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ABSTRACT

Results of numerical investigations, based on full dynamic equations, are presented for wave breaking in

a one-dimensional environment with a wave spectrum. The breaking is defined as a process of irreversible

collapse of an individual wave in physical space, and the incipient breaker is a wave that reached a dynamic

condition of the limiting stability where the collapse has not started yet but is inevitable. The main attention

is paid to documenting the evolution of different wave characteristics before the breaking commences.

It is shown that the breaking is a localized process that rapidly develops in space and time. No single

characteristic, such as wave steepness, wave height, and asymmetry, can serve as a predictor of the incip-

ient breaking. The process of breaking is intermittent; it happens spontaneously and is individually un-

predictable. The evolution of geometric, kinematic, and dynamic characteristics of the breaking wave

describes the process of breaking itself rather than indicating an imminent breaking. It is shown that the

criterion of breaking, valid for the breaking due to modulation instability in one-dimensional waves trains,

is not universal if applied to the conditions of spectral environment. In this context, the development of

algorithms for parameterization of breaking for wave prediction models and for direct wave simulations is

more important.

1. Introduction

Wave breaking is important across a great variety of

geophysical, practical, and engineering applications. In

the geophysical system of air–sea interactions, the break-

ing controls the whitecapping dissipation of surface waves

and thus the wave growth (e.g., Cavaleri et al. 2007); ne-

gotiates the drag coefficient in the atmospheric boundary

layer and therefore the momentum and energy fluxes from

the wind to the waves; produces turbulence for the upper-

ocean mixing (e.g., Chalikov and Belevich 1993); and

determines to a great extent the gas, heat, and moisture

exchanges across the interface (e.g., Bortkovskii 1987). In

hydroacoustics, it is a primary source of the underwater

sound (Kerman 1992); in remote sensing, it produces sea

spikes (e.g., Melville et al. 1988) and whitecapping, which

then serve either as a proxy of wanted properties or

an unwanted noise, which needs to be dealt with (e.g.,

Sharkov 2007). In engineering, it is responsible for im-

pacts on structures and vessels and may directly affect

the bottom boundary layer in shallow areas or limit the

maximum in probability distributions of wave height,

among many other contributions and influences (for a

review, see, e.g., Babanin 2011).

For many years, the breaking was regarded as a poorly

understood phenomenon that is hard if not impossible

to approach by theoretical, numerical, and even exper-

imental means. Indeed, it is a strongly nonlinear process

where a wave (or rather wave group, which includes a

breaking wave) suddenly, within a fraction of wave pe-

riod, loses the energy accumulated from the wind over

hundreds of wave periods. These events are sporadic

(i.e., do not cover the entire wavy surface), and this is in

the wave system where all the other processes respon-

sible for the wave evolution are continuous. There are
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even accounts that breaking distribution on the ocean

surface is fractal (Zaslavskii and Sharkov 1987). Such

features are difficult to account for in analytical theories,

difficult to reproduce in numerical models, and difficult

to measure.

In the past decade, however, an essential progress has

been made in understanding the causes of wave break-

ing and quantifying the breaking probability as a func-

tion of environmental properties, first of all those of the

wave field itself. For monochromatic wave trains (or quasi

monochromatic: i.e., a combination of a carrier wave and

small sideband perturbations), the breaking onset was

identified with a limiting steepness of Hk/2 ’ 0.44, where

H is a breaking wave crest-to-trough height and k is

its wavenumber [see Brown and Jensen (2001) for

linear-superposition breaking, Babanin et al. (2007) for

modulational-instability breaking, and Toffoli et al.

(2010) for oceanic waves]. Parameterizations of the

breaking probability were suggested, based on labora-

tory (Babanin et al. 2007) and field (Banner et al. 2000;

Babanin et al. 2001) observations. Both revealed a thresh-

old for the breaking to start happening, in terms of the

background mean steepness of wave trains/fields. For

the spectral environments, such important features as the

cumulative effect of the breaking at small scales were

found (Babanin and Young 2005; Manasseh et al. 2006;

Young and Babanin 2006).

It should be mentioned that the majority of inves-

tigations of the wave breaking in the laboratory and field

were conducted for the breaking stage past the breaking

onset (e.g., Holthuijsen and Herbers 1986; Xu et al.

1986; Jessup et al. 1997; Gemmrich and Farmer 1999;

Melville and Matusov 2002; Kleiss and Melville 2011;

among many others), whereas the majority of analytical

and numerical research was conducted for the incipient-

breaking stage [see Longuet-Higgins (1969), Srokosz

(1986), Yuan et al. (1986), Papadimitrakis (2005), and

others for probability models and Banner and Tian

(1998), Song and Banner (2002, hereafter SB02), and

Irisov and Voronovich (2011) for numerical models].

This is due to apparent reasons. In the experiment, the

whitecapping signature or its derivatives, such as un-

derwater sound, void fraction, infrared surface trace,

and radar reflection, is typically used to detect the

breaking events, and otherwise it is difficult to judge on

whether the wave will be breaking. The theory, on the

contrary, cannot describe the complicated nature of

multiphase fluid mechanics of rapid wave collapse and

concentrates either on dynamics of nonlinear wave

evolution to the point where the collapse starts or on

interpreting statistical properties of such a point. We

should note, however, that physics of the prebreaking

and postbreaking evolution is essentially different: the

former is nonlinear wave dynamics and the latter is

water surface collapse. In this paper, we will be only

dealing with the prebreaking stage and analyzing the

wave evolution to the breaking onset and the onset it-

self, but not the breaking past this onset, when the wave

starts exhibiting the whitecapping.

Because the conclusion was drawn that a wave is to

reach the limiting steepness in order to break, at least in

the deep water, then any physical mechanism that can

lead to such steepness will result in a breaking. There

can be many such mechanisms: that is, wave focusing or

superposition, modulational instability, modulation of

short waves by longer waves in the spectral environ-

ments, strong wind forcing, interactions of waves with

currents, and interactions of waves with the bottom. The

latter four are specific to wave scales or environmental

conditions, and the former two are general and can oc-

cur in deep-water no-forcing circumstances.

If so, the question was, which of the two would be

more frequent in field conditions? Babanin et al. (2011)

argued that the superposition of waves, with the typical

field wave steepness on the order of Hk/2 ’ 0.1, is

possible, but its probability is very low in the field. Be-

sides, signatures of the breaking allow us to distinguish

between the focusing and instability-breaking types. For

example, the above-mentioned mean-steepness thresh-

old cannot be a feature of the superposition-caused

breaking. This argument is indirect, but many other

signatures point to the modulational instability more

directly. These are double breaking (Donelan et al.

1972), upshift of the spectral energy prior to the break-

ing, oscillations of wave skewness/asymmetry, and the

cumulative effect, which were observed in the field, but

in laboratory-simulated breaking they clearly associate

with the modulational instability (Babanin et al. 2010).

The modulational instability, however, is expected to

be impaired or even suppressed in directional wave

fields, as opposed to unidirectional wave trains typically

used in wave flumes (Onorato et al. 2009a,b; Waseda

et al. 2009). To investigate this issue, a dedicated

experiment was conducted in a three-dimensional (3D)

wave tank, with the waves quasi monochromatic in

frequency domain, but with a broad range of wave-

steepness and directional-distribution values (Babanin

et al. 2011). The result was encouraging: for wave trains

with steepness and directional spread typical of those in

the ocean, the modulational instability was still active.

The present paper is the first attempt to investigate

evolution of waves to breaking and the breaking onset in

an environment with full wave spectrum, based on full

nonlinear equations. The study is conducted by means of

fully nonlinear one-dimensional potential model of

Chalikov and Sheinin (1998, hereafter CS98) and Chalikov
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and Sheinin (2005, hereafter CS05). This model is based

on first principles, proved stable and conserving energy

over up to 1000 wave periods of integration, and does not

have limitations in terms of wave steepness. It has been

extensively used for numerical simulations of evolution to

breaking in monochromatic and quasi-monochromatic

wave trains and demonstrated excellent corroboration

with laboratory experiments. A relevant description of

this model is given in section 2. Section 3 outlines present

setup of numerical experiments, and section 4 provides

the main results of the paper. Conclusions and discussion

items are summarized in section 5.

2. Mathematical model

Consider the periodic one-dimensional deep-water

waves, whose dynamics is described by principal potential

equations. No wind forcing is applied here. Because of

the periodicity condition, the conformal mapping for

infinite depth can be represented by the Fourier series

(see details in CS98 and CS05),

x 5 j 1 �
2M#k,M,k6¼0

h
2k(t) exp(kz)qk(j) and (1)

z 5 z 1 �
2M#k,M,k6¼0

sign(k)hk(t) exp(kz)qk(j), (2)

where x and z are Cartesian coordinates; j and z are

conformal surface-following coordinates; t is time; hk

are the coefficients of Fourier expansion of the free

surface h(j, t) with respect to the new horizontal co-

ordinate j,

h(j, t) 5 h[x(j, z 5 0, t), t 5 t] 5 �
2M#k#M

hk(t)qk(j);

(3)

qk denotes the functions

qk(j) 5
coskj, k $ 0

sinkj, k , 0
;

�
(4)

and M is a truncation number.

Because of conformity, the Laplace equation retains

its form in (j, z) coordinates. It is shown in CS98 and

CS05 that potential wave equations can be represented

in the new coordinates as follows:

F
jj

1 F
zz

5 0, (5)

z
t

5 x
j
jt 1 z

j
§t, and (6)

F
t

5 ztFj
2

1

2
J21(F2

j 2 F2
z) 2 z 1 p0, (7)

where (7) and (8) are written for the surface z 5 0 [so

that z 5 h, as represented by expansion (1)]; J is the

Jacobian of the transformation,

J 5 x2
j 1 z2

j 5 x2
z 1 z2

z ; (8)

z
t

is defined from the continuity equation

z
t

5 2(J21F
z
)

z50; (9)

and Fourier coefficients for z
t

and j
t

are connected by

the expression

(jt)k 5 sign(k)(zt)2k. (10)

However high the spectral resolution might be, for

long-term simulations of strongly nonlinear waves one

must parameterize the energy flux into the severed part

of the spectrum (jkj. M); otherwise, the spurious en-

ergy accumulation at large wavenumbers can corrupt

the numerical solution. The simple dissipation terms

were added to the right sides of Eqs. (5) and (7) for

achieving stability,

›hk

›t
5 Ek 2 mkhk, (11)

›uk

›t
5 Fk 2 mkuk (12)

(E
k

and F
k

are the Fourier components of the right sides

of the equations), and

mk 5
rM

jkj2 kd

M 2 kd

� �2

if jkj. kd

0 if jkj# kd

,

8><
>: (13)

where kd 5 M/2 and r 5 0:25 were chosen for all the runs

discussed below. Sensitivity of the results for reasonable

variations of kd and r was low. Dissipation effectively

absorbs energy if wavenumbers are close to the trunca-

tion number M, with longer waves being virtually intact.

The modes with wavenumbers jkj# k
d

are not affected

at all. Note that an increase of the truncation number M

shifts a dissipation area to higher wavenumbers, so the

dissipation scheme described above retains approxima-

tion of the original (nondissipative) system.

Equations (1)–(13) are written in a nondimensional

form with the following scales: length L, where 2pL is

a dimensional period in the horizontal; time L1/2g21/2;

and velocity potential L3/2g21/2 (g is acceleration of

gravity). The determination of scales for other variables

is straightforward.
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The input of energy and momentum to waves occurs

through the dynamic surface pressure p
0
. According to

the linear theory, the Fourier components of the surface

pressure p0 are connected with those of the surface el-

evation through the following expression:

pk 1 ip
2k 5 (bk 1 ib

2k)(hk 1 ih
2k), (14)

where bk and b
2k are the real and imaginary parts of

so-called b function (i.e., the Fourier coefficients at co-

sine and sine, respectively). It is a traditional suggestion

that both coefficients are a function of the nondimensional

frequency V 5 vkU (where vk and U are nondimensional

frequency and wind velocity, respectively). It would be

quite reasonable to suggest that a reference height for

wind speed might be different for different frequencies;

hence, the nondimensional frequency V could be defined

in the following way:

V 5 vkU(lk/2) 5 U(lk/2)/ck, (15)

where v
k

5 jkj1/2 is the nondimensional frequency; c
k

is a

phase velocity of the kth mode; and U is a nondimensional

wind velocity at height z 5 lk/2, where lk 5 2p/k is a length

of the kth mode. The approximation of the b function was

constructed by Chalikov and Rainchik (2011) on a basis of

coupled Wave Boundary Layer (WBL)–wave model.

The problem of the numerical scheme validation for the

wave model was discussed in CS98, CS05, and Chalikov

(2005). The scheme was found to be very precise: a nor-

mal accuracy of solution for a sufficiently high resolution

was around 10210. It is no surprise, because the equa-

tions written in conformal coordinates become the one-

dimensional evolutionary equations that can be accurately

solved by means of the Fourier transform method using

no local approximations. A high accuracy of the solution

and preservation of the integral invariants is crucial for

a numerical wave simulation, because a ratio of time

scale for waves and that for the energy input and dissi-

pation is on the order of 1024; therefore, the wave motion

is highly conservative, whereas at time scales on the order

of a wave period it is actually adiabatic.

The boundary condition assumes vanishing of vertical

velocity in depth,

F
z
(j, z / 2‘, t) 5 0. (16)

The solution of the Laplace equation [Eq. (6)] yields

to Fourier expansion, which reduces the system of

Eqs. (6)–(8) to a 1D problem,

F 5 �
2M#k#M

fk(t) exp(kz)qk(j), (17)

where f
k

are Fourier coefficients of the surface potential

F(j, z 5 0, t). Equations (6)–(8) and (10) constitute a

closed system of prognostic equations for the surface

functions z(j, z 5 0, t) 5 h(j, t) and the surface velocity

potential F(j, z 5 0, t).

For time integration, the fourth-order Runge–Kutta

scheme was used. A full description of the model, the

details of numerical scheme and its accuracy, and the

main results obtained with the model can be found in

CS98, CS05, and Chalikov (2005, 2007, 2009). Note that

a model based on conformal mapping is exact. Contra-

diction between results of simulations and experiments

can be attributed to presence of different types of de-

viations of ideal conditions in experiments. For example,

main attention at wave generation is directed to genera-

tion of surface. However, the distribution of velocity [the

second fundamental variable in Eqs. (6)–(8)] is usually

not under control. In SB02, for example, it was mentioned

that measured velocity field agrees with calculations with

an accuracy of 2%. In fact, such a disagreement is ex-

tremely large, because the introduction of disturbances of

such magnitude will affect the numerical solution very

significantly. Wave dynamics is organized so well that

a comparison of 1D numerical modeling with an ideal 1D

laboratory modeling can highlight the applicability of

potential assumption only, but all other discrepancies

should be attributed to laboratory data.

3. Description of numerical experiments

Previously, the breaking was investigated with nu-

merical models for cases when the wave field was rep-

resented by a small number of modes (Banner and Tian

1998; SB02). Irisov and Voronovich (2011) investigated

breaking the continuous spectrum tail. Here, the inves-

tigation of breaking will be done for the multimode

wave field corresponding to the real wave spectrum.

In this study we have applied the above method for

numerical simulation of surface waves for investigation

of evolution of a wave field assigned by one-dimensional

version of the Joint North Sea Wave Project (JONSWAP)

spectrum Sf (Hasselmann et al. 1973) for a finite fetch as

a function of frequency v,

Sf (v) 5
ag2

v5
exp

�
2b1

vp

v

� �
4
�

gr, (18)

where b1 5 1, 25, g 5 3:3, and vp is a parameter whose

value is close to the frequency of the spectral peak Sp.

Other parameters can be expressed through vp,

r 5 exp

"
2

(v 2 vp)2

2s2v2
p

#
, a 5 0:0099V0:66,

s 5
0:07 v # vp

0:09 v . vp

,

(
(19)
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where

Vp 5
vpU10

g
5

U10

cp

(20)

is a nondimensional frequency in a spectral peak and cp

is a peak phase velocity.

In the initial JONSWAP approximation, an enhance-

ment parameter for the spectrum g was accepted as the

constant, g 5 3:3. Later, some investigators came to the

conclusion that the above parameter can be a function of

a fetch or peak frequency vp. According to Babanin and

Soloviev (1998), g increases with Vp: g 5 1:224Vp.

The approximations (18) and (19) were rewritten in

terms of the wavenumbers using a dispersion relation

that is precise at least up to 3V
p

(Chalikov 2005). The

nondimensional wavenumber k
p

at the spectral peak is

a parameter of initial conditions. To describe a low-

wavenumber part of the spectrum, kp should exceed 1,

and for good approximation of the entire spectrum, as

well as the spectrum spreading due to nonlinearity, kp

should be considerably smaller, if compared with the

total number of modes M. Actually, kp is a parameter of

accuracy of approximation.

The initial conditions for the Fourier coefficients of

a free surface h(x) were assigned in the following form:

jhkj5 (2S(k)Dk)1/2, hk 5 jhkj cos(uk),

h
2k 5 jhkj sin(uk), k 5 1, 2, 3 . . . Mi, (21)

where jhkj is the amplitude of the kth mode; Mi is a

number of modes assigned for initial conditions; h
k
, h

2k

are the Fourier coefficients in the Cartesian coordinates;

and u
k

is a random (over k and over different runs)

phase distributed uniformly over the interval (042p).

The Fourier coefficients fk for a surface potential f (x)

were assigned through

fk 5 sign(k)jkj21/2a
2k, k 5 2Mi, Mi. (22)

In this study, the model was applied to investigation of

breaking waves onset. More details of model, numerical

scheme, and model validation can be found in our pre-

vious publications. The peak wavenumber was 16. The

number of modes M was 1000, and the number of knots

N 5 4000. Because the peak wavenumber was equal to

16, this resolution was even excessive.

In conformal coordinates, the equation for 1D waves

becomes very simple. It represents a unique case in geo-

physical fluid dynamics, when a real process can be simu-

lated with computer accuracy, provided that the surface

steepness is not too high. The increase of the local steepness

often results in the development of instability and even in

the overturning of sharp crests. Formally, conformal map-

ping exists up to the moment when the overturning volume

of water touches the surface. In such an imaginary evolu-

tion, the number of Fourier modes required increases up

to infinity. If some special measures are not taken, the

calculations normally terminate much earlier because of

the strong crest instability (Longuet-Higgins and Tanaka

1997) followed by a split of a falling volume into two

phases. This phenomenon is obviously nonpotential.

4. Results of the numerical experiments

The problem of breaking has recently been a subject

of extensive theoretical and experimental research (see

review in Babanin 2011). The CS98/CS05 model, as

a precise and fully nonlinear model that can describe

wave train evolution from any set of initial conditions all

the way to the breaking start, lately was extensively

employed in this kind of research. Babanin et al. (2007)

used it to predict the breaking onset; the prediction was

then employed in a laboratory study of wave breaking.

In Babanin et al. (2010), the model was used for detailed

research of nonlinear properties of waves evolving to the

breaking and of the characteristics of the imminent

breaker; coupled with the atmospheric boundary layer

model of Chalikov and Rainchik (2011), it was used for

investigations of the wind influences on this evolution

and on the onset. In Babanin et al. (2010), the initial

conditions were uniform wave trains. Galchenko et al.

(2010, 2012) employed the CS98/CS05 model to set up

a variety of combinations of carrier wave and seeded

perturbations, in order to achieve different instability

rates. It was presumed that such different rates will lead

to different breaking severity, which was confirmed in an

accompanying laboratory experiment. Thus, in all these

studies, simulations with the CS98/CS05 model were

combined with laboratory tests and in all the cases cor-

roboration was excellent.

The result of numerical investigations of breaking

onset on a basis of the Dold–Peregrine (DP) model were

published in several papers of Banner with coauthors

(Banner and Tian 1998; Song and Banner 2002; Banner

and Song 2002; Song and Banner 2004; Banner and

Pierson 2007). All these works considered evolution of

a single wave with two superimposed disturbances.

Onset of breaking was recognized by development of

numerical instability of solution. Such a criterion is ev-

idently imperfect, because numerical instability can

develop long before physical instability.

In our model, the onset of breaking was defined by the

first appearance of a nonsingle value of surface h,

x(i 1 1) , x(i), i 5 1, 2, 3, . . . , N 2 1. (23)
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The integration was possible to continue shortly after

that moment (see CS05), but the details of this de-

velopment are not a subject of this paper. After the

moment when the criterion [Eq. (23)] is reached, the

solution never returns to stability: the volume of fluid

crossing the vertical x(i) increases rapidly. Up to this

moment, the conservation of the sum of potential and

kinetic energy, horizontal momentum, and the volume

were excellent. Contrary to criteria used in the above-

mentioned works, the criterion [Eq. (23)] is exact. In all

cases simulated here, the formation of ‘‘vertical wall’’

occurred in a vicinity of wave crest. When a surface

approaches to a nonsingle value (at the initial stage of

breaking), conservation of invariants usually still holds,

but later a sharp increase of energy occurs and a further

integration becomes useless. Usually, it happens just

for one Runge–Kutta time step, so probably a primary

cause of the numerical instability is a growth of the right

side of Eqs. (6)–(8): namely, a growth of first and second

derivatives. Disintegration of the solution happens

mostly because of inapplicability of potential approxi-

mation and generally because of fluid dynamic equa-

tions for single-phase fluid.

When the model is set for simulation of long-time

development of spectrum, the termination of run due

to breaking can be prevented by introducing the algo-

rithm of breaking parameterization, based on selective

high-frequency smoothing of an interface and surface

potential profile in physical space (Chalikov 2005; Chalikov

and Rainchik 2010). Because the current work is devoted

to investigation of breaking itself, this smoothing was

disabled and each model run was terminated with a use of

the criterion in Eq. (23).

It was found that, contrary to breaking in idealized

conditions, in a multimode wave field the breaking is an

essentially random phenomenon. An onset of the break-

ing depends on many poorly controlled factors. Even if

the wave spectrum in initial conditions is fixed, the time up

to occurrence of breaking is different for different initial

set of phases qk. This effect is also clearly pronounced in

a process of freak wave formation. Therefore, the statistics

of breaking should be investigated in a course of large

number of numerical experiments.

All calculations were done for number of modes

M 5 1000 and number of grid points N 5 4000. The wave

number in a peak of spectrum kp is equal to 10, and the

number of modes assigned in initial conditions is equal

to 100. To accelerate the approach to breaking the initial

conditions were generated for the JONSWAP spectrum

at V
p

5 2. Hence, the phase velocity at the wave peak

was twice less than wind speed, which corresponds to

the case of developing waves. Time step Dt was equal

to 0.0001. As many as 5000 runs with a random set of

phases were performed up to termination because of

breaking. The limiting time t 5 1000 (503 periods of

peak wave) was reached just in several runs, and these

cases were excluded from consideration. For a detailed

study of breaking, it is necessary to record a large vol-

ume of data with a very small time interval. Such re-

cording was not possible to provide over an entire period

of integration, because it takes too much computer

memory. This is why the simulations were performed in

two stages. In the first stages, the calculations were done

up to breaking, and the recording of all data including

restart was done with interval dt 5 5. In second stage, the

last record of restart was taken as initial conditions for

continuation of runs up to breaking. In a course of these

calculations, the records were stored with interval

dt 5 0:1, which provided a good description of breaking

development. These runs will be called final runs. Each

instantaneous record includes the next fields: surface

elevation z; surface potential F; surface velocity com-

ponents u0 and w0; their individual derivatives on time

(accelerations) (du/dt)0 and (dw/dt)0; local surface in-

clination ›z/›x; curvature ›2z/›x2; and local columnar

potential ep, kinetic ek, and total et energies, which are

defined as

ek 5
1

2
z2, (24a)

ek 5
1

2

ð0

2‘

(F2
j 1 F2

z)J21 dz, and (24b)

et 5 ep 1 ek. (24c)

For consideration of breaking the height of a wave

crest above a mean level z 5 0 does not make any sense,

because wave stability depends on the overall wave

height from its trough to crest. It is not easy to detect this

height formally. The calculation of a vertical distance

between maximum and its nearest minimum does not

give the right answer, because there can be some local

extremes; hence, the wave height might be under-

estimated. Obviously, the extreme wave must be found

between large waves. That is why the height of extreme

waves H
tc

in each record h(x) was defined here as a dif-

ference between absolute maximum z
max

5 H
m

and ab-

solute minimum z
min

5 minfD
d
, D

u
g in a moving window

of length L
e
. The upwind trough depth D

u
and downwind

trough depth Dd were usually different before breaking

(see fragment of wave surface in Fig. 1).

It is reasonable to define Le 5 1:5LP, where Lp is

a length of wave in a peak of spectrum, Lp 5 2p/kp, and

k
p

is the actual wavenumber in a spectral peak. The large

waves with a length exceeding 1:5L
p

were practically
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absent. In each record, the length of largest wave Lm can

be defined as a distance between x coordinates of right

Xtd and left Xtu minimums, Lm 5 Xtd 2 Xtu (see Fig. 1).

The lengths of upwind L
mu

and downwind L
md

slopes

are defined as L
mu

5 X
m

2 X
tu

and L
md

5 X
td

2 X
m

,

respectively, where X
m

is the x coordinate of the crest of

largest wave. Note that small-scale waves introduce

some uncertainty in definition of geometrical charac-

teristics of selected wave.

The main difficulty of breaking analysis is that the

largest wave during the final run (whose duration is less

than 2.5 peak wave periods) can preserve its individ-

uality only during a short period, so that the waves in

different locations can play the role of largest wave in

record at different moments. However, in most cases, it

is the largest wave in the record that finally comes to

breaking. The cases when breaking occurred without

the largest waves were excluded from consideration.

To investigate the evolution of the wave, tracing of the

horizontal coordinate x
p

of the largest wave peak was

introduced, and only the waves with continuous evolu-

tion of x
p

to point of breaking were selected. Re-

markably, the duration of breaking development t
b

is

very short. The probability distribution for tb expressed

in peak wave period Tp is given in Fig. 2. As seen, the

maximum of probability falls at the period 0:35Tp. It

suggests that breaking is an impulsive phenomenon,

developing very quickly after the appropriate conditions

arise. These conditions can be formed by reversible in-

teractions, which are much stronger and faster than

irreversible interactions. If the breaking happens, obvi-

ously the reversible interactions become irreversible.

All the results below were obtained for the very last

time period of the single largest wave evolution preceding

the breaking. The runs not terminated by breaking, and

the cases when the duration of the final run was less than

0:2T
p

were excluded (in calculation of probability t
b

in

Fig. 2 they are accounted though).

An additional criterion of data quality was introduced

by control of total energy Et,

Ep 5 (2p)21
ð2p

0
z2x

j
dj, (25a)

Ek 5 (2p)21
ð2p

0
qq

z
dj, and (25b)

Et 5 Ep 1 Ek, (25c)

where Ek is a kinetic wave energy and Ep is a potential

wave energy. In the absence of wind input and dissipa-

tion, the waves are adiabatic, but because of the slow

flux of energy in subgrid part of spectrum the total en-

ergy can decrease. Variation of energy due to this effect

is much slower than the increase of energy through wind

input. However, if the wave surface approaches over-

turning, the local large gradients of elevation and sur-

face potential cause the numerical instability, which

results in a fast change the total energy. In all cases, this

phenomenon took place very close to the moment when

condition (23) is reached. For eliminating this effect, the

cases when energy changed greater than for 0.01% were

excluded. Finally, only 2260 cases were used for further

analyses.

The integral probability for nondimensional crest-to-

trough height Htc/Hs (Hs is a significant wave height,

Hs 5 4
ffiffiffiffiffiffiffi
E

p

q
) is given in Fig. 3. The sampling interval was

equal to 0.1, and for calculations of probability 670 764 710

elementary events were used. As seen, the large waves

FIG. 1. Scheme used for processing of wave surface records.

Here, Hm is the maximum wave height; Xm is the x coordinate of

peak of such wave; Dd is the maximum depth of the front trough;

X
td

is the x coordinate of this point; D
u

and X
tu

are the same

characteristics for the back trough; and X0d and X0u are the zero

down-crossing and up-crossing points, respectively.

FIG. 2. Probability distribution P(tb) for period of breaking

development t
b
.
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are not a too seldom phenomenon: the integral prob-

ability of waves exceeding significant wave height twice

is equal to 1024; that is, one of 10 000 waves can be

attributed to so-called freak waves. Because of self-

similarity of equations, this result for nondimensional

height is universal; however, to really be a freak wave,

the wave naturally should be high enough. Note that

not all freak waves break, but the portion of breaking

freak waves increases with its nondimensional height

H
tc

/H
s

(Chalikov 2009) and, depending on H
s

and do-

minant wavelength, the breaking limits the maximal pos-

sible ratio H
tc

/H
s

in the field.

A typical example of wave evolution terminated by

breaking is shown in Fig. 4a. As seen, the wave increases

twice its crest height from 0:7Hs to 1:5Hs. The depth of

the back trough remains more or less the same, whereas

the depth of the front trough decreases (see also

Babanin et al. 2007, 2010). In Fig. 4b, the evolution of

columnar energy e
c

is presented. It is seen that maxi-

mum columnar energy before breaking exceeds the av-

erage energy by 8 times. More clearly, this effect is

demonstrated in Fig. 5, where the time evolution of

averaged over distance Lm and energy Em is represented

together with evolution of maximum value of the co-

lumnar energy Emax. The averaged wave energy Em

changes insignificantly and mostly because of some un-

certainty in definition of L
m

caused by presence of local

extremes. However, the maximum of columnar energy

Emax changes several times. It will be shown below that

such growth is provided by a concentration of the energy

around crest vertical. This effect was found also as

a primary reason of freak wave generation (Chalikov

2009). Evidently, the breaking waves and freak waves

have a similar nature. However, large wave height is not

a necessary condition of breaking, because smaller

waves also break. This fact signifies that in the spectral

environment the breaking is not necessarily connected

with overall wave characteristics but rather with rapidly

changing local condition in a vicinity of wave crest.

The presented below results are obtained by pro-

cessing of all 2260 final runs. The evolution of total en-

ergy of wave averaged over its length Le and normalized

by total energy Et as function of time before breaking

(expressed in peak wave periods),

Em 5
1

EtLe

ð
L

e

et dx, (26)

is shown in Fig. 6a. The solid thick curve is averaged over

all cases evolution of E
m

, and the distance between

dotted lines indicates the dispersion. As seen, the energy

of the wave before breaking is close to doubled averaged

FIG. 3. Integral probability P
i
(H

tc
/H

s
) for trough-to-crest wave

height H
tc

, normalized by significant wave height H
s
.

FIG. 4. (a) Example of evolution of selected wave profile z up

to onset of breaking. (b) Evolution of columnar energy e
t
(x)

[Eq. (24c)] normalized by mean energy et [Eq. (25c)] for the same

period.

FIG. 5. Evolution of averaged over wavelength columnar energy

E
m

and maximum of columnar energy E
max

for the development

shown in Fig. 4.
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energy Em, but it can be several times larger and smaller

than Em. The dispersion in Fig. 6a is very stable and

small, on the order of 0.1. It is most interesting that on

average the approach to breaking does not manifest it-

self by growth of wave energy. This fact confirms that

a breaking wave in the spectral environment does not

necessarily take the energy from other waves. In events

simulated here, the developing of breaking instability

occurs because of modification of its shape: wave be-

comes more sharp crested with concentration of its en-

ergy around its peak, the crest becomes unstable, and

breaking of the wave starts. It is demonstrated clearly in

Fig. 6b, where the evolution of maximum columnar

energy max(et) is shown. As seen, the maximum energy

increases on average by 1.5 times, though individual

growth can reach a value of 3. Note that in developing

extreme (freak) waves the amplification of maximum

energy can reach such a large value as 10. Therefore, the

level of energy is not an indicator of breaking. Banner

and Tian (1998) suggested that the onset of breaking can

be recognized by the rate of growth of energy averaged

over wavelength Em,

bE 5
1

vEm

dEm

dt
. (27)

The behavior of this parameter was investigated with the

numerical model of Dold (1992) based on a surface in-

tegral method. In the initial condition, one harmonic

carrying wave and two small-amplitude disturbances

were assigned and the evolution of energy of the car-

rying wave was investigated. It was assumed that, after

development of modulation instability, the approach to

breaking can be recognized by exceeding the parameter

bE by some critical value. In fact, even for such a highly

idealized situation, SB02 found that parameter bE ‘‘did

not provide a robust indicator for resolving the onset of

breaking’’ (SB02, p. 2547). This is why they suggested

the alternative parameter, based on maximum value of

wave energy (E
m

)
max

,

d 5
1

v(Em)max

d(Em)max

dt
. (28)

In fact, replacing bE by (bE)max cancels the role of

modulational instability, because growth of maximum

columnar energy can occur without growth of overall

wave energy (see Figs. 6a,b). Finally the authors came to

conclusion that their ‘‘calculations indicate that break-

ing or recurrence may be determined by a common

threshold d
th

in the range (1.3 3 1023, 1.5 3 1023) for the

nondimensional growth rate’’ (SB02, p. 2553).

The practical role of criterion type of Eq. (28) is

doubtful. First, the primary authors’ idea was explana-

tion of breaking on a basis of modulation instability,

when one wave grows at the expenses of others. Crite-

rion d cannot describe such process, because it is based

on the maximum energy of waves, which depends es-

sentially on shape of the wave and it can change without

change of energy. This effect is clearly demonstrated

in Fig. 5: the average wave energy slightly decreases,

whereas the peak energy increases nearly 3 times. Sec-

ond, this criterion is established for idealized situation

of single harmonic wave with two superimposed dis-

turbances, and it is unclear how to apply it for parame-

terization of breaking in spectral models or in direct

modeling of multimode wave field.

FIG. 6. (a) Evolution of the energy of selected wave Em [Eq. (26)]

averaged over wavelength Lm prior to breaking as a function of

time t, expressed in peak wave periods. Aggregated gray lines

correspond to single cases, the solid line represents the averaged

over all cases of evolution, and dotted lines correspond to disper-

sion. Moment of breaking corresponds to time t 5 0. (b) As in (a),

but for maximum value E
max

of columnar energy E
t
in the selected

window. (c) Evolution of d [Eq. (28)] for idealized initial condi-

tions. (d) Evolution of d in spectral environment. The style of

curves in (b),(c) are as in (a).
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For investigation of breaking in idealized conditions,

the series of experiments similar to those performed by

SB02, were repeated with the CS98/CS05 model. Car-

rying wave mode with amplitude was placed at wave-

number k 5 kp, where kp changed in the range of 3–10

and steepness kpap changed in the range of 0.085–0.185.

A total of 160 long-term simulations were done up to

breaking or up to nondimensional time t 5 500; this

corresponds to 138–252 periods of carrying waves. Dis-

turbances with amplitudes 0:1a
p

were assigned at

wavenumbers k
p

1 1 and k
p

2 1, which for the given

resolution provided fast enough growth of disturbances

(see Chalikov 2007). The number of modes was M 5

2000, and the number of grid points was N 5 8000: that

is, a sufficient accuracy of approximation was main-

tained. These series of numerical experiments were

initially intended for investigation of breaking, but then

we concentrated on simulation of breaking in spectral

environments. A criterion for terminating a run was

defined by Eq. (23).

The evolution of d [Eq. (28)] prior to wave breaking

for such idealized wave field is shown in Fig. 6c. Gray

curves correspond to evolution of d in individual runs,

the solid line corresponds to averaged evolution, and

dashed lines indicate variance. Time t is normalized by

the period of carrying waves. As seen, for the less-steep

waves, the DP model performs reasonably well and

the behavior of d in an idealized condition reminds

us slightly of the quasi-periodic regime obtained by

SB02. The evolution of d, however, is less regular than

it was demonstrated in SB02, because the simulated

wave field has been modified because of the appearance

of new modes. The current calculation shows that cri-

terion d can exceed the recommended values dth 5 0.7 3

1023–2.8 3 1023 at least for one decimal order. It means

that an exact model based on conformal transformation

is much more stable, so the recurrence occurs after

reaching of large values of d. Note that breaking can also

occur at very small values of d.

The data on d obtained in analogous simulation of

breaking in spectral environment are shown in Fig. 6d.

As seen, the data on evolution of d exhibit a great

scatter. It is not surprising, because d is an overall

characteristic and for complicated wave surface its value

is very sensitive to definition of wavelength Lm. Besides,

the height of sharp-crested wave approaching breaking

in the spectral environment can change very quickly,

and criterion (28) demonstrated irregular fluctuations.

The parameter d can obtain negative and positive

values, exceeding many times the above-mentioned

limit d
th

. These results suggest that even modified for-

mulation of breaking criterion [Eq. (28)] cannot de-

scribe the variety of situations. Note that data in Fig. 6d

characterize the period just prior to breaking. However,

large values of criterion d occur very often when growth

of wave energy is reversible. The probability distribu-

tion of d obtained for all runs over the entire period of

integration is shown in Fig. 7. As seen, the probabilities

of negative and positive values of d are approximately

equal each to other, and its absolute value can greatly

exceed d
th

. Note that part of the breaking cases in Fig. 7

is less than 0.001%.

Therefore, we come to a conclusion that criterion d

does not signify a breaking, and waves are much more

stable than those reproduced by models that were used

in cited papers. Hence, investigation of role of input

energy to waves and vertical gradient of mean velocity

performed by SB02 on a basis of the criterion in Eq. (27)

was premature. Actually, the DP model is an excellent

tool for investigation of wave dynamics, when steepness

is not too large, but it is inapplicable for investigation

of extreme conditions of breaking. Hence, it is most

likely that the papers cited above discussed not the

breaking instability but the limits of numerical stability

of the model used. The CS98/CS05 model used in

our calculation is able to precisely reproduce the dy-

namics of extremely steep waves [see long-term simu-

lations of Stokes waves in CS05 and Chalikov (2005)].

The criterion in Eq. (23) is exact because, up to the

moment of the vertical wall appearing, the accuracy of

solution is very high.

Some investigators (see, e.g., Zakharov et al. 2006)

suggested that breaking occurs because of reaching the

limit form of Stokes waves Htc/2Lm 5 0:43., where Lm is

the length of wave. The evolution of the height of largest

FIG. 7. Probability distribution for criterion d [Eq. (28)].

1754 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 42



trough-to-crest wave height Htc normalized by signifi-

cant wave height is given in Fig. 8a. The growth of the

averaged height occurs only in the last stage and has the

order of 0:2H
s
. As seen, the breaking occurs in a wide

range of Htc/Hs between values 1.0 and 2.5, so the

trough-to-crest height of wave cannot serve as an in-

dicator for wave breaking, though the increase of Htc/Hs

is always followed by growth of breaking probability

(Chalikov 2007). In the multimode wave field, the length

L cannot be defined straightly, because the largest peak

wave is distorted by smaller waves. The evolution of L
m

,

normalized by spectral peak wavelength L
p

5 2p/k
p

is

given in Fig. 8b, which proves that, on average, the

wavelength changes insignificantly with weak tendency

to decrease by 10%. This effect was confirmed by SB02.

However, the scatter of these data is very large. Data on

the overall steepness Stc 5 Htc/2Lm of the largest wave

prior to breaking are given in Fig. 8c. It is seen that just

several waves break at high overall steepness S
tc

5 0:4,

but breaking also occurs at such small steepness as

Stc 5 0:1. The averaged steepness of breaking waves is

not too small and equal to 0.2, but it is twice smaller than

critical steepness for Stokes waves. The gray curves,

corresponding to individual cases are concentrated very

close to averaged curve, and very small dispersion of the

results (shown by dotted curves) proves that scatter of

wave steepness prior to breaking is very small. There-

fore, the overall steepness of waves is also not a criterion

of wave breaking. The probability distribution of overall

steepness shown in Fig. 9 testifies that waves in spectral

environment break well in advance before they become

very steep. It can be concluded that in multimode wave

field the parameter of overall steepness Stc is not a reli-

able criterion for recognizing breaking.

Important characteristics of wave shape closely con-

nected with wave breaking is the wave asymmetry A
s
,

which is defined as (see Fig. 1)

As 5
X0d 2 Xm

Xm 2 X0u

(29)

(Tulin and Landrini 2001; Caulliez 2002; Young and

Babanin 2006; Babanin et al. 2007, 2010). The negative

asymmetry As , 0 corresponds to a wave tilted forward

in the direction of propagation. In Fig. 1, the wave has

large positive asymmetry because of a secondary peak

on the downwind wave slope. This example confirms

that estimation of overall wave characteristics is often

connected with uncertainty. The evolution of asymme-

try prior to breaking is shown in Fig. 10a for calculations

with a small number of modes. These calculations prove

that in an idealized wave field the waves have a negative

asymmetry. An analogous analysis of data obtained in

FIG. 8. (a) Evolution of trough-to-crest wave height Htc nor-

malized by Hs prior to breaking as function of time t. (b) Evolution

of ratio of actual wavelength L
m

to spectral wavelength of peak

wave L
p
. (c) Evolution of overall steepness S

tc
. The styles of curves

are as in Fig. 6.

FIG. 9. Probability distribution for criterion overall steepness Stc.
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spectral environment shown is given in Fig. 10b. As seen,

the asymmetry has a very large scatter changing from

20.9 to values exceeding 1. On average, waves have

a slight negative asymmetry, but just before the breaking

asymmetry change sign and become positive. This effect

can be explained by sharp modification of wave shape

before breaking (similar to that shown in Fig. 1).

Kjeldsen and Myrhaug (1980) found that the front

trough of the incipient breaker is shallower compared

to the rear trough, which is a persistent feature of wave

breaking observed in the laboratory (Babanin et al.

2010). This was confirmed by calculations with idealized

wave field, but the data obtained in spectral environ-

ment contradict this conclusion: the front trough Df of

breaking waves (Fig. 10b) is on average deeper than the

rear trough D
r

(Fig. 10c). Note that both characteristics

have a large scatter.

The theoretical analysis of breaking is usually based

on presentation of wave field as a superposition of har-

monic waves. Such restriction leads to the assumption

that that one mode grows, taking the energy from other

modes. If the number of modes is small, such a trans-

formation occurs within the length of the wave group. In

a case of wind sea spectrum, such an interval does not

exist, so we should suppose that growth of energy

leading to breaking occurs everywhere in the area rep-

resented by the wave spectrum. In reality, just a few

waves grow and break in physical space, and this process

is represented in the wave spectrum in a highly distorted

form. A shape of wave approaching to breaking is very

far from a harmonic function. It is illustrated in Fig. 11,

where the ratio of wave height above the mean level

to the rear trough (Fig. 11a) and to the front trough

(Fig. 11b) is represented. As seen, wave height is twice

larger than the depth of troughs, and the depth of the

front trough on average is slightly deeper than the depth

of the rear trough (see also Babanin et al. 2007, 2010).

FIG. 10. (a) The evolution of asymmetry As [Eq. (29)] prior to

breaking as a function of time t, expressed in peak wave periods. (b)

The same characteristics obtained in calculation for spectral envi-

ronment. (c) Evolution of upwind rear depth D
u

normalized by H
s
.

(d) Evolution of the front trough depth Du normalized by Hs. The

styles of curves are as in Fig. 6.
FIG. 11. The evolution of geometrical characteristics prior to

breaking: (a) the ratio of wave height above mean level to depth of

the rear trough Dr ; (b) the ratio of wave height above mean level to

depth of the rear trough Df ; (c) skewness Sk of waves; and (d) the

kurtosis K
u

of waves.
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This effect is confirmed by Figs. 11c,d, which represented

the skewness S
k

and kurtosis K
u

calculated over wave-

length L
m

. As seen, the skewness of waves is on average

is positive; hence, the crests are considerably higher than

the depth of the troughs. Kurtosis on average is negative,

which means that areas with positive elevation are less

extended than areas with negative elevation.

In fact, we came to the conclusion that no single

characteristic considered provides a reliable criterion

for wave breaking in a spectral environment. Note also

the scatter with respect to the mean. All considered

properties can be referred rather to overall character-

istics, whose definition is very sensitive to real shapes of

waves and strongly depends on spectral resolution and

the shape of the spectrum. Not one of these character-

istics [including the nondimensional rate of wave height

growth; Eq. (28)] can be considered as a reliable crite-

rion of breaking onset. If anything, it is rather local slope

near the crest, as outlined below.

Considering Figs. 6a,b,d; 8a–c; and 10a–c, we can

conclude that, contrary to idealized conditions (see Fig.

6c), the simple geometrical characteristics are very un-

stable. The shape of peak waves can be distorted by

smaller waves; therefore, the values of wave height and

wavelength, overall steepness S
tc

, and asymmetry A
s

can

depend on small details. It explains the large scatter of

these characteristics.

Now, we consider the evolution of local characteristics

of wave approaching to breaking: maximum smax and

minimum smin slope in the interval Lm 5 Xtd 2 Xtu

(Figs. 12a,b). As seen, the positive steepness (i.e., steepness

at rear slope) changes insignificantly, whereas steepness

at the front slope can reach very large negative values.

An even more clear characteristic is the sharpness

of wave peak, which is characterized by maximum value

of the second derivative (Fig. 12c). Note that the value of

the second derivative is multiplied by Hs to make these

characteristics independent of model parameters. In the

numerical model, the value of second derivative could

reach several thousands, which forced us to modify the

time step. However, all differential characteristics re-

veal the large scatter: breaking could occur at large and

small steepness and at large and small negative peak

sharpness. The attempts to find the threshold value for

negative steepness were unsuccessful: the process can

be reversible up to very large values of smin, and only

the appearance of a nonunique surface (in fact the onset

of breaking itself) can be accepted for sure as a criterion

of breaking. The same comments can be attributed to

kinematic characteristics of surface: the maximum and

minimum values of component of surface orbital ve-

locity (Figs. 13a–d) and components of acceleration

(individual derivatives of velocity) dU/dt and dW/dt

(Fig. 14). The deceleration of horizontal velocity (Fig.

14b) and acceleration of negative vertical velocity (Fig.

14c) are most clearly pronounced. Again, the scatter of

these characteristics is very large.

Finally, we come to the conclusion that all considered

characteristics cannot serve as criteria of breaking de-

velopment. Some of them exhibit the tendency to in-

stability, but these features are developing during a very

short period preceding breaking, so they correspond to

the process of breaking itself rather than they prescribe

the imminent breaking.

After such a detailed consideration of breaking pro-

cess, we have a right to ask the following question: How

is it possible to use a predictor for breaking in the

spectral environment? Definitely, instability of interface

leading to breaking is an important problem of fluid

mechanics. This process is strongly nonlinear, and the-

ory of breaking is expected to be highly complicated.

The onset of breaking is analogous to the onset of free

convection in a liquid at unstable stratification. The

criterion of convection instability is just an appearance

of the unstable stratification in some part of liquid. It can

FIG. 12. Differential characteristics of surface: (a) the evolution

of maximum value of steepness max(›z/›x); (b) the evolution of

minimum value of steepness min(›z/›x); and (c) the evolution of

minimum value of curvature min(›2z/›x2)Hs taken with opposite

sign. The styles of curves are as in Fig. 6.
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result from different processes, producing the re-

distribution of density. By analogy, we can define a cri-

terion of instability as the appearance of a nonunique

part of surface, when some volume of fluid becomes

unsupported by pressure from the surrounding liquid

and started to move independently under the forces of

inertia and gravitation. The breaking can start under the

influence of many factors, producing the nonuniqueness

of surface. Probably, the main factor is the appearance

of horizontal velocity exceeding the velocity of shape

propagation. It was confirmed in the special numerical

experiments with very high time and space resolution

performed by CS05. It was shown that horizontal ve-

locity in a peak of wave before breaking always ex-

ceeded the phase velocity.

The breaking is a dissipative process, leading to loss of

kinetic and potential wave energy and transition of

energy to the current and turbulence, so it should be

taken into account in different types of models designed

for simulation of wave evolution. The most important

models of such type are wave-forecasting models (e.g.,

the Wavewatch model; Tolman 2008). Evidently, any

criterion of breaking cannot be used in such models,

because they operate with wave spectrum, and the in-

formation on real wave surface is absent. In such models,

the dissipation process is presented in a distorted form.

Because breaking occurs in relatively narrow space in-

tervals separated by broad parts with no breaking, the

spectrum of dissipation rate is distributed mostly in the

high-frequency part of the spectrum, whereas in reality

the breaking reduces the height of the largest wave

represented in a spectral peak. The reason for this

FIG. 13. The evolution of surface kinematic characteristics: (a)

the evolution of maximum value of horizontal velocity U
max

/c
p
; (b)

the evolution of minimum value of horizontal velocity Umin/cp;

(c) the evolution of maximum value of vertical velocity Wmax/cp; and

(d) the evolution of minimum value of vertical velocity W
min

/c
p
. All

velocities are normalized by peak phase velocity c
p
.

FIG. 14. The evolution of surface dynamic characteristics (ac-

celerations normalized by acceleration of gravity): (a) the evo-

lution of maximum value of horizontal particle acceleration

max(dU/dt)g21; (b) the evolution of minimum value of horizontal

particle acceleration min(dU/dt)g21; (c) the evolution of maximum

value of vertical particle acceleration max(dW/dt)g21; and (d) the

evolution of minimum value of vertical particle acceleration

min(dW/dt)g21.
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contradiction is that, in the spectral model the wave field

is assumed to be a superposition of linear modes,

whereas breaking (and growth of freak waves) occurs

because of transformation of a specific wave shape: wave

before breaking as a rule becomes sharp crested.

Therefore, the breaking reduces the height and energy

of nonlinear waves.

5. Conclusions

In this paper, the exact two-dimensional model was

used for investigation of breaking onset, which was

recognized as appearance of the nonuniqueness of sur-

face. This criterion is strict, because up to this moment of

the wave evolution the conservation of integral is sup-

ported with high precision and after this moment the

breaking is imminent. Because of the special strategy of

numerical experiments and archiving the results, the

evolution of wave approaching the breaking was regis-

tered with high accuracy. This last period prior to the

breaking was a subject of investigation. The analysis

of results allowed us to formulate the following con-

clusions:

1) Contrary to considerations based on a small number

of modes, the definition of the wave in a spectral

environment is less certain. In reality, the wave is a

composition of many modes with more or less fixed

phases. Because of dispersion, the wave surface rep-

resents a complicated shape. This is why defining an

individual wave is also uncertain. Statistical charac-

teristics of such a wave usually have large scatter.

2) The spectral approach to investigation of breaking

waves is misleading, because the breaking occurs in

a narrow interval of physical space and its spectral

image is difficult to interpret.

3) The mechanism of breaking in a spectral environ-

ment is quite different than that for idealized situa-

tions when the wave field is represented by a few

modes.

4) The breaking develops very quickly, on average

faster than for half of a peak wave period. The

breaking at some degree is analogous to development

of freak waves, which generally appear suddenly

without any prehistory. Probably, a main reason

of such development can be reversible wave–wave

interaction.

5) There was found no robust predictor for breaking in

the spectral environment threshold or limiting value

of some global wave parameters, which indicate the

imminent breaking. Calculations with exact model

show that criterion based on rate of maximum energy

can be exceeded many times. This means that real

process is much more stable than it was demonstrated

in Song and Banner (2001), where the breaking onset

was identified with development of numerical insta-

bility. The overall characteristics of breaking (e.g.,

overall steepness, asymmetry, overall kurtosis, and

skewness) reveal a weak connection with breaking

process.

6) The differential geometrical and kinematical charac-

teristics like first and second derivatives of elevation,

surface orbital velocity, and individual accelerations

[as well as criterion d; Eq. (28)] indicate a develop-

ment toward breaking clearer, but they rather de-

scribe the process of breaking itself than predict its

onset. At another similar situation, the development

does not necessarily result in a breaking: at some

moment before the breaking the process can become

reversible.

The most striking property of wave breaking in

spectral environment is the absence of any evident rules

and criteria for breaking onset. We can be only sure that

breaking starts, in most cases, at the front slope of the

wave very close to its peak. The breaking occurs as

a result of local instability of flow in areas with large

negative steepness. It is followed as a rule by de-

celeration of the horizontal component of surface or-

bital velocity and negative acceleration of the vertical

component of vertical velocity.

The breaking process develops in intervals that are

much shorter than dominant wavelength. For spectral

description of such modification, the high-frequency

(wavenumbers) modes are needed. However, in reality,

the breaking decreases the energy of a large wave, by

changing its shape. Generally, the spectral approach is

not fully applicable to analysis of individual breaking

cases, which occur in a physical space and cause an un-

clear transformation of wave spectrum.

The role of the modulational instability in wave fields

with a continuous spectrum has to also be mentioned here.

As discussed in the introduction, this is the most likely

cause of dominant breaking in quasi-monochromatic

wave trains, and in such trains it leads to steepness

of Hk/2 ’ 0.44 at the breaking onset. Such a limiting

steepness was also observed in directional wave fields,

and in fact this is the maximal steepness of the imminent

breaker in simulations of the present paper (Fig. 8).

In this regard, results of this paper agree with one-

dimensional simulations of the modulational instability

and with the field observations; that is, if a wave reaches

such steepness, it will definitely break.

The main difference is that in the spectral environ-

ments surface of waves can become unstable and col-

lapse at much lower global steepness. This apparently
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happens because of reasons discussed in conclusion 5

above, and such distortions of the wave shape and of the

regular course of the wave evolution, as well as of the

modulational instability on that matter, would trigger

the breaking earlier. These distortions also seem very

likely in case of random superposition of waves of all

scales. It is likely but not inevitable, and a wave can in

fact proceed all the way to the limiting steepness found

in the clear evolution of modulated wave trains. This fact

indicates that the modulational instability remains ac-

tive in the spectral environments, at least in the range of

steepness considered. Then, the presence of the modu-

lation instability allows us to explain the observation of

multiple signatures of wave breaking in oceanic fields,

which associate such breaking with the modulational

instability as discussed in the introduction.
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