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Leggett mode in a two-component Fermi gas with dipolar interactions
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We develop an effective field theory to understand collective modes of a three-dimensional two-component
Fermi superfluid with dipolar interparticle interactions, which are modeled by an idealized separable potential.
We first examine the phase transition of the system at zero temperature, as the fermionic superfluidity is known
to be characterized by two competing order parameters. We find that for strong interactions there exists a regime
where the two order parameters are out of phase and coupled, giving rise to an undamped massive Leggett
mode. This is in addition to the well-known gapless phonon mode. We show that the Leggett mode can be
seen in the spectral function of the in-medium Cooper pairs, and in principle could be measured through Bragg
spectroscopy.

DOI: 10.1103/PhysRevA.99.023626

I. INTRODUCTION

Owing to the rapid experimental progress on the control
of ultracold gases over the last decade [1–3], there has been
significant work done on creating ultracold dipolar atomic
gases with large magnetic moments [4–9] and polar molecules
with large electronic dipole moments [10–15]. The long-range
and anisotropic nature of the dipole-dipole interaction in
these systems leads to many fascinating quantum phenomena,
such as self-bound droplets in Bose systems [16–18], p-wave
and topological superfluidity in Fermi systems [19–21], and
quantum chaos [6,22,23].

There are extensive many-body calculations of Fermi dipo-
lar systems [24–27], which mainly focus on the mean-field
regime. To deal with the short-range divergence of the dipolar
interaction, the most common method of using the two-body
T matrix as a way to renormalize the interaction [28] is not
tractable in the many-body calculations, since the dipolar
interaction couples different partial wave channels [29–31].
A useful strategy for renormalization is to take the Born
approximation [32–34], which unfortunately is appropriate
in the weakly interacting regime only [35–37]. In this work,
we consider an effective separable interaction potential that
couples different angular momentum channels (i.e., |l − l ′| �
2) in the strongly interacting regime, as was used in Ref. [38].
Using a separable potential captures the low-energy physics of
the dipolar interaction and allows us to account for the effect
of the coupling between different partial wave channels. In
particular, it provides us a convenient framework to compute
the order parameters for each scattering channel and to ex-
plore the behavior of these order parameters.

For systems with multiple superfluid order parameters,
there can exist an additional collective mode other than the
well-known phonon mode: the so-called Leggett mode [39].
This mode is characterized as the out-of-phase coupling of dif-
ferent superfluid order parameters. It has been long predicted
to occur in two-band superconductors, for example in MgB2
[40], and in nonequilibrium systems [41]. Most recently, an
ultracold atomic Fermi gas near an orbital Feshbach resonance

has been thought to be a possible candidate for exhibiting the
Leggett mode [42–44]. The purpose of this work is to show
that a two-component Fermi gas with dipolar interactions
provides an excellent platform to observe the long-sought
Leggett mode.

The rest of the paper is set out as follows. In Sec. II we
consider the many-body thermodynamic potential and derive
the mean-field equations for the density and order parameters.
We determine the order parameters in the different phases of
the system as we sweep over scattering lengths, and examine
the symmetry of the associated momentum distribution. In
Sec. III we calculate the collective modes by expanding the
thermodynamic potential to second order, which correspond
to the pair fluctuations at the Gaussian level. We show that
the Leggett mode is undamped for a range of interaction
strengths and how the collective modes can be seen in the
spectral function of the Cooper pairs. In Sec. IV we discuss
and summarize our findings.

II. MANY-BODY THERMODYNAMIC POTENTIAL

We consider a many-body two-component Fermi gas with
dipolar interactions in three dimensions, described by the
model Hamiltonian (we set h̄ = 1 and the volume V = 1)
[38,45],

H =
∑
kσ

ξka†
kσ akσ + Hint, (1)

where the single-particle dispersion is ξk = k2/2M − μ with
the chemical potential μ, a†

kσ ≡ a†
kσ (τ ) and akσ ≡ akσ (τ ) are

creation and annihilation operators respectively, for atoms
with spin σ and mass M, and the interaction Hamiltonian is
given by

Hint =
∑
kk′q

U (k − k′)a†
q/2−k↑a†

q/2+k↓aq/2+k′↓aq/2−k′↑, (2)

where the dipolar interaction is U (k) = 4πd2(cos2 θk − 1)/3,
with d being the dipole moment of the two dipoles polarized
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along the z axis and θk the angle between k and the z axis.
We can write the interaction in the following separable form
[38,46–48]:

U (k − k′) = 4π
∑

j

g jw j (k̂)w∗
j (k̂′), (3)

where the coupling constants g j satisfy the renormalization
condition for the effective scattering lengths λ j [49]:

M

4πλ j
= 1

g j
+

∫
d3k

(2π )3

M

k2
. (4)

Truncating the sum in Eq. (3) to the two lowest-order terms
as was done in Ref. [38], the effective scattering lengths are
given by

λ1,2 = [
a00 ± sgn(a02)

√
a2

00 + 4a2
02

]
/2, (5)

where a00 and a02 are the scattering lengths of the s and d par-
tial wave channels. For a set of scattering lengths (a00, a02),
either λ1 or λ2 will be positive, supporting a bound state
energy of Eb = −1/Mλ2

j [38]. Throughout this work we set
a−1

00 > 0 and sweep across a−1
02 , thus there will be a phase

transition as the bound state changes from λ1 to λ2 as a02

changes sign. The orthogonal basis vectors in Eq. (3) are given
by [49],

w1,2(k̂) = s1,2Y00(k̂) + Y20(k̂)√
s2

1,2 + 1
, (6)

where s1,2 = −(y ±
√

y2 + 4)/2 and y = a00/a02, and Ylm(k̂)
are the spherical harmonics.

The Hamiltonian with the separable potential in Eq. (3)
then becomes

H =
∑
kσ

ξka†
kσ akσ + 4π

∑
q, j=(1,2)

g jb
†
j (q, τ )b j (q, τ ), (7)

where b j (q, τ ) = ∑
k w j (k̂)a−k+q/2↑ak+q/2↓. In the imagi-

nary time formalism we can write the partition function as
Z = ∫

Da†Da exp(−S), where the action S is given by (β ≡
1/kBT )

S =
∫ β

0
dτ

[∑
kσ

a†
kσ (τ )∂τ akσ (τ ) + H(τ )

]
. (8)

Using the standard Hubbard-Stratonovich transformation, we
may decouple the interaction term by introducing auxiliary
complex pairing fields ( j = 1, 2), 


j
q(τ ). Physically, each

pairing field roughly describes a Cooper pair consisting of two
fermions, i.e.,


 j
q(τ ) ∼ 4πg jb j (q, τ ). (9)

Using the Nambu spinor representation �
†
k = (a†

k↑, a−k↓) for
a two-component Fermi gas, we can rewrite the action as

S =
∫ β

0
dτ

⎡
⎣−

∑
q, j

∣∣
 j
q(τ )

∣∣2

4πg j
+ 1

2

∑
kk′

(
ξkδkk′ −�

†
kG−1

kk′�k′
)⎤⎦,

(10)

where the inverse fermionic Green’s function takes the form
(p ≡ k+k′

2 )

G−1
kk′ =

[
−(∂τ + ξk )δkk′

∑
j 


j
k−k′ (τ )w j (p̂)∑

j 

j∗
−k+k′ (τ )w∗

j (p̂) −(∂τ − ξk )δkk′

]
. (11)

By integrating out the fermionic degrees of freedom from the
partition function and taking the Fourier transform from imag-
inary time to Matsubara frequencies, we obtain the effective
action

Seff = −β
∑
Q, j

∣∣
 j
Q

∣∣2

4πg j
+

∑
K,K ′

[
βξkδKK ′ − Tr ln G−1

KK ′
]
, (12)

where Q ≡ (iνn, q) with bosonic Matsubara frequencies νn =
2πn/β and K ≡ (iωm, k) with fermionic Matsubara frequen-
cies ωm = (2m + 1)π/β. We have also used the shorthand
notations,

∑
Q ≡ kBT

∑
iνn

∑
q and

∑
K ≡ kBT

∑
iωm

∑
k.

In the following, we make a saddle-point approximation
and expand the action in orders of the fluctuation fields φ̂ j (Q)
around the order parameters � j ,



j
Q = � jδQ0 + φ̂ j (Q), (13)

and we can obtain Seff = SMF + SGF + · · · , where SMF is the
mean-field action and SGF is the Gaussian fluctuation action.

A. Mean-field theory

First looking at the mean-field contribution to the action,
we have

SMF = −β
∑

j

|� j |2
4πg j

+
∑

K

[
βξk − Tr ln G−1

sp

]
, (14)

where the saddle-point Green’s function is given by

G−1
sp (K ) =

[
iωm − ξk �(k)

�∗(k) iωm + ξk

]
, (15)

the quasiparticle dispersion is Ek =
√

ξ 2
k + |�(k)|2 , and we

have defined �(k) = ∑
j � jω j (k̂). We thus obtain the mean-

field thermodynamic potential,

�MF = −
∑

j

|� j |2
4πg j

+
∑

k

[
ξk − Ek − 2

β
ln(1 + e−βEk )

]
,

(16)

and from the condition δ�MF/δ�
∗
j = 0 we get the coupled

gap equations at finite temperature,

− � j

4πg j
=

∑
k, j′

� j′ω j′ (k̂)ω∗
j (k̂)

2Ek
tanh

βEk

2
. (17)

Using the renormalization condition, Eq. (4), to replace the
bare coupling constants g j , and using the fact that the basis
functions are orthogonal, we rewrite the gap equation at zero
temperature:

− M� j

16π2λ j
=

∑
k, j′

� j′ω j′ (k̂)ω∗
j (k̂)

(
1

2Ek
− M

k2

)
. (18)
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FIG. 1. Plots of the order parameters |� j | in units of the Fermi
energy, εF, for a range of a02 scattering lengths and (a) kFa00 = 2
and (b) kFa00 = 5. The relative phase of the order parameters, φ =
arg(�1) − arg(�2), is shown in both plots.

The number equation at the mean-field level is easily found
from the relation n = −∂�MF/∂μ:

n =
∫

d3k
(2π )3

(
1 − εk

Ek

)
. (19)

Together the above two equations form a closed set and
we can solve for the chemical potential μ and order pa-
rameters � j . As we take only the first two partial wave
channels, the thermodynamic potential only depends on the
absolute values of the order parameters, |�1| and |�2|, and
the relative phase between the two order parameters, φ =
arg(�1) − arg(�2). There are several solutions to the num-
ber and gap equations for a given set of scattering lengths,
which correspond to different local minima. The true ground
state should be determined by minimizing the energy density,
E ≡ � + μn:

E (�1,�2, μ) =
∫

d3k
(2π )3

[
εk − Ek + |�(k̂)|2

2Ek

]
+ μk3

F

3π2
.

(20)

For our units of numerical calculations, we take the Fermi
wave vector, kF ≡ (3π2n)1/3, as the units of the wave vectors
and the Fermi energy εF = h̄2k2

F/(2M ) as the units of energy.
This is equivalent to setting 2M = h̄ = 1. In Fig. 1 we plot
the order parameters for a range of the scattering length
a02, where we set kFa00 = 2 in Fig. 1(a) and kFa00 = 5 in
Fig. 1(b). We see the nontrivial behavior of the order parame-
ters, depending on the sign of a02 and the associated two-body
bound state [38]. The change of the dominant order parameter
implies that the condensate can have two different symmetries
and therefore there exists a quantum phase transition, as
discussed in the previous work [38]. Near (kFa02)−1 	 0, the
two order parameters become comparable. The relative phase
of the order parameters also changes with kFa02, taking a
nontrivial value near (kFa02)−1 	 0 for both values of kFa00.
It is always out of phase for kFa02 < 0.

B. Momentum distribution

The momentum dependence in the different interaction
regimes is nontrivial due to the mixing of order parameters
and angular dependence of the dipolar interaction. This has

(a) (b)

(d)(c)

FIG. 2. Density plots of the momentum distribution n(kx =
0, ky, kz ) = 1 − εk/Ek in units of the Fermi momentum kF for
different sets of interaction parameters (kFa00, kFa02): (a) (1,1),
(b) (1, −1), (c) (1,5), and (d) (1,−5).

already been investigated in the previous work, by considering
the quasiparticle spectral function [38]. Here, we show that the
momentum distribution can also exhibit different underlying
symmetry, depending on the sign of kFa02 and the resulting
two-body bound state.

In Fig. 2 we show the zero-temperature density plots of the
momentum distribution

n(kx = 0, ky, kz ) = 1 − εk

Ek
(21)

at kFa00 = 1 and at different values of kFa02: (a) kFa02 = 1, (b)
kFa02 = −1, (c) kFa02 = 5, and (d) kFa02 = −5. We note that
the rotational symmetry of the system in the x-y plane ensures
n(kx = 0, ky, kz ) = n(kx, ky = 0, kz ).

As the scattering length kFa20 changes, we see how the un-
derlying symmetry of the momentum distribution is changing.
In Fig. 2(a) the distribution has a s − dz2 like symmetry and
in Fig. 2(b) the symmetry is s + dz2 . For both interactions the
momentum distribution is dominated by the contribution from
the bound-state dominated order parameter in �(k): �1w1(k̂)
for (a) and �2w2(k̂) for (b).

As we increase |kFa02|, in Figs. 2(c) and 2(d) we see
a higher-order nontrivial symmetry. The distribution is no
longer dominated by the bound-state order parameter and
the mixing of order parameters becomes important. For the
negative scattering length, kFa02 = −5, in Fig. 2(c) the cou-
pling of the order parameters is out of phase. This is where
we expect the dipolar superfluid to support an additional
collective mode; we will soon see that the system has two
collective modes in this regime. For the positive scattering
length, kFa02 = 5, in Fig. 2(d) the relative phase of order pa-
rameters becomes nontrivial, and the time-reversal symmetry
has been broken due to the order-parameter mixing [38]. In
this interaction regime we expect there to be no Leggett mode
as the order parameters are not out of phase.
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III. COLLECTIVE MODES

To study the behavior of the collective modes, we calculate
the Gaussian fluctuation contribution to the effective action,
Eq. (12). This can be taken into account by expanding the
action to the second order of the bosonic fields φ̂ j (Q) and
φ̂∗

j (Q) [50]:

SGF =
∑

Q

⎡
⎣−

∑
j

|φ̂ j (Q)|2
4πg j

⎤
⎦ + β

2

∑
QK

Tr

[
G
(

K − Q

2

)

×
(−Q)G
(

K + Q

2

)

(Q)

]
, (22)

where we have the saddle-point fermionic Green’s function
and fluctuation fields,

G(K ) = 1

(iωm)2 − E2
k

[
iωm + ξk −�(k̂)

−�∗(k̂) iωm − ξk

]
, (23)


(Q) =
[

0
∑

j φ̂ j (−Q)ω j (k̂)∑
j φ̂

∗
j (Q)ω∗

j (k̂) 0

]
. (24)

The subscript “sp” in the saddle-point Green’s function has
been suppressed for a better presentation. From this we can
then rearrange the terms to obtain the final form,

SGF = β

2

∑
Q, j j′

[φ̂ j
∗
(Q), φ̂ j (−Q)]Mj j′ (Q)

[
φ̂ j′ (Q)

φ̂∗
j′ (−Q)

]
, (25)

where we have defined the elements Mj j′ (each of which is a
2 by 2 matrix),

[Mj j′]11(Q) =
∑

K

G11

(
Q

2
+ K

)
G22

(
Q

2
− K

)
ω j (k̂)ω∗

j′ (k̂)

− δ j, j′

4πg j
, (26)

[Mj j′ ]12(Q) =
∑

K

G12

(
Q

2
+ K

)
G12

(
Q

2
− K

)
ω j (k̂)ω∗

j′ (k̂),

(27)

[Mj j′ ]21(Q) = [Mj j′ ]12(Q), and [Mj j′ ]22(Q) = [Mj j′ ]11(−Q).
We then complete the sums over the Matsubara frequencies to
arrive at the zero-temperature result:

[Mj j′ ]11(Q) = − δ j j′

4πg j
+

∑
k

(
u2

−u2
+

iνn − E+ − E−
− v2

+v2
−

iνn + E+ + E−

)
ω j (k̂)ω∗

j′ (k̂), (28)

[Mj j′ ]12(Q) = −
∑

k

(
u+v+u−v−

iνn − E+ − E−
− u+v+u−v−

iνn + E+ + E−

)
ω j (k̂)ω∗

j′ (k̂), (29)

where we define the BCS parameters u2
± = (1 + ξ±/E±)/2

and v2
± = (1 − ξ±/E±)/2, and the shorthand notations ξ± =

ξk±q/2 and E± = Ek±q/2. We renormalize the bare coupling
constants g j again using Eq. (4) and this also cures the diver-
gences in the integrals of M11. We can then write the inverse
boson propagator for Cooper pairs, M(Q), as a 2Nj × 2Nj

matrix, where Nj is the number of channels and in this work
Nj = 2.

Analytically continuing the Matsubara frequencies, iνn →
ω + i0+, the phonon and Leggett collective mode dispersions
are determined by the equation det[M(q, ω)] = 0. As the scat-
tering potential we have used for the dipole-dipole interaction
has an angular dependency, the bosonic propagator �(q, ω) =
M−1(q, ω) has an angular dependence and is a function of
three parameters: �(q, ω) ≡ �(q, θ, ω), where q ≡ |q| and
θ ≡ θq.

Results

We plot in Fig. 3 the collective modes for scattering lengths
kFa00 = 2 and (a) (kFa02, θ ) = (−2, π/2), (b) (kFa02, θ ) =
(−5, 0), (c) (kFa02, θ ) = (−5, π/4), and (d) (kFa02, θ ) =
(−5, π/2). The two-particle continuum is shown as the blue
shaded region, the phonon mode is the blue dashed line, and
the Leggett mode is the black dot-dashed line.

We see in Fig. 3(a) that the dipolar superfluid supports
only the phonon mode when the channel coupling a02 is
weak, which becomes damped once it enters the two-particle

continuum as we increase the momentum q/kF, indicating that
for this interaction regime the system is BCS like [38,51].
Looking at Fig. 1(a) for scattering lengths (kFa00, kFa02) =
(2,−2), the order parameters are out of phase and the super-
fluid is mainly characterized by the order parameter �2, thus

FIG. 3. Plots of the two-particle continuum (blue shaded re-
gion), phonon mode (blue dashed), and Leggett mode (black
dash-dotted) in units of the Fermi energy for scattering lengths
kFa00 = 2 and (a) (kFa02, θ ) = (−2, π/2), (b) (kFa02, θ ) = (−5, 0),
(c) (kFa02, θ ) = (−5, π/4), and (d) (kFa02, θ ) = (−5, π/2).

023626-4



LEGGETT MODE IN A TWO-COMPONENT FERMI GAS … PHYSICAL REVIEW A 99, 023626 (2019)

−1.0 −0.8 −0.6 −0.4 −0.2 0.
0.0
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0.4
0.6
0.8
1.0
1.2

(a) (b)1.4

1.0 −0.8 −0.6 −0.4 −0.2 0.0

FIG. 4. Plots of the two particle continuum (blue shaded region)
and Leggett mode (black dash-dotted) for q = 0 as a function of the
scattering length kFa02 at (a) kFa00 = 1 and (b) kFa00 = 2.

we would expect the mixing between the order parameters to
be negligible and there is no Leggett mode.

In Figs. 3(b)–3(d) we increase the channel coupling to
kFa02 = −5, and we now see two undamped collective modes,
the Leggett and phonon modes, at low momentum. In this
interaction regime the order parameters are approximately
at the same order of magnitude and are out of phase [see
Fig. 1(a), where 1/(kFa02) = −0.2], satisfying Leggett’s orig-
inal picture of two well-defined and coupled condensates [39].
The Leggett mode merges into the two-particle continuum and
becomes damped for large momentum at each θ . The phonon
mode is always undamped for θ = 0, but it merges into the
two-particle continuum for large momenta when θ becomes
sufficiently large; see, for example, Fig. 3(d).

In Figs. 4(a) and 4(b) we plot only the Leggett mode
(black dash-dotted line) and the two-particle continuum (blue
shaded region) for a range of kFa02 at zero momentum q = 0,
and set kFa00 = 1 and kFa00 = 2, respectively. For negative
scattering length, (kFa02)−1 < 0, we see in both figures the
Leggett mode becomes undamped for large enough |kFa02|,
and disappears as the scattering length changes sign. Here,
the system undergoes a quantum phase transition as the bound
state changes its character and the relative phase between the
two order parameters starts to deviate from π . We find for
positive scattering lengths, (kFa02)−1 > 0, there are no longer
two collective modes and the Leggett mode always lies in the
two-particle continuum (not shown in the figure). This can
be understood from Fig. 1: for large positive kFa02, the relative
phase of the order parameters exhibits non trivial dependence
on (kFa02)−1 and is not completely out of phase. As (kFa02)−1

increases further, the two order parameters become out of
phase again, however �2 becomes dominant and leaves no
room for the Leggett mode.

Experimentally, the collective modes of a strongly inter-
acting Fermi gas can be probed by measuring the density
dynamic structure factor via Bragg spectroscopy [52,53]. We
would expect that, if the regimes where the Leggett mode
is undamped can be reached, we should be able to measure
the phonon and Leggett modes. To support this idea, in
Fig. 5 we show a typical spectral function of the in-medium
Cooper pairs, i.e., −Im�11(q, θ, ω), in arbitrary units for a
range of momenta, where for clarity we have shifted each
curve to be visible. We have chosen an interaction strength
of kFa00 = 1 and kFa02 = −5. We can clearly see how the

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8
−2

0

2

4

6

8

FIG. 5. Plot of the spectral function of Cooper pairs,
−Im�11(q, θ, ω), in arbitrary units, scattering lengths
(kFa00, kFa02) = (1, −5), and θ = π/2. From bottom to top
the momentum q increases from q = 0.1kF to 0.5kF.

phonon mode and the Leggett mode evolve as the momentum
increases.

IV. DISCUSSION AND SUMMARY

We have found that an undamped Leggett mode requires
interactions in the kFa00 and kFa02 channels to be such that
both order parameters are significant and out of phase. Prac-
tically, such an interaction regime could be achieved with a
multichannel resonance [30,38,54], changing the scattering
lengths by sweeping across the shape resonances induced
by the dipolar interaction. For polar molecule systems, the
large electronic dipole moments can be adjusted such that
the interaction regime to observe the Leggett mode could be
reached [11,15]. For atomic species with a magnetic dipole
moment, the interaction is fixed but Feshbach resonances can
be used to tune the background s-wave interaction, i.e., the
scattering length a00. However, as we require a large kFa02 as
well to have a significant coupling between the two channels,
a direct observation of the Leggett mode would be difficult.
The addition of higher-order channels would not significantly
alter our results, since the higher-order channel coupling will
most likely be weak [30].

In summary, through an effective separable form of the
dipolar interaction we have investigated the collective modes
of a dipolar Fermi gas, in which the superfluid is described by
two order parameters. We have found for strong interactions,
where the order parameters are strongly coupled and out of
phase, an additional collective mode—the Leggett mode—
emerges, on top of the phonon mode. We have determined
the interaction regime where this mode persists and have
shown that the Leggett mode can be seen through the spectral
function of the Cooper pairs, indicating that in principle it
could be measured through Bragg spectroscopy.
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APPENDIX: TWO-BODY SCATTERING

To renormalize the many-body equations we need to calcu-
late the two-body T matrix. The dipolar interaction is nonsep-
arable and this makes the many-body calculation intractable.
We separate the dipolar interaction using the effective po-
tential in Ref. [38], which was introduced to model a mul-
tichannel resonance, and here we briefly derive the effective
potential. The scattering amplitude for the dipolar interaction
is given by [29,31]

f (k′, k)|k=k′ = 4π
∑

lml ′m′
il ′−l k−1

(
1

K−1 − i

)l ′m′

lm

Ylm(k̂)Y ∗
l ′m′ (k̂′)

(A1)

where Kl ′m
lm is the K matrix and can be calculated as in

Refs. [30,55]. The K matrix is related to the T matrix by T =
2(K−1 − i)−1 and in the small k limit the scattering lengths
are given by the K-matrix elements, a(m)

ll ′ = − limk→0 Kl ′m
lm /k.

Introducing a matrix A whose elements are defined by the
scattering lengths as A(m)

ll ′ = il−l ′a(m)
ll ′ , we diagonalize the ma-

trix A in an orthonormal basis, w jm(k̂) = ∑
l d jlYlm(k̂) [56].

We can write the scattering amplitude as [57]

f (k′, k)|k=k′→0 = 4π
∑

jm

f jmw jm(k̂)w∗
jm(k̂′), (A2)

where f jm = −1/(λ−1
jm + ik). We can find a separable poten-

tial which reproduces this scattering amplitude as

U (k̂′, k̂) = 4π
∑

jm

g jmw jm(k̂)w∗
jm(k̂′), (A3)

where the coupling constants g jm satisfy the renormalization
condition,

M

4πλ jm
= 1

g jm
+

∫
d3k

(2π )3

M

k2
. (A4)

Taking the separable potential to second order as the minimal
model to describe the dipolar interaction, we set the scattering
matrix to the following form for the multichannel resonance:

Asc =
(

a00 −a02

−a02 0

)
. (A5)

The eigenvalues of this matrix are given by

λ1,2 = [
a00 ± sgn(a02)

√
a2

00 + 4a2
02

]
/2, (A6)

and for any set of values (a00, a02) either λ1 or λ2 will be
positive with a bound-state energy of Eb = −1/Mλ2

i . This will
mean that as we sweep across a−1

00 or a−1
02 there will be a phase

transition, since the bound state changes from λ1 to λ2. The
choice of Eq. (A5) is not unique and we can change the sign
of the off diagonal elements; this would have the effect of
changing the sign of the λ1 and λ2 and would not qualitatively
change any of the results here. The orthogonal basis vectors
are given by

w1,2(k̂) = s1,2Y00(k̂) + Y20(k̂)√
s2

1,2 + 1
, (A7)

with s1,2 = −(y ±
√

y2 + 4)/2 and y = a00/a02.
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