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ABSTRACT Sweep coverage is an important covering technique in mobile crowdsensing, in which
users or participants are employed to periodically monitor a set of points of interest (POIs) each with a
weight indicating the value of its information to be collected. Traditionally, each user proposes a route
along which there are a set of POIs to be monitored. The task is to select a set of participants such
that the total weight of the monitored POIs is maximized. However, in real applications, users should
have the flexibility to offer several preferred routes. This arises our studied maximum Sweep Assignment
problem with Flexibility (maxSAF), where each participant proposes several routes and the new task is to
strategically assign each participant a route among her choices in which way maximizes the total weight
of the monitored POIs. In this paper, we first prove the problem is NP-complete and then devise two
novel approximation algorithms with ratios 0.5 and 0.632. Experiments are also conducted to evaluate
algorithms’ practical performance. The results demonstrate that the proposed approximate methods are
significantly faster (with up to two orders of magnitude runtime reduction) than the exact integer linear
programming solution. In addition, we theoretically study another flexible sweep coverage model in which
it costs to hire each user and the goal is to cover all POIs multiple times (for more complete and accurate
information) while minimizing the total hiring cost.

INDEX TERMS Sweep assignment, NP-complete, flexibility, crowdsensing, sensor networks.

I. INTRODUCTION

CROWDSENSING systems are attracting much interest
from both academia and industry as a convenient way

of collecting information or data of various qualities from
points of interest (POIs) by assigning such tasks to hired
participants (typically users with smart devices or sensors).
Different from the traditional sensor networks which deploy
limited sensors to continuously monitor POIs, crowdsensing
systems rely on many moving and information-collecting
agents. Typical such systems include the information col-
lecting systems VTrack [27] and Nericell [21], environment
noise collecting system NoiseTube [26], personal environ-
mental impact report platform PEIR [22], recommendation
framework SRMCS [28], and Query answering system
CrowdK [16] which is also belong to crowdsourcing.

In traditional model of a crowdsensing system, each
participant candidate first proposes one route. (for instance
a trip between office and home). The system then finds the

set of POIs covered by each route and performs participant
selection. However, in practice such system should be more
flexible in allowing participants to propose several preferred
routes covering different sets of POIs. The benefits are two
folds: i) from the system side, it increases the information
quality (more quality POIs can be covered) or reduces the
total hiring cost (less users can be employed to cover all
POIs); ii) from the users side, the extra flexibility gives them
more freedom and feasibility to participate. As a concrete
example, a user may have several preferred routes between
his office and home, consuming similar traffic time but
are corresponding to totally different sets of POIs. With
our introduced flexibility model, the system can benefit
from better coverage by selecting from a broader range of
routes, and on the other hand the users have more freedom
with their choices. In this context, our goal is to assign
each participant one of her proposed routes, such that the
total number or weight of POIs monitored/covered by the
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assigned routes is maximized. This arises a new maximum
Sweep Assignment problem with Flexibility (maxSAF)
stated in the following:

Definition 1. Let U = {1, 2, . . . , n} be a set of user ids
and P = {1, . . . , m} be a ground set of POI ids, where
user j ∈ U is associated with a collection of routes Rj and
POI i ∈ P is with a weight wi ∈ Z+. Each route l ∈ Rj

is associated with or mapped to a set of POIs Sl ⊆ P to
be monitored by participant j periodically along the route
l. The maxSAF problem aims to assign each j ∈ U with a
route lj ∈ Rj , such that the total weight of their covered
POIs, i.e.

∑
i∈SU

wi with SU =
⋃

j∈U Slj , is maximized.

For briefness, we assume there are q routes in total.
Besides, we use Gj = {Sl|l ∈ Rj} to denote the collection
of sets of POIs that can be monitored by user j along her
proposed routes, and S = ∪j∈UGj to denote the family
of all possible route sets of POIs. To further guarantee the
quality of collected information or data, POIs are required
to be monitored by multiple participants. This arises a
new minimum Multiple Sweep Coverage problem with
Flexibility (minMSCF) as below:

Definition 2. Let U = {1, 2, . . . , n} be a set of user ids
and P = {1, . . . , m} be a ground set of POI ids, where
a user j ∈ U is assigned with a hiring cost cj ∈ Z+ and
a collection of routes Rj . Each route l ∈ Rj is associated
with or mapped to a set of POIs Sl ⊆ P to be monitored
by participant j periodically along the route l. For a given
integer δ > 0, minMSCF aims to select a set of users U ′ ⊆
U and assign each j ∈ U with a route lj ∈ Rj , such that∑

j∈U ′ cj attains the minimum and each POI is covered by
at least δ users, i.e. appears in at least δ sets of {Slj |lj ∈
Rj , j ∈ U ′}.

A. RELATED WORK
The coverage problem for crowdsensing systems is similar
to the coverage problem in wireless sensor networks (WSN),
such as: i) a sensor in a crowdsensing system corresponds
to a participant with a mobile device; ii) both aim to
monitor or cover POIs in a rigid way. In the following,
we first show results on the coverage problem in wireless
sensor networks, which has already attracted many interests
from both academia and industry. Then we survey current
results on POI coverage in crowdsensing systems, and at last
present some theoretical results on the coverage problem
itself.

The coverage problem can be divided into two categories:
traditional continuous coverage and sweep coverage. The
former studies how to use sensors to cover all POIs in an
area (also known as full coverage) or a barrier [4], [17], [19],
[30]. For the latter, the concept of sweep coverage was first
developed from the context of robotics [3] and it requires
periodically monitoring instead of continuously monitoring
POIs. The goal of sweep coverage is to periodically monitor
POIs with as few mobile sensors as possible. Cheng et

al. [18] are the first to put forward a sweep coverage
problem in WSN. They propose the Min Sensor Point Sweep
Coverage problem (MSPSC) to find the minimum number
of sensors to sweep cover POIs, which can be transformed
into the travelling salesman problem and hence proven to
be NP-hard. They further proved the problem cannot be
approximated within a factor of 2 and gave a 3-approximate
algorithm. Xi et al. [29] extends the MSPSC problem to
be more practical – changing from considering static to
dynamic POIs. Gorain et al. [8] provides a 2-approximation
algorithm for solving sweep coverage for POIs and later
devises a distributed approximation algorithm with the same
factor. They have also introduced the problem of sweep
coverage for an area of interest, proven its NP-completeness
and proposed a 2

√
2-approximation algorithm for a square

area. Base on their previous work, Gorain et al. [7] study the
problem of covering objects in the plane as linear segments
and give a 2-approximation algorithm.

Sweep covering POIs via selecting participants is one of
the core issues in crowdsensing. Reddy et al. [25] study
the participant selection problem of crowdsensing for the
first time. The goal is to select a predefined number of
participants to maximize the spatial coverage. Cardone et
al. [2] also propose a participant selection method based
on the mobile crowdsensing platform. The difference is that
in their model people who have more recently traversed the
sensing task area are selected. They devise a greedy method
to choose participants that maximize coverage utility while
taking into consideration the previous coverage by exist-
ing selected participants. In [10], participants are selected
based on their future positions, which are predicted with
a human mobility model. In the work of [15], Krause et
al. propose an algorithm to select a near-optimal subset of
observations, using the demand weighted error reduction as
a context-specific value of information. Liu et al. propose a
novel participant selection method which considers energy-
awareness for smartphone crowd sensing [20]. There are
also some recent and relevant research works about partic-
ipant selection in the crowdsensing paradigm [9], [31].

The above mentioned coverage problems has its root in
theoretical computer science such as the maximum coverage
(MC) problem and the minimum set cover (SC) problem,
which are respectively maxSAF and minMSCF with δ = 1
and when every user proposes exactly one route. It is known
that MC admits an approximation ratio of 1 − 1

e via a
greedy algorithm [12]. The key idea is to repeatedly select a
set with the maximum uncovered weight until all POIs are
covered. The ratio is also known the best possible under the
assumption P 6= NP , since MC admits no factor-1− 1

e + ε
approximation provided P 6= NP [6]. On the other hand,
SC can be approximated within a factor of 1 + ln |S| [13]
but not approximable within c log n unless P = NP for
some c > 0 [6]. Further, SC remains APX−complete and
approximable within factor-

∑k
i=1

1
i − 1/2 [5] even when

the cardinality of all sets is bounded by a given constant
k. Moreover, even if the number of sets containing any
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element is also bounded by a constant c ≥ 2, SC remains
APX−complete [24] and it is approximable within a factor
c for both weighted and unweighted cases [1], [11].

B. OUR RESULTS AND TECHNIQUES

In this paper, we first show that the unweighted decision
version of maxSAF is NP-complete via a reduction from
3SAT, thus consequently it is also NP-hard to solve the
optimization version of maxSAF. We also prove some
accompanying hardness results such as approximation lower
bounds that maxSAF admits no approximation ratio better
than 1 − 1

e under the P 6= NP assumption. For maxSAF,
we first present an approximation algorithm with ratio 1

2 and
time complexity O(mnq) based on a linear program (LP)
primal-dual method [14], where m, n and q are respectively
the numbers of POIs, users and routes. We further improve
the ratio to 1 − 1

e through a randomized LP rounding
technique [14], which however requires solving LP and
hence having a higher time complexity O((m+ n+ q)3.5).
As we will show later in Theorem 6, this ratio is al-
ready tight (the best possible) for the maxSAF problem.
Besides theoretical analysis, we also empirically evaluate
our algorithms primal-dual and randomized LP rounding
for maxSAF through computer experiments. The results
demonstrate their superior performance against the exact
algorithm baseline of solving the problem ILP. Note that we
compare our algorithm with ILP solution because maxSAF
is practically a new problem for which there aren’t other
baselines to compare with except ILP.

In addition, with a dual-fitting technique [14] we present
an O(lnm)-approximation greedy algorithm for minMSCF
for the special case that each participant proposes only one
route. We have theoretically argued that its general case does
not admit any non-trivial approximation.

C. ORGANIZATION

The remainder of this paper is organized as follows: Sec-
tion II proves the necessary hardness results for problems
maxSAF and minMSCF; Section III extensively studies the
maxSAF problem with novel algorithms and their experi-
ments; Section IV studies the minMSCF theoretically and
presents a dual-fitting algorithm; and Section V concludes
the paper.

II. COMPUTATIONAL COMPLEXITY OF MAXSAF
In this section, we will first prove the NP-completeness of
the decision maxSAF by giving a reduction from 3SAT and
then show the inapproximability result of maxSAF via an
L-reduct ion from the maximum coverage (MC) problem.
Note that, we can not easily construct a reduction from MC
to prove the NP-completeness of the decision maxSAF,
because MC model uses only k users while maxSAF can
use as many users as needed.

A. THE NP-COMPLETENESS OF MAXSAF
The decision maxSAF is: given a set of POIs P =
{1, . . . , m}, a set of users U = {1, 2, . . . , n} in which j
is associated with a set of routes Rj , and a fixed integer K.
The aim is to determine whether there exists an assignment
that assigns each participant j with a route r ∈ Rj , such that
the number of POI monitored by at least one participant is
not less than K. Next we shall prove the following theorem:

Theorem 3. The (unweighted) decision maxSAF is NP-
complete even when K = |P |.

Hence, maxSAF is NP-hard immediately from the above
theorem.

The decision maxSAF is apparently in NP , because any
feasible solution to decision maxSAF is a polynomial size
certificate and can be verified within polynomial time. It
remains only to give the reduction from 3SAT to the decision
unweighted maxSAF when K = |P |.

In an instance of 3SAT, we are given a set of variable
X and a set of clauses C each of which is the OR of three
literatures that is a variable of X or its negation. Then the
corresponding instance of decision unweighted maxSAF is
constructed as below:

1) For each clause Ci ∈ C, add a POI i to P , which is
initially an empty set; /*Construction of P .*/

2) For each variable xj ∈ X , add a user j with
two routes Rj = {1, 2}, which are associated with
two sets Sj,1 = {i|Ci contains xj} and Sj,2 =
{i|Ci contains xj}. Apparently, Sj,1 and Sj,2 are the
sets of POIs corresponding to the clauses containing
xj and xj , respectively.

An example is depicted as in the following. For an instance
of 3SAT:

C1 = x1 ∨x2 ∨x4, C2 = x1 ∨x2 ∨x3, C3 = x2 ∨x3 ∨x4,

C4 = x1 ∨ x3 ∨ x4, C5 = x1 ∨ x2 ∨ x4, C6 = x2 ∨ x3 ∨ x4,

the corresponding instance of maxSAF is: P =
{1, 2, 3, 4, 5, 6} and U = {1, 2, 3, 4}, where Rj and its
associated collection Gj of POI sets are as in the following:

G1 = {S1,1 = {1, 4, 5}, S1,2 = {2}};
G2 = {S2,1 = {3, 6}, S2,2 = {1, 2, 5}};
G3 = {S3,1 = {2, 6}, S3,2 = {3, 4}};
G4 = {S4,1 = {1, 3, 5, 6}, S4,2 = {4}}.

Then the correctness of Theorem 3 can be immediately
obtained from the lemma below:

Lemma 4. Any instance of 3SAT is satisfiable iff the
constructed instance of decision maxSAF is feasible.

Proof: Suppose an instance of 3SAT is feasible, then
there exists a true assignment of the variables of X , say
τ(x)→ {true, false} for ∀x ∈ X , such that each clause of
C is true. A solution to the corresponding decision maxSAF
instance can be constructed as follows: For each User j, if
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τ(xj) = true, then assign Slj := Sj,1; Otherwise, assign
Slj := Sj,2. Because τ satisfies all the clauses, the sets in
∪j∈USlj will accordingly cover all the POIs. Besides, since
xj is either true or false (but not both), only one of the sets
in {Sj,1, Sj,2} can be selected. Hence, {Slj |j ∈ U} is a
feasible solution to the instance of decision maxSAF.

Conversely, suppose we have a feasible solution to
maxSAF, say {Slj |j ∈ U}, in which the sets collectively
cover all the POIs. Then the true assignment of the variables
of X is as below: if lj = 1, then set τ(xj) = true;
Otherwise, set τ(xj) = false. Because lj equals either 1
or 2, xj will be assigned either true or false. Moreover, the
assignment τ can satisfy all the clauses, because the sets of
{Slj |j ∈ U} collectively cover all the POIs. Therefore, τ is
a feasible solution satisfying the instance of 3SAT.

Moreover, our reduction from 3SAT to maxSAF can be
easily modified to obtain a reduction from 3-Occurrence
3SAT [14], a special case of 3SAT in which each variable
appears at most 3 times. Then, because 3-Occurrence 3SAT
is known NP-complete, the unweighted decision maxSAF
problem remains NP-complete even for a very special case:

Corollary 5. The unweighted decision maxSAF problem is
NP-complete even when K = |P |, each user has only two
routes, each route associated with a set contains at most 3
POIs, and each POI appears in at most 3 route sets of the
users.

It is worth to note that, the decision form of maximum
coverage, i.e. a special case of decision maxSAF when each
user has only one route, is polynomial solvable. That is
because it takes only linear time to simply verify whether
the union of all the routes contain all the POIs in P .

B. INAPPROXIMABILITY
For maxSAF as an optimization problem we can show below
that it is as hard as approximating MC, which admits no
approximation algorithm with ratio better than 1 − 1

e (the
approximation lower bound) unless P 6= NP [6]. Even
worse for the general problem of minMSCF where each
user proposes multiple routes, we also prove below that the
problem does not admit any approximation, which is the
reason why we only consider the special case when each
user proposes only one route.

Theorem 6. The maxSAF problem can not be approximated
with a factor of (1− 1

e + ε) for any fixed real number ε > 0,
unless P = NP .

Proof: We need only to give an L-reduction from MC.
In any instance of the maximal coverage problem, we are
given an integer k, P = {1, . . . , m} in which i ∈ P has
a nonnegative weight wi, and a number of sets S1, . . . , Sn

that are subsets of P . The goal is to select k sets from
{S, . . . , Sn}, such that the number of POIs covered by the k
sets is maximized. The construction of maxSAF is to simply
construct a set of k users U = {1, . . . , k}, where j ∈ U
is associated with Rj = {1, . . . , n}, and the collection for

Rj is Gj = {Sj
1, . . . , S

j
n} and Sj

i = Si. That is, G1, . . . ,Gk
are actually k identical copies of {S, . . . , Sn}.

Suppose we have a solution to maxSAF by select-
ing a set Slj for each Gj , ∀j. Then, {S1

l1
, . . . , Sk

lk
} =

{Sl1 , . . . , Slk}, the collection of the k selected sets, is
apparently a solution to MC with an identical weight-sum.
Conversely, let a collection of k sets, say {S1, . . . , Sk}, be
an solution of the instance of MC. Then {S1

1 , . . . , S
k
k} is

immediately a solution to maxSAF with the same weight.
This completes the proof.

Theorem 7. The general minMSCF problem does not admit
any non-trivial approximation, unless P = NP .

Proof: From Theorem 3 we know that the decision
maxSAF is NP-complete when K = |P |. Then, suppose
there is a non-trivial approximation algorithm for minMSCF
when δ = 1, then the algorithm is immediately a polynomial
time algorithm for decision maxSAF when K = |P |, be-
cause decision maxSAF with K = |P | is indeed minMSCF
but without the minimization objective. This contradicts
with the assumption P = NP .

III. ALGORITHMS FOR MAXSAF
In the section, we will first give an integer linear program-
ming (ILP), together with its relaxation and the dual, for
the the maximum Sweep Assignment problem with Flexi-
bility (maxSAF). Then we present a primal-dual algorithm
that can achieve an approximation ratio of 0.5, and an
LP randomized rounding algorithm which can achieve an
approximation ratio of 1− 1

e .

A. AN ILP FORMULATION
We use xl ∈ {0, 1} to denote whether a route Sl is selected,
and use yi ∈ {0, 1} to denote whether the ith POI is
covered. Then the integral linear programs for maxSAF is
as below (ILP (1)):

max
∑m

i=1 wiyi

s.t. yi ≤
∑

l: i∈Sl
xl ∀i ∈ P (1)∑

l: l∈Rj
xl ≤ 1 ∀j ∈ U (2)

xl ∈ {0, 1} ∀l ∈ ∪j∈URj

yi ∈ {0, 1} ∀i ∈ P

We can easily show ILP (1) correctly models maxSAF as
below:

Proposition 8. There exists a feasible solution to ILP (1)
iff there exists a corresponding solution to maxSAF.

Proof: Assume that there exists a feasible solution to
maxSAF. Then we set xl = 1 if route Sl is selected in the
solution and xl = 0 otherwise; Similarly, yi = 1 if the ith

POI is covered and yi = 0 otherwise. Hence, a solution
to the ILP is obtained. It remains to show the solution is
feasible against Inequality (1) and (2) within the ILP. Since
the solution to maxSAF must satisfy the group constraint,
Inequality (2) holds trivially. Moreover, the ith POI, ∀i, is
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covered only if there exists a route which contains the POI
is selected. That is, among the routes which contains the
ith POI, at least one of them must be selected. So we have∑

l: i∈Sl
xl ≥ 1. Then since yi ∈ {0, 1},

∑
l: i∈Sl

xl ≥ yi
(i.e. Inequality (1)) must hold.

Conversely, assume that there exists a feasible solution to
ILP (1). Then we select route Sl iff xl = 1, and obtain a
solution to maxSAF. It remains to show the feasibility of
the solution. From Inequality (2), clearly the solution will
satisfy the group constraint. In addition, for each POI i with
yi = 1, there must exist at least a route Sl with xl = 1 and
i ∈ Sl following Inequality (1). That is, each POI i with
yi = 1 will be covered in the solution to maxSAF. This
completes the proof.

B. A PRIMAL-DUAL ALGORITHM
We will first give a further reduced linear programming (LP)
relaxation of ILP (1), since an immediately relaxation of ILP
(1) can not have a promising dual. Note that yi ∈ {0, 1}
can be relaxed to yi ≤ 1, as the aim of the formula
is to maximize

∑n
i=1 wiyi and wi ≥ 0 holds for ∀i.

Consequently, xl ∈ {0, 1} can be relaxed to xl ≥ 0. So
the LP relaxation of maxSAF is as below (LP (2)):

max
∑m

i=1 wiyi

s.t. yi −
∑

l: i∈Sl
xl ≤ 0 ∀i ∈ P∑

l: l∈Rj
xl ≤ 1 ∀j ∈ U

xl ≥ 0 ∀l ∈ ∪j∈URj

yi ≤ 1 ∀i ∈ P

By the LP theory, we can immediately have the dual as
follows (LP (3)):

min
∑m

i=1 βi +
∑n

j=1 γj

s.t.
∑

j: l∈Rj
γj −

∑
i∈Sl

αi ≥ 0 ∀l ∈ ∪j∈URj

αi + βi ≥ wi ∀i ∈ P
αi, βi, γj ≥ 0 ∀i ∈ P, ∀j ∈ U

For the relationship between the primal and dual as above,
we have the following property:

Proposition 9. For the primal and the dual LP, we have
min

∑m
i=1 βi +

∑n
j=1 γj ≥ max

∑m
i=1 wiyi.

The key idea of the primal-dual algorithm is to construct
a feasible solution to the dual, and in the meantime, while
also construct a feasible solution of maxSAF accordingly.
The key of the construction is to guarantee that the value
of the latter is not less than a bounded times of the former.

The main steps of constructing a dual solution proceeds
as below: Firstly, set αi = wi, βi = 0 and γj =
maxl: l∈Rj

{∑
i∈Sl

αi

}
as their initial values; Secondly, find

a promising Sl, and then increase the value of βi for each
i ∈ Sl until βi = wi, while in the procession decrease αi

accordingly to keep αi + βi = wi. To find the promising
Sl, our algorithm selects γj∗ = max{γj |j ∈ U}, and
then Sl∗ ∈ Gj∗ , such that w(Sl∗) attains maximum, i.e.

Algorithm 1 A Primal-dual Algorithm for maxSAF.
Input: U = {1, . . . , n}, P = {1, . . . , m}, Gj = {Sl|l ∈
Rj} where Sl ⊆ P , G = {Gj |j ∈ U} and a weight wi for
each i ∈ P ;
Output: S ′ = {Slj |j ∈ U}, a solution to maxSAF.
1: S ′ := ∅;
2: For each POI i do
3: Set αi := wi, βi := 0;
4: EndFor
5: For each Sl do
6: Set zl :=

∑
i∈Sl

αi;
7: EndFor
8: For each Gj do
9: Set γj := maxl:Sl∈Gj {zl};

10: EndFor
11: Find Gj∗ such that γj∗ = max{γj};
12: Find l∗ such that Sl∗ is the set with maximum weight

w(Sl∗) in Gj∗ , and set lj := l∗;
13: For each POI i ∈ Sl∗ do
14: Set βi := wi and αi = 0;
15: For each Sl that contains i, set zl := zl − βi and

Sl := Sl \ {i};
16: EndFor
17: Set G := G \ {Gj∗};
18: If G 6= ∅ then Go to Step 8;
19: Else Return S ′ = {Slj |j ∈ U}.

w(Sl∗) = max{w(Sl)|Sl ∈ Gj∗}. The detailed algorithm is
formally as in Algorithm 1.

Lemma 10. The time complexity of Algorithm 1 is O(mnq+
n2), where m, n and q are respectively the numbers of POIs,
users and routes.

Proof: Clearly, Step 8 to Step 18 as the out-loop will
be repeated for O(n) times, in which Step 11 and Step 12
respectively take O(n) and O(q) time, the for-loop starting
at Step 13 takes O(qm) time. Other steps takes relatively
trivial time, so O(mnq + n2) time in total.

Theorem 11. The approximation ratio of Algorithm 1 is 1
2 .

Proof: According to the algorithm, βi = wi if there
exists a set S ⊇ {i} that is selected and added in to S ′ in
Step 14 and 15, and βi = 0 otherwise. That is

m∑
i=1

βi ≤
∑

i∈S∈S′
wi. (3)

Assume that Ŝl∗ is the set of POIs in Sl∗ when it is
selected for Gj∗ . Then clearly, initially in the iteration we
have

∑
i∈Ŝl∗

βi = zl∗ = γj∗ . Afterwards as βi is non-
decreasing, and γl is non-increasing, then

∑
i∈Ŝl∗

βi ≥ γj∗
holds when the algorithm terminates. Moreover, let S be
another set that is selected for G ∈ G , G 6= Gl∗ , then we
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have Ŝj∗ ∩ Ŝ = ∅. Therefore, we have
m∑
i=1

βi =
∑
Gj∈G

∑
i ∈ Ŝ

Ŝ selected for Gj

βi ≥
∑

l:Gj∈G

γj . (4)

Combining Inequality (3) and (4) immediately yields a
lower bound for the weight of the output of Algorithm 1:

∑
i∈S∈S′

wi ≥
1

2

(
m∑
i=1

βi +
∑

l:Gl∈G

γl

)
.

Then combining with Proposition 9, we have
∑

i∈S∈S′ wi ≥
1
2w
∗
LP ≥ 1

2wOPT , where w∗LP is the weight of an optimal
solution to the primal LP (2) and wOPT is the weight of an
optimal solution to maxSAF. This completes the proof.

We can show the ratio analysis is already tight for Algo-
rithm 1. An instance in which the algorithm can only output
a solution with half of the total weight of an optimal solution
is as follows. Let P = {1, . . . , 2n} be the set of POIs with
uniform weight, and U = {1, . . . , n, n+1, . . . , 2n} be the
set of users where each j ∈ {1, . . . , n} ⊂ U is associated
with two routes j1 and j2, whose POI sets are respectively
Sj1 = {j} and Sj2 = {n+ j} that each containing exactly
one POI; while each j ∈ {n+1, . . . , 2n} ⊂ U is associated
with exactly one route, say j1, whose POI set Sj1 = {n+j}
contains only one POI. Then Algorithm 1 would select
{n + j} for each user j ∈ {1, . . . , n} ⊂ U in worst case,
resulting in a total weight n; while the optimum solution,
which assigns {j} to each user j ∈ U , is with a total weight
2n.

Corollary 12. The approximation ratio 1
2 is tight for Algo-

rithm 1.

Note that the example above also indicates that the
classical greedy algorithm, which was proven with a ratio
1 − 1

e for the classical MC problem due to Nemhauser et
al. [23], can not have a ratio better than 1

2 for maxSAF.

C. A RANDOMIZED LP ROUNDING ALGORITHM
In the subsection, we will develop an approximation algo-
rithm by employing the randomized LP rounding technique
against LP (2), improving the ratio 0.5 of the primal-dual
algorithm to 1 − 1

e . Note that the ratio is already the best
possible according to Theorem 6.

The key idea of our LP randomized rounding algorithm is
first to compute an optimum solution to LP (2) and then to
round the variables accordingly. It is known that an optimum
solution to LP (2) can be computed in polynomial time
[14]. So it remains only to show the method rounds an
optimal (but fractional) solution of LP (2), say (x∗, y∗), to
an integral solution of maxSAF. However, there exist two
difficulties for the rounding: The first is that, the two vectors
of variables x∗ and y∗ are not independent with each other;
the second, even inside the vector x∗, two variables xl and
xl′ can also be dependent with each other. E.g., assuming

Algorithm 2 A randomized algorithm for maxSAF.
Input: A set of POIs P = {1, . . . , m} where the ith POI is
associated with a weight wi, and U a set of users that j ∈ U
is associated with Rj and Gj , where Gj is a collection of
sets of POIs;
Output: S ′ a solution to maxSAF.
1: S ′ := ∅;
2: Solve LP (2) against the instance of maxSAF

by Karmakar’s algorithm [14], and obtain an optimal
solution (x∗, y∗);

3: For each j ∈ U do
4: Select a set S from Gj , such that the probability of

S = Sl is proportional to x∗l ∈ x, i.e. x∗l∑
l∈Rj

x∗l
;

5: S ′ := S ′ ∪ {S};
6: EndFor
7: Return S ′.

that Sl and Sl′ both belong to an identical G, then if xl = 1,
xl′ must be 0 according to Constraint (2) as in ILP (1). For
the first difficulty, our algorithm will only round xl with
probability, and set yi to 0 or 1 according to the value of
xl for which Sl contains the ith POI. For the second, we
will model rounding xl as picking exactly one route for
each user. However, which route to pick is depending on a
probability proportional to xl. Therefore, the rounding step
of our algorithm is mainly as: For each user j, select a route
l from Gj that Sl is selected with a probability proportional
to xl. Then the formal layout of the whole algorithm is as
in Algorithm 2.

Apparently, the runtime of Algorithm 2 is dominated by
the time of solving LP (3), which is O((q +m + n)3.5L)
by employing Karmakar’s algorithm [14], where m, n and
q are respectively the numbers of POIs, users and proposed
routes, L is the length of the LP input in bits. So we have
the following Lemma for the time complexity of Algorithm
2:

Lemma 13. Algorithm 2 runs in time O((q+m+n)3.5L).

Theorem 14. Algorithm 2 is a randomized factor-(1 − 1
e )

approximation algorithm for maxSAF.

Proof: Because x∗l∑
l∈Rj

x∗l
is the probability that Sl is

selected and
∑

l∈Rj
x∗l ≤ 1, Sl is selected with probability

not less than x∗l . Then the probability of the ith POI not
being covered is:
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P [the ith POI not covered] ≤
∏

l: i∈Sl

(1− x∗l )

≤
(∑

l: i∈Sl
(1− x∗l )
hi

)hi

=

(
1−

∑
l: i∈Sl

x∗l
hi

)hi

≤
(
1− y∗i

hi

)hi

where hi is the number of sets containing i. The first
inequality is from the famous inequality of arithmetic and
geometric mean, while the second equality and inequality
can be obtained by simple calculation.

So the probability of the ith POI being covered is:

P [the ith POI is covered] ≥ 1−
(
1− y∗i

hi

)hi

.

Let f(y∗i ) = 1−
(
1− y∗i

hi

)hi

. By calculation, we have

1− y∗i
hi
≤ e−

y∗i
hi .

Then f(y∗i ) = 1 −
(
1− y∗i

hi

)hi

≥ 1 −
(
e
− y∗i

hi

)hi

= 1 −

e−y
∗
i , and f(0) = 0 and f(1) = 1− e−1. Further, we have

f ′′(y∗i ) ≤ 0 when 0 ≤ yi ≤ 1. So f(y∗i ) is concave. Then
we know that

f [λx+ (1− λ)y] ≥ λf(x) + (1− λ)f(y).

Let x = 1 and y = 0 for the above formula, then f(λ) =
f(λ + (1 − λ) · 0) ≥ λf(1) + (1 − λ)f(0) = (1 − e−1)λ.
Therefore,

P [the ith POI is covered] ≥ f(y∗i ). (5)
≥ y∗i f(1)

= y∗i
(
1− e−1

)
Let wi be the weight of the ith POI. Apparently, the

weight of an output of Algorithm 2, say SOL, is w(SOL) =∑m
i=1

(
P [the ith POI is covered] · wi

)
. Then combining In-

equality (5) yields

w(SOL) ≥
m∑
i=1

(
1− e−1

)
y∗iwi

=
(
1− e−1

) m∑
i=1

y∗iwi

= (1− e−1)w(LP )
≥ (1− e−1)w(OPT )

where w(LP ) is the weight of an optimal solution to LP (2),
which is not less than w(OPT ), the weight of an optimal
solution to maxSAF. This completes the proof.

FIGURE 1: Practical approximation ratio of PD and RA for
maxSAF in small scale.

D. SIMULATION EXPERIMENTS
In this subsection, for maxSAF we shall evaluate the practi-
cal performance of Algorithm 1 (the primal-dual algorithm,
denoted as PD) and Algorithm 2 (the randomized algorithm,
RA), by comparing their solution quality and runtime with
each other, and also against the optimal exact algorithm
(EA) from solving ILP (1). Also note that for the minMSCF
problem, because our solutions Algorithm 3 and 4 have
much more theoretical value rather than practical value, we
will not evaluate them in the next section via simulation
experiments.

Experimental Setup
The simulation experiments are carried out on a PC with
Intel i5 4430 processor and 8G DDR3 memory and based
in Windows 10 operating system. The algorithms are im-
plemented using Python 2.7, in which we adopt the GLPK
library1 to solve ILP and LP.

Since solving ILP (i.e. EA) generally requires high
runtime (typically exponential) which is not scalable, the
simulation experiments are divided into two groups: small
scale and large scale. For generated small scale datasets or
data points as adopted in Figure 1 and left part of Figure
3, the number of users and POIs are respectively between
60-100 and 300-500. For the large scale as shown in Figure
2 and right part of Figure 3, the number of users and POIs
are respectively in the ranges of 100-300 and 500-1500.
POI data points are then allocated to users randomly, at the
probability (the number of POIs)∗5

(the number of user)2 . In the experiments, ten routes
are generated for each user, where an allocated POI to a user
is again randomly and uniformly distributed in three of the
ten routes to ensure legitimate instances. The experiments
generate 1000 instances for each size of maxSAF and the
reported results below are averaged figures.

Comparison of Solution Quality
In this study, solutions from PD and RA are either compared
with each other or compared against the optimal solutions

1https://www.gnu.org/software/glpk/
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FIGURE 2: Ratio performance of PD vs RA for maxSAF in
large scale.

FIGURE 3: Runtime comparison of EA, RA and PD in
small and large scale.

of EA, obtained by directly solving ILP (1) using the
GLPK library. Figure 1 side-by-side compares the practical
approximation ratios of PD and RA in small scale, i.e. the
weight sum of the covered POIs output from PD and RA
comparing to that of EA. As shown in Figure 1, RA has
a slightly better coverage weight than PD, matching our
theoretical ratio analysis, where RA and PD respectively
reach up to 97.5% and 94% of the optimal solution. Another
interesting finding is that these practical results overall are
significantly better than the theoretical approximation ratios
of RA and PD, which are respectively 0.63 and 0.5. With a
little more thought, these results are nevertheless reasonable,
because the theoretical ratios are for worst case instances
while the experimental results are generally for average
cases.

Further as shown in Figure 2, the case of a larger scale,
the total weight (i.e. the solution value) of the covered POIs
from RA is only slightly better than that of PD with up to
relatively 1.045 times. Moreover, there is a clear trend that
the performance gap between the two algorithms narrows
down as the problem size increases.

Comparison of Runtime
In this study, the practical runtimes of EA, PD and RA are
reported. The left part of Figure 3 compares the runtime

of EA, RA and PD in small scale, while the right part
compares only RA and PD in a larger scale as EA solver
started to take too long to complete. For small scale data,
the running time of RA is already significantly better than
EA, and when the problem size increases, the gap between
the two algorithms grows. In particular, at the point of 100
users and 500 POIs, EA is about 120 times slower than RA.
Moreover, the runtime of PD is even much better (below 0.1
second) and harder to visualize in these small scale tests.

For the larger scale, the right part of Figure 3 depicts
that the runtime of PD is much better than RA which is as
expected from our theoretical analysis. This makes PD the
fastest and probably the most preferable one among all three
algorithms only with minimally sacrificed solution quality.
Also the performance gap between PD and RA grows as the
problem size increases: at the point of 300 users and 1500
POIs, RA takes more than 30 times of the runtime than PD.

IV. A DUAL-FITTING ALGORITHM FOR MINMSCF
In this section, we shall first give a greedy algorithm for
minMSCF for the case that each user proposes one route.
Then by employing the linear programming (LP) Dual-
fitting technique and following a same line as in [14], we
prove that the proposed algorithm has an approximation
ratio of O(lnm), i.e. the solution output by the algorithm
has a cost at most O(lnm) times of the optimum cost.

A. A GREEDY ALGORITHM FOR MINMSCF
Our algorithm is inspired by the classical greedy algorithm
for set cover [13]. In general, the algorithm is composed by
iterations, each of which selects a currently “best” set, until
all the POIs are covered. It remains to defined a currently
“best” set. Let Ŝj be the set of POIs that have not yet been
δ-covered in Sj at the beginning of the an iteration. Then the
average coverage cost of Sj exactly before the pth iteration
is cj

|Ŝj |
. Then, the algorithm is to repeatedly select Sj with

minimum average coverage cost. Formally, the layout of the
algorithm is as in Algorithm 3.

Lemma 15. Algorithm 3 outputs a solution with a coverage
cost at most O(lnm) times of that of an optimum solution.

Here we can not simply extend the ratio proof for Set
Cover with the main idea to sum up the cost of covering
new POIs in iterations, because we do not know how
to bound the cost of newly generated δ-covered POIs.
Instead we propose a dual-fitting algorithm that is identical
to Algorithm 3. By arguing its ratio being O(lnm), we
equivalently prove Lemma 15.

Lemma 16. Algorithm 3 runs in time O(n2 +mn).

Proof: Apparently, the while-loop that starts from Step
2 of Algorithm 3 iterates for at most O(n) times, since there
are n sets (each for one user) in S and in each iteration
the number of sets decreases at least one. Inside the while-
loop, Step 6 takes at most O(n) time to select the best
Sl while the for-loop in Step 8 clearly takes O(m) time

8 VOLUME 4, 2016
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Algorithm 3 A greedy algorithm for minMSCF.
Input: A set of POIs P = {1, . . . , m}, a set of users U =
{1, . . . , n} in which each j ∈ U is associated with a cost
cj , a route set of POIs Sj , an integer δ > 0, and S =
∪j∈UGj = {Sj |j ∈ U};
Output: S ′, a solution to minMSCF.
1: S ′ := ∅, p1 = · · · = pn = 0;

/* pi is the number of sets in S ′ containing i. */
2: While P 6= ∅ do

/* P contains the POIs that are not yet δ-covered. */
3: If S = ∅ then
4: Return “Infeasible”;
5: Endif
6: Select Sj ∈ S with minimum cj

|Sj | ;
7: S ′ := S ′ ∪ {Sj}, and S := S \ {Sj};
8: For each i ∈ Sj do
9: pi := pi + 1;

10: Endfor
11: For each i ∈ Sj do
12: If pi ≥ δ then /* i is δ-covered. */
13: P := P \ {i};
14: For each S 6= Sj in S that contains i do
15: S := S \ {i};
16: Endfor
17: Endif
18: Endfor
19: Endwhile
20: Return S ′.

as |Sj | = O(m). Counting the while-loop, Step 6 and 8
take O(n2) and O(nm) time, respectively. It remains to
calculate the time for executing Steps 11-18. Note that each
POI i can be removed from P for only once, so the for-
loop starting from Step 14 is executed for at most O(m)
times, each of which takes O(n) time. That is, Steps 11-18
take O(mn) time, equivalent to the total time consumed by
Step 8. Therefore, the time complexity of the algorithm is
O(n2 +mn).

B. THE RATIO PROOF VIA DUAL-FITTING
Denoting by xj ∈ {0, 1} whether Sj is selected, we have
the LP relaxation for minMSCF as LP (4) below:

min
∑n

j=1 xjcj

s.t.
∑

j: i∈Sj
xj ≥ δ i ∈ P (6)

xj ≥ 0

Note that Constraint (6) guarantees that each POI will be
covered by at least δ sets. Then we immediately have its
dual LP (5):

max
∑m

i=1 δyi

s.t.
∑

i:i∈Sj
yi ≤ cj j ∈ U (7)

yi ≥ 0 i ∈ P (8)

Algorithm 4 A Dual-Fitting algorithm for minMSCF.
Input: U = {1, . . . , n}, P = {1, . . . , m}, an integer δ >
0, and S = {Sj |j ∈ U}where Sj ⊆ U is with cost cj ;
Output: x, an invalid dual solution that is corresponding to
a solution to minMSCF.
1: S ′ := ∅;

/* ui is the number of sets in S ′ containing i. */
2: While P 6= ∅ do

/* P contains the POIs that are not δ-covered. */
3: Select Sj ∈ S with minimum cj

|Sj | ;
4: S ′ := S ′ ∪ {Sj}, and S := S \ {Sj};
5: Set yi =

cj
|Sj | for each i ∈ Sj ;

6: For each i ∈ Sj do
/* The post-processing after the selection of Sj . */

7: If i is δ-covered then
8: P := P \ {i};
9: For each S ∈ S that contains i do

10: S := S \ {i};
11: Endfor
12: Endif
13: Endfor
14: Endwhile

The following proposition is the start point of the dual-fitting
algorithm, and known can be easily obtained by the theory
of linear programming:

Proposition 17. For the primal LP (4) and the dual LP (5),
we have min

∑n
j=1 xjcj ≥ max

∑m
i=1 δyi.

Following the framework of the dual fitting method, we
will first construct an invalid solution to the dual LP by
a greedy algorithm; then we show that a feasible solution
can be obtained by shrinking the solution within a bounded
times. Then by Proposition 17, the shrunk solution is not
larger than an optimal solution of the primal, and hence we
get the ratio of the algorithm.

For the first task, we will show how to produce an invalid
solution alongside with Algorithm 3. Let Û be the set of
indicators of the unselected sets. Then initially we have
Û = {1, . . . , m}. Let Ŝj be the set of elements in Sj that
currently have not yet been δ-covered. Then the assignment
is, each time when Ŝj with the minimum cj

|Ŝj |
is selected (as

in Algorithm 3), we set yi =
cj

|Ŝj |
. The process of producing

an invalid solution to the dual is formally as in Algorithm
4.

Note that the produced solution y of Algorithm 4 can be
infeasible against the dual, since it might violate Constraint
(7). So to prove the ratio, we show that by shrinking y by
O(lnm) times, a new solution y′ can be obtained from i.e.
y′i =

yi

lnm , ∀i, is a dual feasible solution.

Theorem 18. The dual solution y′ satisfies Constraint (7).

Proof: Assume Sj is picked in the pth iteration, and
Th, 1 ≤ h ≤ p, is the set of the POIs in Sj which was
δ-covered exactly after the hth iteration but not before. By

VOLUME 4, 2016 9



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2868931, IEEE Access

Peihuang Huang et al.: Efficient Algorithms for Flexible Sweep Coverage in Crowdsensing

the definition of Th, when each POI i ∈ Th is eventually
δ-covered by picking Sh, we have yi = ch

|Ŝh|
. Then because

of the minimality rule over the ratio ch
|Ŝh|

during picking

Sh, we have ch
|Ŝh|
≤ cj

|Sj |−
∑h−1

l=1 |Tl|
where

∑h−1
l=1 |Tl| is the

number of POIs of Sj that are already k-covered before the
hth iteration. Therefore,∑

i:i∈Sj

yi =

p∑
h=1

|Th|
ch

|Ŝh|

≤
p∑

h=1

|Th|
cj

|Sj | −
∑h−1

l=1 |Tl|

≤ cj
p∑

h=1

|Th|
|Sj | −

∑h−1
l=1 |Tl|

.

By the definition of definite integration, we get
p∑

h=1

|Th|
|Sj | −

∑h−1
l=1 |Tl|

≤
ˆ |Sj |

1

1

z
= ln |Sj |.

So
∑

i:i∈Sj
yi ≤ cj ln |Sj | and hence∑

i:i∈Sj

y′i =
∑

i:i∈Sj

yi
lnm

≤ cj ln |Sj |
lnm

≤ cj .

Therefore, the solution y′ satisfies Constraint (7). This
completes the proof.

By Proposition 17, for the feasible solution y′,
we have

∑m
i=1 ky

′
i ≤

∑n
j=1 xjcj . Then combin-

ing
∑m

i=1 ky
′
i = 1

lnm

∑m
i=1 kyi immediately yields∑m

i=1 kyi ≤ lnm
∑n

j=1 xjcj , and eventually proves the
correctness of Lemma 15. It is worth noting that the ratio
is already tight for minMSCF, since the set cover problem
which can be embedded in this minMSCF special case
admits no approximation ratio better than O(lnm) unless
P = NP [6].

V. CONCLUSION
In this paper, we proposed the maximum Sweep Assignment
problem with Flexibility (maxSAF) and resolved its hard-
ness, i.e. it is NP-complete even to decide if an instance
of maxSAF contains a complete POI cover. To solve this
problem, we first devised an approximation algorithm with
a time complexity O(mnq) and approximation ratio 1

2 and
then improved the factor to the tight ratio 1 − 1

e with the
runtime growing to O((m + n + q)3.5L) instead, where q
is the number of routes and L is the length of input in
bits. To complement these theoretical results, we also eval-
uated our algorithms via computer experiments to conclude
their significant runtime gains in practice. In addition, we
proposed the minimum Multiple Sweep Coverage problem
with Flexibility (minMSCF) to encourage collecting higher
quality sensor data. We first proved its general case does
not admit any non-trivial approximation and then for its
special case where each user proposes one route of POIs,
we presented a greedy algorithm with time complexity

O(n2 + mn) and theoretically analyzed that it is with a
logarithmic approximation factor.
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