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A Robust MIMO Terminal Sliding Mode 
Control Scheme for Rigid Robotic Manipulators 

Man Zhihong, A. P. Paplinski, and H. R. Wu 

Abstruct- In this paper, a robust multi-input/multi-output (MIMO) 
terminal sliding mode control technique is developed for d i n k  rigid 
robotic manipulators. It is shown that an MIMO terminal switching plane 
variable vector is first defined, and the relationship between the terminal 
switching plane variable vector and system error dynamics is established. 
By using the MIMO terminal sliding mode technique and a few structural 
properties of rigid robotic manipulators, a robust controller can then be 
designed so that the output tracking error can converge to zero in a finite 
time, and strong robustness with respect to large uncertain dynamics can 
be guaranteed. It is also shown that the high gain of the terminal sliding 
mode controllers can be significantly reduced with respect to the one of 
the linear sliding mode controller where the sampling interval is nonzero. 

I. INTRODUCTION 

Sliding mode control is one of the most important approaches 
to handling systems with large uncertainties, nonlinearities, and 
bounded external disturbances. Generally, in most of sliding mode 
control schemes for multi-inputlmulti-output (MIMO) systems, an 
MIMO linear sliding mode is first designed to describe the desired 
system error dynamics, a robust controller drives the switching plane 
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variables to reach the sliding mode, and the asymptotic convergence 
of error dynamics can then be obtained on the linear sliding mode 
[ I]-[6]. To get fast error convergence on the sliding mode, however, 
the sliding mode parameters must be chosen such that the poles 
of the sliding mode dynamics are far from the origin on the left- 
half of the s-plane. This will, in turn, increase the gain of the 
controller. Considering the saturation property of control input signals 
in practical robot control, a sliding mode controller with high gain is 
undesirable. On the other hand, a linear sliding mode technique can 
guarantee only the asymptotic error convergence on the sliding mode, 
and therefore error dynamics can not converge to zero in a finite time. 

In this paper, a robust MIMO terminal sliding mode control 
scheme is developed for n -link rigid robotic manipulators based 
on [11]-[13]. It is shown that an MIMO terminal switching plane 
variable vector is first defined, and the relationship between the 
terminal switching plane variable vector and system error dynamics 
is investigated. By using the MIMO terminal sliding mode techniique 
and a few structural properties of rigid robotic manipulators, a robust 
controller can then be designed. Unlike conventional linear sliding 
mode control schemes, the switching plane variable vector in this 
paper has a nonlinear term of the velocity error. By suitably designing 
the controller, the switching plane variables can reach the termlinal 
sliding model in a finite time, and the output tracking error can lthen 
converge to zero in a finite time on the terminal sliding mode. It is 
also shown that this scheme is more practical because the gain 0 1  the 
terminal sliding mode controller can be significantly reduced with 
respect to the high gain of linear sliding mode controllers in practical 
situations where the sampling interval is non zero. 

Similar to the linear sliding model technique, strong robustness 
with respect to large uncertain dynamics can be obtained by using the 
proposed control scheme. Also, the controller design is simple iri the 
sense that only a few uncertain bounds based on structural properties 
of robotic manipulators are used in the controller parameter designs. 

The paper is organized as follows: In Section 11, an n-link rigid 
robotic manipulator model and i t s  a few useful structural properties 
are formulated, and an MIMO terminal nonlinear sliding mode is 
defined to describe desired error dynamics. In Section 111, a robust 
MIMO terminal sliding mode control scheme is developed for rigid 
robotic manipulators, the stability of error dynamics and robustness 
with respect to uncertain dynamics are discussed in detail, and an 
advantage of the proposed scheme in its practical applications is also 
remarked. In Section IV, a simulation for a two-link rigid robotic 
manipulators is performed in support of the proposed control scheme. 
Section V gives conclusions. 

11. PROBLEM FORMULATION 

The dynamics of an 11-joint robotic manipulator can be described 
by the following second-order nonlinear vector differential equation 

(2.1) 

where q ( t )  is the U x 1 vector of joint angular positions, ~ ( t )  is the 
n x 1 vector of applied joint torques, M ( q )  is the 71 x n symmetric 
positive-definite inertia matrix, F ( q .  4)4 i s  the n x 1 vector of Coriolis 
and centrifugal torques, and G ( q )  is the 71 x 1 vector of gravitational 
torques. Further, we assume that vectors ( I ,  q,  and 4 are measurable 
(see Fig. 1). 

M ( q ) i +  F ( q .  4)(i + G ( q )  = u ( t )  

Defining .r = (q’ . ;1 )’ , expression (2.1 ) can be written as 
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Fig. 1. An n-link rigid robotic manipulator model. 

Fig. 2. A desired reference model. 

The reference model for the plant to follow can be represented as 

where P = diag(P,), Q = diag(Q,), and BI = diag(b,) (1 5 i 5 
n) are constant matrices which are chosen such that the reference 
model (2.3) is stable. Vectors T ,  q,, and qm are assumed to be 
measurable (see Fig. 2). 

and using expressions (2.2) 
and (2.3), we obtain the error differential equation as 

Defining E = q - q,-, e = [ e T ,  

1 = A,e + Bh(q, q, U, r )  (2.4) 

where B = [0, TIT and 

h(q, i ,  U, T )  = M(q)-lfJ + hl(% i ,  r )  (2.5) 

To design robust control system with the error convergence in a 
finite time, we define the following MIMO terminal switching plane 
variable vector 

S=CE (2.7) 

where 

(2.8) 

(2.9) 

1 

1 
c =[C, C2] = ( '  ... c"" ... 

E = [ E : .  . . E ;  il . . 
Remark 2.1: In (2.9), p = p l  / p 2 ,  where positive integers p l  and 

pz  are selected such that 

p2 = ( 2 m  + I), m = 1, 2 , . . .  (2.10) 

p z  > P l .  (2.1 1) 

It is easy to shown that the selections of p1 and p z  in (2.10) and 
(2.1 1) can guarantee 0 < p < 1 and the tracking error E, can then 
converge to zero on the terminal sliding mode in a finite time for all 
bounded initial conditions. 

Vector E in expression (2.7) can also be written into the following 
'form 

d = e + A d  (2.12) 

where 

Ad= [< - E ~ , * * * , E P ,  -en, O,-**,OlT. (2.13) 

Remark 2.2: Using expressions (2.9), (2.12), and (2.13), the 
MIMO terminal switching plane variable vector in expression (2.7) 
can be written into the form 

s = Cd 
= C(e + AE) 
= Ce + C1(F - E) (2.14) 

where 

z = [ E : .  . . < I T .  (2.15) 

It will be seen later that it is convenient to use expression (2.15) of 
switching plane variable vector S in controller design and stability 
analysis. 

Remark 2.3: The ith element of S in expression (2.7) can be 
written into the following form 

s, = c,,< + i*. (2.16) 

Similar to the conventional sliding mode control technique, if the 
controller is designed such that s. (i = 1, .  , n) converge to zero, 
then we say that the switching plane variables s, (i = l , . . . , n )  
reach the terminal sliding mode 

C , * E ~ + i , = O  ( i = l , * . . , n ) .  (2.17) 

It has been shown in Zak [12], [13] that E, = 0 is the terminal 
attractor of the system (2.17). Let the initial value of E ,  at time t = 0 
be E,(O) and parameter p be chosen as shown in Remark 2.1, then 
the relaxation time t ,  for a solution of system (2.17) is given as 

Expression (2.18) also means that, on the terminal sliding mode in 
(2.17), the output tracking error converges to zero in a finite time. 
The details on the terminal attractor and its applications can be found 
in [12] and [13]. 

Remark 2.4: For the simplified analysis, matrix CZ in (2.8) is 
chosen as an unity matrix. Matrix CZ, however, can be chosen as 
a different diagonal matrix for the improvement of the convergence 
of the error dynamics on the terminal sliding mode. 

For further analysis, the following uncertain bounds for n-link rigid 
robotic manipulators in expression (2.1) are assumed to be known. 

1) Arnin(M(q1-l) 2 a1 (2.19) 
2) llMw-'ll 2 a2 (2.20) 
3) llF(q., ai + G(q>ll < b l  + bZllQll+ b311i112 (2.21) 

where a l ,  az, bl, b 2 .  and b3 are positive numbers. 
Remark 2.5: According to the characteristics of industrial robotic 

manipulators, the above assumptions are reasonable. Assumption 
A.2.1) has been used in Leung et al. [20], and Assumptions A.2.2) 
and A.2.3) have been used ih Singh [8]. Also, an estimation method 
for the uncertain bound parameters in Assumptions A.2.1kA.2.3) has 
been developed in Grimm [9] by neglecting some dynamics. 

The objective of this paper is to design a robust tracking controller 
using the MIMO terminal sliding mode technique based on uncertain 
bounds in assumptions A.2.1kA.2.3) instead of the upper and the 
lower bounds of all unknown system parameters so that, for any 
bounded uncertainties in parameten of robotic systems, the error 
dynamics can be driven into the terminal sliding mode in a finite 
time. On the ferminal sliding mode, the error dynamics can then 
converge to zero in a finite time. 
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111. CONTROLLER DESIGN 

Theorem 3.1: Consider the error dynamics in expression (2.4) with 
assumptions in (2.19)-(2.21). If the control input vector is designed 
such that 

(3.1) 

E ,  = diag (pty-'. . . . . ye:-' ) i  (3.3) 

and 

P = P I / P Z  and PZ > P I  2 ( P Z  + 1112 
(see Remark 3.3) (3.4) 

then the output tracking error vector converges to zero in a finite time. 
Proof? Consider the following Lyapunov function 

1 
2 (3.5) I -  = -srs. 

Differentiating I' with respect to time, we have 

i- = 51 3 
= SI (C;. + ClC, - Cli) 
= s'[cA,,,~ + ~ ~ / i ( q .  i u .  r )  + ~ l c ,  - C , ~ I  
= s ~ [ - P Q ,  - ~ 1 ,  + , ~ ( q ) - ' u  - Blr + ~ 1 6 ,  

- J~(Y)-'(F(Y. i)Y+ G(Y))]. (3.6) 

Let 

(3.7) 

and considering Assumption A.2.1), we have kl ( t )  2 1. 
Using control law (3.l), expression (3.6) can then be written as 

(3.8) 

> (bi + b z l l ~ l l  + h11411') - llF4 + GI1 > 0. (3.9) 

Then 

i- < - k l a 2 h ( t ) l l s J I  < 0 llsll # 0. (3.10) 

Considering the fact that b ( t )  is greater than a positive number by 
suitably selecting the bound parameters bl , bl ,  and b3 ,  expression 
(3.10) means that switching plane variable vector S converges to 
zero in a finite time. 

On the terminal sliding mode 

Ci. = 0 (3. I 1) 

the error dynamics satisfy (2.17), then the output tracking error 
converges to zero in a finite time. 

Remark 3.1: It can be see that, unlike the conventional linear 
sliding mode control schemes in [I]-[6], the output tracking error 
can converge to zero in a finite time by using the proposed control 
scheme due to the fact that the output tracking error can be driven into 
the terminal sliding mode in a finite time, and the error dynamics can 
then converge to zero in a finite time on the terminal sliding mode. 

Remark 3.2: The proposed terminal sliding mode control scheme 
has strong robustness with respect to large parameter uncertainties 
because only five control parameters are adjusted in the controller, 
and the adjustable parameters depend only on the uncertain bounds 
in expressions (2.19)-(2.21). 

Remark 3.3: On the terminal sliding mode in expression (2.15), 
the signal vector t, in expression (3.3) can be written as 

e,. = d i a g ( p ~ ~ - ' : . . . p t ~ - ' ) i  

(3.12) 

Expression (3.4) shows that, although mathematically the positive 
number p in (2.17) or (2.18) satisfies (2.10) and (2.1 1)  to guarantee 
the terminal convergence of variable c , ,  the number p must satisfy 
(3.4) in this control scheme in the sense that the signal vector 6,. 

in (3.12) or (3.3) must be bounded as the output tracking error tl 
converge to zero on the terminal sliding mode. 

Remark 3.4: In [19], a linear sliding mode control scheme using 
the same assumptions on uncertain bounds in A.2.1)-A.2.3) was 
developed. In [19, (7.16)], the term IIClill, on the terminal sliding 
mode, can be expressed as 

112 

IlClill = C((P,F,) (3.13) 

and the definition of the sliding mode parameter matrix CI can be 
found in (7.7) and (7.8) of [19]. 119, (7.7), (7.8)l 

Similarly, the term IIC1t,.IJ in expression (3.2), on the terminal 
sliding mode, can be expressed as 

L1 21 

r 
(3.14) 

When the sampling interval is nonzero, the output tracking errors will 
persist around the origin of the error space after the trajectories reach 
their vicinity, and therefore the ideal error convergence in both [I91 
and this paper cannot be obtained. If the tracking errors in these two 
control schemes are required to reach the vicinity of the origin at the 
same time, however, the linear sliding mode parameters c,1 in [19] 
must be chosen to satisfy the following relationship 

C,I  >> c,, (3.15) 

and then the following inequality can often be satisfied 

IlClill >> IIClfrll. (3.16) 

Therefore, by comparing expression (7.16) of [I91 with (3.2) of this 
section, we can find that the control gain has been significantly 
reduced by using this scheme. This feature can also be seen from 
the simulations in following section and [19]. 



IEEE TRANSACTIONS ON AUMMAnC CONTROL. VOL. 39, NO. 12, DECEMBER 1994 

141 7 

2467 

E 0 4 t /  

i 
1 
i 

o z  1 

I 
0 1 2 3 4 5 - 7 s  

Time t (s) 

-021 

(b) 

Time t (6) 

I -,U+ . , 
1 2 7 4 5 6 7 8  1 2 3 4 5 3 7 8  

. - l a O ~  ' 

m m  I (SI 
"e 1 b) 

(C) 

Fig. 3. (a) The output trackings of joint 1 and joint 2, (b) The output tracking errors of joint 1 and joint 2, (c) The control inputs of joint 1 and joint 2. 

Remurk3.5: We have proved that the output tracking error can 
converge to zero in a finite time by the use of the proposed control 
scheme. The control law (3.1) is discontinuous across the sliding 
mode surfaces S = 0, however, which may excite undesired high 
frequency dynamics [4]. To eliminate the effects of the chamrings, 
we use the following boundary layer control law in place of the 
discontinuous control law in expression (3.1) 

(3.17) 

where 6 > 0. 
By using the above boundary layer control law, we can guarantee 

the attractiveness of the boundary layer. For the region inside the 
boundaries, the ultimate boundedness of the error dynamics can be 
guaranteed to within any neighborhood of the boundary layer [3], [4]. 

IV. SIMULATION EXAMPLE 
To illustrate the control schemes proposed in this paper, a simula- 

tion example for a two-link robotic manipulator is studied. The full 

dynamic equations are given as [2] 

where 
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Fig. 4. 
joint 2 using boundary layer controller. 

(a) The output trackings of joint 1 and joint 2, (b) The output tracking errors of joint 1 and joint 2, (c) The control inputs of joint I and 

The parameter values are Since we are interested in trajectory tracking and hope that the 
transient response is determined entirely by the sliding motion, we 
consider a situation characterized by the same initial values of both 
the reference model state and the plant state. In this simulation, we 
pick up the initial values of . r ( f )  and . r r n ( f )  to be 

r l  =1 m, 

J -: 1 --3 kg.m, 

r2 = 0.8 m 

,J2 = 5 kg.m 

1 1 1 1  =0.5 kg, ~ t 1 2  = 1.5 kg. 

s(0) = .r,(O) = [0.2 2 0 017. A reference model for the manipulator to follow is given by 

where 

--In> = 

0 o 1 0 1  

- 1 B",, = -4 0 -0 (' 
0 -4 0 -51 

and r ( t )  = [5 51' f o r t  > 0. 

The parameters of the uncertain bounds in (2.17)-(2.19) are chosen as 

(11 = 0.1. (12 = 2 

b l  = 2. b p  = 1. b:j = 2. 

0 01  Terminal sliding mode is prescribed as 
O h  

F, + il =0 

€ 2  + i 2  =o. O h  

Fig. 3 shows the output trackings, tracking errors, and input torques 
by the use of the control law (3.1). It can be seen that the effects of 
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system uncertainties are eliminated, and good tracking performance is 
achieved. To eliminate chatterings, we implement the boundary layer 
control law (3.17). Here we take 6 = 0.01. Good system performance 
is shown in Fig. 4. As can be seen from these figures, the chattering 
is eliminated. 

V. CONCLUSIONS 
In this paper, a robust control scheme for rigid robotic manipulators 

using the MIMO terminal sliding mode technique has been proposed. 
The main contributions of this paper are that an MIMO terminal 
sliding mode is defined, and a robust terminal sliding mode control 
scheme for n-link rigid robotic manipulators is developed with the 
result that the output tracking error can converge to zero in a finite 
time. In addition, the robot control systems using the proposed scheme 
have a strong robustness property not only because on the sliding 
mode, the error dynamics is insensitive to uncertain dynamics, but 
also because only three uncertain bounds based on the structure 
p r o w e s  of rigid robotic manipulators are used in controller design. 
It has also been remarked that this scheme is more practical in 
the sense that the gain of the terminal sliding mode controller 
can be significantly reduced with respect to the ones of linear 
sliding mode control schemes developed in [ 191, where the sampling 
interval is nonzero. A few problems for the practical implementation 
of this scheme, however, have been noted. Like all other control 
techniques, the ideal error convergence cannot be obtained in practical 
control systems where sampling interval is nonzero. To implement 
this scheme, some nonlinear electronic hardware to deal with the 
nonlinear function 6; needs to be built. The advantage that the 
proposed terminal sliding mode controller has smaller control gain 
with respect to linear sliding mode controller, however, cannot be 
counteracted by the above factors. In this paper, the terminal sliding 
mode technique is used to control only the second order robotic 
systems. The research on design of high-order terminal sliding mode 
control systems, however, is under author’s investigations based on 
[12] and [13]. 
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A Common Lyapunov Function for Stable 
LTI Systems with Commuting A-Matrices 

Kumpati S. Narendra and Jeyendran Balakrishnan 

Abstmct--The paper demonstrates that a common quadratic Lyapunov 
function exists for all Iinearsystemsof t h e f o r m i = A p ,  i =  1,2,. . . , N, 
where the matrices Ai are asymptotically stable and commute pairwise. 
This in turn assures the exponential stability of a switching system 
i ( t )  = A(t )z ( t )  where A@) switches between the above constant matrices 
Ai. 

I. INTRODUCTION 

In recent years, the scope of control theory is being enlarged to 
include intelligent control systems. One of the main features of such 
intelligent control systems is the systematic application of the idea 
of switching between different controllers [l], [2]. One of the first 
questions to be resolved in this context is that of the stability of the 
overall system. 

Many of the stability problems that arise in intelligent control 
systems can be addressed by considering the following basic problem: 
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