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Statistical analysis of structural failures of water pipes

A. Dehghan BEng, K. J. McManus PhD and E. F. Gad PhD

Statistical analysis and prediction of failure rates of water
distribution pipes are usually performed using parametric
lifetime models. In this paper, a new probabilistic measure
for the failure rate, called the ‘likelihood of number of
failures’, is defined and formulated for cases where the
pipe lifetimes follow parametric models. The resulting
theoretical failure rates are time-invariant and, therefore,
the parametric models would be useful only if the failure
rates of water distribution pipes are stationary random
processes. This paper then examines the stationarity of
pipe failure rates in practice. For the water pipes in the
western district of Melbourne (Australia), the failure rates
are empirically calculated using a 4-year failure history,
and it is observed that the distribution of empirical failure
rates varies with time. In order to explain these variations,
the pattern of rainfall in the region is compared with the
pattern of failure rate variations, and in 70% of the times
the two patterns are observed to be consistent. Two
approaches are proposed to tackle the time-varying
nature of pipe failure rate processes: regular updating of
the parameters of lifetime models or developing a
non-parametric technique for modelling of pipe failure
rates.

NOTATION
CICL cast iron, cement-lined

ENOF(nT ) expected number of failures during the nth time

interval

fTFF(t) probability distribution function of the time to the

first failure (TFF)

IFT inter-failure time

LNF likelihood of number of failures

NOFk(nT ) event of occurrence of k failures during the nth

time interval

nT an arbitrary time interval (most recent time interval

in a failure prediction application)

Pk(nT ) probability of occurrence of NOFk(nT )—a LNF

value

PEMP
k ðSiÞ empirical estimate of the LNF value Pk during the

time period Si
pdf probability distribution function (for continuous

random variables)

pmf probability mass function (for discrete random

variables)

Si time period during which the LNF values are

empirically estimated

TFF time to the first failure occurring after the time

ðn� 1ÞT
tf time passed from most recent failure

� scale parameter of a Weibull distribution

� probability value associated with a confidence

interval

� half-width of a confidence interval

� shape parameter of a Weibull distribution

1. INTRODUCTION
During recent decades, substantial research effort has been

conducted on degradation analysis of water pipelines. Such an

analysis is generally performed by modelling past behaviour of

pipe breakages and projecting it into the future. Different types of

modelling techniques have been developed to analyse the pipe

breakages, their reliability and remaining life.1–6

One type of failure analysis is descriptive analysis; this consists

of calculating descriptive statistics to provide insight regarding

breakage patterns and trends. There are few case studies of this

kind of analysis reported in the literature. Descriptive analysis

can only be performed in cities or areas with comprehensive

databases on the characteristics of their pipes and on pipe

breakages. Some cities often cited for participating in such

studies are Winnipeg, Manitoba, Canada,7–9 New York,2,10,11

suburban Paris and Bordeaux, France,12 three municipalities of

Quebec, Chicoutimi, Gatineau and Saint-Georges13 and

Boston.14

Since data of this kind are not available in most of water

distribution systems, statistical analysis is used to predict the

failure behaviour of pipelines. In statistical analysis, a commonly

used approach in failure/reliability analysis of deteriorating water

pipes is the use of lifetime models such as Weibull, lognormal3,6 or

Herz15 distributions (e.g. Deb16).

In this context, survival analysis has been commonly applied in

order to develop parametric lifetime models. The analysis of

survival data is a traditional statistical theme. Cox,17 however,

introduced the proportional hazards model (PHM) in order to

estimate the effects of different covariates on the time to failure of

a system. Kaara18 and Andreou19 introduced the use of a

proportional hazards model for analysis of the failures in water

distribution networks and many researchers applied hazard

models completely or partially to model the failure process

(e.g. Le Gat20). The class of failure analysis models that uses the
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hazard function is semi-parametric. The reason is that its hazard

function is the product of an unspecified baseline hazard function

and a parametric function relating the hazard function and the

covariates.

Dehghan and McManus21 have proposed a neural network model

for survival analysis of water pipes. Like Weibull and lognormal

models, the neural model is also parametric, and its parameters

(the synapsis weights) are trained using a failure history.

All parametric lifetime models share the underlying assumption

that the random processes of failures in water mains are stationary

random processes. A random process is an ensemble of

consecutive random variables that corresponds with possible

outcomes of a random event. For example, the number of pipe

failures occurring during one month is a random variable, and the

ensemble of such numbers corresponding with consecutive

months is a random process.

In engineering applications, usually a random process is referred

to as stationary if the mean and variance of the process are

time-invariant; otherwise it is referred to as a non-stationary

process.22,23 More precisely, by definition, a random process is

wide-sense-stationary if its mean and second-order statistical

properties (its correlation function) are time-invariant. If the

distribution functions of all the random variables that constitute

the random process are identical, then the random process is

referred to as strict-sense stationary.23

Using a lifetime model with time-invariant parameters for the

water pipes implicitly assumes that the random process of time-

intervals between consecutive failures of the pipes is a stationary

process in strict sense. The current paper aims to illustrate that the

random processes of water pipe failures (failure rates or inter-

failure times) are non-stationary random processes, and

demonstrates the deficiencies of parametric techniques for the

analysis of such failure processes through mathematical and

empirical analyses.

Demonstration of non-stationary nature of pipe failure

processes can be performed using any of the various failure-

related quantities that have been analysed in a probabilistic

modelling context in the literature. Two more popular

examples of such quantities are inter-failure times (IFTs) and

failure rates. Since the authors of this paper have chosen to

focus on failure rates (as this was the main quantity required

by the industry partner, City West Water, Melbourne, Victoria,

Australia, to be analysed and predicted in this research project),

a new probability-based equivalent definition of failure rate is

introduced in section 2 and its characteristics are also

discussed. Theoretical failure rates for general parametric

models and two-parameter Weibull models are derived in

section 3. This is followed by explanation of empirical

calculation of the probabilistic failure rates using a failure

database, as presented in section 4. Comparative results for

theoretical and empirical failure rates in a case study are

presented in section 5. Section 6 concludes the paper.

2. A PROBABILISTIC DEFINITION OF FAILURE RATES
Existing failure analysis methods for water pipes usually quantify

the past behaviour of pipe failures in terms of either failure rates24

or IFTs and project them into the future. In order to monitor the

pattern of pipe failures and demonstrate that the failure process is

non-stationary, the current paper suggests a new set of measures

to be studied instead of failure rates or inter-failure times, namely

the probabilities of certain numbers of failures occurring during

specific time intervals.

The failure history is divided into equal time intervals. The length

of time intervals, denoted by T in this paper, should be chosen

carefully. Very long time intervals result in a rough analysis in

which variations of the failure process during the long time

intervals are neglected. On the other hand, the length of time

intervals should be long enough to include a fair number of

failures on average. The nth time interval is the interval within

[ðn� 1ÞT ; nT ].

The event of occurrence of k failures during the nth time interval is

denoted by NOFk(nT). There is a direct relationship between the

IFTs and the number of failures occurring during each time

interval. In order to show this relationship, three instances of

occurrence of the events NOF0(nT), NOF1(nT ) and NOF2(nT ) are

illustrated in Fig. 1, where TFF denotes the time to the first failure

occurring after the time ðn� 1ÞT , and the next consecutive IFTs

are denoted by IFT1 and IFT2, respectively. The time passed from

most recent failure is also denoted by tf.

As Fig. 1 shows, the event of occurrence of no failure during the

nth time interval, NOF0(nT ), is equivalent to

NOF0ðnTÞ � fTFF > Tg1

and similarly, the events NOF1(nT ) and NOF2(nT ) are equivalent

to

NOF1ðnTÞ � fðTFF4 TÞ ^ ðTFFþ IFT1 > TÞg2

NOF2ðnTÞ � fðTFF4 TÞ ^ ðTFFþ IFT1 4 TÞ

^ ðTFFþ IFT1 þ IFT2 > TÞg
3

(a)

(b)

(c)

(n – 2)T (n – 1)T (n + 1)T (n + 2)TnT

(n – 2)T (n – 1)T (n + 1)T (n + 2)TnT

(n – 2)T (n – 1)T (n + 1)T (n + 2)TnT

Time

Time

Time

TFF IFT1 IFT2tf

TFF IFT1 IFT2tf

TFFIFT1 IFT2tf

Fig. 1. Demonstration of inter-failure times in three instances of
occurrence of the events: (a) NOF0ðnTÞ; (b) NOF1ðnTÞ; and (c)
NOF2ðnTÞ
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The probability of occurrence of k failures during the nth time

interval is denoted by Pk(nT ) and is equal to Pr{NOFk(nT )}. The

variable n implies possible variations of such probabilities with

time, which will be discussed further in this paper.

Definition. Each of the probability values in the set

fPkðnTÞjk ¼ 0; 1; . . . ;Mg is called a ‘likelihood of number of

failures’ (LNF value), whereM is the maximum number of failures

that can occur within a time interval.

Calculation of the theoretical and empirical LNF values will be

discussed in the next sections of this paper. It is important to

note that in the probabilistic approach to define and evaluate

the water pipe failure rates as introduced in this paper, unlike

the deterministic approach, the analysis does not merely return

a certain number of failures (or failure rate as commonly

accepted in infrastructure system analysis context). Instead, the

focus is on failure probabilities, resulting in more accurate and

reliable analysis and failure prediction (compared with

traditional approaches) for developing the maintenance

strategies, as explained in the following paragraphs.

Having the LNF values for the nth time interval, the most likely

expected number of failures, denoted by the symbol ENOF(nT ), in

that time interval can be directly calculated as the statistical mean

of the number of failures given by

ENOFðnTÞ ¼
XM
k¼0

kPkðnTÞ4

This value is equivalent to the failure rate as commonly computed

in infrastructure system analysis. By using the LNF values,

however, a confidence interval can also be calculated for the

above failure rate. A confidence interval quantifies the existing

uncertainty in the calculated failure rate, and it is particularly

useful if the future failure rates are calculated by equation (4). For

example, the statement ‘with a probability of 90%, 18–22 failures

will occur in each month in future’ is more meaningful and more

useful for planning, compared with the statement ‘20 failures will

occur monthly’.

Assume that using the LNF values, a measure for the expected

number of failures, ENOF, is calculated using equation (4). The

interval [ENOF� �, ENOFþ �] is the �-confidence interval

corresponding to this failure rate, if

Prðx 2 ½ENOF� �; ENOFþ ��Þ ¼ �5

Calculation of the half-width of the confidence interval, �, is

straightforward by histogram analysis of the LNF values. The

LNF values for immediate right and left neighbours of ENOF

are added to the LNF value for the ENOF value. If the result is

equal to �, the interval between these two neighbourhoods is

the �-confidence interval. Otherwise, this interval should be

extended (symmetric) until the area under the LNF curve

equals �.

It is emphasised that possibility of computation of confidence

intervals is not exclusive to LNF values. Indeed, wherever a

quantity is modelled and estimated in a probabilistic modelling

context, a confidence interval can be calculated for it and this is

an important merit of probabilistic modelling techniques (over

deterministic ones) that does not appear to have been commonly

discussed in the literature.

3. DERIVATION OF THEORETICAL LNF VALUES
FROM LIFETIME MODELS
Lifetime distribution models form the core components of

probabilistic approaches used in the analysis of water pipe

failures. Such models usually contain parametric functions with

constant coefficients that are typically estimated using linear

regression on a given history of failure records. If such a model

is available, it provides a probability density function for IFTs

and the lifetime, which is the time to the first failure (TFF),

denoted by fIFT(t) and fTFF(t), respectively. There is a direct

relationship between these two density functions, as explained

below.

The sum tf þ TFF is an IFT and therefore it is a random

variable with the IFT density function. Since in probabilistic

lifetime modelling, the consecutive failure times are assumed

independent from each other, the random variables tf and TFF

are independent and the density function of their sum equals

the convolution of their individual density functions

fIFTðtÞ ¼ ftf ðtÞ
�fTFFðtÞ ¼

ðt
0
ftf ð�ÞfTFFðt � �Þ d�6

On the other hand, since T � tf is also a time to the first failure, the

density of tf can be expressed as ftf ðtÞ ¼ fTFFðT � tÞ and, by
substituting into equation (6), the following integral equation for

the density functions fTFFðtÞ and fIFTðtÞ is derived

fIFTðtÞ ¼
ðt
0
fTFFðT � �ÞfTFFðt � �Þ d�7

From equation (1), the LNF value P0(nT ) is given by

P0ðnTÞ ¼ Pr NOF0ðnTÞf g ¼ Pr TFF > Tf g ¼
ð1
T
fTFFðtÞ dt8

The event of occurrence of only one failure during the nth time

interval, NOF1(nT ), is expressed in equation (2) and the LNF value

P1(nT ) is derived as follows

P1ðnTÞ ¼ Pr NOF1ðnTÞf g

¼ Pr ðTFF4 TÞ ^ ðTFFþ IFT1 > TÞf g

¼
ðT
0

ð1
T � t1

fTFFðt1ÞfIFTðt2Þ dt2 dt1

9

Similarly, from equation (3), the LNF value P2(nT ) is derived as

P2ðnTÞ ¼ PrfNOF2ðnTÞg

¼ PrfðTFF4 TÞ ^ ðTFFþ IFT1 4 TÞ

^ ðTFFþ IFT1 þ IFT2 > TÞg

¼
ðT
0

ðT�t1

0

ð1
T�t1�t2

fTFFðt1ÞfIFTðt2ÞfIFTðt3Þ dt3 dt2 dt1

10
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The above derivation can be generalised to every k number of

failures, for which the probability Pk(nT ) is given by

PkðnTÞ ¼ Pr ðTFF4 TÞ ^ ðTFFþ IFT1 4 TÞf

^ � � � ^ TFFþ
Xk� 1

i¼ 1

IFTi 4 T

 !

^ TFFþ
Xk
i¼ 1

IFTi > T

 !)

¼
ðT
0

ðT � t1

0
� � �
ðT �

Pk�1

i¼1
ti
ð1
T �
Pk

i¼1
ti

� fTFFðt1ÞfIFTðt2Þ � � � fIFTðtkþ 1Þ dtkþ 1 � � � dt1

11

Equations (8) to (11) show that the LNF values are time-

invariant (independent of the absolute time nT ) as they merely

depend on the number of failures k and the time-invariant joint

probability density functions of the IFTs. In order to clarify this

point, the LNF values P0(nT ) and P1(nT ) are derived for a two-

parameter Weibull lifetime model, which has been repeatedly

applied for failure analysis of many types of units, with the

following probability density function25

fIFTðtÞ ¼
�

T�

t=T

�

� ��� 1

e�½ðt=TÞ=���12

where � and � are the shape and scale parameters. The following

formula for Pk(nT ) is derived

PkðnTÞ ¼
ðT
0

ðT � t1

0
� � �
ðT �

Pk�1

i¼1
ti

0

�
ð1
T �
Pk

i¼1
ti

�

T�

� �kþ 1
fTFFðt1Þ

t2 � � � tkþ 1

Tk�
k

� ��� 1

� e�
t2=T
�ð Þ������ tkþ1=T

�

� ��
dtkþ1 � � � dt1

13

The above LNF values are time-invariant and this property is not

specific to the Weibull model. Indeed, as long as the distribution

has constant parameters that are not updated with time, the

derived LNF values are independent of time (they do not depend

on either n or T ) and merely depend on k. When time-invariant

lifetime distributions such as Weibull distribution in equation (12)

are utilised to model the failure process, the random process

formed by the consecutive IFTs is implicitly assumed to be strict-

sense stationary (with time-invariant probability density

function). The derivations made in this section show that in such

cases, failure rate (number of failures occurring during a specified

time interval) is a strict-sense stationary process, too. More

precisely, it would be a discrete random process with time-

invariant probability mass function (pmf ) and the LNF values

defined in this paper would be its pmf.

4. EMPIRICAL ESTIMATION OF LIKELIHOODS OF
NUMBER OF FAILURES
Having a dataset including water pipe failures over a long period,

the LNF values can be empirically estimated using a histogram

technique. The failure history is divided into some time units

referred to as time periods. The duration of the time periods should

be short enough to assume that LNF values remain almost

constant during the time intervals within each time period. On the

other hand, the time periods should be long enough to provide

reasonable empirical estimates for LNF values during each period,

by using the histogram technique. For instance, in the analysis

presented in the current paper, each time period is 3 months long

and each time interval is 1 day long. If a time period Si includes

the intervals within n1T and n2T, that is Si ¼ ½n1T ; n2T �, then the

following empirical LNF values are given by the histogram

technique

PEMP
k ðn1TÞ ¼ � � � ¼ PEMP

k ðn2TÞ ¼ PEMP
k ðSiÞ

¼ Number of NOFk events occurred during Si
n2 � n1

14

where PEMP
k is the empirical estimate of Pk.

For each time period Si, the expected number of failures denoted

by ENOF(Si) is the statistical mean of the number of failures

occurred during a time interval within Si

ENOFðSiÞ ¼
XM
k¼ 0

fkPEMP
k ðSiÞg

¼ Number of failures occurred during Si
n2 � n1

15

5. CASE STUDY
This study uses a failure history of water pipes that distribute the

drinking water in the western suburbs of Melbourne. These pipes

belong to City West Water (CWW), which is a water retailer

company. Melbourne Water in its Water Main Renewal Study26

noted that the western region of Melbourne was experiencing a

disproportionately high rate of failures. It reported a burst rate

three times that of Melbourne’s other two water supply systems.

For example, between 1972 and 1990 the annual average water

main failure rate throughout CWW’s current licence area was

approximately 1 failure/km/annum, while this value was 0.3–0.5

failures/km/annum for the other two regions.27 In 1995/96 water

industry benchmarks revealed that CWW had the highest water

main break rate in Australia.26

Given this background, since 1999, CWW recognised the need for

the failure analysis of its water mains. Accordingly, an

investigation for cast iron (CI) pipes and associated failures with a

view to formulating a strategy for cost-effective asset

management in both the short and longer term was conducted.28

That study resulted in some parametric models for failure

prediction of those water mains. The reason for choosing CI was

that CI pipes comprise more than half of CWW’s water mains and

contribute disproportionately to the number of failures and

customer service key performance indicators (KPIs).28

This study is conducted on a dataset, consisting of breakages of

CI pipes that have occurred during 1997–2000 in the CWW and

no records of previous pipe breaks were available for this

study. This failure database includes 6381 pipe breakage

records. Each breakage record contains the following fields:

pipe identification (ID), construction date of the pipe, pipe

diameter (mm), pipe material, pipe length, failure date, type of

failure and the pipe location in AMG (Northing and Easting)
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coordinates. The two types of pipes in this database are CI

pipes and CI cement-lined (CICL) pipes. The pipes in the failure

database have a range of ages, with construction dates varying

between 1857 and 1975 and with a range of diameters (80mm,

100mm, 125mm, 150mm and 175mm). For each breakage

record, the postcode of the failed pipe is found by matching the

AMG coordinates of the pipe location with the postcode map

provided by Australia Post.

In order to consider the effect of the material, size and

geographical location of the pipes in the lifetime models, a

separate subset of the failures in the history are analysed in this

case study: the breakages of the CICL pipes with diameter of

100mm, located in an area covered by a single postcode 3021:

1450 failures have occurred for 100mm CICL pipes in the

postcode area 3021 during 1997–2000. Simulations have shown

that this number of failure records over the course of 4 years

(16 seasons) is sufficient for the purpose of the analysis

presented in this paper. In this analysis, each time period is 3

months (one season) long and failures are counted on a

day-by-day basis, that is each time interval is 1 day long. For

each season, a set of LNF values are empirically calculated

using equation (14).

Figure 2 shows the empirical values of Pk(Si) for k ¼ 0, 3, 4 and

their variations over 16 consecutive seasons (4 years:

1997–2000). Such a variation is not predicted by existing

lifetime models. The main reason is that in contrast to what is

assumed by probabilistic lifetime models, the random process of

water pipe failures is non-stationary. This is mainly because of

environmental factors that affect the rate of failures and IFTs

are not incorporated into the lifetime models employed for

failure analysis of water pipes. In order to clarify this argument,

a two-parameter Weibull model is fitted to the water pipe

failure records. Having the parameters � and �, the IFT density

function in equation (7) is substituted using the Weibull

density function given in equation (12), and the TFF density

function is numerically calculated. Then, numerical calculation

of the integrals in equation (13) results in the following

constant LNF values

P0 ¼ 0:2843; P3 ¼ 0:1361; P4 ¼ 0:062916

In addition to the size, material and geographical location of the

pipes, other factors affect the pipe failure process. Some examples

include construction details, external and internal loads, and

corrosion. In most breakages with clear mechanical causes,

corrosion has an accelerating role by weakening the fabric of the

pipe. Although such factors are not considered in this case study,

during the 4-year extent of the failure history, most of these

factors could be assumed to vary slightly from one season to the

next. One factor that is not steady over the consecutive seasons is

soil movement. This is a particularly critical factor in a region with

expansive soil that is subject to swelling and shrinkage that varies

in proportion to the amount of moisture present in the soil. As

water is initially introduced into the soil (by rainfall or watering),

it expands, and after drying out, it contracts, often leaving small

fissures or cracks. Excessive drying and wetting of the soil

progressively deteriorates the structures over years and the

resulting soil movement can exert enough pressure (as large as

718.2 KPa29) to crack pipelines.

Substantial areas of the state of Victoria are covered by expansive

clay soils. The expansive soil map of Victoria (Mann30) shows the

expansion of low to extremely expansive soils. The region under

the present study is located in the area with expansive soil and

pipe fractures are likely to occur over time owing to soil movements

that mainly depend on rainfall. While the soil type is almost

time-invariant, rainfall is a non-stationary process. Rainfall profile

can therefore be considered as an influencing factor contributing to

the non-stationary nature of the failure process.

Figure 3(a) shows the rainfall records for the 16 seasons during

1997–2000. The variations of rainfall are significant through the

seasons, as the average rainfall is 110mm and the standard

deviation is 42mm. Dry seasons are expected to be associated with

high rates of breakages owing to soil shrinkage. In addition, large
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Fig. 2. Empirical LNF values P0, P3, P4 for the 16 consecutive seasons during 1997–2000
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fluctuations in soil moisture are considered as the main source of

soil movement resulting in pipe breakages. In order to examine the

consistency of the variations in LNF values with rainfall

variations, the empirical failure rates (ENOF values) are calculated

using equation (15) and plotted in Fig. 3(b). The standard deviation

of ENOF values has also been calculated using the following

equation

�ENOFðSiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
k¼0

ðk� ENOFÞ2PEMP
k ðSiÞ

vuut17

The numerical results of ENOF

values and their standard

deviations are presented in

Table 1. The small standard

deviation of ENOF values in

each season shows how

accurately the expected

number of failures is calculated

using equation (15).

In Fig. 3, it is observed that

the directions of variations

(increasing or decreasing) of

11 failure rates (out of a total

of 16 failure rates) are in

contrast to rainfall variations.

Thus, in the present case

study, the rainfall observations

explain the failure pattern

variations in 11 out of the 16

(70%) of seasons. For the

remaining five seasons

(outliers), other factors such as

excessive loading or

preventative maintenance may

explain the inconsistency of

failure pattern variations with

rainfall variations.

In order to highlight the

correlation between the

rainfall data and number of

failures, in Fig. 4, the rainfall

data are plotted against the

empirical (expected) number

of failures or ENOF values. It

is observed that when the

rainfall is significantly higher

or lower than its average

value (about 110mm), there is

a corresponding increase in

the number of pipe failures.

In order to clarify this point,

the magnitude of deviation of

rainfalls from their average is

plotted against the ENOF

values in Fig. 5 and a

regression line is fitted to the

points (excluding the five

outliers). The outliers are recognised by a robust estimation

technique called least median estimator (LMS).31 This method

finds the optimum linear fit to the data (excluding the

detected outlier samples) and automatically results in an

inlier–outlier dichotomy. The outliers in this case study are

mainly associated with random effects and extreme climate

variations. Although the outliers are not considered in this

analysis, they also contribute to the random time variations of

the failure process and its non-stationarity. Indeed, their

existence also demonstrates the deficiency of parametric

(probabilistic) models developed for water pipe failures in the

literature.

Autumn
1997

Average
rainfall

200

150

100

50

0

R
ai

nf
al

l: 
m

m

Spring
1997

Autumn
1998

Spring
1998

(a)

Time period: seasons

Autumn
1999

Spring
1999

Autumn
2000

Spring
2000

1

0·8

0·6

0·4

0·2

0

N
um

be
r 

of
 fa

ilu
re

s

Autumn
1997

Spring
1997

Autumn
1998

Spring
1998

(b)

Time period: seasons

Autumn
1999

Spring
1999

Autumn
2000

Spring
2000

Fig. 3. Comparison of rainfall in each season with its corresponding empirical average number of
failures: (a) rainfall; (b) ENOF values

Season (Si) ENOF �ENOF Season (Si) ENOF �ENOF

Summer 1997 1.00 0.0223 Summer 1999 0.78 0.0327
Autumn 1997 0.98 0.0457 Autumn 1999 0.88 0.0009
Winter 1997 0.81 0.0190 Winter 1999 0.80 0.0273
Spring 1997 0.71 0.0149 Spring 1999 0.69 0.0131
Summer 1998 0.94 0.0398 Summer 2000 0.93 0.0387
Autumn 1998 0.94 0.0247 Autumn 2000 0.86 0.0216
Winter 1998 0.81 0.0082 Winter 2000 0.79 0.0280
Spring 1998 0.62 0.0208 Spring 2000 0.68 0.0147

Table 1. The empirical expected number of failures and their standard deviations for 16 consecutive
seasons during 1997–2000
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The correlation coefficient of regression is 0.83, which is

sufficiently large to validate the present authors’ assumption of an

almost linear relationship between the failure rates and rainfall

(disregarding the extreme climate variations, which cause the

outlier points). A similar trend has been observed in the data of

other classes of pipes. This trend is expected as a significant range

in soil moisture (owing to change in rainfall) would lead to

swelling and shrinkage of reactive soils. This in turn would lead to

movement, distortion and subsequent failure of pipes.

It is important to note that not only the amount of rainfall, but

also (and more importantly) the rate of change of rainfall and soil

moisture affect the failure rates. More precisely, if a very dry soil

(owing to below average rainfall) receives a high amount of

rainfall (well above average), the resulting soil movement would

be quite large even though the total rainfall might be at about

average. This high rate of change in rainfall can be observed in

Fig. 3(a) by comparing the rainfalls for summer and winter of

1997. It should also be noted that if a high rainfall occurs while the

soil is fully saturated from earlier events, it is unlikely that further

soil movement will take place and, hence, pipes would not

experience a higher than

average number of failures.

Indeed, this fact explains the

outliers in Fig. 4, where at

certain periods there are high

rainfalls but no appreciable

increase in the number of

failures.

6. CONCLUSIONS
During a period of several

decades, water distribution

pipes inevitably suffer from

soil–pipe interactions, material

ageing, design internal and

external loads, and extreme

loads. The induced damage

may accumulate and the

performance degradation

owing to the above factors

eventually reduces the capacity of the pipes to resist, resulting in

structural failure.

The current paper introduces a probabilistic definition for the

failure rate, called LNF to be applied for the analysis of the failure

process of water pipes. The LNF theoretical values are derived from

general lifetime models, and those values are empirically

calculated using a pipe failure database. It is observed that the LNF

values derived from classical lifetime models are time-invariant,

while their empirical values vary from one season to the next.

This demonstrates that the failure processes of water pipelines are

non-stationary random processes while in the existing lifetime

models utilised for the analysis of pipe failures, stationary random

processes are assumed.

In order to investigate the sources of the non-stationary nature of

the pipe failure processes, variations of the empirical failure rates

(statistical mean of the failures occurred during each day) are

studied in comparison with variations of rainfall in the area.

Comparison of the concurrent plots of rainfall and the empirical

failure rates shows that, most of the time, variations of failure

rates can be explained with variations of rainfall.

One approach to tackle the time-varying nature of pipe failure

processes is regularly to update the parameters of lifetime models.

While this may require demanding computational updates and

costly expert staff, the resulting predictions would be more realistic

and reliable. In order to reduce the burden on water distribution

authorities, research is currently underway to develop non-

parametric approaches for efficient analysis of the non-stationary

pipe failure processes. Such techniques should be able to handle and

automatically update dynamic models of current failure processes.
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