
A Pre-reasoning based Method for Service Discovery and Service Instance
Selection in Service Grid Environments∗

Kaijun Ren1,2, Junqiang Song1 , Jinjun Chen2, Nong Xiao1,Cancan Liu1

1School of Computer, National University of Defense Technology, Changsha, Hunan 410073，P.R. China
renkaijun@nudt.edu.cn

2Centre for Information Technology Research, Swinburne University of Technology, Melbourne 3122, Australia
jchen@ict.swin.edu.au

∗ Supported by the National “973” Research Plan Foundation of China under Grant No. 2003CB317008 and National Nature
Science Foundation of China under Grant No. 60573135 and No. 40505023

Abstract

Current service composition and coordination still
remain at large amount of manual processing stage,
which has brought about low efficiency. In this paper,
we present an efficient algorithm for abstract service
discovery and a service instance selection method. Our
algorithm firstly builds up the special data structures
of ontology concepts based on graph storage theories
when publishing abstract services. Then, these data
structures form a quick service query list. In our
algorithm, the large number of ontology reasoning is
processed at service publication stage, thus we can
make sure the quick query response in service
discovery without much reasoning. In addition, our
service instance selection methods based on OWL QoS
ontology can enable grid resource sharing and
coordination more flexible.

1. Introduction

Currently, there have been a number of semantic-

based service discovery approaches such as OWL-S[1],
WSMO[2]， WSDL-S[3]. Compared to the traditional
keyword-based matching services, semantic service
discovery has brought both the recall rate and the
precision rate a major step forward. However, the most
semantic-based discovery methods need so much
logical reference at the service discovery phase that
searching a service often need a long response time. To
overcome the low efficiency of semantic service
discovery by traditional matchmaking algorithm, we
present some efficient algorithms for abstract service
publication and discovery based on the pre-reasoning
technology. The pre-reasoning technology means that

much logical reasoning during the period of semantic
service discovery can be processed previously at the
stage of service publication phase. Therefore, the
adopting of the pre-reasoning technology can greatly
reduce the response time for user requests. In this
method, we first find the best ontology concepts to
map the parameter models of abstract service models
we published according to the analysis of semantic
similarity. Then we built the data structures of these
best mapped ontology concepts. These data structures
are specially devised by making use of the knowledge
about the graph storage theories, and each data
structure contains the domain of data and the domain
of link. The domain of data keeps the records of
registered service’s information, and the other domain
of link comprises of six indices which will point at six
different link lists. These link lists denote different
semantic relationships among ontology concepts which
can avoid repeated logical reasoning. Data structures
of ontology concepts build up the Quick Service Query
List (QSQL). In QSQL, we not only store the data
structures of these best mapped ontology concepts, but
also include those ones which can be derived by the
best ones from the same semantic model through
logical reasoning. Finally, the service discovery
algorithm can quickly and efficiently search
appropriate services from QSQL without any logical
reasoning. In conclusion, our methods not only
guarantee the benefits of the high recall rate and the
precision rate brought by semantic-based service
discovery, but also guarantee a quick response time.

The remainder of the paper is organized as follows.
Section 2 describes the key rules and concepts of
service discovery based on QSQL .Section 3 presents
service instance selection methods based on OWL QoS

2007 IEEE Asia-Pacific Services Computing Conference

0-7695-3051-6/07 $25.00 © 2007 IEEE
DOI 10.1109/APSCC.2007.55

320

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on November 5, 2009 at 22:45 from IEEE Xplore. Restrictions apply.

ontology.. In Section 4, we discuss related work. The
final section points out our future work.

2. Pre-reasoning based Abstract Service
Discovery

2.1. Data Structure Definition of Ontology

Concept Vertex
Each OWL[4, 5] semantic model can be similarly
mapped to a semantic network graph, and each
ontology concept can be compared to a vertex of this
graph, and the relationship between concepts can be
mapped to an arc of this graph. Therefore, the type of
arc can reflect the relationship between concepts. We
make use of the idea about the storage of graph theory
to build up the QSQL. The main elements of QSQL
are ontology concept vertex.

Before we introduce the data structures of the
ontology concept vertex, we redefine or extend the
following some semantic relationships which are
mainly built by the traditional expression “subClass”
through logical reasoning.

Definition 1. ，i∀
iA denotes an ontology concept .

Definition 2. iA A⊆ j

A A⊆ A−⎯⎯⎯⎯⎯→
has su bclass

j iA A−⎯⎯⎯⎯⎯→

k

iA

denotes is the direct
subclass of

iA

jA .or
jA is the direct super class of

iA .

i j
can also be expressed by jA

or .

has sup erclass
i

Definition 3. denotes

i jA A A⊆ ⊆ kA is
grandparent class of ，or is grandchild class of

， which can
iA iA

kA also be expressed by
,or ， has grandparent

i kA A−⎯⎯⎯⎯⎯→ has grandchild
kA −⎯⎯⎯⎯⎯→

has grandparent−⎯⎯⎯⎯⎯→ and has grandchild−⎯⎯⎯⎯⎯→ are dissymmetric
relationships.

Definition 4. If
i kA A⊆ ，

jA A⊆ k

j

,Then the
relationship between and is a sibling, namely,

 and have common super class, the graph

expression is . is a
symmetric relationship.

iA jA

iA jA
has sibling

i jA A−←⎯⎯⎯→ has sibling−←⎯⎯⎯→

Definition 5. denotes is

equivalent class of , and is a
symmetric relationship.

has equalclass
iA A−←⎯⎯⎯⎯→ iA

jA has equalclass−←⎯⎯⎯⎯→

In QSQL, we use Adjacency List Style to store
ontology concept vertex. Adjacency List is a link
storage structure of graph; and each ontology concept
vertex will be mapped to a head node of link; the
relationships among concepts are expressed by arc

nodes. The data structure of an ontology concept
vertex is comprised of the domain of data and the
domain of link. The domain of link contains six indices
which will point at corresponding single link list. The
six indices are superlink 、 sublink 、 equallink 、

siblink、grandparlink and grandchdlink. A Superlink
index will point at the super class link list. A Sublink
index will point at the sub class link list. An Equallink
index will point at the equivalent class link list. A
Siblink index will point at the sibling class link list. A
Grandparlink index will point at the grandparent class
link list. A Grandchdlink index will point at the
grandchild class link list. Actually, the type of each
above single link list represents a semantic type of
relationship among concepts. Each single link list
consists of arc nodes. The data structure of arc node is
devised as shown in the Figure 1.

adjvex nextarcRelationship Type

Figure 1：the data
structure of arc node

The data structure of arc node contains three

domains: Relationship Type, adjvex and nextarc.
Relationship type represents a kind of semantic
relationship between concepts, and it also denotes the
type of single link list. The domain of adjvex will
record the reference position of other ontology concept
vertex in QSQL to show that there exists such an exact
semantic relationship as the marked type of the domain
of Relationship Type between referred ontology
concept and the head ontology concept of this link list.
The domain of nextarc points at the next arc node
which has the same relationship type.

The domain of data in data structure of ontology
concept vertex primarily keeps records about other
necessary information such as the URL address of
ontology model the concept belongs to. Here the
domain of data is mainly divided two parts, namely
INPUT part and OUTPUT part; each part includes five
vectors respectively such as Exact_vector 、

Plugin_vector、Sib_vector、Grapar_vector、Grachd_vector.
These vectors will record the unique ID information of
abstract service model which will be published.
Actually, these vectors are classified into five levels
according to the semantic extension of the relationship
between an ontology concept and a parameter model of
an abstract service model. The table 1 gives the formal
definition of all above vectors.

2.2. Relative Rule Definition of Link Structure

As discussed in section 2.1, the link structures are an
important part of data structures of ontology concept

321

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on November 5, 2009 at 22:45 from IEEE Xplore. Restrictions apply.

vertex. Here we give five rules to build all link
structures.
Rule 1：

iA is an ontology concept, if ,
after applying logic inference, s.t.

，

, then

add ， .

j, k, h∀ ∀ ∀

has equalclass
i jA A−←⎯⎯⎯⎯→

has sup erclass
i h A A −⎯⎯⎯⎯⎯→ has sup erclass

j A −⎯⎯⎯⎯⎯→ kB ,

j

 −⎯⎯⎯⎯⎯→ ,

h

k ,

kB ,

B ,

has sup erclass
i kA B−⎯⎯⎯⎯⎯→ has sup erclass

i h A A −⎯⎯⎯⎯⎯→

Rule 2： if , after applying logic inference,
s.t. ，

then

add ， .

j, k, h∀ ∀ ∀
has equalclass

iA A−←⎯⎯⎯⎯→
has su bclass

i h A A , has su bclass
j k A B −⎯⎯⎯⎯⎯→

has su bclass
i kA B−⎯⎯⎯⎯⎯→ has su bclass

i A A−⎯⎯⎯⎯⎯→
Rule 3： if , after applying logic inference, s.t.

， then

add .

j, k∀ ∀
has sup erclass

i jA A−⎯⎯⎯⎯⎯→ has su bclass
j A B −⎯⎯⎯⎯⎯→

has sibling
i kA B−←⎯⎯⎯→

Rule 4： if , after applying logic inference, s.t.
， then

add .

j, k∀ ∀
has sup erclass

i jA A−⎯⎯⎯⎯⎯→ has sup erclass
j A −⎯⎯⎯⎯⎯→

has grandparent
i kA B−⎯⎯⎯⎯⎯→

 Rule 5： if , after applying logic inference, s.t.
， then add

.

j, k∀ ∀
has su bclass

i jA A−⎯⎯⎯⎯⎯→ has su bclass
j k A −⎯⎯⎯⎯⎯→

has grandchild
i kA B−⎯⎯⎯⎯⎯→

 Based on the above five rules, we can build up the
link structures of each ontology concept vertex. For
example, if we want to build all kinds of link lists

of , first, we should find other equivalent class or
synonymic meaning concepts in ontology model by
applying logic inference, and build the equal link
list .Then the service publication algorithm can build
the super class link list of by applying rule 1;
similarly, it can build the sub class link list of by
applying rule 2; it can build the sibling class link list
of by applying rule 3; it can build the grandparent

class link list of by applying rule 4. Finally, it can
build the grandchild class link list of by applying
rule 5.

iA

iA

iA

iA

iA

iA

The significance of all link lists is that each link list
of ontology concept vertex keeps all storage position’s
references of other neighborhood concepts, which have
such semantic relations with the head node as marked
in the domain of Relationship Type of arc node. Due to
this, we can rapidly and easily find such equivalent
class concepts, super class concepts, sub class concepts,
sibling class concepts, grandparent class concepts and
grandchild class concepts of each ontology concept
only along its related link lists without any logic
inference. Therefore, when we publish or register an
abstract service model, if some best mapped ontology
concepts have been in the QSQL, the publication
algorithm can quickly find and modify their vectors of
all related concepts without repeated logical reasoning
according to the rules of table 1.

Table 1: The definition of vectors about the domain of data
Notes: :an ontology concept; : an abstract service model; : the collection of input parameters of ; : the iA i v vWS (I ,O) vI iWS vO

collection of output parameters of ; UID:unique Identification of iWS iWS

iA Input Exact _ vectori i
If ， s.t. ， or j VC I∃ ∈ has equalclass

i jA C−←⎯⎯⎯⎯→

has subclass
j iC A−⎯⎯⎯⎯⎯→ ,then i iWS UID A Input Exact _ vector∈i i i

iA Input Plugin _ vectori i If ，s.t. ，then j VC I∃ ∈ has superclass
j iC A−⎯⎯⎯⎯⎯→ i iWS UID A Input Plugin _ vector∈i i i

iA Input Sib _ vectori i If ，s.t. ，then j VC I∃ ∈ has sibling
i jA C−←⎯⎯⎯→ i iWS UID A Input Sib _ vector∈i i i

iA Input Grapar _ vectori i If s.t. ，then j VC I∃ ∈ has grandparent
i jA C−⎯⎯⎯⎯⎯→ i iWS UID A Input Grapar _ vector∈i i i

iA Input Grachd _ vectori i If ，s.t. ，then j VC I∃ ∈ has grandchild
i jA C−⎯⎯⎯⎯⎯→ i iWS UID A Input Grachd _ vector∈i i i

iA Output Exact _ vectori i
If ， s.t. ， or ，j vC O∃ ∈ has equalclass

iA −←⎯⎯⎯⎯→ jC has subclass
i jA C−⎯⎯⎯⎯⎯→

then i iWS UID A Output Exact _ vector∈i i i

iA Output Plugin _ vectori i If ，s.t. ,then jC O∃ ∈ v
has superclass

i jA C−⎯⎯⎯⎯⎯→ i iWS UID A Output Plugin _ vector∈i i i

iA Output Sib _ vectori i If ，s.t. ，then jC O∃ ∈ v
has sibling

i jA C−←⎯⎯⎯→ i iWS UID A Output Sib _ vector∈i i i

iA Output Grapar _ vectori i If ，s.t. ，then jC O∃ ∈ v
has grandchild

i jA C−⎯⎯⎯⎯⎯→ i iWS UID A Output Grapar _ vector∈i i i

iA Output Grachd _ vectori i If ，s.t. ，then jC O∃ ∈ v
has grandparent

i jA C−⎯⎯⎯⎯⎯→ i iWS UID A Output Grachd _ vector∈i i i

322

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on November 5, 2009 at 22:45 from IEEE Xplore. Restrictions apply.

2.3.Building of QSQL

In order to build up QSQL, first, we find the best
ontology concepts to map the parameter models of
abstract service models according to the analysis of
semantic similarity [6-8]. Then we built the data
structures of these mapped ontology concepts by
applying the former mentioned definitions and the
relative rules during the period of abstract service
model’s publication .These mapped ontology concepts
not only include the best ones, but also include those
ones which can be derived by the best ones from the
same semantic model through logic inference. Finally,
all records about these data structures of corresponding
ontology concepts form the QSQL.

2.4. Key Methods of Service’s Discovery

2.4.1. Definition of Matching Degree

The definitions of the matching degree between the
requested service model and the published service
model are mainly renewed from the methods in [9, 10],
and our definition is slightly different. in our definition,
we integrate other many factors such as the equivalent
and synonymous extension of ontology concepts,
general semantic extension, and specific semantic

extension. The full definitions of the matching degree
are given in Table 2. The definitions of the matching
degree are based on various semantic relations among
mapped ontology concepts of parameter models, so the
value of the matching degree is an integrated compared
result. We also sort the grades of matching degree as
follows according to the different capabilities decided
by all corresponding semantic relations among
concepts. The order is Exact Plugin Sib Grapar

Grachd. This order means that the probability of the
choice of those service models which match the
requested service model with the above matching
degree respectively will decrease sequentially. Finally,
it is worth mentioning that the matching should be
done along two directions, namely output and input
direction. The Output direction means that the outputs
of successfully matched service models should meet all

outputs of the requested service model. In turn, the
inputs of the requested service model should meet all
inputs of those corresponding selected models. Due to
this, the publication algorithm has used different rules
and definitions (such as shown in table 1) to process
the input and output variables respectively.

; ; ;
;

2.4.2. Computing Methods of Service Discovery

Table 2. The Definition of Matching degree
r r
v vWSR(I ,O) : Requested service model; : Published abstract service model; , are similarly defined as s s

i v vWS (I ,O) r r
v vI ,O s s

v vI ,O
the former table.

Exact
If ,or and simultaneously r s has equalclass

i v j v iA O B O s t A B−∀ ∈ ∃ ∈ ←⎯⎯⎯⎯→, , . . j jB has subclass
iA −⎯⎯⎯⎯⎯→ ，

s r has equalclass has subclass
h v k v h k h kC I D I s t C D orC D − −∀ ∈ ∃ ∈ ←⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→, , . . ,

Plugin
If r s has superclass

i v j v i jA O B O s t A B −∀ ∈ ∃ ∈ ⎯⎯⎯⎯⎯→, , . . , and simultaneously at least
s r has superclass

h v k v h kC I D I s t C D −∀ ∈ ∃ ∈ ⎯⎯⎯⎯⎯→, , . .

Sib
If r s has sibling

i v j v i jA O B O s t A B −∀ ∈ ∃ ∈ ←⎯⎯⎯→, , . . , and simultaneously at least
s r has sibling

h v k v h kC I D I s t C D −∀ ∈ ∃ ∈ ←⎯⎯⎯→, , . .

Grapar
If r s has grandchild

i v j v i jA O B O s t A B −∀ ∈ ∃ ∈ ⎯⎯⎯⎯⎯→, , . . , and simultaneously at least
s r has grandchild

h v k v h kC I D I s t C D −∀ ∈ ∃ ∈ ⎯⎯⎯⎯⎯→, , . .

Grachd
If r s has grandparent

i v j v i jA O B O s t A B −∀ ∈ ∃ ∈ ⎯⎯⎯⎯⎯→, , . . , and simultaneously at least
s r has grandparent

h v k v h kC I D I s t C D −∀ ∈ ∃ ∈ ⎯⎯⎯⎯⎯→, , . .

Fail Not match completely between and r r
v vWSR(I ,O) s s

i v vWS (I ,O)

323

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on November 5, 2009 at 22:45 from IEEE Xplore. Restrictions apply.

As discussed above, in QSQL, each can meet at
least one of the inputs of all published services which
are recorded in different Input.vectors of with
corresponding matching degree. On the other side, if
the requested output is , all published services
recorded in all Output.vectors of will meet the
requested output with the same matching degree.
Therefore, if we need to discovery all published
service models to meet the requested service model

with corresponding matching degree, the
following steps should be taken:

iA

iA

iA

iA

iA

r r
v vWSR(I ,O)

 First, finding the best ontology concepts to map
the requested parameter models similar to publish
abstract service model.

 Then searching these mapped ontology concepts
in QSQL, retrieving all kinds of vectors of these
concepts.

 According to the definition in table 2, applying
mathematic operations such as combination and
intersection of the above vector collections.

To clarify the core algorithm of service discovery in
QSQL, we omit the first two steps, and assume

have been collections of best mapped ontology
concepts.

r r
v vI ,O

For each matching degree, the discovery algorithm
should first process the output match

between and all published service models
so that all matched service models will meet all outputs
of with corresponding matching degree.
Table 3 lists all corresponding computing methods
with different matching degree for all published
service models to meet the outputs of .

r r
v vWSR(I ,O)

r r
v vWSR(I ,O)

r r
v vWSR(I ,O)

Through the output match for all outputs of
, ， ， ， ， have included

necessary service models for further selection. In the
next step, our discovery algorithm will delete, and
reorder some service models for each

r r
v vWSR(I ,O) 5V 4V 3V 2V 1V

iV i 1 2 3 4 5, , , , ,= by

checking whether the inputs of meet the
inputs of each service model of

r r
v vWSR(I ,O)

iV i 1 2 3 4 5, , , , ,= . The
following rules will be used during the period of the
checking process.

Rule 1: For each ()s s
i v v jWS I O V, ∈ , if ,

then delete

r s
v vI size()<I size()i i

()s s
i v vWS I O, from , which means that the

inputs of requested service model fail to meet the
inputs of

jV

()s s
i v vWS I O, .

Rule 2: For each ,jV ()s s
i v v jWS I O V,∀ ∈

I
ki

, then for each

input ontology concept of , scan its
all vectors in QSQL to count the number n
of (The definitions of is also shown
in table 5), if n< , then delete

r
vI [j] r r

v vWSR(I ,O)

r
i vWS UID I [j] V∈i I

kV
s
vI size()i

()s s
i v vWS I O, from , otherwise go to rule 3. jV

Rule 3: Transferring and adjusting some service
models for each which has been processed by rule
1 and rule 2.

jV

3. Service Instance Selection

As discussed in the above section, service discovery
from QSQL can quickly help the users or applications
find the appropriate abstract service models to meet
their demands. However, each selected abstract service

Table 3. The computing methods with different matching degree for outputs of r r
v vWSR(I ,O)

iV : The collection of service models which meet outputs of with the ith matching r r
v vWSR(I ,O)

degree; : ; : ; : ; : ; :o
5V Output Exact_vectori o

4V Output Plugin_vectori o
3V Output Sib_vectori o

2V Output Grapar_vectori o
1V

Output Grachd_vectori Input Grapar_vectori; : ; : ; : ; :I
5V Input Exact_vectori I

4V Input Plugin_vectori I
3V Input Sib_vectori I

2V

; : I
1V Input Grachd_vectori

Exact : 5V r
vO size()

r o
5 v

i 1

V O [i]
=

=
i

i∩ 5V

Plugin: 4V
()

r
vO size()

r o r o
4 v 5 v 4

i 1

V O [i] V O [i] V
=

= −
i

i ∪ i∩ 5V

Sib: 3V
()

r
vO size()

r o r o r o
3 v 5 v 4 v 3 5

i 1

V O [i] V O [i] V O [i] V V V
=

= −
i

i ∪ i ∪ i∩ 4−

Grapar: 2V
()

r
vO size()

r o r o r o r o
2 v 5 v 4 v 3 v 2 5 4

i 1

V O [i] V O [i] V O [i] V O [i] V V V V
=

= −
i

i ∪ i ∪ i ∪ i∩ 3− −

Grachd: 1V
()

r
vO size()

r o r o r o r o r o
1 v 5 v 4 v 3 v 2 v 1 5 4 3

i 1

V O [i] V O [i] V O [i] V O [i] V O [i] V V V V V
=

= − − − −
i

i ∪ i ∪ i ∪ i ∪ i∩ 2

324

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on November 5, 2009 at 22:45 from IEEE Xplore. Restrictions apply.

model has several grid service instances, and we
should find the best grid instance to meet the QoS
demands of users or make better use of grid resources.
Therefore, how to select the service instance is also
important. In our methods, the selection of service
instances is mainly based on the QoS properties, such
as cpu /memory state information of running nodes. In
order to facilitate users to evaluate the QoS of grid
service instances, objective QoS criteria to distinguish
one instance from another is needed. Our QoS
computing model is primarily composed of the
following three aspects: OWL QoS ontology, QoS
information collection, and QoS ranking model. OWL
QoS ontology is used to provide a common
understanding of QoS parameters and their semantics
between providers and consumers by reasoning their
properties. QoS information is divided into two
categories, namely obtained QoS information and
computed QoS information[11].

In order to clarify the service selection model, here
we give a demo. Assuming that denote grid
service instances of the same abstract service model

. In order to reduce the complexity of the
problems, QoS criteria are simplified into the
following three criteria: response time, reliability,
reputation. Especially, reliability and reputation are
divided into ten levels. The vector

1 2 3, ,s s s

s s
i v vWS (I ,O)

()1 50,9,8vq =

means the quality information of , for example, 50

means that the response time of is 50ms, 9
represents the reliability level, 8 stands for the
reputation level. Especially, OWL QoS ontology can
help uniform the measurement unit. For example, one
second equals 1000 millisecond.
Similarly, , and .

We can obtain the following matrix Q .Each row in

 represents a service instance , while each column
represents one of the QoS criteria (response time,
reliability, reputation).

1s

1s

(2 30,8,8vq =) ()3 40,7,9vq =

Q is

50 9 8
30 8 8
40 7 9

Q
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (1)

To allow for a uniform measurement of service
qualities independent of units, the matrix Q needs to
be normalized by equation 2.

,
1 ,

,
1'

,

,
1

2 ,
,

,
1

1

,

i j
i jn

i j
i

i j n

i j
i

i j
i j

q
j g q Q

q
n

q
q

n j g q Q
q

=

=

⎧
∈ ∈⎪

⎪
⎪

= ⎨
⎪
⎪

∈ ∈⎪
⎩

∑

∑
 (2)

Then we can obtain the following matrix . 'Q

'

0.8 1.13 0.96
1.33 1 0.96

1 0.88 1.08
Q

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (3)

Then, the weights reflecting the grade of the
importance should be assigned to the respective
properties of QoS. For example,
shows that the important degree of response time is 30
percent as well as the reliability, while the reputation is
40 percent. can be specified by user. Based on ,

we can get the following total QoS ranking

(0.3,0.3,0.4)qw =

qw qw

qR of
instances.

'

0.8 1.13 0.96 0.3
1.33 1 0.96 0.3

1 0.88 1.08 0.4

0.963
1.083
0.996

q qR Q wΤ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ∗ = ∗⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤
⎢ ⎥=⎢ ⎥
⎢ ⎥⎣ ⎦

 (4)

The expression 4 shows that is the best grid
service instance of abstract service model .

2s
s s

i v vWS (I ,O)

However, according to the former service discovery
method, there are possible multi abstract service
models to meet the requested service model

with the different matching degree.
Additionally, those abstract service models which have
a higher semantic matching degree are not always to be
selected when it comes to all including QoS computing.
Therefore, we should make sure the selected abstract
service model and its execution instance are both the
best.

r r
v vWSR(I ,O)

In our method, semantic and QoS factors are
simultaneously taken into account to decide the best
choice. First, after service discovery from QSQL, for

325

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on November 5, 2009 at 22:45 from IEEE Xplore. Restrictions apply.

each matching degree type iV i 1 2 3 4 5* , , , , ,= , the best grid
service instances for each corresponding abstract
service model in each should be found out according
to the computing methods (1)(2)(3)(4). Then for
each , those abstract service models which have the
highest QoS values will be selected further. Finally,
the weights of semantic matching degree and QoS
factors are simultaneously taken into account to
distinguish the final ranking.

iV*

iV*

For example, assuming that 5 levels (5, 4, 3, 2, 1)
denotes the corresponding matching degree Exact,
Plugin, Sib, Grapar, Grachd. denotes the QoS
value of service instances, the subscript i denotes the
corresponding subscript i of , j denotes the jth
abstract service model of , and k denotes
the kth service instance of

ijkQV

iV*

()s s
j v vWS I O, iV*

()s s
j v vWS I O, .According to

the first above two processes, we can get
 for each , further, we

can obtain five service
instances which have the
highest QoS value

i iij k ijkj k
QV QVmax(max())= iV*

5 4 3 2ins ,ins ,ins ,ins ,ins1

5 55 j kQV ,
4 44 j kQV

3 33 j kQV
2 22 j kQV

1 11 j kQV in each .These

instances form the following matrix .Each row in

 represents a service instance , while each
column represents semantic matching degree and QoS
value respectively.

iV*

''Q
''Q iins

i iij kQV

'' (degree i,)

5 0.946
4 1.083
3 0.955
2 1.187
1 0.932

i iij kQ matchin QV=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (5)

''Q should also be normalized to the following

matrix by using the equation 2. '''Q

'''

1.67 0.927
1.33 1.062

1 0.936
0.67 1.164
0.33 0.914

Q

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (6)

Finally, when the weights of semantic and QoS are
assigned to sw , i.e. ， sw = (0.7, 0.3), we can get the

following final rank totalR of (=1, 2, 3). is i

'''

1.67 0.927
0.71.33 1.062

1 0.936
0.30.67 1.164

0.33 0.914

1.447
1.250
0.981
0.818
0.505

total sR Q wΤ

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥= ∗ = ∗ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

(7)

Therefore, this demo shows that service instance
which has the high QoS value 5ins

5 55 j kQV in is
the best choice.

5V*

4. Related Work

Currently, dynamic web services composition has
become a research hotspot. Literature [12] presents
methods for owl-s based semantic search in UDDI.
These methods build the ontology hierarchy tree to
record service information when services are published.
Our methods are mainly based on the knowledge of the
graph storage. Another approach in[13] primarily
provides a Semantic UDDI registry for publishing and
searching services. This work enhances the semantic
search mechanism in couple of ways. However, their
semantic search algorithm still needs too much logic
inference, so the query’s response often keeps longer.
The literature[14] [15]is part research results of
METEOR-S project which are mainly based on the
wsdl-s, and p2p computing schema. Similarly, their
discovery algorithm also uses a lot of reasoning so that
the efficiency of search is not high. The methods in [16]
are a combination of many kinds of service discovery
methods to enhance the flexibility of the service
discovery, and they can support a variety of services
description language, but it is the main emphasis of the
traditional service discovery methods , So essentially
no efficiency gains in query’s response. In addition,
there are many QoS-based semantic service discovery
methods [17-19]. These methods are very significant.
In our method, we use a semantic-based virtual service

326

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on November 5, 2009 at 22:45 from IEEE Xplore. Restrictions apply.

method, which separates the service function
description and grid service instance from the
traditional service description so that we need not
consider nonfunctional properties of services during
service discovery.

5. Conclusions and Future Work

Current service composition and coordination in
service grid environments still remain at large amount
of manual processing stage, which has resulted in low
efficiency. In this paper, we have presented a new
efficient method for abstract service discovery.
Specially, our method firstly set up some special data
structures of ontology concepts based on graph storage
theories when publishing abstract services. Then, a
Quick Service Query List (QSQL) will be formed by

these data structures. With our algorithm, the large
number of ontology reasoning is processed at service
publication stage which enables the quick query
response in service discovery. In addition, we give the
grid service instance selection methods based on OWL
QoS ontology. A demo has been used in illustrating
such methods.

With the contributions of this paper, we will further
investigate composing algorithms for multiple abstract
service model combination. Currently, we have
developed a basic grid platform
(http://grid.cma.gov.cn:8080/gridsphere/cmag). In the
future, we will transfer our simulation experiment to a
true grid environment.

6. Reference

[1].David Martin, M.B., Jerry Hobbs,etc. OWL-S: Semantic
Markup for Web Services. in
http://www.w3.org/Submission/OWL-S. 2004.
[2].Dumitru Romana, Uwe Kellera, Holger Lausena,etc.,
Web Service Modeling Ontology. applied ontololgy, 2005.
1(1): p. 77-106.
[3].Rama Akkiraju, J.F., John Miller,etc., Web Service
Semantics - WSDL-S. 2005.
[4].W3C Web Ontology Language.
http://www.w3.org/tr/owl-features/.
[5].F.Baader, D.C., D.McGuinness,D.Nardi,and P.F.Patel-
Schenider, The Description Logic
Handbook:Theory,Implementation,and Applications. 2003:
Cambridge University Press.
[6].Kaarthik Sivashanmugam, K.V., etc. Adding Semantics
to Web Services Standards. in ICWS. 2003. las vegas.
[7].M. Andrea Rodrı´guez, M.J.E., Determining Semantic
Similarity among Entity Classes from Different Ontologies.
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA
ENGINEERING, 2003. 15(2): p. 442-456.
[8].Abhijit Patil, S.O., Amit Sheth, Kunal Verma. METEOR-
S Web Service Annotation Framework. in WWW 2004. 2004.
New York, USA: ACM Press.
[9].Massimo Paolucci, T.K., Terry R. Payne, and Katia
Sycara. Semantic Matching of Web Services Capabilities. in
The First International Semantic Web Conference(ISWC).
2002. Sardinia (Italy).
[10].Matthias Klusch, B.F., Mahboob Khalid,Katia Sycara.
Automated Semantic Web Service Discovery with OWLS-
MX. in AAMAS 2006. 2006. Japan: ACM.
[11].Kaijun Ren, J.C., Tao Chen,Junqiang Song ,Nong Xiao.
Grid-based Semantic Web Service Discovery Model with
QoS Constraints. in The Third International Conference on
Semantics, Knowledge, and Grid. 2007. Xian China: IEEE.
[12].Naveen Srinivasan, e. An Efficient Algorithm for OWL-
S based Semantic Search in UDDI. in semantic web services
and web process composition. 2005. USA.

[13].Rama Akkiraju, R.G., etc. A Method For Semantically
Enhancing the Service Discovery Capabilities of UDDI. in
Workshop on Information Integration on the Web IJCAI.
2003.
[14].Verma, K., Sivashanmugam, K., Sheth,and etc.,
METEORS WSDI: A Scalable Infrastructure of Registries
for Semantic Publication and Discovery of Web Services.
Journal of Information Technology and Management, 2005.
6(1): p. 17-39.
[15].Jorge Cardoso, A.P.S., Semantic E-Workflow
Composition. Journal of Intelligent Information Systems,
2003. 21(3): p. 191-225.
[16].John Colgrave, R.A., Richard Goodwin. External
Matching in UDDI. in Proceedings of the International
Conference on Web Services ICWS. 2004.
[17].Vu, L.-H., Hauswirth,M., Aberer, K. Towards P2P-
based Semantic Web Service Discovery with QoS Support.
in Proceeding of Workshop on Business Processes and
Services (BPS). 2005. Nancy, France.
[18].Laila Taher, R.B., and Hazem El Khatib, QoS
Information & Computation (QoS-IC) Framework for QoS-
Based Discovery of Web Services. MOSAIC, UPGRADE
Journal, 2005. VI(4): p. 55-66.
[19].Ran., S., A Model for Web Sevices Discovery with QoS.
ACM SIGecom Exchanges, 2003. 4(1): p. 1-10.

327

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on November 5, 2009 at 22:45 from IEEE Xplore. Restrictions apply.

