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Abstract

Bayesian parameter estimation is fast becoming the language of gravitational-wave astronomy. It is the method by
which gravitational-wave data is used to infer the sources’ astrophysical properties. We introduce a user-friendly
Bayesian inference library for gravitational-wave astronomy, BILBY. This PYTHON code provides expert-level
parameter estimation infrastructure with straightforward syntax and tools that facilitate use by beginners. It allows
users to perform accurate and reliable gravitational-wave parameter estimation on both real, freely available data
from LIGO/Virgo and simulated data. We provide a suite of examples for the analysis of compact binary mergers
and other types of signal models, including supernovae and the remnants of binary neutron star mergers. These
examples illustrate how to change the signal model, implement new likelihood functions, and add new detectors.
BILBY has additional functionality to do population studies using hierarchical Bayesian modeling. We provide an
example in which we infer the shape of the black hole mass distribution from an ensemble of observations of
binary black hole mergers.
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1. Introduction

Bayesian inference underpins gravitational-wave science.
Following a detection, Bayesian parameter estimation allows
one to estimate the properties of a gravitational-wave source,
for example, the masses and spins of the components in a
binary merger (e.g., Abbott et al. 2016a, 2016c, 2016e, 2018b,
2018c). If the detection involves neutron stars, Bayesian
parameter estimation is used to study the properties of matter at
nuclear densities via the signature of tidal physics imprinted on
the gravitational waveform (Abbott et al. 2017g, 2018b,
2018c). The posterior probability distributions of source
parameters such as inclination angle can be used, in turn, to
make inferences about electromagnetic phenomena such as
gamma-ray bursts (e.g., Abbott et al. 2017c). Such parameter
estimation is also used to measure cosmological parameters
such as the Hubble constant (Abbott et al. 2017a). By
combining data from multiple detections, Bayesian inference
is used to understand the population properties of gravitational-
wave sources (e.g., Abbott et al. 2016a; Farr et al. 2018; Smith
& Thrane 2018; Talbot & Thrane 2018; Taylor & Gerosa 2018;
Wysocki et al. 2018; Roulet & Zaldarriaga 2019; and
references therein), which are providing insights into stellar
astrophysics. By extending the gravitational-wave signal
model, Bayesian inference is used to test general relativity

and look for evidence of new physics (Abbott et al. 2016f,
2017c, 2017f, 2018a, 2018d)
The field of gravitational-wave astronomy is growing

rapidly. We have entered the “open-data era,” in which
gravitational-wave data has become publicly available
(Vallisneri et al. 2015). Since Bayesian parameter estimation
is central to gravitational-wave science, there is a need for a
robust, user-friendly code that can be used by both gravita-
tional-wave novices and experts alike.
The primary tool currently used by the LIGO and Virgo

collaborations for parameter estimation of gravitational-wave
signals is LALINFERENCE (Veitch et al. 2015). This pioneering
code enabled the major gravitational-wave discoveries achieved
during the first two LIGO observing runs (e.g., Abbott et al.
2016a, 2016c, 2016e, 2018b, 2018c). The code itself is now
almost a decade old, and years of development have made it hard
for beginners to learn and difficult for experts to modify and
adapt to new challenges. More recently, PYCBC INFERENCE
(Biwer et al. 2019), a modern, PYTHON-based tool kit designed
for compact binary coalescence parameter estimation, was
released. This package provides access to several different
samplers and builds on the PYCBC package (Nitz et al. 2018), an
open-source tool kit for gravitational-wave astronomy.
We introduce BILBY, a user-friendly parameter estimation code

for gravitational-wave astronomy. BILBY provides expert-level
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parameter estimation infrastructure with straightforward syntax
and tools that facilitate use by beginners. For example, with
minimal user effort, users can download and analyze publicly
available LIGO and Virgo data to obtain posterior distributions for
the astrophysical parameters associated with recent detections of
binary black holes (Abbott et al. 2016a, 2016b, 2016d, 2017d,
2017g, 2017f) and the binary neutron star merger (Abbott et al.
2017g).

One key functional difference between BILBY and LALIN-
FERENCE/PYCBC INFERENCE is its modularity and adapt-
ability. The core library is not specific to gravitational-wave
science and has uses outside of the gravitational-wave
community. Ongoing projects include astrophysical inference
in multimessenger astronomy, pulsar timing, and X-ray
observations of accreting neutron stars. The gravitational-
wave-specific library is also built in a modular way, enabling
users to easily define their own waveform models, likelihood
functions, etc. This implies that BILBY can be used for more
than studying compact binary coalescences; see Section 5. The
modularity further ensures that the code will be sufficiently
extensible to suit the future needs of the gravitational-wave
community. Moreover, we believe that the wider astrophysics
inference community will find the code useful by virtue of
having a common interface and ideas that can be easily adapted
to a range of inference problems.

The remainder of this paper is structured to highlight the
versatile yet user-friendly nature of the code. To that end,
the paper is example-driven. We assume familiarity with the
mathematical formalism of Bayesian inference and parameter
estimation (priors, likelihoods, evidence, etc.), as well as with
gravitational-wave data analysis (antenna-response functions,
power spectral densities, etc.). Readers looking for an
introduction to Bayesian inference in general are referred to
Skilling (2004), while gravitational-wave-specific introductions
to inference can be found in Veitch et al. (2015) and Thrane &
Talbot (2018). Section 2 describes the BILBY design
philosophy, and Section 3 provides an overview of the code,
including installation instructions in Section 3.1. Subsequent
sections show worked examples. The initial examples are the
sort of simple calculations that we expect will be of interest to
most casual readers. Subsequent sections deal with increasingly
complex applications that are more likely of interest to
specialists.

The worked examples are as follows. Section 4 is devoted to
compact binary coalescences. In Section 4.1, we carry out
parameter estimation with publicly available data to analyze
GW150914, the first-ever gravitational-wave event. In Section
4.2, we study a simulated binary black hole signal added to
Monte Carlo noise. In Section 4.3, we study the matter effects
encoded in the gravitational waveforms of a binary neutron star
inspiral. In Section 4.4, we show how it is possible to add more
sophisticated gravitational-waveform phenomenology, for
example, by including memory, eccentricity, and higher-order
modes. In Section 4.5, we study an extended gravitational-
wave network with a hypothetical new detector.

Section 5 is devoted to signal models for sources that are not
compact binary coalescences. In Section 5.1, we perform
model selection for gravitational waves from a core-collapse
supernova. In Section 5.2, we study the case of a post-merger
remnant. Section 6 is devoted to hyperparameterization, a
technique used to study the population properties of an

ensemble of events. Closing remarks are provided in
Section 8.

2. BILBY Design Philosophy

Three goals guide the design choices of BILBY. First, we
seek to provide a parameter estimation code that is sufficiently
powerful to serve as a workhorse for expert users. Second, we
aim to make the code accessible for novices, lowering the bar
to work on gravitational-wave inference. Third, we desire to
produce a code that will age gracefully; advances in
gravitational-wave astronomy and Bayesian inference can be
incorporated straightforwardly without resort to inelegant
work-arounds or massive rewrites. To this end, we adhere to
a design philosophy, which we articulate with four principles.

1. Modularity. Wherever possible, we seek to modularize the
code and follow the abstraction principle (Pierce 2002),
reducing the amount of repeated code and easing
development. For example, the sampler is a modularized
object, so if a problem is initially analyzed using the
PyMultiNest (Buchner et al. 2014) sampler, for
example, one can easily switch to the emcee (Foreman-
Mackey et al. 2013) sampler or even a custom-built
gravitational-wave sampler. For example, BILBY accesses
samplers through a common interface; as a result, it is
trivial to easily switch between samplers to compare
performance or check convergence issues.

2. Consistency. We enforce strict style guidelines, including
adherence to the PEP8 style guide for PYTHON.13 As a
result, the code is relatively easy to follow and intuitive.
In order to maintain the integrity of the code while
responding to the needs of a large and active user base,
we employ GITLABʼs merge-request feature. Updates
require approval by two experts. The PEP8 protocol is
enforced using continuous integration.

3. Generality. Wherever possible, we keep the code as
general as possible. For example, the gravitational-wave
package is separate from the package that passes the
likelihood and prior to the sampler. This generality
provides flexibility. For example, in Section 6, we show
how BILBY can be used to carry out population inference,
even though the likelihood function is completely
different from the one used for gravitational-wave
parameter estimation. Moreover, a general design facil-
itates the transfer of ideas into and out of gravitational-
wave astronomy from the greater astrostatistics
community.

4. Usability. We observe that, historically, people find it
difficult to get started with gravitational-wave inference.
In order to lower the bar, we endeavor to make basic
things doable with very few lines of code. We provide a
large number of tutorials that can serve as a blueprint for
a large variety of real-world problems. Finally, we
endeavor to follow the advice of the PEP20 style guide
for PYTHON14: “There should be one—and preferably
only one—obvious way to do it.” In other words, once
users are familiar with the basic layout of BILBY, they
can intuit where to look if they want to, for example, add

13 https://www.python.org/dev/peps/pep-0008/
14 https://www.python.org/dev/peps/pep-0020/
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a new detector (see Section 4.5) or include nonstandard
polarization modes.

3. Code Overview

3.1. Installation

BILBY is open-source, MIT-licensed, and written in
PYTHON. The simplest installation method is through PyPI.15

The following command installs from the command line:

pip install bilby$ .

This command downloads and installs the package and
dependencies. The source code can be obtained from the
git repository,16 which also houses an issue tracker and
merge-request tool for those wishing to contribute to code
development. This repository is mirrored on github17 and is
archived in Zenodo (doi:10.5281/zenodo.2602178). Documen-
tation about code installation, functionality, and user syntax is
also provided.18 Scripts to run all examples presented in this
work are provided in the git repository.

3.2. Packages

BILBY has been designed such that logical blocks of code are
separated, and, wherever possible, code is abstracted away to
allow future reuse by other models. At the top level, BILBY has
three packages: core, gw, and hyper. The core package
contains the key functionalities. It passes the user-defined
priors and likelihood function to a sampler, harvests the
posterior samples and evidence calculated by the sampler, and
returns a result object providing a common interface to the
output of any sampler along with information about the inputs.
The gw package contains gravitational-wave-specific function-
ality, including waveform models, gravitational-wave-specific
priors, and likelihoods. The hyper package contains function-
ality for the hierarchical Bayesian inference (see Section 6). A
flowchart showing the dependency of different packages and
modules is available on the git repository.19

3.2.1. The core Package

The core package provides all of the code required for general
problems of inference. It provides a unified interface to several
different samplers listed below, standard sets of priors including
arbitrary user-defined options, and a universal result object that
stores all important information from a given simulation.

Prior and likelihood functions are implemented as classes, with a
number of standard types implemented in the core package: e.g.,
the Normal, Uniform, and LogUniform priors and Gaus-
sianLikelihood, PoissonLikelihood, and Exponen-
tialLikelihood likelihoods. One can write their own custom
prior and likelihood functions by writing a new class that inherits
from the parent Prior or Likelihood, respectively. The user
only needs to define how the new prior or likelihood is instantiated
and calculated, with all other housekeeping logic being abstracted
away from the user.

The prior and likelihood are passed to the function
run_sampler, which allows the user to quickly change the
sampler method between any of the prewrapped samplers and
define specific run-time requirements, such as the number of live
points, number of walkers, etc. Prepackaged samplers include
Markov chain Monte Carlo ensemble samplers emcee (Fore-
man-Mackey et al. 2013), ptemcee (Vousden et al. 2016), and
PyMC3 (Salvatier et al. 2016) and nested samplers (Skil-
ling 2004, 2006) MultiNest (Feroz & Hobson 2008; Feroz
et al. 2009, 2013; through the PYTHON implementation
pyMultiNest of Buchner et al. 2014), Nestle,20

Dynesty,21 and CPNest (Veitch et al. 2017). Only the
Dynesty sampler comes installed as part of the standard
BILBY installation process; other samplers can be installed by
following the instructions in the documentation.22 The
Sampler class again allows users to specify their own
sampler by following the other examples.
Despite the choice of sampler, the output from BILBY is

universal: an hdf5 file that contains all output, including
posterior samples, likelihood calculations, injected parameters,
evidence calculations, etc. The Result object can be used to
load in these output files and perform common operations, such
as generating corner plots and creating plots of the data and
maximum posterior fit.

3.2.2. The gw Package

The gw package provides the core functionality for parameter
estimation specific to transient gravitational waves. Building on
the core package, this provides prior specifications unique to
such problems, e.g., a prior that is uniform in comoving volume
distance, as well as the standard likelihood used when studying
gravitational-wave transients(e.g., see Veitch et al. 2015 and
Equation (1)), defined as the GravitationalWaveTran-
sient class. The gw package also provides an implementation
of current gravitational-wave detectors in the detector module,
including their location and orientation, as well as different noise
power spectral densities for both current and future instruments.
Standard waveform approximants are also included in the
source module and are handled through the LALSIMULATION
package (LIGO Scientific Collaboration 2018).
The gw package also contains a set of tools to load, clean, and

analyze gravitational-wave data. Many of these functions are built
on the GWpy (Macleod et al. 2018) code base, which is contained
within bilby.gw.detector and primarily accessed by
instantiating a list of Interferometer objects. This function-
ality also allows users to implement their own gravitational-wave
detector by instantiating a new Interferometer object; we
show an explicit example of this in Section 4.5.
The packages mentioned above are not installed with

BILBY by default; instructions for installing them can be
found in the documentation.23 We have established a
singularity24 container that has all dependencies, includ-
ing GWPy, LALSuite, and all supported samplers. Instruc-
tions for using the singularity container can be found in
the documentation.25

15 https://pypi.org/project/BILBY/
16 https://git.ligo.org/lscsoft/bilby/
17 https://github.com/lscsoft/bilby/
18 https://lscsoft.docs.ligo.org/bilby/
19 https://lscsoft.docs.ligo.org/bilby/code-overview.html

20 http://kylebarbary.com/nestle/
21 https://github.com/joshspeagle/dynesty
22 https://lscsoft.docs.ligo.org/bilby/samplers.html#installing-samplers
23 https://lscsoft.docs.ligo.org/bilby/installation.html
24 https://www.sylabs.io/singularity/
25 https://lscsoft.docs.ligo.org/bilby/containers.html
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3.3. The hyper Package

The hyper package contains all required functionality to
perform hierarchical Bayesian inference of populations. This
includes both a Model module and a Hyperparameter-
Likelihood class. This entire package is discussed in more
detail in Section 6.

4. Compact Binary Coalescence

In this section, we show a suite of BILBY examples
analyzing binary black hole and binary neutron star signals.

We employ a standard Gaussian noise likelihood  for strain
data d given source parameters θ (van der Sluys et al. 2008a,
2008b; Veitch & Vecchio 2008),

 åq
m q
s

ps= -
-

+
⎧⎨⎩

⎫⎬⎭( ∣ )
[ ( )]

( ) ( )d
d

ln
1

2
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k
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k
k

2
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2

where k is the frequency bin index, σ is the noise amplitude
spectral density, and μ(θ) is the waveform. The waveform is a
function of the source parameters θ, which consist of (at least)
eight intrinsic parameters (primary mass m1, secondary mass
m2, primary spin vector S1, and secondary spin vector S2) and

seven extrinsic parameters (luminosity distance dL, inclination
angle i, polarization angle ψ, time of coalescence tc, phase of
coalescence fc, and R.A. and decl.). Table 1 shows the default
priors implemented for binary black hole systems. We show
how these priors can be called in Sections 4.1 and 4.2. Unless
otherwise specified, μ(θ) is given using the IMRPhenomP
approximant (Schmidt et al. 2012). However, the approximant
can be easily changed; see Sections 4.2 and 4.3. Moreover, it is
relatively simpler to sample in different parameters than those
listed above (e.g., chirp mass and mass ratio instead of m1 and
m2); examples for doing this are provided in the git
repository.

4.1. GW150914: The Onset of Gravitational-wave Astronomy

The first direct detection of gravitational waves occurred on
the 2015 September 14, when the two LIGO detectors (Aasi
et al. 2015) in Hanford, Washington, and Livingston,
Louisiana, detected the coalescence of a binary black hole
system (Abbott et al. 2016d). The gravitational waves swept
through the two detectors with a -

+6.9 0.4
0.5 ms time difference that,

when combined with polarization information, allowed for a
sky location reconstruction covering an annulus of 590 deg2

(Abbott et al. 2016d). The initially published masses of the
colliding black holes were given as -

+36 4
5 and -

+29 4
4 (Abbott

et al. 2016e). Subsequent analyses with more accurate
precessing waveforms constrained the masses to be -

+35 3
5 and

-
+30 4

3 at 90% confidence (Abbott et al. 2016c). The distance to
the source is determined to be -

+440 180
160 Mpc (Abbott et al.

2016c).
In this example, we use BILBY to reproduce the parameter

estimation results for GW150914. The data for published
LIGO/Virgo events are made available through the Gravita-
tional Wave Open Science Center (Vallisneri et al. 2015).
Built-in BILBY functionality downloads and parses this data.
We begin with the following two lines:

The first line of code imports the BILBY code base into the
PYTHON environment. The second line returns a set of objects
that contain the relevant data segments and associated data
products relevant for the analysis for both the LIGO Hanford and
Livingston detectors. By default, BILBY downloads and windows
the data. A local copy of the data is saved, along with diagnostic
plots of the gravitational-wave strain amplitude spectral density.
In addition to the data, the two key ingredients for any

Bayesian inference calculation are the likelihood and the prior.
Default sets of priors can be called from the gw.priormo-
dule, and we also employ the default Gaussian noise likelihood
(Equation (1)):

Table 1
Default Binary Black Hole Priors

Variable Unit Prior Minimum Maximum

m1,2 Me Uniform 5 100
a1,2 L Uniform 0 0.8
θ1,2 rad. sin 0 π

δf,fJL rad. Uniform 0 2π
dL Mpc Comoving 102 5×103
R.A. rad. Uniform 0 2π
Decl. rad. cos −π/2 π/2
i rad. sin 0 π

ψ rad. Uniform 0 π

fc rad. Uniform 0 2π

Note.The intrinsic variables are the two black hole masses m1,2, their
dimensionless spin magnitudes a1,2, the tilt angle between their spins and the
orbital angular momentum θ1,2, and the two spin vectors describing the
azimuthal angle separating the spin vectors δf and the cone of precession about
the system’s angular momentum fJL. The extrinsic parameters are the
luminosity distance dL, the R.A. and decl., the inclination angle between the
observers line of sight and the orbital angular momentum i, the polarization
angle ψ, and the phase at coalescence fc. The phase, spins, and inclination
angles are all defined at some reference frequency. We do not set a default prior
for the coalescence time tc. Here “sin” and “cos” priors are uniform in cosine
and sine, respectively, and “comoving” implies uniform in comoving volume.

importbilby
interferometers bilby gw detector get event data GW150914

>>>
>>> =  ( ). . . _ _

.

prior bilby gw prior BBHPriorDict filename GW150914 prior
likelihood bilby gw likelihood get binary black hole likelihood interferometers

>>> = =  
>>> =

( )
( )

. . . .
. . . _ _ _ _

.

4

The Astrophysical Journal Supplement Series, 241:27 (13pp), 2019 April Ashton et al.



The above code calls the GW150914 prior, which differs from
the priors described in Table 1 in two main ways. First, to
speed up the running of the code, it restricts the mass priors to
between 30 and 50 Me for the primary mass and 20 and 40 Me
for the secondary mass. Moreover, this prior call restricts the
time of coalescence to 0.1 s before and after the known
coalescence time. One can revert to the priors in Table 1
by replacing the above file call with filename=″
binary_black_holes.prior″, but this would require
separately setting a prior for the coalescence time. We show
how this can be done in Section 4.2.

The next step is to call the sampler:

This line performs parameter inference using the sampler default
Dynesty, with a default 500 live points. This number can be
increased by passing the nlive= keyword argument to
run_sampler(). The sampler returns a list of posterior
samples, the Bayesian evidence, and metadata, which are stored
in an hdf5 file. One may plot a corner plot showing the posterior
distribution for all parameters in the model using the command

result plot corner>>> (). _ .

The above example code produces posterior distributions
that, by eye, agree reasonably well with the parameter
uncertainty associated with the published distributions for
GW150914. The shape of the likelihood for the extrinsic
parameters presents significant challenges for samplers due to
strong degeneracies between different sky locations, distances,
inclination angles, and polarization angles (see, e.g., Farr et al.
2014a; Raymond & Farr 2014). For more accurate results, we
use the nested sampling package CPNEST (Veitch et al. 2017),
which is invoked by changing the run_sampler function
above to include the additional argument sampler=’cpn-
est’. We also change the number of live points by adding
nlive=5000 to the same function and specify a keyword
argument, maxmcmc=5000, which is the maximum number of
steps the sampler takes before accepting a new sample. To
resolve the issue with the phase at coalescence, we analytically

marginalize over this parameter (Farr 2014) by adding the
optional phase_marginalization=True argument to
the instantiation of the likelihood. BILBY has built-in analytic
marginalization procedures for the time of coalescence
(Farr 2014) and distance (Singer & Price 2016; Singer et al.
2016), which can both be invoked using time_margina-
lization=True and distance_marginalization=-
True, respectively. These decrease the run time of the code by
minimizing the dimensionality of the parameter space. Poster-
ior distributions can still be determined for these parameters by
reconstructing them analytically from the full set of posterior
samples (e.g., see Thrane & Talbot 2018).

Using BILBY, we can plot marginalized distributions by simply
passing the plot_corner function the optional parame-
ters=K argument. In Figure 1, we show the marginalized, two-
dimensional posterior distribution for the masses of the two black
holes as calculated using the above BILBY code (shown in blue).
In orange, we show the LIGO posterior distributions from Abbott
et al. (2016a), calculated using the LALINFERENCE software
(Veitch et al. 2015) and hosted at the Gravitational Wave Open
Science Center (Vallisneri et al. 2015).
In Figure 2, we show the marginalized posterior distribution

of the luminosity distance and inclination angle, where the
BILBY posteriors are again shown in blue and the LALINFER-
ENCE posteriors in orange. Figure 3 shows the sky localization
uncertainty for both BILBY and LALINFERENCE.
The above example does not make use of detector calibration

uncertainty, which is an important feature in LIGO data
analysis. Such calibration uncertainty is built into BILBY using
the cubic spline parameterization (Farr et al. 2014b), with
example usage in the BILBY repository.

4.2. Binary Black Hole Merger Injection

BILBY supports both the analysis of real data, as in the
previous section, and the ability to inject simulated signals
into Monte Carlo data. In the following two sections, we
inject a binary black hole signal and a binary neutron star

Figure 1. Marginalized posterior source-mass distributions for the first binary
black hole merger detected by LIGO, GW150914. We show the posterior
distributions recovered using BILBY (blue) and LALINFERENCE(orange) using
open data from the Gravitational Wave Open Science Center (Vallisneri et al.
2015). The five lines of BILBY code required for reproducing the posteriors are
shown in Section 4.1.

Figure 2. Marginalized posterior distributions on the binary inclination angle
and luminosity distance for the first binary black hole merger detected by
LIGO, GW150914. We show the posterior distributions recovered using BILBY
(blue) and LALINFERENCE(orange) using open data from the Gravitational
Wave Open Science Center (Vallisneri et al. 2015).

result bilby core sampler run sampler likelihood prior>>> = ( ). . . _ , .
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signal, respectively, showing how one can easily inject and
recover signals and their astrophysical properties.

In this first example,26 we create a binary black hole signal
with parameters similar to GW150914 (Abbott et al. 2016e),
albeit at a luminosity distance of dL=2 Gpc (see dL≈
400Mpc for GW150914). We inject the signal into a network
of LIGO-Livingston, LIGO-Hanford (Aasi et al. 2015), and
Virgo interferometers (Acernese et al. 2015), each operating at
design sensitivity. When doing examples of this nature, it is
time-intensive to sample over all 15 parameters in the
waveform model. Therefore, to get quick results that can be
run on a laptop, we only sample over four parameters in the
waveform model: the two black hole masses m1,2, the
luminosity distance dL, and the inclination angle i. BILBY
supports simple functionality to limit or extend the number of
parameters included in the likelihood calculation, as shown
below.

We begin by setting up a WaveformGenerator object
using a frequency domain strain model that takes the signal
injection parameters and specific waveform arguments, such as
the waveform approximant, as arguments. The Waveform-
Generator also takes data duration and sampling frequency
as input parameters. With the source model defined, we now
instantiate an interferometer object that takes the strain
signal from the WaveformGenerator and injects it into a
noise realization of the three interferometers. One could choose
to do a zero-noise simulation by simply including the flag
zero_noise=True.

Priors are set up as in the previous open-data example,
except we call the binary_black_holes.priorfile
instead of the specific prior file for GW150914. Moreover, to
hold all but four of the parameters fixed, we set the value of the
prior for those other parameters to the injection value. For
example, setting

prior a 1 0>>> ¢ ¢ =[ ]_

sets the prior on the dimensionless spin magnitude of the
primary black hole to a δ-function at zero.

In general, we can change the prior for any parameter with
one line of code. For example, to change the prior on the
primary mass to be uniform between m1=25 and 35Me, say,
one includes

BILBY knows about many different types of priors that can all
be called in this way.

For this example, we are also required to define priors on the
coalescence time, which we define to be a uniform prior with
minimum and maximum 1 s either side of the injection time.

The likelihood is again set up similarly to the open-data
example of Section 4.1, although this time, we must pass the
interferometer, waveform_generator, and prior.
Finally, the sampler can be called in the same way as
Section 4.1; for this example, we use the pyMultiNest
nested sampler (Buchner et al. 2014).

Figure 4 shows the recovered posterior distributions (blue)
and injected parameter values (orange). For this example, using
the PyMultiNest (Buchner et al. 2014) nested sampling
package with 6000 live points took approximately 30 minutes
on a laptop to fully sample the four-dimensional parameter
space. The parameters in Figure 4 are recovered well with the
usual degeneracy present between the luminosity distance and
inclination angle of the source, dL and i, respectively.

4.3. Measuring Tidal Effects in Binary Neutron Star
Coalescences

The first detection of binary neutron star coalescence
GW170817 was a landmark event signaling the beginning of
multimessenger gravitational-wave astronomy (Abbott et al.
2017g, 2017h). Gravitational-wave parameter estimation of the

inspiral is what ultimately determined that both objects were
likely neutron stars and provides the best-yet constraints on the
nuclear equation of state of matter at supranuclear densities
(Abbott et al. 2017c, 2017g, 2017h).
One of the key measurements in determining the equation of

state from binary neutron star coalescences is that of the tidal
parameters. The dimensionless tidal deformability

L =
⎛
⎝⎜

⎞
⎠⎟ ( )k c R

Gm

2

3
22

2 5

is a fixed parameter for a given equation of state and neutron
star mass. Here k2 is the second Love number, and R and m are
the neutron star radius and mass, respectively. The binary

prior mass 1 bilby core prior Uniform minimum 25 maximum 35 unit r M odot>>> ¢ ¢ = = = = ¢ ¢[ ] ( ⧹ )_ . . . , , $ _ $ .

Figure 3. Sky localization uncertainty for GW150914. The blue marginalized
posterior distributions are those recovered using BILBY, and the orange are
those recovered using LALINFERENCE, using open data from the Gravitational
Wave Open Science Center (Vallisneri et al. 2015).

26 This example is found in the BILBY git repository at https://git.ligo.org/
lscsoft/bilby/blob/master/examples/injection_examples/fast_tutorial.py.
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neutron star merger GW170817 provided constraints of
L = -

+1901.4 120
390 (Abbott et al. 2018b; De et al. 2018), where

the subscript denotes that this is the estimate on Λ assuming a
1.4 Me neutron star, and the uncertainty is the 90% credible
interval.

BILBY can be used to study neutron star coalescences in both
real and simulated data. We inject a binary neutron star signal
using the TaylorF2waveform approximant into a three-
detector network of the two LIGO detectors and Virgo, all
operating at design sensitivity.27 Our injected signal is an

= = m M m M1.3 , 1.51 2 binary at dL=50Mpc with
dimensionless spin parameters a1,2=0.02 and tidal deform-
abilities Λ1,2=400. Setting up such a system in BILBY is
equivalent to doing the binary black hole injection study
of Section 4.2, except we call the lal_binary_
neutron_starsource function, which requires the addi-
tional Λ1,2 arguments. We also have specific binary neutron star
priors; the default set can be called using

priors bilby gw prior BNSPriorDict>>> = (). . . . The standard set of binary neutron star priors is shown in
Table 2. In this example, we use the Dynesty sampler.
The tidal deformability parameters Λ1 and Λ2 are known to

be highly correlated. The terms that appear explicitly due to the
tidal corrections in the phase evolution are instead L̃ and dL̃

Figure 4. Injecting and recovering a binary black hole gravitational-wave signal with BILBY. We inject a signal into a three-detector network of LIGO-Livingston,
LIGO-Hanford, and Virgo and perform parameter estimation. The posterior distributions are shown in blue and the injected values in orange. To speed up the
simulation, we only search over the two black hole masses m1 and m2, the luminosity distance dL, and the inclination angle i.

Table 2
Default Binary Neutron Star Priors

Variable Unit Prior Minimum Maximum

m1,2 Me Uniform 1 2
a1,2 L Uniform −0.05 0.05
Λ1,2 L Uniform 0 3000
dL Mpc Comoving 10 500
R.A. rad. Uniform 0 2π
Decl. rad. cos −π/2 π/2
i rad. sin 0 π

ψ rad. Uniform 0 π

fc rad. Uniform 0 2π

Note.Here Λ1,2 are the tidal deformability parameters of the primary and
secondary neutron star defined in Equation (2). For other variable definitions,
see Table 1. Note that our commonly used waveform approximant does not
allow misaligned neutron star spins, implying that we do not require priors on
those spin parameters.

27 This example is found in the BILBY git repository at https://git.ligo.org/
lscsoft/bilby/blob/master/examples/injection_examples/binary_neutron_star_
example.py.
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(Flanagan & Hinderer 2008; for definitions of these parameters,
see Equations (14) and (15) of Lackey & Wade 2015). We
therefore sample in L̃ and dL̃ instead of Λ1 and Λ2. Although
we sample in all binary neutron star parameters, we show only
the two-dimensional marginalized posterior distribution for L̃
and dL̃ in Figure 5. The corresponding injected values of L̃ and
dL̃ are shown as the orange vertical and horizontal lines,
respectively.

4.4. Implementing New Waveforms

The preceding subsections have only given the flavor of
what can be achieved with BILBY for compact binary
coalescences. It is trivial to implement more complex signal
models that include, for example, higher-order modes,
eccentricity, gravitational-wave memory, nonstandard polariza-
tions. Examples showing different signal models are included
in the git repository.28 BILBY has already been used in one
such application: testing how well the orbital eccentricity of
binary black hole systems can be measured with Advanced
LIGO and Advanced Virgo (Lower et al. 2018). An example
script reproducing those results can be found in the git
repository.

If a signal model exists in the LAL software,29 then calling
that signal model and defining which parameters to include in
the sampler is as simple as the above examples. In Section 5,
we also show how to include a user-defined source model.
Moreover, one is free to define and sample models in either the
time or frequency domain. We include examples for both cases
in the git repository. The latter case of using a time-domain
source model requires doing little more than selecting the
argument time_domain_source_model in the Wave-
formGenerator, rather than selecting frequency_
domain_source_model.

Of course, one may also want to set up the injection and
sampler using two different waveform models, for example, to
inject a numerical relativity signal into Monte Carlo data and
recover it with a waveform approximant (see also Section 5.1).
This is possible by simply instantiating two WaveformGen-
erators, injecting with one and passing the other to the
likelihood.

4.5. Adding Detectors to the Network

The full network of ground-based gravitational-wave inter-
ferometers will soon consist of the two LIGO detectors in the
US, Virgo, LIGO-India (Iyer et al. 2011), and the KAGRA
detector in Japan (Aso et al. 2013), all of which are
implemented in BILBY. A gravitational-wave interferometer
is specified by its geographic coordinates, orientation, and
noise power spectral density. By default, BILBY includes
descriptions of current detectors, including LIGO, Virgo, and
KAGRA, as well as proposed future detectors A+ (Miller et al.
2015), Cosmic Explorer (Abbott et al. 2017b), and the Einstein
Telescope (Punturo et al. 2010). It is also possible to define
new detectors, which is useful for developing the science case
for proposals and to optimize the design and placement of new
detectors. Among other things, this can be used in developing
the science case for interferometer design and placement.
BILBY provides a common interface to define detectors by

their geometry, location, and frequency response. By way of
example, we place a new 4 km arm interferometer in the Shire
of Gingin, located outside of Perth, Australia, the current
location of the Australian International Gravitational Observa-
tory. We assume a futuristic network configuration of the
Australian Observatory, together with the two LIGO detectors
in Hanford and Livingston, all operating at A+ sensitivity
(Miller et al. 2015). We generate A+ power spectral densities
in the same script used to run BILBY by using the PYGWINC
software,30 which creates an array containing the frequency and
noise power spectral density31 (one could equally use more
sophisticated software such as FINESSE (Brown & Freise 2014)

Figure 5. Injecting and recovering a binary neutron star gravitational-wave
signal with BILBY. We inject a signal into the three-detector network and show
here only the marginalized two-dimensional posterior on the two tidal
deformability parameters (blue), with the injected values shown in orange.

Figure 6. Sky location uncertainty when including a gravitational-wave
detector in Gingin, Australia. Shown are the sky localizations (marginalized
two-dimensional posterior distributions) for an injected binary black hole signal
using a two-detector network of gravitational-wave interferometers Hanford
and Livingston (orange) and a three-detector network that also includes the
Australian detector (blue).

28 https://git.ligo.org/lscsoft/bilby/
29 https://wiki.ligo.org/DASWG/LALSuite

30 https://git.ligo.org/gwinc/pygwinc
31 This example is found in the BILBY git repository at https://git.ligo.org/
lscsoft/bilby/blob/master/examples/injection_examples/australian_detector.py.
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to create more detailed interferometer sensitivity curves). We
then create a new Interferometer object using bilby.
gw.detector.Interferometer(), which takes numer-
ous arguments, including the position and orientation of the
detector, minimum and maximum frequencies, and power or
amplitude noise spectral density. The noise spectral density can
be passed as an ascii file containing the frequency and spectral
noise density. With the new detector defined, one can again
calculate a noise realization and signal injection in a manner
similar to what is done in Section 4.

In this example, we inject a GW150914-like binary black
hole inspiral signal at a luminosity distance of dL=4 Gpc and
recover the masses, sky location, luminosity distance, and
inclination angle of the system. In this example, we use the
Nestle sampler. Figure 6 shows the two-dimensional
marginalized posterior for the sky location uncertainty when
including (blue) and not including (orange) the Australian
detector in Gingin. In this instance, the sky localization
uncertainty decreases by approximately a factor of four when
including the third detector.

While this example includes three detectors, it is straightfor-
ward to extend this analysis to an arbitrary detector network.
The likelihood evaluation simply loops over the number of
detectors passed to it and multiplies the likelihood for each
detector to get a combined likelihood for each point in the
parameter space.

5. Alternative Signal Models

Section 4 focuses on compact binary coalescences. However,
the BILBY gw package enables parameter estimation for any
type of signal for which a signal model can be defined. In this
section, we show two illustrative examples: the injection and
recovery of a core-collapse supernova signal and a much-
simplified model of a hypermassive neutron star following a
binary neutron star merger. The former example highlights two
key pieces of infrastructure: the ability to inject numerical
relativity signals and the ability to develop one’s own source
model that is not built into BILBY. The latter example
highlights the use of a different likelihood function that only
uses the amplitude of the signal and throws away the phase
information.

5.1. Supernovae

Gravitational-wave signals from core-collapse supernovae
are complicated and not well understood in terms of their
specific phase evolution. Numerous techniques have been
developed to deal with both detection and parameter estima-
tion. One such method for the latter problem involves principal
component analysis (Logue et al. 2012; Powell et al. 2016,
2017), where the signal is reconstructed using a weighted sum
of orthonormal basis vectors. In this example, we inject a
gravitational-wave signal from a numerical relativity simula-
tion (Müller et al. 2012) and recover the principal components
using BILBY.32

The injection is performed by defining a new signal class
that, in this case, simply reads in an ascii text file containing the
gravitational-wave strain time series. The injection is then
performed in a way akin to the binary black hole and binary
neutron star examples in Section 4. We inject signal L15 from

Müller et al. (2012), which comes from a three-dimensional
simulation of a nonrotating core-collapse supernova with a
15 Me progenitor star. The signal is injected at a distance of
5 kpc in the direction of the galactic center. The amplitude
spectral density of the injected signal is shown in Figure 7 as
the orange line.
The signal is reconstructed using principal component

analysis, such that the strain is expressed as

å b=
=

˜( ) ( ) ( )h f A U f , 3
j

k

j j
1

where A is an amplitude factor, and βj and Uj are the complex
principal component amplitudes and vectors, respectively.
Equation (3) is implemented into BILBY as another new signal
model that takes the βj coefficients, luminosity distance (which
is a proxy for A), and sky location as inputs. Priors for each of
the new parameters are established in the same way as the
example with the mass in Section 4.2. In this case, we set k=5
and use uniform priors between −1 and 1 for each of the βj
values.
Figure 7 shows the injected (orange) and recovered (blue)

gravitational-wave signal in the frequency domain. The dark
blue curve shows the maximum-likelihood curve, and the
shaded blue region is a superposition of many reconstructed
waveforms from the posterior samples.

5.2. Neutron Star Post-merger Remnant

There are a number of physical scenarios that can occur
following the merger of two neutron stars, including the
existence of short- or long-lived neutron star remnants. In the
early phases post-merger (1 s), these neutron stars are highly
dynamic and can emit significant gravitational radiation
potentially observable by Advanced LIGO and Virgo at a
design sensitivity out to ∼50Mpc (e.g., Clark et al. 2014 and
references therein). While the ultimate fate of binary merger
GW170817 is unknown, no gravitational waves from a post-
merger remnant were found (Abbott et al. 2017i, 2018c), which

Figure 7. Parameter estimation reconstruction of a numerical relativity
supernova signal. A numerical relativity supernova signal (orange) is injected
into a three-detector network of the two Advanced LIGO detectors and
Advanced Virgo, all operating at design sensitivity. The maximum-likelihood
reconstruction of the signal is shown in dark blue, and the light blue band
shows the superposition of many reconstructed waveforms from the posterior
samples.

32 This example is found in the BILBY git repository at https://git.ligo.org/
lscsoft/bilby/blob/master/examples/supernova_example/supernova_example.py.
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is not surprising given that the interferometers were not
operating at design sensitivity and the distances involved.

Provided the sensitivity of gravitational-wave interferom-
eters continues to increase, it is possible that a gravitational-
wave signal from a post-merger remnant could be detected in
the relatively near future. Such a detection would provide an
excellent opportunity to understand the nuclear equation of
state of matter at extreme densities, as well as the rich physics
of these exotic objects (e.g., Shibata & Taniguchi 2006; Baiotti
et al. 2008; Read et al. 2013). Parameter inference of such
short-lived signals is in its infancy (e.g., see Chatziioannou
et al. 2017), largely due to the paucity of reliable waveforms
(Clark et al. 2016; Easter et al. 2018). This is an ongoing
challenge due to the expensive nature of numerical relativity
simulations and the complex physics that must be included in
such simulations.

Simple models that provide approximate gravitational-wave
signals fit to a handful of numerical relativity waveforms exist
(Messenger et al. 2014; Bose et al. 2018; Easter et al. 2018),
which may eventually be used for full parameter inference. The
phase evolution of such numerical relativity simulations is
rapid and very difficult to model (Messenger et al. 2014; Easter
et al. 2018). However, it is the frequency content of the signal
that carries information about the equation of state and the
physics of the remnant (e.g., Takami et al. 2015 and references
therein). It is therefore possible that parameter estimation
algorithms may require one to throw away information about
the phase and only keep amplitude spectral content. Such a
process requires a different likelihood function than the one
that has been used to this point. This, therefore, provides good
motivation for showing how to include a different likelihood
function in the BILBY code.

We implement a power–spectral density (“burst”’) like-
lihood,

 åq
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where I0 is the zeroth-order modified Bessel function of the first
kind. This requires setting up a new Likelihood class that
contains a log_likelihood function that reads in the
frequency array, noise spectral density, and waveform model
and outputs a single likelihood evaluation. Having defined a
new likelihood function, one calls the remaining functions in
the usual way; the likelihood function is instantiated and passed
to the run_sampler() command.
We inject a double-peaked Gaussian, shown in Figure 8 as the

orange curve. We recover this signal using the same model (with
a constant noise spectral density), where we use uniform priors
for the amplitudes, widths, and frequencies of each of the peaks.
Figure 8 shows the waveform reconstruction for each of the
posterior samples, which can be seen to cover the injected signal.

6. Population Inference: Hyperparameterizations

Individual detections of binary coalescences can provide
stunning insights into various physical and astrophysical
questions. Increased detector sensitivities imply that signifi-
cantly more events will be detected, enabling statements to also
be made about the ensemble properties of populations (e.g.,
Abbott et al. 2016a; Farr et al. 2018; Smith & Thrane 2018;
Talbot & Thrane 2018; Taylor & Gerosa 2018; Wysocki et al.
2018; Roulet & Zaldarriaga 2019; and references therein).
Extracting information from a population of events is
performed using hierarchical Bayesian inference, where the
population is described by a set of hyperparameters, Λ. BILBY
has built-in support for calculating Λ from multiple sets of
posterior samples from individual events.
BILBY implements the conventional method whereby the

posterior samples qi
j for each event j are reweighted according

to the ratio of the population model prior p q L( ∣ ) and the
sampling prior π(θ) to obtain the hyperparameter likelihood
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Here j is the Bayesian evidence for the data given the original
model and nj is the number of posterior samples in the jth event.
The BILBY implementation requires the user to define

p q L( ∣ ) and π(θ), which, along with the set of posterior samples
θi
j, are passed to the HyperparameterLikelihood in
BILBY’s hyper package. The hyperparameter priors are then
set up in the usual way and passed to the standard
run_sampler function.
As a demonstration33 of this method, we reproduce the

results of Talbot & Thrane (2018), recovering parameters
describing a postulated excess of black holes due to pulsational
pair-instability supernovae (PPSNe; Heger et al. 2003;
Woosley & Heger 2015). The posterior distribution for the
hyperparameters determining the abundance and characteristic
mass of black holes formed through this mechanism is shown
in Figure 9. The hyperparameter λ is the fraction of binaries
where the more massive black hole formed through PPSNe, μpp
is the typical mass of these black holes, and σpp determines the
width of the “PPSN graveyard.”
This model contains seven additional hyperparameters

describing the remainder of the distribution of black hole

Figure 8. Proxy post-merger gravitational-wave signal from a short-lived
neutron star showing the implementation of a different likelihood function in
BILBY. The orange curve is an injected, double-peaked Gaussian signal
injected into a constant noise realization. The blue band shows the waveform
reconstructions from the posterior samples using a power-spectrum likelihood
function, i.e., one that only uses the amplitude of the signal and ignores the
phase.

33 This example is found in the BILBY git repository at https://git.ligo.org/
lscsoft/bilby/blob/master/examples/other_examples/hyper_parameter_exam
ple.py.
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masses that we hold fixed for the purposes of this example.
Additional hyperparameters may be added straightforwardly.

7. Analysis of Arbitrary Data: An Example

BILBY is more than a tool for gravitational-wave astronomy;
it can also be used as a generic and versatile inference package.
In the documentation examples, we demonstrate how BILBY
can be applied to generic time-domain data from radioactive
decay processes. Furthermore, BILBY is currently being used to
analyze radio and X-ray data from neutron stars and to study
multimessenger signals associated with binary neutron star
mergers. Here we show an example that calculates posterior
distributions for one of the letters in the BILBY logo.

We import an image file containing the letter, map this to an
x− y coordinate system, and sample in both dimensions with
likelihood

 µ
- ( )
xy

ln
1

, 6

assuming uniform priors on both variables. Figure 10 shows
the posterior distribution for the “B” in the BILBY logo. All
letters are shown in Figure 11, where the axis labels have been
removed. The code for making this plot, and all other posterior
distributions in the logo, are available with the git repository
in sample_logo.py. Other examples of using BILBY with
non-gravitational-wave data can be found in the git repository
in the tutorials subdirectory.34

8. Conclusion

Gravitational-wave astronomy is fast becoming a data-rich
field. With the significantly increased activity in the field, there
is a developing need for robust, easy-to-use inference software
that is also modular and adaptable. We present BILBY: the
Bayesian inference library for gravitational-wave astronomy.
BILBY is open-source software that can be used to perform
Bayesian inference. It is easily applied to data from LIGO/
Virgo, including open data available from the Gravitational
Wave Open Science Center. We access and manipulate LIGO
data using GWPy (Macleod et al. 2018). Alternatively, BILBY
may be used to study simulated data. BILBY can also be used to
perform hierarchical Bayesian inference for population studies.
We present examples highlighting BILBY’s functionality and

usability, including examples using open data from the first
gravitational-wave detection, GW150914. Only five lines of code
are required to reconstruct the astrophysical parameters of
GW150914. One can redo the analysis using different priors,
alternative waveform models, and/or a different sampling method
with only modest changes. We show how to inject binary black
hole and binary neutron star signals into Monte Carlo noise. We
show how to define new gravitational-wave detectors.
We emphasize that BILBY is a front-end system that provides

a unified interface to a variety of samplers, which are a primary
workhorse of Bayesian inference. While numerous off-the-
shelf samplers are implemented (see Section 3.2.1), to the best
of our knowledge, there is no universal sampling solution to

Figure 9. Population modeling with the BILBY hierarchical Bayesian inference
module. We show the recovery of parameters describing part of the mass
distribution of binary black holes using the model described in Talbot &
Thrane (2018). The population parameters are drawn from values shown in
orange and the posterior distributions for the hyperparameters shown in blue.
Here λ is the fraction of binaries where the more massive black hole formed
through PPSNe, and μpp and σpp are the typical mass of these black holes and
the width of the “PPSN graveyard,” respectively.

Figure 10. The “B” from the BILBY logo, generated using the BILBY package;
see Section 7.

Figure 11. All letters from the BILBY logo, generated using the BILBY
package; see Section 7.

34 https://git.ligo.org/lscsoft/bilby/tree/master/examples/tutorials
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gravitational-wave parameter estimation problems. BILBY is
therefore only as good as the implemented samplers; initial
studies show that CPNest (Veitch et al. 2017), Dynesty, and
emcee (Foreman-Mackey et al. 2013; Vousden et al. 2016)
sample the extrinsic parameters of binary coalescences more
accurately than Nestle and pyMultiNest (Buchner et al.
2014). A systematic comparison of all off-the-shelf and
boutique samplers is currently underway using BILBY.

BILBY is designed so as to be applicable to arbitrary signal
models, not just compact binary coalescences. To this end, we
show two examples: one of an injected numerical relativity
supernova waveform that we reconstruct using principal
component analysis, and another using a proxy for a neutron
star post-merger waveform. The former example highlights
how users can include their own signal models to perform both
injections and signal recoveries, while the latter example
demonstrates the ability to add a likelihood function that is
different from the standard gravitational-wave transient
likelihood.
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