 78.04 0.6 3.74 32.47 0.52 3.2 25.44 0.87 3.37

C 37.67 0.95 3.78 85.47 0.84 5.39 26.98 0.85 3.58

D 142.93 0.33 5.89 10.36 0.3 2.26 14.92 0.32 2.39

E 364.12 1.54 6.1 56.15 1.5 6.36 32.81 1.03 3.99

G 1.94 0.68 1.44 1.64 0.65 1.39 1.73 0.63 1.39

I 6.78 0.96 2.47 13.64 0.96 2.83 8.32 0.96 3.03

Tables G.2 and G.3 summarize the statistics for the two selected settings. The results

of the low and high processing time distribution ranges reemphasis that the conclusions

made in the Chapter 5 are still valid. That is apart from the nominal region (Case G), LCS

performs poorly when the input and output nonlinearities are severe. Further, when the

limits of the processing times are smaller, the performance of the LCS is significantly poor

(see Table G.2, cases A, B). This is because in order to force the control system to operate

in the nonlinear regions, larger workload disturbances had to be applied. Consequently,

the oscillatory behavior in the control signal affects the output significantly, leading to
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unstable and larger output variations. In contrast, HCS and HWCS shows much better

performance even under such settings. Furthermore, HCS shows poor performance in the

same cases (e.g., Case C) compared to HWCS as observed in Chapter 5. Therefore, these

configuration settings of the simulation environment have not invalidated the conclusions

and results presented in Section 5.3.

G.2 Effects on MIMO-Wiener Control
In this section, we investigate the impact of the configuration parameters on the ab-

solute performance management system.

G.2.1 Effects of Seeds

In this section, we use 30 randomly selected seeds for each class to generate the pro-

cessing time delays. The LMPC and WMPC are executed for 30 times with these seed

configurations for each case listed in Section 5.5. The gathered experiment data of the

two control systems is analyzed using the Kruskal-Wallis non-parametric statistical test.

Table G.4: P-values of absolute management control systems for 30 runs with different
seeds

Case R0 R1

Case A 1.21E-05 0.045945

Case B 0.002561 0.008875

Case C 1.94E-09 4.73E-11

From the p-values in Table G.4, all the cases show significantly different output data

with the exception of Case A. The box-plots in Figure G.2 indicates that LMPC has shown

highly variable performance in all cases compared to WMPC. In particular, in Case C,

where the control systems have to operate in the sensitive region, WMPC has significantly

outperformed the linear counterpart. Furthermore, the performance provided by LMPC

for the important class (R0) has affected significantly as well in the same case, which is

consistent with the observations of Section 5.5. In Case A and B, the upper bounds of SSE

and MAX are higher for the cases of LMPC compared to WMPC. Although there is some

overlapping between the box plots for the some cases, we can conclude that the average

performance of WMPC is better than LMPC. Consequently, these results are consistent

with the results presented in Section 5.5.

G.2.2 Effects of Limits of the Processing Time Distributions

In this section, we investigate the effect on the performance management of the control

systems when the range of processing time distributions is smaller and larger as defined

in Section G.1.2. Table G.5 and G.6 shows the results of the control systems.

When the range of the processing time is small the variability of the average response

time is significantly low (see Table G.5). Therefore, there is no significant difference

between the control systems in Case A and B. However, there are improvements for Case

C, in WMPC compared LMPC.
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Table G.5: Statistics of the absolute management control systems when the processing
time limits are small U(100, 300)

Case LMPC WMPC

SSE MIN MAX SSE MIN MAX

R0

A 6.511 0.185 0.832 6.323 0.186 0.781

B 4.344 0.186 0.311 4.28 0.186 0.262

C 4.319 0.184 0.256 4.004 0.186 0.617

R1

A 9.304 0.183 1.432 7.939 0.183 1.284

B 4.326 0.183 0.253 4.346 0.183 0.286

C 15.578 0.194 2.165 8.322 0.19 1.669

Table G.6: Statistics of the absolute management control systems when the processing
time limits are large U(100, 1100)

Case LMPC WMPC

SSE MIN MAX SSE MIN MAX

R0

A 12.948 0.41 1.89 8.177 0.41 1.331

B 4.31 0.503 0.929 4.322 0.503 0.929

C 4.404 0.472 0.929 4.321 0.471 0.929

R1

A 237.634 0.464 5.509 166.989 0.45 4.798

B 5.312 0.447 0.916 7.083 0.447 1.04

C 76.115 0.447 3.435 22.849 0.447 2.421

When the range of processing time is large, the variability in output is higher (see

Table G.6). As a consequence, SSE statistics of both linear and nonlinear control systems

are higher than the statists we observed in Section 5.5. However, the results are consistent

with the observations and conclusions of earlier settings, which include the significant

improvements for Case A and C for the case of WMPC.

G.3 Effects on MMST Adaptive Control
This section investigates the effects of simulation parameters on the relative manage-

ment performed by the multi-model control approach proposed in Chapter 6.

G.3.1 Effects of Seeds

In this section, we compare the performance of MMST-T2 control system and a single

model based control system to investigate the effects of different seeds.

From the results of Kruskal-Wallis non-parametric statistical test in Table G.7, it is

evident apart from the cases marked with ⋆, other cases show differences in performance

management. Figure G.3 shows that LCS has slightly outperformed MMST-T2 scheme

only in Case C. In all other cases, which include Case A, B, D and I, MMST-T2 control
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Table G.7: P-values of MMST control system for 30 runs with different seeds

Case p-value

A 1.33E-06

B 1.05E-05

C 1.32E-01

D 1.69E-10

E 4.27E-06

G 0.505859 ⋆

H 0.859184 ⋆

I 1.79E-01

J 0.524952⋆

system has shown better performance. Therefore, selected seeds do not invalidate the

results presented in Chapter 6.

G.3.2 Effects of Limits of the Processing Time Distributions

In this section, we compare the performance of MMST-T2 and LCS to investigate

the effects of the selected range of the processing time distribution. Tables G.8 and G.9

summarize the statistics of control systems designed using the same design methodology

presented in Chapter 6.

Table G.8: Statistics of the MMST control system when the processing time limits are
small U(100, 300)

MMST-T2 LCS

Case SSE MIN MAX SSE MIN MAX

A 17.225 0.275 4.393 4715.93 0.34 24.32

B 139.783 0.226 9.054 5587.05 0.91 24.4

C 127.604 0.109 1.126 267.32 0.89 8.58

D 16.694 0.38 2.752 77.22 0.36 3.11

E 70.996 0.942 3.432 273.63 0.43 4.87

G 0.195 0.884 1.127 0.2 0.88 1.13

I 14.485 0.952 3.049 156.16 0.66 4.19

In the case where the rage is small, significant performance improvements have been

made by the MMST-T2 control system for all cases. In the case of high processing time

range, Case H which produced better results in other settings has indicated poorer perfor-

mance for the MMST-T2 control system compared to LCS. This is because due to noisy

conditions, controller-0 was selected for short period of time leading to oscillatory behavior

at the output.

In summary, the settings of processing time distribution selected have not invalidated

the results presented in Chapter 6.
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Table G.9: Statistics of the MMST control system when the processing time limits are
large U(100, 1100)

MMST-T2 LCS

Case SSE MIN MAX SSE MIN MAX

A 16.98 0.26 2.726 105.013 0.26 4.983

B 159.135 0.586 6.598 78.037 0.597 3.739

C 103.739 0.302 1.28 106.722 0.264 1.053

D 16.454 0.335 2.806 142.931 0.335 5.885

E 97.581 1.035 6.427 364.122 1.543 6.1

G 2.347 0.648 1.454 1.938 0.677 1.442

I 5.86 0.962 2.736 6.784 0.962 2.468
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Figure G.2: Box-plots of SSE and MAX statistics of 30 runs for different absolute man-
agement Cases 267
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Figure G.3: Box-plots of SSE of 30 runs for different MMST control cases
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Appendix H

Relative Management in a System

With a Large Amount of

Resources

In this appendix, a simulation environment with Stotal = 100, S0,min and S1,min = 10 is

used. This means that the system has a large amount of resources compared to the settings

used in Section 5.3. With these settings, the control input u has 80 operating points, en-

abling a mechanism to examine the benefits of the Hammerstein-Wiener nonlinear control

approach in a system with a larger amount of resources.

Following the procedure in Chapter 4 and 5, we designed a HWCS, which include

estimating the inverse nonlinear functions and linear model, followed by the design of a

controller. Figure H.1 shows the input and output nonlinear mappings used to design

and implement the input and output compensators respectively. The operating points

layout in Figure H.1a shows severe nonlinearities around the nominal operating point,

i.e., S0
S1

= 1(5050). In order to design the input compensator we selected vmin = −20 and

vmax = 20 and a 7th order polynomial, which yielded a model fit R2 = 0.99. Equation

(H.1) shows the polynomial of the inverse input nonlinearity.

A system identification experiments were conduced following the design procedure in

Section 4.2.6, in order to estimate the inverse output nonlinear component and the linear

component of the Hammerstein-Wiener model. It is worth noting that, in a system with

a large number of operating points the operating points and the workload conditions have

to be carefully selected to capture the behavior around the required region of operations.

Figure H.1b illustrates the model fit R2 = 0.95 and equation (H.2) shows coefficients of

the inverse nonlinear output function derived from the experiment data.

Afterwards, a linear model (see equation (H.3)) was estimated and the controller was

designed using the pole-placement method (see Table H.1). Similarly, HCS and LCS were

designed as well. Table H.1 lists the parameters of all three control systems. In this
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Table H.1: Parameters of the control systems

Parameter HWCS HCS LCS

Kp 0.31 4.70 0.76

Ki 0.10 1.30 0.28

Min situation limit -20 -20 0.11 (10/90)

Max situation limit 20 20 9(90/10)

section, we use the conditions of Case A in Section 5.3.1, which gives useful conditions

to examine the effects of input and output nonlinearities together. However, since there

are a large number of resources we apply 185 and 50 requests/sec for class0 and class1

at the 30th sample in order to force the system to operate away from the nominal region.

Similarly, 50 and 185 requests/sec workloads are applied at the 100th sample.
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Figure H.1: The model fit of the inverse input and output when there are a large number
of resources

u(k) = f−1(v)

= 2.377× 10−9v(k)7 + 4.725× 10−8v(k)6 − 6.328× 10−7

v(k)5 − 6.328× 10−7v(k)4 − 7.776× 10−6v(k)3 + 0.0002v(k)4

+ 0.004v(k)2 + 0.077v(k) + 0.986 (H.1)

w = g−1(y)

= 22.00log(y)− 2.10 (H.2)

w(t+ 1) = 0.86w(t) + 1.60v(t) (H.3)

The performance of the control systems shown in Figure H.2 indicates the same ob-

servations to Section 5.3. LCS shows highly oscillatory behavior in region 1 after the

high workload disturbance at the 100th sample, where class1 demands large amount of

resources leading to unstable performance. This is caused by the input nonlinearity. In
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Figure H.2: Performance in system with a large amount of resources

addition, the overshooting and settling time at the 30th sample are significantly poor com-

pared to HWCS, which is caused by the output nonlinearity. In contrast, both nonlinear

control systems show satisfactory performance, effectively rejecting the disturbances and

settling down to the required differentiation level without large steady state errors. How-

ever, when HCS and HWCS are compared, HCS shows significantly high overshooting and

settling time due to the large workload disturbance at the 30th and 100th sample. This is

because of the output nonlinearity. The performance of HWCS, which compensates input

and output nonlinearities, is satisfactory in a large scale shared resource environment as

well providing better performance and resource management with performance isolation.
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Appendix I

Effects of the Range V (vmax, vmin)

The design process presented in Section 4.2.4 includes the selection of vmin, vmax and δv

variables. However, these variables were selected arbitrarily, in particular, we chose vmax

= -9, vmin = 9 in Section 5.3. In this appendix, we compare the impact of these design

parameters on the performance of the control system using a simulation environment of

two classes similar to Section 5.3. The vmax, vmin are the design parameters of the input

nonlinear component, in other words the Hammerstein component. Therefore, in order

to isolate just the input nonlinearity, we use a Hammerstein model based control system

to investigate the impact of the selected range for parameter v without compensating the

output nonlinearities. Here, three types of parameter configurations will be examined as

follows:

• Type I. vmin = -90, vmax = 90 and δv =10,

• Type II. vmin= -2.25, vmax = 2.25and δv =0.25,

• Type III. vmin= 1, vmax= 19 and δv =1,

In Type I and II, we investigate the impact of vmax, vmin and δv in large and small

ranges. The Type III investigates the placement of the vmax, vmin entirely in the positive

side, instead of equally spreading it around zero. Using these settings three Hammerstein

model based control systems are designed and their performance is investigated in the

experiment settings of Case A in Section 5.3.1. As mentioned Case A conditions force the

control systems to operate in regions where input and output nonlinearities are severe,

consequently providing us a basis to compare the performance of these control systems.

The inverse nonlinear function of the input compensators for Type I, II and III are shown

in equations (I.1), (I.2) and (I.3) respectively. Similarly, the linear ARX models for the

linear components of the Hammerstein model are shown in equations (I.4),(I.5) and (I.6)

respectively. Afterwards, the controllers were designed as well for each configuration.

Their parameters are shown in Table I.1. The output signals of control systems for this

experiment are shown in Figure I.1.
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u(k) = f−1
TypeI(v)

= 7.468× 109v(k)4 + 1.003× 106v(k)3 + 7.698× 105v(k)2 + 0.01244v(k) + 1.005

(I.1)

u(k) = f−1
TypeII(v)

= 0.01912v(k)4 + 0.06417v(k)3 + 0.1232v(k)2 + 0.4978v(k) + 1.005 (I.2)

u(k) = f−1
TypeIII(v)

= 7.468× 105v(k)4 − 0.001984v(k)3 + 0.02242× 105v(k)2 − 0.0274v(k) + 0.2747

(I.3)

y(t+ 1) = 0.90y(t) + 0.02v(t) (I.4)

y(t+ 1) = 0.90y(t) + 0.80v(t) (I.5)

y(t+ 1) = 0.80y(t) + 0.10v(t) (I.6)

Table I.1: The controller gains for different types of configuration parameters vmin and
vmax

Kp Ki

Type I (δv = 10) 32.50 12.50

Type II (δv = 0.25) 0.81 0.31

Type III (δv = 1) 5.50 2.50

Section 5.3.1 Case A (δv = 1) 2.70 1.04
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Figure I.1: Effect of design parameter vmin and vmax

The main observation is that none of the control systems designed from these parameter

configurations illustrate the performance issues of the linear model based control system

(see Case A Figure 5.5). The Type I and II configurations show almost identical output

signals. This similarity of the performance may have yielded because there is no difference

how the controllers behave in the closed-loop system. An interesting observation here is

that the gains of the controllers in Type I and II have scaled according to δv (see Table

I.1). For instance, the δv parameter of Type I is 40 times larger compared to Type II.

This has also scaled the gains of these two control systems 40 times. The same conclusion
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can be made when the Type I and Type II gains are compared with the gains used in

Section 5.3. Such scaling occurs because the autoregressive coefficient of the ARX model

has remained constant while the exogenous input coefficient has scaled with respect to

δv (see equations (I.4),(I.5)). Consequently, other than small differences, the dynamics of

the system and performance management provided by the control systems have remained

almost the same for the Type I and II configurations. However, in the case of Type III,

the same conclusions cannot be made. Although the performance was satisfactory, it is

different from other control systems. This is because, the range of v lies on the positive

side, consequently affecting the performance of the control system. In the design of the

negative feedback control systems it is recommended to place the control input around

zero (that is in the positive and negative sides) in order to improve the model estimation

and runtime control due to the integrator embedded in the controller. This experiment

setting did not provide us with conclusive results, but theoretically the design parameter

selections similar to Type I and II can be recommended. Furthermore, we can conclude

that there is little or no impact on the performance of the control system, depending on

the selected δv. As a result, arbitrary values vmin and vmax can be selected, but adhering

to the above recommendation.
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