
Ecosystems, Complexity, Topology
and Evolutionary Computation

Clinton Jon Woodward

A thesis presented for the degree of
Doctor of Philosophy

2010

ii

Abstract

Evolutionary algorithms have been applied to an increasing range of complex problem
domains. A challenge for many applications is the discovery of appropriate structures and
processes that allow solutions, and solution components, to emerge efficiently.

The motivation of this thesis was to create a new ecosystem model of evolutionary
computation (ESEC) and to investigate the influence that topology and interaction can
have on the outcome of evolutionary search. The thesis begins by considering the field
of ecology and models of ecosystems, with a particular emphasis on evolutionary models,
structures and processes. Next, existing models of evolutionary computation are consid-
ered with a strong emphasis on aspects of topology. Modern developments in the field
of graph theory provide new insight into complex systems and the properties of efficient
structures.

A range of investigation themes have been developed for the ESEC model, and a
detailed survey of topology models and properties was undertaken to guide the selection of
suitable structures. An empirical study considers in detail the specific influence of various
population structures on evolutionary search outcomes, and shows that the specification of
population topology can influence both the efficacy and efficiency of evolutionary search.
The results are a motivation for future investigations to consider in more detail how and
why such influence can be used to an advantage as a way of optimising evolutionary search
applications.

iii

iv

Acknowledgements

Like complex networks and processes of adaptation, that have consumed my attention for
so long, this thesis and body of work is the result of many unique influences. I sincerely
appreciate the many people that have helped me to complete this thesis, but I will only
acknowledge a few.

Prof. Tim Hendtlass has been a wonderful mentor and an invaluable supervisor. With-
out his enthusiasm, guidance and sense of humour, many things would be different in my
life. I know this is true for all of us that have passed through his care. Tim inspired me
as an undergraduate, believed in my potential, and assisted me in developing an academic
career – even though he knew it would likely be to the detriment of my PhD completion!
You were right in many ways.

The support of Dr. Howard Copland as my co-supervisor is greatly appreciated. I
have always enjoyed our conversations during this process, although the number of new
ideas such sessions would create was dangerous. Your understanding, rigour and attention
to detail were exactly what I needed.

To all my colleagues over the years (old and new) within both the Centre for Complex
Systems and later the Centre for Intelligent Systems and Complex Processes, thank you
for the discussion (usually meaningful) and support (always appreciated).

In particular I wish to thank my good friends Matthew Dafilis (yes, δT/δt > 0) and
Gerard Murray for their enduring support and understanding. Gerard – my family has
adopted you.

To the many students I have had the honour of teaching and supervising, I thank you
for your encouragement and feedback, and for allowing me the occasional diversionary
“rant” about my research interests. A wise teacher once quoted to me, “I learn as I teach,
and I teach as I learn”. I have certainly experienced this! Thank you to the students who
let me learn with them.

In complex networks, there are critical nodes; without them, a system fails. My family
are the most important of all. To my heavenly Father, thank you for saving me. To my
parents, Marilyn and Paul Woodward, thank you for always supporting and encouraging
me, and setting me on this path (even though you probably didn’t quite imagine this
particular path). To my wife Zanyta, I know that words really can’t explain how much
your support has meant to me – I’ll do my best to show you as time goes by. And lastly,
to my children Kaelan and Talia, who have missed their Dad; it is definitely time for a
scruff!

v

vi

Declaration

I hereby declare that this submission is my own work and to the best of my knowledge
it contains no material previously published or written by another person except where
due acknowledgement is made in the thesis. Any contribution made to the research by
colleagues, with whom I have worked with at Swinburne University of Technology or
elsewhere, during my candidature, is fully acknowledged.

I also declare that the intellectual content of this thesis is the product of my own work,
except to the extent that assistance from others in the project’s design and conception or
in style, presentation and linguistic expression is acknowledged.

Clinton Jon Woodward

vii

viii

Table of Contents

I Ecosystems, Topology and Evolutionary Computation

1 Introduction 3
1.1 Overview . 3
1.2 Evolution and Genetics . 3
1.3 Ecology and Ecosystems . 4
1.4 Evolutionary Computation . 5
1.5 Performance and No Free Lunch . 5
1.6 Algorithm Performance . 6
1.7 Problems and Problem Solving . 7
1.8 Parameter Adaptation and Control . 9
1.9 Evolution and Topology . 10
1.10 Graphs, Complex Systems and Efficiency 11

1.10.1 Graph Concepts . 11
1.10.2 Complex Systems . 12
1.10.3 Efficient Topology . 12

1.11 Research Objectives . 12
1.12 Contributions . 13
1.13 Thesis Structure . 13

2 Ecology, Ecosystems and Evolution 15
2.1 Introduction . 15
2.2 Ecology . 15
2.3 Ecosystem . 18

2.3.1 Definitions and Origins . 18
2.3.2 Structure and Function . 18
2.3.3 Life Cycle Model . 20
2.3.4 Community Model . 20
2.3.5 Components, Properties and Processes 21

2.4 Evolution . 28
2.4.1 Origins and Fitness . 28
2.4.2 Mechanisms . 29
2.4.3 Selection . 29
2.4.4 Genetic Drift . 31
2.4.5 Gene Flow . 33
2.4.6 Mutation . 33

ix

Table of Contents

2.4.7 Speciation . 34
2.4.8 Limitations . 35
2.4.9 Evolution and Organisational Scale 37

3 Evolutionary Computation 39
3.1 Introduction . 39

3.1.1 Objectives . 39
3.1.2 The Simple Evolutionary Algorithm 40
3.1.3 Search and Fitness Landscape . 42
3.1.4 Convergence . 43
3.1.5 EAs as Robust, Adaptive Search . 44
3.1.6 EAs and Conventional Optimisation 46
3.1.7 Further Resources . 46

3.2 An Ecosystem Model for EA . 48
3.2.1 Introduction . 48
3.2.2 Components . 48
3.2.3 Representation . 49
3.2.4 Evaluation . 52
3.2.5 Selection . 54
3.2.6 Variation . 57
3.2.7 Migration . 60
3.2.8 Initialisation . 61
3.2.9 Termination . 62
3.2.10 Components and Influence . 62

3.3 Common Dialect Classification . 65
3.3.1 The EA Union . 65
3.3.2 Evolutionary Strategies (ES) . 65
3.3.3 Evolutionary Programming (EP) . 66
3.3.4 Genetic Algorithm (GA) . 66
3.3.5 Genetic Programming (GP) . 67
3.3.6 Structured EAs . 68
3.3.7 Other Approaches . 69

3.4 Reference Algorithms . 71
3.4.1 Introduction . 71
3.4.2 GA: Genetic Algorithm . 72
3.4.3 ES: Evolutionary Strategy . 73
3.4.4 G3: Generalised Generation Gap Model 74
3.4.5 cEA: Cellular Evolutionary Algorithm 77
3.4.6 dEA: Distributed Evolutionary Algorithm 78
3.4.7 Closing . 79

3.5 Summary . 80

4 Graph Theory, Topology and Efficiency 81
4.1 Introduction . 81

x

Table of Contents

4.1.1 Networks and Graphs . 81
4.1.2 Graphs Everywhere . 81
4.1.3 Complex Systems . 82
4.1.4 Small-World Phenomena . 84
4.1.5 Graph Theory . 85
4.1.6 Additional Resources . 87

4.2 Graph Concepts . 87
4.2.1 Overview . 87
4.2.2 Vertices, Properties and Sets . 87
4.2.3 Paths and Cycles . 88
4.2.4 Critical Components . 89
4.2.5 Graphs Terms and Properties . 90

4.3 Visual Representation . 91
4.3.1 Introduction . 91
4.3.2 Regular and Random Structures . 92
4.3.3 Graph Drawing . 93
4.3.4 Further Resources . 95

4.4 Measurements and Properties . 96
4.4.1 Introduction . 96
4.4.2 Degree, Distribution and Correlation 97
4.4.3 Clustering Coefficient . 99
4.4.4 Motifs . 101
4.4.5 Characteristic Path Length . 102
4.4.6 Global and Local Efficiency . 103
4.4.7 Cost . 104
4.4.8 Other Measures and Properties . 105
4.4.9 Real-World Examples . 107

4.5 Topology Models . 108
4.5.1 Introduction . 108
4.5.2 Regular Models . 110
4.5.3 Hierarchical Models . 112
4.5.4 Random Graphs . 113
4.5.5 Small-World Model . 115
4.5.6 Price’s Growth Model . 117
4.5.7 Barabási and Albert (BA) Growth Model 118
4.5.8 Merge-Regenerate Models . 121
4.5.9 Comparing Topology Models . 122

4.6 Networks and Processes . 125
4.6.1 Introduction . 125
4.6.2 Utilisation . 125
4.6.3 Navigation . 126
4.6.4 Evolution . 126
4.6.5 Biology and Genetics . 127

xi

Table of Contents

4.7 Summary . 129

II Investigations within Ecosystem EC

5 An Ecosystem Model for Evolutionary Computation 133
5.1 Introduction . 133
5.2 Ecosystem Evolutionary Computation . 133

5.2.1 A Composition of Models . 133
5.2.2 Ecology, Ecosystems and Organisation Scale 134
5.2.3 Evolutionary Computation . 136
5.2.4 Topology, Complexity and Efficiency 138
5.2.5 An Organisation of Systems . 143

5.3 A Python Package: esec . 144
5.3.1 Package Objectives . 144
5.3.2 Configuration . 145
5.3.3 Batch Experiments and Reports . 151

5.4 Consideration of Related Work . 152
5.4.1 Introduction . 152
5.4.2 Explicit Niche Schemes . 152
5.4.3 Structured EAs . 153
5.4.4 Communities of Species . 157
5.4.5 Summary . 162

5.5 Key Questions . 162
5.6 Comparing Performance . 164

5.6.1 Introduction . 164
5.6.2 Measurement and Concepts . 164
5.6.3 Box and Whisker Evaluation Plots 166
5.6.4 Mann-Whitney U Test Comparison Matrix 166

5.7 Closing . 166

6 Population Organisation 169
6.1 Introduction . 169
6.2 Investigation Scope . 170

6.2.1 Objectives . 170
6.2.2 Selected Population Topology . 171
6.2.3 Selected Problem Landscapes . 175
6.2.4 Result Comparison Methods . 178

6.3 Experiments . 179
6.3.1 Introduction . 179
6.3.2 Topology Influence . 180
6.3.3 Topology Scale . 193
6.3.4 Circular and Bound Lattices . 210
6.3.5 Influence of Order and Mate Selection 218

xii

Table of Contents

6.3.6 Juveniles with Delayed Competition 229
6.3.7 Rewired Lattices . 233

6.4 Discussion . 240
6.4.1 Outcomes . 240
6.4.2 Future Opportunities . 242
6.4.3 Complex Topology and Computational Cost 244
6.4.4 Topology Selection Guidelines . 244

6.5 Closing . 246

7 Open Research and the ESEC Model 247
7.1 Introduction . 247
7.2 Community . 247

7.2.1 Subpopulations . 247
7.2.2 Multiple Species . 248
7.2.3 Interaction Models . 249
7.2.4 Interaction Structure . 250

7.3 Ecosystem . 251
7.3.1 Concepts . 251
7.3.2 Island Models as Ecosystems . 252
7.3.3 Structure and Migration . 253

7.4 System Configuration . 255
7.4.1 Introduction . 255
7.4.2 Community . 256
7.4.3 Ecosystem . 257

7.5 Community Examples . 258
7.5.1 Cooperative Symbiosis . 258
7.5.2 Competitive Predator-Prey . 261

7.6 Ecosystem Examples . 262
7.6.1 Basic Island Model . 262
7.6.2 Complex Ecosystem . 264

7.7 Open Questions . 265
7.8 Closing . 267

8 Conclusions 275
8.1 Overview . 275
8.2 Contributions . 275
8.3 Future Work . 276
8.4 Closing Comment . 278

III References and Appendices

References 281

A Glossaries 307

xiii

Table of Contents

A.1 Ecology, Ecosystems and Evolution . 308
A.2 Graphs and Topology . 316

B Benchmark Problems 323
B.1 Domain Qualities . 323
B.2 Classic Binary Problems . 324

B.2.1 Introduction . 324
B.2.2 OneMax Function . 325
B.2.3 Royal Road Function . 326
B.2.4 Goldberg’s Deceptive 3-bit Function 327
B.2.5 Whitley’s Deceptive 4-bit Function 328

B.3 Classic Continuous Optimisation Problems 329
B.3.1 Introduction . 329
B.3.2 Sphere . 330
B.3.3 Hyperellipsoid . 331
B.3.4 Quadric . 332
B.3.5 Noisy Quartic Function . 333
B.3.6 Easom Function . 334
B.3.7 Rosenbrock’s valley . 335
B.3.8 Rastrigin Function . 337
B.3.9 Griewangk Function . 339
B.3.10 Ackley Function . 341
B.3.11 Schwefel Function . 342
B.3.12 Michalewicz’s Function . 343
B.3.13 Frequency Modulation Sounds Problem 344

B.4 Multiple Niche Problems . 345
B.4.1 Introduction . 345
B.4.2 One-dimensional Standards . 345
B.4.3 Himmelblau Function . 347
B.4.4 Six-hump Camel Back Function . 348

B.5 Problem Generators . 349
B.5.1 Introduction . 349
B.5.2 Massively Multimodal Deceptive Problem 350
B.5.3 Multimodal Problem Generator P-PEAKS 351
B.5.4 L-SAT Random Satisfiability Problem 352
B.5.5 Kauffman’s NK Landscape . 354
B.5.6 NKC Landscape . 356
B.5.7 Subset Sum Problem Generator . 358
B.5.8 MAXCUT Maximum Cut Graph Problem 359
B.5.9 Error Correcting Code Design . 360
B.5.10 Minimum Tardy Task Problem . 361
B.5.11 Max Set of Gaussians Landscape Generator 362

C Topology Survey 365

xiv

Table of Contents

C.1 Introduction, Measures and Details . 365
C.2 Full . 367
C.3 Lattice (L) . 369

C.3.1 Introduction . 369
C.3.2 L.k4 . 370
C.3.3 L.k4.b . 372
C.3.4 Rewired L.k4 . 374
C.3.5 L.k8 . 376
C.3.6 L.k8.b . 378
C.3.7 Rewired L.k8 . 380
C.3.8 L.k12 . 382
C.3.9 L.k12.b . 384
C.3.10 Rewired L.k12 . 386
C.3.11 L.hk4 . 388
C.3.12 L.hk4.b . 391
C.3.13 L.hk8 . 393
C.3.14 L.hk8.b . 395
C.3.15 Rewired L.hk8 . 397
C.3.16 L.k6 . 400
C.3.17 L.k6.b . 402
C.3.18 Rewired L.k6 . 404
C.3.19 L.hk3 . 406
C.3.20 L.hk3.b . 408
C.3.21 Rewired L.hk3 . 410
C.3.22 Regular Lattice Summary . 412
C.3.23 Hollow Lattice Summary . 413
C.3.24 Rewired Lattice Summary . 414

C.4 Star . 419
C.5 Tree (T) . 420

C.5.1 T.c2 . 420
C.5.2 T.c3 . 422
C.5.3 T.c4 . 424
C.5.4 T.c5 . 426
C.5.5 T.c6 . 428
C.5.6 Tree Summary . 430

C.6 Erdös-Rényi (ER) . 431
C.6.1 ER.01 . 431
C.6.2 ER.02 . 433
C.6.3 ER.03 . 435
C.6.4 ER.04 . 437
C.6.5 ER.05 . 439
C.6.6 ER Summary . 441

C.7 Watts-Strogatz (WS) . 442

xv

Table of Contents

C.7.1 WS.001 . 442
C.7.2 WS.01 . 444
C.7.3 WS.1 . 446
C.7.4 WS Summary . 448

C.8 Barabási-Albert (BA) . 449
C.9 Merge-Regenerate (MR) . 451

D CDROM Guide 455

E The esec Python Package 457
E.1 Introduction . 457

E.1.1 Purpose . 457
E.1.2 Features . 457

E.2 Architecture . 458
E.3 Dependencies . 459
E.4 Installation and Testing . 460

E.4.1 Installation and Setup . 460
E.4.2 Running Self-Tests . 460

E.5 Basic Usage . 460
E.6 Documentation . 462
E.7 Design and Implementation Notes . 462

E.7.1 Language Selection: Why Python? 462
E.7.2 Software Quality . 463

F Population Topology Experiments 465

G Classic Small-World Simulation 467
G.1 The Small-World Model . 467
G.2 Required Software . 467
G.3 The Code . 467
G.4 The Result . 469

xvi

List of Figures

1.1 Population topology and individual solution topology concepts 11

2.1 Organisational levels as they relate to ecology, ecosystems and evolution . 16
2.2 The flow of energy and matter within an ecosystem model 19
2.3 The life cycle of sexually reproducing biological organisms 21
2.4 Community views . 22
2.5 Gene expression pathway . 30
2.6 Linear and non-linear trait fitness relationships 31
2.7 Neutral, linear, stabilising and disruptive selection 32
2.8 Speciation modes and enabling changes . 35
2.9 Trait interaction network . 36
2.10 Complex gene expression topology . 37
2.11 Macro and micro evolution on an organisational scale 38

3.1 The simplified life cycle model for artificial evolution 39
3.2 Pseudo-code a basic EA . 42
3.3 1D fitness landscape and population occupation at three stages of evolution 43
3.4 Simple panmictic population and a complex multi-population model . . . 52
3.5 NKC epistatic interaction model for three species. 53
3.6 One-point, two-point and uniform crossover 58
3.7 Order-based crossover for permutation individuals 59
3.8 Simple bit-toggle mutation and inversion examples. 59
3.9 Sequence permutation mutation examples. 60
3.10 Unified generational gap model . 63
3.11 Parallel EA Models . 64
3.12 Basic population models for panmictic, cellular and distributed EAs . . . 68
3.13 Relationship between sub-population size, coupling and number 69
3.14 Three sample examples of offspring using PCX crossover 76
3.15 Regular neighbourhood configurations . 78

4.1 Simple graph examples . 86
4.2 Graph type examples . 92
4.3 Examples of regular and random graphs 93
4.4 Graphs by drawing groups: Trees, General, Planar and Directed 93
4.5 A graph represented as an adjacency matrix and a distance matrix. 97
4.6 Community structure example based on connection density 100

xvii

List of Figures

4.7 Motifs. The 13 possible directed connected graphs for three vertices. . . . 101
4.8 Bipartite graph example with its single mode projection. 107
4.9 Lattice models with neighbourhood restricted to axes. 110
4.10 Hexagonal, square, triangle and diamond regular graph patterns. 111
4.11 Hierarchical graph growth . 112
4.12 Examples of changing p with the Watts-Strogatz small-world model. . . . 116
4.13 The effect of p on L and C in the Watts-Strogatz small-world model. . . . 117
4.14 Graph examples using the ER and BA growth models. 120
4.15 A representation of the merge and create model. 121
4.16 Graph models compared using degree and clustering distribution. 123

5.1 Mean path length histograms for L.k4 lattice graphs of size n = 400. . . . 140
5.2 Comparing the influence of rewiring on Eglob and Eloc. 140
5.3 Organisational levels used as basis for ESEC components 143
5.4 Modules of the esec Python package . 145

6.1 Population organisation model within the ESEC framework 169
6.2 Neighbourhoods for (a) k = 4, (b) k = 8 and (c) k = 12 lattices 173
6.3 2D layout for L.hk4 and L.hk8 lattices showing hollow features 173
6.4 2D 3-axes layout for L.k6 and L.k3 (honeycomb) lattices 174
6.5 Tree and force-based layout for T.c2 graph 174
6.6 Force-based layout for three different WS topologies 175
6.7 Force-based layout of BA.p1 and MR.5 topology examples 175
6.8 The 2D Sphere (De Jong F1) and Rosenbrock real value functions. 177
6.9 Whitley 4-bit deceptive (WD4B) function 178
6.10 ES box and whisker topology comparison plot for Sph.n3i and Sph.n20i . 185
6.11 Ros.n20i success group comparison plot 186
6.12 ES distribution plot and success ratio comparison plot for WD4B.5 187
6.13 ES distribution plot plot for SUS.1000e . 188
6.14 Schwefel and a Max Set of Gaussians (MSG) landscapes 190
6.15 Additional PPeaks.100 and Sch.n2i ES distribution and success ratio plots 191
6.16 Lattice group comparison of ES distributions on Sph.n3 and WD4B.5

domains. 205
6.17 Lattice and ER group comparison of SR ratio on the MTTP.100i domain. 206
6.18 ER group scale comparison of ES distribution for the SUS.100 207
6.19 WS group scale comparison of ES distribution for Sph.n20i 207
6.20 WS group scale comparison of ES distribution and SR ratio for MTTP.100i.208
6.21 Full graph comparison of ES distribution results for Sph.n3i 210
6.22 Full graph comparison of ES distribution and success ratio for MTTP.100i 211
6.23 Full graph comparison of ES and success ratio for the WD4B.10 domain . 212
6.24 SUS.1000 ES distribution compared across topology scales 212
6.25 Mean path length histograms for circular and bound L.k4 lattice graphs

of size n = 400 . 213
6.26 Bound lattice influence on SUS.1000i, Sph.n3i and Sph.n20i domain . . . 216

xviii

List of Figures

6.27 Fixed limit ratio of circular and bound lattice for the Ros.n20i domain . . 217
6.28 Increased success ratio of bound lattice for the Ros.n2i and WD4B.5 domains217
6.29 Representations of FLS and ZigZag update sequences 219
6.30 Random, FLS and FLSR lattice update order influence on the Sph.n20i

domain . 222
6.31 Random, FLS and ZigZig update order on the Sph.n20i domain 223
6.32 Random, FLS and FLS+Best update order on the Sph.n20i domain 224
6.33 Random, FLS and FLS+Best update order on the WD4B.5 domain. . . . 224
6.34 Representations of Spiral In and Out lattice update sequences 225
6.35 Random, SpiralIn and SpiralOut update order on lattice applied to Sph.n20i225
6.36 Random, FIT and FITR update order on WS topology applied to Sph.n20i228
6.37 Random, FIT and FITR update order on lattice topology applied to

Sph.n20i. 229
6.38 Delayed replacement comparison for the Sph.n20i domain. 230
6.39 Delayed replacement comparison for the Sph.n3 domain. 233
6.40 Delayed replacement comparison for the WD4B.10 domain. 234
6.41 Comparing the influence of rewiring on Eglob and Eloc 235
6.42 Rewired lattice performance comparison for the Sph.n3i domain 237
6.43 Rewired lattice performance comparison for the Sph.n20i domain 237
6.44 Rewired lattice success rate performance comparison for the Sph.n20 domain238
6.45 Rewired lattice success result scatter for the Sph.n20 domain 239
6.46 Rewired lattice success rate performance comparison for the MTTP.100i

domain . 240
6.47 Rewired lattice success result scatter for the MTTP.100i domain 241
6.48 Rewired lattice success rate performance comparison for the FMSi domain 242
6.49 Rewired lattice success result scatter for the FMSi domain 243

7.1 Community organisation composition within the ESEC framework. 248
7.2 Ecosystem organisation model within the ESEC framework 251
7.3 String matching problem domain for cooperative species 259
7.4 Solution fitness and subpopulation fitness for a cooperative symbiosis ex-

ample . 261
7.5 Binary competitive domain for predator-prey species 270
7.6 Subpopulation fitness for a competitive symbiosis example 270
7.7 Island ecosystem composition example . 272
7.8 Composition of a complex ESEC ecosystem example 272

B.1 OneMax Function using standard and Gray binary encoding 325
B.2 Hypercube of Goldberg’s 3-bit deceptive function 327
B.3 Whitley 4-bit deceptive function . 328
B.4 Sphere (De Jong F1) . 330
B.5 Hyperellipsoid . 331
B.6 Quadric function. 332
B.7 The Noisy Quartic function at two scales. 333

xix

List of Figures

B.8 Easom function at wide and narrow range of values. 334
B.9 Rosenbrock function presented with linear and log output scale. 336
B.10 Rastrigin at both global and local views 338
B.11 Griewangk function at three views from macro to micro levels. 340
B.12 Ackley function at macro and micro views. 341
B.13 Schwefel function at macro and micro scale views 342
B.14 Michalewicz’s Function. 343
B.15 Four standard one-dimensional multi-peak functions. 346
B.16 Himmelblau Function . 347
B.17 Six-hump Camel Back. 348
B.18 6-bit bipolar deceptive payoff . 350
B.19 NKC epistatic interaction model for three species. 356
B.20 Two configurations of the Max Set of Gaussians landscape 363

C.1 Circle layout for a small n = 20 full graph. 368
C.2 Neighbourhoods for (a) k = 4, (b) k = 8 and (c) k = 12. 369
C.3 2D layout for L.k4 circular lattice. 370
C.4 Vertex degree and path length histograms for L.k4, n = 100. 371
C.5 Vertex degree and path length histograms for L.k4, n = 400. 371
C.6 Vertex degree and path length histograms for L.k4, n = 900. 371
C.7 2D layout for L.k4.b non-circular lattice. 372
C.8 Vertex degree and path length histograms for L.k4.b, n100. 373
C.9 Vertex degree and path length histograms for L.k4.b, n = 400. 373
C.10 Vertex degree and path length histograms for L.k4.b, n = 900. 373
C.11 Influence of p on (a) L/L0 and C, and on (b) Eglob and Eloc. 374
C.12 Vertex degree and path length histograms for rewired L.k4 lattices. 375
C.13 2D layout for L.k8 circular lattice. 376
C.14 Vertex degree and path length histograms for L.k8, n = 100. 377
C.15 Vertex degree and path length histograms for L.k8, n = 400. 377
C.16 Vertex degree and path length histograms for L.k8, n = 900. 377
C.17 2D layout for L.k8 non-circular lattice. 378
C.18 Vertex degree and path length histograms for L.k8.b, n = 100. 379
C.19 Vertex degree and path length histograms for L.k8.b, n = 400. 379
C.20 Vertex degree and path length histograms for L.k8.b, n = 900. 379
C.21 Influence of p on (a) L/L0 and C, and on (b) Eglob and Eloc. 380
C.22 Vertex degree and path length histograms for rewired L.k8 lattices. 381
C.23 2D layout for L.k12 circular lattice. 382
C.24 Vertex degree and path length histograms for L.k12, n = 100. 383
C.25 Vertex degree and path length histograms for L.k12, n = 400. 383
C.26 Vertex degree and path length histograms for L.k12, n = 900. 383
C.27 2D layout for L.k12 non-circular lattice. 384
C.28 Vertex degree and path length histograms for L.k12.b, n = 100. 385
C.29 Vertex degree and path length histograms for L.k12.b, n = 400. 385

xx

List of Figures

C.30 Vertex degree and path length histograms for L.k12.b, n = 900. 385
C.31 Influence of p on (a) L/L0 and C, and on (b) Eglob and Eloc. 386
C.32 Vertex degree and path length histograms for rewired L.k12 lattices. . . . 387
C.33 2D layout for L.k4 circular lattice with hollows. 388
C.34 Vertex degree and path length histograms for L.hk4, n = 96. 390
C.35 Vertex degree and path length histograms for L.hk4, n = 408. 390
C.36 Vertex degree and path length histograms for L.hk4, n = 901. 390
C.37 2D layout for L.hk4.b non-circular lattice with hollows. 391
C.38 Vertex degree and path length histograms for L.hk4.b, n = 96. 392
C.39 Vertex degree and path length histograms for L.hk4.b, n = 408. 392
C.40 Vertex degree and path length histograms for L.hk4.b, n = 901. 392
C.41 2D layout for L.hk8 circular lattice with hollows. 393
C.42 Vertex degree and path length histograms for L.hk8, n = 96. 394
C.43 Vertex degree and path length histograms for L.hk8, n = 408. 394
C.44 Vertex degree and path length histograms for L.hk8, n = 901. 394
C.45 2D layout for L.hk8 non-circular lattice with hollows. 395
C.46 Vertex degree and path length histograms for L.hk8.b, n = 96. 396
C.47 Vertex degree and path length histograms for L.hk8.b, n = 408. 396
C.48 Vertex degree and path length histograms for L.hk8.b, n = 901. 396
C.49 Influence of p on (a) L/L0 and C, and on (b) Eglob and Eloc. 398
C.50 Vertex degree and path length histograms for rewired L.hk8 lattices. . . . 399
C.51 2D 3-axes layout for L.k6 circular lattice. 400
C.52 Vertex degree and path length histograms for L.k6, n = 100. 401
C.53 Vertex degree and path length histograms for L.k6, n = 400. 401
C.54 Vertex degree and path length histograms for L.k6, n = 900. 401
C.55 2D 3-axes layout for L.k6 non-circular lattice. 402
C.56 Vertex degree and path length histograms for L.k6.b, n = 100. 403
C.57 Vertex degree and path length histograms for L.k6.b, n = 400. 403
C.58 Vertex degree and path length histograms for L.k6.b, n = 900. 403
C.59 Influence of p on (a) L/L0 and C, and on (b) Eglob and Eloc. 404
C.60 Vertex degree and path length histograms for rewired L.k6 lattices. 405
C.61 2D 3-axes layout for L.hk3 circular lattice with hollows. 406
C.62 Vertex degree and path length histograms for L.hk3, n = 96. 407
C.63 Vertex degree and path length histograms for L.hk3, n = 418. 407
C.64 Vertex degree and path length histograms for L.hk3, n = 912. 407
C.65 2D 3-axes layout for L.hk3 non-circular lattice with hollows. 408
C.66 Vertex degree and path length histograms for L.hk3.b, n = 96. 409
C.67 Vertex degree and path length histograms for L.hk3.b, n = 418. 409
C.68 Vertex degree and path length histograms for L.hk3.b, n = 912. 409
C.69 Influence of p on (a) L/L0 and C, and on (b) Eglob and Eloc. 410
C.70 Vertex degree and path length histograms for rewired L.hk3 lattices. . . . 411
C.71 Comparing the influence of rewiring on Eglob and Eloc. 414
C.72 Sample layout instances of rewired L.k4 lattices. 417

xxi

List of Figures

C.73 Sample layout instances of rewired L.k8 lattices. 417
C.74 Sample layout instances of rewired L.k12 lattices. 417
C.75 Sample layout instances of rewired L.hk8 lattices. 418
C.76 Sample layout instances of rewired L.k6 lattices. 418
C.77 Sample layout instances of rewired L.hk3 lattices. 418
C.78 Force-based layout for star graph of n = 100 size. 419
C.79 Vertex degree and path length histograms for a star, n = 100. 419
C.80 (a) Tree and (b) force-based layout for T.c2 graph. 420
C.81 Vertex degree and path length histograms for T.c2, n = 100. 421
C.82 Vertex degree and path length histograms for T.c2, n = 400. 421
C.83 Vertex degree and path length histograms for T.c2, n = 900. 421
C.84 (a) Tree and (b) force-based layout for T.c3 graph. 422
C.85 Vertex degree and path length histograms for T.c3, n = 100. 423
C.86 Vertex degree and path length histograms for T.c3, n = 400. 423
C.87 Vertex degree and path length histograms for T.c3, n = 900. 423
C.88 (a) Tree and (b) force-based layout for T.c4 graph. 424
C.89 Vertex degree and path length histograms for T.c4, n = 100. 425
C.90 Vertex degree and path length histograms for T.c4, n = 400. 425
C.91 Vertex degree and path length histograms for T.c4, n = 900. 425
C.92 (a) Tree and (b) force-based layout for T.c5 graph. 426
C.93 Vertex degree and path length histograms for T.c5, n = 100. 427
C.94 Vertex degree and path length histograms for T.c5, n = 400. 427
C.95 Vertex degree and path length histograms for T.c5, n = 900. 427
C.96 (a) Tree and (b) force-based layout for T.c6 graph. 428
C.97 Vertex degree and path length histograms for T.c6, n = 100. 429
C.98 Vertex degree and path length histograms for T.c6, n = 400. 429
C.99 Vertex degree and path length histograms for T.c6, n = 900. 429
C.100 Force-based layout for three different ER.01 instances. 431
C.101 Vertex degree and path length histograms for ER.01, n = 100. 432
C.102 Vertex degree and path length histograms for ER.01, n = 400. 432
C.103 Vertex degree and path length histograms for ER.01, n = 900. 432
C.104 Force-based layout for three different ER.02 instances. 433
C.105 Vertex degree and path length histograms for ER.02, n = 100. 434
C.106 Vertex degree and path length histograms for ER.02, n = 400. 434
C.107 Vertex degree and path length histograms for ER.02, n = 900. 434
C.108 Force-based layout for three different ER.03 instances. 435
C.109 Vertex degree and path length histograms for ER.03, n = 100. 436
C.110 Vertex degree and path length histograms for ER.03, n = 400. 436
C.111 Vertex degree and path length histograms for ER.03, n = 900. 436
C.112 Force-based layout for three different ER.04 instances. 437
C.113 Vertex degree and path length histograms for ER.04, n = 100. 438
C.114 Vertex degree and path length histograms for ER.04, n = 400. 438
C.115 Vertex degree and path length histograms for ER.04, n = 900. 438

xxii

List of Figures

C.116 Force-based layout for three different ER.05 instances. 439
C.117 Vertex degree and path length histograms for ER.05, n = 100. 440
C.118 Vertex degree and path length histograms for ER.05, n = 400. 440
C.119 Vertex degree and path length histograms for ER.05, n = 900. 440
C.120 Force-based layout for two different WS.001 instances. 442
C.121 Vertex degree and path length histograms for WS.001, n = 100. 443
C.122 Vertex degree and path length histograms for WS.001, n = 400. 443
C.123 Vertex degree and path length histograms for WS.001, n = 900. 443
C.124 Force-based layout for three different WS.01 instances. 444
C.125 Vertex degree and path length histograms for WS.01, n = 100. 445
C.126 Vertex degree and path length histograms for WS.01, n = 400. 445
C.127 Vertex degree and path length histograms for WS.01, n = 900. 445
C.128 Force-based layout for three different WS.1 instances. 446
C.129 Vertex degree and path length histograms for WS.1, n = 100. 447
C.130 Vertex degree and path length histograms for WS.1, n = 400. 447
C.131 Vertex degree and path length histograms for WS.1, n = 900. 447
C.132 Force-based layout for three different BA.p1 instances. 449
C.133 Vertex degree and path length histograms for BA.p1, n = 100. 450
C.134 Vertex degree and path length histograms for BA.p1, n = 400. 450
C.135 Vertex degree and path length histograms for BA.p1, n = 900. 450
C.136 Force-based layout for three different MR.5 instances. 452
C.137 Vertex degree and path length histograms for MR.5, n = 100. 453
C.138 Vertex degree and path length histograms for MR.5, n = 400. 453
C.139 Vertex degree and path length histograms for MR.5, n = 900. 453

E.1 Sample execution of the run.py script using the esec package. 461

G.1 The effect of p on L and C in the Watts-Strogatz small-world model. . . . 469

xxiii

List of Figures

xxiv

List of Tables

2.1 Selection of organisational levels and brief descriptions 17
2.2 Temporal environment change terms . 22
2.3 Community terms of species and dynamic changes 23
2.4 Population intrinsic rate of growth terms . 24
2.5 Population dynamics terms . 25
2.6 Species terms . 25
2.7 Environment distribution terms . 26
2.8 Niche terms . 26
2.9 Disease spread terms . 26
2.10 Competition terms . 28

3.1 Connections from evolution concepts to general problem solving 41
3.2 Classic optimisation and EAs . 47
3.3 Ecosystem EA components and descriptions 64
3.4 Canonical GA configuration . 72
3.5 Canonical (λ, µ)-ES configuration . 74
3.6 G3 Configuration . 75
3.7 Cellular EA configuration . 77
3.8 Distributed island EA configuration . 79

4.1 Basic graph terminology . 86
4.2 Terminology: vertices . 88
4.3 Terminology: paths, cycles and graphs . 89
4.4 Terminology: graph properties . 90
4.5 Terminology: graph types . 91
4.6 Terms to describe the central vertex of a graph. 103
4.7 Examples of real-world network efficiency and cost. 107
4.8 Real-world examples of network statistics taken from published work. . . . 108
4.9 Tabular summary of network models and properties. 125

5.1 esec supported syntax dictionary types . 146

6.1 Base experiment topology labels and summary details 172
6.2 Real value landscape labels and summary details 176
6.3 Binary value landscape labels and summary details 176
6.4 Base n = 100 AES and SR results for real value landscapes 183
6.5 Base n = 100 AES and SR results for binary value landscapes 184

xxv

List of Tables

6.6 Additional landscape labels and summary details 189
6.7 AES and SR results for additional real and binary landscapes 192
6.8 Topology size= 400. Average Evaluations to Success (AES) and Success

Rate (SR) results for real value landscapes 194
6.9 Topology size= 400. Average Evaluations to Success (AES) and Success

Rate (SR) results for binary value landscapes 195
6.10 Topology size= 900. AES and SR results for real value landscapes 196
6.11 Topology size= 900. AES and SR results for binary value landscapes 197
6.12 Lattice group scale comparison of AES and SR results on real value landscapes200
6.13 Tree group scale comparison of AES and SR results on real value landscapes 200
6.14 Lattice group scale comparison of AES and SR results on binary value

landscapes . 201
6.15 Tree group scale comparison of AES and SR results on binary value landscapes201
6.16 ER group scale comparison of AES and SR results on real value landscapes 203
6.17 WS group scale comparison of AES and SR results on real value landscapes 203
6.18 Other group scale comparison of AES and SR results on real value landscapes203
6.19 ER group scale comparison of AES and SR results on binary value landscapes204
6.20 WS group scale comparison of AES and SR results on binary value landscapes204
6.21 Other group scale comparison of AES and SR results on binary value land-

scapes . 204
6.22 Full graph AES and SR comparison results for real value landscapes 209
6.23 Full graph AES and SR comparison results for binary value landscapes . . . 209
6.24 Circular vs Bound (b) lattice summary results for real value landscapes . . 214
6.25 Circular vs Bound (b) lattice summary results for binary value landscapes . 215
6.26 Random, FLS and FLSR update order summary results for real value land-

scapes . 220
6.27 Random, FLS and FLSR update order summary results for binary value

landscapes . 221
6.28 Random, SpiralIn and SpiralOut update order summary results for real

value landscapes . 226
6.29 Random, SpiralIn and SpiralOut update order summary results for binary

value landscapes . 227
6.30 Delayed juvenile replacement summary results for real value landscapes . . 231
6.31 Delayed juvenile replacement summary results for binary value landscapes . 232
6.32 Rewired lattice summary results for real and binary landscapes 236

7.1 Island EA configuration as a simple ecosystem 263

B.1 Royal Road evaluations for five example vectors. 326
B.2 Goldberg’s deceptive 3-bit function . 327
B.3 Whitley’s deceptive 4-bit function . 328
B.4 Comparison of classic continuous optimisation function. 329
B.5 Summary of problem generators. 349
B.6 The “mttp20” standard minimum tardy task problem of n = 20 361

xxvi

List of Tables

B.7 Parameters used in the Gaussians landscape generator. 362

C.1 Properties and statistics for full graph instances. 367
C.2 Properties and statistics for L.k4 graph instances. 370
C.3 Properties and statistics for L.k4.b graph instances. 372
C.4 Properties and statistics for rewired L.k4 lattice instances. 374
C.5 Properties and statistics for L.k8 graph instances. 376
C.6 Properties and statistics for L.k8.b graph instances. 378
C.7 Properties and statistics for rewired L.k8 lattice instances. 380
C.8 Properties and statistics for L.k12 graph instances. 382
C.9 Properties and statistics for L.k12.b graph instances. 384
C.10 Properties and statistics for rewired L.k12 lattice instances. 386
C.11 Properties and statistics for L.hk4 graph instances. 388
C.12 Properties and statistics for L.hk4.b graph instances. 391
C.13 Properties and statistics for L.hk8 graph instances. 393
C.14 Properties and statistics for L.hk8.b graph instances. 395
C.15 Properties and statistics for rewired L.hk8 lattice instances. 398
C.16 Properties and statistics for L.k6 graph instances. 400
C.17 Properties and statistics for L.k6.b graph instances. 402
C.18 Properties and statistics for rewired L.k6 lattice instances. 404
C.19 Properties and statistics for L.hk3 graph instances. 406
C.20 Properties and statistics for L.hk3.b graph instances. 408
C.21 Properties and statistics for rewired L.hk3 lattice instances. 410
C.22 Comparison of regular lattice details. 412
C.23 Comparison of hollow lattice details. 413
C.24 Comparison of rewired lattice details. 416
C.25 Properties and statistics for star graph instances. 419
C.26 Properties and statistics for T.c2 graph instances. 420
C.27 Properties and statistics for T.c3 graph instances. 422
C.28 Properties and statistics for T.c4 graph instances. 424
C.29 Properties and statistics for T.c5 graph instances. 426
C.30 Properties and statistics for T.c6 graph instances. 428
C.31 Comparison of tree models for different children number. 430
C.32 Balanced tree growth. 430
C.33 Properties and statistics for ER.01 graph instances. 431
C.34 Properties and statistics for ER.02 graph instances. 433
C.35 Properties and statistics for ER.03 graph instances. 435
C.36 Properties and statistics for ER.04 graph instances. 437
C.37 Properties and statistics for ER.05 graph instances. 439
C.38 Comparison of ER model properties for n and p values. 441
C.39 Properties and statistics for WS.001 graph instances. 442
C.40 Properties and statistics for WS.01 graph instances. 444
C.41 Properties and statistics for WS.1 graph instances. 446

xxvii

List of Tables

C.42 WS model comparison for each size and rewiring probability. 448
C.43 Properties and statistics for BA.p1 graph instances. 449
C.44 Properties and statistics for MR.5 graph instances. 451

xxviii

Part I

Ecosystems, Topology and
Evolutionary Computation

1

2

Chapter 1

Introduction

1.1 Overview

When observing natural systems we are often presented with examples of elegant solutions
to problems. It seems that nature regularly uses strategies that successfully exploit the
characteristics of robustness, adaptability, self-organisation and efficiency. Attempts to
understand and replicate such desirable qualities have been seen in many fields, from
science and engineering to business and design.

Work discussed in this thesis has been inspired by the processes of evolution and
adaptation, and the efficient properties of topologies as observed in nature.

The motivations were to create an ecosystem model of evolution to represent and
capture the ideas of complex and efficient topological structures, to relate this to current
evolutionary computation paradigms, and to use the proposed model to question and
investigate both the properties and potential of the model.

1.2 Evolution and Genetics

Concepts of adaptation, genetics, inheritance and the term “survival of the fittest” are
familiar to a large part of the general community. With modern computational techniques,
the application of artificial evolution can take advantage of nature’s strategies and apply
them to new problems far removed from the context in which they have been observed.

In Charles Lyell’s “Principles of Geology” [220], it was argued that our world is in a
‘steady state’ of change due to geological forces which constantly reshape our environment.
This was one of the influences of Charles Darwin (1809-1882) who deduced, concurrently
with Alfred Wallace (1823-1913), that species could adapt and that individuals that are
better suited to their environments have a better chance of survival.

It is this principle of “survival of the fittest” that is the underlying mechanism of natural
evolution. Publication of the book popularly known as “The Origin of Species” in 1859 by
Darwin [62] cemented his reputation as the first author on the theory of evolution, even
though he was not, as is popularly thought, the single contributor of the theory itself [63].
Jean-Baptiste Lamarck (1744-1829) is recognised as the first to formalise shared thoughts
about the process of organic evolution in biology in the early 1800s.

3

Chapter 1: Introduction

During the mid-1800s the Austrian monk Gregor Johann Mendel (1822-1884) pioneered
work in the science of genetics. His research, involving the cross-breeding of various plants,
showed that biological inheritance was the result of the transfer of physical elements, and
that these elements were directly related to the physical characteristics of the plants.
Mendel believed his results were significant and was disappointed that no one seemed to
realise their importance when he presented and published his work. However in 1900,
16 years after Mendel’s death, three other scientists independently repeated Mendel’s
experiments.1 It was only then that the larger scientific community began to realise that
Mendel had already discovered the significant elemental nature of inheritance which we
now know as genetics.

The field of modern genetics only truly formed in the 1920s once the tools of maths and
statistics had developed to deal with the amounts of data often associated with genetic
structures and its many variations. New insight into epigenetic factors2, development
influences and the dynamic networks of gene expression, all continue to expand the field
of modern genetic knowledge.

It is important to note the distinction between the process of evolution, and the specific
mechanisms of genetics. They are both important to the work presented in this thesis.

1.3 Ecology and Ecosystems

Ecology is a multi-disciplined and integrative area of scientific study. Its subject matter is
the entire world, both living and non-living parts. As a field, ecology encourages a method
of observation and assessment that integrates how all parts of a system fit together. The
objective of ecology is to understand how each part influences, and is influenced by, other
parts.

Ecosystems are defined as a unit that include a community of organisms, an environ-
ment, a network of interactions and processes, and energy. Understanding an ecosystem is
an understanding of the processes that govern the transformation of material and energy
contained in the system. An ecosystem model includes networks of interactions at many
different levels. Scale is simply an arbitrary matter of relevance to the question being
asked.

From ecology and ecosystems we can gain insight into natural systems that are not
simply collections of isolated components, whose behaviour is not a simple summation of
properties, but rather examples of emergent complexity.

It is this objective of integrated system level understanding that has motivated a large
portion of the research in this thesis, which attempts to combine ecosystem ideas with the
tools of evolutionary computation.

1See Roger Blumberg’s resource website titled “Mendel’s Web” at http://www.mendelweb.org for
English translations and commentaries of Mendel’s work.

2A factor that changes an organisms expressed phenotype (physical form), but not its genotype (genetic
form). See the glossary in Appendix A.1 for related terminology.

4

http://www.mendelweb.org

Chapter 1: Introduction

1.4 Evolutionary Computation

It is the combination of concepts from Darwinian evolution and the Mendelian idea of
elemental genetic transfer that allow artificial models of evolutionary computation to be
applied and utilised. Evolutionary computation provides useful methods of search and
optimisation for problem domains that are difficult for many other techniques. There are
various implementations of evolutionary computation, many of which have been developed
and adapted for specific needs.

The term “Evolutionary Computation” (EC) was used in 1993 for the first journal
formed to encompass the separate computational research fields making use of biologi-
cally inspired evolutionary processes [113]. EC can be inclusive of concepts from both
evolutionary biology and computer science, although differences in nomenclature can be
deceptive. A common perspective, which is adopted in this work, is that the term Evolu-
tionary Algorithm (EA) applies to instances of EC. The terms EC and EA have been used
interchangeably within published work, and predominant researchers continue to promote
the EC terminology.

The essential aspects of an EA can be described as a population of potential solutions
(individuals) that are competitively modified and replaced by evolutionary operators. A
fitness function determines each individual’s performance and this is used to influence the
reproduction and replacement of individuals in the population. Note that the directed
aspects of EA search are the selection of individuals for reproduction and the replacement
of individuals in the population.

There have been three major historical areas of early EA activity within the EC field:
Genetic Algorithms (GA), Evolutionary Strategies (ES) and Evolutionary Programming
(EP). Genetic Programming (GP) is a more recent specialisation of GAs, and there are
now other new additions such as Differential Evolution (DE) and Cultural Algorithms
(CA).

It is important to keep in mind that while the term EA and others like GA and ES
are similar, an EA has quite a distinct meaning within the EC field. The term EA is
an algorithm category or classification; it embodies a number of different EA instances
including – but not limited to – those already listed. In this thesis algorithms using
coevolution are also included within the EA classification.

With the sharing of ideas most, if not all, of the traditional distinctions are now
historical rather than practical. The different EA areas are discussed in Chapter 3, along
with a framework for considering EAs within an ecosystem model.

1.5 Performance and No Free Lunch

There is an old adage that “there’s no such thing as a free lunch”. When applied to
problem solving algorithms, this implies that good algorithmic performance must come at
a cost. This idea has been formalised by the work of Wolpert and Macready as the “No
Free Lunch” (NFL) theorem [370].

A simple description of the NFL theorem is that no single method is best for all

5

Chapter 1: Introduction

problems. The “no free lunch” idea has popular appeal and many feel it is intuitive, yet
the application of its principles is at times ignored by researchers in the elusive hope of
creating high performance and generally applicable algorithms.

Search algorithms that display excellent performance for specific problem domains
cannot be expected to perform equally well for all domains. Usually, there needs to be
compromise between the qualities of algorithm generality and specificity. If these qualities
are mutually exclusive for a problem domain, an algorithm cannot attain both.

A better description of the NFL theorem uses a comparison of two algorithms over
an entire theoretical domain of problems: For any pair of search algorithms there are
as many problems that the first algorithm out performs the second algorithm as there are
problems for which the reverse is also true. An interesting consequence of this is that when
we compare, for example, an evolutionary algorithm (EA) to a random search algorithm,
there are as many problems for which our EA is likely to be better as it is likely to be
worse. This direct statement – that an EA search will be worse than a random search for
some problems – has caused debate, especially given that there has been a common view
that EAs would always be better than a random search. This should not be expected,
especially in light of the NFL theorem ideas.

For problem solving algorithms, there are ways to incorporate hard-earned knowledge
about the nature of the search space, or even exact solutions for specific domains (and
with good reason to do so). It is possible to give an algorithm a “free lunch” to good
performance. Such “free lunch” techniques include data pre-processing, specialised search
initialisation and performance normalisation techniques.

Unfortunately, without careful consideration, the exact contribution of “free lunch”
knowledge to an algorithm can be somewhat obscured by researchers as part of “special-
isations” or hidden under the banner “generic improvement” (which is rarely the case).
For this reason, when comparing and developing algorithms, we should take care to distin-
guish between performance gained from specialising search ability and the incorporation
of existing “free lunch” knowledge.

1.6 Algorithm Performance

The main measures of algorithm performance are solution quality, algorithm efficiency
and algorithm repeatability. The importance of these measures varies for different problem
domains and specific application objectives.

Interestingly, when the performance of one of these measures can be lowered, another
can usually be improved. For example, consider a scheduling problem for a school where
students, classes and teachers must be allocated. A solution of the highest possible quality
can be found if we can take all the time needed to do an exhaustive search. Similarly,
if we need a solution quickly and we are prepared to compromise a guarantee of highest
quality solution, an incomplete heuristic search technique can be used to quickly find what
is needed.

It is also apparent in this simple scheduling example that there may be multiple solu-
tion qualities to consider, such as the notion of “best” solution for students, teachers or

6

Chapter 1: Introduction

room utilisation. Multiple algorithm performance qualities may indeed be independent or
dependent (competitive or cooperative), adding to the complexity of the domain and any
performance measures.

1.7 Problems and Problem Solving

There are many kinds of problems and the appropriate methods for solving or searching
are varied. However, it helps to try and define clearly what type of problem we are trying
to solve, and hence to choose appropriate methods.

Optimisation problems are a type of search, in that the objective is to find “a solution”
that fits a given set of constraints; one of these is that a desired quantity be optimised.
This might be the minimisation or maximisation of one or several outputs of a given
system.

Engelbrecht [102] has suggested some useful “basic ingredients” for all optimisation
problems and they are summarised below:

• An objective function. This is the quantity (or quantities) for which we wish to
find the best solution.

• A set of variables. These variables affect the value of the objective function.

• A set of constraints. Limits or bounds to the values that variables may have.

The goal, then, of problem solving techniques is to assign values to the variables such
that we achieve an objective function output that is satisfactory and a solution that is
within the set of constraints.

For some problems there is no objective function except that all constraints must be
satisfied, and hence are known as constraint-satisfaction problems (CSP). It is possible that
not all variables affect the objective function – indeed this may be part of the problem:
to find out which variables are significant.

Understanding an entire problem is the result of considering all three “basic ingredi-
ents”. Complex rules are possible within constraints, and this not only limits value ranges
but also valid combination of values.

A problem solving technique may need to allow a search to proceed through regions
of variable space that are not within the constraints. In this form, there are two sets
of constraints: one for the search space and another for “viable” solutions. This kind of
distinction is important for EC algorithms, where there may well be an advantage or a
need for the evolutionary process to allow non-viable solution attempts as intermediate
evolutionary steps to the final viable solution.

Engelbrecht continues in [102] by classifying problems using seven characteristics. The
characteristics are reiterated below:

• Number of variables. The more variables there are, the greater the likelihood
of complex or combinatorial difficulties, and the more resources needed to solve or
search the problem space.

7

Chapter 1: Introduction

• Type of variables. Real continuous values (where say x ∈ R), integer or dis-
crete (as x ∈ Z), or a mixture of both. Combinatorial problems are constrained to
permutations of integer-valued solutions.

• Degree of non-linearity of the objective function. For example, the objec-
tive function could be linear, quadratic or any other type of non-linear form. This
includes the possibility of discontinuous functions.

• Constraints. As already mentioned, variables may be constrained with simple
boundary conditions, however there may also be other intermediate value constraints
or complex regions of constraint.

• Number of optima. If there is only one “optimal” solution, the problem is uni-
modal. Multimodal problems contain more than one optima.

• Number of optimisation criteria. Multi-objective problems need to satisfy more
than one internal sub-objective function. Uni-objective problems are simply a single
function.

So, given these classifying characteristics of problems, how then can we go about the
business of problem solving, be that simply search or specifically an optimisation goal?
Consider the following approaches:

• Know the answer (or “simple and direct”). If you already know the answer to a
problem, the search for the solution is over. If the problem has multiple answers,
know all of them. If there is a range of solutions, know the range. The point being
that there is no need to search, and a problem solving algorithm is simply the use
of existing known solution(s). This is not a complex or a naïve search algorithm; it
is a way to solve problems at lowest cost and best performance. This is the most
direct way to find a solution and end the search, and defines a useful benchmark.

• Guess (or “random search”). If we are unable to use knowledge of the problem
domain to help our method, a random approach may still be much better than an
exhaustive one, but this depends on the exact nature of the performance measure.
Of course it is possible to “target” a random search, or distribute our random guesses
based on hints or clues, but then it would no longer be a random search but a guided
approach. A truly random search is an unguided search. It has uses, but a guided
or “directed” (informed) search is expected to be better if it is possible.

• Know every answer (or “exhaustive search”). Once an exhaustive search is fin-
ished, we can use the “know the answer” method and select the best solution avail-
able. For small problems an exhaustive search is a very effective and justifiable
method. However, for large problems with multiple variables a “combinatorial ex-
plosion” can soon make exhaustive search impractical, even with modern advances
in computing power. This is also commonly known as the “curse of dimensionality”.
So, it is better if we can search efficiently and not waste time searching for solutions

8

Chapter 1: Introduction

where they do not exist or are not up to the standard we need. An exhaustive
search is not directed in any way, but simply a sequential process. Once knowledge
is exhaustively discovered, stored and organised, the search for an answer is a single
direct step.

• Know how to find the answer (or “guided search”). In this case we don’t know
the answer, but we know how to find it. This is a guided search approach. It is akin
to searching for water in low areas of terrain because of the likelihood of creeks and
rivers. This method also implies that we already know something about the problem
domain, or at least its nature. Again, this help in our search is a “free lunch” before
we start. After that, we are on our own. If our knowledge of the domain is poor, we
may also miss good solutions entirely. A fresh spring of water may exist in locations
far from low areas of terrain, an anomaly to “typical” features. So there are two
components to using “how to” knowledge: the nature of the problem and the method
to make use of what we know.

Optimisation methods can be grouped into classes that relate to their characteris-
tics [102]. Problem solving methods are either constrained or unconstrained within the
search space. Multi-objective problems can be searched differently to single-objective func-
tion problems to take advantage of linkage between objectives. Niching techniques, which
are designed to exploit “niche” areas of problem space, can be effective in exploring multi-
modal spaces.3 If an objective function depends on a variable of time, there are techniques
specifically for dynamic problems.

The exploitation of “how to” knowledge can be a complex and difficult task, and with
the likely real-world scenario of unknown or erroneous knowledge of a problem, practical
algorithms need to be robust in their “how to” approaches in order to ensure they are not
trapped by assumptions or deceptive domains.

1.8 Parameter Adaptation and Control

It appears intrinsic, and is perhaps fundamental, that for evolutionary techniques to effi-
ciently evolve solutions of quality, an appropriate technique must be selected, and param-
eters must be uniquely adapted to specific problem domains.

Well known problems are best solved by a known solution or specialised, problem-
specific algorithms. However, real problems are commonly not “well known”. Realistically
then, excellent algorithm performance for difficult, unknown or changing problem domains
needs to be achieved through adaptive strategies.

There are a variety of terms that are used related to the concept of selecting algorithms
for problems, or methods suitable for adapting algorithm parameters. These include meta-
heuristics, meta-algorithms, meta-optimisation, dynamic-algorithms, adaptive heuristics
and adaptive algorithms.4 An attempt to arbitrarily define each term would be difficult
and of little universal value.

3The topic of niches and niching methods is discussed in more detail in both Chapter 2 and Chapter 3.
4Hyphenation of the meta prefix is typically inconsistent.

9

Chapter 1: Introduction

The common “meta” prefix comes from the Greek meaning of “beyond” or “higher
level”. A “heuristic”, meaning “to find”, is often applied to methods in computer science
that are used to find solutions to problems without the formal need to show proof of quality.
To put it another way a heuristic is simply a “pretty good rule”, while a meta-heuristic is
“a pretty good rule for finding pretty good rules”.

We can make a distinction between two main types of adaptive algorithms: those that
simply adapt algorithm parameters and those that attempt to select from, or combine
together, a number of internal sub-components (ie. algorithms). Within the evolutionary
computation field there have been attempts at both types of algorithm adaptation.

There are many possible parameters and configuration strategies that can be altered
to affect EA performance, and it is not surprising that there has been significant work
into self-adapting EAs. An example is the work by Kizu et al. [203, 303, 202] labelled
as a “parameter free genetic algorithm”. “Adaptive parameters” is a better description of
the processes employed, which in turn “free” practitioners of the need to specify some pa-
rameters. However, it does not remove the importance of parameters from an algorithms’
performance, nor can it guarantee the adoption of suitable parameter values.

The survey paper of [97] is a well cited example in the area of parameter adaptation
and control, which presented a taxonomy inclusive of parameter tuning (before search)
and parameter control (during search) ideas, and clearly defined related terminology in
this area of EAs. More recently there have been collections such as [219], and related
work such as [252, 321] aimed at measuring the costs and benefits of parameter control
approaches.

A “meta-heuristic” approach is not a magic cure for solving all problems. It is quite
likely, as stressed by the “No Free Lunch” theorem, to find as many functions for which such
a “meta”-based method performs poorly as for which it does well. Indeed, the additional
complexity of a meta-heuristic approach will be an additional cost to any search. For
this reason, although the techniques explored in this thesis are part of the field of meta-
algorithms, it is acknowledged that such techniques need to be applied appropriately, and
without the expectation of universal advantage.

1.9 Evolution and Topology

This thesis examines components that exist within an Ecosystem EC framework, and there
are indeed several levels of structural complexity that can be identified, as presented in
Chapter 3. The organisation and interaction of these structural properties has a strong
influence on both solution quality results and the efficiency of the evolution process. This
idea is strongly supported by the large body of work published in the EC and complex
systems research fields that relates to the modification of structural aspects of evolutionary
algorithms in order to improve their performance. Further discussion of existing work in
these areas is covered in Chapters 2, 3 and 5.

In particular, populations of solutions and solutions composed of cooperating compo-
nents are ideal topological elements (Figure 1.1). It becomes possible then, as part of the

10

Chapter 1: Introduction

+

+

+
+

+
+

-

-

-

-

(a) Population Interaction Network (b) Individual Trait Network

TraitsSpecies

Interaction Interaction

A
B

Figure 1.1: The ideas of (a) population topology where individuals of two different species are
linked to neighbours, and (b) an expanded view of a single individual’s topology. Examples of
two possible networks within EC that can change, be changed and influence evolution.

adaptation of evolutionary computation to specific problem domains, to investigate and
ideally control topological structures in ways that can improve algorithm performance.

1.10 Graphs, Complex Systems and Efficiency

1.10.1 Graph Concepts

The body of this thesis depends on the understanding of systems and connected structures
in the mathematical terms of graphs. In this sense, a graph is a set of items often called
nodes or vertices. Vertices are connected with edges (or links). Depending on the model,
both nodes and edges can be simple or complex, such that edges can have direction, or
values associated with them. Nodes can have different types or meaning within a graph
model. There is a difference between the meaning of network and graph within some
literature5, however for the purpose of this work it is appropriate to use either term.

We can use graphs to represent and model many different systems, such as social net-
works, business associations, metabolic networks, the spread of disease, protein networks,
neural networks, road traffic systems, the Internet, electricity grids, and hyperlinked web
pages, to name just a few [26, 259]. We consider in some detail the possible distinctions of
real-world networks in Chapter 4, along with models and techniques to help understand
the properties real networks contain.

One model that deserves mention is the small-world model. The small-world phenom-
ena has been noted and commented on since the 1960s [232], however it is the modelling of
such small-world networks [360] that has prompted much of the recent work into complex
systems and networks.

Interestingly, the research into networks and graphs is not limited to mathematicians.
Because of the ubiquitous nature of networks and complexity in the world around us,
complex systems and networks are everywhere and their study has applications to almost
any discipline. It is hoped that the work in this thesis will also have broader applications.

5Technically, a network is a weighted directed graph, while a graph is the abstracted topology of nodes
and connections only.

11

Chapter 1: Introduction

1.10.2 Complex Systems

What exactly is a complex system? This can be a somewhat vague or fuzzy quality
to define. A complex system is not just a “collection” of many things, but rather the
interactions between components that make the collection something more than just the
sum of all the components [257]. As Craig Reynolds, well known for his “boids” modelling
of animal group behaviours, has put it “A flock is not a big bird” [352].

We know from observations that real-world networks, both natural and man-made,
tend to be effective (do the job required), and efficient (minimal cost and maximal func-
tionality). Complex systems cannot be defined just by the nature of interactions, but also
require the topology of connections.

Mark Newman has pointed out that although historically research and study of net-
works has focused on individual components (especially aspects such as non-linear inter-
actions), research is now firmly focused on the study of connectivity properties [257]. In
fact, the work of Barabásis, and other peers, has shown that behind every complex system
there seems to be an underlying network with non-random topology [25]. So understanding
complex systems is about understanding such non-random networks.

We can now share, measure, model, search, simulate and analyse networks in ways that
were difficult or simply not possible before the advent of the computers and the internet.
This also makes it possible to apply the lessons learnt from graph theory and complex
systems research to new (and old) domains such as evolutionary computation.

1.10.3 Efficient Topology

The existence of efficient topologies has been observed in many natural and adapted sys-
tems. It is important to realise that the measure of “efficiency” is different in different
domains. Efficient topologies are graphs of nodes and edges connected in a manner that
minimises the cost of edges whilst maintaining short characteristic path lengths or other
functional properties that are the measure of performance for the network. Examples of ef-
ficient topologies include social networks, telecommunication networks, citation networks,
web pages with hypertext links, river systems, cardiovascular systems and the connections
of biological neurones.

Chapter 4 takes a more detailed look at graph theory and current research into the
measurement, properties and requirements of efficient topology structures, with a partic-
ular emphasis on aspects that can be utilised with evolutionary computation.

1.11 Research Objectives

The primary goal of this thesis is to present a new ecosystem model of evolutionary compu-
tation and use it to investigate the influences of topology and interactions on the process
and outcome of evolutionary algorithms. The proposed model explicitly includes topology
and interactions at the levels of environment, community, species, population, individual
and trait.

In support of the primary goal are the following research objectives:

12

Chapter 1: Introduction

• develop an ecosystem model of evolutionary computation and validate its use in
context by classifying related models in the field of EC;

• design and implement an ecosystem model of evolutionary computation that explic-
itly supports the structural levels and interactions required;

• to study the influence of topology and interaction at community and population
levels using complex and dynamic topology, multi-layered communities, occupancy
models and directional flow models.

1.12 Contributions

The main contributions of this thesis are:

• The development of an ecosystem model of evolutionary computation (ESEC) which
is inclusive and supportive of prior work and flexible for future ideas.

• Software realisation of the proposed model and its ideas written in Python (the esec
package) to provide a flexible platform for algorithmic experimentation.

• Using the proposed model it is possible to investigate complex organisational models
at population, community and ecosystem levels.

• The creation of a set of investigation themes using the proposed model, and a body
of empirical work to address the questions raised.

• An understanding that topology provides an alternative to traditional EA techniques
of applying and adjusting selection pressure.

• Evidence that topology with specific properties provides a means of preserving pop-
ulation diversity, and insight regarding the influence that topology has to support
niches and self-determined speciation.

Results show that topology properties of a population influence evolutionary process.
Subsequently topology can influence the efficacy of success, the quality of solutions found
and the efficiency (such as the search time required) of the search.

Understanding the relationships of topology and EC, and in particular within an
ecosystem based framework, provides a useful means of configuring EAs in ways that
may improve the likelihood of high quality solutions and/or the efficiency of search for
particular domains. Using this knowledge researchers and practitioners would ideally be
better equipped to select appropriate EC techniques and parameters when dealing with
real-world problem domains.

1.13 Thesis Structure

This thesis is divided into two main parts. Overall, Part I is a review of the concepts
and principles of ecology, topology and evolutionary computation, and proposes an novel
ecosystem model for evolutionary computation which is used in Part II.

13

Chapter 1: Introduction

In Chapter 2 the principles of ecology, ecosystems, and ecosystem evolution (Sec-
tion 2.4) are presented. A model of organisational scale is used to help relate both ecology
and ecosystems to the structures of evolution. A community model defines and describe
interactions within and between species and the environment, including co-adaptation and
symbiosis. The mechanisms of evolution are described, including selection and mutation,
and theories of speciation and evolutionary limits. Appendix A.1 is a glossary of relevant
terms.

Chapter 3 presents the principles and applications of evolutionary computation as a
biologically inspired search metaphor, with respect to the ecosystem (and community)
model of evolution of Chapter 2, and with an emphasis on interactions and topology that
are covered in more detail later in Chapter 4. Several canonical and relevant instances of
EC algorithms are described for use in later chapters. A novel ecosystem model of evolu-
tionary computation is proposed and described in detail in Section 3.2, which emphasises
topology and interactions. A brief review and classification of classic EC work is included
using the proposed model to demonstrate its value in context of the field.

Chapter 4 is a discussion of graph theory, topology concepts and network proper-
ties which supports and builds on the concepts presented earlier in relation component
interactions and structures. This chapter includes a review of recent work into the mea-
surement and modelling of efficient topological structures, including small-world properties
and topology growth models.

Part II uses the proposed ecosystem EC model and considers both how the model
relates to the current field of EC, and then, secondly, what questions might be asked of
such a model. Some of the questions are investigated and demonstrate the value of the
model.

Chapter 5 begins the investigative aspect of this thesis using the proposed ecosystem
EC model, and considers “what can we ask of such a model?”. Work directly related to
the new model is considered and compared. Key questions are identified (Section 5.5),
selected and an appropriate research method described in preparation of the investigations
undertaken in Chapter 6 and supported by the models and discussion of open research
opportunities presented in Chapter 7. Chapter 8 summarises the results obtained and
presents avenues for further investigations and work.

14

Chapter 2

Ecology, Ecosystems and
Evolution

2.1 Introduction

This chapter presents concepts and properties from the domains of ecology, ecosystems
and evolution. As will be shown in later chapters, these fields are extremely relevant
to our understanding of complex systems, complex topologies and artificial evolution.
More important for this thesis, however, is that an ecosystem model provides an excellent
framework for capturing extended models of evolutionary computation, which is exploited
in later chapters.

This chapter begins by presenting a brief introduction to ecology and a very useful
model of organisational levels that allows us to clarify both the relevance of ecology,
ecosystems and later evolution within this organisation model. Section 2.3 on ecosystems
builds on the basis of ecology, and includes a brief history before presenting the key
structural and functional concepts of ecosystems and a number of relevant terms and
descriptions that support later sections of this thesis. Appendix A.1 contains a detailed
glossary to support this chapter. Lastly this chapter looks at evolution in Section 2.4, and
the mechanisms at work, from an ecosystems perspective.

In the next chapter (Chapter 3) we take the ecosystem model of evolution and reform
it as a framework for evolutionary computation. An ecosystem model also presents some
open questions for evolutionary computation that are described and discussed (Chapter 5)
and in several cases investigated empirically later in the thesis.

2.2 Ecology

Ecology is recognised as the scientific study of environmental systems including the dis-
tribution and abundance of life and the interactions between organisms and their environ-
ment. Put very simply, ecology is a study of the economy of nature.

The subject matter of ecology is the entire world, both living and non-living compo-
nents. Figure 2.1 presents a relationship for the organisational levels. Table 2.1 presents
descriptions for some of the more relevant terms.

15

Chapter 2: Ecology, Ecosystems and Evolution

Universe
Galaxy
Solar System
Planet (Earth)
Biosphere
Biome
Ecosystem
Community
Population
Organism
Organ
Tissue
Cell
Organelle
Genome
Molecule
Atom

Ecology

EvolutionGroup
Individual

Trait

...

O
rg

an
is

at
io

na
l L

ev
el

s

Selection

Fitness

...

Figure 2.1: Organisational levels as they relate to ecology, ecosystems and evolution. See also
Table 2.1 for a description of some of the more relevant terms.

When addressing a specific research question or study, however, the scope of matter is
constrained to an appropriate size. In line with this there are four main areas of ecology,
listed in order of increasing scale:

• Physiological Ecology: The response of a single species to its environment.

• Population Ecology: The abundance and distribution of individual species, and
influencing factors.

• Community Ecology: The number and interaction of species in a given location.

• Ecosystem Ecology: The structure and function of an entire ensemble of organisms
and species, their interaction with each other and their environment, and how this
generates the whole.

Ecology questions relate to a specific organisational scale, such as the physiological
ecology of a single plant species in response to salinity increases, or the population ecology
of elephants in their native savanna habitat, or the global ecosystem ecology of food and
fossil energy flow and its interaction with known species.

As an academic discipline ecology does not try to evaluate notions of good or bad any
more than good or bad applies to mathematics or physics.

Industrial ecology is a more recent field that follows the flow of energy and matter
(materials) throughout an industrial process, such as during the manufacture of cars. In
this way the economy of the system can be measured with respect to a specified domain
scope.

Ecology is, by its very nature, a broad and integrative discipline with links to many
fields. This includes the physical sciences like physics, chemistry and the many areas of

16

Chapter 2: Ecology, Ecosystems and Evolution

biology, but also areas such as sociology, human geography, economics, agronomy, demog-
raphy and so on.

Term Description

Biosphere Earth’s largest ecosystem. The zone of air, land and water at
the surface of the earth that is occupied by organisms.

Biome Regional (large scale) ecosystem, composed of similar types of
dynamic communities.

Ecosystem The set of biotic factors, abiotic factors, interactions and pro-
cesses between the organisms of multiple species and their envi-
ronment.

Community Different species interacting in a common space and time.

Population Group of organisms (usually) of a single species occupying a
given area at the same time. Typically, organisms with homol-
ogous alleles.

Organism Individual. Any living thing; unicellular or multicellular.

Organ A group of tissues that perform a specific function or set of
functions.

Tissue An ensemble of cells from the same origin that carry out the
same function. Typically tissue cells are of the same type but
not always.

Cell The structural and functional unit of organisms, and the smallest
unit classified as living.

Organelle A confined and specialised sub-unit of a cell with a specific func-
tion. (“elle”: small, a “little-organ” of the cell)

Genome A full set of chromosomes and genes for an organism (a complete
genetic sequence). The genome can be divided into chromosome
and gene components (DNA and/or RNA).

Molecule A sufficiently stable group of two or more atoms held together
by a chemical bonds

Table 2.1: Selection of organisational levels and brief descriptions. See Figure 2.1 for an
appropriate context for these terms in the organisational levels of scale.

There are both theoretical and empirical areas of ecology; applied ecology uses both,
typically with the intention to regulate or bring about change to systems. Ecology en-
courages a method of observation and assessment that integrates how parts of a system fit
together and interact; to understand how each part influences and is influenced by other
parts, and how some whole systems are not predictable simply by their parts. When we
are able to capture, model and replicate such complexity we gain new and potentially
useful insights into natural and synthetic systems.

Two areas of ecology are particularly relevant to this thesis: ecosystem ecology and
ecosystem evolution. They are presented in more detail.

17

Chapter 2: Ecology, Ecosystems and Evolution

2.3 Ecosystem

2.3.1 Definitions and Origins

As in the definition of ecology, ecosystems are composed of organisms interacting with
each other and their environment. The specific concerns of ecosystems are the exchange
of energy and the cycling of matter within the system, such that system level structure
and functional processes emerge.

The term “ecosystem” was in fact coined in 1930 by Roy Clapham. However it was
British ecologist Arthur Tansley who fully defined the term in his classic 1935 article on
“The use and abuse of vegetational concepts and terms” [338, p299]. His description is
often abbreviated, however the full passage is meaningful.

But the more fundamental conception is, as it seems to me, the whole system
(in the sense of physics), including not only the organism-complex, but also
the whole complex of physical factors forming what we call the environment
of the biome – the habitat factors in the widest sense. Though the organisms
may claim our primary interest, when we are trying to think fundamentally we
cannot separate them from their special environment, with which they form
one physical system.

Tansley’s article is significant to the field of ecology, not only because it clearly de-
fined the ecosystem, but because it specifically argued against the then current idea of
“superorganism” – a view that is now considered to have been a theoretical barrier to the
field. Tansley also considered the “climax” concept, which is now viewed as a defunct step
towards the more recent idea of “ecosystem dynamics” which encompasses the phenomena
described by climax terminology.

Eugene Odum played a major role in the promotion of ecology including ecosystems.
His seminal book “Fundamentals of Ecology” has been the predominant textbook of ecol-
ogy since its first edition was published in 1953. His definition for an ecosystem ([264]) is
as follows: [265]

Living organisms and their nonliving (abiotic) environment are inseparably
interrelated and interact upon each other. Any unit that includes all of the
organisms (ie., the “community”) in a given area interacting with the physical
environment so that a flow of energy leads to clearly defined trophic structure,
biotic diversity, and material cycles (ie., exchange of materials between living
and nonliving parts) within the system is an ecological system or ecosystem.

2.3.2 Structure and Function

An ecosystem represents the notion that living organisms continually interact with each
other and their environment, and that they are able to produce complex systems with
emergent properties. Ecosystems embody such concepts as “the whole is greater than the
sum of its parts” and that “everything is connected”.

18

Chapter 2: Ecology, Ecosystems and Evolution

With respect to the levels of organisation scale presented earlier in Figure 2.1 ecosys-
tems are placed above the community level where populations of species interact with
each other, and below or equal to the biome level (regional ecosystems) and below the
biosphere – the largest known organic ecosystem.

Although it is reasonable for the purpose of study to define fixed system boundaries
(such as component organisms, population groups and specific interactions), ecosystems
are by their definition inherently conceptual. There are, however, clear ecosystem require-
ments: biotic (living) and abiotic (non-living) factors, interactions and energy.

A description of interactions and process is essentially a description of a dynamic
topology; understanding and representing which parts of the system interact, when they
interact, and how they influence each other. It should also be recognised that there are
dynamic and seasonal influences (abiotic factors) which consequently modify interaction
dynamics and characteristics.

Producers
(Plants)

Consumers
(Animals)

Decomposers
(Bacteria)

Energy
(Sun) Matter Flow

Energy Loss

Non-living Material
(Abiotic Factor)

Energy Transfer

Figure 2.2: The flow of energy and matter within an ecosystem model containing biotic and
abiotic factors, interactions and open energy driven processes.

As natural systems are open energy systems, energy is always lost during conversions
and interactions except for those factors that are able to utilise energy, such as primary
producers (Figure 2.2). Without energy to facilitate processes and interactions, an ecosys-
tem will cease to function.

The cycling of matter through an ecosystem is of most value when it is understood to
be closed; understanding how energy is used to move material is a defining process for an
ecosystem. Well known matter cycles include the carbon, nitrogen and oxygen cycles of
the biosphere.

Two common topology descriptions for ecosystem interactions are a “food chain” and a
“food web”. Food chains are a listing of organisms in order of primary producers, secondary
consumers and so on, while a food web indicates all feeding interactions between organisms
(species) in an ecosystem.

19

Chapter 2: Ecology, Ecosystems and Evolution

To summarise, the components and organisational groups within an ecosystem (with
respect to the levels of organisation presented earlier in Figure 2.1 and Table 2.1) are:

• an environment including a specific scale and the specific nature (the topology and
process) of interactions between all components;

• communities composed of multiple species and located in overlapping locations of
the environment;

• populations that represent all the individuals of a common species in the envi-
ronment, including sub-populations for specific sub-groups such as breeding adults,
juveniles or male/female gender; and,

• individuals that interact with the environment and other individuals of the com-
munity (using energy to enable processes).

2.3.3 Life Cycle Model

The life cycle of biological species is an iterative process that underlies and facilitates
evolution, as illustrated in Figure 2.3 for sexually reproducing diploid organisms. Note
the existence of the population structure, the components of selection and reproduction,
and the development and insertion of offspring into the population. Note also that there
is no implicit initialisation or termination – such events are not defined for this simple
model.1

If the environment of a population has limited resources, or individuals are subjected
to competitive pressure in order to survive, any features or adaptations that provide
individuals with an advantage are more likely to be preserved, and hence passed on to
new individuals. This is the classic “survival of the fittest” phenomena described by
Charles Darwin.2 The process of evolution on the life cycle model is discussed in more
detail in Section 2.4.

2.3.4 Community Model

An ecosystem community is all of the organisms that occupy a specified location at the
same time. Community is a useful level of organisation within an ecosystem scale, able to
contain many different and intermixed organisms.

While there are no explicit subgroups within a community, it is possible to take dif-
ferent implicit views of the community as presented in the examples of Figure 2.4. Each
view is an answer to a context specific question such as “where is species A?”, “what
are the interactions between species A and B?”, “where are all the adults” or “what is
the distribution of juveniles?”. For a specific individual, answers to local neighbourhood
questions such as “where can I move to?”, “what is my competition?” or “who are my
potential mates?” and similar are required for local activity (interaction).

1They might be defined within a larger view of successional community change which includes speciation
and species extinction events.

2The term “survival of the fittest” was actually coined by philosopher Herbert Spencer when discussing
Darwin’s theories.

20

Chapter 2: Ecology, Ecosystems and Evolution

n

n

2n

2n

2n
gametogenesis

organism
 population

(meiosis) gametes

development

(fertilisation)

zygote

selection

fusion of gametes

cell division
(mitosis)

n+n

Figure 2.3: The life cycle of sexually reproducing biological organisms. Note the selection of
parents from the population, the creation of gametes via meiosis and the fusion of gametes
during fertilisation to produce a new organism that develops in the population. In this model
n represents half the genetic material from a diploid parent individual that contains a double
set of genetic information (as present in humans).

The ecosystem includes the community and the environment. Properties such as occu-
pation density and interactions are limited by the environment. Individuals may interact
and change the environment, which in turn alters the interactions between individuals of
the community. The environment may include niches that limit occupation to particular
species or individuals.

Communities can also be defined by what is exchanged in interaction, such as cultural
ideas, beliefs or behaviours, where members of a community share such memetic informa-
tion. The exchange of memetic information can occur at a much higher rate than other
factors that influence evolution, and has been included as the basis for some artificial
models of evolution (see Section 3.3.7). Interestingly, the complexity of memetic informa-
tion does matter to the rate of transfer in the community: simple and influential ideas
propagate more successfully than complex ones of similar influence.

The definitions, roles and validity of memetic ideas have stimulated much debate and
controversy, likely due to its topical nature; the transfer of ideas, philosophy, religion and
other beliefs. It is clear, though, that memetic transfer does occur within an ecosystem
community and that it can have strong influence that may need to be taken into account
when trying to understand or describe parts or views of an ecosystem.

2.3.5 Components, Properties and Processes

Terminology and Scope

There are many components, properties and processes that can be defined. This section
is not an attempt to define all of the terms and models of the ecology and ecosystem

21

Chapter 2: Ecology, Ecosystems and Evolution

(a) Entire Community

(b) Species A

(c) A-B Interactions

(d) Local Neighbourhood

(e) Local Mates

(f) Mate Competition

Species A

Species B

Species C

(h) Competition

(g) Cooperation

Figure 2.4: Representation of community views. The entire community (a) is composed of
three species (A, B and C), two of which include sexual reproduction (A and B). (b) is a single
species view, (c) a view of the interaction between A and B species (local interactions only),
and (d) the local interaction neighbourhood for a single individual. Similarly, (e) is a local
pool of mates for a single sexually reproducing individual and (f) shows the corresponding pool
of mate competition as a result. (g) and (h) are simple local cooperation and competition
interactions.

fields, however it should provide enough relevant details to support the models used in
later chapters. Further support is provided by the ecology glossary in Appendix A.1.

Environment

The environment is a combination of all external (extrinsic) conditions and potential effects
on the inner environment (Table 2.1). It could also be defined as all abiotic factors (such
as the physical limitations) of nature that create a heteromosaic of conditions.

Natural environments are rarely static and so the survival of any species depends on
their ability to cope with environmental changes (Table 2.2).

Term Description

Cyclic Periodic (rhythmic) changes, such as seasonal variations,
day/night cycles and lunar (tidal) influences.

Directional A sustained direction of change, typically over a long period of
time, such as glaciers, erosion, siltation, salination.

Erratic Change without rhythm or periodic nature, such as earth quakes,
tsunami, volcanoes, fires, land-slides, cyclones or hurricanes.

Table 2.2: Three distinct temporal terms to describe environmental changes.

Community

Community has already been clearly identified as a crucial distinction of the ecosystem idea
(Table 2.1), and there are many important aspects of structure and interaction on which

22

Chapter 2: Ecology, Ecosystems and Evolution

the definition of community is important. As there are many terms related to sub-groups
within a population, they are left to later relevant sub-group topics for discussion.

Term Description

Community Species

Structure A list of species order by abundance.

Interaction The number of species that can sustainably flourish.

Density The number of individuals (of all community species) per unit
of space. Absolute or relative.

Community Dynamics

Stability The degree to which a dynamically stable community will return
to its original state after a disturbance.

Resilience The speed of return to a stable state.

Resistance Ability to resist (avoid) change to the current state.

Fragile A community that is dynamically stable only within a limited
(narrow) range of environmental conditions.

Robust A community that is dynamically stable across a wide range of
environmental conditions.

Table 2.3: Community terminology related to both species and dynamic changes

Community is not only the structure and number of interactions between species, but
also dynamic qualities such as stability. Table 2.3 includes descriptions of terms related
to both species composition of a community and dynamic community changes.

One theory of community stability suggests that initially, communities are relatively
simple in structure and interactions, and as evolution progresses develop to very stable
and complex systems. This does not imply that all complex systems are stable or that
very stable systems are complex. Perhaps incremental development of a large complex
system requires intermediate stable steps, although periods of instability may be equally
as important.

Population

A population has already been defined as the group of individuals of a single species
occupying a given area at the same time (Table 2.1). It is at times useful to include
multiple species depending on the question being asked of a system, but this discussion is
limited to a single species idea.

Within a population the number of individuals, and the composition of age distribution,
changes over time. A population pyramid is a way to show the age structure of a population
by breaking ages into different groups (infant, youth, elder etc) diagrammatically placing
the youngest age class at the base and stacking successive age classes above it.

Similarly, a life table gives a summary of the age or stage-related survivorship, based
on natality and mortality rates. This table can be constructed from a single static sample

23

Chapter 2: Ecology, Ecosystems and Evolution

of the population, or developed over the cohort life time of a sample group from birth to
death.

The natality (birth) and mortality (death) rates, and the migration rates of individuals
in (immigration) and out (emigration), provides an overall picture of a populations growth.
See Table 2.4.

Term Description

Natality Birth rate of new individuals per unit of time.

Mortality Death rate of new individuals per unit of time.

Immigration Outside individuals entering population per unit of time.

Emigration Individuals of the population leaving per unit of time.

Table 2.4: Population growth rate terminology

The total size of a population at a new time step N(t+1) is the old population size Nt

and the summation of the intrinsic growth rate factors r; births Bt, deathsDt, immigration
It and emigration Et. See equation (2.1):

N(t+1) = Nt +Bt −Dt + It − Et (2.1)

= Nt + rt (2.2)

Influences of the intrinsic growth rate rt help to characterise population dynamics and
fluctuations, including cycles and other changes in density as well as any regulation factors.
Overall, population regulation is either extrinsic (outside of the population) or intrinsic
and directly related to the populations properties and behaviours (such as density).

Two indicative population growth models are exponential (indicating little or no limits)
and logistic (indicating environmental density limits). Limited growth is commonly density
dependent such that death or birth rates change in direct response to the population
density. It is possible that density dependent changes may over-compensate or under-
compensate such that after a significant disturbance a new stability of the population
emerges which is different from its initial balance.

The carrying capacity K is the maximum sustainable equilibrium limit of the intrinsic
growth rate r for a given population density N . See equation (2.3):

dN

dt
= rN(K −N)

K
(2.3)

The term population ecology describes a study which focuses on the changes in size and
density of a population over time and space, and the contributing factors. It is a useful
measure over generational change.

Species

Within a taxonomy, a species is a group of organisms whose members have the same
structural traits and are able to interbreed with each other. Species diversity takes into

24

Chapter 2: Ecology, Ecosystems and Evolution

Term Description

Density The number of individuals per unit of space.

Fluctuations Variations over time in the population size.

Cycles Oscillations in population size (between high and low den-
sity).

Dynamics The variations in population size and density over time and
space.

Regulation A population size or density regulated (limited) by some
factor (such as density, competition or resource limita-
tions).

Carrying Capacity A measure of equilibrium between births and deaths at the
maximum sustainable population size.

Table 2.5: Population dynamics terminology

account both the richness and relative abundance for the specified environment. Within an
ecosystem community group of interacting species, the top predator affecting all organisms
of lower trophic levels is known as the keystone.

Term Description

Diversity A community measure that takes into account both the relative
species abundance and richness.

Abundance The number of individuals belonging to a given species.

Richness The total number of species in the community.

Keystone The top predator within a community of species.

Table 2.6: Species related terminology

Distribution

Individuals will disperse within the environment, some according to generational process
(such as offspring moving away from parents), or due to neighbourhood density preferences
(from high to low). Alternatively individuals can choose to aggregate or cluster for mu-
tual benefits such as “safety in numbers”. Interestingly, some species3 develop differently
depending on density pressure, a process known as polymorphism. Dispersal is limited by
the abilities of the individuals and the current environment.

Spatial distribution can be constrained by factors such as altitude, latitude and the
clustering behaviours of individuals. Distributions may be random or regular, where regu-
larity is typically due to behaviour such as territorial size, mating or parental care limits.

Habitat describes where an organism can be found, and a detailed description might
include cyclic changes such as seasonal variation or weather patterns. A single ecosystem
environment may support a rich diversity of habitats.

3The East African locusts are a widely cited example. Normally they develop into a sluggish and
solitary bright green form. However, if maturation occurs in large constricted groups, they metamorphosis
into a darkly coloured, highly mobile form enabling rapid dispersal.

25

Chapter 2: Ecology, Ecosystems and Evolution

Term Description

Dispersal The spread of individuals away from each other (from parent or
birthplace to breeding locations).

Clustering The grouping of individuals for mutual benefit.

Distribution The spatial range of a species, or the spatial arrangement (pat-
tern) of a species in a habitat.

Habitat The place an organism lives, or is usually found.

Island (Habitat) An isolated (geographic) habitat.

Table 2.7: Environment distribution terminology

An ecological niche is a region where species can exist indefinitely. A niche description
includes the environmental conditions, resources levels, population density and growth rate
factors necessary for a stable system. All of the factors can be viewed as an n-dimensional
space where the niche range of conditions is a closed volume.

A species may be forced into a realised niche other than its preferred fundamental
niche due to competition. (See Table 2.8 for niche terminology.)

Term Description

Complimentary The tendency for coexisting niche species to differ along another
niche dimension (resource).

Fundamental The potential (idealised) range of all environment conditions in
which an organism can thrive.

Realised The range of the fundamental niches that a species occupies due
to competition limits.

Breadth The potential (idealised) range of all environment conditions in
which an organism can thrive.

Table 2.8: Niche terminology

Modelling the spread of disease with a population (or a community) requires a valid
model of the disease organism life cycle and how it effects a host. It also requires an
understanding of how an infected host behaves. (In particular how they interact and
possibly infect others.) Some diseases are successful in propagating because of their rapid
growth and highly infectious survival (epidemic or pandemic spread), while other diseases
exist and survive within a population indefinitely by having a minimal (or dormant) effect
on hosts (endemic).

Term Description

Epidemic Disease affects large proportion of population at the same time.

Endemic Disease affects small proportion of population all the time. (The
disease is retained in the community).

Pandemic Disease affects entire population at the same time.

Table 2.9: Disease spread terminology

26

Chapter 2: Ecology, Ecosystems and Evolution

Interactions

There are three community models of interaction between individuals within an ecosystem
community:

• Symbiosis: Two or more organisms living in a relationship that benefits at least
one of them. If the characteristics of the species evolve together (in concert) it is
considered an example of coevolution. Such symbiotic relationships are the norm,
not the exception. The three kinds of symbiosis are commensalism, mutualism and
parasitism.

• Predation: A predator-prey relationship between animals, animals and plants, or
between plants. The predator consumes the prey. Predator-prey cycles are a use-
ful way to represent the oscillations of the two populations over time. The age
(and hence traits) of population members can strongly influence the predator-prey
relationship.

• Competition: Two or more individuals in competition for resources, either in-
traspecific (within a species) or interspecific (between different species).

Symbiotic interactions are commonly described in terms of interactions between two
individuals of different species, such as a host species and a typically smaller symbiont
species. However symbiotic relationships are not limited to two organisms or species; what
a single organism cannot achieve alone, an ensemble may. The three kinds of symbiotic
interaction are listed and described below:

• Mutualism: Both species benefit (a host and a symbiont).

• Parasitism: One species benefits (symbiont), the other is harmed (host).

• Commensalism: One species benefits (symbiont), while the other neither benefits
or is harmed (host).

Parasitism can be considered a kind of predation, though it is characterised by a pro-
longed and close association between symbiont and host organisms, often with particular
specialisation of the parasite.

Competition describes a diverse range of interactions, not only between species but
also within a species population. See Table 2.10 which describes terms related to compe-
tition balance (symmetrical or asymmetrical) and the nature of influence (exploitation or
interference) competitors have on each other.

The competitive exclusion principle is that two species with similar environmental
requirements cannot coexist indefinitely in the same niche; one species will eventually be
excluded or shift to a different niche. Species can also adapt behaviour such that they
may minimise conflict and coexist.

Time plays as very important role in the establishment of species; the order and interval
between species introduction to a habitat can be critical. Successful spatial variation can
facilitate rich interactions between species.

27

Chapter 2: Ecology, Ecosystems and Evolution

Term Description

Interspecific Competition between individuals of different species.

Intraspecific Competition between individuals of the same species.

Symmetrical Balanced (evenly matched) competition.

Asymmetrical Unbalance (strong-weak) competition.

Exclusion Interspecific competition removal.

Exploitation Use of a resource removes it from competitors (first-come-first-
served principle).

Interference The physical exclusion of competitor by another (territorial be-
haviour).

Table 2.10: Competition related terminology.

Succession

Succession is an orderly progression of changes in community composition due to changes
in environment condition. It is a continuous change rather than an episodic or interrupted
set of states or phases of development, and the rate of change can vary depending on the
composition.

There are several theories that consider how a disturbance can open a habitat area
and how this might affect later successional species as they populate an area:

• Facilitate: Pioneer species that, when established, enable other changes and species
into the habitat.

• Tolerate: Existing modifications or occupation by early inhabitants have little or
no effect on the subsequent successional species.

• Inhibit: Existing modifications or occupation by early inhabitants prevents or
makes the environment less suitable for later successional species.

Consider also how an established habitat will respond to a large scale erratic change
(such as flood or bush fire). Such events can modify a habitat so that it be rapidly pop-
ulated by different successional compositions of species that would otherwise be excluded
from or inhibited from the habitat.

2.4 Evolution

2.4.1 Origins and Fitness

A common definition for evolution is a change in allele frequencies in a population of
individuals over time. As has already been noted in Chapter 1 the work of Wallace,
Darwin and Mendel are all significant contributions to the development of theories in
evolution and population genetics.

28

Chapter 2: Ecology, Ecosystems and Evolution

The notion of fitness is used throughout any discussion of evolution. A simple and
effective definition is that fitness represents how good an individual is in its current envi-
ronment due to the qualities or capabilities it has. The limitation of this definition is the
concept of “good”.

A more subtle understanding of fitness is needed. It is possible that two individuals
with the same genetic material (genotype) will present differently (phenotype) due to past
environmental influences (developmental) or current conditions. The current conditions
include competition and available resources. From this we can see that fitness is a relative
and contextual measure which manifests in the phenotype form and not a simple or specific
absolute value.

Finally, the biological distinction of fitness is defined as the capability of a particular
genotype to reproduce (the fitness value being retrospectively proportional to an individ-
ual’s genes present in the next generation). Note that this means that an individual’s
fitness is not necessarily their own capability to reproduce, but of the genotype they rep-
resent.

2.4.2 Mechanisms

There are several mechanisms that can lead to changes in the relative proportion of gene
types present in a population. These include selection, mutation, genetic drift and gene
flow. Perhaps the most well know mechanism is selection, although there is some misun-
derstanding that this is always the dominant, or only, mechanism.

• Selection (or “natural selection”): Changes in allele frequency due to the relation-
ship between values of a heritable trait and measure(s) of an individual’s fitness.

• Genetic drift: Generational variations in allele frequency due to stochastic (ran-
dom) processes.

• Mutation: Heritable changes to genetic information including both small scale and
large structural changes in genetic material.

• Gene flow: The migration of genetic material from one population to another.

Significant consequences of these mechanisms include adaptation and speciation.

2.4.3 Selection

Selection, sometimes called Darwinian selection or natural selection, refers to the mech-
anism whereby particular varieties of genes (alleles) that confer a fitness advantage will
increase in frequency from one generation to the next. Put very simply, “good” genes
(that contribute positively to fitness) are selected and increase in favour of “bad” genes
because the individuals that contain the “good” genes are fitter by some measure of the
group, and so more likely to survive or be selected for reproduction.

But what determines good or bad? Generally this is an environmental concern, given
that selection acts through the environment on the physical form of an individual (the

29

Chapter 2: Ecology, Ecosystems and Evolution

phenotype) and then consequently to its heritable components (the genotype). We can
consider then that the relationship between the environment, the phenotype and the geno-
type may be simple (see Figure 2.5), but is more likely a complex interacting topology. A
real and complete pathway map from a genotype to the phenotype, including interactions
between genes, traits, individuals and the environment, is a complex network. Understand-
ing the process of selection on a complex network is a non-trivial matter. Considering this
complexity is a key concept to understanding the influence of selection.

(a) Gene

(b) Trait

(c) Phenotype

(d) Population

Expression

Figure 2.5: The pathway of (a) a single gene expressed from the chromosome to (b) a trait
which, in combination with other expressed traits, forms (c) the phenotype instance of the
individual. A collection of individuals forms a (d) population.

A principle concept is the relationship between an organism’s trait (such as colour or
size) and the organism’s fitness. This idea is shown in Figure 2.6. A simple linear selection
relationship is a suitable starting model. If the fitness value increases with respect to
an increase in trait value, the trait will be under positive directional selection (pressure).
Similarly, a fitness increase in proportion to a reduction in trait value is negative directional
selection. A trait with no influence on fitness is under neutral selection.

Although useful as an initial model, linear directional selection is limited. Fitness in
natural systems is really a utility measure of a trait with respect to the current environment
properties. The fitness of any specific organism is localised experience over a period of
time. A better model of trait fitness utility includes non-linear and dynamic relationships
with the environment. (See Figure 2.6(b).) Consider also that the trait-fitness relationship
may not be continuous; some trait values will result in non-viable organisms that never
survive.

Under the pressure of selection, traits may change their distribution qualities within the
population. Figure 2.7 shows an example of neutral and simple linear directional selection
applied to a single normally distributed trait in a population. Unless genetic drift (see
Section 2.4.4) is occurring, neutral selection should have no effect on the distribution of the
trait values. Linear directional selection (Figure 2.7(b)) will skew the initial distribution,
and eventually evolutionary constraints will limit any long term selection changes.

Stabilising selection (Figure 2.7(c)) demonstrates how the frequency distribution of
a trait narrows around the mean value. The mean frequency does not change but the
variance decreases. Recall that variance is a critical raw material for evolution, and so
reduced variance is a detrimental result for continued evolution. It also demonstrates how
a population can be under the influence of selection even though there is no change in the
trait, just its distribution. This is a common issue in nature where stabilisation causes

30

Chapter 2: Ecology, Ecosystems and Evolution

(a) Linear Trait-Fitness
 Selection Relationships

Trait Value

O
rg

an
is

m
 F

itn
es

s
Neutral

Negative

Postive

(b) Non-Linear Trait-Fitness
 and Generational Change

Trait Value

O
rg

an
is

m
 F

itn
es

s

t=100

t=200
t=0

Figure 2.6: Trait-fitness relationship graphs. (a) Positive, neutral and negative linear fitness
relationships for a single trait value. (b) A non-linear fitness relationship at different stages in
a population’s generational history (t) demonstrating the trait utility concept.

a trait convergence in the population. The result is a loss of genetic diversity and so a
reduced ability for the species to adapt and select from appropriate trait variations.

Disruptive selection (Figure 2.7(d)) also retains the same mean of the trait frequency
distribution in the population, while also specifically reducing the mean and increases
the width of the distribution. Essentially, the two extremes of the trait value provide
the best fitness, and this will cause the population to split over time into sub-groups.
Potentially such a split will create enough trait distribution differences that reproductive
incompatibility may result and so this is an important mechanism of speciation.

One additional selection type is that of sexual selection, which can apply to sexually
reproducing organisms. Assortative mating can be positive (mating with similar) or neg-
ative (mating with dissimilar) individuals. Essentially, males or females select or compete
for their mates. It is thought that assortative mating is very important to some processes
of speciation. Traits that are affected by sex-related assortative mating are said to be
“under sexual selection”.

Sexual selection may only affect one sex (such as the suitor gender) and not both. Sex-
ually selected traits may decrease overall individual fitness. For example, bright plumage
for a bird may attract a mate, but may also make it more conspicuous and likely to be
consumed by a predator. It reiterates that trait-fitness relationships for organisms can be
a complex, multi-objective and dynamic function.

Coevolution and coadaptation include the interaction of multiple species, such that the
fitness selection curve is then dependent on the current (dynamic) frequency of genes in
another population or species. Again, this emphasises the non-linear and dynamic nature
of fitness selection relationships.

2.4.4 Genetic Drift

Genetic drift is a very influential but often unappreciated mechanism. It is, essentially,
changes in trait distribution due to stochastic processes that can lead to loss of genetic
material. Genetic drift acts without the need for selection which may act more directly

31

Chapter 2: Ecology, Ecosystems and Evolution

Selection FormInitial Trait
Distribution

Final Trait
Distribution

Fi
tn

es
s

Fr
eq

ue
nc

y

μ
v v

(a) Neutral
Fr

eq
ue

nc
y

μ
v

v = Trait Value

Fi
tn

es
s

Fr
eq

ue
nc

y

μ
v v

(b) Linear

Fr
eq

ue
nc

y

μ
v

Fi
tn

es
s

Fr
eq

ue
nc

y

μ
v v

(c) Stabilising

Fr
eq

ue
nc

y

μ
v

Fi
tn

es
s

Fr
eq

ue
nc

y

μ
v v

(d) Disruptive

Fr
eq

ue
nc

y

μ
v

μ = Mean

Figure 2.7: Graph illustrations of (a) neutral, (b) linear, (c) stabilising and (d) disruptive
selection as it applies over time to a single trait, initially normally distributed in a population.

against specific trait frequency. Drift can occur whenever there is a random or stochastic
process involved in the generation (reproduction) of new individuals.

Consider sexually reproducing organisms with diploid chromosomes; meiotic cell divi-
sion – which is an effectively random halving of the diploid chromosome – creates gamete
germ (sperm or egg) cells, which are then fused in reproduction to form a zygote. In
this process of gametogenesis there is a random chance that some variations may not be
copied as frequently as others, which in turn means that the population can be affected
by genetic drift.

Likelihood of drift equating to either loss or fixation of a particular trait in the pop-
ulation is related to the population size. A small population is much more likely to be
affected by drift than a large one. Also, as this is a stochastic process, the longer the time
period the more likely that drift will affect the population.

Fragmented populations are more at risk than connected populations because they
are effectively small isolated subgroup “pockets”. It should be evident that the nature of

32

Chapter 2: Ecology, Ecosystems and Evolution

interactions and the topology of a population have a significant effect on drift as well as
selection based convergence.

The mechanism of drift is not limited to genetic processes of recombination. It may
also be due to random selections from the population, such as random survival selection
as a result of a catastrophic event (fire, flood, volcano), or the random selection for repro-
duction. If the subset that survives and reproduces is not a representative sample (simply
due to the reduced population size) then the diversity of the initial population will be lost
and the new population will have drifted to a different distribution.

In a similar way the “founder effect” occurs when a small group colonises and develops
a new habitat, such that the small sample of genetic material results in a different genetic
diversity in the colony from the original population. By example, this has created serious
health problems, such as prevalence for particular genetic disorders, in historically small
and mostly “closed” colonial parts of the United States.

In natural systems there is rarely neutral selection with only the effects of drift. How-
ever, drift can always play a part as there is always interaction between organisms and
species in an environment, and the movement of species and changes to their environment
can induce significant drift related stochastic changes.

2.4.5 Gene Flow

Gene flow is essentially the movement of individuals between populations and, by so doing,
a transfer or “flow” of genetic material. This can have neutral, positive and negative effect
to the diversity of a population, partly regulated by the size of the population and the size
of the flows, but also by the frequency of movement and the possible specific selection of
migrants in or out of a population.

Models of gene flow may be very important to speciation. It is thought that periods of
equilibrium, punctuated by either migratory or traumatic events, are important means of
both refining adaptations (exploitations with respect to a specific environment) and also
allowing for rapid changes (exploration with respect to a new environment).

2.4.6 Mutation

The term mutation is used for many different mechanisms, but all have a key similarity:
they introduce heritable variations. These variations can be at the smallest of scales,
where changes to the acid-base pairs of DNA result in different nucleotides, or at larger
structural levels where sections of genetic (heritable) material are inserted, removed and
reordered.

One of the most likely causes of mutation changes in organisms is a “copy” or tran-
scription error, given that genetic material must be copied for all cell division and so
this happens many times. Of the changes that might occur there are several possible
consequences for organisms:

• Severe Detriment: Cell (or organism) will cease to function.

• Minor Detriment: Cell function is impeded, but still functions.

33

Chapter 2: Ecology, Ecosystems and Evolution

• Neutral: No change to the function (based on the currently expressed genes).

• Minor Benefit: A benefit but it is not significant or radical in function.

• Significant Benefit: Increases organisms fitness.

Significant beneficial changes are unlikely simply because of the complexity of the
genetics and organisms involved. However, given the time period over which evolution can
operate, evolutionary progress waits for the rare and beneficial changes that may present.

For changes to be inheritable they must be involved in reproduction or somehow in-
corporated or selected for the genetic material used in reproduction. Because of this the
most likely location for mutational variation to have an inheritable influence is during
reproduction interactions or processes. For haploid organisms (animals), this is in the
production of gamete cells (gametogenesis) or in the fusion of gamete cells (fertilisation).

2.4.7 Speciation

Speciation is the processes whereby new biological species may arise. The mechanisms
of speciation are rarely observed and strongly debated. There are four main theoretical
modes proposed: allopatric, peripatric, parapatric and sympatric speciation. A visual
representation is shown in Figure 2.8 and each is described briefly:

• Allopatric: The population is split into two isolated groups. (Possibly the result
of habitat fragmentation.)

• Peripatric: A relative small proportion of the population is isolated in a peripheral
population. (This is directly related to the founder effect.)

• Parapatric: Localised mating frequency change related to environment niches.

• Sympatric: Genetic divergence within a single population in a homogeneous envi-
ronment. (Possibly the result of disruptive selection.)

In each case, the speciation process begins with a single population, and then some
type of initial division or change occurs, which results eventually in two populations of
genetically dissimilar species that can no longer interact reproductively (species).

Of all the modes presented, the strongest evidence supports allopatric speciation while
the modes of parapatric and sympatric speciation are less supported. All populations can
undergo genetic drift or dissimilar selection pressure which is likely to play a part in all
modes to some extent.

The causes of large scale habitat change and fragmentation can include environmental
alteration due to such events as fires, floods, earthquakes, landslides, river changes and
volcanoes, or the migration of other species. Island geography is often used to illustrate
the long term changes that can occur within an isolated genetic system in support of
allopatric speciation.

34

Chapter 2: Ecology, Ecosystems and Evolution

Allopatric

Parapatric

Sympatric

Peripatric

Single Species
Population

Enabling
Change

Isolation Barrier

Isolated Colony

New Adjacent Niche

Selection Variance

Genetic
Divergence

Figure 2.8: Speciation modes showing a uniform population, the enabling change and the
resultant divergence and classification of separate (genetically isolated) species populations.

Environmental niches can occur along an otherwise equivalent environmental gradient
due to factors such as contamination or species competition. Niches are required for
parapatric speciation.

Sympatric speciation is still one of the most debated modes of speciation, given that it
requires an almost spontaneous divergence within an environmental gradient. Disruptive
selection is one of the most popular mechanisms proposed to explain how (if not why or
if) sympatric selection might occur.

2.4.8 Limitations

There are inherent limits placed on any evolving system. All limits are intrinsically part
of the environment; evolution is simply a interacting process that can occur within the
material and entities contained in an ecosystem. Several of these limitations are worth
considering in more detail: genetic variation, developmental stages, time, physical limits
and the interaction of traits.

Genetic Variation: The available genetic material of the parent population limits the
possible qualities offspring may have (plus some occasional mutation). This is the
largest of constraints. Variation is the raw building material of evolution to work
with. This constraint is also evident when populations are affected by small sizes
and sampling issues (such as stochastic drift or founder effects).

Developmental Stages: Some organisms require distinct developmental stages in their
phenotypic development. These stages could be changed by variation in the genes
that control development regulation, though stages may be critically dependent on

35

Chapter 2: Ecology, Ecosystems and Evolution

the environment. Multiple significant changes may be required to “skip” a develop-
ment stage or to alter environment requirements, and so such changes are less likely
than other variations.

Time: Evolution needs significant periods of time, and the larger the organisation scale,
the longer time period required for evolution to effect change. Time is typically
measured in “generations” and this is significantly different for single-cell bacteria
than it is for larger, longer living, multicellular organisms.

Physical Limits: The physical limitation and properties of an environment do not scale
at the same rates. As such, an increase of a single trait value may not be supported by
increases in other required traits, or limited by physical relationships. For example,
an ant could not be scaled up to the size of an elephant because there are many
physical (structural, material, chemical and so on) limits that prevent this.

Interaction of Traits: Traits are rarely independent, either because they are located
near each other on a chromosome and so may “hitch-hike” under selection, or be-
cause of the complex interacting network of gene expression. (See Figure 2.9 and
Figure 2.10.) The genetic interaction of pleiotropy and polygeny are particularly
important. Similarly phenotype traits can interact with each other with respect to
fitness.

Not only is genetic variation in a species required for selection to operate, a limited
“gene-pool” is also a known high-risk. For example, if a pathogen were able to overcome
a high-frequency defence-related genetic trait, the entire species would be susceptible.

Theories suggest that biological systems may be able to avoid high-frequency traits
through several processes: favouring neutral substitutions (that is, allowing or encouraging
genetic diversity as a “built-in” mechanisms of evolution); intrinsically diversify given any
different environmental conditions (because this is a successful strategy); or that fitness
favours unique alleles in such a way that high-frequency alleles are considered “less-fit”.

+

+

+
+

+
+

-

-

-

-(a)

(b) (c)

+

-

Traits

Positive Interaction

Negative Interaction

External Interaction

Phenotype Form

Figure 2.9: Trait interaction network. The properties of an individuals’ phenotype form (a)
are a result of the expressed traits (b) and their unique interactions with other traits and the
environment. ‘Fitness’ can be illustrated as an output (c).

Pleiotropy is where a single gene can influence multiple traits. Therefore, anything
that affects one gene may have multiple trait effects, beneficial and detrimental. Some

36

Chapter 2: Ecology, Ecosystems and Evolution

influences may even be antagonistic toward the same trait (Figure 2.10). Similarly, a
polygenic trait describes a phenotype feature that can be attributed to two or more genes
interacting (and the environment), and in order for the trait to change there may be
several interdependently located genes that would need to be altered. Clearly these gene
expression interactions can affect the way selection alters population allele frequency, and
limit the likelihood that simple mutation will advantageously alter the trait.

+
-

+
-

+

-

+

(a)

(b)

(c)

Figure 2.10: Illustrating gene expression network complexities: pleiotrophic and polygenic
interactions. Note how (a) multiple genes can interact with positive and negative effect to the
(b) expressed trait. Similarly, it is possible for (c) prior expressed traits to have influence.

Lastly, traits may be linked physically in their phenotype form such that multiple
phenotypic traits cannot all be increased. For example, given a limited energy budget
for an organism, the energy needed to allow an organism to grow large may increase its
survival, but require a longer juvenile development stage. As a result this might delay
fertility and so reduce the species survival probability, and hence reduce fitness.

2.4.9 Evolution and Organisational Scale

As we have already considered an organisational view of ecology it is worth pointing out
the levels at which evolution can occur. As long as there is variety in the heritable traits
that an individual might contain evolution may apply.

Richard Dawkins popularised [71, 72] a reductionist gene-level view of evolution by
considering a chromosome as a population of genes. In this micro-evolutionary model
a gene is the individual, and the chromosome is the population. Certainly for simpler
organisms such as viruses and bacteria this view has several advantages, and is still popular
in molecular evolutionary research.

Moving up from a micro-evolution scale and a classic organism evolution scale, we can
consider macro-evolution. This view is particularly useful if there are traits that can be
best described at a macro-organisational level and no lower. As long as a trait is heritable
in some fashion and related to fitness, and there is variability required by evolution, a
group can be considered a single unit.

For example, population density of bacteria growing on a particular media may be
best described as a group trait (an emergent property). Note that although population
density is a quality of individual bacteria, density contributes to the entire culture group.

37

Chapter 2: Ecology, Ecosystems and Evolution

...
Biosphere
Biome
Ecosystem
Community
Population
Organism

Cell
...
Genome
Chromosome
Gene

...

O
rg

an
is

at
io

na
l L

ev
el

s

Micro-evolution

Macro-evolution

Evolution
(Classic)

...

Molecule

G
I
T

G
I
T

G
I

T

= Group
= Individual
= Trait (Variable)

G
I
T

Figure 2.11: A representation of classic, micro- and macro-evolution models as they relate to
different levels of the organisational scale presented. In each case there are three organisational
levels used for groups, individuals and variable heritable traits.

Different groups or species of bacteria could then evolve as the individuals under selection,
where fitness is related to groups’ population density.

Given these scale-independent concepts of evolution, we can restate the earlier common
definition for evolution: a change in frequency of variable traits in a group of entities over
time. In this way the unit of a trait (unit of evolution) is not fixed to a specific level
(allele) and the idea of a group of entities is applicable across organisation scales (not just
populations of organisms).

As we climb the ladder of organisation scale, and due to the effect of aggregation,
we typically lose entity variation and reduce the total number of entities involved. As
a consequence, evolution – which requires variation in order to effect change – tends to
be weaker and slower. It is to be expected then that a macro-evolution process would
require a much larger period of generational time over which change might occur. It is
also possible that while most of the principles that are valid at micro-evolutionary levels
still apply, their influence may be different, and there may be other fast-acting mechanisms
of greater influence.

For example, it is possible to include the cultural or memetic transfer model, within
an ecosystem community, into the model of evolution and scale. In contrast to the inter-
generational transfer of genetic traits, organised communities can change rapidly due to
the intra-generational transfer of ideas between individuals. This places cultural evolution
clearly at the macro-evolution level, though with a rapid rate of influential change.

Finally, the predominant majority of natural systems contain co-adapted, competitive
and cooperative species. A model of ecosystem evolution must support coevolution through
the interaction of species and mechanisms including selection.

38

Chapter 3

Evolutionary Computation

3.1 Introduction

3.1.1 Objectives

The aim of this chapter is to introduce the field of Evolutionary Computation (EC), and
Evolutionary Algorithms (EA) in particular as a biologically inspired search metaphor. It
makes specific reference to the ecosystem and evolution concepts presented in Chapter 2,
and places emphasis on interactions and topology that are covered in greater detail in
Chapter 4.

Biological concepts are first discussed and used as a problem solving model to create a
simple evolutionary algorithm including basic operators and important concepts such as
representation, fitness and convergence. Included are the ideas of the adaptive and robust
qualities of EA search with comparison to conventional optimisation techniques.

Initialisation

Termination

Parent Selection
Mate Selection

Recombination
& Mutation

Survivor
Selection

Replacement
Selection

Parents

New Children

Survivors

Population

Figure 3.1: The simplified life cycle model used as the metaphor for artificial evolution. This
metaphor can be applied to the domain of general problem solving.

A detailed model of general EA components is presented in Section 3.2 which includes
simple as well as complex interactions, operations and topology. The components are
related to an overall ecosystem model of evolutionary computation. This framework is
used as a reference structure for the review of similar work in Chapter 5 and a number of
properties and measurements that are appropriate to ecosystem EC.

Several reference EAs are described in Section 3.4 including the canonical Genetic

39

Chapter 3: Evolutionary Computation

Algorithm (GA) and Evolutionary Strategies (ES), a more recent real-valued Generalised
Generation Gap GA known as G3, and the structured population models of fine-grained
Cellular EAs (cEA) and coarse-grained Distributed EA (dEA). The reference EAs are
discussed and compared, and used in later investigations.

Appendix B is a collection of benchmark problems that can be used to test the per-
formance of evolutionary algorithms, and are supported by a software framework (ESEC
in Appendix E) created for the thesis. Not all of the problems presented are used in the
investigations of the thesis, however they have been included to support future work.

Chapter 4 supports the proposed ecosystem EC model by reviewing in detail the area of
graph theory and topology, especially topology models that can be used by the ecosystem
EC model. Chapter 5 considers questions that the model can help to investigate.

3.1.2 The Simple Evolutionary Algorithm

EA Origins

The idea of using evolution for “automated” problem solving has existed since before the
advent of computers [111].

The origins of conceptual models of evolution started in the 1930s with the highly
influential work of Sewell Wright. He proposed the visualisation of evolutionary progress
as a “fitness landscape” containing peaks (niches) of high fitness and clusters (demes) of
good fitness [373, 374, 375]. Whether this idea is valid or not has attracted much debate,
however the notion of a fitness landscape naturally leads to the idea of the search for optima
within such landscapes, and hence evolution as an optimisation process. Others strongly
contend that evolution is an adaptation process in response to evolutionary pressure, not
an intrinsic optimisation process. This distinction is a significant conceptual difference
when comparing EC to classical optimisation methods.

Several reviews of the EC field have noted that perhaps the first proposed application
of EC as an algorithmic search tool was by Box [41], who suggested an “evolutionary
operation” that could be used to increase productivity in an industrial application. Also
in 1957 Alex Fraser presented a “simulation of genetic systems” [121]. Other cited examples
of early simulated evolution include the work of Bremermann [42] and Reed et al. [291].

Since the 1950’s the field of EC has developed, in many independent forms, and has
become a significant and mature research field.

Applied Biological Metaphor

The imitation of biology1 and the use of biological metaphors have proved to be excellent
sources of ideas for many successful computational approaches to problems [274]. This
includes not only the metaphor of evolution considered in this chapter (see [274, 136, 168]
and many others), but also metaphors such as Artificial Immune systems [104, 35], Swarm
Intelligence[102] and the broader perspective of Collective Intelligence paradigms [123],
and other evolution variations including Cultural Algorithms [293].

1Biomimetics is also a popular term used to describe the imitation of biological systems.

40

Chapter 3: Evolutionary Computation

Applied biological metaphor of evolution has inspired flexible, efficient and robust prob-
lem solving techniques for many domains [210, 275, 128, 98, 77, 123]. Similarly, research
of artificial evolution has also been used to replicate properties, and gain understanding,
of biological systems [73].

As discussed in Chapter 1 and Chapter 2, the early theories of Darwinian evolution
and Mendelian genetics provide us with enough components for artificial models of evo-
lution. Recent advances in both modern evolutionary theory and genetic theory can also
be incorporated. The basic components utilised by an artificial Evolutionary Algorithm
(EA) are the effect of environmental pressure to drive evolution, and genetic qualities or
traits transferred and modified from parent to children individuals.

With the relatively simple ideas of an environment, populated by individuals that com-
pete for survival and reproduction, we are able to develop systems – some with surprisingly
complex properties – that can be used to solve problems. This begins by taking the bi-
ological life cycle model from Figure 2.3 of Chapter 2 and simplifying it to the essential
aspects needed to support an abstracted evolution model that can then be applied to
problem solving (Figure 3.1).

Table 3.1 presents the connection between evolutionary ideas (biological or artificial)
and the key aspects of general problem solving. It is with these connections that we can
use the metaphor of artificial evolution and apply it to problem solving.

Evolution Problem Solving

Environment ←→ Problem domain

Species population ←→ Population of candidates

Single individual ←→ Candidate solution

Individual fitness ←→ Quality of candidate

Variable trait ←→ Parameter value

Table 3.1: A representation of the connections from evolution concepts to aspects of general
problem solving, with bold indicating the three key structural levels identified earlier. Adapted
from [98].

Generally, it is only validated concepts of biology, evolution and genetics that are used
as metaphor, although it is also quite possible to use ideas that are not valid in biology. For
example, in biology incest is usually an undesirable occurrence for healthy genetic diversity,
but for EC incest can be a useful feature to enhance problem exploitation. Similarly, in EC
we can quite easily allow multi-parent reproduction of more than two parents, resulting
in possible benefits for specific problem domains. Such multi-parent reproduction is rare2

in real-world biology.
This simplified model of biological evolution does not include the ecosystem complexi-

ties of organisms and their environment as discussed earlier in Chapter 2. The opportunity
2There are many multi-parent “aggregate” or “explosive” breeding examples, where fertilisation occurs

outside parent organisms such as the synchronous spawning of coral polyps or the clutch fertilisation of
female eggs by multiple males for amphibians.

41

Chapter 3: Evolutionary Computation

to include ecosystem concepts, and to what possible advantage, is looked at further in Sec-
tion 3.2 and later in Chapter 5.

Basic Operation

Let us consider a simple structured artificial Evolutionary Algorithm (EA) using the basic
biological life cycle model. As mentioned, EAs can be described as an iterative and stochas-
tic process that operates on a population of individuals that each represent a candidate
solution to a problem environment. A fitness function is used to evaluate the perfor-
mance of individuals that, in turn, is used to competitively influence the reproduction and
replacement of individuals in the population.

t = 0
INITIALISE populat ion with random cand idate s
EVALUATE the e n t i r e populat ion
UNTIL (‘ So lu t i o n Found ’ or ‘ Give Up’) DO BEGIN

SELECT f i t cand idates from populat ion as parents
CREATE c h i l d r e n by VARIATION of parents
EVALUATE new c h i l d r e n
SELECT f i t ‘ surv ivor ’ c h i l d r e n
SELECT cand idates from the populat ion to REMOVE
INSERT c h i l d r e n i n t o populat ion
t = t + 1

END

Figure 3.2: Pseudo-code for a basic evolutionary algorithm

Regardless of the detail or complexity of a particular artificial implementation of evolu-
tion, it could not be a complete and true description of natural evolutionary systems [113].
Fortunately, the essential elements of population based variation and selection are a useful
paradigm in themselves, and the future opportunity for distributed and parallel imple-
mentation benefits have yet to be fully realised.

3.1.3 Search and Fitness Landscape

The fitness landscape model contributed by Sewell Wright has already been mentioned,
both for its simplicity and the resulting contention of suitability for evolutionary models.
For the purpose of initial discussion, we can begin with a simple artificial 1D fitness model
that represents such an evolutionary fitness landscape.

Consider the first generation of a population of 10 random individuals in this model.
See Figure 3.3 as an example of a fitness landscape (for a single genetic trait) and the
population occupancy at three different generational stages of evolutionary progress. Each
individual consists of a single gene trait, which is shown as a location (gene value) in the
search space axis. Gene values map to a single corresponding fitness value. Although
in this case we see the search space values and fitness values belonging to a continuous
function, it is significant to realise that the population is only a sample of the domain and
is not informed of the continuity. This is in contrast to gradient based search heuristics
that rely on and exploit continuity.

The process of evolution, then, is to pressure the development of new individuals (future
generations) so that they have gene values that are more likely to occupy fitter locations

42

Chapter 3: Evolutionary Computation

Fi
tn

es
s

Gene Value

(b)

Fi
tn

es
s

Gene Value

(c)

Fi
tn

es
s

Gene Value

(a)

t=0 t=5 t=20

Figure 3.3: A simple 1D fitness landscape with a population of 10 individuals. The higher the
fitness value the better. Stages (a) to (c) represent the evolutionary progress of the population
at 0, 5 and 20 generations respectively. For this simple model we can consider the gene value
the genotype and the fitness value the phenotype.

of the fitness landscape. Ideally individuals will occupy the optimal niche location peak
of the landscape.

There should be a clear distinction between the search space (gene value) and the
fitness landscape (fitness values). Evolutionary pressure influences the gene search space,
in the expectation (hope) of finding a good fitness landscape value.

3.1.4 Convergence

There are many factors that can influence the progress of evolution. For example, it
can be affected by the population size, the nature of the fitness “landscape”, the method
of selection of parent individuals, the fertility of parent individuals, the survival rate of
individuals, and other similar features.

Fundamentally though, evolution is driven by the pressure of selection. Most commonly
this is taken to be the selection of parent individuals used to create new children, though
it applies equally to the selection of individuals to be removed also (thus reducing their
influence), or other forms of “pressure” that are selectively applied to the algorithmic
process.

Fitness pressure is an episodic influence of the selection of individuals for reproduction.
The pressure is not deterministic, and so the outcome of adaptation can not be known.
Solutions – even if they exist – may not be found.

As elegant as the fitness landscape model is for representing a population of individuals
converging to a niche location of optimal high fitness, it is equally valid to conceive a
population converging on less-than-ideal locations. The potential convergent outcomes:

• Optimal convergence: An individual (or the population) converges to a single
region of search space – the best possible.

• Sub-optimal convergence: The population converges to a single suboptimal re-
gion of search space.

• Concurrent optima convergence: The population is divided and concurrently
converges to two or more separate search space locations. Essentially this creates
different subpopulation “species” within each niche area of the search space.

43

Chapter 3: Evolutionary Computation

It is possible that the population will not converge to a suitable search space region.
The following potential influences should be considered:

• Genetic drift describes the behaviour of a finite population undergoing stochastic
selection. Quite simply, genetic diversity is lost due to insufficient sampling (sam-
pling error).

• Lack of time in a practical sense to allow evolution to occur. This is a very real
concern for high dimensional and interdependent problem domains.

• Disruption, such as external influences that result in a radical change of the fitness
landscape, or a significant extermination of individuals, and thus removal of genetic
material from the population. A simple random influence or noisy problem domain
can be too disruptive for some search techniques.

• Resolution, in that the search space does not contain the details needed to represent
appropriate solutions of the problem domain. A high resolution solution might be
desirable, although high computational cost can be avoided if a simple low-resolution
model is adequate.

As already described, the driving influence of an evolutionary process is the pressure
that can be applied. If pressure influences are contradictory they may limit or cancel each
other, or cause a disruptive effect such that the net effective pressure is neutral and the
population genetically drifts.

It is possible that two or more similarly fit, but genetically different, search space
locations exist. New individuals are then clustered to one of the alternative locations.
However, it is unlikely for such a “dynamic equilibrium” to be sustained over generational
time due to the nature of stochastic sampling allowing a single solution type to dominate.
It is even less likely to occur at an overall population level if there is a high degree of
connectivity.

3.1.5 EAs as Robust, Adaptive Search

Adaptation, Optimisation and Robustness

The result of evolution (natural or artificial) is adaptation. Search using an evolutionary al-
gorithm is intrinsically a heuristic that iteratively, non-deterministically and stochastically
tries to adapt solutions. Optimisation problems have been a classic and also somewhat
troublesome application of EAs. But as Eiben and Smith point out, linking evolution to
optimisation problems “is as straightforward as misleading”[98, p5].

The misunderstanding of evolution and optimisation prompted many researchers to
directly stress that EAs are not, in themselves, “function optimisers” [364, 98, 77]. Rather,
it is better to describe EAs as robust adaptive systems which can be applied to optimisation
as an “adaptation process” (that is search) [76, 157].

44

Chapter 3: Evolutionary Computation

Gradient unidirectional hill climbing heuristics are commonly and appropriately used
for continuous function optimisation. However they may also be easily trapped (or de-
ceived) by local optima in the search space [2]. The performance of hill climbing techniques
can be used as a baseline performance measure against specific EA implementations [178].

Evolution is a stochastic process that has some potential advantages over gradient
based techniques. EAs have been successfully applied to many non-linear and stochastic
optimisation problems. Although EAs can rarely match the convergence speed of gradient
techniques on smooth problem spaces, EAs are less likely to be “caught” or “deceived” by
a local optimum on rugged problem spaces. For this reason EAs are generally considered
“robust”.

It is interesting that the original aim of John Holland, one of the pioneers of the
EA field, was to develop an adaptive and robust search system rather than to search for
singular optimal solutions [166]. Robustness is a desirable quality, though it may be at
the expense of search convergence speed. A cautious or less greedy search may take longer
to reach a desired search outcome.

There is another practical quality of EAs: they can be readily applied to problem
domains where there is no single optimum – a situation that can be quite difficult for
other strongly directed or greedy techniques.

Search, Scores, Fitness, Quality and Pressure

As evolutionary adaptation can be considered a search process, we consider each possible
solution to be a point in a search space. Some points may not be viable, depending on
the problem domain and representation schemes used [184]. The successful trajectory or
projection of the evolutionary progress from the initial population points to good solutions
is dependent on the suitability and correctness of fitness values assigned to individuals.
Further, progress is effected by the influence (utility) fitness has on evolutionary operators
(such as selection and replacement). There is a distinction between an individual’s raw
score or value in the search space, and how this score value relates to a fitness value. In
some domains, the score can be used directly as the fitness value, but in others a conversion
is required. Conversion allows for normalisation or scaling of fitness values, and inversion
so that minimisation or maximisation search domains can both be mapped to a single
maximisation fitness domain.

Raw score conversion to fitness is usually the role of the “selection” operator, and there
are many variations. However most selection operators belong to either proportional or
rank based techniques.

The heuristic nature of an EA means that finding optimal solutions cannot be guaran-
teed, and so solutions may be of less than optimal quality. The definition of solution quality
is an important problem specific (and commonly user specific) constraint that should be
considered when EA techniques are applied to new problem domains.

Evolutionary pressure is a useful term for identifying and describing how the process of
evolution is directed or “pushed” over each generation. Primarily this pressure is attributed
to the role of fitness, and because both the determination of fitness, and its influence on

45

Chapter 3: Evolutionary Computation

evolutionary operators, can vary in application, determining and comparing evolutionary
pressure is a useful, but difficult to define, quality.

A search with strong evolutionary pressure will converge quickly. Evolutionary pres-
sure must accommodate all desirable solution qualities, otherwise those qualities are not
preserved in the population. Weak evolutionary pressure can allow the persistence of
undesirable qualities, but this may be useful (even essential) to the diversification of the
population. We can describe evolutionary pressure from both a macro- and micro-level,
where the pressure is specific only to individuals, while a micro-level indicates pressure
that is sensitive to the component parts or traits within individuals. Pressure can be
adjusted at both a specificity level, and at a magnitudinal level. Determining the right
nature and scale of evolutionary pressure to apply can seem as much an art as a science,
and this is a central question in applying EC to search in specific domains.

Application Examples

The applications of EC are many and diverse, covering fields of business, engineering and
science. Examples (some of which overlap) include control systems [173], data mining [285],
fault-tolerant systems [340, 341], game playing [15], machine learning [136], ordering prob-
lems [305], scheduling [377], set covering and partitioning [218], physical designs [33] and
strategy acquisition [150].

Almost all reviews of the EC fields present successful applications of EA [17, 237, 98,
77]. Several classic application examples are included later in Section 3.3. Based on the
results of the EC field, there is little doubt that EAs – applied to many different fields with
a variety of implementations – are a useful paradigm for solving some problems classes.

3.1.6 EAs and Conventional Optimisation

It has been shown that EAs are good for specific problem domains, and this result agrees
with general algorithmic information theory, and specifically the “No Free Lunch” the-
orem [370]. For example, an established view supported by work such as presented by
Miettinen et al. [231], is that EAs can provide good performance when:

• there are no known solutions;

• the number of search parameters is very high; or,

• the number of potential solutions is high.

The points presented in Table 3.2 are based on the views expressed by Engelbrecht [102]
and makes a useful presentation of the perceived differences between more conventional
“classical” optimisation techniques, and the role that EAs can play as a search (adaptation)
technique.

3.1.7 Further Resources

There are many publications and resources for the continually growing field, both in its
breadth and depth, of evolutionary computation (including ALife). See Bäck, Fogel and

46

Chapter 3: Evolutionary Computation

Classic Optimisation Evolutionary Search

Domain Best suited to linear, quadratic,
strongly convex, unimodal and
other similar specialised domains.

Best suited to discontinuous, non-
differentiable, multimodal and noisy
domains.

Process Deterministic and sequential
search steps, usually starting from
a single location in search space.

Stochastic (probabilistic) adaptation
steps, implicitly parallelised by the pop-
ulation. A set diverse initial starting
locations samples the domain.

Guidance Derivative based (usually first or
second order) to guide search
steps.

Individual fitness is used as a search
pressure. This pressure is typically ap-
plied via selection, but reproduction or
replacement is also possible.

Table 3.2: A comparison of Classic Optimisation methods and EA Search (adaptation), based
on the qualities of best suited problem domains, the central process mechanisms of each
method, and nature of search guidance.

Michalewicz [17, 18, 19], Davis [70], Mitchell [237], Man [223], Eiben and Smith [98],
Fogel [113] and De Jong [77] for excellent detailed introductions, history and coverage.

The International Society for Genetic and Evolutionary Computation (ISGEC)3, sup-
ports communication and academic forums for researchers (including the annual GECCO
and biannual FOGA conferences).

Specific journals of note include IEEE Transactions on Evolutionary Computation4,
Evolutionary Computation5, and Genetic Programming and Evolvable Machines6 which is
available as part of the membership of ISGEC.

There are four main EC conferences. The first two have resulted from the merging
of prior conference series, and they are the Genetic and Evolutionary Computation COn-
ference (GECCO) and the Congress on Evolutionary Computation (CEC), both of which
are held on an annual basis. The European based biannual Parallel Problem Solving from
Nature (PSNN) was specifically established in 1990 to encompass many streams, includ-
ing EC. The biannual Foundations of Genetic Algorithms conferences (FOGA) support a
specific focus on theoretical aspects of EC.

Heitkoetter and Beasley compiled a popular Frequently Asked Questions (and an-
swers) list known as the “Hitch Hiker’s Guide to Evolutionary Computation” and made
it available online in several locations7.

3See the ISGEC website at http://www.isgec.org/
4Published by IEEE Computational Intelligence Society. See http://ieee-cis.org/pubs/tec
5Published by MIT Press. See http://mitpress.mit.edu/
6Published by Kluwer Academic Publishers. See http://www.kluweronline.com/issn/1389-2576
7A commonly indexed location is at http://www.faqs.org/faqs/ai-faq/genetic/

47

http://www.isgec.org/
http://ieee-cis.org/pubs/tec
http://mitpress.mit.edu/
http://www.kluweronline.com/issn/1389-2576
http://www.faqs.org/faqs/ai-faq/genetic/

Chapter 3: Evolutionary Computation

3.2 An Ecosystem Model for EA

3.2.1 Introduction

This section presents an ecosystem model for evolutionary algorithms. The model includes
ecosystem concepts of topology – inherent in natural environments, population structures,
communities and species – to form a coherent model of evolutionary algorithm components.

There are many generalised EC frameworks and comparison models presented in litera-
ture. The initial influences for this framework include the classic “Handbook of Evolution-
ary Computation” [17], Bäck’s reviews (such as a chapter of [274]), Bentley’s introduction
chapter of [33], and more recently books by Eiben and Smith [98], a “unified” approach
by De Jong [77] and a philosophical view by Fogel [113].

Notable differences between the model presented here and other general models typi-
cally relate to the number or type of operator components, the order of operations, and
understandable biases from GA or ES perspectives.

Components are introduced in Section 3.2.2 and described from Section 3.2.3 to Sec-
tion 3.2.9. The influence of components is discussed.

3.2.2 Components

The key processes of the neo-Darwinian paradigm have been identified as reproduction,
variation, competition and selection [228]. These can be related to the structural com-
ponents of ecosystems identified earlier: environment, communities of species, popu-
lations, individual organisms, and heritable traits.

All of these ideas and components can be incorporated into an evolutionary search
algorithm model, along with other algorithm requirements (that are often implicit in
other frameworks).

• Search domain clearly defined (environment) including the number of variables
and their constraints.

• Candidate representation (encoding) of traits appropriate for the domain vari-
ables.

• Population structure (representation) to define the interaction of individuals.

• Evaluation function(s) (fitness) for assessing candidate value with respect to a
particular context.

• Selection processes for several different contexts including the selection of parent,
parent mates, child survival, replacement and migration.

• Variation operators (for reproduction), such as crossover and mutation, represen-
tation specific.

• Migration rules and policies (between subpopulations, also using selection).

• Initialisation process.

48

Chapter 3: Evolutionary Computation

• Termination conditions.

This collection of ecosystem EA components is now organised into groups and consid-
ered in more detail.

3.2.3 Representation

Search Domain

A search domain can be defined by an objective function f that is affected by a set of
variables (unknowns), say a vector ~x of x1 to xn values. For optimisation search, the
objective is the maximise or minimise f(~x) such that ~x∗ represents an optimal location of
the search problem domain.

For constraint satisfaction problems (CSP) the objective is to find an optimal set
of values ~x that also satisfy a list of defined constraints. Constraints can apply to any
domain, and nearly all problem domains have boundary conditions for variables. The set
of constrained feasible solutions can be described as F , and denoted as a subset of the
entire search space F ⊆ S.

As introduced in Section 1.7, Engelbrecht [102] has suggested a useful list of search
domain characteristics including the:

• number of variables in ~x for f ;

• type of variables within ~x;

• degree of nonlinearity of the objective function f ;

• set of constraints (either on each variable in ~x or the output f or both);

• number of optima (the modality) within the space of f ; and,

• number of optimisation criteria such that multiple objectives are subobjectives of
the overall search objective.

When considering how a search method will perform, it is important to realise the
distinction between the actual search domain used, based on internal representation, and
the real-world or abstracted problem domain. This is particularly the case for EC based
search, where the representation of the problem may be an encoded “genetic” represen-
tation that may potentially add or detract to search performance. EA search is always a
search of the encoded space, not the problem space, even if the two spaces are equivalent.

Individuals and Traits

Choosing an appropriate representation for individuals is a crucial part of applying an
EA, and the choice impacts both the efficiency and the complexity of the algorithm.

Trait representation can be as simple as a collection of binary values, integer or real
number values, character strings, sets (sequences) and sub-unit variance structures [17].

49

Chapter 3: Evolutionary Computation

While most EAs use a vector representation of bits or floating point values, genetic pro-
gramming is a notable exception in that it explicitly uses a tree structure to represent
programs.

Genotype to phenotype mapping allows complex relationships. Specifically, pleiotropy
is the influence of genes on multiple phenotype traits, and polygeny where several genes
combine or interact to form the final phenotype trait.

An interesting and well known variation for representing individuals is the messy GA
(mGA) structure in which genes represent both position and value of a solution [140].
This allows both the gene value and its ‘location of affect’ to be explored in the search,
but adds additional computational cost.

Similarly, Copland presented a “genetic encoding scheme” based on a model inspired
by the storage of genetic information in DNA [57]. In this model traits are not explicitly
represented in a single location, but instead encoded across multiple locations of a common
genetic string, and a single location can contribute to multiple traits.

An individual does not need to be homogeneous and can include a number of different
trait types and sizes. For example, a neural network configuration could be represented
by a binary string, where 1’s represent connections or nodes, and the weight values as
real values. Of course, mixing trait types in recombination (crossover) should probably be
avoided.8

As another example of non-trivial genome trait mapping, in [371] a hybrid approach
was presented using multiploid individuals (genomes containing two or more chromosomes)
using neural networks as a trait expression mechanism, and applied to classification tasks.
The hybrid genome included both values for network node activation, network weight
values, and bias weight values. The approach was applied to the development of data
classification systems, where an individuals fitness is a function of its ability to correctly
classify a number of data points.

The use of possibly redundant genotype information can help to avoid premature popu-
lation convergence, and the complex abilities of individuals may enable them to be applied
to complex domains. There are evolutionary costs in that the additional trait complexity
requires a longer amount of time to evolve successful solutions. Local optimisation of traits
(in this case, by training the neural network using a local back-propagation algorithm)
can help reduce overall search time.9

In the general case any increase in individual representation complexity – even if highly
beneficial – will require increased computational cost in other components, such as spe-
cialised recombination, mutation and fitness allocation. Complex representation may be
worthwhile if selection is able to act effectively on the components, but it is also desirable
to avoid obfuscation and needless complexity.

8Mixing between trait types could be used as a means of introducing new variation, although without
clear justification.

9Local search creates a Lamarckian or Baldwinian scheme, depending on whether local changes are
written back into the genome or not (respectively).

50

Chapter 3: Evolutionary Computation

Populations

A population is a multiset10 collection of individuals. For most EAs it is the contents of the
population that change in response to the evolutionary process, while specific individuals
are static.

The structure of the population defines the interaction of individuals, and hence influ-
ences other components, namely evaluation and selection. Where a simple panmictic topol-
ogy11 is used each individual interacts with, and is influenced by, all other individuals of the
population. In a model composed of subpopulations, evaluation and selection are localised
within each sub-group, and there is also a need for a migration policy that defines move-
ment of individuals between subpopulations. Fine-grained cellular topology models not
only localise operators, but also overlap neighbourhoods of interaction [224, 65, 199, 98].

Given that evolution, and particularly recombination, acts upon the available variation
that can be selected, the size of the initial population has a direct relationship to the
amount of genetic material initially available [51]. Because of this, many techniques have
been proposed by researchers to estimate appropriate initial population size based on the
structure of individuals (i.e. number of genes or schema ‘building blocks’) and the problem
domain requirements [74, 148, 137].

Strategies to adapt population sizing during evolution have also been used [14]. There
are interesting results in allowing population sizes to adapt and change based on ecological
principles, limited resources and competition.

If mutation is the primary variation operator, then the dependency on the population
to supply variation is reduced, and the minimum population size required for an EA to be
effective is decreased [141, 339].

Using observation from natural populations, we know that a specific environment can
support a finite number of individuals, and that concepts such as the ‘occupancy rate’
in natural systems will vary due to various environmental influences. Such influences
might include food, water, climate, predators, geographic constraints and other more
severe environment altering events such as volcanoes, bush fires and floods. There is also
strong evidence that such influences alter evolutionary progress. Some of these effects are
investigated in more detail in later chapters.

Distributed and parallel EAs are examples of the use of structured subpopulations
(demes) (Figure 3.4). There are several useful aspects of structured populations, such as
the potential for reduced EA “wall-time”12 and elegant application to practical hardware
constraints. Multiple population implementations also require the development of methods
and rules to govern the migration and transfer of individuals between subpopulations [52].
The population size estimation techniques mentioned for single populations have also been
extended to the number and size of subpopulations (demes) required in distributed and
parallel EAs [51].

10Defined as a generalised mathematical set that, unlike a set, can contain multiple instances of the same
element (individual).

11The term panmictic population comes from the field of a population genetics, and describes an envi-
ronment where all individuals are potential mating partners.

12This expression simply refers to the amount of time required – as measured by a clock on a “wall”.

51

Chapter 3: Evolutionary Computation

(a) Panmictic single-population (b) Multiple sub-populations

Figure 3.4: Two different population models. In (a) a simple panmictic population model
where a single individual can interact (shown as a star topology) with all other individuals of
the population. In (b) a more complex sub-population model where interaction is limited to
interactions with other individuals in the same subpopulation (or “deme”) with defined rules
for migration between subpopulations.

Community

A community can be used to describe several views of a population and the interaction
between individuals within an ecosystem evolution model:

• Population organisation for a single species including, for example, sub-groups for
juveniles, adults or gender.

• Interacting subpopulations in a multi-deme structured, cellular or distributed EA
model.

• Multiple species interacting through competition or cooperation, and their possible
co-adaptation.

• Environment-based or interaction-based (fitness) niches.

• Exchange of ideas or beliefs (as in cultural algorithms).

As discussed earlier in Section 2.3.4 and Section 2.3.5 community includes structural
ideas such as the number of species that a community includes, how species interact and the
density of interactions. A community can also be a frame of reference for dynamic proper-
ties such as the stability, resilience and resistance of a community to changes. Importantly
though, community level interaction has proved to be a useful macro-evolutionary model
for adaptive search [278, 281].

3.2.4 Evaluation

The evaluation of an individual is performed within a specific context: the current envi-
ronment, defined by the population structure and the interactions with other individuals
of same or other species. The population context may be an entire panmictic pool, or
localised sub-population demes, or fine-grained neighbourhoods. Evaluation may involve
a community of species competing or cooperating, possibly in an increasing system of

52

Chapter 3: Evolutionary Computation

complexity and competitive development.13 To get an idea of the possible complexity
consider Figure 3.5 which illustrates epistatic linkages between three species.

Figure 3.5: A representation of the epistatic linkages for a single gene in the NKC model [187,
322]. There are s = 3 species, each individual has a genome length n = 5, with k = 2
intra-genome linkages and c = 3 interspecies gene links. The linkages of the second gene in
the first individual are shown.

The process of evaluation begins as traits are converted from an internal genotype
representation to the external environment (via expression or mapping) as the phenotype.

For an EA, the phenotype is evaluated by a ‘cost’ function, also known as the objective
function, which may increase or decrease depending on how good the individual is in the
current domain. This relates to maximising or minimising problem domains respectively.
The assigned cost value is then used as part of an indication of ‘fitness’, however the exact
contribution depends on the selection operator; fitness is a context specific utility concept.
Fitness, from the ecosystem perspective, is an organism’s ability to survive and its ability
to reproduce – or at least have representatives of the same genetic traits reproduce.

A fitness function f can be expressed as a mapping of an individual’s n genes x (of
data type X) to a real value R:

f : Xnx → R (3.1)

As a cost value may not always be easily or directly used as a fitness value, there are
many different techniques that can be used to convert or map the cost of an individual
to a ‘fitness’ value. This process is often integrated as part of the selection component,
where cost is immediately used or converted into the appropriate fitness value. For this
reason, an evaluation function is often just referred to as the fitness function.

Specialised methods are required to deal with problem domains with multiple objectives
(criteria), in particularly those with conflicting or non-commensurate objectives [118, 119].
Examples of such methods include weighted-sum, minimax, target vector, median-rank and
Pareto ranking approaches [120].

For the weighted-sum approach, individual objective results are weighted and summed
to provide a single cost value for assignment. The difficulty lies in the setting or adapting of

13See the Red Queen Hypothesis discussed later in Section 5.4.4.

53

Chapter 3: Evolutionary Computation

suitable weight values, especially without a prior knowledge of either the problem domain
or the genotype search space [120].

Evaluation of individuals is often the most computationally expensive process of an
EA. The computation cost of evaluation can be separated from the computation cost of
fitness value calculation if treated as separate components. This is particularly relevant
when dealing with evolution occurring upon network structures, as the raw evaluation cost
is one distinct operation, while the relative fitness of each individual may be specific to a
localised neighbourhood, such as a sub-graph of an entire population.

Because evaluation can be expensive (and hence a need to avoid an exhaustive search),
it is not surprising that researchers have investigated ways to reduce or approximate
evaluation (and fitness) calculations. Such modified EAs are frequently known as “fast”
EAs [108]. Similarly, the distribution of evaluation processing is an effective method for
improving the ‘wall time’ performance of EAs, particularly when the evaluation time is
long compared with the trade-off of communication overheads that distributed processing
requires.

3.2.5 Selection

Relative Context

Selection applies to many different stages of an organism’s life-cycle, not a single event,
and is based on the current environment and context rather than a static reference. Within
many EA examples selection is often restricted to parent selection. However, consider that
a process of selection can occur when determining which candidates to:

• reproduce (to be a parent of offspring),
• mate with for reproduction (as part of the previous concept),
• survive childhood (from the offspring pool),
• remove from the adult population (life stage or death), or
• migrate to another population (sub-group or environment).

Evaluation in each case may be with respect to different criteria, in which case a differ-
ent “fitness function” can be used (based on the relevant traits or environment conditions).
For a simple EA, an absolute fitness value may suffice. For more complex models of in-
teraction, as in structured population modes or coadaptation, fitness is clearly a relative
(context based) measure and hence so is any selection based on it.

A short summary of the most common selection operators is presented in the following
sections. Selection operators can be characterised by the degree of selection pressure they
create. One common measure is the takeover-time for a single trait to propagate to the
entire population under selection alone [138]. De Jong orders selection from weakest to
strongest [77]:

• Uniform Random (stochastic).
• Fitness Proportional.
• Linear Ranking and Binary Tournament (k = 2).

54

Chapter 3: Evolutionary Computation

• Nonlinear Ranking and k > 2 Tournaments.
• Truncation (deterministic).

Uniform Random Selection

The simplest and weakest of selection techniques, individuals are selected randomly and
uniformly without regard to traits or fitness. Random selection is often used as a neutral
stage in conjunction with a stronger selection method in another stage. Genetic drift may
occur under uniform stochastic selection. Topology might still limit the available pool of
individuals to select from, as in distributed or cellular EA population structures.

Fitness Proportional Selection

The probability pi that individual i is selected from the population (of size n) is propor-
tional to the individual’s absolute fitness score fi with respect to the rest of the population’s
absolute fitness scores [166].

pi = f∑n
j=1 fj

(3.2)

Being one of the first proportional selection schemes it has been extensively studied [98].
One issue is that an outstanding individual, whose raw fitness score is much higher than
other individuals, will dominate selection and saturate the population. Similarly, when all
individuals’ fitness values are relatively similar there is almost no selection pressure; essen-
tially uniform selection. Also, transposition (offset) of relatively similar fitness windows
results in different relative sampling proportions.

The last two points can be reduced by the use of a sampling window, such as subtracting
all fitness values by the least fit member (or its running average).

Roulette Wheel selection is another response to these problems. Essentially, fitness
values are normalised (by dividing all fitness values by the maximum), and individuals are
then uniformly sampled using a cumulative fitness proportional fitness allocation. This
can be described as follows:

1. Determine the fitness fi for each individual i = 1 . . . n.
2. Calculate the probability “slot” size pi (See (3.2)) for each individual.
3. Create a list [q1, q2, . . . , qn] of the cumulative selection probability where qi =∑i

j=1 pj . Note that q(n) = 1.0.
4. Generate a uniform random number r ∈ (0, 1].
5. Starting at i = 1 iterate until qi > r.
6. Return individual xi.

Repeat steps 4-6 as needed to create a sample pool.
Although elegantly simple, Roulette Wheel selection still suffers from poor sampling

behaviour. If multiple samples are needed, then a “multi-armed” approach of evenly
spaced samples, known as Stochastic Universal Sampling (SUS), is preferred [22].

55

Chapter 3: Evolutionary Computation

Tournament Selection

Tournament selection is perhaps one of the most commonly used schemes. It samples a
uniform random group of k individuals from the entire population n (where k < n). The
best of the k tournament group “wins” and is used. Binary tournament selection is simply
the case where k = 2.

Tournament selection does not require global knowledge of the best individual (and so
avoids sorting). As tournament comparisons are relative, selection is similar to rank-based
schemes rather than those based on absolute fitness. Tournament sample groups can be
with or without replacement.

As the size of the tournament group increases, the greater the chance it will contain
good individuals, and so selection pressure increases. If tournament size is too small, there
is a greater chance that poor individuals will be selected. Varying k is thus an easy way
to adjust selection pressure.

Selection pressure can also be weakened by making tournament outcomes probable
rather than deterministic. In this way, there is a random possibility that the weakest, or
random, individual of the tournament will be selected.

Rank-Based Selection

Rank-based selection orders the group of individuals by fitness. It is then the rank-order
ri that is used to allocate selection probabilities pi to each individual i. The mapping
of an individual’s rank to selection probabilities is arbitrary and can be done in many
ways. The advantage over fitness proportional selection is that the best individual will
not dominate the sample [22, 324].

A simple linear rank-probability mapping results in a non-deterministic linear sample
of a similar strength to binary tournament selection. However, a non-linear exponential
ranking scheme can increase selection pressure and is commonly used [364] such that:

pi = 1− eri

c
(3.3)

where c is a normalisation factor selected so that the sum of the probabilities is 1 (unity).
In this case, ranking is sorted by decreasing order of fitness. The rank-probability mapping
scheme can be changed to vary selection pressure.

Truncation Selection

Truncation selection is a form of deterministic rank-based selection, and one of the
strongest schemes. It is inherently elitist.

Essentially, only a set number or percentage of the most fit individuals from a group
are selected. Of the selected individuals all are equally likely to be used. The greater the
ratio of group size to the selected sub-group, the stronger the selection pressure.

In Evolutionary Strategies (ES) (see Section 3.3.2) truncation selection is used to
reduce the child pool of µ offspring, or the combined parent λ and child pool (λ + µ),

56

Chapter 3: Evolutionary Computation

down to the λ parent pool size. These approaches are known as (λ, µ)-ES and (λ+ µ)-ES
respectively.

Note that such a strong selection scheme works with ES because of the large amount
of mutation-based (Gaussian) variation introduced during reproduction.

In a similar way, replacement selection of individuals is often done based on fitness or
age, so that the worst or oldest of the population are replaced by new individuals. This is
still truncation selection but with a different method of rank order determination.

Elitism

Closely related to selection schemes is the policy of elitism, which ensures that the best
individuals are always retained or copied into the population. The advantage is that the
best candidate(s) are not lost, however it can also increase the rate of convergence and
lower the diversity of the population.

Hall of Fame

A hall of fame is an external record of the best individuals in the entire generational history
of the population. The list can be used as the parent pool for reproduction operations,
as part of a migration/injection model, or simply as a record keeping exercise. If the hall
of fame list does not influence reproduction, it simply provide the lossless record of elite
individuals without the skewed selection bias elitism would normally have.

Niches and Crowding

There have been many attempts to utilise selection to create population niches and crowds
in order to encourage both exploration and exploitation in search landscapes [354, 233,
155, 54, 229].

For example, biasing selection probability of parents – such that individuals from
similar niche areas are selected – can encourage exploitation. Biasing selection so that
individuals from different niches are selected may encourage exploration. Similarly, re-
placement selection can be biased toward children replacing similar adult individuals via
fitness proportional, tournament or probabilistic processes.

3.2.6 Variation

Recombination and Mutation

The job of variation is to create new individuals that are variations of past individuals.
The two dominant variation operators are recombination and mutation, although some
view recombination as simply a macro-level mutation operator.14

The specific process of variation depends strongly on the representation and expression
of individuals. For example, sequence sets or tree representations benefit from specialised
recombination and mutation operators that preserve the feasibility (validity) of candidates.

14A reason why this ecosystem model favours the component name of “variation” rather than specifically
recombination, crossover or mutation.

57

Chapter 3: Evolutionary Computation

Binary Crossover

Within the Genetic Algorithm (GA) field (see Section 3.3.4 for more detail) the crossover
operator has been the most common form of recombination, especially for simple binary
string representations. The three most popular crossover types are one-point, two-point
and uniform. In each type, two parents are selected and recombined to create two children.
See Figure 3.6 for examples of each crossover type.

Figure 3.6: Examples of standard (a) one-point, (b) two-point and (c) uniform crossover
between two parent individuals used to created two child individuals. The dotted line represents
randomly selected crossover points in (a) and (b). Shaded cells are used to indicated the
transfer of genetic traits to children. The actual type of genes and values are not shown, as
such details are independent of these crossover methods.

Arithmetic Crossover

For real-valued vector representations, arithmetic cross-over can be used in a similar con-
cept to binary crossover. Quite simply, a uniform random mid-point between each parent’s
values is selected (for each position of the parent vectors). This means that children’s val-
ues are within the value range of the parent’s respective values, effectively sub-sampling
the values. There are many other forms of arithmetic crossover.

Later in Section 3.4.4 another real-valued crossover is presented, called Parent Centric
Crossover (PCX), which uses a group of contributing parents. The overall effect is that
PCX samples a distribution of values around each parent in direct proportion to the
separation distance of the parents. This has been a highly effective variation operator for
real-valued function optimisation problems [81].

58

Chapter 3: Evolutionary Computation

Figure 3.7: Order-based crossover for permutation individuals

Order-Based Crossover

In Figure 3.7 an example of order-based crossover [147, 70, 98] is shown. In this case, a
section of the first parent is randomly selected and copied to the single child. Then the
remaining genetic material from the second parent, that has not been copied, is transferred
to the child in an order preserving manner, cycling from the end to the start until all
components of the permutation have been represented in the child. The underlying idea
is to preserve as much of the relative order information as possible during crossover.

Bitstring Mutation

Figure 3.8: Simple mutation examples. In (a) three bits are randomly selected and mutated.
In (b) the example shows the entire individual inverted.

In Figure 3.8 are two forms of binary string mutation. Bit-toggling or “bitwise” mu-
tation is simply the toggling of bit values. Similarly, inversion mutation is a macro-level
change by toggling the state of every bit, so ensuring that any missing bit variations have
a chance of being reintroduced.

Sequence Permutation

When more domain specific representations are used, such as sequence permutation, there
is an opportunity to introduce mutational variation that preserves the permutation set
requirements. For example, in Figure 3.9 four different valid permutation mutations are
shown. Each operation alters the order and ensure the result is a valid permutation.

59

Chapter 3: Evolutionary Computation

Figure 3.9: Sequence permutation mutation examples. Grey cells indicate selected genes.
Numbers in bold indicate altered values after mutation has occurred. In (a) a simple swap
method is used, (b) uses two selected points and scrambles genes between the two points
(inclusive), while (c) is a displacement or insert based operation that effectively moves and
shuffles genes. (d) is an inversion style mutation that reverses all the gene positions between
two selected points. Note that in all cases the sequence result is valid and there is no need for
a repair operation.

Specialised Variation

As in the permutation examples, other domain specific representations can benefit from
specialised variation operators, either recombination or mutation based. For example, pro-
gram trees used in Genetic Programming (see Section 3.3.5) benefit greatly from structure
aware recombination and mutation operators.

It is also possible to repair invalid candidates or to simply penalise fitness based on
viability, which can help in that the search space is more relaxed than the constraints of
the problem domain.

3.2.7 Migration

Migration is the transfer of individuals (or ‘clones’ in some cases) between populations,
typically in parallel or distributed EA implementations. Sometimes these subpopulations
are called islands or demes, while the process of transferring individuals is known as
displacement or injection.

In a general sense displacement could also relate to movement of any new or old
individual – including replacement – however in this work the use of this term is limited
to subpopulation based concepts.

There is evidence to suggest that migration models, in particular distributed and par-
allel population models, have an advantage other than the practical distribution of compu-
tation resources. For example, isolated subpopulations provide a supportive niche where
specialisation and exploitation of the search space is viable, while occasional integration
(migration) still enables overall search space exploration. Such advantages appear to be
representation and problem specific [51, 52].

60

Chapter 3: Evolutionary Computation

3.2.8 Initialisation

Individuals and Traits

Initialisation involves the creation of a new population of individuals and the initial setting
of trait values. For some parameters there are known a priori values, while for others
complex interdependencies mean the best result is often far from a simple random choice.
If regions of the search space are not represented in the initial distribution of trait values,
recombination without mutation will struggle to explore the missing sample regions.

Trait values are typically set according to a random distribution of the allowed domain
of values. Specific random distributions, such as Gaussian, Cauchy or Linear may be used,
although this implies a knowledge of the problem domain and is a form of directing the
initial search. Although useful, it should be considered carefully in comparing techniques.

Some researches question whether the computation to effectively incorporate knowl-
edge into the initialisation is worth-while compared with the progress of normal explo-
ration [98]. Practically, seeding a population with useful information or components is
usually not hard. If an algorithm is robust enough to also ignore or overcome poor start-
ing conditions, there are few detractors and so seeding may be justifiable.

Individual representations that also encode variation parameters, as used in evolution-
ary strategies, must also be initialised suitably for the application.

The process of initialisation can be analysed from the perspective of supplying suitable
‘building block’ (BB) material (see [136]) for the operators of selection and reproduction
(crossover) to work with. In this case, initialisation provides the means of ‘sampling’ the
search space, and so the magnitude and distribution of trait values can be crucial to EA
performance. The BB perspective does not apply well to EAs that do not rely on the
crossover operator, such as Evolutionary Strategies (ES) and Evolutionary Programming
(EP) techniques (discussed later in Section 3.3.2 and Section 3.3.3) respectively, but the
nature of initialisation is still very important and influential to performance.

Populations and Communities

An EA implementation will typically perform initialisation by allocating memory space
for an entire population, and then create the initial individuals with their specific distri-
bution of values. Given that some population structures use a dynamic population size,
determining the initial size of the population might also be a concern of the initialisation
component.

Similarly, if an EA includes a community model of subpopulations or interacting
species, these also need to be initialised, organised and connected.

Not all population models use maximal occupation; it is possible to use models of avail-
able space within an environment habitat, and as evolution progresses locations become
occupied, and relative fitness competition and interesting extinction events can be used to
stimulate adaptation.

61

Chapter 3: Evolutionary Computation

3.2.9 Termination

There is no intrinsic way for EAs to know when to stop. There is certainly no biologi-
cal equivalent except extinction. Practically though, EA implementations utilise several
termination criteria. The main examples of EA termination conditions are based on:

• a maximum number of generations;
• a maximum number of children produced;
• a maximum number of full individual evaluations;
• a limited amount of time;
• a stagnation of the current solution quality (relative or absolute if available); or,
• a loss of the measured population diversity.

The issue of when to stop an EA is usually not specific to a particular ‘dialect’ but
rather a mixed selection of the conditions listed that are practical for the current applica-
tion or situation.

3.2.10 Components and Influence

Order and Dependency

Adaptation within an evolutionary algorithm is driven by the preferential treatment of
“good” individuals and/or the negative attention given to “poor” individuals. This pos-
itive or negative selection pressure is applied through fitness functions. Some EA imple-
mentations avoid the use of both types of selection as their combined influence can be
excessive. However, without sufficient trait variation within a population, or injected into
it, selection has no gradient to act upon. Variation is critical to selection.

One way of expressing the combined influence of selection s(.) and variation v(.) oper-
ators on a population of candidate individuals x from one generation t to the next (t+ 1)
is with the following notation:

x[t+ 1] = s(v(x[t])) (3.4)

In this way, we can see the direct influence of variation to selection, and variation
itself is based on the current candidate population. This type of representation leads
to a Markov chain view of evolutionary algorithms, and the probabilistic description of
operator influence on fitness distributions [113].

In the context of an ecosystem model, both variation and selection are based on a
topology g. Therefore, in order to characterise the influence of operators, topology must
be included. Similarly, selection is not limited to one stage and can be used for parent
selection pressure sparent before variation v(.), as well as survival selection ssurvive pressure.
This can be expressed as:

x[t+ 1] = ssurvive(g, v(sparent(g,x[t]))) (3.5)

62

Chapter 3: Evolutionary Computation

Generational Gap Models

During the process of variation new individuals are created, and some form of survivorship
selection and replacement selection is used to determine if and where (respectively) in the
population the new individuals will be allocated. However, the when of this generational
replacement has not been clearly defined [75].

λ=μ1<λ<μ

Steady-State Generational

Gap Models

λ=1

(one-at-a-time) (replace-all)

Figure 3.10: Unified gap model from steady-state to generational

There are two extremes: the entire pool of λ offspring individuals replacing the entire
µ parent population in a single generational change µ = λ, and the minimal case of a
single new offspring µ = 1 added to a population. In between this “gap” are a range of
replacement techniques known collectively as “generation gap” models (see Figure 3.10),
where steady-state µ = 1 and generational µ = λ models are two special subclasses [334, 6].

Parallel Implementation

To consider the interaction and influence of components we should also consider the prac-
tical advantage of parallel, and hence distributed, processing models. Cantú-Paz [49] (and
related work by [263]) has classified parallel EAs into four major categories, shown in
Figure 3.11 and described below:

• Global: A single panmictic population model with parallel execution of operators
such as evaluation and variation. Essentially a master-slave model with central
control that can be much faster than sequential processing.

• Coarse-grained: Sparsely connected subpopulation “islands” (“demes”) working
independently except for infrequent migration of individuals (or clones) [56, 337, 32,
51].

• Fine-grained: Regular spatial distribution (“cellular”) of the population with lo-
calised overlapping neighbourhoods defining the scope of selection operators (for
competition, relative fitness, replacement) [224, 245, 145, 65, 66].

• Hybrid: A combination of parallel models at two-or-more levels.

An interesting result of coarse-grained models, observed by Cohoon and others [56], is
that novel solutions were derived shortly after migration events. This result supports the
theory of Punctuated Equilibria [101] which suggests that communities of species tend to
have long periods of stability, punctuated with rapid change events. The rate of migration,

63

Chapter 3: Evolutionary Computation

(a) Global Parallel (b) Coarse-grained (c) Fine-grained (d) Hybrid (Coarse+Fine)

Master

Slaves Slaves Workers

Master

Figure 3.11: Parallel EA Models as defined by [49]. (a) Global (master-slave) (b) coarse
grained, (c) fine grained and (d) hybrids.

and migrant selection type, has a strong influence on both convergence speed and the
success qualities of a coarse-grained search.

Many hybrid models have been defined in the hopes of improving performance or
search outcome. For example, a combination of fine-grained topology encapsulated by is-
land models with sparse connections and infrequent migration, is an interesting model to
encourage both diversity and exploitation. Of course, increasing the number of parameters
and configuration variations creates complexity without necessarily any clear or measur-
able justification. Self-organisation is preferable in this case. See Cantú-Paz [49, 51] and
Alba and Troya [7, 6] for more detailed reviews and discussions.

Summary

Table 3.3 present a grouped summary of the key components identified for inclusion in an
ecosystem model of evolutionary algorithms.

Component Function Description

Representation The search domain, the structure of individuals and traits, popula-
tions and topology, and community interactions between species.

Initialisation Creation and seeding of individuals, population structures and com-
munities.

Evaluation Expression or mapping of genotype to phenotype, and the use of con-
text specific (environment) fitness functions for particular selection
tasks (to determine fitness values).

Selection Fitness function based selection of individuals for different stages;
parents, mates, offspring survival, expiration and migration.

Variation Methods and parameters for recombination of traits or introducing
new trait variation. Includes fertility, crossover and mutation.

Migration Immigration and emigration of individuals between subpopulations or
communities. Based on selection policies.

Termination Test algorithm performance and specific problem objectives.

Table 3.3: Ecosystem EA components and brief descriptions

64

Chapter 3: Evolutionary Computation

3.3 Common Dialect Classification

3.3.1 The EA Union

Within review literature, there are four types of evolutionary algorithm (EA) that have
emerged as the main “dialects” [98] of contemporary Evolutionary Computation (EC).
They are Genetic Algorithms (GA), Genetic Programming (GP), Evolutionary Strategies
(ES) and Evolutionary Programming (EP). All four are intrinsically based on evolutionary
selection principles, and all have been applied to domains of search and problem solving.

All of these dialects are instances of evolutionary computation (EC), or simply evolu-
tionary algorithms (EA). The classification of the main types of EC is strongly identified
by many reviews and introductions to the field of EC [17, 34, 274, 111, 98, 128, 77]. Some
reviews may refer to only ES, EP and GAs, and leave out GP due to its later development
history and similarity to GAs. The recent development and popularity of Differential
Evolution (DE) [330, 331] is also considered by many as a significant EA paradigm.

It is interesting to note that the three initial types of EA (EP, GA and ES) were
developed independently for many years [111, 77]. Each include biologically inspired simi-
larities, and as communication between practitioners of the EC fields increased, a healthy
sharing of ideas followed. This has diluted the differences between the dialects which are
now historical rather than distinctive. As David Fogel has put it, “the practical utility of
each of these terms [dialects] has evolved to be essentially useless” [113, p86] since little or
no information is conveyed by a dialect distinction, and theoretical understandings apply
across the range of EAs.

One value of a brief look at historical difference of dialects is that it provides a context
for discussing the many possible variations of EA components including some justifications
and practical expectations.

3.3.2 Evolutionary Strategies (ES)

The development of Evolutionary Strategies (ES) was first carried out by Bienert, Rechen-
berg and Schwefel in the 1960’s at the Technical University of Berlin, and have been studied
extensively in Europe [289, 308, 309, 310, 312, 290].

ES were first applied to find solutions to engineering design problems, such as aero-
dynamic and hydrodynamics design optimisation problems where it was impossible to
effectively model and optimise the problem conventionally. Other early examples include
optimisation of the shape of reinforced concrete shells [156], prosthetic design and thermal
water jet design [20].

As a characterisation, the features of ES were the encoding of design parameter values
as a fixed-length real-valued vector (the modelling of a phenotype), mutation used to
create new variations (no recombination), deterministic selection of the best solution(s),
and strategic parameters such as the “on-line” self-adaptation of mutation parameters.

This type of solution encoding is considered to be behavioural as opposed to structural.
“Consequently, arbitrary non-linear interactions between features during evaluation are
expected which forces a more holistic approach to evolving solutions” [11].

65

Chapter 3: Evolutionary Computation

In a typical ES, N parents are selected uniformly (not fitness based) and used to create
new offspring solutions. ThenN survivors are selected deterministically (truncation) either
from the offspring or the combined pool of parents and offspring [326].

The main reproduction operator used has been Gaussian mutation. Distinctively,
recombination was not initially used (no crossover). Later an intermediate recombination
operator was tried in which two parents are selected and their values averaged to create
new offspring solutions.

A canonical reference ES is described in Section 3.4 showing the population structure,
transitions and operators.

3.3.3 Evolutionary Programming (EP)

Evolutionary Programming (EP) was created by Lawrence Fogel in the 1960’s with the
hope of “artificial intelligence through simulated evolution” [116, 117]. EP was largely
overlooked in the 1970’s, however it was later redeveloped and promoted in the late 1980’s
by Lawrence’s son David Fogel [109] to solve more general tasks including prediction,
optimisation and machine learning work [110].

Although developed earlier and independently from ES, EP uses a similar strategy of
mutation driven variation and no crossover operator [21]. The genotype encoding used by
Lawrence Fogel represented transition tables for ‘Finite State Machines’ (FSM), while later
applications adopted specific representations appropriate for the search domain. Fixed-
length real-valued vectors are common.

The selection strategy is to allow the entire population of N individuals to be parents
(ie. one offspring each), and then probabilistically select survivors based on fitness from the
combined parent and offspring population (2N). Reproduction is typically via Gaussian
mutation. There are three EP forms of note; standard EP, meta-EP and Rmeta-EP,
with meta-EP being the most common. Differences relate mainly to the degree of self-
adaptation used [17, 21].

EP has been successfully applied to real-valued function optimisation [114, 115], and
abstract problem domains such as searching for effective artificial neural network archi-
tectures [313]. In this case, weights were represented as real values while nodes and
connections were represented as symbols of a finite set.

3.3.4 Genetic Algorithm (GA)

Genetic Algorithms (GAs) are probably the most well known of evolutionary algorithms.
Some of the earliest work on simulated evolution models, mentioned in Section 3.1.2,
are perhaps best described as genetic algorithms. With respect to the field of EC, John
Holland developed and popularised a GA model while at the University of Michigan during
the 1960s and 1970s [164, 165, 166]. GAs were developed and analysed further by David
Goldberg [136] and many others.

A GA emphasises a genotype level of representation and manipulation, and was specif-
ically proposed to investigate and utilise robust adaptation. Three historic characteristic
features of GAs are fixed-length bit-string (binary array) representations, crossover as the

66

Chapter 3: Evolutionary Computation

primary reproduction operator with minor mutation, and proportional parent selection
based on fitness.

The use of a fixed-length binary string as the genotype is quite appropriate for some
set-based or binary problem domains. However, to apply GAs to function optimisation
requires the mapping or expression of the genotype to a phenotype space. For a real-value
phenotype, the binary genotype is mapped, via a look-up table or similar method, to a
quantised set of output values.

Classic reproduction is via one-point, two-point or uniform crossover, inspired by ga-
metogenesis (meiosis) in sexually reproducing multiploid organisms. The most common
GA reproduction process uses two parents and creates two offspring at each step. Infre-
quent bit-flipping mutation is easy to conceptualise and apply to the simple binary gene
values.

A great number of crossover and mutation operators have been proposed. Primarily
though, reproduction operators function by either recombining existing information or by
introducing new variations.

Traditionally GAs operate in a generational and non-overlapping manner, whereby a
new population of offspring individuals will replace the older parent generation. Individ-
uals are selected to be parents based probabilistically on their fitness values.

GAs have been applied to many discrete design and real-valued optimisation problems.
Goldberg optimised gas pipeline control [132] and structural designs [136], while other
examples include keyboard layout optimisation [131], strategy acquisition [150] and many
others. (See [16, 17, 237, 98, 77].)

A canonical reference GA is described in Section 3.4 showing the population structure,
transitions and operators. A recent Generalised Generation Gap (G3) is also described
which is a real-valued steady-state algorithm using specialised Parent Centric Crossover
(PCX) that is particularly well suited to real-valued function optimisation [82].

3.3.5 Genetic Programming (GP)

Genetic Programming (GP) was developed by John Koza [210, 211, 212] around the early
1990’s and later researched and promoted by others [214, 24]. As a comparison, GP
can be considered a GA with specialised genotypes (data structures) and recombination
operators. Specifically, genotypes are expressed as phenotype program trees.

There is some earlier work by Cramer to evolve programs of a simple, fixed length,
sequential form [59]. Similarly, Lawrence Fogel evolved states and transitions for FSM (au-
tomata) for his earlier work developing Evolutionary Programming (EP) [117]. In contrast
GP uses a flexible variable length genotype data structure and sophisticated recombination
operators that work on the form of program tree “branches”.

The genotype data structures in GP are computer programs, or more descriptively
“symbolic expressions” (s-expressions) that can be represented as program trees. Leaf
nodes are value labels, while each internal node is one of the available function labels. A
program tree is evaluated in left-most depth-first manner, where each leaf is a correspond-

67

Chapter 3: Evolutionary Computation

ing value, and each parent node a function whose children are used arguments. Because
of this tree structure, solution programs – not solution parameters – are evolved.

Inherently, there exists the possibility for equivalent phenotype forms to be produced
by different genotypes. There are often many unique program trees that can provide the
same functional outcome. GP represents an important change in concept from objective
parameters to programs.

GP is not limited to searching for simple mathematical relationships. The homepage of
John Koza15 presents a list of 36 instances where, specifically, genetic programming (GP)
has discovered “human-competitive” results, including some that infringe or duplicate the
functionality of 20th and 21st century inventions, and two patentable new inventions. The
results cover areas such as sorting networks, cellular automata, electrical circuit design,
controllers, antenna and computational molecular biology.

3.3.6 Structured EAs

In contrast to the common EAs described so far with single population models of pan-
mictic16 structure, there is also a long standing tradition of structured population models.
Two of the most popular groups of structured EAs are the distributed EA (dEA) and the
cellular EA (cEA)17 [7, 6].

Figure 3.12 shows a basic comparison of structured population topology. In the tra-
ditional panmictic EA model each individual can (potentially) interact with all other
individuals, while distributed and cellular models support subgroups and different levels
of interaction.

(a) (b) (c)

Panmictic EA Distributed EA (dEA) Cellular EA (cEA)

Figure 3.12: Basic population models for (a) panmictic (showing a single individuals’ star
topology interaction to all other individuals), (b) coarse-grained distributed EAs and (c) fine-
grained cellular. Adapted from Fig 3. of [6].

Distributed EAs are a “coarse-grained” decentralisation of a single population by
partitioning it into several subpopulation islands and managing sparse exchanges of mi-
grating individuals. A dEA needs to include controlling parameters and regulate when
migration occurs, and how individuals are selected and inserted from and into sub-
populations [32, 337]. The migration policy determines the topology.

15http://www.genetic-programming.com/ accessed January 2009 and last updated July 2007.
16Meaning a population where every individual can interact with every other individual.
17The use of lowercase ‘d’ and ‘c’, for dEA and cEA respectively, is consistent with reviews such as [6]

68

http://www.genetic-programming.com/

Chapter 3: Evolutionary Computation

Cellular EAs create a decentralised “fine-grained” localised neighbourhood for each
individual, and as a result localised selection and variation operators. The overlap of each
small neighbourhood can help the exploration process [23]. The shape of neighbourhoods
can also be varied with a direct impact on search progress as it alters the effect of selection
and the spread of traits [300, 299].

Few

ManycEA

dEA

Panmixia

#Sub-algorithms

Coupling Sub-pop. Size

Tight

Loose Small

Large

Figure 3.13: A representation of the relationship between sub-population size, coupling and
sub-algorithms needed for cellular EA (cEA), distributed EAs (dEA) and standard panmictic
population models. Adapted from Fig 4. of [6]

One practical incentive for structured population models is simply to take advantage
of available parallel hardware. Overall however, both dEAs and cEAs seem to provide a
sampling benefit of the search space over a basic EA implementation [143, 4, 51].

While dEAs typically have a few large sub-populations with loose migration coupling
between them, cEAs are characterised by many small neighbourhoods with very tight
(overlapping) coupling between them. This idea is represented in Figure 3.13. Note that
a panmictic population is considered to have tight coupling simply because interactions
are centrally controlled.

There are other less-conventionally structured EA models, and the concepts of Fig-
ure 3.13 are representative rather than definitive. For example, a hierarchical model can
include both fine and coarse grained topology, with supportive migration policy to help
support incremental or developmental evolution models [161, 160].

3.3.7 Other Approaches

Introduction

There are many variations of the evolutionary computation paradigm; some of unique and
novel quality, others simple variations of a theme. There are also new paradigms that have
some qualities or features of EC but are not be directly classified as EC by researchers.
Some of the more interesting and recent proposals include Differential Evolution, Extremal
Optimisation, Artificial Immune Systems and Cultural Evolution. In each case similarities
and differences to the main stream EC paradigm are considered.

69

Chapter 3: Evolutionary Computation

Differential Evolution (DE)

Differential Evolution is an evolutionary algorithm introduced by Storn and Price [330,
331]. The canonical approach uses real-valued vectors for individuals, similar to Evolu-
tionary Strategies, and has been applied to function optimisation.18 DE follows a basic
EA generational flow, however reproduction is performed using a “weighted differential”
vector to create a “mutant population” rather than a traditional crossover and mutation
scheme.

In DE, a target vector (individual) and a base vector are selected from the current
population. The base vector and a weighted difference vector, created from two additional
sample vectors, are added to create a mutant vector. The target vector and the mutant
vector are then combined, using crossover, to create a trial vector. If the trial vector
(offspring) is better than the target vector the target vector is replaced.

It is the use of the differential vector, sampled from the population, that enables DE to
scale variation changes in relationship to the distribution of the population in the search
space. In doing so DE avoids the need for a separate mutation distribution parameter as
used in ES.

Extremal Optimisation (EO)

Extremal Optimisation (EO) does not use a population of individuals and so is not con-
sidered an example of an EA. EO works with a single individual and attempts to identify,
and make changes to, the worst component [38, 37]. Components need to be represented
in a way that enables the contribution of each component to be “credited” with a portion
of the individuals overall fitness. This is also in contrast to EAs that avoid the difficulty
of the credit assignment problem.

In relation to ecosystems, system organisation and evolution models presented earlier
in Section 2.4.9 of Chapter 2, the EO micro-level of credit assignment and component
adaptation can place EO as a micro-evolutionary model. Although it is unlikely that the
field of EC would want to place EO as an EC paradigm (because of EOs differences to
existing and well accepted EAs), it is possible for the proposed ESEC model proposed
later in Chapter 5 to include EO as a micro-evolutionary example.

Artificial Immune Systems (AIS)

Artificial Immune Systems (AIS) were first developed in the 1980s as a problem solving
metaphor based on immune network models [104, 35]. Well known AIS implementations
utilise four main theories [64, 127] to enable adaptive change: negative selection, clonal
selection, immune networks and dendritic cell (danger theory) .

AIS are clearly a useful biologically inspired computation model, however AIS do not
closely resemble the evolutionary models of EAs [127] and so are not considered by many
researchers as part of EC despite the “selection” concepts.

18The DE homepage of Storn is at http://www.icsi.berkeley.edu/~storn/code.html

70

http://www.icsi.berkeley.edu/~storn/code.html

Chapter 3: Evolutionary Computation

Cultural Algorithms (CA)

As mentioned in Section 2.3.4 as part of the discussion of communities, it is possible
to consider the evolution of culture as the transfer and alteration of ideas. The Cultural
Evolution (CE) model proposed by Reynolds [293] uses principles of human social evolution
as an extension to conventional EAs. Cultural Algorithms (CAs) make use of a “belief
space” (or “meme pool”) which contains useful knowledge of the search space that can
be shared across the population and across generations to assist and bias a search. The
beliefs effectively allow the search space to be reduced. Both the population space and
the belief space are updated and co-adapt with each other.

Cultural Algorithms are similar in some respects to the evolutionary idea of the Bald-
win effect, in which partial fitness of an individual is credited to its ability to acquire and
learn, but not directly part of the genotype.

Artificial Life (ALife)

It is worth noting the models from the ALife (“artificial life”) field, especially given that
ALife considers the notions of topology and ecology to a greater extent [287, 169, 31] than
EA models of the field. ALife is usually not primarily concerned with computational per-
formance, but rather in emulating interesting and emergent qualities exhibited in natural
systems.

Summary

The number of alternative approaches mentioned here is limited and concerns those based
on evolutionary principles. There are many other adaptive strategies inspired from biology
that can also be compared to EAs in several regards. For example, within the field of swarm
intelligence (see [102]) the biological examples flocking birds and ant colonies have both
been used to create optimisation algorithms – particle swarm optimisation (PSO) [189] and
ant colony optimisation (ACO) [90]. Both examples use populations of individuals which
can decentralise and parallelise a search process, and both methods have been applied to
many domains, including multiple objective optimisation (MOO). Clarifying and classify
the breadth of research in related areas is a challenging and ongoing objective. See, for
example, [13] for a taxonomy of multiple objective ACO algorithms.

An extensive consideration of the many biologically inspired search metaphors and
their applications is far outside the scope of this thesis.

3.4 Reference Algorithms

3.4.1 Introduction

Several standard and structured evolutionary algorithms are now described in more algo-
rithmic and configuration detail as a reference for investigations in later chapters.

71

Chapter 3: Evolutionary Computation

3.4.2 GA: Genetic Algorithm

Table 3.4 presents a representative summary of configuration components and parameter
values used in a genetic algorithm instance. Note that GA performance is very sensitive
to parameter values and typical values can not be given. Although very popular during
the early development of GAs, bit-string representation is no longer the common scheme
used for problem domains. A small code19 example of a GA search routine is shown in
Listing 3.1.

Representation
Population Panmictic (size m)
Individuals Bit-string (length l)

Traits Mapped* (geno-to-phenotype)
Selection Pressure

Generations Non-overlapping
Parent Selection Fitness proportional
Mate Selection Fitness proportional

Survivor Selection Truncation (age)
Elitism Optional

Variation
Parents : Children 2→ 2

Recombination One-point crossover
Mutation Bit-flip

Settings
Parent pop. size m > 20

Offspring pop. size n n = m

Crossover prob. [0.5, 1.0]
Mutation freq. 1/l

Table 3.4: Canonical GA configuration

The required form of trait mapping depends on the phenotype required. For example,
binary SAT problems map directly to a bit-string genotype, while integer or real values
(for continuous-value function optimisation) need to be mapped, and this requires the
resolution (number of bits per value) to be specified also.

Survivor selection is listed as “Truncation (age)”, indicating that the parent popula-
tion and the new offspring population are combined and then reduced (truncated) to the
original parent population sizem, ordered by age. In this way, the older parent individuals
are removed, and only the new offspring remain. This behaviour is also indicated by the
“non-overlapping” description of the “Generations”.

One-point crossover uses two parents and creates two children. n-point and uniform
crossover are also common. If a crossover probability is used, then there is a chance of
pure parent cloning. Classic GAs use strong crossover and low mutation (1/l) but this
also can be changed to any probability to increase injected variation.

As the entire parent population is replaced by the new offspring population (n =
m) there is no survivor selection pressure (neutral). Tournament selection is a popular

19The code syntax is that of the Python programming language.

72

Chapter 3: Evolutionary Computation

alternative parent/mate selection scheme to fitness-proportional selection. This sequence
of selection pressure is also known as “up-front” as it happens during parent selection and
before variation.

Listing 3.1: Standard GA Search in Python

def GeneticAlgorithm(m, n, fn):
fn is a fitness function to evaluate individuals
parent_pop = Population(size=m)
t = 0
while search_not_finished():

offspring_pop = select_and_clone(parent_pop, size=n)
do_crossover(offspring_pop)
do_mutation(offspring_pop)
evaluate_all(offspring_pop, fn)
parent_pop = offspring_pop
t += 1

The sample code makes some simple assumptions that a termination method, the
parent selection method and a fitness function have been defined. Note that the im-
plementation shown uses the unified offspring population model, where all selection and
parent cloning is done as a group before variations. This is equivalent to an inner select-
crossover-mutation iteration pattern for this type of population topology.

3.4.3 ES: Evolutionary Strategy

A simple non-overlapping Evolutionary Strategy configuration is shown in Table 3.5 us-
ing only Gaussian mutation for variation. An overlapping version would have stronger
selection pressure and be implicitly elitist. In either case, selection occurs after variation.
Adaptive mutation size is an effective strategy for domain specific scaling of variation.

Listing 3.2: Standard (m,n)-ES Search in Python

def EvolutionaryStrategy(m, n, fn):
fn is a fitness function to evaluate individuals
parent_pop = Population(size=m)
t = 0
while search_not_finished():

offspring_pop = select_and_clone(parent_pop, size=n)
do_mutation(offspring_pop) # no crossover
evaluate_all(offspring_pop, fn)
parent_pop = select_best(offspring_pop, size=m)
t += 1
update_mutation_step_size()

The code sample Listing 3.2 assumes a method is available to update mutation step
size. For example, according to the classic 1/5th adaptive update rule, when the repro-
ductive success (ratio of children that have improved fitness) is above a threshold value
the mutation step size is increased, and below another threshold value the step size is
reduced.

Note that in this example mutation is the only variation operator (no crossover) and
that the offspring population size is usually much larger than the parent population size.

73

Chapter 3: Evolutionary Computation

Representation
Population Panmictic (size m)
Individuals Real, vector (length l)

Traits Phenotype (direct)
Selection Pressure

Generations Non-overlapping (m,n)
Parent Selection Uniform random
Mate Selection None

Survivor Selection Truncation (best)
Elitism No (Yes if overlapping)

Variation
Parents : Children 1→ 1 (clone)

Recombination No
Mutation Gaussian (adaptive)

Settings
Parent pop. size m < 10 (small)

Offspring pop. size n n >= m

Crossover prob. Not used
Mutation prob. 1.0

Table 3.5: Canonical (m,n)-ES configuration. Parent m and offspring n population sizes
are traditionally represented by λ and µ respectively. The canonical overlapping ES model is
described with a (λ+ µ) notation.

Other ES variants make use of multi-parent crossover, where for each position of the off-
spring vector, either arithmetic, intermediate (average) or simple random discrete selection
is used.

3.4.4 G3: Generalised Generation Gap Model

The Generalised Generation Gap (G3) model, proposed by Deb, Anand and Joshi [82, 81],
is a modification of a commonly used real-valued Genetic Algorithm known as the Minimal
Generation Gap model (MGG) [302, 201, 200, 345]. G3 is described by the authors as
a “steady-state, elite-preserving, scalable and computationally fast model”. The essential
steps can be listed quite simply as follows:

1. Select the best and µ− 1 parents uniform randomly from the population
2. Using the pool of µ parents, create λ offspring using recombination (ie. PCX)
3. Select another uniform random individual pr from the population
4. Select the best individual from a combined µ+pr group and place into the population

at pr position

As a point of difference to the MGGmodel, the G3 model removes a relatively expensive
roulette-wheel selection operation and replaces it with a simple block (elitist) survival and
replacement selection. A typical G3 configuration is shown in Table 3.6. Note that there
is no mutation, however the recommended recombination operator (PCX) is stochastic
and introduces random variation.

74

Chapter 3: Evolutionary Computation

Representation
Population Panmictic (size m)
Individuals Real, vector (length l)

Traits Phenotype (direct)
Selection Pressure

Generations Steady-state (overlapping)
Parent Selection Deterministic (the best)
Mate Selection Uniform random (µ− 1)

Survivor Selection Truncation (best)
Replacement Selection Uniform random

Elitism Yes (implicit)
Variation

Parents : Children 3→ 1
Recombination PCX

Mutation No (see PCX)
Settings

Population size m ∼ [100, 200] problem sensitive
Parent group size µ ∼ 3

Offspring group size λ ∼ [2, 4] (small)
Crossover prob. 1.0 (always)
Mutation freq. n/a

Variance σζ and ση 0.1

Table 3.6: Standard Generalised Generation Gap (G3) Configuration, based on results pre-
sented in [81].

Parent Centric Crossover (PCX) is based on the same idea used for the real-valued
Simulated Binary Crossover (SBX) [80] in that more probability is assigned for an offspring
to remain closer to parents, while also using the separation or “differential” characteristics
between parents to moderate variation.

PCX begins with a pool of µ parent individuals. The mean vector ~g of the parents
is first calculated, and then for each offspring created, a random parent20 ~x(p) is selected
and its direction line ~d(p) from the mean calculated. Then, for each of the remaining µ−1
parents, perpendicular distances Di to the line ~d(p) are calculated and averaged D̄. An
offspring ~y can then be created using:

~y = ~x(p) + wζ |~d(p)|+
µ∑

i=1,i6=p
wηD̄~e

(i) (3.6)

where ~e(i) are the (µ − 1) orthonormal bases that span the subspace perpendicular to
~x(p), and wζ and wη are zero-mean normally distributed variables of variance σ2

ζ and σ2
η

respectively.
The “parent centric” nature of this operator is easy to see if we take multiple sample

offspring from a fixed group of parents as shown in Figure 3.14. Another extreme PCX
parameter example would be of σζ = 0.9 and ση = 0.9 (not shown), in which case the

20Published descriptions of PCX have suggested “random” as well as “best” parent selection. Using the
best provides a very large performance increase on non-deceptive problems.

75

Chapter 3: Evolutionary Computation

distribution of new offspring would spread and overlapping, but still centred around each
base parent.

Although PCX does increase the computation complexity of reproduction, it has been
shown to be an extremely efficient approach for real-value optimisation problems, reducing
overall computational search time [81].

This idea is also very similar the central concept of Differential Evolution (DE) (see
Section 3.3.7). In DE a sample of two individuals from the current population are used
two create a difference vector, which is then added to a base individual to form a “trial”
vector. The “trial” individual is used in reproduction (crossover) with a “target” individual
to form a new individual. As the sample individuals are selected from the population, the
difference vector scales with the diversity of the population. Unlike DE, PCX creates
additional parameters that need to be set appropriately for particular problem domains.

x

y

PCX (0.1,0.1)

x

y

PCX (0.6,0.1)

x

y

PCX (0.1,0.6)

Figure 3.14: Three sample examples of λ = 1000 offspring each, in a 2D space, around a
parent pool of µ = 3 using Parent Centric Crossover (PCX). Note the orthonormal distribution
around each parent, for different values of σζ and ση respectively.

A sample implementation of the G3 algorithm is shown in Listing 3.3.

Listing 3.3: Sample G3 search in Python

def G3Search(m, mu, lam, fn):
fn is a fitness function to evaluate individuals
pop = Population(size=m)
t = 0
while search_not_finished():

1. Select random and best parent (join)
parents = select_random(pop, mu-1) + [best(pop)]
2. Create offspring using PCX
offspring = [None]*lam # pre-size offspring list
for i in range(lam):

offspring[i] = recombine(parents)
evaluate(offspring[i], fn)

3. Select random population member to challenge
c_pos = randrange(0, m)
offspring = offspring + [pop[c_pos]] # join
4. Replace with best of pool
pop[c_pos] = best(offspring)
...
t += 1

76

Chapter 3: Evolutionary Computation

3.4.5 cEA: Cellular Evolutionary Algorithm

The idea of the cellular approach is to perform decentralised selection and variation for each
cell, with operations restricted to local “pools” of individuals. Neighbourhoods overlap,
creating a smooth “diffusion” of trait transfer, due to selection pressure, across the grid
as evolution progresses.

Table 3.7 lists a configuration for a classic cEA model of a 2-dimensional 32 × 32
toroidal grid using a k = 4 Von Neumann Neighbourhood of five individuals and four
connections. Other well-used classic neighbourhoods include the k = 8 Moore and k = 12
Extended Moore neighbourhoods. See Figure 3.15 for examples.

Representation
Population 2D Grid (size m = w × h)
Individuals Bit-string (length l)

Traits Mapped (geno-to-pheno)
Selection Pressure

Generations Steady-state (distributed)
Parent Selection Deterministic (in order)
Mate Selection Linear rank proportional

Survivor Selection Truncation (best)
Elitism Implicit

Variation
Parents : Children 2→ 1

Recombination One-point crossover
Mutation Bit-flip

Settings
Grid pop. size m m = 32× 32 = 1024

Parent pool size k + 1 k = 4 (ie. Von Neumann)
Offspring pop. size n n = 1

Crossover prob. [0.5, 1.0]
Mutation freq. 1/l

Table 3.7: Cellular EA configuration based on a simple binary GA

Listing 3.4 show a based fine-grained cellular EA search using localised fitness (relative
to the neighbourhood) and mate selection (from the local neighbourhood). In this example
two-parent recombination is used (one-point crossover) with a 1/l chance of mutation. It
would be possible to distribute (allocate) each cell’s operations and marshal the entire new
generation at once, or to simply allow concurrent access by different worker processes.

77

Chapter 3: Evolutionary Computation

Figure 3.15: Planar regular neighbourhood models of increasing degree k including alternative
configurations. Classic forms are the (b) Von Neumann, (f) Moore and (h) Extended More
neighbourhoods.

Listing 3.4: Fine-grained cellular EA search in Python

def FineGrainedGASearch(w, h, fn):
Create and evaluate initial population
grid = GridPopulation(width=w, height=h)
t = 0
while search_not_finished():

for cell in grid: # in parallel (order)
evaluate(cell) # current relative fitness
neighbour = select_neighbour(cell)
offspring = recombine(cell, neighbour)
do_mutation(offspring)
cell = offspring

t += 1

3.4.6 dEA: Distributed Evolutionary Algorithm

In Table 3.8 one possible configuration for an island population model is shown. Key
additions are the parameters for number of islands, island population sizes, migration
interval and size of migration groups – this all adds complexity. (See earlier Figure 3.13
for a visual comparison of coupling, pop-sizes and sub-algorithms between panmictic EAs,
cEAs and dEAs.) Migrant selection pressure can be applied both when individuals are
selected for emigration, and when individuals are integrated during immigration.

It has been reported by Cantú-Paz [52] that selection types have a big impact on the
success of the search. The migration selection policy of least computation effort is simple
fitness based replacement where the best are selected and survive. However, this is not
always the best integration (mixing) policy.

Listing 3.5 shows a simple synchronous island population example where migration is
controlled by a single method, however given the infrequent migration policy, this is an
especially good opportunity for decentralised (subprocess and distributed) island algorithm
control.

78

Chapter 3: Evolutionary Computation

Representation
Population Islands (sub-populations d)

Sub-population Panmictic (size = m)
Individuals Bit-string (length l)

.
Selection Pressure

Generations Non-overlapping (within islands)
Parent Selection Fitness proportional
Mate Selection Fitness proportional

Survivor Selection Truncation (age)
Emigrant Selection Truncation (best)
Immigrant Survival Truncation (best)
Settings

No. Islands d = 5
Island pop. size m = 30

Migration Interval dt = 20 (generations)
Migrate group size k k (individuals)

.

Table 3.8: Distributed island EA configuration simplified to selection properties. The . . . are
used to indicate that additional settings and values would be required but have omitted.

Listing 3.5: Coarse-grained island distributed EA search in Python

def IslandGASearch(demes, m, k, dt, fn):
Create initial island populations
islands = [None]*demes # pre-size list
for i in range(demes):

islands[i] = Population(size=m)
Search
t = 0
while search_not_finished():

for island in islands: # in parallel
offspring_pop = select_and_clone(parent_pop, size=m)
do_variations(offspring_pop)
evaluate_all(offspring_pop, fn)
parent_pop = offspring_pop
if t % dt = 0:

send our best to random selected island
nei = select_neighbour_island()
best = select_best(parent_pop, k)
send(best, dest=nei)
receive and keep best immigrants
best = receive(source=nei)
parent_pop = select_best(parent_pop + best, m)

t += 1

3.4.7 Closing

The algorithms presented in this section act as a reference for later investigations. A
particular emphasis was placed on selection and its various contexts, as these are a critical
feature of the ecosystem model for evolutionary algorithms.

79

Chapter 3: Evolutionary Computation

3.5 Summary

This chapter has attempted to bring together many of the components and processes of
ecological ecosystem identified in Chapter 2, and to review the application of evolution as
a stochastic and iterative search algorithm through adaptation.

Components of an ecosystem EA model have been presented with an emphasis on
aspects that specifically relate to ideas of community, interaction and topology. Of these,
selection clearly plays a very important role, and it is the different selection types, and
their application in specific contexts, that create open topology related questions.

The simple topologies considered so far in standard models of evolutionary computation
are a faint reflection of the complexity in natural systems. An appropriate implementation
framework for ecosystem EAs must include the capacity for specific and flexible topology
as part of operator components.

Chapter 4 continues the development of the ecosystem EA model by looking in some
detail at complex systems and abstracted graph topology. In particular, it considers recent
observations about the statistical properties of real-world complex systems and artificial
models developed to emulate desirable qualities. Chapter 5 is a return to the ecosystem
EA model and how it can be extended with complex topology ideas, and to consider the
questions it opens for investigation.

80

Chapter 4

Graph Theory, Topology and
Efficiency

4.1 Introduction

4.1.1 Networks and Graphs

Graphs and networks are ubiquitous in natural and artificial systems, and exhibit interest-
ing and important qualities. Recent research, presented in work such as [26, 92, 257, 359,
259, 36, 361], has focused on the comparative study of networks, with particular empha-
sis on graph properties that are common to many systems. Several disciplines – notably
mathematics, physics and sociology – have independently observed universal paradigm,
concepts and properties within network systems. The interdisciplinary significance of com-
plex networks and graphs is an important, practical and exciting aspect of graph theory
research and application.

In simplest terms, a graph is a set of nodes connected by edges. The “nodes” can
be used to represent many different concepts, and edges the relationships between nodes.
However, the properties of real-world complex networks can not be understood by simply
describing individual nodes and links.

This chapter examines current research into graphs and complex systems, including
graph measurements and properties, and further investigates the techniques required to
observe, measure, grow and utilise efficient topologies. This knowledge is used to support
the models of ecosystems and evolutionary computation presented in earlier chapters, and
the investigations of later chapters. Although this chapter includes topics not directly
used in the later part of the thesis, such topics are included for completeness and because
they relate to future potential developments.

4.1.2 Graphs Everywhere

It is generally agreed that “ideal” complex systems are exemplified in naturally occurring
social and biological systems. However, information and technological networks built by
humans also display remarkable structure and function [257, 26, 359].

Mark Newman has suggested, specifically for the purpose of discussion, a division

81

Chapter 4: Graph Theory, Topology and Efficiency

of real-world networks into categories of social, information, technological and biological
systems [257]. Below is a modified list of the real-world network examples included in each
category from Table II of [257].

Social Networks: Film actors, company directors, academic co-authorship, telephone
calls, email messages, email address books, student relationships and sexual contacts.

Information Networks: WWW pages (hypertext links), search engine categories (ie
Altavista directories), citation networks (academic publications), Roget’s thesaurus
and word co-occurrence in literature.

Technological Networks: Internet infrastructure, power grid structure, water and gas
utility distribution, train routes, roads, software packages, software classes, electronic
circuits and peer-to-peer network formation.

Biological Networks: Metabolic networks, protein expression and interactions, marine
and freshwater food webs, neural networks and circulatory systems.

There are common and remarkable qualities to real-world networks, both of natural
and synthetic origins. Firstly, real-world networks are effective in performing their required
functions, and secondly they tend to be efficient in terms of construction cost or operation.
Thirdly, real-world networks tend to be highly resistant or resilient to the random removal
of nodes (or edges). However, targeted removal of critical nodes will have a significant
impact.

Networks and graphs are all around us, and it can be shown that their complexities are
not explained by simple analysis of single nodes or edges. In order to understand how it
is that real-world networks are organised and function, it is also necessary to understand
better the nature of complex systems.

4.1.3 Complex Systems

Defining Qualities

Chapter 1 already introduced the idea of a complex system and the difficulty in defin-
ing qualities. It is possible to list some defining characteristics and consider the overall
behaviour of a complex system.

System Complexity: A complex system may have complex non-linear interactions be-
tween components, however it is not a single interaction that is significant – it is the
overall behaviour at the system level.

Emergent Properties: The idea of a complex system is strongly associated with emer-
gent properties that are greater than the sum of individual parts.

Adaptability: Complex systems are also known for adaptability in dynamic environ-
ments.

82

Chapter 4: Graph Theory, Topology and Efficiency

Unique Components: Rather than a system of homogeneous components, complex sys-
tems are usually formed by unique individual units. It is not possible to simply
interchange units and create the same properties.

A complex system is not simply a matter of many components integrated to form a
complicated system, such as a piece of mechanical machinery with many parts. Such a
machine is still relatively easy to explain by a reductionist approach, where we are able
to define the components and the laws that govern interactions in a causal finite manner.
Abstracting a complicated system, when individual units are interchangeable, works well
for describing atoms, chemistry and other systems with mainly homogeneous components.
(It is important to keep in mind that there are still many complicated models developed
for specific purposes.)

Understanding complex systems is not a question of abstraction and generalisation,
but rather the impact of complexity and specific individuality that govern the emergent
and, in many cases, highly dynamic qualities.

Random Models

In the 1950’s Paul Erdös and Alfred Rényi began to develop statistical theories to describe
real-world networks using random graph models [103]. Their work was based on earlier
research of random networks by Solomonoff and Rapoport [325].

The early questions of network research focused on identifying individual components,
or understanding specific non-linear interactions. Later, when data became available, real
systems were compared to the random graph models, and the differences observed were
very illuminating.

For example, Price [282] pioneered work with a study of academic citation networks.
He discovered that the distribution of citations did not peak as had been predicted by the
random models of Erdös and Rényi. Instead, Price found that most articles had a low
number of later citations, but a small number of articles had many citations, and hence
citations followed a power-law distribution. Later in 1976, based on an earlier idea by
Simon [316], Price published a model called cumulative advantage that could explain his
observations of citation networks.

Resurgence

It was not until more recent times – almost 50 years after the random models of Erdös and
Rényi – that research work to describe networks underwent a resurgence. The main trigger
for this is undoubtedly the facilitation provided by the Internet [9], itself an intriguing
complex network. Together with the availability of large databases, computational power
and a willingness for traditionally isolated disciplines to share ideas, the late 1990s saw a
massive growth in network system research [257].

The focus of this new research was strongly oriented towards connectivity proper-
ties [257]. It has been observed by Barabási and others that there are underlying networks
with non-random topologies behind complex systems [26, 217]. So, it makes sense then

83

Chapter 4: Graph Theory, Topology and Efficiency

that in order to understand complex systems we need to understand these non-random
networks and their internal interactions [255, 60].

4.1.4 Small-World Phenomena

Origins

Hungarian author Frigyes Karinthy (1887-1938) was the first to propose the notion that
people are connected to each other by only a small number of intermediate acquaintances.
In fact, his 1929 short story “Chains” suggest that there would be no more than five
intermediates between any two people in the world.

One of the first numerical studies of social networks was carried out by Stanley Milgram
(1933-1984), and his graduate student Jeffrey Travers, while at Harvard University in
1967 [232]. Several experiments were conducted using folders (or letters) distributed to
a selection of people who were then asked to pass the folders on (in person) to people
whom they thought would be nearer to the folder addressee. The number of folders to
successfully reach the target was low1, however results indicated that the mean number
of intermediaries was six.

Milgram conjectured that any two people in the world would have a similar small
separation characteristic, and that this gives people the impression that we live in a small-
world. The small-world phenomena has subsequently been verified [277, 209], and the
terms “six degrees of separation” and “small-world phenomena” have now passed into pop-
ular use within plays [153], games (based on movie actors, sport stars and other celebrities),
media stories, movies, books [208] and urban myth. More seriously, small-world networks
of individuals involved in terrorist organisations have been used to understand the roles
and interactions of such people.

Other interesting results from Milgrams’ work were that certain “key” people (with
high levels of connectivity) were common intermediates within certain groups of people,
and that participants in the chain need to be competent enough to select appropriate
people for the task.

More importantly, the small-world phenomena has been found to exist in not just
social or trivial networks, and understanding the nature of the underlying topology has
significant implications for many other research fields and complex systems [359].

Models

The specific characteristics of small-world networks have only recently been modelled and
understood, encouraged in particular by the work of Duncan Watts and Steven Strogatz
published in Nature in 1998 [360]. They investigated and showed, using various ring lattice
network models and analysis of natural and synthetic real-world networks, measurable
characteristics of networks that exhibit the small-world phenomena.

1In the celebrated 1967 paper only 5% of letters reached the target. Later experiments achieved much
higher completion rates and also suggested some of the influential factors of completion such as social and
demographic groups and the perceived value of the parcel.

84

Chapter 4: Graph Theory, Topology and Efficiency

Research showed that small-world networks contain groups or “clusters” of nodes, with
many connections between common neighbours, and that such networks do not have con-
nections between every node which would be expensive. Instead, small-world networks
contain a sufficient number of suitably placed long distance connections so that a path
between any two nodes in the network only requires, on average, a small number of con-
nections [358]. It can be seen that a feature of small-world networks is that they are
efficient with respect to network cost and performance.

In summary, the small-world characteristics observed and modelled include:

• On average, that the path length between any two nodes in the network is low.

• There is a higher level of clustering than would be expected from a simple random
model with the same number of nodes and edges.

• The overall cost of the network is low with respect to the tasks or processes that
occur on the network (efficient).

• Robust (resilient) against the random removal of nodes.

• Fragile to the removal of specific (critical) nodes.

• Scale-free distribution of degree is very common.

The small-world model has been generalised by others, in particular the work by Jon
Kleinberg [204, 206] who has analysed the small-world model on topologies such as grids
rather than ring lattices.

4.1.5 Graph Theory

A detailed presentation of graphs and efficient topology ideas requires a description of
graph components, features and properties. Section 4.2 lists many concepts and properties
of graphs, with a focus toward aspects that are important to this work. We begin with
some basic terms and their meanings as shown in Table 4.1. It is also interesting to take
a brief look at the directions and motivations of graph theory research.

The statistical properties of networks are directly related to network topology. Topol-
ogy describes the elements and connections of a network excluding physical positions or
geometry, and so networks that are topologically equivalent are not altered by changes
in the position of elements (see Figure 4.1). Although statistical properties and network
topology are strongly related, it is essential to realise that they are both independent of
any representational (drawn) geometry.

It has been noted by Mark Newman [257] that there has been a recent interesting shift
in network analysis research from small networks with specific properties to large networks
and statistical properties. This can be noted in the form of research questions being asked
by researchers. Specific questions for small networks, such as “What is the most important
node?”, have been replaced by statistical questions such as “What percentage of nodes
need to be removed to significantly affect network performance?”

85

Chapter 4: Graph Theory, Topology and Efficiency

Term Meaning Example

Vertex A single point or ‘dot’ in a graph. (Plural: vertices). Also called
a node in computer science, a site in physics or an actor in
sociology.

Edge An edge connects vertices. The two vertices are called the end-
points of the edge. Also called a link (computer science), bond
(physics), tie (sociology), line or an arc.
Directed edges restrict connection function to a single direc-
tion. The term arc is often reserved for directed edges.
Weighted edges have an associated weight value that influences
their connection function.

Graph A finite set of vertices connected by edges, also called a network.
A description of vertices, edges and connections (excluding ge-
ometry or weight) is known simply as the topology.

Table 4.1: Basic graph terminology and examples

Figure 4.1: An example of simple graphs with seven nodes and eight links. Note that (a) and
(b) have the same topology but are drawn differently. Effective graph drawing techniques can
illuminate network properties.

This change in research to statistical analysis of larger networks has been made possi-
ble by the prevalence of communication networks and the computational power of modern
computers. The desire to understand large communication networks (in particular the In-
ternet) is one of the strongest influences driving modern graph theory research, as demon-
strated by the prevalence of publications related to displaying and analysing Internet and
WWW2 topology.

Another important influence driving the shift in research is the difficulty or inability
to effectively visualise extremely large networks – regardless of good visualisation tech-
niques. Instead, an understanding of network characteristics provides an opportunity to
relate the statistics of unknown large networks to networks that have been studied and
characterised [259, 36]. This does not remove the importance of work being done in the
field of graph drawing. (See Section 4.3 which considers visual representation in more
detail.) Rather it illustrates the difficulties and expectations now placed on visualisation
research. As before, effective graph drawing techniques allow us to utilise the remarkable

2The “World Wide Web”(WWW) is the term used by Sir Tim-Burners Lee in 1989 to describe his
system of interconnected hypertext documents. The WWW is also known colloquially as simply “the
web”.

86

Chapter 4: Graph Theory, Topology and Efficiency

ability of the human eye and brain to analyse and understand the networks and structures
in our environments.

The twentieth century has witnessed a substantial growth in the knowledge of graphs
and complex systems. The study of graph theory is a fundamental aspect of discrete
mathematics, and graph theory research continues to be an active and diverse field.

4.1.6 Additional Resources

The frequently cited works of Harary [154] or Bollobás [39] provide a good foundation into
the mathematics of graph theory.

There are several recent books, directed towards the popular audience, that may inter-
est the casual reader. These include Duncan Watts’ book Six Degrees [359], Albert-László
Barabási’s Linked [26], and Mark Buchanan’s Nexus [43].

For large reviews of work on the structure of complex networks, dynamics and function,
see Newman [257, 258] and the more recent work by Boccaletti et al. [36]. The topic
of growing graphs has been covered by both Albert and Barabási [9], and the work of
Dorogovtsev and Mendes [91] (which has also been expanded into a book [92]).

A collection of essays covering many topics has been put together by Bornholdt and
Schuster [40]. Similarly a collection of previously published work, with additional review
material, has been collected by Newman et al. [259].

For shorter reviews on specific topics see Newman [253] (small-world models),
Hayes [158, 159] (graph theory) and Strogatz [332] (network dynamics and behaviour).
Section 4.3 touches briefly on the topic of graph drawing, and so the work of Di Battista,
Tamassia and colleagues makes excellent review material [83]. Additional resources on the
topic of graph representation, visualisation and drawing are listed in Section 4.3.4.

4.2 Graph Concepts

4.2.1 Overview

The basic components of vertices and edges have been mentioned in the introduction of
this chapter, and basic graph components were illustrated in Table 4.1. The discussion
in Section 4.1.3 and Section 4.1.4 has already suggested several important graph concepts
and properties related to this work, specifically the small-world phenomena and the notion
of efficient topology.

Further, Section 4.2.2 and Section 4.2.5 demonstrate concepts associated with sets of
vertices and edges, then paths and cycles, and finally graph types and properties.

4.2.2 Vertices, Properties and Sets

Properties of degree (or more specifically in-degree and out-degree for directed edges) are
good indicators of how information will be exchanged between nodes, and hence the terms
degree or valence (as the term relates to other science fields) are good indicators of
connection capacity.

87

Chapter 4: Graph Theory, Topology and Efficiency

Table 4.2 contains descriptions of vertex related terminology.

Vertex Vertex Meaning

Adjacent Two vertices are adjacent if they are connected by one or more
edges.

Degree The number of edges connected to a vertex. Note that, because
there may be more than one edge between two vertices, the
degree may be greater than the number of adjacent vertices.
Also known as the local degree or valence of a vertex. A vertex
of zero degree is called isolated.

In-degree For a vertex v, the number of ‘in-coming’ directed edges with v
as their terminal vertex.

Out-degree For a vertex v, the number of ‘out-going’ directed edges with v
as their initial vertex.

Component A component is the set of vertices that a vertex is connected
(adjacent) to by edges. This set of vertices is also known as a
neighbourhood. For a vertex in a directed graph, there is an in-
component (vertices that can reach it) and an out-component
(vertices it can reach).

Table 4.2: Terminology for vertex properties and sets

A component3 includes not only a set of vertices with degree properties, but also edge
properties. Given that nodes can be of various types, potentially manipulating information
in many different ways, and that edges may also be weighted and adjust information that
travels through them, even a simple component (in this formal sense) can be a complex
system in itself.

4.2.3 Paths and Cycles

A path, the sequence of edges between initial and terminal vertices, can be viewed as a
static set of properties. A path may also describe the properties that effect an instance of
communication or transfer between any two vertices. For example, knowing the number of
edges, how they are weighted and the properties of each vertex passed through, provides a
sequential description of the influences on any information travelling a specific path. See
Table 4.3 for path related terminology.

There can be many, possibly equivalent, paths between two vertices in a graph. A
geodesic path is defined as the shortest, and it is possible that several equivalent geodesic
paths exist between two vertices. The properties of geodesic paths within a network are
often central to statistical calculations of graph properties. When a path is directed and
returns back to its initial node the path forms a cycle. Directed graphs with cyclic paths

3Unfortunately, the word component is also commonly used to refer to a single vertex or edge. This
thesis uses, depending on the context, the word “component” both in its formal graph theoretic meaning,
but also in a general sense.

88

Chapter 4: Graph Theory, Topology and Efficiency

Term Meaning

Path A sequence of consecutive edges in a graph, also known as a chain.
The length of the path (also called distance) is the number of edges
traversed (or the number of vertices minus one).

Initial vertex First vertex of a path.

Terminal vertex Last vertex of a path.

Cycle Also known as a loop. A path in a directed graph with the same
initial and terminal vertex.

Acyclic graph A graph that does not contain any cycles or loops.

Bridge An edge in a graph whose removal results in a disconnected graph.

Geodesic path The shortest path in a graph between two vertices. There may be
more that one equivalent geodesic path between vertices.

Euler path A path that passes through all graph edges.

Euler cycle A cycle that passes through all graph edges.

Hamiltonian cycle A cycle that passes through each graph vertex once.

Table 4.3: Terminology related to paths, cycles and graphs

have strong applications to the study of control theory, information feedback and recurrent
systems.

Formal names have been given to a cycle or path that passes through all graph edges,
called an Euler cycle and Euler path respectively. If a cycle passes through every vertex
of the graph once, it is known as a Hamiltonian cycle and finding such paths is the focus
of a range of optimisation techniques.4

4.2.4 Critical Components

Within many real-world networks there exist important edges or vertices whose function
is critical. This may be because they provide a unique quality to a network, or because
their removal dramatically alters topology. If an important bridge link is removed from
a network (for example a transatlantic telecommunications cable), it can result in two
disconnected (or isolated) networks.

It is important to be able to identify critical links and nodes in a graph, as this is
a direct indication of network robustness and susceptibility to attack. The issue of net-
work vulnerability and robustness is very important to real-world networks, in particular
communication and data networks.

As an example, the Google5 search engine has become a standard node that many
Internet users rely upon to access information on the Internet. If the Google web site
ceased to work, it would have a significant impact on many people, and so the Google web
site node can be considered a critical component for people searching for information.

Another interesting point to note from this example is that the Google node is only
critical for those users that place a high utility value on it. This illustrates that a node

4The Travelling Salesman Problem (TSP) is a prime example of the search for a Hamiltonian cycle.
5See http://www.google.com

89

Chapter 4: Graph Theory, Topology and Efficiency

has different utility value with respect to the specific processes (such as navigation) that
can occur on the network.

4.2.5 Graphs Terms and Properties

Graph properties of size, order and degree are basic measures of the number of vertices,
edges and maximum vertex degree within a graph (see Table 4.4). The longest geodesic
path between any two vertices in a graph is used as the graph diameter, and together
with size, degree and order, provide an elementary measure of graph size and complexity.
Similarly, girth is an indication of the smallest non-trivial cycle in a graph, and may relate
to function and robustness qualities.

Term Meaning

Order The number of vertices in a graph.

Size The number of edges in a graph.

Degree Maximum degree of any vertex present within the graph. See also
the degree of a vertex.

Diameter The number of edges in the longest geodesic path between two vertices
or the average geodesic path length.

Girth The length of the shortest cycle within the graph. If there are no
cycles, the girth is considered infinite.

Table 4.4: Basic graph properties

Most graphs of interest are connected in that every vertex has at least one edge con-
nection, and so the entire set of vertices in the graph are connected. A disconnected graph,
containing a set of isolated graphs, is typically of interest because of the transition to or
from a connected to a disconnected state – processes that occur when networks break
down or suffer from attacks. The transition event from a connected to a disconnected
state is used as an indication of network robustness.

If each vertex in a graph has a direct connection to every other vertex, the graph is
complete. Such topologies are rare in the real-world because the cost of making all possible
connections is, by definition, maximal. Although maximally connected topologies provide
the highest degree of connectivity, they are likely to be far from “ideal” with respect to
the cost of graph construction.

Multigraphs, with the potential for multiple connections between vertices, can be con-
sidered “super-maximally” connected graphs. The addition of multiple links in real-world
networks is common in order to add redundancy, robustness and additional capacity to
strategic network sections. A prime example is the use of multiple trans-Atlantic telecom-
munication cables, as well as satellite links, to provide multiple connections between con-
tinents, increasing robustness and capacity.

A graph with weighted edges is called a weighted graph and similarly the use of directed
edges results in a directed graph. Most real-world networks contain properties that relate
well to the edge qualities of direction and weight. See Table 4.5 for a list of terminology
for different graph types.

90

Chapter 4: Graph Theory, Topology and Efficiency

Graph Type Meaning

Complete A complete graph with n vertices (denoted Kn) is a graph for which
each vertex is connected to all other vertices directly (with one edge
between every pair of vertices).

Connected A graph is connected if there is a path (chain) connecting every pair of
vertices, otherwise it is called disconnected and the graph is composed
of discrete subgraph components.

Disconnected There is some isolated (discrete) subcomponent not connected to the
entire graph. See connected graph.

Directed Also known as a digraph or an oriented graph, is a graph in which
all edges are directed. (Directed edges only allow function in one
direction.)

Undirected Also known as an unoriented graph, an undirected graph is a graph
in which all edges are without direction.

Weighted Edges of the graph are weighted. (Weighted edges have an associated
‘weight’ value that influences their connection function.)

Topological An unweighted or unity weighted graph that is described only by the
topology. Weighted graphs can be treated this way to isolate the
topology for investigation.

Multigraph A graph with multiple edges between vertices.

Planar A graph that can be drawn on a two dimensional plane with no edges
‘crossing’ (‘overlapping’) each other. Planar graphs can be drawn
in non-planar form, but the “planar” quality is topological and so
independent of a specific presentation.

Regular A graph in which every vertex has the same degree.

Random A graph for which the properties such as vertices, edges and con-
nections are determined in a random way. There are many random
graph models.

Isomorphic Two or more graphs are isomorphic if they have equivalent topologies
(i.e. the same set of edges and vertices), but are drawn differently.
(See also Figure 4.1)

Table 4.5: Terminology used to describe graph types

4.3 Visual Representation

4.3.1 Introduction

There are several forms of visual representation that can be used for network topology,
the most common and traditional being a two dimensional plane. When a graph can
be represented in a two dimensional (2D) plain without the need for edges to cross-over,
the topology is known as planar. Note that a graph may be planar due to its topology
(regardless of how it is represented), but there is no easy proof of the planar quality for
large (complex) networks. Rather it is usually easier to identify nonplanar subgraphs that
exclude the possibility of an entire graph having a planar form.

Graphs that are isomorphic (see Figure 4.1) have equivalent topologies but may be
represented in different visual forms. Importantly, the statistical properties of isomorphic

91

Chapter 4: Graph Theory, Topology and Efficiency

graphs will be equivalent as the properties are a direct result of topology, not visual
representation.

Figure 4.2: Examples of various graph types and drawings. The first three examples are
undirected graphs. Graph (a) has uniform edge and vertex types, (b) has different edge and
vertex types, (c) varied edge and vertex weights. Graph (d) is directed (digraph) with directed
edges and uniform nodes.

Real-world networks can be composed of homogeneous or heterogeneous components,
and so visual representation of networks may require different visual forms for edges and
vertices. The use of weighted edges between nodes is a common way to represent properties
of link strength or capacity. See Figure 4.2 for examples of graph type representations.
Note that variations in visual representation can apply to both vertex and edge qualities.
The example also demonstrates a graph topology that is planar but not represented in a
planar form.

Effective graph drawing techniques that can organise the location of vertices and edges,
particularly in a manner that illuminates topological relationships, are an extremely valu-
able tool. Such techniques can allow the human faculties of visual and cognitive processing
to be utilised effectively. For example, the presentation of graph information can be used
to identify critical components, important nodes, neighbourhoods, clustering and the util-
isation of resources by processes. The additional use of colour, line weight, labels and
other iconic notation further extend the accessibility of network property information to
the human eye.

Three dimensional (3D) graph representations are an interesting and useful extension
to traditional 2D representations, especially if such models allow users to interact and
rotate, scale and reposition a graph and its elements.

4.3.2 Regular and Random Structures

There are several formal graph topology descriptions that are related directly to methods
of graph drawing – the process of representation. Regular structures, such as linear, lattice
(grid), tree (hierarchical) and ring structures, provide uniform topological features that
can be very useful in constructing graph topologies with particular connectivity qualities.
Similarly, a random graph can be constructed by using random methods to determine
the placement of edges to connect nodes. (See Section 4.5.4 for more detail on random
models.)

An interesting and important question, especially for the development of large net-
works, is “what happens to statistical properties when a topology is scaled up?”. If prop-
erties remain statistically consistent regardless of the scaled size, a network is considered

92

Chapter 4: Graph Theory, Topology and Efficiency

“scale free” (the properties are free from size related factors). However most regular, hi-
erarchical and random topologies are not scale free, and yet many natural networks do
exhibit interesting scale free properties, and so this has been a strong incentive for many
researchers to try and discover mechanisms capable of producing scale-free topology. Some
of these graph modelling methods are discussed further in Section 4.5.

Figure 4.3: Examples of regular and random graph types. (a) shows a linear regular lattice,
and if the ends were connected would represent a circular regular lattice. (b) is a standard
regular grid lattice, and (c) is a simple random topology and layout.

4.3.3 Graph Drawing

The field of graph drawing has a long history and continues to be actively developed.
Perhaps one of the reasons for this is that the work has obvious practical and visually
aesthetic benefits, where applications are possible over a broad range of disciplines. Di
Battista et al. have contributed annotated bibliographies [83] and a book [84] that are
excellent references to significant publications in this field.

(a) (b) (d)(c)

Figure 4.4: Examples of graphs organised by drawing groups. (a) Tree graphs have a definite
root node and layered hierarchy, (b) general graphs are not restrained or directed, (c) planar
graphs always have a possible planar representation and (d) directed graphs include the notion
of direction (flow) through the topology.

Graph drawing algorithms can be divided into several groups based on the type of graph
structure each represents: trees, general graphs, planar graphs and directed graphs [83].

93

Chapter 4: Graph Theory, Topology and Efficiency

Figure 4.4 presents examples of each group. The goal of many drawing algorithms is
based on a set of aesthetic qualities, such as symmetry, avoiding edge crossing or bending,
using minimal and uniform edges, and uniform distribution of nodes. Interestingly, many
drawing or layout techniques are based on simulations such as the spring embedder system
or simulated annealing; both are well known to the field of optimisation and search. The
nature of each graph drawing group can be summarised as follows:

Trees are well suited for organisational charts and hierarchies such as family genealogies.
Levels indicate equivalence and notions of root, parent, children and sibling nodes
work well. However, trees do not need to be rooted and there exist algorithms for
drawing free trees, including radial forms.

General Graphs are the most relevant to this thesis, as are they are used to represent
general undirected networks. The drawing of “general” graphs include straight,
curved or poly-line edges. General graphs can also be useful to search for and use a
planarised form (if it exists) for drawing.

Planar Graphs are by definition graphs that can be drawn using a planar representa-
tion. Planar representations are aesthetically desirable, but can also be of significant
theoretical and practical value (such as electronic circuit layout). Of course, planar
graphs may be represented in nonplanar forms, and there are algorithms for both
specifically testing for planar graphs and simulation based searches for planar forms.
Interestingly, it has been shown that every planar graph can be drawn in a straight
line form, although curved edges do allow for a more compact form if required.

Directed Graphs include and specifically consider the direction of edges in representa-
tions. Typically an effort is made to have all edges “flow” in the same direction, par-
ticularly for acyclic6 directed graphs which are used to represent hierarchies (down
for trees, right for processes etc).

The spring embedder layout algorithm [93] and other similar force-based layout algo-
rithms deserve special mention as they are one of the most influential simulation based
methods. They work well for n dimensional systems [122], not just those presented visually
in two or three dimensions. Spring embedder methods are also known as “force-directed
placement” algorithms.

Spring embedder systems are essentially a particle system model where graph nodes
are considered particles that repel each other, and vertices are treated as physical springs
causing attraction between connected nodes proportional to distance. The algorithm usu-
ally starts with a random placement (or addition) of nodes and then uses an iterative
process that minimises the total energy of the system.

Iterative minimisation is stopped when either the system becomes stable, or a practical
iteration limit has been reached. Additional nodes and edges create an exponential increase
in interactions, and thus increases the computational cost for large systems. As there are

6The acyclic quality means that there are no cycles (or loops) in the graph. See Table 4.3 for path
related terminology.

94

Chapter 4: Graph Theory, Topology and Efficiency

both stochastic and random elements to the algorithms, successive simulations may be
used to find a desirable configuration.

A similar energy minimisation approach has also been suggested by Davidson and
Harel [68, 69] where an aesthetic cost measure for “beauty” is defined to minimise crossings
and take into account the closeness of vertices. The overall energy is then minimised (and
“beauty” maximised) using a simulated annealing algorithm.

Fruchterman and Reingold developed a force directed placement algorithm [122] for
layouts (suitable for simple 2D or n-dimensional spaces, and other methods for large grid-
based networks). Another popular method is that by Kamada and Kawai for “drawing
general undirected graphs”, specifically connected graphs such as those grown by the
Barabaási and Albert (BA) model (presented in Section 4.5.7). Reingold and Tilford
published a method for “tidier” drawing of trees [292] which is useful for hierarchical
systems.

The drawing of graphs is not the focus of the work in this thesis, however it is a very
useful tool for presenting and understanding the structures that exist or evolve within EC.
It is also useful to consider the connection between minimisation based layout processes,
evolutionary search, and the ecological nature of biological network structures. This can
also have a meaningful influence as a biological metaphor for problem solving; the physical
layout position of nodes may have a direct meaningful relationship to the function or
interaction of network components.

In a related manner, the function or performance value of vertices within a network
can be mapped across a sample of input values, and by inspection the observer can gain
insight into behaviour or patterns of network function that might otherwise be too com-
plex to describe or analyse. Such a technique was used in [372] to visualise the function of
internal components of Artificial Neural Networks, in particular the contribution of com-
plex weight components on input signals as used in the Micronet architecture developed
by Murray [250, 249, 248].

4.3.4 Further Resources

As mentioned, the annotated works of Di Battisa et al. [83, 84] are excellent resources
into the field of graph drawing, as well as [94] and the more recent book chapter by
Tamassia [336].

The online website home of the International Symposiums on Graph Drawing7 contains
links to the individual symposium websites, and links to other useful websites, literature
and data resources.

The Graph Drawing E-print Archive (GDEA) online website8 is an excellent online
resource for research materials on this topic.

There are many software products, libraries, toolkits and packages available to as-
sist researchers in the use of graph drawing algorithms. Of note is the GraphViz open
source project by AT&T Research9, the Pajek (Package for Large Network Analysis) tool

7http://graphdrawing.org/
8http://gdea.informatik.uni-koeln.de/
9http://www.graphviz.org/

95

http://graphdrawing.org/
http://gdea.informatik.uni-koeln.de/
http://www.graphviz.org/

Chapter 4: Graph Theory, Topology and Efficiency

made freely available (closed source) by Vladimir Batagelj10, the JGraph open source
graph component for Java11, and the open source JUNG (Java Universal Network/Graph
Framework) library12.

The igraph project13 is a library by Gábor Csárdi that is well suited to creating, testing
and analysing simple, but large, complex networks. The igraph software can be used as a
library within the R-project14 statistical software package [284, 171], as a scriptable Python
library, or as a C library. igraph has also been described in a conference paper [61].

4.4 Measurements and Properties

4.4.1 Introduction

It has been observed many times that real-world networks are not the same as simple
random models, and so this naturally leads the the question of what mechanisms are re-
sponsible for the non-random structures. Further, the real-world observed systems are not
simple or regular, but exhibit interesting qualities. There is a need to be able to measure
and qualify both real-world and simulated networks. This then enables the development of
models to emulate the observed characteristics of real-world networks, and suggest mecha-
nisms for their development. An understanding of the mechanisms enables the exploitation
of this knowledge for other purposes, such as simulated evolutionary environments.

There are several statistical properties of networks that we can measure to gain insight
into structure and function. Specifically, this section describes the ideas and formula for de-
termining the degree (including distribution, correlation and power-law components), clus-
tering coefficient, motifs, characteristic path length, connectivity length, harmonic mean,
global efficiency, local efficiency and a definition of cost. We also look at other related
measures.

Starting with some basic concepts, a graph G is composed of a set N of n nodes and
a set M of m edges. G then is defined as G(N,M).

A graph G can be represented as an adjacency matrix15 B = {aij} which is N × N
in size and where each aij value represents a connection between two nodes. For a simple
edge, this is 1 for a connection and 0 for no connection. If we consider a directed graph
(with directed edges) aij 6= aji, and if we are representing an undirected graph aij = aji

creating symmetry. This means that for an undirected graph the total number of edges is
half the total possible for a directed graph and that the adjacency matrix is symmetric.
Usually, graph nodes do not have “self” connections, so aij = 0 where j = i.

If we need to describe a weighted graph, it may be convenient to use both the adjacency
matrix B to represent the topology of connections, and an additional distance matrix
{dij}. Where there is a direct connection between nodes, dij is the weight value of the
edge, otherwise it can be defined as the minimum weighted path needed to get from node

10http://vlado.fmf.uni-lj.si/pub/networks/pajek/
11http://www.jgraph.com/
12http://jung.sourceforge.net/
13http://cneurocvs.rmki.kfki.hu/igraph
14http://www.R-project.org
15Also known as a “connection matrix”

96

http://vlado.fmf.uni-lj.si/pub/networks/pajek/
http://www.jgraph.com/
http://jung.sourceforge.net/
http://cneurocvs.rmki.kfki.hu/igraph
http://www.R-project.org

Chapter 4: Graph Theory, Topology and Efficiency

(a) simple directed graph

A B C D E
A 0 0 1 1 0
B 0 1 1 0 1
C 1 0 0 0 0
D 0 0 1 0 0
E 0 0 1 1 0
(b) adjacency matrix B

A B C D E
A 0 - 5 7 0
B 7 0 2 14 5
C 5 - 0 - -
D 11 - 6 0 -
E 22 - 17 11 0
(c) shortest path matrix

Figure 4.5: A simple directed graph represented by an adjacency matrix and a distance matrix.
Row headings indicate the “from” vertex, and column headings the “destination” vertex, al-
though this is arbitrary. In this case directed edges are represented; for an undirected graph the
adjacency matrix is mirrored down the diagonal axis. We also see an example of a self-linked
vertex on the B node. The distance matrix contains the shortest path distance between any
two nodes, if a path exists at all and where there are multiple indirect connections. It is only a
directed or disconnected graph that has missing distance matrix entries (indicated with “-”). A
connected undirected graph will have a complete set of valid path costs in the distance matrix.

i to j. A cache of minimum weighted path cost is very useful for calculations that need to
compare path costs. See Figure 4.5 for an example of both adjacency and distant (shortest
path) matrix representations.

4.4.2 Degree, Distribution and Correlation

Degree Distribution

The degree ki of node i, also known as the “connectivity”, is the number of edges incident
to node i and so it is also the number of neighbours16 to node i. We can determine the
minimum degree kmin and maximum degree kmax that exist in a network, and the mean
degree 〈k〉 as an overall measure of edge density. The degree ki for node i can easily be
determined from the adjacency matrix:

ki =
(
B2
)
ii

=
m∑
j=1

Bij (4.1)

When considering an entire graph, the degree distribution is more meaningful than
the degree of single nodes. The degree distribution is the “spread” of connections, and
it can be characterised by a distribution function P (k) that gives the probability that a
randomly selected node has exactly k edges connected to it.

For random graph model, such as the ER model discussed later in Section 4.5.4, the
degree distribution is Poisson such that

P (k) = e−〈k〉〈k〉k/k! (4.2)

where the mean degree, 〈k〉, in terms of nodes or a probability distribution p, is given by:
16This assumes that multiple edges are not allowed between nodes, and so the graph is not a multigraph.

Many real-world networks, with multiple alternative connections between nodes, do not map easily to such
a restricted model [259].

97

Chapter 4: Graph Theory, Topology and Efficiency

〈k〉 = 2n/N = p(N − 1) ≈ pN (4.3)

It has been noted [9] that in comparison to random networks, most complex and real-
world networks have skewed degree distributions following either a power-law or power-law
tail distribution of the form

P (k) ∼ k−α (4.4)

where α is the power-law degree distribution exponent value. The mean degree will then
take the form of

〈k〉 = k2−α
max (4.5)

where the maximum degree will be kmax < N .
It is reasonably easy to see power-law and exponential distributions by plotting cumula-

tive distributions. A power-law distribution, plotted on a log-log graph, present a straight
line, while a straight line on a log-linear (semi-logarithmic) scale indicates exponential
relationships.

Because many real-world systems showed a tendency to contain power-law tails, and
because this was reasonably unexpected by researchers, power-law distributions were con-
sidered an almost “universal” quality of complex systems. (See the reviews of [257, 28].)
Many studies then focused on the search for these scale-free networks, and the construc-
tion of models (some overly contrived [188]) to generate networks with degree distributions
that followed power-law tails.

As Evelyn Keller has pointed out though [188], there are reasons to believe that scale-
free architectures are not “universal”, nor a common significant indicator of a complex
system. Rather, scale-free architectures are particular and should be expected based on
the understanding of constraints in the systems in which they occur. This would ideally
result in a more grounded approach to scale-free network research.

Degree Correlation Coefficient

Degree-degree correlation P (k, k′) is a way of describing that the degrees of two connected
nodes are not independent. Put more simply, the number of connections a node has is
directly related to the number of connections neighbours have. Erdös-Rényi (ER) random
graphs (see Section 4.5.4) do not have any degree-degree correlation, but many real-world
networks do. In most cases it is believe this is due to the processes responsible for edge
formation.

It is convenient to define degree-degree correlation as the average degree of nearest
neighbours to node i, where Gi is the subgraph of nearest neighbours to i:

knn,i = 1
ki

∑
j∈Gi

kj (4.6)

98

Chapter 4: Graph Theory, Topology and Efficiency

The average degree of nearest neighbours [273] with degree k (with respect to all other
k′ degrees) is then

knn(k) =
∑
k′

k′P (k′|k) (4.7)

When the degree correlation coefficient and knn(k) both increase as a function of k,
a network is said to exhibit assortative mixing. Similarly, when the degree correlation
coefficient increases as a function of k and knn(k) decreases as a function of k, the network
is said to exhibit disassortative mixing. An interesting result is that social networks are
known to be assortatively mixed [254].

Assortativity Coefficient

Newman has defined a method for a single degree correlation value r by calculating the
Pearson correlation coefficient of the degrees at either ends of an edge, which results in a
single value that is positive for assortative and negative for disassortative mixing [254, 256].
The full definition is not shown here, but values calculated with this method are shown in
Table 4.8.

Eij is the number of edges that connect vertices of type i and j, where i, j = 1 . . . N .
Now let E be a matrix that contains the set of Eij elements. The mixing matrix E is then
normalised by the sum of elements ‖E‖ to create a normalised mixing matrix e,

e = E
‖E‖ (4.8)

so that now an assortative coefficient can be defined as

r = Tr(e)−
∥∥e2∥∥

1− ‖e2‖
(4.9)

where Tr is the trace (or sum of the diagonal elements) of e.

4.4.3 Clustering Coefficient

The concept of clustering, also known as transitivity or network density, is perhaps best
described in social networking terms, where two of your friends are also likely to be friends
to each other. This might also be thought of as the cliquishness of a node within a network.

Clustering is interesting in complex systems because the amount of clustering is fre-
quently observed to be much greater than clustering for a random graph with the equivalent
number of nodes and edges. It seems that clustering and grouping are an important part
of complex structures, and are defining components of the “small-world” network model.
(See the small-world model in Section 4.5.5.)

For a graph G we can calculate a clustering coefficient C(G). We begin with the
subgraphGi for node i, composed of first neighbours for node i. If node i has ki neighbours,
then Gi will contain ki nodes and can have, at most, ki(ki − 1)/2 edges. So, the local
clustering coefficient Ci for node i is

99

Chapter 4: Graph Theory, Topology and Efficiency

Ci = number of edges in Gi
ki (ki − 1)/2 (4.10)

This essentially yields a ratio of the number of connected neighbours versus the total
possible connections in subgraph Gi. Note that transitivity is a specifically different defini-
tion: the specific ratio of the number of triangles with respect to the number of connected
triples (three node paths)17.

With the local clustering coefficient Ci we can then determine, for the entire graph G,
the mean of all Ci ratios giving an overall measure of the clustering C(G). This can be
expressed as:

C (G) = 1
N

∑
i∈G

Ci (4.11)

This thesis uses the local clustering coefficient C as defined byWatts and Strogatz [360],
with a preference for the notations used by Latora and Marchiori [215]. There are other
formulas for clusters, some of them slightly easier to calculate, and some which result in
different numerical values. The formula presented here is perhaps the most commonly
used and, as Newman has pointed out, it is important that the clustering measure used is
clearly defined to allow comparison with other work [257].

Figure 4.6: Community structure example, where communities are marked by the circle regions,
and characterised by a greater number of connections between nodes in each community group.
The idea of community can be formalised with either density-based metrics, or similar localised
cluster measures. Note that in this example, some nodes are still connected but not part of
any community, and real world systems can contain isolated nodes.

It should be noted that the term “clustering” is used for both specific and well defined
measures, such as the one presented in Equation (4.11), as well the conceptual notion of,
say, general community structure. Such community structures are known to have a higher
density of links within particular “groups”, though the measures described here do not
account for the full range of possible complexities. See Figure 4.6 for a visual example of
this idea. Community structure is a difficult but valuable aspect to measure and classify
in real complex systems. Motifs are a continuation of this idea and are presented in
Section 4.4.4.

17In other words, of all the unique three node paths that exist within a graph, what is the ratio that are
triangles, and hence represents tight clusters of closely connected nodes?

100

Chapter 4: Graph Theory, Topology and Efficiency

There are interesting open questions as to the value of higher-order degree clustering
coefficients, and also low-degree “reciprocal” loops in directed graphs between nodes.

4.4.4 Motifs

Network motifs are patterns of interconnection within graphs that occur at a frequency
higher than expected for a similar randomised graph with the same degree characteristics.
The identification of motifs has been motivated by Uri Alon and colleagues who realised
that motifs can be used to identify and classify networks and their functions [315, 235,
225, 234, 186, 10]. Their work has mainly involved the identification of recurring small n
sized motifs (in the order of 3 to 5 nodes) in biological systems, but has also been extended
to other systems such as information processing networks.

An example of all thirteen possible motif forms for a three node directed (connected)
graph are shown in Figure 4.7. Although it can be computationally expensive to look
for motifs, there have been very strong results even with small sized graphs of only three
and four nodes. This suggests it is well worth the computational resources that can be
required.

Figure 4.7: The thirteen possible motif forms for a three vertex directed and connected graph.
Edge direction has been indicated as well as vertex colour to give a general indication of
flow and help identify individual motif forms. The identification of motif numbers in large
networks can be directly connected to network formation and function. However, permutation
calculation and identification is computationally demanding.

In order to quantify the statistical significance of a motif type M , a count nM is used
to represent the number of occurrences of M in G. A comparison is then made to a
random graph Grand with the same degree characteristics as G. A Z-score is calculated as
a measure of the significance of M in G, expressed as:

ZM =
nM −

〈
nrand
M

〉
σrand
nM

(4.12)

where nrandM represents the occurrences of M in the random graph, 〈nrand
M 〉 is the mean,

and σrand
nM

the standard deviation of the motif M occurring in an ensemble of random
networks.

Results across different domains have shown that significant motif forms are different.
For example, gene regulatory network motifs are different from those of food web motifs or

101

Chapter 4: Graph Theory, Topology and Efficiency

World Wide Web motifs. Further, the existence of similarities between networks suggest
similarities in underlying processes responsible for the formation of the network. One
interesting observation is that networks that support information processing seem to be
very different to those networks that transfer energy [235, 10].

The discovery of network motif characteristics may be a universal way to fingerprint
and categorise networks by the number and type of motifs they contain. As stated by
Ron Milo and colleagues, the result “. . . suggests that motifs can define broad classes of
networks, each with specific types of elementary structures” [235]. Hence, motif identifica-
tion may be very important to many fields including biology, biochemistry, neurobiology,
ecology, engineering and many others.

Motif detection has been presented by Wernicke and Rasche [363], and the Atlas of
Graphs by Read and Wilson contains a large collection of known motif forms [288] and is
relevant to the implementation of motif identification algorithms.

4.4.5 Characteristic Path Length

The characteristic path length L is a global measure of the typical separation between any
two nodes within a graph G [360]. It is also reported as the “mean vertex-vertex distance”
or the “mean path length” in some research.

To generate this measure we must first be able to find the geodesic (minimum) path
dij (edges traveled) between each pair of nodes within the graph. In the example of an
unweighted graph, dij = 1 when there exists a direct connection between nodes i and j,
and dij ≥ 1 provided the graph is connected. If all dij are finite values, then so is L.

In order to determine the entire set of values in {dij} a standard breadth-first search [58]
works well, although this can be optimised for specific applications. Weighted networks
need to account for edge cost, and so should utilise a best-first heuristic search approach.
The characteristic path length L for the entire graph G of n nodes is then:

L (G) = 1
n (n− 1)

∑
i,j∈G
i6=j

dij (4.13)

As listed in Table 4.4 the diameter of a graph can be defined in multiple ways: the
largest, average or even the minimum geodesic path. The vertex with the lowest total
mean path length to all other vertices in the graph can naturally be defined as the centre
vertex of the graph.

Girvan and Newman introduced a similar quality of betweenness as a way to find the
central vertex of a graph [130]. A betweenness value is defined as the number of times
a vertex participates in the shortest path between all pairs of nodes. Thus, the node
with the highest betweenness value is “central” to the graph topology and function. The
betweenness value can be easily calculated with a similar method to that used to calculate
L. The terms graph “centre” and “betweenness” are summarised in Table 4.6

102

Chapter 4: Graph Theory, Topology and Efficiency

Graph Term Meaning

Centre The vertex with the lowest total mean path length to all other nodes
in the graph. A centre vertex is important because the cost to all
other nodes will be low, however it does not indicate the utility of
the vertex (how often it will be used by other vertices).

Betweenness The vertex that participates the most number of times in the shortest
path between all vertex pairs of the graph. A vertex is important
because it participates in important shortest paths, not because of
the distance or weighting of the paths it is part of. This then is a
measure of the vertex utility to other vertices.

Table 4.6: Graph terms used to describe the “central” vertex

4.4.6 Global and Local Efficiency

If G is a disconnected graph (as many real-world networks may become when they de-
grade), then there exists a dij that is +∞, and so L is thus ill-defined. Although for many
networks this is not a problem, when considering real-world networks, directed networks
with disconnected components or other systems that are represented as a disconnected
graph, this severely limits the application of L.

It is for exactly this reason that Latora and Marchiori [215, 217] proposed the con-
cepts of global efficiency and local efficiency, of which both are well-defined even when
there exists disconnected components (such that dij = +∞) in the network. The concept
of efficiency is related strongly to the idea that the role of the network is communication
between nodes, and the shorter the communication pathways, the more efficient the net-
work. A normalised value to represent efficiency should be in the range of [0,1], where 0
is no communication (very poor efficiency) and 1 for a fully connected graph where every
node has a direct connection to every other node (the best possible efficiency).

The measure of global efficiency Eglob is defined as the sum of the inverse path lengths
between each pair of nodes εij = 1

dij
. In so doing, when dij = +∞, εij = 0 and so

contributes nothing to the overall efficiency. We normalise the sum using an ideal graph
Gideal that contains all n(n− 1)/2 possible edges.

Eglob (G) =

∑
i6=j∈G

εij

n (n− 1) = 1
n (n− 1)

∑
i6=j∈G

1
dij

(4.14)

In this form we are assuming unweighted edges (or a unity weight of 1 for each edge),
however this can be extended to weighted graphs and the sum of inverse distances can be
normalised using an “ideal” weighted graph Gideal, as needed for the particular network
in question [216]. This is a lot simpler than the modification needed to apply the mean
path length L to a weighted graph.

Newman points out [257] that the use of harmonic mean, or “reciprocal of all the recip-
rocals” type of efficiency measure, is perhaps a more “satisfactory approach” to defining L,
and although it has only occasionally been adopted “should perhaps be used more often”.

This measure of global efficiency can also be localised to subgraphs. Consider the
subgraph Gi about node i, which includes only the neighbours of node i (that are directly

103

Chapter 4: Graph Theory, Topology and Efficiency

connected to i) and will contain at most ki(ki − 1)/2 edges. Summing and normalising
the efficiency of all subgraphs of G gives a measure of the local efficiency Eloc within G:

Eloc (G) = 1
n

∑
i∈G

E (Gi) (4.15)

where

E (Gi) = 1
ki (ki − 1)

∑
l,m∈Gi

l 6=m

1
d′lm

(4.16)

Note that d′lm is the shortest path length between nodes l and m within the subgraph
Gi, and that for a unity weighted graph18 Eloc is normalised.

The measure Eloc is similar to the clustering coefficient C, however it is not a direct
triangle to triple ratio, nor does it indicate the presence of hierarchy or other specific motif
patterns.

4.4.7 Cost

In real-world networks, both engineered and naturally occurring, each edge and node
is likely to have a cost, both in construction or in use. Therefore, there are economic
and competitive advantages to minimising the cost of a network while maximising the
functional performance. As will be shown in Section 4.4.9 many real networks have been
found to be low cost while supporting function robustly.

In order to allow us to measure and compare networks, we also need to be able to
measure relative cost. We would expect that the efficiency (performance) of a network
would increase as the number of edges increases. However, not all edges play the same
role within real networks, so efficiency and cost are not so simply related. Indeed, the
connection of edges within a graph to critical hub nodes can dramatically improve the
efficiency of a network without a large increase in cost.

Using a simple graph G of n vertices and m edges we can define [217, 60] the cost
Cost(G) as:

Cost (G) = 2m
n (n− 1) (4.17)

This is the number of edges that exist in G normalised by the total number that could
possibly exist, and so we have a value in the range [0,1].

Again, it is useful to apply a similar cost measure to weighted networks, and by using
a cost evaluator function γ we can simply use the distance dij or weight value of an edge
aij as its cost [216]:

Cost(G) =

∑
i6=j∈G

aijγ (dij)∑
i6=j∈G

γ (dij)
(4.18)

18Unity weighted graphs, because they describe the topology only, are also known as topological graphs.

104

Chapter 4: Graph Theory, Topology and Efficiency

4.4.8 Other Measures and Properties

Proximity Ratio

Watts and Strogatz [360] used the measures of C and L as a way of characterising small-
world networks that are neither random nor like a completely regular system. (See Sec-
tion 4.5.5 for more on the small-world model.) However, the property of “small-worldness”
is qualitative rather than quantitative and requires two measured properties as indicators.
Hence, others like Walsh [353] and Latora [215] developed single measures to give a qual-
itative result.

Walsh suggested the use of a “proximity ratio” µ which is the ratio of C/L normalised
by Crand/Lrand, where Crand and Lrand are taken from an ER style random graph (see
Section 4.5.4) with the same number of nodes n and edges m as the graph being consid-
ered [353]. This gives a single numerical value, and for systems that are equivalent to a
random graph where µ is unity, while for small-world graphs µ� 1.

Entangled Networks

It has been suggested by Luca Donetti and colleagues [87, 88] that there exists a family of
graphs, which they have named entangled, that exhibit a highly “interwoven” topology and
contain highly homogeneous structure with respect to degree, node distance, betweenness
and loop distance which are all very narrow in value.

Specifically, entangled networks have been characterised as having:

• short average path-length distances;

• small diameter;

• low clustering coefficient (due to the presence of large average shortest loops); and,

• poor modularity.19

Conceptually, one might think of an entangled network in a similar manner to the small-
world linear-lattice model20 (discussed in Section 4.5.5), in that a regular topology and
long-range connections exist, however the lack of community structure or high clustering
and large loops means that the neighbourhoods are sparsely connected. Most connections
in the network extend outside neighbourhood regions, and are interwoven or mixed in a
homogeneous way that ensures clustering does not occur.

Research regarding the performance of entangled networks, for data communication
processes, has shown that while entangled networks have good connectivity and flow per-
formance, they also have excellent robustness against error and attack, and support effi-
cient communication and search processes. It is because of this that Donetti and peers

19Modularity is often a measure of “community” structure within a network, and hence poor modularity
in this case is an indicator of the absence of any sort of community-like structures.

20A linear lattice graph has nodes arranged along a single dimension with regular neighbourhood con-
nections. Linear-lattice models are often defined with a connected boundary condition which creates a
“ring” topology. For the classic small-world model additional random connections are also added.

105

Chapter 4: Graph Theory, Topology and Efficiency

have conjectured that the terms of “optimal” and “near-optimal” should apply to entan-
gled networks.

An open research problem is the development of models to create artificial entangled
networks that not only exhibit these distinctive qualities, but that also scale accurately.
Methods based on simulated annealing have been used with some success, using a fixed
number of nodes and a fixed average connectivity 〈k〉, while also exhibiting the highest
degree of synchronisability possible. Synchronisability, in this case, is described as a
behaviour of individual dynamical processes at the vertex level, and is closely related to the
ability of information to be transmitted across the network, and hence has a dependence
on the network topology.

One measure of synchronisability, applied to small-world networks [30], uses a spectra-
based technique for the identification of stable synchronised states from eigenvalues derived
from the connectivity matrix for a graph.

Bipartite Model

A bipartite graph model is useful to represent systems with two types of nodes and edges
that exist only between unlike nodes. Bipartite graphs can be used to model social af-
filiation networks, and are particularly interesting in the study of connections between
people acting as board members and individual companies, or the example of collabo-
rations between scientists, or the common films of actors. It is also a way to represent
population evolution based on sexual models, where gender is simply a node quality or
location occupancy in an ecological model.

Topologically, the distinction of two node types allows the graph to be treated as
essentially two different graphs, with two degree distributions each related to the number
of nodes of each type. Graph degree distribution generation functions, that can be used to
describe the formation and edge distribution of such networks, can then be based directly
on the subgraph of a specific node type.

One common method of studying bipartite graphs is to project one set of vertices
on the other to give a “single mode” (or “one mode”) projection. It can also be useful
to separate nodes into layers, where the interaction between layers can be clustered or
grouped to identify interlocking relationships. An example of this is shown in Figure 4.8.
Such methods have been used to identify “interlocks" of company board members.

The bipartite model can be extended by relaxing the constraint of edge formation
between differing node types, and allowing more node types to exist; both changes are
useful for modelling real-world networks. Although the additional complexities of con-
nections between node types can make analysis more difficult, it is still very useful to
isolate subgraphs based on node type, and to model or measure the degree distributions
for each subgraph. This also has application to the study of ecological environments and
in particular the formation and interaction of species.

A bipartite model is also directly related to measures of assortativity and assortative
mixing, mentioned in Section 4.4.2 in connection to degree correlation. Assortative mix-
ing, or homophily in sociological terms, is the behaviour of individuals to preferentially

106

Chapter 4: Graph Theory, Topology and Efficiency

A B C D

1 2 3 4 5 6 7

(a)

(b)

1 2 3 4 5 6 7

(c)

2

3

4

5

6
71

Figure 4.8: Bipartite graph example and its projection to a single mode. Bipartite graphs are
represented (a) as two distinct layers of like nodes, with edges between layers only. Such graphs
can be used to represent networks such as people and company boards or actors and common
movies. In (a) white vertices (lettered A to D) represents people, and black nodes (numbered
1 to 7) represent the common association (such as movies or company boards). A single mode
projection (b) starts by converting the common link (in this example people) into undirected
edges (using colour to assist). It can be seen that in some cases there are multiple edges
between vertices. A planar representation of the projection is shown in (c), using colour to
help indicate association, and edge line weight (thickness) to indicate the stronger connection
that results from multiple edges.

associate with other individuals that are similar. There is also an important connection to
the process of mate selection, exhibited by some species, based on “assortative matching”.

4.4.9 Real-World Examples

Now that we have looked at several of the measures used to classify network properties, let
us consider some real-world examples. The data presented in Table 4.7 has been reported
and analysed in various works by Latora and Marchiori [215, 217, 216]. Here the results
are collected into a single table.

n m L C Eglob Erandglob Eloc Erandloc Cost

C.elegans 282 2462 2.65 0.28 0.46 0.48 0.47 0.12 0.06
Film actors 277336 8721428 3.65 0.79 0.37 0.41 0.67 0.00026 0.0002
Internet 6474 12572 3.77 0.3 0.29 0.30 0.26 0.0005 0.006

Table 4.7: Examples of real-world network efficiency and cost. Note small characteristic path
length L and high clustering coefficient C, and how this matches the high global Eglob and
local Eloc efficiency respectively. n andm are the total number of nodes and edges respectively.
Erandglob and Erandloc represent the global and local efficiency of a random network with the same
resources. Note how Eloc > Erandloc indicates the increased clustering. This data has been
collected from work by Latora and colleagues [215, 217, 216].

We can see in Table 4.7 three different real-world networks: the neural network of
the highly studied Caenorhabditis elegans (C.elegans), a database of film actors and films
(bipartite), and a sample of internet (hardware) architecture. Note in each case we can
see comparative global efficiency with respect to a random system, however with greater

107

Chapter 4: Graph Theory, Topology and Efficiency

local efficiency than expected in a random model. The measures for C, L and Cost are
presented also.

Newman has also presented a collection of results in Table II of [257] divided into
the groups of social, information, technological and biological that were mentioned in
Section 4.1.2. A simplified reproduction of the results is shown in Table 4.8 to illustrate
typical values.

Network dir. n m 〈k〉 L α C r

Social
film actors No 449913 25516482 113.43 3.48 2.3 0.78 0.206
company directors No 7673 55392 14.44 4.60 - 0.88 0.276
math coauthorship No 253339 496489 3.92 7.57 - 0.34 0.120
student friendships No 573 477 1.66 16.01 - 0.001 -0.029
Information
WWW nd.edu Yes 569504 1497135 5.55 11.27 2.1/2.4 0.29 -0.067
Roget’s Thesaurus Yes 1022 5103 4.99 4.87 - 0.15 0.157
Technological
Internet No 10697 31992 5.98 3.31 2.5 0.39 -0.189
software packages Yes 1439 1723 1.20 2.42 1.6/1.4 0.082 -0.016
Peer-to-peer network No 880 1296 1.47 4.28 2.1 0.011 -0.366
Biological
metabolic network No 765 3686 9.64 2.56 2.2 0.67 -0.240
protein interactions No 2115 2240 2.12 6.80 2.4 0.071 -0.156
marine food web Yes 135 598 4.43 2.05 - 0.23 -0.263
freshwater food web Yes 92 997 10.84 1.90 - 0.087 -0.326
C. elegans Yes 307 2359 7.68 3.97 - 0.28 -0.226

Table 4.8: A subset of the real-world examples of network statistics taken from published
work and collected by Newman [257]. Properties are directed (dir.) network type (Yes or No),
n total number of nodes, m total number of edges, 〈k〉 mean degree, L characteristic path
length, α power exponent if degree distribution follows a power law (in/out-degree if directed),
C clustering coefficient and degree correlation coefficient r.

Table 4.8 is presented as a sample of real-world networks. The examples cover a spread
of domains from organic systems to artificial and technological structures. Although there
are significant results from this data alone, what is not shown is a comparison of each
system to a random equivalent21, which is an effective way to identify values that are
significantly different.

4.5 Topology Models

4.5.1 Introduction

In an effort to understand the properties of real-world graphs there have been many
topology model proposals. It is known that in nature real-world graphs have generic
features [360, 27, 207] such as high clustering, short characteristic path lengths and non-
random degree distributions. It is also known that some networks are based on hierarchical
structures and/or modular community based structures. It is desirable to create simple
models that can replicate such known properties, as this can help us understand the mech-
anisms at play in nature [257]. Understanding these mechanisms also opens opportunities

21As already suggested, there is more than one way to define a random equivalent, from the very basic
to those that maintain an equivalent degree distribution.

108

Chapter 4: Graph Theory, Topology and Efficiency

to apply the knowledge to problem solving techniques such as evolutionary algorithms,
where graphs can be used and developed.

There are three main approaches to modelling networks:

• create a graph with the required number of nodes and edges in a single initialisa-
tion phase (using simple rules for topology);

• use an existing structure (regular or otherwise) and use a process of alteration
(guided or unguided) to re-organise the topology; or,

• use a development model that can grow or adapt a network in a step-by-step
manner (also guided or unguided).

Indeed, many models use combinations of approaches to achieve their goals.
Perhaps the easiest models to begin with are those with regular or structured topology,

created in a simple single stage of development, such as the linear, ring and grid lattice
models mentioned. For graphs created with such models there are clear relationships
between the structure, size, edges, clustering properties, characteristic path lengths and
so on.

Alteration models make it possible to do null-hypothesis comparisons between real-
world networks and randomised models based on a subset of the known properties and
characteristics. In this way, features that are either characteristic of a system, or are at
least distinguishable from random processes, can be identified if they are significant. This
includes the identification of motif types and quantities.

Section 4.5.4 looks at important random models, in particular the influential ER Model
of Erdös and Rényi [103], and the Configuration Model [241] for specifying degree distri-
bution in an otherwise random graph. As will be shown in Section 4.5.5, the small-world
model of Watts and Strogatz [360] is based on a regular lattice model and uses adaptation
to “re-wire” the regular model towards a random model.

The observation that real-world networks often have scale-free degree distributions
has prompted a large amount of research, and the development of many models. Almost
exclusively, these models are of the developmental kind, and make use of some type of
guided incremental addition to a graph so that it will develop with the qualities of interest.

Two important growth models are those of Price [282] (Section 4.5.6) from the 1950’s
study of publication citations, and the more recent rediscovery of a similar model by
Barabási and Albert [27] (Section 4.5.7). Both development style models use a process of
guided edge connection based on “preferential attachment” – a process observed in many
real world systems. These models are able to create power-law style scale-free graphs.
The amount of research targeted towards scale-free power-law models has also drawn
some criticism, not because the observation is false but rather that the importance placed
upon it is too high [188].

An adaptive model known as merge and regenerate [107] is presented in Section 4.5.8.
It is similar in its rewiring process to that of the small-world model, however it is able
to create scale-free graphs with the qualities of real world systems. Because it uses a

109

Chapter 4: Graph Theory, Topology and Efficiency

localised development process, not a global information based method, it is more suited
to modelling many real world systems.

Some researchers have suggested network models that do not take into consideration
localised processes are simply the “first generation”. New “second generation” models are
needed, incorporating localised processes and information based ideas, in order to further
the research field of complex networks.

It would be a daunting task to catalogue all the graph models, especially recent ad-
ditions, and that is not the purpose of this review. Instead a number of influential and
distinctive models are presented that are relevant to the work of this thesis. In Section 4.5.9
some of the important model features are highlighted for comparison.

4.5.2 Regular Models

Regular one-dimensional (1D) lattices are the simplest and easiest models to begin with,
and the principles that apply to this singular-dimension case also apply to n-dimensional
models. A 1D lattice model is also known as a linear model, and if the boundary conditions
allow “wrap-around”, the model forms a circle – this is the basis of a circular “ring” model.

Consider that a 1D model can contain n vertices that are each given a location in space.
Edges connect vertices along the dimensional axis and the axis denotes the neighbourhood
for any specific vertex. So, for a 1D model with average degree k = 4, there would be two
connections for each vertex in each possible axis direction.

Figure 4.9: Lattice model example for 1D, 2D and 3D cases, where the neighbourhood size
(nei) is restricted along dimensional axes. This same process can be generalised to an n
dimensional case.

For a two-dimensional (2D) case, the additional axis of freedom allows for more con-
nections, and so a radius of two connection along either direction of each access would

110

Chapter 4: Graph Theory, Topology and Efficiency

total k = 8. A 2D lattice can also use an unbounded “wrap-around” model, which effec-
tively maps to a toroidal space. This regular model can naturally be extended to an n

dimensional case, along with the calculation of neighbourhood degree. See Figure 4.9 for
simple examples of neighbourhood size for 1D, 2D and 3D cases.

A clarification on the term neighbourhood size: some models use the term to describe
a “radius” style measure extending from the location of each vertex, while other works
refer to neighbourhood size as the explicit number of vertices included in a neighbour-
hood (essentially degree k) such as shown earlier in Figure 3.15. In this thesis the term
neighbourhood size is generally avoided in favour of vertex degree, as this is the clear-
est numerical indicator regardless of dimensional lattice structure or other topological
features.

Not all regular topology models are restricted to dimensionally orthogonal lattices.
Tessellation patterns are a general model that, although most are popularly known for
2D designs and aesthetic appeal, have a useful application as references for regular graph
structures. In fact, tessellation models work well as a model for ecological environments,
with their inherent physical restrictions to interaction between adjacent cells or locations.

Some regular topology models use a non-homogeneous vertex degree. For example,
a tessellation style pattern can be the result of a mixture of two or more vertex types
(say types a and b) with different degree (say ka = 4 and kb = 8), but again the overall
topology and statistical properties of the model will be known.

The examples of regular structures in Figure 4.10 are tessellations that utilise the edges
of polygon shapes as graph edges, and edge intersection as node locations. However, the
terms “hexagonal”, “square” and so on refer to the polygon shapes that the edges form. As
we will see in later chapters, it is often useful to use the tiles as nodes, and the adjacency
of tiles as the metaphor for a graph edge. This idea of tile based cell locations is the model
used in cellular automata (CA).

Figure 4.10: Examples of (a) hexagonal, (b) square, (c) triangle and (d) diamond regular graph
patterns. All the patterns shown are tessellations, and include a central vertex connected to
its immediate neighbours. In these examples the intersection points of tile edges are used as
vertex locations. Many similar tessellation models use the tiles as vertices and the adjacent
tile faces as edges, and both are valid methods. Note that (a) and (d) could not be formed by
a simpler regular lattice model, and that although (c) and (d) have the same degree (k = 6)
the extended neighbourhood (and hence clustering) is quite different.

111

Chapter 4: Graph Theory, Topology and Efficiency

4.5.3 Hierarchical Models

It is possible to use a development model based on simple regular structures to construct
hierarchical models. For example, a simple hierarchy can be constructed as a tree model.
Consider a balanced (homogeneous) tree, where a single root node has a number of children
c. As the tree is expanded (grown) each child becomes a parent to c new children leaf
nodes. The degree distribution for the graph is uniform with the exception of the root
(k = c) and children (k = 1) nodes. Cycles are not possible in a tree graph. A star (or
focal) topology is a special case of tree model, where there is only a single parent node to
which all children are exclusively connected.

Another example of a structured hierarchical model, developed using an incremental
growth model, is shown in Figure 4.11. In this case the growth model is based on a
copying technique, where the entire graph at the last time step is replicated four times
and connected directly to the root vertex. The resulting graph is exponential in growth
with a strong power-law degree distribution. Even more distinctly, such a model also
has a correlation between individual vertex clustering properties and vertex degree. Put
simply, new “outer” nodes with few connections are very likely to be connected to a highly
connected “hub” node.

Figure 4.11: Hierarchical graph growth. The initial graph (a) is a single vertex without edges
(n = 1). At each step t + 1, the current graph is replicated four times and connected to the
centre of the previous graph. In (b) we see the addition of four more vertices to the graph
(total 1+4 = 5), and (c) and (d) represent two additional steps in the growth. White coloured
vertices indicate “old” growth, while darker grey nodes represent the new replicated subgraphs
added to the system.

There are examples of hierarchical structures in nature, including genealogies (and
classifications of life) and synthesis pathways. In such cases, hierarchy seems to be the
direct result of a replication process. However, although hierarchical models are not overly
common in real-world systems (their construction tends to be very expensive and vulner-
able to attack if there are highly connected hubs), the clustering degree correlation is an

112

Chapter 4: Graph Theory, Topology and Efficiency

interesting feature to look for, and could indicate the presence of a similar development
process when observed in real systems.

For example, Ravasz and colleagues have shown that metabolic networks from 43
distinct organisms are organised into small, highly connected building-block topologies
which are combined in a hierarchical manner to form larger networks, with clustering
degree following a power-law [286].

4.5.4 Random Graphs

The ER Model

Erdös and Rényi introduced a random graph model [103] that has since been widely used
in the study of complex and real-world networks [9]. There are actually two types of ER
models that can be used: the first based on a fixed number of vertices, the second based
on a fixed number of vertices and edges.

Note that with truly random models, there is no inherent requirements for the graph
to be connected (all nodes connected), or an exclusion of connection loops or multiple
connections between nodes. It is important to distinguish exactly the type of “random”
graph models in use, not just the type of ER model used, as there are significant statistical
(and topological) differences in the graphs created with such methods.

Let us consider the first type of ER random graph. We can specify the model as two
simple ideas:

• The graph has a fixed number of vertices n.

• Each pair of vertices has the probability p of being connected.

In a concise way, we denote an ER graph G created with G(n, p) to represent both
these ideas. Note that the number of edges m is a product of the random formation
process. So, based on this model, the average number of edges 〈m〉 is then

〈m〉 = pn (n− 1) /2 (4.19)

The probability of vertices with k edges is pk, and the resultant degree distribution is
binomial, stated as

P (k) =
(
n− 1
k

)
pk (1− p)n−1−k (4.20)

We see that there are
(n−1
k

)
possible vertices for k edges, and that the total distribution

is both pk, the probability of connections of degree k, and the probability of no extra edges
(1−p)n−1−k. For a graph with large n, P (k) takes the form of a Poisson distribution where
〈k〉 is the average degree. So,

P (k) = e−〈k〉 〈k〉k

k! (4.21)

and,

113

Chapter 4: Graph Theory, Topology and Efficiency

〈k〉 = p(n− 1) ≈ pn (4.22)

From the extensive amount of study that ER models have undergone (see the reviews
of [9, 92]), we know that when 〈k〉 ? ln(n) nearly all ER networks are connected and
that the characteristic path length Lrand is proportional to the number of nodes and the
average degree.

Lrand = lnn
ln 〈k〉 (4.23)

The clustering coefficient Crand is simply the probability p that any two vertices are
connected.

Crand = p ≈ 〈k〉
n

(4.24)

Although both random and real-world networks have similar characteristic path lengths
(L ≈ Lrand), for larger networks we see a noticeable difference in the clustering coefficient.
See Table 4.7 where clustering is presented in the measures of local efficiency Eloc and
Erandloc . In real-world networks we see higher levels of clustering (and thus greater local
efficiency) than observed in random ER models.

The second type of ER model has an additional restriction of m on the total number
of, and so in summary is based on the following ideas:

• The graph has a fixed number of vertices n.

• There are a fixed number of edges m.

• The distribution of edges is uniformly random.

A graph G created with this method G(n,m) is useful because it can match an existing
real-world system that has a known number of edges. However, the uniform distribution
of edge degree is a big limitation, and other models are needed for null-model comparisons.

Configuration Model

As already mentioned, the ER model creates a graph with a Poisson degree distribution,
however this may not be the type of distribution needed to model real networks, or at least
the interesting qualities of real systems [360, 9]. The configuration model [241, 242, 257] is
an excellent way to model a known or specific degree distribution in an otherwise random
topology. The ideas of the configuration model are:

• Define the number of vertices n.

• Define the total number of edges m.

• Define a sequence of vertex degrees {k1, . . . kn}, one for each vertex. Multiple vertices
can have the same degree level, and the sum total of vertex degrees for the graph is
m.

114

Chapter 4: Graph Theory, Topology and Efficiency

• Randomly select nodes and connect vertices while maintaining the allocated vertex
degree until all edges have been specified.

The ensemble of graphs that can be created with an equal degree sequence is the
“configuration model”. There are points at which it is known that graphs created with the
configuration model undergo giant-component formation – called a “phase transition” in
likeness to physical processes of similar form.

The configuration model is often used as a null-model, where a known graph is com-
pared to a random configuration model graph with the same sequence of degree. In this
way, a configuration model graph can be used to help identify the distinguishing connec-
tions, structures and properties of the real-world graph under observation.

As already mentioned regarding random models, it is possible that graphs created using
a purely random connection model will have self-loops (vertices connected to themselves)
or multiple (duplicate) edges between vertices. If a null-model comparison is being made
with a system that does not allow such connections to exist, then a restricted connection
model that matches these restrictions can also be used. However, the inclusion of extra
connection rules will impact on the topology of the network, especially for systems of small
size, or at the extremes of high and low edge degree values.

4.5.5 Small-World Model

In Section 4.1.4 of the introduction the small-world phenomena was discussed, along with
a brief introduction to the work by Watts and Strogatz [360] on small-world network
models. It is this work, published in Nature and receiving interest from many different
disciplines, that is credited with a large part of the resurgent interest in graph topology
research.

TheWatts-Strogatz small-world (SW) model is able to create regular or random topolo-
gies upon a regular lattice22, with a probability parameter that controls the degree of order
or randomness. The model can be described with the following steps:

• Create a regular lattice of n vertices (ring lattice).

• Each vertex is given k edges connected to the closest vertices.

• Using a constant probability p the end point of each edge is rewired randomly.

As we can see in Figure 4.12, changing the value of p has a distinctive effect on the
network topology. By running experiments that varied p, and observing statistical values,
specifically the mean path length and the clustering coefficient, Watts and Strogatz were
able to compare their model to real-world networks with appealing similarities. They
had created a relatively simple model that matched real-world network characteristics far
better than ER models.

22The classic case is a simple linear regular lattice with bounding conditions to create a ring lattice.
Regular connections are created between nodes within a limited neighbourhood radius. See Section 4.5.2
regarding regular models.

115

Chapter 4: Graph Theory, Topology and Efficiency

(a) p = 0 (b) p = 0.1 (c) p = 1.0

Figure 4.12: Three examples of the influence of the rewiring probability p in the Watts-Strogatz
model. In (a) p = 0 and gives the initial (unchanged) regular lattice of n = 10 edges each
with degree k = 4, (b) p = 0.1 and shows an example case between order and randomness,
(c) is p = 1 and the resulting random topology.

In creating networks with this model we see that the graph starts with a single con-
nected graph and that, because of the localised regular connections, clustering is high and
the mean-path length will be relatively high (especially on larger sized graphs). Once the
rewiring process begins, it is possible for long-distance connections to appear. Concep-
tually, this means that the benefits of highly clustered local structures remain, while the
overall mean-path length is dramatically reduced. Put another way, the diameter of the
graph is exponentially smaller than its size: even very large networks can still retain very
low mean path lengths. If the rewiring process continues, the benefit of local clustering
will be destroyed and the topology will equal a simple ER random graph.

Figure 4.13 shows a recreation of the experiment conditions and data as described
by Watts and Strogatz in [360]. In particular, note the small-world effect where clus-
tering remains high (due to the initial regular ring-lattice topology) however mean path
length drops low (due to the rewriting and provision of critical long-distance connections).
Implementation details of this experiment are supplied in Appendix G.

It is interesting to note that the underlying lattice has benefits and drawbacks. Many
real-world systems contain regular, physically limited connections, and in simple cases the
regular lattice can be a good match. However, when complex interactions take place (as
processes on the topology), the lattice representation may be too removed from the real
system, and the model a poor resemblance of the real system.

Small-world (SW) models have been generalised to multiple dimensions, and without
the need for specific coordinate systems. In particular, as already mentioned in Sec-
tion 4.4.3, Jon Kleinberg [204, 205] has worked with 2D lattice models and investigated
the nature of search (navigation) with limited local information, as occurs in many real-
world examples.

Although this SW model was one of the first models to explain both high clustering
and small-world characteristics, the degree distribution is narrow and dependant on system
scale. A critical observation, because of its influence to research initiatives, was that real-
world networks usually contain a broad spread of degree distribution, and this encouraged
many researchers to find mechanisms that could explain or model this.

116

Chapter 4: Graph Theory, Topology and Efficiency

Figure 4.13: The effect of p on L and C in the small-world (SW) model. This figure is a
recreation of the model and experiment data as described by Watts and Strogatz in Figure
2 of [360]. The ring lattice model has been used with 1000 nodes, an average degree of 10,
and a re-wiring probability p is varied. Result were collected for 20 random realisations, and
the values for the clustering coefficient C(p) and mean path length L(p) were averaged and
normalised against the lattice model result for p = 0. A logarithmic scale is used to illustrate
the rapid drop in L(p) while C(p) remains relatively high – the classic “small-world effect”.

4.5.6 Price’s Growth Model

The work of Derek J. de Solla Price (1922-1983) starts with the work of Herbert Simon
(1916-2001) who, in the 1950’s [316] showed that models of wealth growth using a “rich get
richer” approach resulted in power law increases. Simon named the approach cumulative
advantage23 and his work has been influential to many fields. Similar non-network stud-
ies of the existence of power-laws in real systems (such as word frequencies and income
distributions) were also known [378] as the principle of “least effort” or the Zipf Law.

In 1965 Price published [282] his studies of scientific paper citation networks, in which
he had observed power-law distributions for both the in and out-degree of citations. Later
in 1975 Price published again [283] on the cumulative advantage process he had ob-
served in bibliographic processes, this time with a model to explain the power-law degree
distributions.

As Newman has pointed out, the “important contribution of Price’s work was to take
the ideas of Simon and apply them to the growth of a network” [257]. The growth model
can be described simply as the probability that a paper will be cited is proportional to the
number of citations it already has. Simon and Price assumed a simple linear relationship,
however this need not be the case. The detail of Price’s model uses a master-equation and

23In sociology research this is also known as the Matthew effect after a well known biblical text Mat.25:29
“For everyone that hath shall be given...”

117

Chapter 4: Graph Theory, Topology and Efficiency

is presented in detail in [257]. Some of the model is presented here as a reference for the
popular Barabási and Albert (BA) model.

A citation network is considered a directed graph of n vertices, where each publication
has a fixed out-degree of papers that it cites at the time of publication. The in-degree of
a publication is all the vertices that refer to it, and may grow over time – as has already
been mentioned – with a cumulative advantage to publications that already have a high
citation degree.

The model allows pk to be the normalised fraction of vertices with in-degree of k, so
that ∑k pk = 1. Although the model allows for a step-wise addition of new vertices, the
rate of addition (number of vertices added each step) can vary over time. The average out-
degree of the network 〈k〉 is held constant over time, and models the reasonable assumption
that new publications will cite an average number of old publications.

At the heart of the model is the probability that a new paper (vertex) will cite an
existing vertex increases proportionally to the in-degree of the existing vertex.

This creates an interesting problem in that because each vertex starts with an in-degree
of zero, how then does a vertex receive its first citation? A simple solution, proposed by
Price, is to add an offset constant k0 to the attachment probability k, and in Price’s
formulation the value of k0 was simply 1. It has been shown that this does not affect the
power-law exponent value, although this type of assumption does affect the Barabási and
Albert (BA) model, and so is an interesting difference between the two models.

Thus, the probability that a new vertex is attached to any existing vertex of in-degree
k is given by

(k + 1) pk∑
k (k + 1) pk

= (k + 1) pk
〈k〉+ 1 (4.25)

where pk is the fraction of vertices with in-degree k, and 〈k〉 is used to represent the mean
out-degree of the graph.24

By looking at the net change in npk per vertex, and then rearranging stationary so-
lutions where pk,n+1 = pk,n = pk, the probability pk can be shown to be a power-law
relationship of the form α−b, expressed as

pk ∼ k−(2+1/〈k〉) (4.26)

This tells us that in the limit of large n the degree distribution will have a power-law
tail with an exponent value of α = 2 + 1/〈k〉, or in the interval between 2 and 3. This
power-law tail relationship matches well with published observations of large real-world
networks (see Section 4.4.9 and Table 4.8), and is discussed later in Section 4.5.9.

4.5.7 Barabási and Albert (BA) Growth Model

More recently, Barabási and Albert championed the idea that real-world scale-free net-
works develop as a result of two distinct features: real networks grow, and vertices connect
to existing vertices using preferential attachment. In this regard the model proposed by

24Note that the mean out-degree is also directly the mean in-degree 〈k〉 =
∑

k
kpk.

118

Chapter 4: Graph Theory, Topology and Efficiency

Barabási and Albert[27] is the same as the model of Price, but with one very significant
difference – the BA model uses undirected edges.

The use of undirected edges means that in the BA model there is no distinction between
in- and out-degree, and while this simplifies the model and avoids the problem of “first”
citations, real networks such as the Internet (which the BA model was trying to emulate)
are clearly directed and hence it is possible that valuable qualities may be missing from
the model.

The model process can be simply stated as follows:

• Start with an initial number of vertices n0 and no edges (a disconnected graph).

• At each update step, a new vertex is added with m edges to existing vertices, where
m < n0.

• The probability that a new edge (from the new vertex) will connect to an existing
vertex is linearly dependent on vertex degree k.

Here the common notation of m is used to denote the edges added per time step, even
though this is inconsistent with prior use of m as the total number of edges in a graph.
However, this is consistent within the literature on network growth models.

Like Price’s model, vertices are added to the network, with the probability that a new
edge attaches to a vertex of degree k given by:

kpk∑
k kpk

= kpk
2m (4.27)

Each vertex has a degree m and this value is not altered as the network grows. The
2m in the denominator represents the fact that undirected edges contribute a degree to
each of the vertices they connect.

We can assume that the BA model uses directed edges, and that the probability of
attachment is actually based on the sum of both in and out-degree values per vertex.
Although technically valid, this does not make sense for many real networks. For example,
in some networks there is a reasonable expectation that underlying development processes
make a preferential distinction between in and out edges.

Using the master-equation method (noted earlier in Section 4.5.6 as part of the presen-
tation of Price’s growth model, and detailed in [257]), the BA model can be solved exactly
in the limit of large graph size [213, 92]. It has been shown by several authors that in the
limit of large k the BA model gives a power distribution of pk ∼ k−3, with a single fixed
power-law exponent of α = 3.

The BA model has been extensively studied, and is known to contain other features,
some of which are quite distinctly different from real-world networks. For example, there
is a correlation between vertex age and degree in real world networks in that the earliest
(oldest) vertices are expected to have much higher degrees than that young vertices. This
is not the case in many real networks such as the WWW, and so has been a reasonable
argument against a BA model. However, even though there is an age correlation in
graphs created with the BA model this does not mean that the mechanism of preferential

119

Chapter 4: Graph Theory, Topology and Efficiency

(a) ER Model (b) BA Model

Figure 4.14: Examples of graphs created using the ER and BA growth models. Both graphs
contain 100 vertices and are constructed using incremental growth models. In (a) the Erdõs-
Rényi (ER) model of G(n, p) has been used with p = 1/50, and the layout method is that
of Fruchterman and Reingold [122]. In (b) the model of Barabási and Albert (BA) creates
a graph using preferential attachment for nodes with a higher degree. This particular graph
uses a linear growth model, and only one new vertex is added each growth step. The layout
method for (b) is that of Kamada and Kawai [183] which is well suited to connected graphs
such as this one.

attachment is not a valid primary influence in the development of real networks. It simply
means that age based preferential attachment is not a universal mechanism.

Secondly, there is a limitation to the model in that it builds upon an unchanging struc-
ture, something very rare in real-systems where an existing structure can easily change. In
the WWW for example, web sites that were once active and the focus of much preferential
attachment, become “dead” and inactive, or simply disappear.

The BA model can be modified to include an exponential limit [9], such that older
nodes lose their “attractiveness” as they get older. This would limit the possibility of
nodes with extremely high degree. However a uniform limit process is rarely observed in
real systems, which suggests that limit should not be used.

A good model that represents natural network formation should include the notion of
“who is connected to whom” – preferential attachment based on referential information.
Unfortunately, the BA model of preferential attachment is based simply on vertex degree
alone.

The contribution of the BA model to complex systems research – particularly the
Internet – has been great, and even its limitations have encouraged new avenues of research.
Since the introduction of the BA model, there has been a significant focus of research into
the development of models that adequately capture the qualities and properties of real-
world complex networks.

120

Chapter 4: Graph Theory, Topology and Efficiency

4.5.8 Merge-Regenerate Models

Merging and regeneration models are also known as “merge and create”, “aggregation and
injection” or simply “merging” models. As all these names suggest, the central principle
of the model is the merging of nodes (or groups), and the addition of new nodes. The
model is an alteration process usually based on an initial random (ER style) graph.

This type of model was suggested in the field of astrophysical systems by Field and
Saslow in 1965 [107]. They proposed that a statistical model that included a process of
aggregation and injection could be used to generate or develop the formation of structure
(stars and interstellar clouds). Their early work is cited by the recent work of Kim et
al. [191] and others [298, 297, 267].

Using an initial random graph G(n,m) (ER model) of n vertices and m edges, the
merging and regeneration process can be described as an update rule for each time step t:

• Select a random node i with degree ki.

• Select a random neighbour j of node i.

• Merge nodes i and j such that the new node merge will have kmerge = (ki − 1) +
(kj − 1)− kcommon edges, where kcommon is the number of nodes (hence edges) that
were common to both i and j nodes.

• Create and add a new node of degree knew to the graph and attach it to a uni-
form random selection of existing nodes. The degree knew is picked from a uniform
distribution with an average of 〈r〉.

The update rule process is also shown in Figure 4.15.

Figure 4.15: A representation of the merge and create model, as described by [191]. In
step (a) a random node is selected, then (b) a randomly selected neighbour is nominated for
merging, (c) the resulting merged graph. In (d) a new node is added and randomly connected
to the network (to retain the overall number of nodes), and with a random number of edges
consistent with the mean of the network.

One of the strongest motivations for the development of this type of model is the
dissatisfaction of the Price(Simons)/BA models, and similar hierarchical models, that
require global information to govern development. It seems more plausible that local
methods, driven by optimisation or similar advantages, would be at play in real-world
network development, where many development processes are local.

121

Chapter 4: Graph Theory, Topology and Efficiency

As Kim et al. have discussed in [191], the two prevalent models used to explain
broad degree distribution are the preferential attachment models or other models that
are “driven” to create hubs against a backdrop of pressure towards a random system.
Instead, their merge and regenerate style model is able to create networks with scale-free
degree distribution, of the form P (k) ∼ k−α, using fairly simple localised and real-world
processes. (This power-law relationship was discussed earlier in Section 4.4.2 and shown
in Equation (4.4).)

The motivations raised also align with the criticisms raised by Keller [188] that the
exaggerated focus of preferential attachment style (BA) scale-free models has limited the
view of the real mechanisms at play in biological (and other) systems.

Merge and create style models correspond well with the ideas of development processes
in real-world systems. For example, it is likely in a computer networking context to replace
two switching devices with a single device of equivalent capacity as a consolidation of
resources (and expense). Similarly, new switches can be added to the network based on
demand. Another example is that of social network, where a social connection between two
people also means that the connections between the two people may be shared, such that
both individuals will share many links and thus take direct paths rather than indirect
paths when searching or transferring information. The consolidation of links between
friends represents a natural process of optimisation, where individuals take direct rather
than indirect paths.

Takemoto and Oosawa have created a model that merges “building blocks” (essentially
small motif structures) rather than individual nodes [335]. This is similar to the idea of
hierarchical metabolic network blocks (such as the ones presented in [286] and cited as an
influence to their model) or the merging of communities in social systems. Their model also
produces power-law degree distributions and clustering spectra and high average clustering
coefficients independent of network size. Their model for the exponential rule is “tuneable”
by adjusting the ratio of merged nodes to that of all nodes in building blocks. It is reported
that the model is also like the BA under specific conditions [335].

4.5.9 Comparing Topology Models

This review of topology models has considered regular (Section 4.5.2) and hierarchical
models (Section 4.5.3), random graph models including the ER and configuration mod-
els (Section 4.5.4), the small-world (SW) rewiring model of Watts and Strogatz (Sec-
tion 4.5.5), the preferential attachment growth models of Price (Section 4.5.6) and Barabási
and Albert (BA) (Section 4.5.7), and the merge and regenerate style models of Kim and
others (Section 4.5.8).

These models are now compared using some of the distinctive measurements and prop-
erties described earlier in Section 4.4. Of particular interest are processes of development,
distinctive structural properties, and the resultant degree distribution and clustering to
vertex degree.

As an initial comparison, Figure 4.16 presents degree distribution and cluster coefficient

122

Chapter 4: Graph Theory, Topology and Efficiency

relationships for three reference graph models. This comparison is similar to that shown
graphically in Box 2 of the review by Barabási and Oltvai in [29].

It can been seen from (1a) of Figure 4.16 that the ER model has a Poisson degree
distribution (typically near the average degree 〈k〉) and (1b) no correlation between clus-
tering and vertex degree. The BA model demonstrates the notion (2a) of a “scale-free”
power-law degree distribution and uncorrelated clustering. The hierarchical model shows
not only a power-law degree distribution (3a), but also a very distinctive correlation of
clustering to vertex degree (3b).

Figure 4.16: Graph models compared: the (1) ER random model, the (2) BA scale-free model
and a simple (3) hierarchical model.

The comparison points can be extended to cover all the models discussed in this section:

Regular models are commonly based on lattice topologies, and because of their “regular-
ity” all have a clear relationship between size and topology features across scale. If
all vertices have the same degree (or a regular pattern), then the degree distribution
of P (k) with respect to k is a simple constant (or a set of constants). As there is
a fixed degree distribution, the clustering coefficient is also fixed by the topology of
the system. Regular models are a useful basis for other models, but do not display
interesting features with respect to degree distribution, cluster or mean-path lengths.

Hierarchical models, although based on a regular pattern of structure, are quite differ-
ent from simple regular models. The repetition of structure as a growth process
creates a direct correlation between degree distribution and vertex degree. Consider
that a hierarchical model that connects new subgraphs to an existing “hub” vertex
will create strong correlation between the probability of vertex degree P (k) and k,

123

Chapter 4: Graph Theory, Topology and Efficiency

and possibly a distinct affect on clustering with respect to degree (as newly added
“isolated” and sparsely connected vertices are attached to existing highly connected
“hubs”). See Figure 4.16 (3a and 3b) for an example of these relationships for the
hierarchical model described earlier in Figure 4.11 of Section 4.5.3.

Random models, such as that described by the ER model, are likely to have a clear rela-
tionship in the distribution of vertex degree related to the random distribution used
in formation. Also, without a specific guided process to influence connections based
on existing degree or clustering, there is likely to be no correlation of clustering prop-
erties with vertex degree or any other factor. The random example in Figure 4.16
shows a Poisson style degree distribution (near the mean value of k for the system),
and the clustering coefficient is uncorrelated and evenly distributed across all values
of k.

Small-world models, like that proposed by Watts and Strogatz, are based on a regular
topology, with fixed degree distribution and clustering properties, and the model
is altered to include random re-wired edges. This means that for small values of
p (the rewiring probability) the resulting degree distribution will resemble that for
a regular topology model. As the value of p is increased towards p = 1, degree
distribution approaches the random model case. As already presented and discussed
(Section 4.5.5), it is the properties of high-clustering and low mean path length that
are the distinctive real-world style qualities of the small-world model. However,
features like degree distribution are linked to system scale – they are not scale free
as many real-world graphs tend to be [257]. This is a strong motivation in the
investigation of scale-free models.

Scale-free models, such as the “cumulative advantage” model of Price and the “preferen-
tial attachment” model of Barabási and Albert, are quite unlike the simple regular
or random models. As can been seen in the representation of Figure 4.16, the BA
model has the distinctive scale-free relationship between degree distribution and de-
gree (a straight line when presented on a log log chart). Note also that there is no
correlation between clustering and degree, and this matches the fact that the BA
preferential attachment model is only based on degree, not measures of clustering or
community style importance.

Merge-regenerate models are most similar in output to scale-free models, however de-
velopment is more similar to the rewiring process of the small-world models, but
focused on node removal and addition. Development is a localised process that does
not depend on global information – in major contrast to the more popular preferen-
tial attachment models. Merge-create style models do create networks with scale-free
degree distributions and real-world like clustering coefficients. Their power-law slope
is also “tuneable” through growth rate parameters (merging rules).

As a summary of the network models and properties described, Table 4.9 contains

124

Chapter 4: Graph Theory, Topology and Efficiency

a list the models, indicates the nature of the degree distribution and the relationship of
clustering to vertex degree.

Model, Process & Features P(k) C(k)
Regular
.Regular, typically homogeneous configuration.
(All nodes with same degree).
.Good basis for other models

Constant
(or set of
constants)

Constant

Hierarchy
.Repetitive (exponential) pattern of growth.
.Very strong hubs. Clustering correlated to degree

Linear log-log
(even)

Linear log-
log

Random G(n, p) (Erdös-Rényi)
.Random probability p of edge between nodes.
.Famous and highly studied.

Poisson
(〈k〉 centred)

Constant

Random G(n,m) (Erdös-Rényi)
.Fixed n and m. Uniform edge formation.
.Uniform distribution limits application.

Poisson Constant

Configuration (Random)
.Uses specified degree distribution.
.Excellent for null-model comparisons. Interesting
phase transitions.

As specified
(set of values)

Constant

Small-world (Watts-Strogatz)
.Regular lattice with random rewiring.
.Low L, high C - “small-world” effect.

From constant
to Poisson

Constant

Scale Free (Price)
.Directed growth model with (linear) cumulative
advantage attachment.
.Models scale-free topology.

Linear log-log Constant

Scale Free (Barabási-Albert)
.Undirected growth model with preferential
attachment.
.Avoids “first” edge issues. Highly studied.

Linear log-log Constant

Merge-regenerate
.Initial ER G(n,m) model. Merge two neighbours,
add new node.
.Local process, not global.

Linear log-log Constant

Table 4.9: Summary of network models and properties. P (k) represents the type of degree
distribution, and C(k) indicates the relationship of clustering to degree.

4.6 Networks and Processes

4.6.1 Introduction

The purpose of this section is to briefly discuss some the key process ideas as they related
to network topology.

4.6.2 Utilisation

Networks are used to perform a functional role. Functions and processes that occur on a
network are affected by topology. Processes that directly alter the network will certainly
affect topology. This is especially interesting in the context of topology formation and the
study of network resilience.

125

Chapter 4: Graph Theory, Topology and Efficiency

From phase transition models we are able to measure and predict critical stages in
network formation. Percolation models help us to understand how the “occupancy” of
nodes and edges affects a network’s performance. This is a very useful way to model
network resilience.

4.6.3 Navigation

The process of searching on a network, or network “navigation”, models many real-world
tasks and functions. Indeed, Milgram’s social networking experiments [232] were not just
about the network of connections, but also the ability of people to successfully use infor-
mation they had to utilise the connections available. Again, understanding and making
use of complex systems relies on not only the topology, but the functional manner in which
the topology is used. Efficient topologies are of little consequence if a process is unable to
effectively navigate to good connections.

Rosvall, Sneppen and others [298, 297, 86] have proposed a model of network formation
and adaptation that is based on information transfer. They have shown that when the
model is adapted based on utilisation, and imperfections exist within the information used
to guide utilisation, it is possible (and likely) for scale-free topologies with hierarchical
features to develop. Their model is particularly interesting, because the process of lost
information (lossy) is a very real-world phenomenon. To have a model that presents real-
world features that is also based on a realistic issue of information loss makes this an
excellent candidate for many simulations.

4.6.4 Evolution

Through observation, measurement and experiment, it is fairly certain that evolution and
topology are inextricably linked: it is the nature of the real-world. Consider that:

• Network topologies are formed as a result of evolutionary (adaptive) processes.

• Network topology is the environment upon which evolution occurs.

There are two key theories behind the observations that both technological and bi-
ological networks contain non-random structure, usually scale-free [91, 26, 259]. First,
networks are almost always the result of a developmental or “growth” process, in which
nodes and edges are added to the existing network. Second, edges are formed with a bias
such as “preferential attachment”.

Within the domain of software systems and development, measuring the topological
changes – such as the clustering and degree correlation of systems – during system growth
and evolution has provided tools for detecting change [348] and an understanding of the
resilience (or resistance) of software “classes” to change [347] as software systems of signif-
icant size grow. The concept of topology in software applies at both a design level and to
run-time code interaction (“coverage”). As mentioned earlier, the identification of network
motifs within software code is another area of analysis that is still being explored in new
ways [10].

126

Chapter 4: Graph Theory, Topology and Efficiency

There is a considerable interest (such as [174, 376, 227]) in the modelling of protein
interaction networks. Proteins are represented as vertices, and edges are the reactions (or
interactions) between them. From an evolutionary view, genes that code for proteins are
duplicated during reproduction, and hence processes such as mutation or gene-duplication
– if altered or adjusted – could well explain some of the linkages and dependencies that are
observed [257, 36]. This also adds weight when genes are either co-located on the genome
or their expression is tightly coupled.

Scale-free topologies exist in many real-world systems, yet a model of preferential at-
tachment does not reflect the real-world process responsible in all systems. Considering
the domain of evolutionary processes, what mechanisms exist that could explain cumula-
tive advantage? Although the exact details may not be essential for artificial models, the
underlying process might be significant.

Work has been presented by Jain and Krishna [175, 176] of an evolutionary system of
simple chemical models capable of forming interacting “species” and increasing complexity
over time. The network of interaction is a weighted graph, where positive links indicated
catalytic interaction, and negative values represent inhibitory influence. The model is
able to demonstrate spontaneous growth, connectivity, cooperation and complexity. It
also demonstrates catastrophic events, such as the loss of critical “building-block” species,
and the “rediscovery” of critical components.

The work is distinct from the earlier (1979) “hypercycle” model of macromolecular
evolution proposed by Eigen and Schuster [100] which requires specific reproduction mech-
anisms and suffers from internal disruptive influences. Both models are interesting in that
they provide a basis for modelling evolutionary processes as topologies, in particular the
notions of interacting species evolving (via mutation or reproduction) in a closed system.

4.6.5 Biology and Genetics

It is an accepted concept within the fields of biology and genetics that a fuller understand-
ing of biological and cellular systems can only occur through a framework of knowledge
around cellular networks and the topology of interacting components [36, 29]. Reduction-
ist models have provided useful knowledge of molecules and individual cell components.
However, this does not give the desired overall picture and a model of the complex inter-
actions of all components – such as DNA, RNA, small molecules and proteins. This is
needed to understand the entire cellular behaviour.

In biological systems there are many interactions between proteins, metabolic pro-
cesses, signalling and transcription regulation. There are networks of networks; a single
system cannot be isolated and fully responsible for even a single cell’s function. It is the
topology and the dynamic properties of such networks of networks that ultimately defines
the behaviour of an individual cell.

Evidence from 43 different organisms, across all organism domains (eukaryotes, bacteria
and archaea) indicated that cellular metabolism follows a scale-free topology [177, 350,
351]. This confirmed the notion that most metabolic substrates are involved in a limited

127

Chapter 4: Graph Theory, Topology and Efficiency

number of reactions, but an important few participate in many reactions and are critical
“hubs” for metabolic function.

Featherstone used a technique of fragmenting the observed “picture” of gene expression
networks, via mutations and genome-engineering technique, to enable the isolation of gene
functions [105]. This also assisted the identification of a gene expression network topology,
and the presence of scale-free topology and small-world qualities. The work was motivated
by the fact that most phenotype changes are the result of many genes. The scale-free
organisation “helps make organisms resistant to the deleterious effects of mutation, and is
thus highly adaptive”.

In a study of gene expression data from different cancer types, Agrawal [3] showed the
existence of power-law features, and the presence of small-world behaviour. The work also
discussed the results with respect to evolutionary processes which is relevant to artificial
evolution models also.

In a similar way to gene expression networks, the physically based interaction of
protein-protein networks has also been shown to contain scale-free topology [36].

Wuchty [376] applied the then recent discoveries of small-world measure and scale-free
topology to existing data on protein interaction. Results showed systems with a “high
degree of local clustering” accompanied by a few long-distance connections. Again, the
observations were valid across different organisms, and this repeats the suggestion that
interaction complexity in organisms is an indicator of evolutionary progress of organisms;
there is an increasing network complexity from single cell systems to multicellular systems.
The author clearly states, however, that the scale-free and small-world models can only
be a “rough” approximation of the real systems, and the processes used to construct the
models may not be the ones responsible for the biological systems.

The work of Maslov [227] looked at the specificity and stability of protein interaction
networks. Results indicated that highly connected nodes tend to link to less connected
nodes (proteins), which is the “disassortative mixing” property discussed earlier (Sec-
tion 4.4.2) as it relates to degree distribution.

Although research indicates the presence of scale-free topology in biology, it is not
ubiquitous. A problem with the scale-free measure is its lack of specificity: it does not
indicate the “strength” or a cause that underlies its existence.

The transcription regulatory networks for S. cerevisiae and Escherichia coli present
a mixed case of scale-free and exponential form. Results show that transcription factors
(out-degree) regulate only a few genes, and overall matches a scale-free model. However,
the in-degree process of transcription factors interacting with genes matches an exponential
model. From research findings it seems that most genes are regulated by a small number
of transcription factors only [235, 315]. Another finding, related to the identification of
motif forms, is that cellular networks have a disproportionate number of highly connected
nodes, and that such highly connected nodes are a distinctive quality of the processes they
represent.

There is evidence in metabolic networks of “ultra” small-world effects, such that there

128

Chapter 4: Graph Theory, Topology and Efficiency

are a very small number of reaction paths between metabolites and the entire network can
be affected by changes in metabolite concentrations easily [177, 350, 351].

Wagner has also suggested [349] evolutionary constraints on the evolution of gene
expression. It is interesting to note that a parasitic bacterium has the same mean path
length as a highly developed multicellular organism. This strongly suggests that there are
mechanisms at play in evolutionary processes that encourage or maintain a short mean
path length in the system.

There are many biological examples of the network principles discussed in this chap-
ter. In particular there are many examples of complex networks that exist between the
components – such as molecules, DNA and proteins – that form large organisms. There is
also strong indications of the role that evolution plays in the formation and development
of such complex structures. This supports the work in this thesis that combines the ideas
of complex system topology and applies this to the field of evolutionary computation.

4.7 Summary

This chapter has examined current research and models of graphs and complex systems,
including a number graph measurements, properties, and models of graph development.

Appendix C contains a detailed survey of many instances of the topology model pre-
sented and discussed in this chapter. The survey supports the selection of appropriate
topologies for use in the investigations presented later in Chapter 6.

The overall objective of this chapter, and Part I of the thesis, is to support the de-
velopment of an ecosystem model of evolutionary computation. This model is presented
in Chapter 5, and is able to support different organisational structures and topologies,
including the models presented in this chapter.

129

Chapter 4: Graph Theory, Topology and Efficiency

130

Part II

Investigations within Ecosystem
EC

131

Part II

• Chapter 5 presents an ecosystem framework that can be used for different or-
ganisation models of evolutionary computation (ESEC).

• Chapter 6 shows, with a series of investigations, how the ESEC framework
can be applied to an organisational level of a single species population, how
the topology of the population can be specified and how topology properties
influence evolutionary outcomes.

• Chapter 7 considers in detail the opportunity for further research with the ESEC
framework, by presenting both community and ecosystem organisations. A
community is an extension of a single population model to a system composed
of nested populations and multiple interacting species. Similarly, an ecosystem
can be composed of nested populations, communities and entire ecosystems. Of
particular interest is the opportunity to investigate the influence of interaction
topology between nested systems.

• The thesis conclusion in Chapter 8 summarises results and considers further
avenues of research based on the ESEC model and esec package.

132

Chapter 5

An Ecosystem Model for
Evolutionary Computation

5.1 Introduction

This chapter presents the composition1 of concepts and models presented in Part I of
the thesis, in particular: ecological models and organisational levels (Chapter 2), the
application of evolutionary adaptation as a means of computational search (Chapter 3),
and the properties of topology to support and influence processes and activities (Chapter 4)
such as those in ecological systems and in particular evolutionary adaptation.

After presenting a condensed summary of the essential and relevant aspects of ecology,
evolutionary adaptation and topology, this chapter proposes an architecture of systems
that can be used to implement an ecosystem model of evolutionary computation (ESEC
= EcoSystem Evolutionary Computation).

Consideration is given to related work in Section 5.4, and key questions for the ESEC
model are listed and discussed in Section 5.5. Section 5.6 supports later empirical inves-
tigation by presenting appropriate methods to be used when comparing performance.

The ESEC model is also detailed and used in later chapters to investigate some open
questions and to validate expectations of the model and its capabilities.

5.2 Ecosystem Evolutionary Computation

5.2.1 A Composition of Models

The intent of this section is to clearly present the meaning of an “ecosystem model of
evolutionary computation” (ESEC) as it is used in this thesis; ecologically based organi-
sation, computational search based on evolutionary adaptation, and explicit consideration
of topology and complexity.

An ideal outcome of the ESEC model is that in addition to the successful application of
a biological metaphor (evolutionary computation) other useful concepts from ecology and

1The term “composition” is used in the sense of bringing together a number of different components in
an integrated manner.

133

Chapter 5: An Ecosystem Model for Evolutionary Computation

topology fields are also included, and possibly exploited to advantage in some applications.
In order to list potential advantages and disadvantages, it is constructive to consider each
of the areas presented in earlier chapters with their use in the ESEC model composition.

5.2.2 Ecology, Ecosystems and Organisation Scale

The fields of ecology and ecosystems contain many useful models and defined systems of
interaction that may be of assistance to an artificial application to evolutionary computa-
tion. Chapter 2 presented many interesting and relevant concepts including the biological
origins of evolutionary adaptation.

To begin, consider the model of energy and matter flow within an ecological system;
energy flows into a system, the value of such energy is transferred and used to created
changes in matter, and as the system is open, the energy is lost. The more exchanges
of energy, the greater the losses and the reduction in usable energy value. Based on this
it can be observed that within ecological systems there is always a “cost” and a finite
system (of organisms and resources) can only support a finite number of organisms and
processes. Not all system configurations are sustainable, and successional phases of change
in configuration are common, while relatively stable systems of minimal change are the
exception.

From these initial points we can consider and apply models of limited energy and
resources to evolutionary computation (EC) as a “quota” system, whereby different com-
ponents of the overall system (be they individuals or groups) have limited resources. Sim-
ilarly, successional changes of system composition might be allowed or artificially applied
to EC in order to support or encourage particular adaptations (such as robustness, com-
petitive and cooperative behaviours).

There are various levels and types of interaction within an ecosystem. For many EC
models this is specifically limited, but an ecosystem model should support community
models of interaction between individuals and species. In the biological world, competi-
tion and specialisation to exploit niche opportunities are the normal. Cooperation and
symbiosis form between individuals and species as a necessary complexity. Despite the
cost in energy or resource use, symbiosis is required to enable species survival and sta-
bility. Although individuals within groups can have an influential or leadership role in
localised environments, ecosystems are inherently decentralised and group level behaviour
is emergent.

In many biological examples, an organism’s life can be characterised by three activities
with the environment and other individuals: foraging, reproduction and survival. Forag-
ing and survival are purely self-serving acts, while reproduction is a drain on individual
resources, yet vital for a species’ longer term survival. All three activities may motivate
an individual to change its location in the environment (mobility).

As a general model, mates for reproduction are selected from a local environment,
with selection based on a direct proportional relationship to fitness. Offspring are likely to
remain in the local environment of parent individuals, particularly when juveniles require

134

Chapter 5: An Ecosystem Model for Evolutionary Computation

the support or resources of adults. The support of “weak” children provides an island
style of niche.

Given that individuals typically avoid risk, the likelihood of aggressive conflicts with
other individuals is inversely proportional to the availability of resources. When resources
are scarce, there is more pressure on survival. Aggressive conflicts (when they occur)
are resolved probabilistically in proportion to the relative “strengths” of individuals or
groups.2

A life cycle model (Section 2.3.3) incorporates the basis of many useful abstractions
that are applied to evolutionary computation. They include the components of popula-
tions, individuals and traits, the processes of fitness, survival and reproduction. In order
for fitness-based selection pressure there needs to be trait variation within a population.
Trait variation is the “raw material” that enables selection pressure to change the succes-
sional composition of a population.

Biological examples of the life cycle model, and of fitness-based selection pressure,
present decentralised processes, competitive and cooperative interactions (at several lev-
els), adaptation and evolution. Behaviours of an individual are the product of inherited
capability and the developmental and current environment – including interaction with
other individuals of many species. Some individual and group behaviours emerge as a
specific result of environment and interaction; aggregate behaviours are not specifically
prescribed.

Evolution involves three distinct organisational scales: “group”, “individual” and
“trait” (variation) components. As discussed previously (Section 2.4.9), a classic model
of evolution primarily considers the “group” to be a population of “individual” organ-
isms whose composition includes “traits” (genetic material). Macro-scale evolution and
micro-scale evolution models consider different organisational scales for each component.
It is appropriate to consider different or multiple concurrent evolution scales within an
ecosystem model for evolutionary computation.

To consolidate, the features and processes of biological ecosystems discussed so far are:

• Decentralised: No leader, “overlord” or grand-coordinator of individual behaviours.
Systems scale and survive within the possibilities of shared environment resources.

• Autonomous: Individuals have local influence (work) within local conditions (envi-
ronment). Independent behaviour and interaction result based on local situations.

• Energy driven and resource limited: Life cycles and food chains. Limited resources
demand appropriate solution minimisation (as a competitive necessity), while open
systems require an input of energy to sustain activity.

• Organism activities: Foraging, reproduction and survival – all of which can motivate
individuals to move. Reproduction and survival are proportional to fitness. Survival
pressure is inversely proportional to resource limits.

2A “pack” of small animals working together are able to hunt larger prey that would be impossible for
a single small individual to successfully attack.

135

Chapter 5: An Ecosystem Model for Evolutionary Computation

• Evolution: The availability of trait variation, selectional pressure and successional
change.

• Symbiosis: Individuals adapt3 to live with others (or die). Adaptation can result in
divergent niches, layers of complexity, exclusion and extinction of groups or species.

• Emergence: Group behaviours can emerge as a result of a collective interaction,
including the capability for group level adaptation and behaviours.

• Scale: Evolution concepts are not bound to a specific organisation scale. There
are multiple scales of evolution, including micro and macro models that may adapt
concurrently. It is typical for the rate of evolutionary change within micro scale
systems to be much faster than rates within macro scale systems.

5.2.3 Evolutionary Computation

A review of the origins and ideas of simple evolutionary algorithms (EAs) and the field of
evolutionary computation (EC) were presented in Chapter 3. The chapter showed how,
as an applied biological metaphor, evolution concepts and processes can be applied to
problem solving. EAs have proved to be a robust adaptive search technique suitable for
many domains, and have specific features that make them suitable for a niche of problems
where other classic techniques are less suited.

Key components for evolutionary computation, and in particular an ecosystem model
of EC, were identified and discussed. (See Section 3.2.2 and Table 3.3.) These components
are:

• representation of individuals, population and communities;
• initialisation of individuals and other structures;
• evaluation of individuals and interactions;
• selection of individuals in many different contexts;
• variation operations acting on existing individuals;
• migration between groups of individuals; and,
• termination criteria as a practical necessity.

Representation should include the specification of a search domain (or search land-
scape), individuals and traits, and groups of individuals at small (neighbourhood) and
large (population and community) scale. Additionally, an ecosystem model should sup-
port representation of composite organisations which specify subsystem components.

Individual representation could include models and processes of interaction, including
reproduction. However the important features of evaluation, selection, variation (including
reproduction) and migration are separated. The representation of groups of individuals
ranges from simple populations of single species individuals to communities of multiple
interacting species.

3This includes inter-generational adaptation of traits as well as intra-generational changes such as
learning and behaviour modification.

136

Chapter 5: An Ecosystem Model for Evolutionary Computation

The evaluation of an individual is based within a specific context. Although the overall
search domain is specified for an EA, a search vector within the domain may be composed
in many ways; from a single species individual to a complex composition of several species
individuals. Because of this, the measure of success within the search domain is applied
to the contributing individuals based on a model of relative contribution – the evaluation
context. The “fitness” measure of success for an individual within its population or com-
munity can require that the search domain measure be scaled, weighted and aggregated
to create a specific “fitness” value.

Selection applies to many different contexts within an evolutionary process. This
includes the selection of individuals for reproduction (which can be divided into roles for
the primary “parent” and partner “mate”), the selection of offspring survivors (natality),
the selection of adult individuals for removal (mortality), and migration selection (for
both emigration and immigration) for individuals that are displaced or copied between
semi-isolated populations or communities.

Although the context to which selection is applied varies, mechanisms for selection
can be shared and applied to each context. The strength of selection mechanisms vary
from weak to strong. (See Section 3.2.5 for a discussion of several well known selection
mechanisms.) In practice, the use of multiple strong selection mechanisms results in rapid
trait convergence while too little selection strength results in poor search efficiency.

Variation is a vital component of all evolutionary processes, on which selection (via
evaluation) is able to operate. The two established mechanisms of variation are recom-
bination and mutation, of which the specific implementation depends on representation
of individuals and in some cases the search domain. The performance of an EA can de-
pend greatly on the ability of variation operators to provide useful results, and there are
many domain specific operators, as well as their associated configuration parameters. (See
Section 3.2.6 for illustrative examples of binary and permutation variation operators.)

The abstraction of migration as a distinct component is an essential feature of an
ecosystem EC model. A migration protocol enables individuals to be moved or copied
between groups such as populations and communities. Migration in this sense is not
being used to describe movement of an individual within a single population, but this is
not a specific limitation. A classic and well cited example that utilises inter-population
migration is the “island EA”, a distributed EA (dEA) described earlier in Section 3.4.6.

Termination, as a component of the generational evolutionary process, is a practi-
cal feature, often specifically linked to search domain performance or practical resource
limitations and specific problem objectives.

The order and dependency of components need to be carefully considered with respect
to the use of a topology for population, community or composite ecosystem structure. In
particular, when using a topology to limit evaluation, or selection (directly or indirectly
via evaluation), a graph instance forms a parameter of such functions (Section 3.2.10).

New offspring individuals may be added to a population either incrementally and indi-
vidually, in a so called “steady state” manner, or as a combined “generational” replacement
influence. As a generalisation of these two extreme models, the “gap” model supports the

137

Chapter 5: An Ecosystem Model for Evolutionary Computation

description of both extremes, as well as an intermediate level of overlapping “gap” where
a proportion of the existing population is replaced by a group of new offspring.

As shown in the review of common (or “classic”) EA dialects (Section 3.3), most are
single panmictic population models of single species individuals whose traits are applied
simply (mapped directly) to a search domain. Two important “structured” EA are ex-
ceptions to the panmictic models, namely distributed EA (dEA) and cellular EA (EA)
models.

Structured models tend to be suited to parallel implementations and the use of a gap
model can impact on the suitability. Some approaches to concurrent implementation work
best with fine-grained distributed EA models while other approaches are more practical
when using coarse-grained island populations. It is a design objective that the ecosystem
EC model presented should easily support any model of parallel architecture, abstracted
from specific hardware decisions.

5.2.4 Topology, Complexity and Efficiency

Simple and Complex

Graphs and topology have been identified as important parts of real-world complex sys-
tems, including many levels of ecosystems. Within established evolutionary computation
relatively simple or structured topologies have been applied to population and community
topologies. Based on the observation of complex topologies in many “ideal” natural and
artificial systems, and the relationship of effective and efficient properties of such com-
plex systems, it is important to be able to include both simple and complex topologies
within the ecosystem EC model. This enables investigation of the relationship topology
and evolutionary adaptation have, and is a key focus of later chapters.

Topology Survey

Of the many graph models discussed in Chapter 4 only a representative selection need
to be included and explored in detail, ranging form simple to complex. As an important
supplement to the thesis, Appendix C provides a detailed survey of graph topologies that
are used or related to investigations in later chapters, including simple, deterministic and
complex models.

The survey includes properties and details for a number of graph types, organised
into groups. Order begins with full graphs, deterministic regular lattices, tree and star
graph models, and then moves on to stochastic random Erdös-Rényi (ER) models, the
small-world growth model of Watts and Strogatz (WS), the Barabási-Albert (BA) scale
free growth model, and the Merge-Regenerate (MR) model.

For each graph there are three common assessment and presentation forms within the
review:

• Table of properties and statistics for the specified topology type for three (or more)
standard graph sizes.

138

Chapter 5: An Ecosystem Model for Evolutionary Computation

• Two dimensional layout image (or sample of images if presentation is variable) to
visually represent the graph model topology.

• Sets of histogram plots for vertex degree and path length; one set for each standard
scale.

Additional details, summaries and relevant comments are provided to assist in the com-
parison of topology instances. Each table of properties and statistics presents the following
details which are all discussed in Chapter 4 and in the topology glossary (Appendix A):

• Number of vertices n.
• Number of edges m.
• Components of the graph (if a graph is disconnected).
• Diameter of the graph.
• Girth of the smallest cycle (if possible).
• Density of the graph, normalised.
• Mean vertex degree 〈k〉.
• Mean path length L.
• Clustering coefficient (transitivity) C.
• The normalised global efficiency of the graph Eglob.
• The normalised local efficiency of the graph Eloc.

For a single deterministic topology the values of a single graph instance are used. If
a graph is stochastic, a sample of graph instances (usually 30) is created and the average
values used where appropriate. All graph models are treated as undirected.

The potential complexity and variance of graph model parameters make a complete
survey of all possible graph instances impossible. It is hoped, however, that the survey
provides a supportive and comparative explanation of the known and expected properties
of the graph instances selected for use in experiments. This kind of survey is missing from
other studies utilising complex topologies with evolutionary computation.

Select Topology Summaries

Lattices of various neighbourhood configurations form the majority of the topology survey
content. This has been done to consider a wide selection of the common lattice topologies
considered with existing EC literature. The review includes analysis of the circular and
non-circular forms, as well as novel “hollow” lattice forms. Also considered is the influence
that rewiring has on each base lattice.

Overall details for regular lattices, hollow lattices and rewired lattices are all presented
as summary tables. Regular lattice properties can be directly attributed to size and
neighbourhood configuration and degree distribution; properties such as diameter, density,
mean path length (distribution) and clustering can all be determined analytically. Lattice
graphs are always a single component unless rewired in which case an isolated component
may form.

139

Chapter 5: An Ecosystem Model for Evolutionary Computation

In general, the path length distribution of bound lattices have wider and larger dis-
tribution of values in comparison to equivalent circular lattices, which show a distinctive
triangular form. As expected, rewiring a lattice (circular) graph reduces the width and
shifts the mean value of its mean path length value distribution. See Figure 5.1 for exam-
ples of histograms for an L.k4 lattice graph of size n = 400, in response to rewiring. The
rewiring process and its influence on a regular lattice was discussed in Section 4.5.5 as it
forms the basis for the Watts-Strogatz small-world model. Rewiring creates vertices with
degree values that do not exist in a simple regular lattice. The influence of rewiring can
been seen in a vertex degree histogram, and as a consequence as a change to mean path
length distribution.

5 0 5 10 15 20 25
Path Length

0.00

0.02

0.04

0.06

0.08

0.10

Fr
e
q
u
e
n
cy

(a) Circular

5 0 5 10 15 20 25 30 35 40
Path Length

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Fr
e
q
u
e
n
cy

(b) Bound

2 0 2 4 6 8 10 12
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
e
q
u
e
n
cy

(c) Rewired

Figure 5.1: A comparison of mean path length histograms for circular, bound and rewired
L.k4 lattice graphs of size n = 400.

The main properties of interest influenced by rewiring are mean path length and local
clustering (Figure 5.2). As the degree of rewiring is increased, the mean path length
decreases (global efficiency), while the local clustering property (local efficiency) initially
resist the influence of rewiring but is eventually disrupted.

10-2 10-1 100

Rewire probability p

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Eglob

Eloc

(a) L.k4

10-2 10-1 100

Rewire probability p

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Eglob

Eloc

(b) L.k12

10-2 10-1 100

Rewire probability p

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Eglob

Eloc

(c) L.k6

Figure 5.2: Comparing the influence of rewiring on Eglob and Eloc on three different base
lattices. In each case the global efficiency increases, and for the L.k12 and L.k6 instances the
local efficiency is reduced.

The main influence on variations, within the observations made of rewired lattices, is
the initial lattice density and local cluster configuration. If initial density is low then as
rewiring takes place it is possible for isolated components to form. This applies to a biolog-
ical example, in that sparsely connected organisms (low density) can be greatly affected by
minor changes to the environment that easily isolate individuals or sub-populations. Sim-

140

Chapter 5: An Ecosystem Model for Evolutionary Computation

ilarly, if high local efficiency is important the process of rewiring may introduce additional
local connections.

Tree graphs have been included in the investigations as they are a simple deterministic
hierarchical growth model, and so have a similar base form to scale free growth models
involving stochastic factors. Pure balanced tree models display exponential growth prop-
erties. As the tree sizes for investigations are selected to match other lattice topology sizes
all tree examples are unbalanced. Star graphs are a special case tree graph, where there
is only one parent and all other vertices are child leaf nodes.

Because of the lack of cycles, trees have zero girth, clustering and local efficiency.
Diameter is essentially two times the number of growth steps required to form the tree.4

The mean path length and the graph diameter decrease in proportion to the number of
children added each growth step, as more children allocated to each node increases the
degree and width of each hierarchical tree level. The star model is simply an extreme case
of the tree model, where the number of children added in step one is c = n− 1.

For the Erdös-Rényi (ER) G(n, p) graph models, the average density and clustering
coefficient values are well known to be essentially the same as the specified edge probability
p. As such, this simple model for graph formation does not require an understanding of
any other process. One important feature of ER graphs is that, for small graphs, the low
“density” (the number of edges present compared to the number of potential edges in an
fully connected graph) often results in isolated subgraph components. For an evolutionary
process this implicitly means the population diversity is also subdivided.

Isolated components can be a useful thing for some simple search domains that require
little diversity and rapid convergence is desirable. This is also a fundamental limitation
for applications that require diversity. It is also a problem for a termination component
if it relies on population trait “convergence” criteria – isolated components in a deceptive
search landscape are less likely to concurrently converge.

The Watts-Strogatz (WS) small-world model starts initially with a 1D circular lattice
and a prescribed overlapping regular neighbourhood size. As already observed and stated
several times, a rewiring process reduces mean path length and increases global efficiency
while ideally retaining good local efficiency. When rewiring is continued to an extreme
level the graph resembles a single component random graph.

A single configuration of the Barabási-Albert (BA) preferential attachment growth
model is used, with the power relationship set to p = 1. In this basic form the cycles are
not created (as in tree graphs) and so the girth and clustering values are zero. Overall
cost is quite low, while robustness to random vertex removal is high. Such hierarchical
graphs are highly susceptible to targeted removal of critical vertices.

With an underlying ER model as its base, the Merge-Regenerate (MR) model initially
matches the equivalent ER profiles. As a number of merge and regenerate steps are
applied, the MR graph features are more likely to resemble those of a tree or star graph.
It is possible, as in ER graphs, for some vertices to remain isolated. The overall mean path
length remains relatively low (compared to simple ER instances) due to the concentrating

4In this case diameter is the number of steps required to travel from one leaf vertex, through the root
vertex to another leaf.

141

Chapter 5: An Ecosystem Model for Evolutionary Computation

nature of “merges” and the reconnection of new vertices to the existing components. Of
the models selected, the MR model is considered only superficially. There are several
parameters that influence the MR model. A deeper analysis is beyond the current scope
of investigation concerns.

Expectations

As already outlined, there are several aspects of EC to which non-trivial topology might
be applied. However, as a basis for presenting reasonable expectations of the influence
complex topology may have to the adaptive process of evolution, consider a simple EA
scenario with a single population.

For simple search domain applications, a simple population topology is likely to be
best. In this type of search domain the search process can afford to be greedy; rapid
convergence and loss of diversity do not have a detrimental effect on either solution quality
or the search time. A full graph population topology, where all individuals have direct
access to all other individuals, enables the search process to greedily exploit the current
“best” solution.

For some search domains, particularly those with deceptive features, rapid population
trait convergence is known to be detrimental. A population topology that helps to isolate
multiple concurrent search properties is likely to support successful search. In such cases
a regular lattice might be excellent, offering structured isolation for different concurrent
niche variations.

Conversely, lattices can also slow progress down. For example, if two essential traits
may be topologically distant the search will require numerous successive generations before
a successful “mixing” of the two traits can occur. The size of a lattice and its density (based
on neighbourhood topology) also add parameters to the EA paradigm. Such parameters
can be sensitive to qualities of the search domain and are also difficult to know aprior in
practical applications.

In a similar but less prescriptive manner, a simple random topology might provide
suitable topology subgraphs that support semi-isolated specialisation (as in the case of
a lattice), while still allowing trait mixing and overall search vector competition. It is
conceivable that there are search domains where neither extreme of simple or structured
topology is best, and that instead there is a niche where random topology performs best.

To retain some lattice specific properties, a regular lattice with a variable degree of
rewiring provides a “tuneable” topology, which can then be adjusted for good a search
domain specific performance. Such a topology provides a range of lattice isolation and
global mixing can be adjusted. Rewiring creates a “phase transition” between dominant
local efficiency exploitation and global efficiency (connectivity) for explorative abilities. It
might be worth considering if there are applications for which the WS small-world topology
may be the “right niche” for the domain, in light of the WS topology having a 1D lattice
with dense overlapping neighbourhoods (greater than that found in 2D lattices).

142

Chapter 5: An Ecosystem Model for Evolutionary Computation

5.2.5 An Organisation of Systems

Figure 5.3 presents the ecosystem organisational levels used by the ESEC model to support
evolution and topology. There are three main organisational structures: the population
(containing individuals of a single species), the community (containing multiple interacting
species populations), and the ecosystem as a composite organisation.

Figure 5.3: Organisational levels used as basis for ESEC components. The three main organ-
isational levels are the population (containing individuals of a single species), the community
(containing multiple interacting species population), and the ecosystem as a composite organ-
isation.

Individuals are the essential evaluated entities within this model. As presented in
classic models of EC, individuals can be simple values, encoded and expressed (mapped)
values, or a complex network of genes to phenotype traits. An individual may also be the
result of a formation (composition) within a community and environment context. Accord-
ingly, the relative value of an individual and their traits is a function of the environment
including the community.

Populations contain individuals of the same species that are interacting among them-
selves. There may be multiple populations of the same species type within a community
or ecosystem, hence a population in this model specifically describes a type of membership
and group isolation. A population may be the result of an initial colonisation or migra-
tion process. Within a population it is possible to have trait related substructure such as
juvenile individuals, breeding adults and non-breeding elders.

A species defines a group of individuals that are similar enough to reproduce, and so
this also identifies potential competition between potential mates for reproduction. The
definition of a species can also be common among different populations or communities,
such that species individuals can migrate between organisational groups and integrate.

143

Chapter 5: An Ecosystem Model for Evolutionary Computation

Communities have a specific environment, population subsystems and species. Rules
govern the interaction, occupancy, boundaries, limits of individuals, time and resource
allocation including space or territory based competition. The community environment
can be the search domain. Individuals of several populations may interact (cooperatively
or competitively) in order to form a solution vector for the search domain space. Species
within a community coevolve and coadapt.

An ecosystem also includes an environment, and may contain communities, popula-
tion, and nested ecosystems. A collection of species can be specified and shared between
subsystems. Individuals of subsystems interact based on rules, and may migrate between
compatible subsystems according to protocol. The notion of an energy quota can be used
to limit resource allocation with which to adapt. Subsystems may adapt concurrently or
serially based on a specific order. The environment does not need to be static.

Each organisation structure is considered in more detail. Chapter 6 looks at sim-
ple single species population models, with a variety of population topology models on a
selection of well known search domains, in order to investigate a number of population
topology related questions. In Chapter 7 both community and ecosystem organisational
structures are considered with respect to opportunities for further research, in particular
those focused around the influence of interaction topology between nested subsystems.

Although it is a deliberate goal of the ESEC model to contain a broad model of concepts
and functionality, it is not able to contain all possible variations. It is hoped, however,
that by creating a considered and inclusive model it will enable, within a specific context,
the comparison of similar algorithms and systems, making it a valuable framework for
research beyond the initial scope of the work presented within this thesis.

5.3 A Python Package: esec

5.3.1 Package Objectives

The ESEC model has been implemented as a Python programming language5 package,
named esec, and contains Python modules specifically designed to enable research into
ecosystem based models of evolutionary computation. Even though the esec package has
extensive support for different population, community and ecosystem models, it is also a
robust and flexible platform for simpler traditional models of evolutionary computation.

The primary aim of the esec package was to support the strong topology related re-
search objectives of this thesis, and while implementing the package and accomplishing
the primary goal it became clear that other users could benefit from the features imple-
mented. The esec package support a wide number of graph topologies through the use of
the igraph6 library. It is hoped that by providing the esec package under a liberal license
that others, including undergraduate and postgraduate level students and researchers, will
find it useful and a valuable contribution to ongoing research.

5See http://www.python.org.
6igraph is a free (GNU GPL) and well respected software library written in C for creating and analysing

graphs. See http://igraph.sourceforge.net. A Python interface makes for simple integration with the
esec package.

144

http://www.python.org
http://igraph.sourceforge.net

Chapter 5: An Ecosystem Model for Evolutionary Computation

Appendix E contains a detailed presentation of the package features, architecture,
language choice, dependencies, design motivation and integrated testing employed for the
esec package. The package code is heavily documented at module, class and method level
using integrated “docstring” features that are part of the Python language design. Package
documentation is available in HTML format, and included as CDROM documents. Testing
and verification of package features is extensive; software quality is an integrated part of
the software development and maintenance life-cycle.

esec

ea

landscape

monitor

selection

speciessystem

utils

community

population

ecosystem

controller

community

population

ecosystem

individual

binary

real

integer

permutation

op

proportional tournament truncateuniform

graphs

dependency

binary

real

integer

permutation

dialect

Figure 5.4: Relevant modules of the esec Python package. Not all modules of esec are
included, and only some dependency relationships are shown which are particularly relevant to
the organisational structure of the ESEC model.

Figure 5.4 shows the modules of the esec Python package, as well as some of the strong
dependency relationships that are particularly relevant to the organisational structure of
the ESEC model. The package modules correlate directly to the configuration tree data
structure levels used to specify the configuration of a system.

5.3.2 Configuration

Syntax Dictionary

To create a flexible and supportive configuration format, esec uses a Python dictionary7

data structure. There are two stages to configuration: firstly specify configuration syntax
(within esec), and secondly specify configuration values (by the user).

A Python dictionary data type is simply written with a pair of curly braces “{...}”.
Dictionaries contain uniquely named elements and values. By convention within esec all

7Also known as a “map” or “associative” container in other programming languages.

145

Chapter 5: An Ecosystem Model for Evolutionary Computation

name “keys” are strings. Keys must be unique, however key names can be repeated within
nested dictionaries.

When a configuration dictionary is used by esec all named keys and values are checked
against matching syntax dictionaries. A full syntax dictionary is a composition of abstract
base and concrete final dictionaries, many of which are selected as the configuration details
are processed. For example, the specification of a species genome type is used to select
the syntax used for recombination or mutation configuration details.

Listing 5.1: Syntax and value specification for the key1 element

syntax = { 'key1': int, ... } # specify allowed key and value type
config = { 'key1': 123, ... } # value of specified type

An example of syntax and value specification for a simple element is shown in List-
ing 5.1. A small set of simple types and values used to define what type of value a
configuration element might hold is shown in Table 5.1.

Syntax Type Description
str String
int Integer number
float Floating point number
bool Boolean true/false
dict Nested dictionary of details (unspecified)
list Nested list of values (unspecified type)
None None
(...) Explicit set (tuple) of values (strings)
[...] List of alternative value types
{...} Nested syntax dictionary (specified)

Table 5.1: esec supported syntax dictionary types and values

The syntax can also specify that the configuration value must be one from an explic-
itly stated set of values (typically a set of string identifiers). As an example {’type’:

(’binary’, ’real’, ’integer’)} is used as part of species configuration to indicate
that the species “type” must be one of the set of stated strings (“binary”,“real” or “inte-
ger”).

The element syntax also supports alternative value types using a list, written in Python
using square brackets [...]. For example, {’selection’: [str,dict,None] } indi-
cates that the “selection” element value may be a string, a nested dictionary, or explicitly
“None”.

Named keys of the syntax dictionary are required in a configuration unless an element
is indicated as optional, by placing a “?” at the end of the key name. For example
{ ’unique?’: bool } indicates that the “unique” key and value does not need to be
specified as it does not apply in some situations.

146

Chapter 5: An Ecosystem Model for Evolutionary Computation

Structure

In order to apply the esec package to a search domain, an esec.Application class
instance is created and provided with a configuration dictionary. The package provides
special handling of dictionary objects as configuration dictionaries, which enables the con-
figuration syntax to be specified by various classes, default values to be stated, validation
of provided details against the known syntax, and compositional overlay of successive
configuration dictionaries. This approach provides many benefits. For example, a config-
uration dictionary from one experiment can be used as a base for other experiments which
need only specify new or alternative details which are overlaid on top of the initial details.

The Application class instance contains several components: a system (which may
contain a group of systems), the specification of a single or multiple species, the search
domain landscape to which species are applied, and application level details which are used
to control run and termination conditions for experiments. Listing 5.2 shows the basic
dictionary structure used for all configurations. Internal details for each nested dictionary
may depend on other settings. For example, the exact components within the “system”
configuration, and the number of species defined, depend on the system type.

Listing 5.2: Structure and syntax for an EA ESEC configuration

cfg = {
'EA': str, # string - name identifier
'system': {

... # population, community or ecosystem

... # may include topology for breeding, survival etc.
},
'species': {

... # genome, recombination and mutation details
},
'landscape': {

... # search domain details (environment)
},
'application': {

... # seed, run stop conditions etc
},

}

Species

The species configuration (Listing 5.3) begins8 with the definition of its type (such as classic
binary, integer or real gene values), initialisation method (which is typically random, and
may be seeded or based on a distribution of values), and the method of species evaluation.
In many cases evaluation is simply the substitution of the gene values as a vector to the
search domain landscape. Other forms of mapping (such as binary to real values) or
complex expression mechanisms can also be used.

As part of the species configuration, suitable recombination and mutation details may
also be needed. For models that do not use a specific form of recombination (such as
crossover) a simple clone operator is used instead; recombine and clone operators are

8The order of elements within a configuration dictionary does not (by definition) matter, however for
the purpose of discussion a specific order is often useful.

147

Chapter 5: An Ecosystem Model for Evolutionary Computation

typically exclusive of each other. Some aspects of the recombination operation imply an
interaction topology between individuals of the same species, as in the selection of a parent
and other mate individuals. It is the role of the system to supply appropriate individuals,
based on the system configuration, that the species reproduction operations may need.

Listing 5.3: Structure and syntax of species configuration

'species': {
'genome': {

'type': str, # 'binary', 'real' etc
'init': str, # eg. 'random',
'eval': str, # 'simple', 'cached' etc

},
'recombine': {

'type': str, # eg. 'one_point' crossover
'rate': [float,str], # float range [0.0-1.0]
'parents': int, # no. used in operation
'offspring': int, # as a result
'parent': {

'selection': [str,dict], # order based?
},
'mate': {

'selection': [str,dict], # parent breeds with
},

},
'mutate': {

'type': str, # genome specific, eg 'bitflip'
'rate': [float,str], # float value or string

},
'clone': { # recombine alternative

'rate': [float,str],
}

},

Landscape

The role of the landscape configuration is to define the specific parameters of the search
domain, abstracted from the concerns of any underlying system or species. Some land-
scapes are simply incompatible with the representation abilities of some species (an invalid
configuration), and some systems may be compositions of multiple species.

With respect to object oriented programming ideas it is the landscape’s role to evaluate
solutions, however it does this without specific knowledge of individuals or their particular
composition of traits. The trait values of one or many individuals are passed to a shared
landscape instance for evaluation using an adapter or facade style of software pattern; the
landscape is simply called upon to evaluate a vector of trait values.

When an individual is called upon to present its internal trait values as a landscape
suitable vector, the individual makes use of a shared species object. The species object
knows how to manage any required complexities and can also make use of the container
system for collaboration if needed. In this way it is possible to for multiple species to be
applied to multiple-objective landscapes via system level collaboration.

Listing 5.4 shows the basic configuration structure for a landscape. Specific land-
scapes may require unique parameters, and so are not general, but there are often similar

148

Chapter 5: An Ecosystem Model for Evolutionary Computation

parameters shared among groups of landscapes. The most common shared details are
“parameters” (dimensionality), range values (as upper/lower “bounds”), output offset and
landscape inversion (invert “true”/”false”).

Listing 5.4: Structure of landscape configuration

'landscape': {
'name': str, # unique string identifier
'type': str, # domain type eg. 'IVP', 'BVP'
'seed': int, # optional integer value
'invert': bool, # output inversion
'offset': [int,float], # float/integer value

},

When several species are sampled and combined from several populations for eval-
uation, a specification of the inter-species interactions is required. It may be a simple
model that uses representative sample individuals (ie. random or best), and partitioning
of populations to localised interactions, or a complete and typically expensive exhaustive
combination of each individual with all other combinations from other species.

For classic minimum optimisation problems it is often important to specify a stop
resolution limit for use as a termination condition.9

The dimensionality n of many classic real-value test functions is set as a means of
specifying landscape difficulty. Although any explicit value for n could be specified, as a
convenience several sizes can be specified using a short notation of n# where “#” is the
value of n.

A large selection of established and classic test problem domains are available within
the esec.landscape module. For a complete listing see the esec documentation which is
generated directly from the Python source code. All of the benchmark problem domains
described in Appendix B have been included within the current esec package.

System

Population systems contain details for population topology and the breeding, survival and
replacement of individuals. See Listing 5.5 for the syntax required for a population. Note
that the value of the system type is not always a ’population’ as there can be specialised
subtypes which alter the exact configuration of elements used.

9The esec package is designed to maximise solution value. The objective in many classic optimisation
problems is to minimise to a zero value. In these cases the landscape is inverted and the resolution limit
is set to a small negative number.

149

Chapter 5: An Ecosystem Model for Evolutionary Computation

Listing 5.5: Synatx for population system configuration

'system': {
'type': str, # eg. 'population' or descendent
'topology': [str,dict], # ie 'panmictic' or details
'size': [int,'#topology'], # value or determined
'breed': {

'size': int, # children created
},
'replace': {

'group': str, # who to replace. eg 'parent'
'selection': [str,None],
'compete' : bool, # True = replace "only if better"
'per_gap': int, # gap interval

},
'survive': {

'group': str, # 'offspring' = non-overlapping competition
'selection': [str,dict], # eg 'best', or dict details
'size': int, # no. of survivors

},
},

The top level syntax for both community and ecosystem system types are identical.
(See Listing 5.6.) Communities and ecosystems are composed of nested subsystems, where
the ’interact’ policy details interaction topology and settings. In the case of a commu-
nity, the subsystems are specifically populations, while an ecosystem can be composed of
population, community and nested ecosystems. It is possible to specify multiple instances
of each of the specified subsystem configurations, using a list of integer values for ’count’.

Listing 5.6: Structure of community and ecosystem configuration

'system': {
'type': str, # 'community' or 'ecosystem'
'systems': list, # list of subsystems
'count?': [int,list], # repeat subsystems?
'interact': dict, # interaction policy details
'quota?': [list,None], # quota per subsystem?
'order': str, # eg. 'sequence'

},
Multiple species
'species': list, # list/nested list of subsystem species

In keeping with ecological principles an allocation of energy can be specified using
quota values. The list of quota values is mapped to each subsystem on a per-specification
or per-instance basis depending on the ’count’ specification. Quota integer values are
used as a simple weighting of time given to each subsystem, with several options for the
order in which the quota of energy resources allocated. It is possible for subsystems to
operate concurrently, however this is not detailed or explored in the work presented here.

Application

An application instance can be given settings to control a number of “run” simulations
using the configuration. (See Listing 5.7.) For each simulation run the system is reset then
executed until one of the specified termination conditions are meet. Progress and success

150

Chapter 5: An Ecosystem Model for Evolutionary Computation

reporting are presented as specified by the report value. Each run can be seeded using
the optional integer random seed value (rand_seed) plus an integer increment value so
that each run is seeded uniquely.

Listing 5.7: Structure of application configuration

'application': {
'rand_seed?': int, # eg. 12345,
'run_count': int, # eg. 5,
termination conditions?
'run_stop': str, # eg. 'gen+res+fixed',
'gen_limit?': int, # generation limit
'birth_limit?': int,# new individuals
'eval_limit?': int, # evaluation calls
'res_limit?': float,# eg. -0.01, -0.0001 etc
progress monitor / end of run report?
'report': str, # eg. 'brief,best',

},

The exact conditions of termination are specified with a string run_stop value which
is composed of tag substrings joined by the “+” character. There are currently five valid
tags, four of which use other application keys to set limit values; gen for generation
limit (in gen_limit), birth for birth limit (in birth_limit), eval for evaluation limit
(in eval_limit), res for resolution limit (in res_limit), and lastly fixed which is a
population diversity convergence test as defined by the particular species involved.

5.3.3 Batch Experiments and Reports

To facilitate investigations, a batch specification and execution script (run.py) allows a
collection of unique experiment configurations to be specified (as a list), and each configu-
ration to be run multiple times according to the settings of the application section. Each
configuration is tagged using labels and given a unique batch identification. The batch
result data is stored and conveniently tagged, which also facilities filtering and presenta-
tion of results. If required a subset of the batch configurations can be run (or re-run), and
configuration settings overridden, using command line arguments to the execution script.

Batch result files can be automatically compressed into single summary files. There is
also an integrated report generation process using a companion script (report.py) that
uses the batch file details. Comparison methods and result presentation supported by the
reporting script is discussed in Section 5.6.

Batch configuration files are written in Python allowing the full programming language
to be used. This includes being able to import an existing configuration and modify it
without restating all details. As the extension and alteration abilities can obscure the exact
configuration details used when running a particular application instance, the complete
configuration details used by each configuration are saved with batch result data.

Programatically, a batch file must define a “batch” function which returns a list

of configuration details (dictionaries). A defined report function (“report”) is used by
the report generation script (report.py). Similarly, support for comparing results across
multiple batch file results is provided by defining “multi_batch” (which supplied a list

151

Chapter 5: An Ecosystem Model for Evolutionary Computation

of how the batches are compared) and “multi_report” (which specifies how the reports
are to be shown) functions within the batch file.

See Appendix F for a listing of the HTML and PDF reports generated by batch
configuration details, and included as CDROM documents.

5.4 Consideration of Related Work

5.4.1 Introduction

With respect to the ESEC model, there is a wide range of work within the field of evolu-
tionary computation that is related. Of particular relevance are models that used specific
ideas from ecology, such as interaction structures and topology in relation to populations,
groups and individuals.

Evolutionary algorithms are based on the ecological ideas of population based variation,
genetic encoding, reproduction and recombination, and fitness-based selection pressure.
The majority of EA models, and in particular early origin and canonical models, utilised
simple genetic representation, interaction and population structures. Indeed, for simple
search domains there are clearly strong disincentives to create or utilise a more complicated
or complex model of the essential evolutionary algorithm concepts.

Section 5.4.2 first considers explicit niche schemes that can be applied to simple single
population models. Next, Section 5.4.3 looks at the range of established structured popu-
lation models, including the prevalent distributed and cellular EA models. As the ESEC
model uses the notion of community to contain multiple interacting species, Section 5.4.4
looks at relevant coevolution EA models.

5.4.2 Explicit Niche Schemes

The development and specification of explicit niche behaviour within a single population
model is an elegant use of biological metaphor applied to EA search. Whenever an EA
based search uses a global selection method (based on a simple full-graph population topol-
ogy), it is possible for “lethal” suboptimal solutions or trait components to be propagated
excessively and effectively stifle genetic variation and exploitation of diverse regions of the
search space. Explicit niche schemes are a popular way of limiting the influence of lethal
traits, as well as a means of encouraging the exploitation of unique niche search space
regions.

The two dominant methods of explicit niche scheme are fitness sharing [142] and crowd-
ing [74], and as mentioned in Section 3.2.5 of Chapter 3, there are various selection-based
techniques that can be used to create or maintain niches [354, 233, 155, 54, 229].

In fitness sharing the reproductive “fitness” of each individual is adjusted in proportion
to the number of individuals with membership of (within a small “distance”) the same
“niche” location. The distance is ideally based on a genotype measure, but if this is difficult
or not possible the fitness value can be used. Parameters need to be specified for the
weighting of the proportional relationship (typically linear), and for a distance threshold
(share radius) which essentially specifies the number of niches that will be supported [98].

152

Chapter 5: An Ecosystem Model for Evolutionary Computation

Because fitness sharing utilises fitness proportional selection, the greater the relative
fitness of a particular niche location (in the solution space), the more individuals that
can be supported by such a niche. This supports the notion of exploitation of known
fit location of the search space, but can also increase the risk of lethal traits and overall
premature convergence.

Crowding is a diversity preservation technique originally proposed by De Jong for
steady-state (“gap”) models [74]. By identifying “similar” individuals (based on genome
details rather than fitness value) offspring replace the most similar members of the cur-
rent “parent” generation. Deterministic crowding is an improvement proposed by Mah-
foud [222], which is based on likelihood that offspring are similar to their parents, and
so offspring compete with their parents for survival. In this way offspring still replace
an individual that they are similar to without the need for a large number of genome
comparisons.

Both fitness sharing and crowding use an individuals’ properties to modify interaction
between individuals. This effectively creates a dynamic interaction topology as an emer-
gent structure within a simple panmictic population topology; the complexity of the inter-
action topology does not need to be prescribed using a top-down approach, but emerges
from a bottom-up process. Distinctively, while fitness sharing is a fitness-proportional
exploitation technique, crowding is a means of maintaining diversity within a population
and ideally supports exploration.

5.4.3 Structured EAs

Established Models

Of ecosystem models and population topology models, variation of population topology is
the aspect most explored early in the field. (See reviews such as [263, 7, 51, 6].) The se-
lection of various population structures has undoubtedly been related to the emergence of
distributed computation hardware. Well cited reviews and classification models of struc-
tured evolutionary algorithms (suitable for parallel implementation), have already been
presented and discussed in Section 3.2.10 and Section 3.3.6. The established structured
EA (sEA) models include the following:

• Global: This includes distributed evaluation “master/slave” models and master-
directed sub-population “breeding/evaluation”. Both model types do well when
communication is costly (and should be avoided), while facilitating the beneficial
use of distributed evaluation.

• Coarse-grained: Typified by sparsely connected subpopulation “islands”
(“demes”) with infrequent migration. This model that works well when distributed
resources are of mixed capacity (in terms of processing or communication ability).

• Fine-grained: A regular and typically spatial distributed (“cellular”) population
model with localised overlapping neighbourhoods. This creates very high commu-

153

Chapter 5: An Ecosystem Model for Evolutionary Computation

nication requirements between neighbours, and so applies nicely to shared memory
vector processing architectures.

• Hybrid: A model that combines structured models at two-or-more levels.

Global

A global and coarse-grained structure works well when computationally expensive opera-
tions can be algorithmically divided. The well-established trade off [51] for both models
is communication cost; the benefit of parallel execution must compensate for the cost of
transferring information from a master to slaves, or between coarse-grained subpopulation
groups. Coarse-grained models require less communication between distributed groups
than a single population model distributed by a master-slave arrangement.

Coarse-grained

The island model or “island migration” model (discussed previously in Section 3.4.6) can
be described as a coarse-grained parallel EA, where multiple “island” populations (or
“demes”) evolve concurrently with infrequent communication between islands.

It is not surprising that interest in this type of distributed EA grew in the 1980s with
the availability and development of parallel computing hardware, and with the ideal goal
of evolving diverse solutions as an advantage for multimodal search domains [98].

Island models [243] have been proposed and investigated in many different forms, and
there have been investigations related to questions such as appropriate interaction models,
island sizes and convergence behaviour [367], and the potential for efficient search using
cellular (fine-grained) island EAs [251]. See the work of Cantú-Paz [49, 50, 51, 52] which
has looked specifically for accurate and efficient parallel EA models, in particular variations
in migration policies and selection pressure, and the more recent contributions of [320, 319]
for analysis of island models.

An island EA supports the early work of Eldredge and Gould [101] and the theory of
punctuated equilibria as discussed earlier in Section 3.2.10 in its relation to EAs, and also
Holland’s early formulation of the GA as a trade-off between exploration and exploita-
tion [166].

Coarse-grained models, for a single species, are represented in the ESEC model as
an ecosystem organisation composed of multiple (common species) populations. Each
population evolves is an isolated sense, and any migration between populations is effected
by the ecosystem and its rules.

Fine-grained

There are many names and classifications given to “fine-grained” population topology
models. See the classic work of “parallel” and “fine-grained” EA models of Mühlen-
bein [245, 247], Gorges-Schleuter [144, 145], Manderick and Spiessens [224, 327, 328], and
Davidor [65, 66].

154

Chapter 5: An Ecosystem Model for Evolutionary Computation

In all cases a single population topology is divided into a number of spatially arranged
and overlapping neighbourhoods10 [98, 19]. Each location in the population habitat can
be considered a “cell” of the overall “cellular” structure. The term “diffusion” is perhaps
one of the most appropriate [98], as it describes the limited (diffused) progressive transfer
of traits, even when a trait is strongly selected.

As a general model, within a generation each individual in a fine-grained cellular struc-
ture is given the chance to compete and reproduce only within its localised neighbourhood.
This includes operations for the selection of parents, the generation of offspring and the
selection of survivors. Survivor offspring may replace the original parent cell individual or
alternatively compete for survival with individuals of the surrounding neighbourhood.

The order that individuals (or alternatively “deme” groups) are selected and updated
can be varied. Updates can be performed asynchronously, particularly on hardware that
supports this. As long as localised operations have a scheme to resolve concurrency issues,
this is another useful distributed processing model.

Selection of the cell to be updated is commonly done using uniform random or a simple
sequential order. Mate selection for reproduction with the selected “parent” is based on
a localised selection scheme. Well known global selection schemes such as tournament or
fitness proportional selection can be easily adapted to a local cell environment. Methods
that involve global sorting or ranking are typically avoided due to the cost of repeating
such calculations with generation-gap (steady-state) replacement.

It is common for the central parent individual to be replaced, but it is also possible
to apply additional selection pressure for survival. For example the parent may only be
replaced by the offspring if the offspring is better or equal to the parents’ level of fitness.
Similarly, a neighbourhood or mate individual may be replaced by the offspring, especially
if there are multiple offspring created during reproduction.

Davidor developed [65] and presented [67, 66] an “Ecological Genetic Algorithm
paradigm” (ECO GA) that is based on a cellular fine-grained GA, with some additional
specific ecological principles. The five ecological principles are restated here:

1. An organism’s life is characterised by three activities; foraging, reproduction and
survival.

2. Mates for an organism are selected from a local environment, and in proportion to
the potential mate’s fitness.

3. Offspring remain in the immediate vicinity of parents.

4. The frequency of aggressive conflicts is inversely proportional to availability of re-
sources.

5. Aggressive conflicts are resolved probabilistically and in proportion to the relative
strengths of opponents.

10Some authors describe each neighbourhood as a subpopulation. This thesis does not use the term
“subpopulation” in this sense to avoid confusion with community subpopulations.

155

Chapter 5: An Ecosystem Model for Evolutionary Computation

The ECO GA model uses a cellular population, a steady-state (variable gap size)
reproduction model for mate selection, reproductive fertility is based on the relative fitness
ratio, and replacement is a local random target where fitter children are always retained,
and weaker children have a fitness proportional chance of survival. It was observed in
[65] that the probabilistic survival of weak children allows “island” niches of diversity to
develop, and in this regard is somewhat similar in effect to preselection mechanisms and
crowding schemes [74].

Fine-grained population structure does not need to be restricted to a simple 2D lattice
topology. The common use of a toroidal structure eliminates non-homogeneous connec-
tions while also reducing the mean path length between cells. Non-homogeneous topology,
such as neighbourhood size and the number of cell connections (degree), create interesting
environments and different localised competitive strengths.

Localised selection pressure is generally weaker than an equivalent global scheme [78].
Sharma developed a well cited series of investigations [300, 299, 301] on structured (lattice)
topologies, including the influence of various selection methods with different neighbour-
hood topology sizes. One of many interesting results presented is that propagation time of
traits across a grid seemed to relate to the grid size rather than the connection distance,
suggesting that mean path length measure of a topology may not be a dominant factor
influencing evolutionary search processes.

Alba and Troya [8], working along similar lines to Sharma and earlier work [144],
looked at cellular EA models (cEA) and proposed an adjustable parameter for the ratio
of neighbourhood size and global lattice size. Their results showed that the ratio between
radii, and the use of a dynamic change in radii during evolution, did influence search
outcomes. The radii could be adjusted to alter effective selection pressure and optimise the
population topology to suit different search domains and different stages of evolutionary
progress.

Fine-grained structured EA are represented in the ESEC model as a single population
organisation. The topology for the population can be specified and altered, which in turn
influences the interaction and pressure for each individual.

Hybrid

Hybrid models are almost universally implemented in an attempt to utilise good features
from single or fine-grained models as well as coarse-grained models. Opportunistic Evolu-
tion (OE) [333] is a good example in that it uses an adaptive asynchronous global model
to control and adapt coarse-grained islands. Each island (typically a specific machine)
performs a “mini” evolution process for a period of time weighted to justify the commu-
nication and setup costs. As discussed by the authors, the advantage of this approach is
that unlike a basic global model of distributed evaluation, where evaluation time needs
to be long enough to justify communication costs, the OE adaptively performs enough
evaluation on each island to justify the costs. This model is also interesting in that it
represents, and adapts to, ecological concepts of resource limits (ie. quota).

There is good evidence that the advantage of structured models is greater than simply

156

Chapter 5: An Ecosystem Model for Evolutionary Computation

a divided computation workload. For example, results have suggested [355] that breaking a
population into smaller evolutionary portions is an advantage for compositional problems,
where a full solution is formed by smaller sub-solutions. This requires that sub-solution
parts can be discovered independently, at least partially, in order for selection to be effec-
tive. It has been reported also that compositional problems are specifically amenable to
island models [319] and coevolution.

Hybrid models can be represented in the ESEC model by the ecosystem organisation,
which in turn is able to contain populations, communities (of different species populations)
and (possibly complex) nested ecosystems.

5.4.4 Communities of Species

Introduction

While most EA models adapt individuals of a single species (as is appropriate for many
search domain applications), the examples of biology are almost exclusively filled with mul-
tiple species in competition or cooperation with each other. Species coevolve and coadapt,
inhabiting niches that are influenced by the ecosystem composition. Interactions are not
a simple panmixia, but a mixture of mostly local and infrequent extended interaction.
Organisms of complex biological species are rarely static; mobility is key to individual and
species survival.

As presented in Section 5.2.5, the ESEC model defines a community as having a specific
environment, population subsystems and species, as well the necessary rules that govern
interactions between and within species. As individuals of each species ca ninteract, a
process of coevolution takes place.

For clarity in this thesis the term “species” is reserved only for a group of individuals
that are structurally similar and able to interbreed with each other. This is in contrast to
the general EC field, where it is not uncommon for the terminology of “species” to be used
to describe similar subgroups of individuals that can emerge within a single structured
EA population.

Fitness sharing and crowding are two explicit niching techniques discussed previously
in Chapter 3 and Section 5.4.2. As niche techniques manipulate the interaction between
individuals using either genotype or phenotype details, and can so isolate individuals into
different groups, explicit niching effectively creates subspecies within a population. How-
ever, this type of multiple-species evolution is not treated in the community organisation
of the ESEC model, but rather as part of the population organisation and implemented
using established fitness evaluation and selection.

In a related manner, fine-grained population models (such as cellular or lattice topology
models) are also often discussed in terms of diversity and species, as localised regions are
able to evolve and specialise traits in relative isolation. A single population notion of
subspecies formation and diversity is contained within the ESEC population organisation
as discussed earlier.

There are many interesting EA models that have used explicit communities composed
of multiple unique species, often coevolving. The next subsection considers some of the

157

Chapter 5: An Ecosystem Model for Evolutionary Computation

earliest models of coevolution used to develop classifier rules. Following this the models
of deliberate competitive and cooperative coevolution are considered in more detail.

Coevolving Classifier Rules

One of the earliest examples of community EAs is an artificial coevolutionary search
approach by Holland and Reitman [170, 167]. In their model a population of stimulus-
response rules for a classifier system were evolved. Similar approaches to rule evolution
were also developed by Smith [323]. Later developments in the field presented richer rule
and classifier models, such as the work by Grefenstette and colleagues [149, 151].

Competitive Coevolution

One of the most well known examples of artificial coevolutionary search is that of
Hillis [162, 163], developed to evolve minimal sorting networks. The initial population
model used a 2D lattice grid population topology containing 64536 individuals (256×256).
When using only a single species to represent networks, Hillis noted that the evolutionary
search process converged prematurely. A second “parasite” species was introduced which
represented test cases for the “host” sorting networks.

The fitness of each host was a measure of how well they were able to sort the local
parasite examples, and conversely parasites were rewarded for exposing flaws in a host’s
sorting ability. Both host and parasite species started at a simple evolutionary level of
complexity, and as coevolution progressed an artificial “arms race” of incremental (and
distributed) development discovered some excellent, and human competitive, sorting net-
work results. Another noted benefit of the model is that it avoids evaluation time by not
testing trivial test cases.

Other early models of competitive coevolution include Holland’s Echo models [168, 169]
which use predator-prey ideas, and also Ray’s Tierra model, which was created as an
“evolutionary approach to synthetic biology” [287] and included features such as host and
parasite species.

Rosin and Belew [295, 296] created competitive coevolutionary models and applied
them to a number of domains, including evolving strategies for competitive game play such
as tic-tac-toe, nim and go. In [295] their approach used two species to represent opponents
of a game. Unlike lattice based competition selection, Rosin and Belew created a shared
sampling approach which selects a sample of opposition individuals from the previous
generation as competitors for the current generation, with a bias for those individuals
that proved difficult to defeat. A competitive fitness sharing function is used to reward
individuals based on the number of opponents they defeat.

There are many other examples of evolving game playing strategies. For example
the early work by Reed et al. [291], Pollack and Blair coevolution of a backgammon
player [276], and Fogel and Chellapilla’s well known report of the checkers playing pro-
gram “Blondie24” [112] which evolved weights for an artificial neural network based on
interaction with online human players.

158

Chapter 5: An Ecosystem Model for Evolutionary Computation

Cooperative Coevolution

Husbands created a distributed cooperative coevolution model and applied it to multi-
criteria and multi-constraint job shop scheduling (JSS) problems [172]. Job-shop prob-
lems can be examples of complex multi-objective constraint satisfaction problems where a
number of “jobs” need to be performed, and each requires a number of unique “machines”
for a set number of operations. Different jobs require a different number of operations.
A common coevolutionary approach is to create a different species for each job and use
a lattice model to distribute, evaluate and coevolve the species. As job species can con-
flict when combined, Husband’s approach was to use an “arbitrator” species, which also
evolved, to resolve issues.

The system was able to evolve both high quality solutions (schedules with a low overall
time) in a relative short evolutionary time and with a robust level of genetic diversity.
Although the exmaple is a very problem specific there are a number of interesting high-
level results. Two examples are that “take-over” by single good species can and will occur,
and that the diffusion lattice does assist in diversifying the search.

The division of a problem domain into individual species is a common approach for
cooperative coevolution. However, as Bull and Fogarty noted in [44], when inappropriate
divisions of the solution representation are made search performance is adversely affected
in relation to problem complexity.

In [271] Paredis developed a symbiotic (cooperative) two-species model and applied
it to a deceptive problem (see [134]). One species represented a full solution, while the
other species represented a permutation. Full graph population structures were used for
each species, and a simple random selection approach used to form collaborations for
evaluation.

De Jong, Potter and colleagues [78, 278, 281] developed a novel and well cited model for
Cooperative Coevolution. The stated objective for the model was to search for solutions
to complex problems. As Potter explains in [278], a fine-grained model alone “is not
sufficient” to support coadapted subcomponents, which is one of the key features and
possible advantages of a coevolutionary model.

The model used an explicit “divide-and-conquer” strategy where a search domain so-
lution is divided into a number of sub-species (modules), evolved independently and eval-
uated using temporary collaborations. The fitness of each sub-species individual is based
on its collaboration performance. Later work [281] also investigated dynamic speciation
and species extinction; new species are created in response to ecosystem stagnation, while
species providing only minor or insignificant contributions are removed.

While there are many possible collaboration strategies and Potter and De Jong initially
considered two alternatives: a greedy collaborative approach where only the best of other
collaborating species is used, and a less greedy collaborative approach where the best of
one species collaborates with other randomly selected individuals from each species. Their
work found that the greedy approach was less robust than the less greedy approach, in
particular for domains where there is a lot of interaction or interdependency between sub-
species. As Kirley later commented [196] an important criteria for the selection of an

159

Chapter 5: An Ecosystem Model for Evolutionary Computation

effective collaboration model is that it “preserves and integrates information coming from
each species”. Conceptually, a greedy approach is narrow and greatly restricts the range
of information that can be integrated from multiple species.

The cooperative coevolutionary model of De Jong and Potter is well known and has
been successfully applied to a range of domains [78]. Other applications included the de-
velopment of neural networks [279], concept learning using an antibody metaphor [280],
and later string covering problems and the evolution of cascade networks. Potter’s the-
sis [278] states a number of questions and further research directions, in particular the
consideration of alternative collaboration, ecological relationships and speciation models.

Juillé in [179] and also Juillé and Pollack in [180, 181, 182] reported several successful
applications of an “incremental” coevolutionary approach to develop solutions for “complex
systems”, including classifier network solutions for the intertwined spirals problem, and
coevolving an “ideal trainer” for use with cellular automata rules.

Moriarty and Miikkulainen [244] created an adaptive cooperative coevolution model
and used it to create neural networks as an alternative to standard evolutionary algorithms.
They state that their work was based on the common hypothesis that a coevolutionary
approach could be more efficient than single species search, as different species can search
in parallel for components of the problem domain.

Kirley [193, 196] developed a spatial cooperative coevolutionary model (SCCA), using
a cellular lattice where each lattice cell contains multiple species (cohabitation), and col-
laborations are limited to each cell neighbourhood. Sub-population species are evolved in
parallel rather than in a sequential or “round-robin” manner. In this way individuals are
pressured to both cooperate with other species, and to compete with members of their
own species.

Two approaches to collaborator selection for each cell (“site”) were investigated: cell
only species collaboration (denoted SCCA 1), and local neighbourhood collaboration where
a random species of the cell is selected and the best neighbour for each other species is
selected (SCCA 2). Although results for classic function optimisation problem did not in-
dicate a particular significant advantages for SCCA (1 or 2), a more difficult NP-complete
job shop scheduling problem indicated that SCCA 2 was the preferred collaboration strat-
egy, and overall results were comparable to other evolutionary algorithms.

The spatial cooperative model has been used by Kirley and colleagues as a basis
for other ecosystem based extensions including meta-population models, dynamic dis-
turbances, extinction (catastrophe) events and speciation processes [146, 197, 198, 194].

Watson and colleagues [356, 357], and in particular the work presented in Watson’s
PhD thesis [355], investigated how methods based on abstract symbiotic processes influ-
ence evolutionary search. In their model simple low-level modules or “building blocks”
([166]) are used to form high-level complex “aggregations”. The work presented a number
of symbiotic processes for combining modules, explicit approaches to ensure that mod-
ules coadapt and cover complementary parts of the problem domain, and module level
credit-assignment methods of fitness. This is in contrast to methods that need explicit
subcomponents (such as [152]).

160

Chapter 5: An Ecosystem Model for Evolutionary Computation

Coevolution has also been applied to robotics for the development of behaviours and
controllers for both simulated and physical constructs. (See [317, 261, 260].) In partic-
ular, see the work of Nolfi and Floreano [262], and related work on modular component
development and evolution (with applications to robotics) by Calabretta and colleagues
[45, 46, 48, 47].

An endosymbiotic evolutionary algorithm (EEA) was proposed by Kim et al. [192] as
an extension of earlier work by Bull and Fogarty [44]. The endosymbiotic model is based
on observations in cellular biology where relatively large and complete eukaryote cells
appear to be “hosts” containing smaller eukaryotic cells that have been consumed by host
cells, and yet survived to become an integrated part of the overall cell. The EEA model
supports the independent coevolution of prokaryote-like sub-components, the “horizontal”
transfer of genes from prokaryotes to be combined as “complete” eukaryotes solutions, and
the endosymbiotic level evolution of the complete eukaryotes.

Kim et al. compared their EEA model to existing symbiosis models on classic problems,
including the well known NKC test domain ([187]) and a string matching problem com-
posed of substrings, with good results for the EEA over other EA in most cases. Interest-
ingly, the authors classify existing symbiosis models into two categories that relate directly
to the population topology distinctions used in this thesis: separated and population-based
symbiotic evolutionary algorithms (SPA), and separated and neighbourhood-based sym-
biotic evolutionary algorithms (SNA).

Coevolution and Success

Paredis [272] investigated the “Red Queen” principle in relation to earlier coevolution
results. The “Red Queen”11 principle was proposed by biologist Leigh Van Valen in 1973
[346] regarding the requirement for continual competitive development in evolutionary
ecosystems. This principle suggests that species need to continually change in order to
maintain a fitness relative to the system it is co-evolving within. Examples of this are seen
in the “arms race” between competing species for a shared resource, and the interdependent
predator-prey cycles.

The net effect of an arms race may be static relative fitness (the “Red Queen” dynamic),
increasing fitness, or an overall decrease in fitness by all species, such that the entire system
may converge to a sub-optimal state. For example, in a dense forest area, trees competing
for light must expend large resources just to begin competition.

As a criticism of existing coevolutionary models, Werfel, Mitchell and Crutchfield [362]
investigated in closer detail the coevolutionary success of Juillé and Pollack [180, 181] and
accredited the success to resource sharing rather than the coevolutionary mechanisms.

Pagie and Mitchell [270] presented a comparison of evolutionary and coevolutionary
search results. They looked at coevolution using either one or multiple populations, such
as competition within a population ([296, 12, 317]), or where an individual’s fitness is based
on comparitive context with individuals of other populations (such as [162, 180, 272, 268]).

11The title is in reference to a comment made by the Red Queen character, in Lewis Carroll’s “Through
the Looking Glass”, who says “. . . in this place it takes all the running you can do, to keep in the same
place”[53].

161

Chapter 5: An Ecosystem Model for Evolutionary Computation

They restated the theorised benefits of several coevolutionary models: more efficient
evaluation of evolving solutions [162], possible auto-adjustment of selection gradient [182],
and the open-ended nature of coevolution [296, 106]. Successful coevolutionary appli-
cations to using spatial (cellular) structures include work such as [162, 172, 268]. Other
unsuccessful coevolutionary applications are typically characterised by “red queen dynam-
ics” [272, 314, 269, 182] and mediocre stable states [276, 182].

Pagie and Mitchell also noted from published works that the use of continuous mixing
techniques can approximate the behaviour of a non-spatial (lattice) model. This result
is also supported by the population topology investigation presented in Chapter 6 where
random graphs performed similar to lattice topologies for many problem domains.

In their own investigations, Pagie and Mitchell state that coevolution is hoped to lead
to an “arms race” condition of continual improvement in search. However it can also lead
to a Red Queen dynamic model of moving without advantage, unnesscesary speciation or
poor quality (mediocre) stable states. Later work by Mitchell and Williams [369], and also
with Thomure [240], continued to investigate the success and role of “space” or spatial
topology with respect to coevolutionary learning (search).

5.4.5 Summary

The ESEC model presents three organisation levels to represent existing and new ecological
EA models: population, community and ecosystem. This section has considered work
related to the ESEC model, and discussed how the ESEC model classifies, and can be
used to represent, a range of existing models. In particular this includes explicit niche
schemes, structured EAs and community EAs of coevolving species.

Chapter 7 looks at the ESEC community and ecosystem organisational models in more
detail, which between them support the range of classic coevolutionary and coarse-grained
structured EA models.

5.5 Key Questions

There is long history of biological and natural systems providing inspiration and influence
for evolutionary computation.

Topology clearly has a role in natural examples of evolution at many different levels. To
describe complex systems of interaction, the topology is often used as an abstracted “top-
down” model of connections. However the origin of topology in most (if not all) natural
systems is an emergent and adaptive “bottom-up” process of interaction and localised
processes.

As a metaphor for artificial models, both top-down and bottom-up approaches are use-
ful in particular contexts. For example, understanding what types of low-level interactions
create top-level structural features can indicate the nature of system growth, emergence
features, expected complexity and robustness. Similarly, being able to specify a top-level
topology with particular qualities can be used to influence bottom-level interactions. The
top-level abstraction is a means of specifying potentially complex system-level interac-

162

Chapter 5: An Ecosystem Model for Evolutionary Computation

tion without the need for complex local interaction rules or computation; interactions are
specified by the established topology.

Evolutionary computation also has a long history of models that have used both local
bottom-up models of interaction, as well as top-down models of population (and inter-
population) interaction [98, 77, 113]. (See Chapter 3 and Section 5.4.) The majority of
topologies used are simple. The influence of topological complexity is likely to be highly
sensitive to the specific processes (evolution) and objectives (problem domain) an EA is
applied to.

There are several areas of questioning, inspired by ecology and complex topology mod-
els, that we can consider with respect to evolutionary computation and the ecosystem
model presented here.

Questions arising from ideas within the biological origins of ecology:

• Does a model of limited resources and energy affect evolution?

• How does varying levels of resources, and survival pressure, affect solution complex-
ity, interaction complexity, niche and speciation development, and interdependency?

• Should the majority of interactions be localised?

• How influential is mobility to the vitality or diversity of a population?

• Do complex environments require incremental competition for successful adaption?

• Are episodic successional evolutionary paths useful or occasionally essential to the
development of robust and/or complex solutions?

• Will the presence of an age-influenced life hierarchy (such as juveniles and adult
models) be useful or essential in the support or development of specific complex
solutions?

The field of topology also presents many questions, especially with respect to simple
compared to complex structure:

• Does complex topology influence EA search outcomes? If so, in what way?

• Does a solution to a complex search domain have any relationship or sensitivity to
a complex population or evolution topology?

• How does simple structured topology compare to similarly resourced random or
complex topology?

• What is the influence of a dynamic topology?

• Would a dynamic topology modified by local fitness based processes influence EA
search outcomes?

• Are there niches where topology specified by stochastic parameters (as in rewired
lattice structures) provide opportunity or support for processes that are not possible
in simpler topology?

163

Chapter 5: An Ecosystem Model for Evolutionary Computation

• Does a model of “occupancy” influence outcomes, in particular with respect to den-
sity regulated competition or significant disturbance events?

• Are motif structures important, and if so for what type of processes or outcomes?

To explore all of these questions, and many other similar and related topics, is outside
the scope of this thesis, but the ESEC model presented does provide the capacity to explore
most of these issues in detail. The wide range of open questions is a natural consequence
of support for ecological processes, dynamic interaction and complex topology models.

It is important to distinguish between the importance of a specific domain solution
(discovered by an instance of an EA search), as opposed to algorithm performance qualified
by its typical efficiency and efficacy.

Almost all of the questions listed could be restated and prefaced with the words “In
what way is the process and outcome of evolutionary search influenced by . . . ”. The
terms “what way”, “process” and “outcome” need to be qualified, and in each question
there would be additional terms that also need to be defined in order to construct a clear
investigation and discuss results meaningfully:

• “what way” relates specifically to the “process” and “outcome” terms, and in par-
ticular it is desirable to be able to qualify any “good” or “bad” distinctions. For
example, does a particular topology structure slow down, speed up or have no effect
on the required evolution time with respect to a different topology type?

• “process” can relate to several of the processes involved in evolution, but in partic-
ular those related to population diversity, including mixing, convergence, localised
niching, speciation support, and so on.

• “outcome” is specifically related to the quality of the best solutions found, but this
may also related to the frequency (histogram) or population fitness, success rates of
simulation runs, as well as success rates of mating.

5.6 Comparing Performance

5.6.1 Introduction

There are many measures and methods that have been used to compare the performance
of different evolutionary algorithms. It is important to construct appropriate experiment
scenarios, collect relevant data, and to make suitable comparisons that are relevant to
experiment goals. Any use of statistical measures should enhance presentation and provide
support for confidence and probability of outcomes.

5.6.2 Measurement and Concepts

For many of the experiments presented in later chapters, an EA application is applied to
a number of different search landscapes and application parameters (such as population
topology details) are varied. In general terms a number of simulation runs are performed

164

Chapter 5: An Ecosystem Model for Evolutionary Computation

for each specific configuration and results collected. Complete reports (in HTML and PDF
format) are generated that contain a number different tabular and graphical presentations
of the results. All experiment reports are provided as electronic appendices.

Each report presents an initial set of summary tables and these can be used to compare
a number of broad measures. These include two common measures of EA search success:
Average Evaluations to Success (AES) and Success Rate (SR) values.

AES is the average number of evaluations each evolutionary algorithm (EA) instance
(run), from a sample group of runs, required to achieve a search “success” result. Success
is defined as a solution found that matches, or is within a value tolerance of, a known ideal
solution value. If a single EA search run did not achieve a success result, due to either the
population becoming “fixed” to a single genotype or a maximum limit is reached (such as
evaluations or generations), then the result does not contribute to the AES value.

Success Rate (SR) percentage values are presented along side AES values. This gives
both a qualification of the AES value, and an overall measure of success frequency. When
SR results are less than 100% it is a fair indication that either the search domain is difficult
or the EA instance has limited capability or resources.

It is interesting to compare groups of successful search run data. Many statistical tests
assume normal distributions, and so a null hypothesis normal test can be done to see if,
for a group of AES results, either the skew and/or the kurtosis differs from that expected
in a normal distribution. This is presented as the two-tailed p-value (“norm”) test, where
a value less than a 0.05 is treated as an indication that the distribution is not normal.
The result can often be seen in the skew or outliers features of AES data distribution, and
in some cases can be an indication that a hard limit (such as the maximum number of
generations allowed) is limiting the results.

It is also worth considering “fixed” run results. As a basic measure, the number of
times a run becomes “fixed” can be compared to the number of “success” and “limit”
results. A Mean Best Fitness (“MBF”) value can be calculated as the average of the best
value from all successful and fixed EA search runs, and excluded limit results. Although
some “limit” fitness results are quite good (and perhaps better than “fixed” results), it
is difficult to justify limit results in the MBF value as the search has been stopped in an
arbitrary (and so less meaningful) sense.

A “Best Fitness Histogram” is a simple list that presents the range and frequency
of best fitness values. This gives an indication of the variability of result value quality.
Presentation is simply a comma separated set of fitness values (formatted) and their
frequency values (separated by a colon), limited to a practical number of five instances.
Greater than this, a number is used to indicate how many additional fitness value types
were not displayed.12

12For example, “(+4)” indicates that four additional unique fitness values are also known but not shown
in the list.

165

Chapter 5: An Ecosystem Model for Evolutionary Computation

5.6.3 Box and Whisker Evaluation Plots

A box and whisker plot (also known simply as a whisker plot or boxplot) is used to
visually and easily compare distribution of values, and in this case the number of function
evaluations an EA run takes until success.

Graphically, data distribution is presented as a column with a box that extends from
the lower to the upper quartile of the data, with the median (AES) indicated with a line.
Whiskers extend up and down to show the range of data values that are not considered
outliers, and flier (outlier) points are plotted as “+” character past the whiskers. Outliers
are defined as values more than 1.5 times the quartile values.

Whisker plots provide an excellent overview of data distribution, especially when a
number of distributions are compared as columns with a shared scale.

5.6.4 Mann-Whitney U Test Comparison Matrix

The Mann-Whitney U test [226] (MWU) is a well known non-parametric rank-sum test to
assess if two independent samples come from the same distribution. Unlike the Student
t-test which requires normal distributions, or the Wilcoxon Test [368] which requires equal
sample sizes, the Mann-Whitney U Test does not have such restrictions and yet performs
almost identically.

Interestingly the t-test has been widely used to compare EA search results in EC
literature. However, as noted by the normal distribution test values from results data
collected for this thesis, many sets of results should not be considered normal distributions.
Although it has been shown that the t-test is fairly robust to a non-normal distribution,
it is clear that the Mann-Whitney U test is the more appropriate and robust statistical
method for non-uniform data distribution comparison.

In order to compare the success evaluation data for groups of results, a half matrix
of MWU test p-values can be presented. Sample size greater than 20 is preferred (and
required for the normal test) but > 5 is suitable. Of the p-values presented in reports,
values < 0.05 are (arbitrarily) considered significant (and marked in bold and blue colour),
although values near this threshold are also likely of interest. A p-value less then the
threshold is an indication that the null hypothesis (that both sets of values are from the
same distribution) should be rejected.

5.7 Closing

This chapter has presented an ecosystem model for evolutionary computation (ESEC)
based on the observations and models of ecology and ecosystems, the established paradigm
of biological evolution as a metaphor for evolutionary computation (EC), and supporting
the explicit inclusion of structural topology to influence interactions at many different
levels. ESEC is a compositional model that supports three distinct organisational systems:
populations, communities and ecosystems.

A Python programming language package, named esec, has been developed to support
the evaluation of the proposed ESEC model. The objectives and structure of the package

166

Chapter 5: An Ecosystem Model for Evolutionary Computation

and its internal modules align closely with the ESEC model. The specification of esec
configuration syntax and settings was described in general, and at a high level of system
abstraction, in preparation for the work presented in later chapters.

Several key questions that apply to the ESEC model were presented and briefly dis-
cussed, along with general consideration of how experimental results are collected, pre-
sented and compared.

Chapter 6 describes and specifically investigates the influence of population topology
on evolutionary search outcomes. Chapter 7 describes and considers the ESEC model,
using the esec package, at community and ecosystem levels.

167

Chapter 5: An Ecosystem Model for Evolutionary Computation

168

Chapter 6

Population Organisation

6.1 Introduction

The purpose of this chapter is to explore single species population topology models us-
ing the ecosystem model for evolutionary computation (ESEC) presented in Chapter 5.
By using a range of population topologies, from simple to complex, it is hoped to bet-
ter understand the relationship and influence topology can have on evolutionary search
outcomes.

A representation of the composition of a population organisation, as defined within the
ESEC framework, is presented in Figure 6.1. The role of the population organisation is: to
define and contain a single species collection of individuals, the interaction topology and
model. A population defined in this way is a subsystem component of later community
and ecosystem organisation models discussed in more detail in Chapter 7.

Population Organisation

Individuals (Single Species)

Interaction Model(s)

Genome and Expressed Traits

Environment

Population

Between Individuals
Influencing Fitness Evaluation,
Reproduction and Replacement

Topology and Properties

Figure 6.1: Population organisation model within the ESEC framework

In Chapter 3 the sections on representation of a population (Section 3.2.3) and com-
ponent influence (Section 3.2.10) both considered various population topology models. In
particular, those models used in parallel EAs (Section 3.2.10) and structured EAs (Sec-
tion 3.3.6). Population topology can, in principle, be set to any type of graph: simple

169

Chapter 6: Population Organisation

panmictic and cellular lattice models, random, hierarchical trees and complex small-world
growth models.

Chapter 5 described in some detail the ecological motivation for EA models to include
localised processes, and discussed related work based on ecological principles (Section 5.4).
The discussion there included “niche” creation schemes (such as pre-selection, crowding
and fitness scaling), different forms of structured topology, and structured population
models that consider multiple-interacting species.

A number of population topology related questions are presented in Section 6.2.1, and
these are investigated using the ESEC framework and the esec software package. The
configuration and result of experiments are presented and discussed in Section 6.3.

One of the strongest outcomes of this work is that specific topological properties can
and do influence evolution progress and outcomes. Because of this, a better understanding
of the influence of topology is clearly desirable.

Although there are some indicators from the results that suggest similar problem do-
mains (with similar levels of complexity) perform better on particular population topology
types, the results are limited in scope. Suggestions for further research and open questions
are presented in closing.

6.2 Investigation Scope

6.2.1 Objectives

A number of population and ecology related questions can be considered using the ESEC
model of population organisation. All of the questions considered here relate to evolution-
ary search outcomes as a measure of variable influence; some are variations of topology,
others are variation of processes in the context of topology.

For structured population topologies, one consideration is the order in which individu-
als (or “cells”) are selected and replaced by new offspring individuals. The “update order”
in many cellular EAs is a simple linear sequential order of each cell location. Various other
update orders can be conceived, such as a “spiral” pattern. It is also easy to consider a
reverse order for any pattern based update sequence.

The following is a list of questions addressed by experiments related to either variations
of topology, or variation in process:

• In a broad sense, does population topology type influence evolutionary search? If
so:

– Is the sensitivity of evolutionary search to topology consistent or different
among a range of different search domains?

– Is there a difference in search outcomes between simple lattice, random and
complex population topology?

– How do lattice and complex topologies compare to full graphs?

– What is the general influence of topology size on outcomes?

170

Chapter 6: Population Organisation

– Is the influence of topology size different on different topologies?

• Are evolutionary search outcomes affected by the topological differences of circular
or non-circular lattices, and if so, to what degree?

• Within a structured population model, can update order influence search outcomes?
If so:

– What is the influence of a simple sequential line update order and is this altered
by topology?

– Does the analogy of a spiral update order have an influence, and how does it
compare with simpler line sequences?

– Does fitness based order, forward and reverse, influence search comes?

• Will an ecological model including delayed “juvenile" competition influence search
outcomes, and if so is this altered by population topology?

• To what degree does a level of lattice rewiring influence evolutionary search processes,
and how does this compare to other influences such as scale and edge density?

To investigate these questions Section 6.2.2 presents a selection of appropriate popu-
lation topologies, and Section 6.2.3 a selection of real and binary valued search domain
landscapes. The experimental work, and the results collected, are presented in Section 6.3.

6.2.2 Selected Population Topology

As an initial base for comparisons, 23 topology types were selected, each of size n = 100
vertices (or nearest possible size). Each topology type is indicated by an abbreviated
tag name. The topology types selected, and many others, are covered in detail in the
Topology Survey of Appendix C. There are several major topology types and a simple
notation convention:

• Lattices (“L”): Regular circular two dimensional (2D) lattice models of various degree
(“k”). This includes a selection of “hollow” lattices (“h”). For example, “L.hk4” is
a hollow lattice of base degree k = 4.

• Trees (“T”): A rooted tree growth model where a number of new children c are added
each step until the required number of vertices is reached.

• Erdös-Rényi (“ER”): A random graph model G(n, p) where p is the probability of a
connection between two vertices in n. For example, the “ER.01” instance is an ER
model where p = 0.01.

• Watts-Strogatz (“WS”): A small-world model based on a lattice graph with a prob-
ability p of random edge rewiring. In this case a one dimensional circular lattice of
neighbourhood size three is used, resulting in a vertex degree of k = 6. For example,
“WS.01” has a rewiring probability of p = 0.01.

171

Chapter 6: Population Organisation

Later investigation of scale influence include topology sizes of n = 400 and n = 900.
This is based on an equivalent 2D lattice axes scale change from 10 × 10 to 20 × 20 and
30× 30 respectively. In cases where other topological features need to be preserved (as in
the circular honeycomb lattice) the nearest feasible size is used.

Specific investigations into the influence of rewiring use base lattice topologies and
apply different degrees of rewiring.

There are three other minor topology types including a “Star” (the natural extreme
limit of a tree topology), the Barabási-Albert (“BA”) scale-free preferential growth model
of power p = 1, and a Merge-Regenerate (“MR”) instance of mean degree k = 5 for
regenerated vertices.

Table 6.1 is a summary of the topology labels and definitions used in the base experi-
ment.

Lattice (Circular)
L.k4 Vertex degree of k = 4 (N,S,E,W)
L.k8 Vertex degree of k = 8 (k4 + NE,SE,SW,NW)
L.k12 Vertex degree of k = 12 (k8+ extended N,S,E,W)
L.hk4 Hollow, base degree of k = 4 (〈k〉 ≈ 2.96)
L.hk8 Hollow, base degree of k = 8 (〈k〉 ≈ 5.92)
L.k6 3-axes planar lattice, k = 6

L.hk3 Honeycomb (hollow 3-axes), k = 3
Tree

T.c2 2 children per parent vertex
T.c3 3 children per parent vertex
.

Erdös-Rényi
ER.01 Vertex pair connection probability of p = 0.01
ER.02 Vertex pair connection probability of p = 0.02

.
Watts-Strogatz
WS.001 Rewiring probability of p = 0.001
WS.01 Rewiring probability of p = 0.01
WS.1 Rewiring probability of p = 0.1

Individual Topologies
Star Simple star topology (or “tree” where c = n− 1)

BA.p1 Barabási-Albert growth model (power p = 1.0)
MR.5 Merge-Regenerate model (mean degree of k = 5)

Table 6.1: Base experiment topology labels and summary details. The complete series of Tree
and ER topologies are truncated (indicated by “. . . ”) for brevity.

Three different base lattice configurations are shown in Figure 6.2 where each central
vertex example (black filled circle) is surrounded by a neighbourhood (blue circles) size of
k = 4 (Von Neumann), k = 8 (Moore) and k = 12 (Extended Moore) vertices respectively.

The term “hollow” is used to described a standard base lattice configuration that has
had a periodic selection of vertices removed. The result is a lattice that contains several
species of vertex degrees. Figure 6.3 shows (non-circular) examples of hollow lattices, based

172

Chapter 6: Population Organisation

(a) k=4 (b) k=8 (c) k=12

Figure 6.2: Neighbourhoods for (a) k = 4, (b) k = 8 and (c) k = 12 lattices. Also known as
the Von Neumann, Moore and Extended Moore neighbourhoods respectively.

on the standard k = 4 and k = 8 2D lattices, designated L.hk4 and L.hk8 respectively.
In the case of L.hk4, not only are there vertices of degree k = 4 but also k = 2 create a
hybrid of separate and connected topological properties. Similarly for the L.hk8 example,
the base vertex degree of k = 8 is removed entirely, and replaced by vertex species of
degree k = 6 and k = 4.

Figure 6.3: 2D layout for L.hk4 and L.hk8 lattices showing hollow features. The L.hk4 instance
has a 〈k〉 ≈ 2.96 making it the sparest lattice of the group. For L.hk8, 〈k〉 ≈ 5.92.

As another variation of standard 2-axes planar lattice configuration, it is possible to
use a 3-axes planar layout, both in a base configuration where vertices are of degree k = 6
as well as a hollow variation, that results in the organically familiar “honeycomb” shape.
Examples are shown in Figure 6.4. The honeycomb lattice is interesting in that all vertices
have a uniform degree of k = 3, a rather low edge density, which means that measures
of “local efficiency” are also low (or zero depending on the measure). Honeycomb lattices
also have a rather large girth size (smallest cycle size through unique edges) of six. The
honeycomb lattice topology was included in the investigation because it was thought that
low density and large girth properties may lend themselves nicely to encouraging spatially
unique species development. Result presented later in Section 6.3 suggest that this might
be the case for some problem domains.

Tree topologies were selected as a basic hierarchical growth-based model for comparison
with other growth-based topology models, such as the BA model. As already noted, the
star topology also falls under the scope of tree topology. Note that although a parent-child
value c is specified, trees are unbalanced in all the configurations selected here. It would be

173

Chapter 6: Population Organisation

Figure 6.4: 2D 3-axes layout for L.k6 and L.k3 (honeycomb) lattices

Figure 6.5: Tree and force-based layout for T.c2 graph

reasonable to expect some operation differences between balanced and unbalanced trees,
given that unbalanced trees contain a more diverse range of vertex degrees, and degree
distribution can influence topology based processes. Figure 6.5 shows an example of the
T.c2 topology both as a hierarchical tree layout and a planar force-based layout algorithm.

The small-world topologies created using the Watts-Strogatz model start with a regular
lattice, with a specific regular neighbourhood degree, and rewired according to a proba-
bility value p. The greater the level of rewiring, the greater the level of random disruption
to the regular lattice. As a regular lattice has a relatively high level of local efficiency
and large mean path length, the rewiring process can increase the global efficiency (by
reducing the mean path length) while still retaining the majority of lattice based local effi-
ciencies. Figure 6.6 show three specific WS topologies created using rewiring probabilities
of p = 0.001, p = 0.01 and p = 0.1 respectively. The disruption caused by rewiring can be
clearly seen.

Figure 6.7 shows examples of the BA.p1 and MR.5 topologies. Note the hierarchical
(tree-like) structure of the BA preferential attachment growth model, and the random
and densely clustered form in the MR case that results from the merge-regenerate process
(including some characteristically isolated vertices).

An extensive survey of standard measurements and properties based on these topology
configurations, and other related variations, is presented in Appendix C. The survey should
also provide an indication of appropriate configuration values for interesting topological

174

Chapter 6: Population Organisation

Figure 6.6: Force-based layout for WS.001, WS.01 and WS.1 topology instances. Note the
level of disruption caused by the increased levels of rewiring.

Figure 6.7: Force-based layout of BA.p1 and MR.5 topology examples

properties. For example, there are indications of phase transitions in local efficiency values
due to rewiring levels. This could be an interesting direction for future investigations.

6.2.3 Selected Problem Landscapes

A large selection of established and classic test problem domains are available within the
esec package. For a complete listing see the esec package documentation. All of the
benchmark problem domains described in Appendix B have been included within the
landscape module of the current esec package.

Both real value and binary value problem landscapes of various qualities have been
selected for this series of investigations. Noting that the esec package always maximises
fitness values, some classic minimisation problems are inverted (typically indicated with
an “i”) for use. Many real value landscapes have a dimension parameter n which can be
increased to create more difficult high-dimensional problem instances.

In the base configuration, binary genomes are used to represent real values. This
was done to minimise the influence and number of additional configuration symbols and
parameters required when using real value representation. Also, real value genome rep-
resentation introduces value constraint concerns. The objective of investigations was to
better understand the influence of topology, rather than the identification of overall op-
timal EA configurations for each problem landscape selected. However the exclusive use
of binary genomes does limit the generality of results, and presents an open extension

175

Chapter 6: Population Organisation

to the work considered here. An investigation was conducted to see if the influence of
topology was also observed when using real value genomes. Results are not presented in
detailed in this chapter, but are included in the electronic appendices. They confirm that
the influence of topology is consistent to that observed using binary genomes.

Real Value Landscapes
Sphere (Sph)
Sph.n3i n = 3, inverted, unimodal
Sph.n10i n = 20, inverted, unimodal
Sph.n3 n = 3, multimodal, asymmetric bounds
Sph.n10 n = 20, multimodal, asymmetric bounds
Rosenbrock’s Valley (Ros)
Ros.n2i n = 2, inverted, unimodal
Ros.n20i n = 20, inverted, irregular modality
Frequency Modulated Sound (FMS)
FMSi n = 6, inverted

Table 6.2: Labels and summary details for the selected real value landscapes. Note that binary
genomes are used to represent real values in the base configuration. The search objective
in each case is to find the maximum optimal value. Sph.n3 and Sph.n10 are considered
multimodal because in these instances there are multiple deceptive regions in the search space.

Binary Value Landscapes
Minimum Tardy Task Problem (MTTP)
MTTP.20i n = 20, inverted
MTTP.100i n = 100, inverted
Whitley’s Deceptive 4-bit Problem (WD4B)
WD4B.5 n = 5× 4 = 20 (bits), deceptive
WD4B.10 n = 10× 4 = 40 (bits), deceptive
Subset Sum Problem (SUS)
SUS.100 n = 100, inverted
SUS.1000 n = 1000, inverted
SUS.1000e n = 1000, inverted, even values only

Table 6.3: Labels and summary details for the selected binary value landscapes

Table 6.2 is a summary of the real value, and Table 6.3 lists the binary value landscapes
selected for the base investigation. Other landscapes have been selected as part of specific
investigations presented later.

The base species selected for the experiments is a binary genome. As a consequence
the real value landscapes are represented using mapped binary-to-real tables within the
specified constraints of each real value landscape range of values, which also excludes
unconstrained exploration which can easily occur using real value genome representation.

Real Value Landscapes

• Sphere (“Sph”) (Appendix B.3.2). Four instances designated as “Sph.n3i”,
“Sph.n20i”, “Sph.n3”, “Sph.n20” are used. The first two are used as easy non-

176

Chapter 6: Population Organisation

deceptive unimodal problems, while the second two are inverted with an asymmet-
rical value range of (−4.5, 5) to create highly deceptive instances.

• Rosenbrock (“Ros”) (Appendix B.3.7). Two inverted instances “Ros.n2i” and
“Ros.n20i” of this classic non-convex unimodal problem with subtle and deceptive
features were used.

• Frequency Modulated Sounds (“FMS”) (Appendix B.3.13). A single inverted in-
stance “FMSi” of this highly complex multimodal problem with six parameters,
which exhibits strong epistasis, was used.

Sphere (View A)

-6 -4 -2 0 2 4 6
x1 -6

-4
-2

 0
 2

 4
 6

x2

 0
 10
 20
 30
 40
 50
 60

Rosenbrock' Valley (View B)

-2.5 -1.5 -0.5 0.5 1.5 2.5
x1 -2.5

-1.5
-0.5

 0.5
 1.5

 2.5

x2

 0.01
 0.1

 1
 10

 100
 1000

 10000

Figure 6.8: The 2D Sphere (De Jong F1) and Rosenbrock real value functions shown in
standard minimisation form.

Figure 6.8 shows 3D surface representations of the 2D Sphere and Rosenbrock functions
which are classically used as minimisation problems.

Binary Value Landscapes

• Minimum Tardy Tasks Problem (“MTTP”) (Appendix B.5.10). This is a single
task processor scheduling problem, in which the objective is to find an allocation of

177

Chapter 6: Population Organisation

tasks which is both feasible and minimises the total penalty of unallocated “tardy”
tasks. Two inverted (“i”) instances of this minimisation landscape are used, namely
“MTTP.20i” and “MTTP.100i” for 20 and 100 tasks respectively.

• Whitley’s Deceptive 4-bit Function (“WD4B”) (Appendix B.2.5). Two maximisa-
tion instances, “WD4B.5” and “WD4B.10”, using 5 and 10 4-bit components each
were used. This creates roughly medium and hard difficulty problems respectively,
however each 4-bit component is clearly separable. A graph representation of the
deceptive 4-bit encoded space is shown in Figure 6.9.

• Subset Sum Problem (“SUS”) (Appendix B.5.7). Three inverted minimisation in-
stances of “SUS.100”, “SUS.1000” and “SUS.1000e”, where “100” and “1000” denotes
the size of the subset, were used. (The “i” has been removed for brevity.) The “e”
instance contains only even numbers in the set, and is considered easier.

Figure 6.9: Graph representation of the encoding used in Whitley’s 4-bit deceptive (WD4B)
function. Both the binary string values and the maximisation values have been shown, with
colour added to help represent the deceptive nature of the domain.

Ideally, this set of problem landscapes presents a range of simple and hard domains,
including small and large dimensionality, unimodal to multimodal, simple to deceptive,
and easily separable to highly epistatic. It is with deliberate intent that some of these
instances be too difficult for frequent EA success, as the thresholds of success can be used
as indicators of influential changes in search performance due to changes in the topology.

6.2.4 Result Comparison Methods

A discussion of methods appropriate for comparing results from evolutionary algorithm
search was presented in Section 5.6.

178

Chapter 6: Population Organisation

6.3 Experiments

6.3.1 Introduction

The scope of questions related to population organisation and the influence of topology
have already been described, along with an initial selection of population topologies and
search domain landscapes selected. In order to support a range of investigation variations,
a common “base” experiment configuration is used as a reference for later experiments.1

(See Section 6.3.2 where this is discussed in detail.)
After first considering the influence of different population topology instances on EA

search performance (on the range of search domains), a specific line of inquiry regarding
topological scale is undertaken. This includes the influence of scale (topology size) for a
selection of structured populations as well as full topologies, for comparison.

Regular lattices provide a highly localised neighbourhood for EA processes such as
relative fitness assessment and parent, mate, offspring survival and replacement selection.
From the review of topology (Chapter 4) and within the survey review of topologies
(Appendix C) it can be noted that mean path length profile differs significantly between
circular and non-circular (bound) lattices. An investigation compares the influence of
circular and bound lattices.

When considering other work on structured EAs with lattice “fine-grained” topology,
there have been several suggestions regarding the order that topology locations (cells) are
visited. (Update orders are described in more detail in Section 6.3.5.) One general argu-
ment is that orderly line based reproduction and replacement may have some advantage
over random update order. Update order is also the consideration of selective replacement
pressure; the influence of strong elitist pressure may interact with variations of lattice
update order. Some novel update orders are also suggested as an interesting extension of
existing arguments, including fitness-based order.

Ecological principles suggest that both fitness and competitive replacement are delayed
events, and that a species population can contain an internal structure based, for example,
on age or interaction type. In biology new offspring rarely compete immediately with
adults of the same species, and offspring survival relates to competition among a different
set of species than those faced by an adult individual. A simple single species model of
juvenile support is considered through delayed replacement; offspring are allocated to the
population but do no compete for survival until after a period of delay.

As observed in the properties of natural complex systems, small-world models have
been proposed that are based on rewired lattices. Depending on the degree of rewiring ap-
plied, and within stochastic variation, such models can contain both efficient local “neigh-
bourhood” characteristics, as well as efficient global performance without the extreme cost
of dense or fully connected graph topology. To better understand how the processes of

1The base configuration is implemented as an esec batch configuration file designated
“batch01a_base”, and later esec batch experiments are able to directly import the configuration as a
basis for refinement or extension. Similarly the report configuration of the base file can be used to gener-
ate reports for other batch experiments.

179

Chapter 6: Population Organisation

EA search may be influenced by such rewiring, a number of lattice population topology
instances are selected and rewired to various degrees.

Appendix F contains a listing and descriptive overview of the esec batch configuration
files created and associated with this chapter. Appendix D lists the location of summary
report files (and images) as both HTML and PDF documents included on the CDROM.
Batch files and selected results are included here as they relate to the investigations and
topic groups, and so the order of presentation can different from the order implied by the
batch file naming convention.

6.3.2 Topology Influence

Base Investigation

The batch01a_base esec batch configuration file specifies a structured EA (sEA) using
an ESEC population level of organisation. As presented in Section 5.3.2 the overall con-
figuration contains the “system” architecture, a single “species”, search “landscape” and
other “application” (investigation) related settings (Listing 6.1). The configuration type is
specified as “sEA” and the “system” architecture is of type “population” (or the subtype
“structured”).

Listing 6.1: Top-level ESEC Structured EA (sEA) configuration

cfg = {
'EA': 'sEA', # Structured EA with specific topology
'system': {

... # population topology, breeding and survival
},
'species': { ... }, # genome, recombination and mutation
'landscape': { ... }, # search domain details
'application': { ... }, # batch, seed, run stop conditions etc

}

System topology is specified (Listing 6.2) with details for one of the set of listed
topologies (Table 6.1), and used by the batch in combination with each search landscape
instance (Table 6.2 and Table 6.3). The standard default topology size is n = 100, or as
near as possible within constraints of each topology type. Default topology settings include
the update “order” of uniform random sample (URS) without replacement, and undirected
(bidirectional) edges. Topology “size” is either stated explicitly (such as n = 100) or
derived as a consequence of dimensional parameters (as in a 10× 10 regular lattice).

Individual solutions for a search landscape (one of the selected real or binary value
landscapes) can all be represented by binary genomes. The default species configuration
(Listing 6.3) requests that simple uniform random genome initialisation be used, and
that evaluation be “binary”. The binary evaluation operator is able to map between
binary genomes and binary, real or integer value landscapes. For real value landscapes a

180

Chapter 6: Population Organisation

Listing 6.2: Base ESEC sEA “system” configuration

'system': {
'type': 'structured', # "Structured Population"
'topology': {

'type': None, # To be specified (graph name)
'order': 'URS', # Default uniform random sample
'directed': False,
... # Other topology settings as needed

},
'size': '#topology', # 100 or determined by topology
'breed': {

'size': 2, # min. due to crossover
},
'replace': {

'group': 'parent', # The parent
'selection': None, # Because the group value is enough
'compete' : True, # True == "only if better"
'per_gap': 1, # Interval between "replace" update(s)

},
'survive': {

'group': 'offspring', # non-overlapping competition
'selection': 'best',
'size': 1,

},
},

resolution parameter specifies the number of genome bits used in order to quantise a finite
range of real values.2

Listing 6.3: Base ESEC sEA “species” configuration

'species': {
'genome': {

'type': 'binary',
'init': 'random', # Simple uniform random bits
'eval': 'binary' # Map genome <--> landscape

},
'recombine': {

'type': 'one_point',
'rate': 0.8,
'parents': 2, # used in breeding (not neighbourhood size)
'offspring': 2, # due to type
'parent': {'selection': 'order' }, # set by topology
'mate': {'selection': 'binary_tournament' } # within neighbours

},
'mutate': {

'type': 'bitflip',
'rate': 'one',

},
},

Although real value genomes can be selected for real value landscapes, real value
genome operators typically introduce a number of additional domain sensitive parame-
ters. As investigations here focus on the influence of topology on EA processes, a simple

2This is different from the application resolution value which is used as a “threshold” above which best
solution of the EA must achieve

181

Chapter 6: Population Organisation

quantised binary genome assists in the objective. Species settings need to be adequate for
the search domain, however adjusting species settings, and particularly genome details, is
to be avoided when investigating other concerns.

Reproduction in the base configuration is frequent (0.8 = 80%) 1-point (one_point)
crossover with infrequence (“one”3) “bitflip” style mutation, which results in reproduc-
tion needing two parent individuals and creating two offspring. The number of offspring
created is stored in a group specified by system.breed.size which must match the min-
imum needs of the reproduction operator. For clarity, the primary individual selected to
reproduce is termed “parent” and any other individuals used in recombination are termed
“mate”. In this way the configuration for selection of the parent is specified as “order”
(meaning that it depends on the system topology settings) and mates are selected using a
stochastic binary tournament. Mate selection is restricted to “neighbours” as defined by
the specific topology.

Selection and replacement of new offspring into the population is determined by the
system settings for “replace” and “survive”. In both cases the “group” value indicates
the target of selection; “offspring” selection retains the “best” child, and the target of
replacement is the sole “parent” which must compete for survival.

Application settings specify the number of runs (typically 30 or 50) performed for
each configuration and the stop criteria for each run. Default settings will stop a run on
reaching a generation limit, fixed population (ie. genetically uniform as determined by the
species) or on discovery of a good solution (with resolution limits). All runs are seeded
with a seed number offset by the run number.4

Base Results

Table 6.4 and Table 6.5 present the combined result summaries of all topology types, and
all problem instances (real and binary landscapes respectively). Results are presented as
average evaluation to success (AES) and the success rate (SR) percentage. It is notable
that the Ros.n20i and FMSi problems are difficult for all population topologies. Figure 6.10
is presented as a representative example of the distribution of evaluations to success (ES)
for two landscapes.

With respect to AES, the overall best performing topology for real problems is L.hk8,
while for binary domains the denser L.k12 performs best for the WD4B instances, and
the sparse L.k4 does best for the SUS.1000e domain. For easy real value search domains
such as Sph.n3i, Sph.n20i, Sph.n3 (deceptive), and the easy binary value search domains
of MTTP.20i and the SUS group, the success rates are almost uniformly 100%.

The inverted sphere landscapes (such as Sph.n3i) have a smooth unimodal maximi-
sation surface, and are certainly not considered difficult problem instances. All of the
topology instances were able to achieve a 100% success rate (SR). It is interesting to see
in the box and whisker plots that for these two simple problems, Sph.n3i and Sph.n20i

3“one” is converted to = 1/L where L is the number of bits in the genome.
4Unfortunately the igraph library, used by the esec package to create many of the topologies, does not

currently support a method for seeding the generation of deterministic graphs.

182

Chapter 6: Population Organisation

Sp
h.

n3
i

Sp
h.

n2
0i

Sp
h.

n3
Sp

h.
n2

0
R

os
.n

2i
R

os
.n

20
i

FM
Si

L.
k4

23
57

.3
10

0%
22

89
3.

7
10

0%
60

73
.5

10
0%

42
18

6.
0

2%
45

44
.3

74
%

-.-
0%

-.-
0%

L.
k8

20
99

.8
10

0%
20

69
5.

6
10

0%
57

82
.0

10
0%

38
39

7.
0

2%
34

13
.4

80
%

-.-
0%

-.-
0%

L.
k1

2
20

17
.9

10
0%

19
89

2.
6

10
0%

56
11

.9
10

0%
37

35
6.

0
4%

33
02

.8
64

%
-.-

0%
-.-

0%

L.
hk

4
20

13
.1

10
0%

19
98

6.
1

10
0%

51
25

.6
10

0%
39

29
6.

0
2%

40
75

.8
74

%
-.-

0%
-.-

0%

L.
hk

8
18

17
.4

10
0%

17
32

1.
0

10
0%

46
76

.2
10

0%
32

74
3.

0
2%

34
97

.7
62

%
-.-

0%
-.-

0%

L.
k6

22
07

.9
10

0%
21

77
6.

2
10

0%
58

54
.8

10
0%

41
22

9.
5

4%
41

26
.5

78
%

-.-
0%

-.-
0%

L.
hk

3
22

67
.9

10
0%

23
66

1.
5

10
0%

63
60

.1
10

0%
44

20
4.

0
2%

36
36

.2
74

%
-.-

0%
-.-

0%

T
.c

2
28

86
.5

10
0%

31
66

4.
9

10
0%

80
56

.0
10

0%
-.-

0%
45

58
.4

90
%

-.-
0%

-.-
0%

T
.c

3
29

08
.2

10
0%

31
81

4.
9

10
0%

78
23

.5
10

0%
-.-

0%
47

40
.5

84
%

-.-
0%

-.-
0%

T
.c

4
28

37
.0

10
0%

32
45

2.
5

10
0%

81
22

.2
10

0%
-.-

0%
75

73
.7

86
%

-.-
0%

-.-
0%

T
.c

5
30

42
.3

10
0%

33
02

5.
9

10
0%

82
85

.8
10

0%
63

98
3.

5
4%

61
50

.6
84

%
-.-

0%
-.-

0%

T
.c

6
29

81
.9

10
0%

33
64

3.
7

10
0%

87
08

.4
10

0%
64

69
7.

0
4%

59
09

.6
82

%
-.-

0%
-.-

0%

E
R

.0
1

26
58

.5
10

0%
34

89
4.

1
10

0%
83

56
.9

10
0%

83
28

1.
3

22
%

81
62

.5
10

0%
-.-

0%
-.-

0%

E
R

.0
2

26
98

.2
10

0%
28

73
3.

9
10

0%
74

61
.7

10
0%

85
14

1.
0

2%
10

61
8.

9
98

%
-.-

0%
-.-

0%

E
R

.0
3

24
44

.6
10

0%
24

32
1.

8
10

0%
65

85
.0

98
%

-.-
0%

79
22

.9
86

%
-.-

0%
-.-

0%

E
R

.0
4

23
64

.8
10

0%
23

41
5.

4
10

0%
58

84
.1

10
0%

42
29

8.
0

2%
41

34
.5

78
%

-.-
0%

24
64

2.
0

2%

E
R

.0
5

21
20

.9
10

0%
21

98
5.

9
10

0%
57

59
.3

10
0%

39
03

6.
0

2%
35

42
.0

74
%

-.-
0%

-.-
0%

W
S.

00
1

22
08

.3
10

0%
24

77
6.

7
10

0%
64

68
.7

10
0%

48
58

2.
1

16
%

45
24

.3
88

%
-.-

0%
-.-

0%

W
S.

01
22

24
.2

10
0%

24
29

0.
2

10
0%

64
53

.2
10

0%
46

08
3.

0
8%

36
75

.1
84

%
-.-

0%
-.-

0%

W
S.

1
21

94
.2

10
0%

21
63

3.
6

10
0%

59
02

.2
10

0%
40

55
8.

0
6%

28
09

.3
64

%
-.-

0%
-.-

0%

St
ar

42
41

.9
10

0%
44

88
7.

4
10

0%
13

85
9.

2
82

%
-.-

0%
21

10
2.

0
60

%
-.-

0%
-.-

0%

B
A

.p
1

30
14

.1
10

0%
34

60
3.

4
10

0%
86

08
.4

98
%

-.-
0%

79
44

.8
84

%
-.-

0%
-.-

0%

M
R

.5
23

05
.1

10
0%

23
03

7.
9

10
0%

61
96

.4
10

0%
42

25
3.

0
2%

38
26

.6
66

%
-.-

0%
-.-

0%

Ta
bl
e
6.
4:

Ba
se

ex
pe
rim

en
tr

es
ul
ts

fo
rt

op
ol
og
ies

of
siz

e
n

=
10

0.
Th

e
Av

er
ag
e
Ev

al
ua
tio

ns
to

Su
cc
es
s(

AE
S)

an
d
Su

cc
es
sR

at
e
(S
R)

%
re
su
lts

ar
e
sh
ow

n
fo
re

ac
h
re
al

va
lu
e
la
nd

sc
ap

e.
M
ax
im

um
an
d
m
in
im

um
va
lu
es

fo
re

ac
h
AE

S
co
lu
m
n
gr
ou

p
ar
e
fo
rm

at
te
d
bo

ld
an
d
co
lo
ur
ed

re
d.

W
he
n
an

SR
va
lu
e
is
0%

,
th
e
AE

S
va
lu
e
is
sh
ow

n
as

“-
.-”
.

183

Chapter 6: Population Organisation

M
T

T
P.20i

M
T

T
P.100i

W
D

4B
.5

W
D

4B
.10

SU
S.100

SU
S.1000

SU
S.1000e

L.k4
1597.0

100%
58083.7

18%
4385.9

76%
12051.8

12%
3994.5

100%
4243.6

100%
3621.5

100%

L.k8
1363.2

98%
57469.6

14%
4033.4

76%
10829.5

4%
4105.8

100%
4400.7

100%
2468.1

100%

L.k12
1460.1

100%
43468.4

20%
3197.7

76%
5621.0

2%
3781.3

100%
5118.0

100%
2669.9

100%

L.hk4
1496.7

98%
40520.3

6%
4791.3

78%
12146.0

2%
4055.6

96%
4741.0

100%
2682.4

100%

L.hk8
1289.1

98%
29066.7

6%
3787.2

68%
-.-

0%
4130.0

98%
5885.9

98%
3178.1

100%

L.k6
1516.2

100%
29696.7

6%
4209.9

84%
9236.0

10%
4964.5

100%
5815.7

100%
3440.0

100%

L.hk3
1613.1

100%
66200.5

16%
4892.0

90%
11623.8

12%
3616.5

100%
4439.7

100%
2727.6

100%

T
.c2

2125.7
100%

76261.0
4%

10397.7
92%

35862.9
14%

4984.7
100%

4001.2
100%

2814.9
100%

T
.c3

2034.5
100%

89831.0
8%

12835.8
84%

23262.1
14%

4706.6
100%

4953.3
100%

2442.8
100%

T
.c4

2196.3
100%

65693.0
4%

16000.0
80%

25534.0
6%

3974.1
100%

4878.8
100%

2583.4
100%

T
.c5

2283.4
100%

64191.0
2%

16310.3
76%

29626.3
6%

4063.6
100%

3817.7
100%

2061.9
100%

T
.c6

2039.5
100%

75401.0
8%

15434.6
70%

30294.5
4%

4135.3
100%

3994.5
100%

2506.5
100%

E
R

.01
2021.6

100%
78143.5

12%
8379.2

90%
25823.6

10%
3776.8

100%
5902.4

100%
2891.8

100%

E
R

.02
1844.1

100%
72180.5

8%
10160.6

86%
18370.3

6%
5012.5

100%
4951.8

100%
2661.8

100%

E
R

.03
1635.6

100%
70109.3

8%
5294.0

84%
9896.0

6%
3939.8

100%
4819.9

100%
2828.3

100%

E
R

.04
1655.7

98%
61657.0

20%
4680.2

76%
14678.3

6%
3811.9

100%
5955.6

100%
2866.0

100%

E
R

.05
1637.8

100%
47182.7

20%
4321.7

80%
-.-

0%
4756.8

100%
6403.1

98%
2972.9

100%

W
S.001

1668.2
96%

72542.2
10%

6126.8
90%

23660.1
26%

4661.2
100%

4616.7
100%

2685.4
100%

W
S.01

1630.5
100%

47938.6
10%

5785.4
90%

17960.2
26%

3665.7
100%

4968.7
100%

2870.5
100%

W
S.1

1621.4
100%

47674.6
20%

4987.1
94%

12056.5
4%

4738.3
98%

5241.4
100%

3083.3
100%

Star
5156.0

70%
-.-

0%
35692.0

6%
-.-

0%
4074.7

98%
4878.8

100%
2568.4

98%

B
A

.p1
2333.9

100%
61929.0

4%
22530.3

78%
31410.3

6%
3675.5

100%
4823.3

100%
2459.2

100%

M
R

.5
1644.6

98%
62343.1

14%
4484.4

64%
-.-

0%
3824.6

100%
6414.8

100%
2813.7

100%

Table
6.5:

Base
experim

entresultsfortopologiesofsize
n

=
100.

The
Average

Evaluationsto
Success(AES)

and
SuccessRate

(SR)
%

resultsare
shown

for
each

binary
value

landscape.
M
axim

um
and

m
inim

um
values

for
each

AES
colum

n
group

are
form

atted
bold

and
coloured

red.
W
hen

an
SR

value
is

0%
,the

AES
value

is
shown

as
“-.-”.

184

Chapter 6: Population Organisation

(Figure 6.10), the regular lattice landscapes clearly have the best AES performance, with
the hollow L.hk8 doing best.

L.
k4

L.
k8

L.
k1

2

L.
h
k4

L.
h
k8

L.
k6

L.
h
k3

T
.c

2

T
.c

3

T
.c

4

T
.c

5

T
.c

6

E
R

.0
1

E
R

.0
2

E
R

.0
3

E
R

.0
4

E
R

.0
5

W
S
.0

0
1

W
S
.0

1

W
S
.1

S
ta

r

B
A

.p
1

M
R

.5

0

1000

2000

3000

4000

5000

6000

7000

E
v
a
lu

a
ti

o
n
s

Topology size=100, Problem Sph.n3i

L.
k4

L.
k8

L.
k1

2

L.
h
k4

L.
h
k8

L.
k6

L.
h
k3

T
.c

2

T
.c

3

T
.c

4

T
.c

5

T
.c

6

E
R

.0
1

E
R

.0
2

E
R

.0
3

E
R

.0
4

E
R

.0
5

W
S
.0

0
1

W
S
.0

1

W
S
.1

S
ta

r

B
A

.p
1

M
R

.5

10000

20000

30000

40000

50000

60000

E
v
a
lu

a
ti

o
n
s

Topology size=100, Problem Sph.n20i

Figure 6.10: Evaluations to Success (ES), as a box and whisker plot, in comparison to topology
for the Sph.n3i and Sph.n20i landscapes from the base experiment group of results.

As a topology group, the Tree topologies take longer than either lattices or random
models, and the AES usually increases in proportion to the number of tree children.
The Star topology is by definition an extreme tree topology, and in line with this initial
observation regarding trees, across all problem landscapes the Star topology is consistently
a poor performer. Tree and Star topology have a large proportion of sensitive critical paths
and nodes. Because of this, valuable traits may have few opportunities to be shared. In
some instances the Star is still able to discover adequate solutions, but its success rate (SR)
and evaluations to success (ES) distribution seem to indicate that the topology hinders
rather than supports the evolutionary search processes.

A distinct lack of success results for the Ros.n20i and FMSi problem landscapes sup-
ports their status as difficult problems, with only one successful result for FMSi. An

185

Chapter 6: Population Organisation

interesting feature of the success group comparison plot for both these problems (see Fig-
ure 6.11) is that some topology types are more likely to become genetically fixed while
others reach the arbitrary generation limit. The obvious examples of this are the ER.01
and ER.02 where the high likelihood of isolated subcomponent graphs explicitly prevent
genetic convergence. For such topologies it may be worth creating a new “fixed” measure
that considers if each subcomponent is fixed instead of a single global measure. Regard-
less, this type of success result does support expectations based on the known properties
of the underlying topology; possible subcomponents influence the EA search process and
results.

L.
k4

L.
k8

L.
k1

2

L.
h
k4

L.
h
k8

L.
k6

L.
h
k3

T
.c

2

T
.c

3

T
.c

4

T
.c

5

T
.c

6

E
R

.0
1

E
R

.0
2

E
R

.0
3

E
R

.0
4

E
R

.0
5

W
S
.0

0
1

W
S
.0

1

W
S
.1

S
ta

r

B
A

.p
1

M
R

.5
0

10

20

30

40

50

S
u
cc

e
ss

 F

ix
e
d

 L
im

it

Topology size=100, Problem Ros.n20i

Figure 6.11: Ros.n20i “success”, “fixed” and “limit” ratio comparison plot for each topology
type from the base experiment results

WD4B.5 and WD4B.10 problem instances are both challenging and a population topol-
ogy that supports diversity and recombination of the separable deceptive 4-bit blocks
would be expected to do well. The lattice, random ER and rewired WS topologies do best
with respect to AES and SR results (Figure 6.12). It is interesting to see that the Tree
group tend to have a much larger spread of ES values, including quite a few outliers. As
a group the WD4B domains provide a niche example, where the complex topology of WS
graphs apparently support good SR performance and respectable evaluation distribution.

For the SUS.100, SUS.1000 and SUS.1000e binary problem group the variation in ES
distribution between topology groups is small (Figure 6.13). The normally poor per-
forming Tree group actually produces the minimal AES result (T.c5) in both SUS.1000
and SUS.1000e cases. A look at the Mann-Whitney U comparison values (presented as
CDROM reports for all experiments) supports there being little distinction between any
of the ES distributions among topology instances on these problems. The topology seems
to have little or no influence on EA outcomes; the problem domain is not challenging
in a way that might benefit from an EA search with processes localised for exploration
(specialisation) or globalised for exploitation.

The general result from this initial collection of search landscapes and the range of

186

Chapter 6: Population Organisation

L.
k4

L.
k8

L.
k1

2

L.
h
k4

L.
h
k8

L.
k6

L.
h
k3

T
.c

2

T
.c

3

T
.c

4

T
.c

5

T
.c

6

E
R

.0
1

E
R

.0
2

E
R

.0
3

E
R

.0
4

E
R

.0
5

W
S
.0

0
1

W
S
.0

1

W
S
.1

S
ta

r

B
A

.p
1

M
R

.5

0

20000

40000

60000

80000

100000

E
v
a
lu

a
ti

o
n
s

Topology size=100, Problem WD4B.5
L.

k4

L.
k8

L.
k1

2

L.
h
k4

L.
h
k8

L.
k6

L.
h
k3

T
.c

2

T
.c

3

T
.c

4

T
.c

5

T
.c

6

E
R

.0
1

E
R

.0
2

E
R

.0
3

E
R

.0
4

E
R

.0
5

W
S
.0

0
1

W
S
.0

1

W
S
.1

S
ta

r

B
A

.p
1

M
R

.5

0

10

20

30

40

50

S
u
cc

e
ss

 F

ix
e
d

 L
im

it

Topology size=100, Problem WD4B.5

Figure 6.12: ES distribution plot and success ratio comparison plot for each topology type on
the WD4B.5 landscape of the base experiment

187

Chapter 6: Population Organisation

L.
k4

L.
k8

L.
k1

2

L.
h
k4

L.
h
k8

L.
k6

L.
h
k3

T
.c

2

T
.c

3

T
.c

4

T
.c

5

T
.c

6

E
R

.0
1

E
R

.0
2

E
R

.0
3

E
R

.0
4

E
R

.0
5

W
S
.0

0
1

W
S
.0

1

W
S
.1

S
ta

r

B
A

.p
1

M
R

.5

0

5000

10000

15000

20000
E
v
a
lu

a
ti

o
n
s

Topology size=100, Problem SUS.1000e

Figure 6.13: ES distribution and topology comparison plot for SUS.1000e from the base
experiment results

EA population topologies is that topology does influence both the success rate, and the
average number of evaluations to success. For some search domains a reduction in ES
or AES results can also result in premature “fixed” population convergence, reducing the
overall success ratio. Searches that take a longer time to succeed (influenced by topology)
are more robust. For some domains, the distribution characteristics of ES results change
with topology groups as a characteristic; some distributions are normal, others skewed,
and some have extreme outlier points.

It is also observed that for some simple search domains, such as the SUS and MTTP.20i
examples, the influence of topology on the EA search process is reduced to a negligible
level. As a consequence there are domains where the overhead of a complex population
topology is not useful within an EA configuration.

Full results of the base experiment are included as a HTML and PDF report on the
CDROM. A contents listing and guide to the reports are provided in Appendix D.

Additional Problem Results

Although the selection of search landscapes have illustrated interesting topology sensitive
results, an additional selection (Table 6.6) of three real value and three binary value
landscapes is also considered. The real value landscapes are represented in Figure 6.14.
Note that the MSG landscape presented is a random instance of the generator function,
and parameters are represented in the landscape features. Additional descriptions of each
landscape are included in Appendix B.

The additional real and binary valued landscapes selected are:

• Schwefel’s (Sch). This is a classic multimodal minimisation problem [310]. It is a
deceptive landscape with a single global minimum geometrically distant from the

188

Chapter 6: Population Organisation

best local minima within the bound search space. The parameters of the landscape
are additively separable. See Appendix B.3.11.

• Max Set of Gaussians (MSG). Developed by Gallagher and Yuan [124], this land-
scape is an irregular and inseparable composition of peaks and distributions. See
Appendix B.5.11.

• Massively Multimodal Deceptive Problem (MMDP). This deliberately deceptive
landscape is similar to the Goldberg 3-bit and Whitney 4-bit (WD4B) deceptive
functions. See Appendix B.5.2.

• P-Peak (PPeaks) Multimodal Problem Generator. Creates strongly epistatic land-
scapes, where a solution’s fitness is based on the nearest matching peak in a randomly
generated set of peaks. See Appendix B.5.3.

• L-SAT Random Satisfiability Problem (3SAT). For this landscape, a solution’s fit-
ness is the normalised number of true clauses in a Boolean CNF (conjunctive normal
form) satisfiability expression. See Appendix B.5.4.

Real Value Landscapes
Sch.n2i n = 2, inverted, multimodal
Sch.n10i n = 10, inverted, multimodal
MSG.n2 n = 2, multimodal (m = 3, p = 1.0, r = 0.4)
Binary Value Landscapes
MMDP6.20 n = 120, 20× 6-bit subcomponents
PPeaks.100 n = 100, P = 100, inverted, multimodal
3SAT n = 100, L = 430 (clauses), K = 3 (length)

Table 6.6: Labels and summary details for additional real and binary landscapes

The AES and SR summary results are presented in Table 6.7. Clearly, the diffi-
cult MMDP6.20 (deceptive), 3SAT (highly epistatic) and 10 dimensional Sch.10i problem
landscapes have not been successfully searched. For the MMDP6.20 and 3SAT cases the
generational limit is reached every time (with no “fixed” run results) which indicates that
either the search limit is set too low or that the problem domain is too difficult. It may be
impractical to set this to a large enough value when other limits such as overall population
size may also be restrictive.

Figure 6.15 show three plots, the first of which is the box and whisker evaluations to
success (ES) plot for the PPeaks problem. We can see the familiar variation in success
evaluation distribution correlated across different population topology which supports pre-
vious findings. The success group comparison plot for Sch.n2i also shows similar ratios as
those discussed for the earlier Sph.2ni search domain: although the L.hk3 topology is not
the minimal example of AES convergence, the high level of SR indicates a robust search
process.

Unlike the previous WD4B.5 case where the Tree group of topologies displayed a large
degree of variance and a number of outliners, for the Sch.n2i it is the ER topologies with

189

Chapter 6: Population Organisation

Schwefel (View A)

-500 -300 -100 100 300 500
x1 -500

-300
-100

 100
 300

 500

x2

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

Max Set of Gaussians (Instance B)

-10
-5

 0
 5

 10
x1 -10

-5
 0

 5
 10

x2

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Figure 6.14: The Schwefel landscape and an example landscape generated by the Max Set of
Gaussians (MSG) landscape generator

low edge probability (ER.01 and ER.02) that present the most numerous ES distribution
outliers.

In summary, half of these additional problem landscapes are supportive of the initial
base result findings and the remaining landscapes were not successfully explored. These
unsuccessful results show that there are limits within the base settings that may prevent
success for some domains. Although the configuration limits could be extended, that is
not the focus of this investigation. The additional landscapes are not considered further
and are included simply to broaden the range of application results and to suggest limits.

Real Genome Results

The results presented so far have all used binary genome representations, and so it is
worth considering if the result of topology sensitivity is particular to binary genomes, or
is similar for other genome types.

To investigate this, real genome species were applied to a selection of the real value
landscapes considered in the base experiment. A detailed presentation and discussion of
the results is not given here, however the simple and concise outcome is that the selection

190

Chapter 6: Population Organisation

L.
k4

L.
k8

L.
k1

2

L.
h
k4

L.
h
k8

L.
k6

L.
h
k3

T
.c

2

T
.c

3

T
.c

4

T
.c

5

T
.c

6

E
R

.0
1

E
R

.0
2

E
R

.0
3

E
R

.0
4

E
R

.0
5

W
S
.0

0
1

W
S
.0

1

W
S
.1

S
ta

r

B
A

.p
1

M
R

.5

0

5000

10000

15000

20000

E
v
a
lu

a
ti

o
n
s

Topology size=100, problem: PPeaks.100

L.
k4

L.
k8

L.
k1

2

L.
h
k4

L.
h
k8

L.
k6

L.
h
k3

T
.c

2

T
.c

3

T
.c

4

T
.c

5

T
.c

6

E
R

.0
1

E
R

.0
2

E
R

.0
3

E
R

.0
4

E
R

.0
5

W
S
.0

0
1

W
S
.0

1

W
S
.1

S
ta

r

B
A

.p
1

M
R

.5
0

10000

20000

30000

40000

50000

E
v
a
lu

a
ti

o
n
s

Topology size=100, problem: Sch.n2i

L.
k4

L.
k8

L.
k1

2

L.
h
k4

L.
h
k8

L.
k6

L.
h
k3

T
.c

2

T
.c

3

T
.c

4

T
.c

5

T
.c

6

E
R

.0
1

E
R

.0
2

E
R

.0
3

E
R

.0
4

E
R

.0
5

W
S
.0

0
1

W
S
.0

1

W
S
.1

S
ta

r

B
A

.p
1

M
R

.5

0

5

10

15

20

25

30

S
u
cc

e
ss

 F

ix
e
d

 L
im

it

Topology size=100, problem: Sch.n2i

Figure 6.15: Additional results for the PPeaks.100 and Sch.n2i ES landscapes, showing ES
distribution plots (for both) and success ratio comparison plot (for Sch.n2i).

191

Chapter 6: Population Organisation

MMDP6.20 PPeaks.100 3SAT Sch.n2i Sch.n10i MSG.n2

L.k4 -.- 0% 8555.3 100% -.- 0% 3009.7 83% -.- 0% 1083.3 100%

L.k8 -.- 0% 7333.4 100% -.- 0% 2966.3 67% -.- 0% 1031.5 100%

L.k12 -.- 0% 7159.7 100% -.- 0% 3105.1 87% -.- 0% 913.7 100%

L.hk4 -.- 0% 9040.8 100% -.- 0% 3766.6 87% -.- 0% 1051.3 100%

L.hk8 -.- 0% 7464.8 100% -.- 0% 3206.0 83% -.- 0% 911.1 100%

L.k6 -.- 0% 7739.3 100% -.- 0% 3031.2 93% -.- 0% 1061.5 100%

L.hk3 -.- 0% 8475.5 100% -.- 0% 3695.8 83% -.- 0% 1001.6 100%

T.c2 -.- 0% 11963.4 100% -.- 0% 5834.9 97% -.- 0% 1350.3 100%

T.c3 -.- 0% 12110.6 100% -.- 0% 5102.5 90% -.- 0% 1450.4 100%

T.c4 -.- 0% 11678.5 100% -.- 0% 5006.7 83% -.- 0% 1442.9 100%

T.c5 -.- 0% 12095.8 100% -.- 0% 6389.6 77% -.- 0% 1467.0 100%

T.c6 -.- 0% 12200.6 100% -.- 0% 5836.9 80% -.- 0% 1613.9 100%

ER.01 -.- 0% 11771.5 100% -.- 0% 7607.5 93% -.- 0% 1287.6 100%

ER.02 -.- 0% 10332.8 100% -.- 0% 7538.9 97% -.- 0% 1238.3 100%

ER.03 -.- 0% 9226.8 100% -.- 0% 4042.4 93% -.- 0% 1068.1 100%

ER.04 -.- 0% 8269.5 100% -.- 0% 3413.8 80% -.- 0% 994.4 100%

ER.05 -.- 0% 7590.1 100% -.- 0% 2908.1 70% -.- 0% 1140.9 100%

WS.001 -.- 0% 8882.9 100% -.- 0% 3836.4 90% -.- 0% 1197.8 100%

WS.01 -.- 0% 8660.8 100% -.- 0% 3620.9 93% -.- 0% 1178.5 100%

WS.1 -.- 0% 7699.7 100% -.- 0% 3132.5 77% -.- 0% 1010.2 100%

Star -.- 0% 15001.2 100% -.- 0% 11831.3 33% -.- 0% 3129.3 97%

BA.p1 -.- 0% 12617.2 100% -.- 0% 6317.5 80% -.- 0% 1513.7 100%

MR.5 -.- 0% 7696.5 100% -.- 0% 3733.9 83% -.- 0% 923.6 100%

Table 6.7: AES and SR results for additional real and binary value landscapes as an extension
of the base configuration results

of different topologies does appear to have the same type of influence as seen in binary
genome results, including the correlation of stronger influence observed in complex and
deceptive domains. The detailed summary report is presented as CDROM documents.

This brief consideration of a different genome representation is not exhaustive and the
intent is simply to create a more complete picture of the relationship between evolution-
ary search processes, search domains and the interaction (if any) of solution representation
(genome) with population topology. As discussed in the introduction of the base experi-
ment, binary genomes were specifically selected because they are applicable to both binary
and mapped real value landscape domains. Also, only simple operators are needed for bi-
nary genomes, while the range and complexity of operators that can be used with real
value genomes (in particular for both crossover and mutation) adds additional configura-
tion variables (many sensitive to the search domain) and complexity which is outside of
the scope of the investigations presented here.

It would be interesting to investigate if, for a real value domain using effective and
specialised real value operators, the influence of topology was increased or reduced, and
whether it is more effective to adjust population topology or real value operator selection
and parameters as an EA optimisation strategy.

192

Chapter 6: Population Organisation

6.3.3 Topology Scale

Size and Influence

The base configuration selects populations with a topology size of, or near to, n = 100.
Given that the primary reproduction process is specified as recombination (crossover) with
only low levels of mutation, the initial random population needs to contain enough genetic
diversity as raw material for the EA search process. For most search landscapes n = 100
was a suitable and successful size. However, some domains proved difficult or reached
limits of genetic fixation (premature convergence) or arbitrary generational limits.

To consider the raw influence that population size has, the base configuration was
repeated with scaled up population sizes of n = 400 and n = 900. The size values are
based on consideration of simple 2D lattices, where 10×10 = 100 in the base configuration,
and a linear increase in dimensional size to 20 × 20 = 400 and 30 × 30 = 900. When the
exact scale size is not possible for a topology type (due to structural constraints5.), the
nearest suitable size is selected.

With the additional supply of diverse raw material in larger populations, it is expected
that an EA is more likely to be successful. However the additional number of individuals
that are processed may result in a larger number of average evaluations to success. It is
also more likely that a healthy level of diversity in the population will be preserved for a
longer generational time (influenced by the topology) which is supportive of a robust EA
search process.

Scale-up Results

Two new batches of results were collected for populations of n = 400 and n = 900 respec-
tively.6 The number of runs performed per configuration was decreased from 50 to 30. All
other configuration details are the same as for the base experiment.

Summary tables for real and binary value landscape results are presented for the n =
400 batch in Table 6.8 and Table 6.9, and for the n = 900 batch in Table 6.10 and
Table 6.11. These results can be compared to those presented earlier for the n = 100
topologies (Table 6.4 and Table 6.5), although a more direct side-by-side comparison is
made in the next section.

For the n = 100 results the Sph.n20 proved difficult with only a few success results for
slightly over half the topology types. In the n = 400 results all but the Star topology have
some success results, with the lattice and WS small-world models having the greatest SR
levels (70 ∼ 100%). This trend continued in the n = 900 result where the lattice and WS
models attained 100% SR.

Similarly the Ros.n2i domain was challenging for the n = 100 topologies with most
SR results in the 70 ∼ 85% range, while for the n = 400 results all but three topology

5For example, the L.hk3 “honeycomb” lattice needs to be a particular width and height to avoid
introducing vertices of degree other than k = 3

6The esec package allows for the existing base configuration file to be imported directly and the
topology sizes re-specified.

193

Chapter 6: Population Organisation

Sph.n3i
Sph.n20i

Sph.n3
Sph.n20

R
os.n2i

R
os.n20i

FM
Si

L.k4
7590.5

100%
80526.1

100%
21754.7

100%
147059.8

100%
5733.5

100%
-.-

0%
117202.0

10%

L.k8
6971.9

100%
71467.6

100%
20168.7

100%
129933.1

87%
6700.9

100%
-.-

0%
-.-

0%

L.k12
6722.2

100%
67147.0

100%
17974.4

100%
124402.6

80%
5676.2

100%
-.-

0%
-.-

0%

L.hk4
6140.9

100%
69862.1

100%
18502.2

100%
128763.4

93%
5870.5

100%
-.-

0%
106301.5

7%

L.hk8
5778.8

100%
59402.3

100%
16387.1

100%
109858.6

73%
6214.5

97%
-.-

0%
-.-

0%

L.k6
7385.8

100%
76178.7

100%
20751.2

100%
139352.5

100%
5953.9

100%
-.-

0%
87014.0

3%

L.hk3
8358.7

100%
89598.9

100%
23459.3

100%
165485.0

100%
8348.8

100%
-.-

0%
96276.7

10%

T
.c2

9031.1
100%

111833.1
100%

26827.9
100%

217492.5
63%

5965.9
100%

-.-
0%

170244.0
3%

T
.c3

9296.6
100%

112130.2
100%

27260.3
100%

218641.6
43%

7601.2
100%

-.-
0%

149246.0
3%

T
.c4

9478.6
100%

113340.8
100%

27656.3
100%

216085.2
33%

6971.1
100%

-.-
0%

188148.0
3%

T
.c5

9771.9
100%

118417.8
100%

27688.1
100%

213224.9
47%

9350.5
100%

-.-
0%

-.-
0%

T
.c6

10134.5
100%

117740.2
100%

29064.6
100%

219695.0
10%

5891.2
100%

-.-
0%

-.-
0%

E
R

.01
7226.2

100%
73965.5

100%
19554.8

100%
138287.9

50%
7100.4

100%
-.-

0%
-.-

0%

E
R

.02
6853.7

100%
63281.4

100%
18022.3

100%
118768.6

37%
6895.0

100%
-.-

0%
49779.0

3%

E
R

.03
6183.4

100%
61297.8

100%
17192.2

100%
112820.0

33%
6500.3

100%
-.-

0%
55922.0

3%

E
R

.04
6428.0

100%
60548.7

100%
17019.7

100%
111446.3

43%
5441.9

97%
-.-

0%
-.-

0%

E
R

.05
5775.9

100%
58433.2

100%
16589.2

100%
115688.6

27%
6007.4

100%
-.-

0%
45711.0

3%

W
S.001

7700.5
100%

93888.3
100%

23023.7
100%

176283.8
100%

7427.0
100%

-.-
0%

189144.0
3%

W
S.01

7479.7
100%

87072.7
100%

22157.1
100%

160693.5
97%

7169.2
100%

-.-
0%

232662.0
3%

W
S.1

6544.5
100%

71286.7
100%

19760.7
100%

130139.8
70%

7930.1
100%

-.-
0%

70624.5
7%

Star
14429.3

100%
175701.3

100%
49048.1

80%
-.-

0%
67892.6

97%
-.-

0%
-.-

0%

B
A

.p1
9707.3

100%
125620.8

100%
29214.0

100%
258793.1

47%
9435.9

100%
-.-

0%
-.-

0%

M
R

.5
7233.2

100%
75834.5

100%
20689.3

100%
142839.3

27%
8371.7

100%
-.-

0%
67314.7

10%

Table
6.8:

Topology
size=

400.
Average

Evaluations
to

Success
(AES)

and
Success

Rate
(SR)

results
forrealvalue

landscapes.

194

Chapter 6: Population Organisation

M
T

T
P.

20
i

M
T

T
P.

10
0i

W
D

4B
.5

W
D

4B
.1

0
SU

S.
10

0
SU

S.
10

00
SU

S.
10

00
e

L.
k4

47
41

.0
10

0%
15

46
62

.8
83

%
12

34
3.

9
10

0%
36

52
6.

0
97

%
55

92
.4

10
0%

80
30

.5
10

0%
47

99
.8

10
0%

L.
k8

40
41

.6
10

0%
15

43
59

.4
73

%
10

32
6.

9
10

0%
29

72
1.

7
87

%
54

71
.7

10
0%

88
20

.8
10

0%
43

05
.9

10
0%

L.
k1

2
42

36
.0

10
0%

11
03

26
.2

87
%

89
41

.7
10

0%
25

31
3.

4
90

%
57

14
.2

10
0%

77
21

.1
10

0%
52

19
.3

10
0%

L.
hk

4
41

09
.8

10
0%

16
30

73
.9

67
%

11
39

7.
5

10
0%

35
27

1.
3

90
%

41
04

.0
10

0%
70

83
.1

10
0%

39
13

.9
10

0%

L.
hk

8
37

19
.0

10
0%

12
57

58
.1

67
%

10
39

0.
5

10
0%

27
45

0.
4

87
%

33
27

.0
10

0%
58

13
.8

10
0%

37
54

.6
10

0%

L.
k6

45
16

.6
10

0%
13

28
50

.5
77

%
11

57
6.

6
10

0%
33

40
0.

2
10

0%
40

47
.8

10
0%

75
12

.9
10

0%
39

00
.0

10
0%

L.
hk

3
50

14
.5

10
0%

19
84

71
.9

90
%

15
27

6.
7

10
0%

46
32

2.
3

10
0%

53
46

.6
10

0%
76

72
.7

10
0%

44
62

.6
10

0%

T
.c

2
52

78
.3

10
0%

26
03

95
.2

43
%

26
25

5.
2

10
0%

82
08

7.
4

97
%

44
74

.2
10

0%
65

72
.7

10
0%

41
01

.9
10

0%

T
.c

3
53

73
.5

10
0%

27
02

53
.5

63
%

24
92

4.
2

10
0%

88
63

2.
6

80
%

43
76

.6
10

0%
73

93
.1

10
0%

45
90

.1
10

0%

T
.c

4
56

10
.1

10
0%

27
00

06
.8

50
%

21
46

1.
3

10
0%

88
57

6.
2

80
%

38
19

.5
10

0%
70

68
.0

10
0%

42
94

.3
10

0%

T
.c

5
58

89
.3

10
0%

22
35

70
.3

40
%

28
76

4.
6

10
0%

80
80

0.
2

87
%

39
52

.4
10

0%
63

13
.4

10
0%

39
87

.3
10

0%

T
.c

6
52

19
.0

10
0%

25
04

04
.5

27
%

26
22

4.
4

10
0%

80
64

8.
5

77
%

43
76

.6
10

0%
68

09
.9

10
0%

41
42

.1
10

0%

E
R

.0
1

50
37

.6
10

0%
14

55
65

.1
83

%
10

79
5.

1
10

0%
31

87
3.

3
90

%
50

47
.4

10
0%

74
65

.6
10

0%
44

92
.1

10
0%

E
R

.0
2

41
92

.4
10

0%
97

73
5.

5
77

%
94

77
.3

10
0%

22
60

4.
4

80
%

53
49

.2
10

0%
72

62
.8

10
0%

49
47

.9
10

0%

E
R

.0
3

41
06

.9
10

0%
93

95
5.

8
87

%
84

61
.3

10
0%

20
22

9.
0

87
%

45
66

.4
10

0%
72

39
.9

10
0%

59
47

.9
10

0%

E
R

.0
4

38
56

.0
10

0%
13

42
33

.9
83

%
84

47
.3

10
0%

27
41

8.
4

73
%

35
61

.6
10

0%
88

90
.0

10
0%

39
07

.9
10

0%

E
R

.0
5

40
00

.5
10

0%
89

22
1.

9
80

%
79

03
.1

97
%

20
49

9.
5

80
%

69
55

.3
10

0%
96

92
.6

10
0%

49
04

.2
10

0%

W
S.

00
1

45
65

.5
10

0%
24

96
91

.1
77

%
17

11
9.

0
10

0%
79

31
0.

5
10

0%
45

71
.9

10
0%

70
52

.8
10

0%
40

98
.2

10
0%

W
S.

01
46

08
.4

10
0%

21
97

67
.5

70
%

14
76

8.
5

10
0%

44
03

6.
3

97
%

43
91

.8
10

0%
73

79
.5

10
0%

44
15

.5
10

0%

W
S.

1
42

54
.1

10
0%

13
33

06
.1

80
%

99
02

.2
10

0%
28

30
0.

9
97

%
62

97
.0

10
0%

74
38

.6
10

0%
48

25
.1

10
0%

St
ar

31
17

0.
5

90
%

-.-
0%

21
26

05
.4

40
%

-.-
0%

51
35

.8
10

0%
67

97
.2

10
0%

46
19

.8
10

0%

B
A

.p
1

62
11

.1
10

0%
29

98
27

.2
33

%
35

37
6.

3
10

0%
17

34
43

.3
93

%
37

35
.1

10
0%

63
51

.6
10

0%
38

98
.0

10
0%

M
R

.5
49

03
.4

10
0%

13
83

85
.3

97
%

10
34

3.
1

10
0%

31
23

0.
1

70
%

44
69

.2
10

0%
80

19
.0

10
0%

45
19

.3
10

0%

Ta
bl
e
6.
9:

To
po

lo
gy

siz
e=

40
0.

Av
er
ag
e
Ev

al
ua
tio

ns
to

Su
cc
es
s
(A

ES
)
an
d
Su

cc
es
s
Ra

te
(S
R)

re
su
lts

fo
rb

in
ar
y
va
lu
e
la
nd

sc
ap

es
.

195

Chapter 6: Population Organisation

Sph.n3i
Sph.n20i

Sph.n3
Sph.n20

R
os.n2i

R
os.n20i

FM
Si

L.k4
14635.0

100%
176404.9

100%
45607.5

100%
313744.1

100%
8570.8

100%
-.-

0%
218907.0

7%

L.k8
12913.6

100%
153781.3

100%
41615.4

100%
279040.2

100%
8581.6

100%
-.-

0%
194789.2

17%

L.k12
12877.5

100%
141779.6

100%
37469.8

100%
257383.7

100%
9171.3

100%
-.-

0%
163843.0

3%

L.hk4
11850.8

100%
150228.0

100%
38740.2

100%
273596.1

100%
8666.4

100%
-.-

0%
278079.6

30%

L.hk8
10693.3

100%
129353.9

100%
34534.8

100%
230285.0

100%
7298.9

100%
-.-

0%
133832.5

7%

L.k6
14676.2

100%
166300.4

100%
41912.1

100%
294610.0

100%
9180.9

100%
-.-

0%
227335.0

10%

L.hk3
15016.3

100%
193142.3

100%
49011.5

100%
345092.7

100%
9066.6

100%
-.-

0%
314050.7

20%

T
.c2

17807.6
100%

238287.0
100%

57915.7
100%

453325.8
97%

8929.4
100%

-.-
0%

322016.0
3%

T
.c3

17632.4
100%

240827.3
100%

56917.9
100%

453460.4
90%

10692.3
100%

-.-
0%

281966.8
20%

T
.c4

18195.6
100%

240025.6
100%

56382.3
100%

459202.7
87%

12141.3
100%

-.-
0%

323323.5
7%

T
.c5

18145.9
100%

247294.2
100%

60183.4
100%

465387.8
83%

11493.0
100%

-.-
0%

300008.0
7%

T
.c6

17459.8
100%

247055.1
100%

58189.4
100%

473504.6
53%

10368.7
100%

-.-
0%

185686.0
10%

E
R

.01
12815.4

100%
126841.2

100%
35396.6

100%
233653.9

97%
9508.6

100%
-.-

0%
87251.5

13%

E
R

.02
12308.7

100%
118456.4

100%
35205.2

100%
219658.0

87%
8688.5

100%
-.-

0%
92384.4

17%

E
R

.03
12423.4

100%
117838.2

100%
34178.3

100%
217876.3

83%
9766.8

100%
-.-

0%
124903.0

20%

E
R

.04
12025.6

100%
116725.0

100%
34566.5

100%
213785.1

90%
10442.6

100%
-.-

0%
102946.0

17%

E
R

.05
11482.7

100%
113469.5

100%
33241.3

100%
211777.0

87%
10977.4

100%
-.-

0%
79279.8

20%

W
S.001

14760.5
100%

205445.2
100%

46934.5
100%

401593.1
100%

8877.5
100%

-.-
0%

338370.3
20%

W
S.01

14759.3
100%

186426.4
100%

44578.2
100%

333356.5
100%

9205.2
100%

-.-
0%

199474.8
17%

W
S.1

13622.5
100%

147213.4
100%

41891.1
100%

262282.1
100%

8813.6
100%

-.-
0%

135530.3
23%

Star
33070.9

100%
383730.0

100%
147593.1

100%
-.-

0%
101284.8

100%
-.-

0%
-.-

0%

B
A

.p1
19007.0

100%
271328.5

100%
61009.3

100%
528297.9

97%
9785.9

100%
-.-

0%
332389.0

3%

M
R

.5
14035.9

100%
161160.4

100%
44973.4

100%
300780.8

87%
9736.4

100%
-.-

0%
179029.3

13%

Table
6.10:

Topology
size=

900.
Average

Evaluations
to

Success
(AES)

and
Success

Rate
(SR)

results
forrealvalue

landscapes.

196

Chapter 6: Population Organisation

M
T

T
P.

20
i

M
T

T
P.

10
0i

W
D

4B
.5

W
D

4B
.1

0
SU

S.
10

0
SU

S.
10

00
SU

S.
10

00
e

L.
k4

91
10

.0
10

0%
32

04
83

.3
10

0%
20

27
6.

2
10

0%
69

65
4.

5
10

0%
59

58
.7

10
0%

10
18

8.
0

10
0%

53
94

.4
10

0%

L.
k8

87
93

.9
10

0%
22

20
91

.0
10

0%
19

85
4.

6
10

0%
59

54
4.

9
10

0%
56

70
.0

10
0%

10
11

4.
3

10
0%

64
36

.1
10

0%

L.
k1

2
83

98
.0

10
0%

18
88

95
.5

10
0%

18
60

6.
0

10
0%

50
36

7.
6

10
0%

59
44

.2
10

0%
11

59
4.

6
10

0%
61

87
.6

10
0%

L.
hk

4
76

24
.2

10
0%

34
13

91
.6

90
%

25
05

6.
6

10
0%

72
27

7.
5

10
0%

46
18

.9
10

0%
73

84
.8

10
0%

51
80

.0
10

0%

L.
hk

8
67

13
.4

10
0%

21
26

21
.6

93
%

18
11

5.
0

10
0%

54
38

1.
3

10
0%

51
89

.1
10

0%
80

65
.2

10
0%

48
74

.6
10

0%

L.
k6

84
70

.7
10

0%
25

20
58

.5
10

0%
19

85
5.

9
10

0%
66

91
9.

4
10

0%
53

63
.6

10
0%

91
11

.0
10

0%
56

30
.3

10
0%

L.
hk

3
94

81
.2

10
0%

33
52

71
.8

10
0%

25
71

4.
0

10
0%

85
12

4.
5

10
0%

50
25

.5
10

0%
90

45
.2

10
0%

60
71

.0
10

0%

T
.c

2
10

20
7.

9
10

0%
55

74
55

.5
87

%
40

38
7.

7
10

0%
12

86
25

.6
10

0%
58

33
.4

10
0%

82
27

.6
10

0%
59

81
.2

10
0%

T
.c

3
11

22
9.

4
10

0%
49

84
89

.1
77

%
38

19
4.

8
10

0%
12

98
81

.6
10

0%
50

04
.3

10
0%

98
80

.7
10

0%
54

31
.4

10
0%

T
.c

4
10

53
4.

2
10

0%
49

79
49

.1
70

%
43

15
3.

7
10

0%
13

45
54

.5
10

0%
59

48
.5

10
0%

65
45

.9
10

0%
57

31
.8

10
0%

T
.c

5
10

27
9.

6
10

0%
54

13
68

.4
83

%
38

11
9.

2
10

0%
14

06
36

.7
10

0%
57

22
.9

10
0%

93
16

.2
10

0%
63

11
.5

10
0%

T
.c

6
11

31
3.

8
10

0%
53

35
13

.9
73

%
43

62
1.

4
10

0%
16

17
60

.7
10

0%
46

87
.3

10
0%

88
41

.4
10

0%
59

43
.6

10
0%

E
R

.0
1

73
66

.8
10

0%
14

36
26

.6
10

0%
15

21
3.

3
10

0%
40

65
9.

0
10

0%
51

53
.0

10
0%

11
10

9.
9

10
0%

58
67

.1
10

0%

E
R

.0
2

76
20

.6
10

0%
13

17
84

.1
10

0%
14

28
9.

7
10

0%
36

52
3.

8
10

0%
68

17
.4

10
0%

11
61

1.
4

10
0%

55
20

.0
10

0%

E
R

.0
3

75
73

.2
10

0%
11

53
31

.5
10

0%
13

07
5.

0
10

0%
36

80
7.

2
10

0%
52

44
.2

10
0%

11
28

8.
7

10
0%

70
31

.2
10

0%

E
R

.0
4

69
18

.7
10

0%
11

68
67

.2
10

0%
14

04
1.

4
10

0%
34

51
3.

1
10

0%
66

39
.4

10
0%

88
78

.1
10

0%
67

31
.5

10
0%

E
R

.0
5

76
62

.1
10

0%
12

50
88

.8
10

0%
13

06
4.

8
10

0%
35

82
7.

4
10

0%
53

11
.0

10
0%

10
40

2.
4

10
0%

70
47

.2
10

0%

W
S.

00
1

84
21

.9
10

0%
48

06
86

.1
90

%
26

38
0.

6
10

0%
11

90
26

.9
10

0%
44

86
.7

10
0%

96
83

.3
10

0%
69

28
.5

10
0%

W
S.

01
80

85
.5

10
0%

33
61

06
.3

97
%

24
39

3.
0

10
0%

84
99

6.
7

10
0%

45
83

.3
10

0%
10

55
1.

0
10

0%
60

63
.9

10
0%

W
S.

1
79

09
.9

10
0%

22
58

63
.9

10
0%

17
32

0.
6

10
0%

52
29

8.
7

10
0%

56
02

.3
10

0%
99

32
.8

10
0%

60
04

.4
10

0%

St
ar

28
02

3.
9

10
0%

80
84

41
.0

3%
39

18
97

.3
87

%
-.-

0%
84

73
.8

10
0%

10
71

3.
8

10
0%

60
96

.5
10

0%

B
A

.p
1

11
84

2.
5

10
0%

70
08

86
.1

47
%

57
86

3.
8

10
0%

25
65

20
.5

10
0%

53
94

.7
10

0%
85

72
.4

10
0%

50
48

.4
10

0%

M
R

.5
93

11
.8

10
0%

23
78

33
.9

10
0%

21
23

6.
0

10
0%

58
41

6.
0

97
%

47
52

.3
10

0%
10

56
6.

7
10

0%
53

29
.9

10
0%

Ta
bl
e
6.
11
:
To

po
lo
gy

siz
e=

90
0.

Av
er
ag
e
Ev

al
ua
tio

ns
to

Su
cc
es
s
(A

ES
)
an
d
Su

cc
es
s
Ra

te
(S
R)

re
su
lts

fo
rb

in
ar
y
va
lu
e
la
nd

sc
ap

es
.

197

Chapter 6: Population Organisation

types have 100% SR levels, with the other three at 97% (only one unsuccessful result). At
n = 900 the SR level is 100% for all topologies.

The FMSi problem domain had only one successful result in the n = 100 results, while
in the n = 400 results 14 topologies have at least one success result, and at n = 900 all
but the Star have some degree of success. Clearly the FMSi domain requires or benefits
from a large population. The variability of AES and SR results support the analysis that
this is a highly epistatic domain.

For all three batches no success result was recorded for the Ros.n20i. Although inde-
pendent trials, not presented, indicated that it is possible to increase the evaluation limit
and the population size in order to support success results it is outside the focus of the
investigation.7

With respect to overall AES performance for real value landscapes, the lattice and ER
groups achieve the best results. The result also suggests that the rapid convergence of ER
instances is at the expense of SR levels which are, in several cases, below that of the solid
lattice performances.

Within the n = 100 binary landscape results the MTTP.20i and all three SUS instances
had consistently high SR levels (96 ∼ 100%), and for the larger topology results the SR
levels improved to 100% for all of these domains. For such simple binary landscapes
the variation in AES results between topology types appears negligible; there is little to
indicate at a scale level of n = 900 that the topology type has any influence on search
outcome.

If the domain is simple, and/or the initial population variation is large enough, the
influence of the topology on search outcomes is reduced.

The MTTP.100i problem had consistently low SR results (2 ∼ 20%) for the n = 100
topologies. At a scale of n = 400 this improved with most SR levels in the 67 ∼ 90%
range, and at n = 900 twelve topology types achieved 100% SR except the Tree topology
group which only achieved 73 ∼ 87% results. The BA and Star models also struggled on
this domain at all scale levels.

The WD4B.5 and WD4B.10 domains are deliberately deceptive. At n = 100 all topol-
ogy types had success results for WD4B.5 but the SR values were below 100%. Within
the small variation it appears that at n = 100, as a group, the WS models did well on
SR level. At n = 400 and n = 900 the WD4B.5 domain has a 100% SR for almost all
topology types.

The WD4B.10 instance is clearly difficult at n = 100 with four topologies unable to
have any success, and the SR range for others limited to 26%. (Two of the WS models
achieved the best SR value.) At n = 400 this domain is still challenging with only a few
topologies achieving 100% SR (L.k6, L.hk3 and WS.001). The ER models have again
achieve a low AES, apparently at the expense of SR which are low among the better
performing topology groups.

The Star topology remains a poor performing configuration across both the n = 400
7Some of the best EA approaches for this domain, such as ES [326] and G3 [81], utilise real value

genomes and adaptive step-size variation (mutation) operators that scale (directly or indirectly) and refine
the search.

198

Chapter 6: Population Organisation

and n = 900 results, but with some increased levels of success likely due to the larger initial
population sizes and diversity rather than effective search processes. When successful, Star
AES levels are almost always the largest or near the largest except for the extremely simple
binary domains at large scale where topology has little influence

Scale Comparison Results

In order to present a clearer comparative view, the scale results are combined and tabled
with the existing n = 100 results. As the total number of topologies, including scale
variations, is large they are divided into topology groups:

• Lattices (L.k4, L.k8, L.k12, L.hk4, L.hk8, L.k6, L.hk3),
• Trees (T.c2, T.c2, T.c3, T.c4, T.c5),
• ER (ER.01, ER.02, ER.03, ER.04, ER.05),
• WS (WS.001, WS.01 and WS.1), and
• Others (Star, BA.p1 and MR.5).

Each topology scale level is denoted with a postscript label of “:a”, “:b” and “:c” for
the n = 100, n = 400 and n = 900 sizes respectively.

Result summary tables for each topology group are presented in real value and bi-
nary value problem groups to make performance comparisons between groups and among
problem domains easier. The Ros.n20i results have been excluded as there are no success
results, however the fixed and limit results are considered in later sections. Values are not
shown for problem domains where the success rate (SR) values are 100% in all or most
topology configurations. Minimum and maximum column values are bolded and presented
in red.

Table 6.12 and Table 6.13 are the real value problem summaries for the Lattice and
Tree topology groups, and Table 6.14 and Table 6.15 present the binary value problem
summaries for the same topology groups.

Within the lattice group results (Table 6.12) the hollow and sparse L.hk8:a (n = 100)
topology had the minimal AES values for all Sph problems, however for the Sph.n20 result
the small population size is not as effective with respect to SR as the larger topology sizes.
For the binary problems (Table 6.14), the same L.hk8:a topology still had a minimal AES
performance, but with significantly poor SR values on non-trivial problems (such as the
MTTP and WD4B domains).

The large and sparse L.hk3:c (n = 900) had the maximum AES values for the same
group of real value Sph problems, as well as the difficult FMSi. For the binary problems, it
also took the maximum AES time for MTTP.20i and the WD4B domains. For the simpler
SUS domains the maximum AES values presented are similar to those seen in other large
and dense lattices.

Maximum and minimum AES values trends are mixed between the different Tree
topologies (Table 6.13 and Table 6.15). Certainly for some simple domains small, narrow
and deep T.c2 topologies are quick (low AES) and effective (high SR). A large n = 900
and moderate tree T.c3 seem to be a good balance for high SR values and reasonable

199

Chapter 6: Population Organisation

Sph.n3i Sph.n20i Sph.n3 Sph.n20 Ros.n2i FMSi

L.k4:a 2357.3 22893.7 6073.5 42186.0 2% 4544.3 74% -.- 0%

L.k4:b 7590.5 80526.1 21754.7 147059.8 100% 5733.5 100% 117202.0 10%

L.k4:c 14635.0 176404.9 45607.5 313744.1 100% 8570.8 100% 218907.0 7%

L.k8:a 2099.8 20695.6 5782.0 38397.0 2% 3413.4 80% -.- 0%

L.k8:b 6971.9 71467.6 20168.7 129933.1 87% 6700.9 100% -.- 0%

L.k8:c 12913.6 153781.3 41615.4 279040.2 100% 8581.6 100% 194789.2 17%

L.k12:a 2017.9 19892.6 5611.9 37356.0 4% 3302.8 64% -.- 0%

L.k12:b 6722.2 67147.0 17974.4 124402.6 80% 5676.2 100% -.- 0%

L.k12:c 12877.5 141779.6 37469.8 257383.7 100% 9171.3 100% 163843.0 3%

L.hk4:a 2013.1 19986.1 5125.6 39296.0 2% 4075.8 74% -.- 0%

L.hk4:b 6140.9 69862.1 18502.2 128763.4 93% 5870.5 100% 106301.5 7%

L.hk4:c 11850.8 150228.0 38740.2 273596.1 100% 8666.4 100% 278079.6 30%

L.hk8:a 1817.4 17321.0 4676.2 32743.0 2% 3497.7 62% -.- 0%

L.hk8:b 5778.8 59402.3 16387.1 109858.6 73% 6214.5 97% -.- 0%

L.hk8:c 10693.3 129353.9 34534.8 230285.0 100% 7298.9 100% 133832.5 7%

L.k6:a 2207.9 21776.2 5854.8 41229.5 4% 4126.5 78% -.- 0%

L.k6:b 7385.8 76178.7 20751.2 139352.5 100% 5953.9 100% 87014.0 3%

L.k6:c 14676.2 166300.4 41912.1 294610.0 100% 9180.9 100% 227335.0 10%

L.hk3:a 2267.9 23661.5 6360.1 44204.0 2% 3636.2 74% -.- 0%

L.hk3:b 8358.7 89598.9 23459.3 165485.0 100% 8348.8 100% 96276.7 10%

L.hk3:c 15016.3 193142.3 49011.5 345092.7 100% 9066.6 100% 314050.7 20%

Table 6.12: Lattice group scale comparison of AES and SR results on real value landscapes.
SR % values are not shown when all results for a domain are 100% . The Ros.20i values have
been excluded since there were no success results. When an SR value is 0%, the AES value is
shown as “-.-”.

Sph.n3i Sph.n20i Sph.n3 Sph.n20 Ros.n2i FMSi

T.c2:a 2886.5 31664.9 8056.0 -.- 0% 4558.4 90% -.- 0%

T.c2:b 9031.1 111833.1 26827.9 217492.5 63% 5965.9 100% 170244.0 3%

T.c2:c 17807.6 238287.0 57915.7 453325.8 97% 8929.4 100% 322016.0 3%

T.c3:a 2908.2 31814.9 7823.5 -.- 0% 4740.5 84% -.- 0%

T.c3:b 9296.6 112130.2 27260.3 218641.6 43% 7601.2 100% 149246.0 3%

T.c3:c 17632.4 240827.3 56917.9 453460.4 90% 10692.3 100% 281966.8 20%

T.c4:a 2837.0 32452.5 8122.2 -.- 0% 7573.7 86% -.- 0%

T.c4:b 9478.6 113340.8 27656.3 216085.2 33% 6971.1 100% 188148.0 3%

T.c4:c 18195.6 240025.6 56382.3 459202.7 87% 12141.3 100% 323323.5 7%

T.c5:a 3042.3 33025.9 8285.8 63983.5 4% 6150.6 84% -.- 0%

T.c5:b 9771.9 118417.8 27688.1 213224.9 47% 9350.5 100% -.- 0%

T.c5:c 18145.9 247294.2 60183.4 465387.8 83% 11493.0 100% 300008.0 7%

T.c6:a 2981.9 33643.7 8708.4 64697.0 4% 5909.6 82% -.- 0%

T.c6:b 10134.5 117740.2 29064.6 219695.0 10% 5891.2 100% -.- 0%

T.c6:c 17459.8 247055.1 58189.4 473504.6 53% 10368.7 100% 185686.0 10%

Table 6.13: Tree group scale comparison of AES and SR results on real value landscapes.
Where all SR values are 100% the values are not shown. The Ros.20i results excluded. When
SR is 0% the AES is shown as “-.-”.

200

Chapter 6: Population Organisation

MTTP.20i MTTP.100i WD4B.5 WD4B.10 SUS.100 SUS.1000 SUS.1000e

L.k4:a 1597.0 58083.7 18% 4385.9 76% 12051.8 12% 3994.5 4243.6 3621.5

L.k4:b 4741.0 154662.8 83% 12343.9 100% 36526.0 97% 5592.4 8030.5 4799.8

L.k4:c 9110.0 320483.3 100% 20276.2 100% 69654.5 100% 5958.7 10188.0 5394.4

L.k8:a 1363.2* 57469.6 14% 4033.4 76% 10829.5 4% 4105.8 4400.7 2468.1

L.k8:b 4041.6 154359.4 73% 10326.9 100% 29721.7 87% 5471.7 8820.8 4305.9

L.k8:c 8793.9 222091.0 100% 19854.6 100% 59544.9 100% 5670.0 10114.3 6436.1

L.k12:a 1460.1 43468.4 20% 3197.7 76% 5621.0 2% 3781.3 5118.0 2669.9

L.k12:b 4236.0 110326.2 87% 8941.7 100% 25313.4 90% 5714.2 7721.1 5219.3

L.k12:c 8398.0 188895.5 100% 18606.0 100% 50367.6 100% 5944.2 11594.6 6187.6

L.hk4:a 1496.7* 40520.3 6% 4791.3 78% 12146.0 2% 4055.6* 4741.0 2682.4

L.hk4:b 4109.8 163073.9 67% 11397.5 100% 35271.3 90% 4104.0 7083.1 3913.9

L.hk4:c 7624.2 341391.6 90% 25056.6 100% 72277.5 100% 4618.9 7384.8 5180.0

L.hk8:a 1289.1* 29066.7 6% 3787.2 68% -.- 0% 4130.0* 5885.9* 3178.1

L.hk8:b 3719.0 125758.1 67% 10390.5 100% 27450.4 87% 3327.0 5813.8 3754.6

L.hk8:c 6713.4 212621.6 93% 18115.0 100% 54381.3 100% 5189.1 8065.2 4874.6

L.k6:a 1516.2 29696.7 6% 4209.9 84% 9236.0 10% 4964.5 5815.7 3440.0

L.k6:b 4516.6 132850.5 77% 11576.6 100% 33400.2 100% 4047.8 7512.9 3900.0

L.k6:c 8470.7 252058.5 100% 19855.9 100% 66919.4 100% 5363.6 9111.0 5630.3

L.hk3:a 1613.1 66200.5 16% 4892.0 90% 11623.8 12% 3616.5 4439.7 2727.6

L.hk3:b 5014.5 198471.9 90% 15276.7 100% 46322.3 100% 5346.6 7672.7 4462.6

L.hk3:c 9481.2 335271.8 100% 25714.0 100% 85124.5 100% 5025.5 9045.2 6071.0

Table 6.14: Lattice group scale comparison of AES and SR results on binary value landscapes.
Where all, or almost all, SR values are 100% the values are not shown. AES values marked
with “*” indicate that the SR value was only one or two success values below 100%. When
SR is 0% the AES is shown as “-.-”.

MTTP.20i MTTP.100i WD4B.5 WD4B.10 SUS.100 SUS.1000 SUS.1000e

T.c2:a 2125.7 76261.0 4% 10397.7 92% 35862.9 14% 4984.7 4001.2 2814.9

T.c2:b 5278.3 260395.2 43% 26255.2 100% 82087.4 97% 4474.2 6572.7 4101.9

T.c2:c 10207.9 557455.5 87% 40387.7 100% 128625.6 100% 5833.4 8227.6 5981.2

T.c3:a 2034.5 89831.0 8% 12835.8 84% 23262.1 14% 4706.6 4953.3 2442.8

T.c3:b 5373.5 270253.5 63% 24924.2 100% 88632.6 80% 4376.6 7393.1 4590.1

T.c3:c 11229.4 498489.1 77% 38194.8 100% 129881.6 100% 5004.3 9880.7 5431.4

T.c4:a 2196.3 65693.0 4% 16000.0 80% 25534.0 6% 3974.1 4878.8 2583.4

T.c4:b 5610.1 270006.8 50% 21461.3 100% 88576.2 80% 3819.5 7068.0 4294.3

T.c4:c 10534.2 497949.1 70% 43153.7 100% 134554.5 100% 5948.5 6545.9 5731.8

T.c5:a 2283.4 64191.0 2% 16310.3 76% 29626.3 6% 4063.6 3817.7 2061.9

T.c5:b 5889.3 223570.3 40% 28764.6 100% 80800.2 87% 3952.4 6313.4 3987.3

T.c5:c 10279.6 541368.4 83% 38119.2 100% 140636.7 100% 5722.9 9316.2 6311.5

T.c6:a 2039.5 75401.0 8% 15434.6 70% 30294.5 4% 4135.3 3994.5 2506.5

T.c6:b 5219.0 250404.5 27% 26224.4 100% 80648.5 77% 4376.6 6809.9 4142.1

T.c6:c 11313.8 533513.9 73% 43621.4 100% 161760.7 100% 4687.3 8841.4 5943.6

Table 6.15: Tree group scale comparison of AES and SR results on binary value landscapes.
Where all SR values are 100% the values are not shown.

201

Chapter 6: Population Organisation

AES time. The shallow and broad T.c6 topology do, in general, take the longest time to
converge but with good success rate level at larger topology sizes for difficult or deceptive
problems (such as the MTTP.100i and WD4B domains).

For the ER topology group best (minimum) AES results for real value domains (Ta-
ble 6.16) were among the small and dense ER.05:a (n = 100) instances, while for binary
domains (Table 6.19) the minimal AES result varied, but still showed preference for small
and dense ER instances (ER.03:a and ER.05:a). The success rate improved as the graph
scale, n, increased.

Across both the real and binary value landscapes (Table 6.17 and Table 6.20) the
WS small-world topologies consistently showed minimal AES performance for the the
small graphs (“a:” n = 100), and mostly for the larger rewiring probability of p = 0.1
(WS.1:a) with the exceptions being among the simpler binary domains or the difficult
real valued FMSi domain (where the WS.1:a instance was not successful). Similarly, the
largest AES values were among the large n = 900 and relatively untouched lattice of the
WS.001:c. Success rate for difficult domains again improved with scale increase (as seen
in the Sph.n20, Ros.n2i, FMSi, MTTP.100i and WD4B domains).

The collection of “Other” topologies makes group level comparison less clear (Table 6.18
and Table 6.21), but between the Star, BA and MR models, the ER based MR.4:a consis-
tently performed well with minimal AES values across real and binary problem domains,
but with the familiar poor SR value on difficult domains. The exceptions being among
the simple SUS binary domains where all topology groups have been shown to have less
influence among other stochastic factors. As noted several times, the Star topology ap-
pears to specifically hinder evolutionary progress taking the majority of largest AES and
poorest SR classifications.

Figure 6.16 shows a comparison of lattice topologies applied to the Sph.n3 and WD4B.5
domains, both of which are of sufficient difficulty to show the influence of topology con-
figuration and size. In the Sph.n3 results not only is there a clear scaled increase related
to topology scale, but also a wide separation between distributions. Similarly, within
the WD4B.5 domain larger topologies take more time to reach success. However in the
WD4B.5 case the results also tend to have a larger and overlapping ES distribution spread
for larger populations. This is something that is suggested in other results, but not as
clearly evident as within the Sph.n3 results.

The MTTP.100i domain is a complex domain that presents a reasonable challenge for
all topology groups and across scale, with the L.hk8 lattice and the ER.03 and ER.05
providing successful and efficient at different scales. Figure 6.17 demonstrates two exam-
ples, from the lattice and the ER group of results, that topology size increases the ratio
or profile of the SR, fixed and limit results changes. Overall, the ratio of success results
increases with scale in all cases. In the lattice group, the ratio of “fixed” results also tends
to be reduced as scale increases. Within the ER.01 and ER.02 instances of small n = 100
size there are no “fixed” results. As discussed before, this is almost certainly due to the
occurrence of isolated subgraph components that prevent population wide convergence.
The same success rate ratios can be observed with the MTTP.100i domain with other

202

Chapter 6: Population Organisation

Sph.n3i Sph.n20i Sph.n3 Sph.n20 Ros.n2i FMSi

ER.01:a 2658.5 34894.1 8356.9 83281.3 22% 8162.5 100% -.- 0%

ER.01:b 7226.2 73965.5 19554.8 138287.9 50% 7100.4 100% -.- 0%

ER.01:c 12815.4 126841.2 35396.6 233653.9 97% 9508.6 100% 87251.5 13%

ER.02:a 2698.2 28733.9 7461.7 85141.0 2% 10618.9 98% -.- 0%

ER.02:b 6853.7 63281.4 18022.3 118768.6 37% 6895.0 100% 49779.0 3%

ER.02:c 12308.7 118456.4 35205.2 219658.0 87% 8688.5 100% 92384.4 17%

ER.03:a 2444.6 24321.8 6585.0* -.- 0% 7922.9 86% -.- 0%

ER.03:b 6183.4 61297.8 17192.2 112820.0 33% 6500.3 100% 55922.0 3%

ER.03:c 12423.4 117838.2 34178.3 217876.3 83% 9766.8 100% 124903.0 20%

ER.04:a 2364.8 23415.4 5884.1 42298.0 2% 4134.5 78% 24642.0 2%

ER.04:b 6428.0 60548.7 17019.7 111446.3 43% 5441.9 97% -.- 0%

ER.04:c 12025.6 116725.0 34566.5 213785.1 90% 10442.6 100% 102946.0 17%

ER.05:a 2120.9 21985.9 5759.3 39036.0 2% 3542.0 74% -.- 0%

ER.05:b 5775.9 58433.2 16589.2 115688.6 27% 6007.4 100% 45711.0 3%

ER.05:c 11482.7 113469.5 33241.3 211777.0 87% 10977.4 100% 79279.8 20%

Table 6.16: ER group scale comparison of AES and SR results on real value landscapes. Where
all, or almost all, SR values are 100% the values are not shown. The AES value marked with
“*” indicates that the SR value was 98%. Ros.20i results excluded. When SR is 0% the AES
is shown as “-.-”.

Sph.n3i Sph.n20i Sph.n3 Sph.n20 Ros.n2i FMSi

WS.001:a 2208.3 24776.7 6468.7 48582.1 16% 4524.3 88% -.- 0%

WS.001:b 7700.5 93888.3 23023.7 176283.8 100% 7427.0 100% 189144.0 3%

WS.001:c 14760.5 205445.2 46934.5 401593.1 100% 8877.5 100% 338370.3 20%

WS.01:a 2224.2 24290.2 6453.2 46083.0 8% 3675.1 84% -.- 0%

WS.01:b 7479.7 87072.7 22157.1 160693.5 97% 7169.2 100% 232662.0 3%

WS.01:c 14759.3 186426.4 44578.2 333356.5 100% 9205.2 100% 199474.8 17%

WS.1:a 2194.2 21633.6 5902.2 40558.0 6% 2809.3 64% -.- 0%

WS.1:b 6544.5 71286.7 19760.7 130139.8 70% 7930.1 100% 70624.5 7%

WS.1:c 13622.5 147213.4 41891.1 262282.1 100% 8813.6 100% 135530.3 23%

Table 6.17: WS group scale comparison of AES and SR results on real value landscapes.
Where all SR values are 100% the values are not shown. Ros.20i results excluded. When SR
is 0% the AES is shown as “-.-”.

Sph.n3i Sph.n20i Sph.n3 Sph.n20 Ros.n2i FMSi

Star:a 4241.9 44887.4 13859.2 82% -.- 0% 21102.0 60% -.- 0%

Star:b 14429.3 175701.3 49048.1 80% -.- 0% 67892.6 97% -.- 0%

Star:c 33070.9 383730.0 147593.1 100% -.- 0% 101284.8 100% -.- 0%

BA.p1:a 3014.1 34603.4 8608.4 98% -.- 0% 7944.8 84% -.- 0%

BA.p1:b 9707.3 125620.8 29214.0 100% 258793.1 47% 9435.9 100% -.- 0%

BA.p1:c 19007.0 271328.5 61009.3 100% 528297.9 97% 9785.9 100% 332389.0 3%

MR.5:a 2305.1 23037.9 6196.4 100% 42253.0 2% 3826.6 66% -.- 0%

MR.5:b 7233.2 75834.5 20689.3 100% 142839.3 27% 8371.7 100% 67314.7 10%

MR.5:c 14035.9 161160.4 44973.4 100% 300780.8 87% 9736.4 100% 179029.3 13%

Table 6.18: Other group scale comparison of AES and SR results on real value landscapes.
Where all SR values are 100% the values are not shown. Ros.20i results excluded. When SR
is 0% the AES is shown as “-.-”.

203

Chapter 6: Population Organisation

MTTP.20i MTTP.100i WD4B.5 WD4B.10 SUS.100 SUS.1000 SUS.1000e

ER.01:a 2021.6 78143.5 12% 8379.2 90% 25823.6 10% 3776.8 5902.4 2891.8

ER.01:b 5037.6 145565.1 83% 10795.1 100% 31873.3 90% 5047.4 7465.6 4492.1

ER.01:c 7366.8 143626.6 100% 15213.3 100% 40659.0 100% 5153.0 11109.9 5867.1

ER.02:a 1844.1 72180.5 8% 10160.6 86% 18370.3 6% 5012.5 4951.8 2661.8

ER.02:b 4192.4 97735.5 77% 9477.3 100% 22604.4 80% 5349.2 7262.8 4947.9

ER.02:c 7620.6 131784.1 100% 14289.7 100% 36523.8 100% 6817.4 11611.4 5520.0

ER.03:a 1635.6 70109.3 8% 5294.0 84% 9896.0 6% 3939.8 4819.9 2828.3

ER.03:b 4106.9 93955.8 87% 8461.3 100% 20229.0 87% 4566.4 7239.9 5947.9

ER.03:c 7573.2 115331.5 100% 13075.0 100% 36807.2 100% 5244.2 11288.7 7031.2

ER.04:a 1655.7* 61657.0 20% 4680.2 76% 14678.3 6% 3811.9 5955.6 2866.0

ER.04:b 3856.0 134233.9 83% 8447.3 100% 27418.4 73% 3561.6 8890.0 3907.9

ER.04:c 6918.7 116867.2 100% 14041.4 100% 34513.1 100% 6639.4 8878.1 6731.5

ER.05:a 1637.8 47182.7 20% 4321.7 80% -.- 0% 4756.8 6403.1* 2972.9

ER.05:b 4000.5 89221.9 80% 7903.1 97% 20499.5 80% 6955.3 9692.6 4904.2

ER.05:c 7662.1 125088.8 100% 13064.8 100% 35827.4 100% 5311.0 10402.4 7047.2

Table 6.19: ER group scale comparison of AES and SR results on binary value landscapes.
Where all, or almost all, SR values are 100% the values are not shown. The AES values marked
with “*” indicate that the SR value was 98%.

MTTP.20i MTTP.100i WD4B.5 WD4B.10 SUS.100 SUS.1000 SUS.1000e

WS.001:a 1668.2* 72542.2 10% 6126.8 90% 23660.1 26% 4661.2 4616.7 2685.4

WS.001:b 4565.5 249691.1 77% 17119.0 100% 79310.5 100% 4571.9 7052.8 4098.2

WS.001:c 8421.9 480686.1 90% 26380.6 100% 119026.9 100% 4486.7 9683.3 6928.5

WS.01:a 1630.5 47938.6 10% 5785.4 90% 17960.2 26% 3665.7 4968.7 2870.5

WS.01:b 4608.4 219767.5 70% 14768.5 100% 44036.3 97% 4391.8 7379.5 4415.5

WS.01:c 8085.5 336106.3 97% 24393.0 100% 84996.7 100% 4583.3 10551.0 6063.9

WS.1:a 1621.4 47674.6 20% 4987.1 94% 12056.5 4% 4738.3* 5241.4 3083.3

WS.1:b 4254.1 133306.1 80% 9902.2 100% 28300.9 97% 6297.0 7438.6 4825.1

WS.1:c 7909.9 225863.9 100% 17320.6 100% 52298.7 100% 5602.3 9932.8 6004.4

Table 6.20: WS group scale comparison of AES and SR results on binary value landscapes.
Where all, or almost all, SR values are 100% the values are not shown. AES values marked
with “*” indicate that the SR value was only one or two success values below 100%.

MTTP.20i MTTP.100i WD4B.5 WD4B.10 SUS.100 SUS.1000

Star:a 5156.0 70% -.- 0% 35692.0 6% -.- 0% 4074.7* 4878.8

Star:b 31170.5 90% -.- 0% 212605.4 40% -.- 0% 5135.8 6797.2

Star:c 28023.9 100% 808441.0 3% 391897.3 87% -.- 0% 8473.8 10713.8

BA.p1:a 2333.9 100% 61929.0 4% 22530.3 78% 31410.3 6% 3675.5 4823.3

BA.p1:b 6211.1 100% 299827.2 33% 35376.3 100% 173443.3 93% 3735.1 6351.6

BA.p1:c 11842.5 100% 700886.1 47% 57863.8 100% 256520.5 100% 5394.7 8572.4

MR.5:a 1644.6 98% 62343.1 14% 4484.4 64% -.- 0% 3824.6 6414.8

MR.5:b 4903.4 100% 138385.3 97% 10343.1 100% 31230.1 70% 4469.2 8019.0

MR.5:c 9311.8 100% 237833.9 100% 21236.0 100% 58416.0 97% 4752.3 10566.7

Table 6.21: Other group scale comparison of AES and SR results on binary value landscapes.
Where all, or almost all, SR values are 100% the values are not shown. The AES value marked
with “*” indicates that the SR value is 98%. SUS.1000e results excluded. When SR is 0% the
AES is shown as “-.-”.

204

Chapter 6: Population Organisation

L.
k4

:a

L.
k4

:b

L.
k4

:c

L.
k8

:a

L.
k8

:b

L.
k8

:c

L.
k1

2
:a

L.
k1

2
:b

L.
k1

2
:c

L.
h
k4

:a

L.
h
k4

:b

L.
h
k4

:c

L.
h
k8

:a

L.
h
k8

:b

L.
h
k8

:c

L.
k6

:a

L.
k6

:b

L.
k6

:c

L.
h
k3

:a

L.
h
k3

:b

L.
h
k3

:c

0

10000

20000

30000

40000

50000

60000

E
v
a
lu

a
ti

o
n
s

Topology Size a=100, b=400, c=900, Problem Sph.n3

L.
k4

:a

L.
k4

:b

L.
k4

:c

L.
k8

:a

L.
k8

:b

L.
k8

:c

L.
k1

2
:a

L.
k1

2
:b

L.
k1

2
:c

L.
h
k4

:a

L.
h
k4

:b

L.
h
k4

:c

L.
h
k8

:a

L.
h
k8

:b

L.
h
k8

:c

L.
k6

:a

L.
k6

:b

L.
k6

:c

L.
h
k3

:a

L.
h
k3

:b

L.
h
k3

:c

0

10000

20000

30000

40000

50000

E
v
a
lu

a
ti

o
n
s

Topology Size a=100, b=400, c=900, Problem WD4B.5

Figure 6.16: Lattice group comparison of ES distributions on Sph.n3 and WD4B.5 domains.
Note the wide scale-based ES distribution separation for Sph.n3, and the wider and overlapping
ES distributions of WD4B.5.

205

Chapter 6: Population Organisation

topology groups such as the Trees (not shown here, but included in the complete CDROM
appendices of result summary reports).

L.
k4

:a

L.
k4

:b

L.
k4

:c

L.
k8

:a

L.
k8

:b

L.
k8

:c

L.
k1

2
:a

L.
k1

2
:b

L.
k1

2
:c

L.
h
k4

:a

L.
h
k4

:b

L.
h
k4

:c

L.
h
k8

:a

L.
h
k8

:b

L.
h
k8

:c

L.
k6

:a

L.
k6

:b

L.
k6

:c

L.
h
k3

:a

L.
h
k3

:b

L.
h
k3

:c

0

20

40

60

80

100
S
u
cc

e
ss

 F

ix
e
d

 L

im
it

Topology Size a=100, b=400, c=900, Problem MTTP.100i

E
R

.0
1
:a

E
R

.0
1
:b

E
R

.0
1
:c

E
R

.0
2
:a

E
R

.0
2
:b

E
R

.0
2
:c

E
R

.0
3
:a

E
R

.0
3
:b

E
R

.0
3
:c

E
R

.0
4
:a

E
R

.0
4
:b

E
R

.0
4
:c

E
R

.0
5
:a

E
R

.0
5
:b

E
R

.0
5
:c

0

20

40

60

80

100

S
u
cc

e
ss

 F

ix
e
d

 L

im
it

Topology Size a=100, b=400, c=900, Problem MTTP.100i

Figure 6.17: Lattice and ER group comparison of SR ratio on the MTTP.100i domain. Note
that the ratio of fixed results tends to decrease with increased topology scale.

The small-world WS topology group presents results consistent with ES distribution
and SR ratio results, and also indicate the influence of rewiring degree within the lattice
based model. In Figure 6.18 the simple SUS.100 domain shows only a small distribu-
tion response to scale and topology changes. Figure 6.19 shows how the WS models are
strongly influenced by overall topology scale when applied to the 20 dimension Sph.n20i
domain (which is not deceptive but does exaggerate features noted on simpler and lower
dimensional domains). This is consistent with the observations of Figure 6.16 earlier. An
additional noticeable feature is that the position of the median and distribution range
decreases with increased levels of rewiring. The higher the level of rewiring, the lower the
mean path length. The ES distribution results support the idea that a population with
lower mean path length characteristics converges quicker than isolated and sparse graphs.

Figure 6.20 shows the matching ES distribution and SR ratio results for the WS topol-
ogy group applied to the MTTP.100i domain (which has already been selected for discus-
sion and figure presentation several times because of its interesting SR characteristics).
Note how in this matching set of plots the ES distributions spread and median values in-

206

Chapter 6: Population Organisation

E
R

.0
1
:a

E
R

.0
1
:b

E
R

.0
1
:c

E
R

.0
2
:a

E
R

.0
2
:b

E
R

.0
2
:c

E
R

.0
3
:a

E
R

.0
3
:b

E
R

.0
3
:c

E
R

.0
4
:a

E
R

.0
4
:b

E
R

.0
4
:c

E
R

.0
5
:a

E
R

.0
5
:b

E
R

.0
5
:c

0

5000

10000

15000

20000

25000

30000

35000

40000

E
v
a
lu

a
ti

o
n
s

Topology Size a=100, b=400, c=900, Problem SUS.100

Figure 6.18: ER group scale comparison of ES distribution for the SUS.100 domain. For
this simple domain the distributions overlap, and the influence of scale and topology is not as
pronounced as that observed in more complex or deceptive domains.

W
S
.0

0
1
:a

W
S
.0

0
1
:b

W
S
.0

0
1
:c

W
S
.0

1
:a

W
S
.0

1
:b

W
S
.0

1
:c

W
S
.1

:a

W
S
.1

:b

W
S
.1

:c

0

50000

100000

150000

200000

250000

E
v
a
lu

a
ti

o
n
s

Topology Size a=100, b=400, c=900, Problem Sph.n20i

Figure 6.19: WS group scale comparison of ES distribution for Sph.n20i domain. In this search
domain the WS models are strongly influenced by scale. A big separation between distributions
is clearly evident. Note the mean and distribution decrease as rewiring levels increase – a result
of reduced mean path length.

207

Chapter 6: Population Organisation

crease as overall topology scale increases, and decrease as the level of rewiring is increased.
The SR ratio results correspondingly increase in success and decrease in fixed results. It
is a clear representation of the trade off between the number of evaluations required to
achieve success, resources allocated (population size and the topologies mean path length)
and the efficacy result of the SR values.

W
S
.0

0
1
:a

W
S
.0

0
1
:b

W
S
.0

0
1
:c

W
S
.0

1
:a

W
S
.0

1
:b

W
S
.0

1
:c

W
S
.1

:a

W
S
.1

:b

W
S
.1

:c

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

E
v
a
lu

a
ti

o
n
s

Topology Size a=100, b=400, c=900, Problem MTTP.100i
W

S
.0

0
1
:a

W
S
.0

0
1
:b

W
S
.0

0
1
:c

W
S
.0

1
:a

W
S
.0

1
:b

W
S
.0

1
:c

W
S
.1

:a

W
S
.1

:b

W
S
.1

:c

0

20

40

60

80

100

S
u
cc

e
ss

 F

ix
e
d

 L

im
it

Topology Size a=100, b=400, c=900, Problem MTTP.100i

Figure 6.20: WS group scale comparison of ES distribution and SR ratio for MTTP.100i. Both
the influence of overall topology scale and the level of rewiring used in the WS model have an
influence on the ES distributions. As scale increases the number of success results increases,
and as rewiring levels increase the SR levels increase and fixed results decrease.

Full Graph Comparison Results

The results so far have not included full graph population topologies. As part of investiga-
tions into the influence of population size and scaling factors, three full graph (panmictic)
population topologies were applied to the same range of real and binary value landscapes.
Combined result summary tables with the full graph results are presented in Table 6.22
and Table 6.23. A small selection of topologies (T.k8, T.c4, ER.05 and WS.01) is included
in the comparison as representative examples of each topology group. Scale results from
the three sizes collected earlier (labelled again with “a”, “b” and “c”) are presented with
the full graph results.

208

Chapter 6: Population Organisation

Sph.n3i Sph.n20i Sph.n3 Sph.n20 Ros.n2i FMSi

L.k8:a 2099.8 20695.6 5782.0 38397.0 2% 3413.4 80% -.- 0%

L.k8:b 6971.9 71467.6 20168.7 129933.1 87% 6700.9 100% -.- 0%

L.k8:c 12913.6 153781.3 41615.4 279040.2 100% 8581.6 100% 194789.2 17%

T.c4:a 2837.0 32452.5 8122.2 -.- 0% 7573.7 86% -.- 0%

T.c4:b 9478.6 113340.8 27656.3 216085.2 33% 6971.1 100% 188148.0 3%

T.c4:c 18195.6 240025.6 56382.3 459202.7 87% 12141.3 100% 323323.5 7%

ER.05:a 2120.9 21985.9 5759.3 39036.0 2% 3542.0 74% -.- 0%

ER.05:b 5775.9 58433.2 16589.2 115688.6 27% 6007.4 100% 45711.0 3%

ER.05:c 11482.7 113469.5 33241.3 211777.0 87% 10977.4 100% 79279.8 20%

WS.01:a 2224.2 24290.2 6453.2 46083.0 8% 3675.1 84% -.- 0%

WS.01:b 7479.7 87072.7 22157.1 160693.5 97% 7169.2 100% 232662.0 3%

WS.01:c 14759.3 186426.4 44578.2 333356.5 100% 9205.2 100% 199474.8 17%

Full:a 1839.7 18826.6 5154.0 -.- 0% 2744.6 68% -.- 0%

Full:b 5915.7 57151.0 15753.5 99013.5 4% 6077.1 98% 57443.0 4%

Full:c 11789.0 -.- 32608.4 -.- 0% 10979.5 100% 79449.3 8%

Table 6.22: Full graph AES and SR comparison results for real value landscapes. Where all SR
values are 100% or 0% the values are not shown. Ros.n20i results are excluded (no success).
When SR is 0% the AES is shown as “-.-”.

MTTP.20i MTTP.100i WD4B.5 WD4B.10 SUS.100 SUS.1000

L.k8:a 1363.2* 57469.6 14% 4033.4 76% 10829.5 4% 4105.8 4400.7

L.k8:b 4041.6 154359.4 73% 10326.9 100% 29721.7 87% 5471.7 8820.8

L.k8:c 8793.9 222091.0 100% 19854.6 100% 59544.9 100% 5670.0 10114.3

T.c4:a 2196.3 65693.0 4% 16000.0 80% 25534.0 6% 3974.1 4878.8

T.c4:b 5610.1 270006.8 50% 21461.3 100% 88576.2 80% 3819.5 7068.0

T.c4:c 10534.2 497949.1 70% 43153.7 100% 134554.5 100% 5948.5 6545.9

ER.05:a 1637.8 47182.7 20% 4321.7 80% -.- 0% 4756.8 6403.1*

ER.05:b 4000.5 89221.9 80% 7903.1 97% 20499.5 80% 6955.3 9692.6

ER.05:c 7662.1 125088.8 100% 13064.8 100% 35827.4 100% 5311.0 10402.4

WS.01:a 1630.5 47938.6 10% 5785.4 90% 17960.2 26% 3665.7 4968.7

WS.01:b 4608.4 219767.5 70% 14768.5 100% 44036.3 97% 4391.8 7379.5

WS.01:c 8085.5 336106.3 97% 24393.0 100% 84996.7 100% 4583.3 10551.0

Full:a 1303.1 30838.6 18% 3819.6 62% 6868.0 2% 4016.3 7630.7

Full:b 3949.2 60985.1 68% 8343.4 100% 21399.6 72% 4525.2 10216.5

Full:c 7012.2 89460.0 44% 13878.6 100% 35734.9 98% 5083.7 10734.2

Table 6.23: Full graph AES and SR comparison results for binary value landscapes. Where
all, or almost all, SR values are 100% the values are not shown. The AES value marked with
“*” indicates that the SR value is 98%. The SUS.1000e results are excluded.

209

Chapter 6: Population Organisation

Figure 6.21 shows full graph comparison results applied to the simple unimodal Sph.n3i
domain. The full graph ES distribution profile and scaling influence is similar to other
topology instances, and particularly the lattice L.k8 and ER.05 results.

L.
k8

:a

L.
k8

:b

L.
k8

:c

T
.c

4
:a

T
.c

4
:b

T
.c

4
:c

E
R

.0
5
:a

E
R

.0
5
:b

E
R

.0
5
:c

W
S
.0

1
:a

W
S
.0

1
:b

W
S
.0

1
:c

Fu
ll:

a

Fu
ll:

b

Fu
ll:

c0

5000

10000

15000

20000

25000

E
v
a
lu

a
ti

o
n
s

Size (a=100, b=400, c=900), Problem Sph.n3i

Figure 6.21: Full graph comparison of ES distribution results for Sph.n3i

The MTTP.100i domain is again selected as it provides interesting success ratio results
for full graph comparison across scale and topology types. In Figure 6.22 the full graph
success rate increases with topology size, and the number of fixed results decreases. This
is consistent with other topologies. On comparative performance for this problem domain,
full graphs have strong SR values, and low AES and compact ES distributions.

Figure 6.23 shows another ES distribution and success ratio comparison for full graphs
applied to the WD4B.10 problem. Here the full graph AES and ES distribution profiles are
again low and compact, but the success ratio results are not as strong as other topologies.
For example the small-world WS.05 graphs have a larger AES and wider distribution of
ES values, though a stronger success rate at all scale levels.

Considering both the earlier MTTP.100i full graph results and the WD4B.10 results,
it is possible that for some search domains simple topology (such as a full graph) is not
only easier, it is preferred. In other situations a simple topology (with properties such
as rapid convergence tendencies) is clearly inadequate, and a more complicated topology
(such as a lattice or small-world model) is more appropriate. It may even be possible that
a specific or complex topology creates a specialised niche role for some search domains.

As a final comparison of full graph performance and the influence of scale, again
consider the simple SUS.1000 search domain. Figure 6.24 shows the ES distribution, and
in this set of results it is clear that topology and scale have a much reduced impact;
AES values do increase with topology size in most cases, however the spread of the ES
distributions is not normalised with many outlier data points, and most ES distributions
have a significant amount of overlap with other topology ES distributions.

6.3.4 Circular and Bound Lattices

To compare the influence that a bound lattice has in direct comparison to a circular lattice,
the base experiment lattices were reconfigured in bound (non-circular) form. Results were

210

Chapter 6: Population Organisation

L.
k8

:a

L.
k8

:b

L.
k8

:c

T
.c

4
:a

T
.c

4
:b

T
.c

4
:c

E
R

.0
5
:a

E
R

.0
5
:b

E
R

.0
5
:c

W
S
.0

1
:a

W
S
.0

1
:b

W
S
.0

1
:c

Fu
ll:

a

Fu
ll:

b

Fu
ll:

c0

100000

200000

300000

400000

500000

600000

700000

800000

900000

E
v
a
lu

a
ti

o
n
s

Size (a=100, b=400, c=900), Problem MTTP.100i

L.
k8

:a

L.
k8

:b

L.
k8

:c

T
.c

4
:a

T
.c

4
:b

T
.c

4
:c

E
R

.0
5
:a

E
R

.0
5
:b

E
R

.0
5
:c

W
S
.0

1
:a

W
S
.0

1
:b

W
S
.0

1
:c

Fu
ll:

a

Fu
ll:

b

Fu
ll:

c0

20

40

60

80

100

S
u
cc

e
ss

 F

ix
e
d

 L

im
it

Size (a=100, b=400, c=900), Problem MTTP.100i

Figure 6.22: Full graph comparison of ES distribution and success ratio for MTTP.100i

211

Chapter 6: Population Organisation

L.
k8

:a

L.
k8

:b

L.
k8

:c

T
.c

4
:a

T
.c

4
:b

T
.c

4
:c

E
R

.0
5
:a

E
R

.0
5
:b

E
R

.0
5
:c

W
S
.0

1
:a

W
S
.0

1
:b

W
S
.0

1
:c

Fu
ll:

a

Fu
ll:

b

Fu
ll:

c0

50000

100000

150000

200000

E
v
a
lu

a
ti

o
n
s

Size (a=100, b=400, c=900), Problem WD4B.10

L.
k8

:a

L.
k8

:b

L.
k8

:c

T
.c

4
:a

T
.c

4
:b

T
.c

4
:c

E
R

.0
5
:a

E
R

.0
5
:b

E
R

.0
5
:c

W
S
.0

1
:a

W
S
.0

1
:b

W
S
.0

1
:c

Fu
ll:

a

Fu
ll:

b

Fu
ll:

c0

20

40

60

80

100

S
u
cc

e
ss

 F

ix
e
d

 L

im
it

Size (a=100, b=400, c=900), Problem WD4B.10

Figure 6.23: Full graph comparison of ES and success ratio for the WD4B.10 domain

L.
k8

:a

L.
k8

:b

L.
k8

:c

T
.c

4
:a

T
.c

4
:b

T
.c

4
:c

E
R

.0
5
:a

E
R

.0
5
:b

E
R

.0
5
:c

W
S
.0

1
:a

W
S
.0

1
:b

W
S
.0

1
:c

Fu
ll:

a

Fu
ll:

b

Fu
ll:

c0

10000

20000

30000

40000

50000

E
v
a
lu

a
ti

o
n
s

Size (a=100, b=400, c=900), Problem SUS.1000

Figure 6.24: SUS.1000 ES distribution compared across topology scales, including three full
graph instances and other topology examples

212

Chapter 6: Population Organisation

collected on the standard base selection of real and binary problem landscapes. The bound
lattice forms are simply denoted with a “b” postfix. Summary results are presented in
Table 6.24 and Table 6.25 for real and binary landscape.

Overall, non-circular bound lattices, with their longer mean path length L profile,
have an extended range of ES distribution values. Figure 6.25 shows a comparison of
the mean path length histograms for circular and bound L.k4 lattices. The change in
L has been considered in Chapter 4 and in detail within the topology survey presented
in Appendix C. For simple search domains the influence is minimal (Sph.n3i, and SUS
domains), but is pronounced for more difficult (Sph.n20i) or deceptive (WD4B) domains.
The idea is supported by the ES distribution plots shown in Figure 6.26.

5 0 5 10 15 20 25
Path Length

0.00

0.02

0.04

0.06

0.08

0.10

Fr
e
q
u
e
n
cy

5 0 5 10 15 20 25 30 35 40
Path Length

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Fr
e
q
u
e
n
cy

Figure 6.25: Mean path length histogram comparison for (left) circular and (right) bound
L.k4 lattice graphs of size n = 400. Note that in the bound case a wider range of values and
long-tail profile which influences topology based processes.

One suggestion for the benefit of bound lattices is that the increase in mean path length
helps to delay premature convergence and maintain healthy diversity. The Ros.n20i do-
main, which previously has been noted for the lack of success results by any configuration,
is able to show how the ratio of fixed and limit result cases changes from circular to bound
lattices. Figure 6.27 clearly shows that convergence (always premature) is delayed in
bound lattice configurations, sustaining diversity for a longer duration than an equivalent
circular lattice.

In the deceptive Ros.n2i and WD4B domains (WD4B.5 and WD4B.10) there is ev-
idence that not only is the fixed ratio reduced, but that the success ratio (shown in
Figure 6.28) also increases from circular to bound lattices. Again, the increase in mean
path length increases the overall range of the ES distribution. In other words, the search
will take longer, but the greater level of lattice separation assists the search in avoiding
deceptive and premature convergence.

As a counter example to this, the MTTP.100i domain results show that the SR ratio
actually decreases from the circular to the bound cases in most topology configurations.
The sample size of data is, however, very small.

213

Chapter 6: Population Organisation

Sph.n3i
Sph.n20i

Sph.n3
Sph.n20

R
os.n2i

R
os.n20i

FM
Si

L.k4
2357.3

100%
22893.7

100%
6073.5

100%
42186.0

2%
4544.3

74%
-.-

0%
-.-

0%

L.k4b
2398.7

100%
24313.8

100%
6417.0

100%
44290.0

2%
2983.1

76%
-.-

0%
-.-

0%

L.k8
2099.8

100%
20695.6

100%
5782.0

100%
38397.0

2%
3413.4

80%
-.-

0%
-.-

0%

L.k8b
2144.3

100%
22567.1

100%
5985.5

100%
42068.0

2%
3602.8

88%
-.-

0%
-.-

0%

L.k12
2017.9

100%
19892.6

100%
5611.9

100%
37356.0

4%
3302.8

64%
-.-

0%
-.-

0%

L.k12b
2143.8

100%
21272.6

100%
5587.0

100%
43513.0

2%
3301.3

78%
-.-

0%
9119.0

2%

L.hk4
2013.1

100%
19986.1

100%
5125.6

100%
39296.0

2%
4075.8

74%
-.-

0%
-.-

0%

L.hk4b
2552.3

100%
26419.0

100%
6914.1

100%
48817.5

4%
5363.8

88%
-.-

0%
-.-

0%

L.hk8
1817.4

100%
17321.0

100%
4676.2

100%
32743.0

2%
3497.7

62%
-.-

0%
-.-

0%

L.hk8b
2221.0

100%
23196.7

100%
6307.4

100%
45201.0

4%
3063.3

80%
-.-

0%
11360.0

2%

L.k6
2207.9

100%
21776.2

100%
5854.8

100%
41229.5

4%
4126.5

78%
-.-

0%
-.-

0%

L.k6b
2249.8

100%
23380.9

100%
6340.1

100%
41443.0

2%
3612.6

80%
-.-

0%
-.-

0%

L.hk3
2267.9

100%
23661.5

100%
6360.1

100%
44204.0

2%
3636.2

74%
-.-

0%
-.-

0%

L.hk3b
2280.4

100%
25589.5

100%
6615.7

100%
46507.3

12%
3416.3

78%
-.-

0%
-.-

0%

Table
6.24:

Circularvs
Bound

(b)
lattice

sum
m
ary

results
forrealvalue

landscapes.
W
hen

SR
is

0%
the

AES
is
shown

as
“-.-”.

214

Chapter 6: Population Organisation

M
T

T
P.

20
i

M
T

T
P.

10
0i

W
D

4B
.5

W
D

4B
.1

0
SU

S.
10

0
SU

S.
10

00
SU

S.
10

00
e

L.
k4

15
97

.0
10

0%
58

08
3.

7
18

%
43

85
.9

76
%

12
05

1.
8

12
%

39
94

.5
10

0%
42

43
.6

10
0%

36
21

.5
10

0%

L.
k4

b
15

87
.7

10
0%

44
42

5.
4

10
%

56
40

.2
84

%
12

79
4.

2
20

%
35

20
.6

10
0%

45
19

.2
10

0%
23

14
.3

10
0%

L.
k8

13
63

.2
98

%
57

46
9.

6
14

%
40

33
.4

76
%

10
82

9.
5

4%
41

05
.8

10
0%

44
00

.7
10

0%
24

68
.1

10
0%

L.
k8

b
15

66
.8

10
0%

34
05

0.
7

12
%

48
59

.9
82

%
99

42
.3

8%
29

43
.7

10
0%

52
79

.4
10

0%
24

89
.4

10
0%

L.
k1

2
14

60
.1

10
0%

43
46

8.
4

20
%

31
97

.7
76

%
56

21
.0

2%
37

81
.3

10
0%

51
18

.0
10

0%
26

69
.9

10
0%

L.
k1

2b
15

74
.4

98
%

38
57

1.
3

12
%

43
06

.7
80

%
84

40
.0

2%
34

01
.1

10
0%

53
86

.9
10

0%
36

46
.8

10
0%

L.
hk

4
14

96
.7

98
%

40
52

0.
3

6%
47

91
.3

78
%

12
14

6.
0

2%
40

55
.6

96
%

47
41

.0
10

0%
26

82
.4

10
0%

L.
hk

4b
19

04
.0

10
0%

51
06

0.
0

6%
62

92
.9

88
%

16
39

3.
4

20
%

37
60

.8
10

0%
46

24
.3

10
0%

25
93

.3
10

0%

L.
hk

8
12

89
.1

98
%

29
06

6.
7

6%
37

87
.2

68
%

-.-
0%

41
30

.0
98

%
58

85
.9

98
%

31
78

.1
10

0%

L.
hk

8b
16

32
.5

10
0%

38
81

8.
6

10
%

69
29

.3
80

%
12

40
1.

2
10

%
44

72
.0

10
0%

43
38

.5
10

0%
30

90
.8

10
0%

L.
k6

15
16

.2
10

0%
29

69
6.

7
6%

42
09

.9
84

%
92

36
.0

10
%

49
64

.5
10

0%
58

15
.7

10
0%

34
40

.0
10

0%

L.
k6

b
17

12
.9

10
0%

41
74

1.
0

4%
52

95
.9

88
%

11
88

9.
3

12
%

41
87

.1
10

0%
52

17
.1

10
0%

34
38

.4
10

0%

L.
hk

3
16

13
.1

10
0%

66
20

0.
5

16
%

48
92

.0
90

%
11

62
3.

8
12

%
36

16
.5

10
0%

44
39

.7
10

0%
27

27
.6

10
0%

L.
hk

3b
17

38
.1

10
0%

32
58

1.
0

4%
70

59
.0

86
%

18
83

7.
1

16
%

46
48

.7
10

0%
49

67
.7

10
0%

32
96

.6
10

0%

Ta
bl
e
6.
25
:
Ci
rc
ul
ar

vs
Bo

un
d
(b
)
la
tt
ice

su
m
m
ar
y
re
su
lts

fo
rb

in
ar
y
va
lu
e
la
nd

sc
ap

es
.
W
he
n
SR

is
0%

th
e
AE

S
is
sh
ow

n
as

“-
.-”
.

215

Chapter 6: Population Organisation

L.
k4

L.
k4

b

L.
k8

L.
k8

b

L.
k1

2

L.
k1

2
b

L.
h
k4

L.
h
k4

b

L.
h
k8

L.
h
k8

b

L.
k6

L.
k6

b

L.
h
k3

L.
h
k3

b0

5000

10000

15000

20000

E
v
a
lu

a
ti

o
n
s

Circular and Bound Lattices, Problem SUS.1000e

L.
k4

L.
k4

b

L.
k8

L.
k8

b

L.
k1

2

L.
k1

2
b

L.
h
k4

L.
h
k4

b

L.
h
k8

L.
h
k8

b

L.
k6

L.
k6

b

L.
h
k3

L.
h
k3

b500

1000

1500

2000

2500

3000

3500

4000

E
v
a
lu

a
ti

o
n
s

Circular and Bound Lattices, Problem Sph.n3i

L.
k4

L.
k4

b

L.
k8

L.
k8

b

L.
k1

2

L.
k1

2
b

L.
h
k4

L.
h
k4

b

L.
h
k8

L.
h
k8

b

L.
k6

L.
k6

b

L.
h
k3

L.
h
k3

b14000

16000

18000

20000

22000

24000

26000

28000

30000

E
v
a
lu

a
ti

o
n
s

Circular and Bound Lattices, Problem Sph.n20i

Figure 6.26: Bound lattice influence on SUS.1000i, Sph.n3i and Sph.n20i domain. ES distri-
bution is compared between circular and bound (“b”) lattices where the strongest influence is
shown in the more complex (but not deceptive) Sph.n20i domain.

216

Chapter 6: Population Organisation

L.
k4

L.
k4

b

L.
k8

L.
k8

b

L.
k1

2

L.
k1

2
b

L.
h
k4

L.
h
k4

b

L.
h
k8

L.
h
k8

b

L.
k6

L.
k6

b

L.
h
k3

L.
h
k3

b0

10

20

30

40

50

S
u
cc

e
ss

 F

ix
e
d

 L

im
it

Circular and Bound Lattices, Problem Ros.n20i

Figure 6.27: Comparison of fixed:limit ratio between circular and bound lattices for the difficult
Ros.n20i domain. Bound lattices show a decrease in fixed results.

L.
k4

L.
k4

b

L.
k8

L.
k8

b

L.
k1

2

L.
k1

2
b

L.
h
k4

L.
h
k4

b

L.
h
k8

L.
h
k8

b

L.
k6

L.
k6

b

L.
h
k3

L.
h
k3

b0

10

20

30

40

50

S
u
cc

e
ss

 F

ix
e
d

 L

im
it

Circular and Bound Lattices, Problem Ros.n2i

L.
k4

L.
k4

b

L.
k8

L.
k8

b

L.
k1

2

L.
k1

2
b

L.
h
k4

L.
h
k4

b

L.
h
k8

L.
h
k8

b

L.
k6

L.
k6

b

L.
h
k3

L.
h
k3

b0

10

20

30

40

50

S
u
cc

e
ss

 F

ix
e
d

 L

im
it

Circular and Bound Lattices, Problem WD4B.5

Figure 6.28: Examples of increased success ratio of bound lattice for the Ros.n2i and WD4B.5
domains

217

Chapter 6: Population Organisation

6.3.5 Influence of Order and Mate Selection

Update Order and Selection Pressure

Many published works on cellular and distributed population models have also considered
the impact of update order on evolutionary process outcomes. Various method of struc-
tured population update (parent selection) order have been implemented within the esec
package.8 These include:

• Uniform Random Choice (URC) with replacement;
• Uniform Random Sample (URS) without replacement;
• Fixed Line Sweep (FLS);
• Fixed Line Sweep Reversed (FLSR);
• Fixed Random Sweep (FRS);
• Fitness Ordered (FIT) best to worst; and,
• Fitness Ordered Reversed (FITR) worst to best.

The notion of a “fixed” order is one that is defined once at the beginning of a simulation
and used repeatedly without change throughout the duration of the evolutionary process.
For example, a random sequence of topology location can be generated and then used as
a “fixed” order, and compared to a fixed line sweep or random sweep order to distinguish
between the influence of a dynamic order or a random order – two quite different questions.

A conceptual model suggests that a fixed line sweep update order, or similar orderly
process, would allow valuable trait material to be selected and propagated across a pop-
ulation within a single generational period – in essence supporting rapid mixing and con-
vergence of good solution components. Published work suggested that for some problem
domains a fixed line sweep order is beneficial, and for others of neutral or harmful influ-
ence [318, 307, 5, 129]. A series of structured topology results are presented to resolve this
possibility.

If the line sweep order does encourage a rapid convergence and transfer of useful mate-
rial it is also possible to construct other update order sequences that also try to encourage
useful traits to be reproductively transferred and mixed, and not simply in a singular man-
ner. It would be possible for a number of different “flow” terrains incorporating “source”
and “sink” regions of the topology that are created simply by an ordered update sequence.
In line with this thinking, three novel update orders – SpiralIn, SpiralOut and ZigZag –
have been implemented in the esec package and are considered.

A specific update order is not enough to ensure the propagation of valuable traits;
without strong mate selection valuable traits may be ignored, and similarly without strong
competitive selection valuable new recombinations may be ignored. The influence of strong
mate selection and replacement competition is also considered with line sequence update
orders.

8Specifically, see the Structured population class in the esec.system.population module. It is the
population which applies the order to a population graph.

218

Chapter 6: Population Organisation

Line Sequences

Figure 6.29 show representations of the FLS and ZigZag order update patterns. A reverse
FLS (denoted FLSR) can also be used, but for a typical lattice it is simply a rotation of
the update order. However, the FLS order can be applied to graphs that are “grown” in a
particular order such as trees or BA scale free graphs. In these cases old-to-new (FLS) or
new-to-old (FLSR) order may have a structural influence. A fixed FLS order makes little
distinctive sense when applied to random graph models.

(a) FLS (b) ZigZag

Figure 6.29: Representations of (a) Fixed Line Sweep (FLS) and (b) ZigZag lattice update
sequences using arrows and a gradient of grey fill colours to emphasis order

Assuming order is able to propagate useful traits, the intention of the “ZigZag” order
is not to interrupt the completion of one row by beginning again at the other side of the
topology. Instead, the zig-zag order maintains “contact” with the current strong traits
and so has the maximum opportunity to move strong traits with the update order.

Using the n = 100 based configuration of problem domains and topologies, a subset of
non-random or structured topologies is selected: lattices, trees, WS and BA models. The
base experiment results used a uniform random sample (URS) update order by default.
New batches are created using FLS and FLSR update orders. The detailed summary report
is provided as CDROM appendices. Table 6.26 and Table 6.27 present the summary AES
and SR results for a combined comparison report that includes the base results (“a”) and
compares this with the FLS (“b”) and FLRS (“c”) results.

Not all of the topology groups used in the base configuration are appropriate for this
line of inquiry, and so only the lattice, tree, WS (based on a lattice) and BA topologies
are used. In the electronic report for this investigation (see Appendix F), the summary
results are divided into results for each problem domain, showing how Lattice, Tree and
the WS/BA model groups performed with random, FLS and FLSR update order.

The essential configuration details for the FLS and FLSR batch become the importing
of the base configuration, and the setting of topology update order,9 and the exclusion of
ER, Star and MR.05 topologies.

As a representative example, for most lattice topologies, Figure 6.30 shows that there
is a decrease in the AES for both FLS and FLSR with respect to the default random order
results (URS). As expected the variation between FLS and FLSR is nominal as they are

9cfg.system.topology.order = ’FLS’ or ’FLSR’

219

Chapter 6: Population Organisation

Sph.n3i
Sph.n20i

Sph.n3
Sph.n20

R
os.n2i

R
os.n20i

FM
Si

L.k4:a
2357.3

100%
22893.7

100%
6073.5

100%
42186.0

2%
4544.3

74%
-.-

0%
-.-

0%

L.k4:b
2215.0

100%
22485.2

100%
6118.2

100%
43401.0

4%
4343.6

82%
-.-

0%
-.-

0%

L.k4:c
2098.1

100%
22064.7

100%
6100.5

100%
41604.5

4%
3975.8

78%
-.-

0%
-.-

0%

L.k6:a
2207.9

100%
21776.2

100%
5854.8

100%
41229.5

4%
4126.5

78%
-.-

0%
-.-

0%

L.k6:b
2203.2

100%
22069.2

100%
5938.3

100%
-.-

0%
2185.2

70%
-.-

0%
-.-

0%

L.k6:c
2273.4

100%
21568.9

100%
5985.3

100%
41106.4

10%
3144.9

72%
-.-

0%
-.-

0%

L.k8:a
2099.8

100%
20695.6

100%
5782.0

100%
38397.0

2%
3413.4

80%
-.-

0%
-.-

0%

L.k8:b
2050.6

100%
21088.5

100%
5689.1

100%
40660.0

2%
2862.8

68%
-.-

0%
-.-

0%

L.k8:c
2031.2

100%
21118.9

100%
5510.6

100%
40741.0

2%
2963.6

76%
-.-

0%
-.-

0%

L.k12:a
2017.9

100%
19892.6

100%
5611.9

100%
37356.0

4%
3302.8

64%
-.-

0%
-.-

0%

L.k12:b
2011.7

100%
19824.5

100%
5356.9

100%
-.-

0%
2882.6

74%
-.-

0%
-.-

0%

L.k12:c
2016.1

100%
19807.7

100%
5215.2

100%
38096.0

2%
3721.7

76%
-.-

0%
-.-

0%

Table
6.26:

Random
,FLS

and
FLSR

update
ordersum

m
ary

results
forrealvalue

landscapes.
W
hen

SR
is

0%
the

AES
is
shown

as
“-.-”.

220

Chapter 6: Population Organisation

M
T

T
P.

20
i

M
T

T
P.

10
0i

W
D

4B
.5

W
D

4B
.1

0
SU

S.
10

0
SU

S.
10

00
SU

S.
10

00
e

L.
k4

:a
15

97
.0

10
0%

58
08

3.
7

18
%

43
85

.9
76

%
12

05
1.

8
12

%
39

94
.5

10
0%

42
43

.6
10

0%
36

21
.5

10
0%

L.
k4

:b
16

10
.1

10
0%

45
54

3.
8

10
%

52
22

.3
78

%
78

74
.0

4%
42

81
.9

10
0%

52
97

.0
10

0%
22

71
.1

10
0%

L.
k4

:c
16

07
.9

10
0%

43
31

7.
8

10
%

54
50

.0
90

%
99

44
.2

10
%

38
48

.6
10

0%
49

25
.9

10
0%

30
62

.4
10

0%

L.
k6

:a
15

16
.2

10
0%

29
69

6.
7

6%
42

09
.9

84
%

92
36

.0
10

%
49

64
.5

10
0%

58
15

.7
10

0%
34

40
.0

10
0%

L.
k6

:b
16

01
.3

98
%

47
77

5.
3

6%
47

09
.1

76
%

60
79

.0
4%

38
93

.6
10

0%
61

69
.6

10
0%

24
73

.4
10

0%

L.
k6

:c
16

75
.1

10
0%

43
25

5.
3

8%
43

76
.2

84
%

74
19

.5
8%

41
71

.8
10

0%
74

22
.4

96
%

32
03

.1
10

0%

L.
k8

:a
13

63
.2

98
%

57
46

9.
6

14
%

40
33

.4
76

%
10

82
9.

5
4%

41
05

.8
10

0%
44

00
.7

10
0%

24
68

.1
10

0%

L.
k8

:b
15

62
.8

10
0%

43
71

6.
6

14
%

46
89

.8
66

%
70

26
.0

2%
34

41
.3

10
0%

58
46

.7
10

0%
30

37
.5

10
0%

L.
k8

:c
15

25
.2

10
0%

60
26

3.
0

26
%

40
03

.5
84

%
-.-

0%
30

05
.1

10
0%

45
73

.5
10

0%
30

11
.2

10
0%

L.
k1

2:
a

14
60

.1
10

0%
43

46
8.

4
20

%
31

97
.7

76
%

56
21

.0
2%

37
81

.3
10

0%
51

18
.0

10
0%

26
69

.9
10

0%

L.
k1

2:
b

14
69

.8
98

%
49

52
9.

4
18

%
38

63
.7

74
%

53
76

.7
6%

35
32

.5
98

%
58

81
.1

98
%

28
88

.3
10

0%

L.
k1

2:
c

14
92

.8
10

0%
21

99
2.

3
6%

38
09

.1
74

%
94

45
.5

4%
42

91
.4

10
0%

59
37

.1
10

0%
32

80
.0

10
0%

Ta
bl
e
6.
27
:
Ra

nd
om

,F
LS

an
d
FL

SR
up

da
te

or
de
rs

um
m
ar
y
re
su
lts

fo
rb

in
ar
y
va
lu
e
la
nd

sc
ap

es
.
W
he
n
SR

is
0%

th
e
AE

S
is
sh
ow

n
as

“-
.-”
.

221

Chapter 6: Population Organisation

equivalent. Two of the hollow lattices (L.hk4 and L.hk8) actually showed a strong reverse
trend where the fixed line orders have poorer (higher) ES distributions than the random
comparison. This is not the case for the “honeycomb” hollow L.hk3 lattice. Perhaps the
uniform nature of the lattice accounts for this.

L.
k4

:a

L.
k4

:b

L.
k4

:c

L.
k8

:a

L.
k8

:b

L.
k8

:c

L.
k1

2
:a

L.
k1

2
:b

L.
k1

2
:c

L.
h
k4

:a

L.
h
k4

:b

L.
h
k4

:c

L.
h
k8

:a

L.
h
k8

:b

L.
h
k8

:c

L.
k6

:a

L.
k6

:b

L.
k6

:c

L.
h
k3

:a

L.
h
k3

:b

L.
h
k3

:c

14000

16000

18000

20000

22000

24000

26000

28000

E
v
a
lu

a
ti

o
n
s

Order (a=Random, b=FLS, c=FLSR), Problem Sph.n20i

Figure 6.30: Random (URS), FLS and FLSR lattice update order influence on the Sph.n20i
domain

The influence of FLS and FLSR order on the tree models seems negligible for the
Sph.n20i domain. WS models have a slight AES decrease with both FLS and FLSR, while
the BA model seems to have a slight increase in AES for both FLS and FLSR. Overall
though, the basic influence of FLS and FLSR order is not strong, and for many domains
clearly negligible.

Investigation of the “ZigZig” update order is restricted to lattice topologies where the
order conceptually makes the most sense. The lattice order is presented from lowest to
highest degree, as general results are correlated. For comparison the random and FLS
orders are presented along with the ZigZag results.

Results for most problem domains show little or weak order influence in comparison to
other stochastic variation. The strongest results are again from the Sph.n20i and Sph.n3i
domains. Figure 6.31 shows that increasing lattice degree has a direct correlation to AES
value, but importantly that FLS and ZigZag update order do influence the AES value
and the ES distribution to a minor degree. ZigZag order is not, however, obviously more
influential than the FLS order.

The role of selection, then, must be considered further. Using the same set of selected
topologies and the same update order, the mate selection of the species configuration is
specified as “best” from the default setting of “binary_tournament”.10 In this way each
“parent” will, in turn, select the very best neighbour to be involved in reproduction. By
default, the best of the two offspring from one point crossover is retained, and the survivor
offspring competes with the parent for deterministic replacement survival.

When this stronger level of selection is applied to the initial FLS order results, the com-
parison shows a significant improvement in AES and ES distribution results (Figure 6.33).

10cfg.species.recombine.mate.selection = ’best’

222

Chapter 6: Population Organisation

L.
k4

:a

L.
k4

:b

L.
k4

:c

L.
k6

:a

L.
k6

:b

L.
k6

:c

L.
k8

:a

L.
k8

:b

L.
k8

:c

L.
k1

2
:a

L.
k1

2
:b

L.
k1

2
:c

500

1000

1500

2000

2500

3000

3500

E
v
a
lu

a
ti

o
n
s

Order (a=Random, b=FLS, c=ZigZag), Problem Sph.n3i

L.
k4

:a

L.
k4

:b

L.
k4

:c

L.
k6

:a

L.
k6

:b

L.
k6

:c

L.
k8

:a

L.
k8

:b

L.
k8

:c

L.
k1

2
:a

L.
k1

2
:b

L.
k1

2
:c

14000

16000

18000

20000

22000

24000

26000

28000

E
v
a
lu

a
ti

o
n
s

Order (a=Random, b=FLS, c=ZigZag), Problem Sph.n20i

Figure 6.31: Random (URS), FLS and ZigZig lattice update order influence on the Sph.n3i
and Sph.n20i domains. FLS and ZigZag order reduce the AES and ES distribution of values.

223

Chapter 6: Population Organisation

In simple and non-deceptive domains this is clearly beneficial. However it also creates
premature convergence issues for many of the problem domains (not just the difficult or
deceptive). For example, Figure 6.33 shows how for the WD4B.5 domain the use of “best”
mate selection significantly increases the ratio of “fixed” outcomes. As the “best” method
of mate selection is only applied to the FLS order, result comparison with the random
order is not made.

L.
k4

:a

L.
k4

:b

L.
k4

:c

L.
k8

:a

L.
k8

:b

L.
k8

:c

L.
k1

2
:a

L.
k1

2
:b

L.
k1

2
:c

L.
h
k4

:a

L.
h
k4

:b

L.
h
k4

:c

L.
h
k8

:a

L.
h
k8

:b

L.
h
k8

:c

L.
k6

:a

L.
k6

:b

L.
k6

:c

L.
h
k3

:a

L.
h
k3

:b

L.
h
k3

:c

5000

10000

15000

20000

25000

30000

E
v
a
lu

a
ti

o
n
s

Order (a=Random, b=FLS, c=FLS+Best), Problem Sph.n20i

Figure 6.32: Random (URS), FLS and FLS+Best mate selection result on lattice topologies
and applied to the Sph.n20i problem domain. The stronger level of mate selection pressure
clearly reduces the value of AES results.

L.
k4

:a

L.
k4

:b

L.
k4

:c

L.
k8

:a

L.
k8

:b

L.
k8

:c

L.
k1

2
:a

L.
k1

2
:b

L.
k1

2
:c

L.
h
k4

:a

L.
h
k4

:b

L.
h
k4

:c

L.
h
k8

:a

L.
h
k8

:b

L.
h
k8

:c

L.
k6

:a

L.
k6

:b

L.
k6

:c

L.
h
k3

:a

L.
h
k3

:b

L.
h
k3

:c

0

10

20

30

40

50

S
u
cc

e
ss

 F

ix
e
d

 L

im
it

Order (a=Random, b=FLS, c=FLS+Best), Problem WD4B.5

Figure 6.33: Random (URS), FLS and FLS+Best mate selection result on lattice topologies
and applied to the WD4B.5 problem domain. Note that the additional selection pressure
consistently leads to more unsuccessful “fixed” result instance.

Summary results have also been compiled and presented, as electronic appendices,
for the comparison of FLS+Best with FLSR+Best results. The main objective of this
comparison was to see if the ordered structures of trees and the BA growth model showed
any performance differences between the FLS and FLSR update orders. There are some
minor indications that the FLS order does better (lower AES values) than FLRS, however

224

Chapter 6: Population Organisation

the results are inconclusive. The results do support that best mate selection increases the
ratio of premature convergence.

Spiral Sequences

Returning to the spiral alternative for update order, results for both a SpiralIn and Spi-
ralOut update order (Figure 6.34), with and without best mate selection, have also been
collected. Full summaries are presented as CDROM appendices, and the summary tables
are presented in Table 6.28 and Table 6.29 for real-valued and binary-valued results.

(a) Spiral In (b) Spiral Out

Figure 6.34: Representations of (a) Spiral In and (b) Spiral Out lattice update sequences using
a line arrow and a gradient of grey fill colours to emphasis order

The comparison has been limited in this case to regular lattices and excludes the irreg-
ular hollow variations. Without strong mate selection, the results show some improvement
in AES values with both spiral in and out update orders, yet there is no clear indication
that either “in” or “out” is the preferred option for general search domains. As an example
see Figure 6.35.

L.
k4

:a

L.
k4

:b

L.
k4

:c

L.
k6

:a

L.
k6

:b

L.
k6

:c

L.
k8

:a

L.
k8

:b

L.
k8

:c

L.
k1

2
:a

L.
k1

2
:b

L.
k1

2
:c

17000

18000

19000

20000

21000

22000

23000

24000

25000

26000

E
v
a
lu

a
ti

o
n
s

Order (a=Random, b=SpiralIn, c=SpiralOut), Problem Sph.n20i

Figure 6.35: Random, SpiralIn and SpiralOut update order on lattice applied to Sph.n20i. The
result presented here is using default mate selection (not “best”). In some lattice groups the
spiral update orders have a positive influence, and spiral “out” appears to be slightly better
than spiral “in”.

The use of flow update order patterns within a population remains an interesting open
question. It is quite obvious from these results that there may be some positive benefit

225

Chapter 6: Population Organisation

Sph.n3i
Sph.n20i

Sph.n3
Sph.n20

R
os.n2i

R
os.n20i

FM
Si

L.k4:a
2357.3

100%
22893.7

100%
6073.5

100%
42186.0

2%
4544.3

74%
-.-

0%
-.-

0%

L.k4:b
1439.1

100%
14220.8

100%
3916.0

98%
-.-

0%
2479.7

58%
-.-

0%
-.-

0%

L.k4:c
1441.5

100%
14266.8

100%
4071.6

96%
-.-

0%
2128.6

56%
-.-

0%
-.-

0%

L.k6:a
2207.9

100%
21776.2

100%
5854.8

100%
41229.5

4%
4126.5

78%
-.-

0%
-.-

0%

L.k6:b
1231.4

100%
12972.6

100%
3406.9

92%
-.-

0%
2953.6

56%
-.-

0%
-.-

0%

L.k6:c
1303.8

100%
12697.2

100%
3331.0

94%
-.-

0%
1900.5

62%
-.-

0%
-.-

0%

L.k8:a
2099.8

100%
20695.6

100%
5782.0

100%
38397.0

2%
3413.4

80%
-.-

0%
-.-

0%

L.k8:b
1147.1

100%
11891.7

100%
3166.3

96%
-.-

0%
1656.1

46%
-.-

0%
-.-

0%

L.k8:c
1161.2

100%
11743.5

100%
3227.2

94%
-.-

0%
1729.5

44%
-.-

0%
-.-

0%

L.k12:a
2017.9

100%
19892.6

100%
5611.9

100%
37356.0

4%
3302.8

64%
-.-

0%
-.-

0%

L.k12:b
915.4

100%
9000.7

100%
2352.3

88%
-.-

0%
1461.3

42%
-.-

0%
-.-

0%

L.k12:c
899.6

100%
9046.5

100 %
2453.0

84%
-.-

0%
2403.3

36%
-.-

0%
-.-

0%

Table
6.28:

Random
,SpiralIn

and
SpiralO

ut
update

order,with
best

m
ate

selection,sum
m
ary

results
forrealvalue

landscapes.
W
hen

SR
is

0%
the

AES
is
shown

as
“-.-”.

226

Chapter 6: Population Organisation

M
T

T
P.

20
i

M
T

T
P.

10
0i

W
D

4B
.5

W
D

4B
.1

0
SU

S.
10

0
SU

S.
10

00
SU

S.
10

00
e

L.
k4

:a
15

97
.0

10
0%

58
08

3.
7

18
%

43
85

.9
76

%
12

05
1.

8
12

%
39

94
.5

10
0%

42
43

.6
10

0%
36

21
.5

10
0%

L.
k4

:b
12

08
.1

10
0%

43
67

0.
0

16
%

38
61

.1
54

%
90

54
.0

2%
44

52
.7

10
0%

48
78

.1
10

0%
26

90
.6

10
0%

L.
k4

:c
11

91
.4

98
%

48
47

0.
0

8%
29

47
.4

44
%

16
06

7.
0

2%
31

75
.5

10
0%

40
68

.5
10

0%
29

14
.2

10
0%

L.
k6

:a
15

16
.2

10
0%

29
69

6.
7

6%
42

09
.9

84
%

92
36

.0
10

%
49

64
.5

10
0%

58
15

.7
10

0%
34

40
.0

10
0%

L.
k6

:b
11

49
.4

10
0%

25
25

1.
5

4%
28

75
.0

42
%

-.-
0%

51
30

.8
98

%
38

04
.6

98
%

26
99

.7
10

0%

L.
k6

:c
12

38
.2

94
%

24
34

8.
8

10
%

44
45

.2
44

%
-.-

0%
37

27
.9

96
%

52
90

.4
94

%
24

84
.2

10
0%

L.
k8

:a
13

63
.2

98
%

57
46

9.
6

14
%

40
33

.4
76

%
10

82
9.

5
4%

41
05

.8
10

0%
44

00
.7

10
0%

24
68

.1
10

0%

L.
k8

:b
12

11
.8

98
%

66
23

6.
8

10
%

25
21

.2
36

%
-.-

0%
29

59
.3

98
%

49
30

.3
94

%
23

76
.5

10
0%

L.
k8

:c
10

35
.7

90
%

61
85

6.
0

4%
24

41
.6

30
%

-.-
0%

43
79

.8
90

%
44

59
.5

92
%

32
94

.4
98

%

L.
k1

2:
a

14
60

.1
10

0%
43

46
8.

4
20

%
31

97
.7

76
%

56
21

.0
2%

37
81

.3
10

0%
51

18
.0

10
0%

26
69

.9
10

0%

L.
k1

2:
b

93
2.

8
80

%
50

04
3.

0
6%

22
98

.8
12

%
-.-

0%
33

12
.1

92
%

31
73

.9
88

%
27

61
.5

94
%

L.
k1

2:
c

97
2.

7
82

%
36

74
0.

0
4%

14
83

.6
20

%
-.-

0%
37

05
.0

84
%

32
14

.4
90

%
23

88
.1

98
%

Ta
bl
e
6.
29
:
Ra

nd
om

,S
pi
ra
lIn

an
d
Sp

ira
lO
ut

up
da
te

or
de
r,

wi
th

be
st

m
at
e
se
lec

tio
n,

su
m
m
ar
y
re
su
lts

fo
r
bi
na
ry

va
lu
e
la
nd

sc
ap

es
.
W
he
n
SR

is
0%

th
e

AE
S
is
sh
ow

n
as

“-
.-”
.

227

Chapter 6: Population Organisation

from the use of particular update orders, however for this base configuration without strong
mate selection pressure, the influence of order is reduced, and certainly not as strong as
other topological influence such as connection architecture and size. To consider update
order more thoroughly is outside the scope of the work presented here.

Fitness Sequence

As a final variation of investigation into the possible influence of update order with popu-
lation structures, an alternative fitness based scheme is proposed. Fitness based operators
are central to evolution algorithms, as they influence the selection and replacement of
individuals at (potentially) many different process stages.

Assuming that an update order can potentially propagate useful traits (albeit also
increasing levels of premature convergence), it may be useful to order updates based
directly on a ranked global fitness measure. Unlike the lattice specific line and spiral
orders, a fitness based order can be applied to any structured topology (and an EA using
a gap-based replacement model).

A detailed summary report for the FIT and FITR update order results for all topologies
and all problem domains is included as CDROM appendices. The report breaks results
into topology groups for comparison of (a) random, (b) FIT and (c) FITR applied to each
problem. The report also includes landscape based summaries and alternative topology
group summaries, and is one of the largest reports created for the thesis.

W
S
.0

0
1
:a

W
S
.0

0
1
:b

W
S
.0

0
1
:c

W
S
.0

1
:a

W
S
.0

1
:b

W
S
.0

1
:c

W
S
.1

:a

W
S
.1

:b

W
S
.1

:c

16000

18000

20000

22000

24000

26000

28000

30000

E
v
a
lu

a
ti

o
n
s

Order (a=Random, b=FIT, c=FITR), Problem Sph.n20i

Figure 6.36: Random, FIT and FITR update order on WS topology applied to Sph.n20i

The results are interesting, but again the influence of order is less than other con-
tributions such as overall topology architecture and the sensitivity of scale. In several
examples, mainly for simple problem domains, FIT fitness based order improves both the
minimum ES values, and reduces the AES and overall ES distribution level (Figure 6.36).
Conversely the reverse fitness order FITR shows an increase in AES and ES distribution
values above the base random order. This may indicate that a reverse order propagates
less useful traits, or at least disrupts other useful traits being promoted. It could be that
reverse order (or a partial form used with elitism) could be used as a mechanism for main-
taining or encouraging the preservation of diversity (and improving success ratio results).

228

Chapter 6: Population Organisation

L.
k4

:a

L.
k4

:b

L.
k4

:c

L.
k8

:a

L.
k8

:b

L.
k8

:c

L.
k1

2
:a

L.
k1

2
:b

L.
k1

2
:c

L.
h
k4

:a

L.
h
k4

:b

L.
h
k4

:c

L.
h
k8

:a

L.
h
k8

:b

L.
h
k8

:c

L.
k6

:a

L.
k6

:b

L.
k6

:c

L.
h
k3

:a

L.
h
k3

:b

L.
h
k3

:c

14000

16000

18000

20000

22000

24000

26000

28000

E
v
a
lu

a
ti

o
n
s

Order (a=Random, b=FIT, c=FITR), Problem Sph.n20i

Figure 6.37: Random, FIT and FITR update order on lattice topology applied to Sph.n20i.

However this is speculation and additional experiments would be needed to validate these
ideas.

Within the lattice results (Figure 6.37) most lattices with the FIT and FITR order
follow the trends already described, with the notable exceptions of the hollow lattices
(L.hk8 and L.hk4) which seem to be strongly disrupted by both the forward and reverse
fitness based orders. This may have something to do with the non-homogenous number
of connections each location has.

6.3.6 Juveniles with Delayed Competition

As discussed earlier ecological observations and principles suggest that both fitness assess-
ment of individual and competitive replacement are delayed events within an organisms
lifespan. A species population can contain a structure based on the age of individuals,
and different models of interacting groups based on non-genetic factors such as culture
and opportunity.

One ecological model inspired from biology that can easily be applied is that of de-
layed replacement. Essentially, it is the idea that new offspring (juveniles) rarely compete
immediately or directly with adults of the same species. Similarly, a juveniles’ competitive
survival may relate to a different set of species than those that an adult member of the
same species must interact with.

Delayed replacement is implemented in esec such that new offspring are allocated to
the same topology “location” as the designated “parent” individual. The offspring remains
with other offspring until a step time (update) of delay has elapsed, at which time the
offspring must compete with other offspring and parents for its survival.

Support for this model is the that a parent individual has a reduced immediate com-
petitive survival pressure, and may be able to contribute (reproduce) its unique traits and
variation on more occasions. Secondly, in a model where multiple children are created each
reproductive update, all the offspring can be retained and allowed to compete, enabling
offspring competition before disrupting the adult breeding population.

Interestingly, this model increases the effective size of the population. It would be

229

Chapter 6: Population Organisation

reasonable then, in a thorough analysis, to measure or gauge the extent of “carrying
capacity” that the delayed or juvenile model creates, and whether an equivalent simple
adult model of the same capacity would display similar performance features.

Using the base experiment, a range of exponentially increasing delay values was selected
(4, 8, 16, 32, 64) and applied to a subset of the base topologies and full graphs: L.k4, L.k12,
ER.05 and Full. Of the base problem domains, the Sph.n3i and SUS.1000e were excluded
due to their limited differential contributions in previous results. As a practical limit the
maximum number of evaluations is set to 100, 000, which in some cases introduce arbitrary
“limit” results which need to be considered with ratio observations. Summary result tables
are shown in Table 6.30 and Table 6.31.

Figure 6.38 clearly shows that the effect of delayed replacement increases the ES dis-
tribution in proportion to the delayed value. As already discussed, this may be due to
the delay capacity acting as a population size increase, as scale results from earlier in-
vestigation also showed that AES values increase linearly with population size increase.
Interestingly the full topologies are not influenced nearly as much as the sparse lattice,
ER and MR models. If this is a general relationship to topology density, it explains why
the L.k12 respond to a lesser degree than the sparse L.k4 topology.

L.
k4

:0
4

L.
k4

:0
8

L.
k4

:1
6

L.
k4

:3
2

L.
k4

:6
4

L.
k1

2
:0

4

L.
k1

2
:0

8

L.
k1

2
:1

6

L.
k1

2
:3

2

L.
k1

2
:6

4

E
R

:0
4

E
R

:0
8

E
R

:1
6

E
R

:3
2

E
R

:6
4

M
R

:0
4

M
R

:0
8

M
R

:1
6

M
R

:3
2

M
R

:6
4

Fu
ll:

0
4

Fu
ll:

0
8

Fu
ll:

1
6

Fu
ll:

3
2

Fu
ll:

6
40

20000

40000

60000

80000

100000

E
v
a
lu

a
ti

o
n
s

Delayed Replacement, Problem Sph.n20i

Figure 6.38: Delayed replacement comparison for the Sph.n20i domain.

The ES distribution results shown in Figure 6.39 continue to support the same topol-
ogy related observations. The full graphs are least affected, and the dense L.k12 is less
influenced than the L.k4 graph.

Results for the WD4B.10 domain again show (Figure 6.40) the exponential increase
in ES distribution mean (AES) with respect to the delayed replacement parameter. The
general spread of ES distribution is greater across all topologies in response to the deceptive
nature of the domain. The influence of this deceptive domain is also seen in the success
ratio results. By looking at the AES results matched to the success rates, a topology that
results in greater search time is also more likely to succeed. This relationship can be seen
clearly in all the lattice models, and to a lesser degree in ER and MR models. A full graph

230

Chapter 6: Population Organisation

Sp
h.

n2
0i

Sp
h.

n3
Sp

h.
n2

0
R

os
.n

2i
R

os
.n

20
i

FM
Si

L.
k4

:0
4

35
16

7.
8

10
0%

89
84

.8
10

0%
60

43
6.

0
7%

37
31

.5
87

%
-.-

0%
-.-

0%

L.
k4

:0
8

45
93

7.
8

10
0%

11
66

9.
5

10
0%

81
67

8.
5

37
%

38
87

.0
80

%
-.-

0%
39

02
0.

0
3%

L.
k4

:1
6

64
75

8.
0

10
0%

16
31

1.
9

10
0%

-.-
0%

54
12

.5
83

%
-.-

0%
33

82
6.

0
3%

L.
k4

:3
2

93
91

6.
5

53
%

24
68

4.
2

10
0%

-.-
0%

84
58

.3
93

%
-.-

0%
-.-

0%

L.
k4

:6
4

-.-
0%

38
05

9.
4

10
0%

-.-
0%

83
91

.8
10

0%
-.-

0%
76

23
1.

0
3%

L.
k1

2:
04

24
10

7.
2

10
0%

66
63

.2
10

0%
43

19
5.

0
10

%
36

14
.3

93
%

-.-
0%

-.-
0%

L.
k1

2:
08

28
67

9.
4

10
0%

73
96

.2
10

0%
50

41
0.

0
10

%
33

84
.6

83
%

-.-
0%

-.-
0%

L.
k1

2:
16

37
81

0.
1

10
0%

95
62

.7
10

0%
66

77
3.

3
13

%
53

53
.0

87
%

-.-
0%

-.-
0%

L.
k1

2:
32

51
44

1.
0

10
0%

13
74

2.
9

10
0%

89
52

9.
3

27
%

52
22

.8
97

%
-.-

0%
-.-

0%

L.
k1

2:
64

78
91

5.
0

10
0%

19
59

5.
1

10
0%

-.-
0%

58
06

.8
97

%
-.-

0%
43

25
5.

0
3%

E
R

:0
4

28
78

6.
7

10
0%

75
38

.9
10

0%
51

49
4.

0
7%

34
41

.0
83

%
-.-

0%
-.-

0%

E
R

:0
8

39
28

5.
2

10
0%

10
15

3.
3

10
0%

60
99

3.
5

7%
46

94
.2

83
%

-.-
0%

-.-
0%

E
R

:1
6

46
24

4.
5

10
0%

13
02

6.
5

10
0%

91
46

6.
0

10
%

61
11

.7
87

%
-.-

0%
-.-

0%

E
R

:3
2

72
49

6.
2

10
0%

18
19

2.
6

10
0%

-.-
0%

66
58

.9
90

%
-.-

0%
45

22
5.

0
3%

E
R

:6
4

-.-
0%

29
57

8.
1

10
0%

-.-
0%

99
14

.3
93

%
-.-

0%
-.-

0%

M
R

:0
4

27
18

6.
7

10
0%

74
50

.7
10

0%
-.-

0%
73

88
.8

83
%

-.-
0%

-.-
0%

M
R

:0
8

33
12

8.
4

10
0%

89
56

.8
10

0%
-.-

0%
49

43
.6

83
%

-.-
0%

-.-
0%

M
R

:1
6

50
84

3.
4

10
0%

99
67

.6
10

0%
-.-

0%
51

31
.2

90
%

-.-
0%

-.-
0%

M
R

:3
2

50
20

8.
6

10
0%

16
96

3.
8

10
0%

-.-
0%

66
86

.5
87

%
-.-

0%
-.-

0%

M
R

:6
4

89
69

2.
5

97
%

23
77

3.
0

10
0%

-.-
0%

76
58

.4
93

%
-.-

0%
69

78
5.

0
3%

Fu
ll:

04
18

91
4.

0
10

0%
53

62
.6

10
0%

-.-
0%

21
97

.6
50

%
-.-

0%
-.-

0%

Fu
ll:

08
20

06
8.

2
10

0%
52

72
.3

10
0%

37
01

5.
0

3%
28

32
.7

53
%

-.-
0%

-.-
0%

Fu
ll:

16
20

88
7.

2
10

0%
57

02
.8

10
0%

-.-
0%

29
08

.9
67

%
-.-

0%
-.-

0%

Fu
ll:

32
22

82
4.

5
10

0%
63

00
.5

10
0%

-.-
0%

31
72

.0
73

%
-.-

0%
-.-

0%

Fu
ll:

64
27

04
8.

0
10

0%
73

16
.4

10
0%

-.-
0%

25
19

.1
70

%
-.-

0%
-.-

0%

Ta
bl
e
6.
30
:
D
ela

ye
d
ju
ve
ni
le

re
pl
ac
em

en
t
su
m
m
ar
y
re
su
lts

fo
rr

ea
lv

al
ue

la
nd

sc
ap

es
.
W
he
n
SR

is
0%

th
e
AE

S
is
sh
ow

n
as

“-
.-”
.

231

Chapter 6: Population Organisation

M
T

T
P.20i

M
T

T
P.100i

W
D

4B
.5

W
D

4B
.10

SU
S.100

SU
S.1000

L.k4:04
2306.3

100%
75755.4

17%
6019.9

93%
13637.1

33%
4022.3

100%
5332.7

100%

L.k4:08
2839.6

100%
51481.0

23%
7014.2

100%
16459.6

47%
6100.0

100%
5046.4

100%

L.k4:16
3869.2

100%
56129.4

23%
7483.0

100%
18833.7

53%
4232.1

100%
6589.1

100%

L.k4:32
5645.2

100%
71772.6

33%
8470.7

100%
24384.3

77%
4233.4

100%
6534.5

100%

L.k4:64
8463.9

100%
88906.2

17%
13022.4

100%
37309.5

97%
5414.0

100%
9369.7

100%

L.k12:04
1767.3

100%
66517.0

3%
3649.6

67%
6162.5

7%
2770.2

100%
6755.2

100%

L.k12:08
1807.0

100%
56105.3

13%
4213.1

80%
8871.4

17%
3200.3

100%
6871.0

100%

L.k12:16
2284.8

100%
58808.3

20%
4519.2

100%
11237.1

37%
4722.0

100%
8454.2

100%

L.k12:32
3137.6

100%
51867.6

23%
5819.3

93%
12016.3

40%
3528.0

100%
6895.8

100%

L.k12:64
4544.3

100%
63986.5

27%
6878.0

100%
18074.4

57%
4421.8

100%
7829.1

100%

E
R

:04
2098.2

97%
69559.7

10%
5574.8

80%
11537.3

23%
4376.5

100%
8916.3

100%

E
R

:08
2460.4

100%
70669.6

17%
4858.9

90%
12521.3

10%
4869.2

100%
5416.9

100%

E
R

:16
3218.4

100%
44315.3

10%
6586.5

100%
15856.1

33%
4670.6

100%
7051.9

100%

E
R

:32
4864.0

100%
59937.3

37%
7859.8

97%
20306.2

30%
4845.0

100%
7605.8

100%

E
R

:64
6929.5

100%
90532.0

23%
9938.9

100%
27940.8

57%
5508.8

100%
7237.2

100%

M
R

:04
1989.6

100%
34464.0

17%
8733.8

87%
7396.3

10%
4476.8

100%
4991.3

100%

M
R

:08
2061.0

100%
21556.0

3%
6144.3

87%
10710.8

13%
4209.4

100%
5242.7

100%

M
R

:16
2580.5

100%
55900.0

7%
5927.5

93%
11832.7

20%
5080.4

100%
7217.4

100%

M
R

:32
3500.7

100%
57776.4

17%
6798.8

90%
20544.8

17%
5806.5

100%
6518.3

100%

M
R

:64
5474.4

100%
66173.6

17%
8530.1

100%
23983.4

33%
5537.6

100%
7346.2

100%

Full:04
1331.5

100%
59116.4

23%
3032.3

60%
4722.5

7%
3368.5

100%
6442.9

100%

Full:08
1319.0

100%
72960.7

10%
2849.1

67%
5192.0

3%
3257.3

100%
6617.2

100%

Full:16
1318.1

93%
61342.5

13%
3643.7

60%
10672.0

3%
2624.2

100%
4081.3

100%

Full:32
1540.7

100%
69052.7

10%
2965.6

70%
6205.0

3%
2553.8

100%
5668.1

97%

Full:64
1662.0

100%
47324.7

20%
3296.1

77%
-.-

0%
5569.1

93%
5296.0

90%

Table
6.31:

D
elayed

juvenile
replacem

ent
sum

m
ary

results
forbinary

value
landscapes

232

Chapter 6: Population Organisation

does not perform well on this domain. As already noted however, the delayed replacement
model has little influence on the outcomes of searches using full graphs.

L.
k4

:0
4

L.
k4

:0
8

L.
k4

:1
6

L.
k4

:3
2

L.
k4

:6
4

L.
k1

2
:0

4

L.
k1

2
:0

8

L.
k1

2
:1

6

L.
k1

2
:3

2

L.
k1

2
:6

4

E
R

:0
4

E
R

:0
8

E
R

:1
6

E
R

:3
2

E
R

:6
4

M
R

:0
4

M
R

:0
8

M
R

:1
6

M
R

:3
2

M
R

:6
4

Fu
ll:

0
4

Fu
ll:

0
8

Fu
ll:

1
6

Fu
ll:

3
2

Fu
ll:

6
40

5000

10000

15000

20000

25000

30000

35000

40000

45000

E
v
a
lu

a
ti

o
n
s

Delayed Replacement, Problem Sph.n3

Figure 6.39: Delayed replacement comparison for the Sph.n3 domain.

For simple domains like the SUS.100, SUS.1000 the influence of delayed replacement
is a slight increase in the overall spread of ES distribution as the delay rate increases.

The strong results of this delayed replacement model support the consideration of eco-
logical models and principles to see if they can assist evolutionary search models. Clearly
there are niche applications where the additional complexity of such a model is of value,
and domains where the value is not realised cost effectively.

6.3.7 Rewired Lattices

In natural complex systems it has been observed that many graphs contain strong localised
connections, and a sparse but effective number of long distance connections. The WS
small-world model recreated such properties using a base lattice topology and varying
degrees of rewiring. As previous results in this chapter have shown, the WS models
perform well on a range of problem domains with respect to both evaluations to success
and success rate results. However the range of rewiring and WS models has been limited
so far.

Within the topology survey (Appendix C), the influence of rewiring on lattice prop-
erties is considered in detail. Figure 6.41 shows the influence of rewiring on global and
local efficiency measures for three standard topologies. As the degree of rewiring is ap-
plied, the global efficiency (as measure of mean path length characteristics) increases in
each case. Similarly the measure of local efficiency is eventually disrupted by the removal
(and reallocation) of local connections. Some complex network models simply add new
connections rather than removing and reallocating old ones, and thus preserving the local
characteristics at the expense of additional connections.

Based on the results within the topology survey review, and on the success of the WS

233

Chapter 6: Population Organisation

L.
k4

:0
4

L.
k4

:0
8

L.
k4

:1
6

L.
k4

:3
2

L.
k4

:6
4

L.
k1

2
:0

4

L.
k1

2
:0

8

L.
k1

2
:1

6

L.
k1

2
:3

2

L.
k1

2
:6

4

E
R

:0
4

E
R

:0
8

E
R

:1
6

E
R

:3
2

E
R

:6
4

M
R

:0
4

M
R

:0
8

M
R

:1
6

M
R

:3
2

M
R

:6
4

Fu
ll:

0
4

Fu
ll:

0
8

Fu
ll:

1
6

Fu
ll:

3
2

Fu
ll:

6
40

10000

20000

30000

40000

50000

E
v
a
lu

a
ti

o
n
s

Delayed Replacement, Problem WD4B.10

L.
k4

:0
4

L.
k4

:0
8

L.
k4

:1
6

L.
k4

:3
2

L.
k4

:6
4

L.
k1

2
:0

4

L.
k1

2
:0

8

L.
k1

2
:1

6

L.
k1

2
:3

2

L.
k1

2
:6

4

E
R

:0
4

E
R

:0
8

E
R

:1
6

E
R

:3
2

E
R

:6
4

M
R

:0
4

M
R

:0
8

M
R

:1
6

M
R

:3
2

M
R

:6
4

Fu
ll:

0
4

Fu
ll:

0
8

Fu
ll:

1
6

Fu
ll:

3
2

Fu
ll:

6
40

5

10

15

20

25

30

S
u
cc

e
ss

 F

ix
e
d

 L
im

it

Delayed Replacement, Problem WD4B.10

Figure 6.40: Delayed replacement comparison for the WD4B.10 domain.

234

Chapter 6: Population Organisation

10-2 10-1 100

Rewire probability p

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Eglob

Eloc

(a) L.k12

10-2 10-1 100

Rewire probability p

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Eglob

Eloc

(b) L.k6

10-2 10-1 100

Rewire probability p

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Eglob

Eloc

(c) L.k4

Figure 6.41: Comparing the influence of rewiring on Eglob and Eloc

model in experiments consider thus far, and given the inspiration and motivation from
both complex systems and ecology, the influence of rewiring on lattices and evolutionary
processes should be considered further.

The standard base experiment lattices are used at a size of n = 400 (or as near
as possible within constraints) using the same lattice dimensions (20 × 20) used in the
scale investigations. The lattices are ordered by their effective mean degree 〈k〉 (at n =
400) which is different to the arbitrary order presented in previous investigation results:
hk3(〈k〉 ≈ 2.81), k4(〈k〉 = 4), hk8(〈k〉 ≈ 5.63), k6(〈k〉 = 6), k8(〈k〉 = 8), and k12(〈k〉 =
12).

Each base lattice instance is rewired by a probability p from the following selection
of values (as a subset of an exponential sequence): (0.0, 0.01, 0.04, 0.16, 0.64). The stan-
dard problem landscapes are used, excluding domains that have previously presented
little differential results. Specifically Sph.n3i, Ros.n2i, MTTP.20i, WD4B.5, SUS.100 and
SUS.1000e are not included.

Table 6.32 presents the summary result table including both real and binary land-
scapes. The ordering of lattices by mean degree clearly shows that minimum and maximum
AES results tend to occur at the extreme degrees.

Figure 6.42 shows how for a simple Sph.n3i (low dimensions, and non-deceptive) do-
main the overall ES mean trend (AES) is to decrease in line with base lattice mean degree;
the denser the underlying graph the less evaluations are required to achieve a successful

235

Chapter 6: Population Organisation

Sph.n3i
Sph.n20i

Sph.n20
R

os.n20i
FM

Si
M

T
T

P.100i
W

D
4B

.10
SU

S.1000
hk3.00

8538.2
100%

89823.2
100%

165162.8
100%

-.-
0%

73600.7
14%

169481.6
74%

45097.9
100%

7028.1
100%

hk3.01
8368.1

100%
90887.1

100%
165098.4

96%
-.-

0%
86676.0

8%
167556.2

76%
44526.1

100%
7052.0

100%
hk3.04

8353.6
100%

87458.4
100%

159048.3
92%

-.-
0%

69893.0
6%

157013.9
76%

38645.5
100%

6833.2
100%

hk3.16
8387.5

100%
85549.1

100%
155784.7

84%
-.-

0%
88677.0

6%
143735.7

70%
37838.4

98%
7953.0

100%
hk3.64

8080.2
100%

84389.2
100%

155627.5
66%

-.-
0%

75224.0
6%

133279.5
66%

35950.8
92%

7813.8
100%

k4.00
7494.8

100%
80657.0

100%
147754.4

100%
-.-

0%
88932.5

8%
141936.4

74%
36985.9

98%
7116.6

100%
k4.01

7629.2
100%

79545.7
100%

145198.5
98%

-.-
0%

82244.8
10%

130673.7
82%

35392.5
98%

7427.8
100%

k4.04
7600.0

100%
76859.5

100%
141832.2

78%
-.-

0%
58129.7

6%
118703.9

76%
31349.9

96%
6869.1

100%
k4.16

7264.9
100%

73605.8
100%

136730.0
72%

-.-
0%

76259.0
4%

111622.7
76%

29699.2
90%

6977.0
100%

k4.64
7202.7

100%
71791.3

100%
132885.7

62%
-.-

0%
80939.0

2%
112554.4

82%
31265.7

96%
7802.0

100%
hk8.00

7234.2
100%

78113.0
100%

144269.7
94%

-.-
0%

74994.6
10%

135480.8
78%

34407.0
96%

9161.1
100%

hk8.01
7260.1

100%
78400.3

100%
142316.0

92%
-.-

0%
96823.0

4%
135084.3

76%
33975.9

94%
8540.5

100%
hk8.04

7128.3
100%

74911.4
100%

137900.0
86%

-.-
0%

37665.5
4%

125982.8
84%

30924.9
94%

8097.3
100%

hk8.16
6917.6

100%
71315.2

100%
130389.0

70%
-.-

0%
52338.0

6%
109152.7

82%
28641.9

78%
7384.8

100%
hk8.64

6663.3
100%

67994.2
100%

127231.8
64%

-.-
0%

49064.0
2%

112718.1
68%

25441.2
70%

7198.2
100%

k6.00
7317.8

100%
76317.3

100%
139212.6

100%
-.-

0%
63257.0

6%
138676.7

68%
32644.2

98%
7463.5

100%
k6.01

7218.8
100%

75581.2
100%

137499.1
94%

-.-
0%

82793.0
2%

127131.1
74%

32520.1
96%

7187.6
100%

k6.04
6925.7

100%
72387.8

100%
135536.4

86%
-.-

0%
68529.3

6%
111933.2

70%
28887.0

100%
7975.7

100%
k6.16

6594.0
100%

68380.8
100%

127279.8
72%

-.-
0%

55945.3
6%

115695.0
78%

25898.0
96%

7738.7
100%

k6.64
6805.0

100%
66398.1

100%
123882.1

62%
-.-

0%
50639.0

8%
99679.9

76%
23426.0

90%
7179.5

100%
k8.00

7009.8
100%

71679.3
100%

130951.9
84%

-.-
0%

-.-
0%

114874.1
58%

29085.4
88%

8122.3
100%

k8.01
6793.7

100%
70933.3

100%
133446.8

90%
-.-

0%
64375.6

18%
110332.9

72%
29001.7

98%
7909.5

100%
k8.04

6889.5
100%

68593.9
100%

128822.5
80%

-.-
0%

60661.0
10%

109348.9
68%

27638.2
86%

6953.2
100%

k8.16
6710.4

100%
65865.5

100%
121738.8

62%
-.-

0%
40025.0

8%
100700.4

80%
24709.1

90%
8076.4

100%
k8.64

6415.3
100%

64339.3
100%

117992.5
44%

-.-
0%

43776.3
6%

97131.9
90%

22323.0
78%

7747.8
100%

k12.00
6618.7

100%
66892.1

100%
123801.4

82%
-.-

0%
87207.0

2%
98806.9

82%
25258.5

90%
7842.8

100%
k12.01

6558.3
100%

66427.7
100%

122533.9
82%

-.-
0%

57824.0
10%

112775.4
82%

26013.7
94%

9258.7
100%

k12.04
6312.4

100%
65138.4

100%
120337.7

68%
-.-

0%
49930.0

4%
94699.8

72%
24614.9

80%
8845.7

100%
k12.16

6374.7
100%

62136.5
100%

115349.7
56%

-.-
0%

-.-
0%

81857.5
60%

23647.6
86%

8463.2
100%

k12.64
6376.4

100%
61500.4

100%
113055.7

42%
-.-

0%
40562.0

4%
96721.0

76%
21225.2

76%
7553.0

100%

Table
6.32:

Rewired
lattice

sum
m
ary

results
forrealand

binary
landscapes

W
hen

SR
is

0%
the

AES
is
shown

as
“-.-”.

236

Chapter 6: Population Organisation

outcome. The influence of rewiring in this set of results is not a strong artefact of the data
presented.

h
k3

.0
0

h
k3

.0
1

h
k3

.0
4

h
k3

.1
6

h
k3

.6
4

k4
.0

0
k4

.0
1

k4
.0

4
k4

.1
6

k4
.6

4
h
k8

.0
0

h
k8

.0
1

h
k8

.0
4

h
k8

.1
6

h
k8

.6
4

k6
.0

0
k6

.0
1

k6
.0

4
k6

.1
6

k6
.6

4
k8

.0
0

k8
.0

1
k8

.0
4

k8
.1

6
k8

.6
4

k1
2

.0
0

k1
2

.0
1

k1
2

.0
4

k1
2

.1
6

k1
2

.6
40

2000

4000

6000

8000

10000

12000

14000

E
v
a
lu

a
ti

o
n
s

Rewired Lattices, problem Sph.n3i

Figure 6.42: Rewired lattice performance comparison for the Sph.n3i domain

For the increased difficulty of the 20 dimensional Sph.n20i domain (non-deceptive) the
underlying lattice degree trend remains (Figure 6.43), while the additional rewiring degree
also reduces the AES mean and ES distribution values. Each topology type subgroup (for
example the k4 group from k4.00 to k4.64) the influence of rewiring is clear and significant
in AES distribution changes.

h
k3

.0
0

h
k3

.0
1

h
k3

.0
4

h
k3

.1
6

h
k3

.6
4

k4
.0

0
k4

.0
1

k4
.0

4
k4

.1
6

k4
.6

4
h
k8

.0
0

h
k8

.0
1

h
k8

.0
4

h
k8

.1
6

h
k8

.6
4

k6
.0

0
k6

.0
1

k6
.0

4
k6

.1
6

k6
.6

4
k8

.0
0

k8
.0

1
k8

.0
4

k8
.1

6
k8

.6
4

k1
2

.0
0

k1
2

.0
1

k1
2

.0
4

k1
2

.1
6

k1
2

.6
450000

60000

70000

80000

90000

100000

110000

E
v
a
lu

a
ti

o
n
s

Rewired Lattices, problem Sph.n20i

Figure 6.43: Rewired lattice performance comparison for the Sph.n20i domain

In the case of the deceptive Sph.n20 domain the overall success rates are reduced and
the influence of rewiring on the success results can be observed. Figure 6.44 shows the
success plot results and it is clear that not only does rewiring reduce the ES and AES
values, but also critically impacts on the success rate. With increased levels of mixing

237

Chapter 6: Population Organisation

that result from the increased rewiring level, global efficiency increases and yet for this
particular domain, it is a negative influence for the overall evolutionary search process.
Rewiring encourages premature convergence of the population.

h
k3

.0
0

h
k3

.0
1

h
k3

.0
4

h
k3

.1
6

h
k3

.6
4

k4
.0

0
k4

.0
1

k4
.0

4
k4

.1
6

k4
.6

4
h
k8

.0
0

h
k8

.0
1

h
k8

.0
4

h
k8

.1
6

h
k8

.6
4

k6
.0

0
k6

.0
1

k6
.0

4
k6

.1
6

k6
.6

4
k8

.0
0

k8
.0

1
k8

.0
4

k8
.1

6
k8

.6
4

k1
2

.0
0

k1
2

.0
1

k1
2

.0
4

k1
2

.1
6

k1
2

.6
40

10

20

30

40

50

S
u
cc

e
ss

 F

ix
e
d

 L
im

it

Rewired Lattices, problem Sph.n20

Figure 6.44: Rewired lattice success rate performance comparison for the Sph.n20 domain

As an enhancement to this observation of rewiring influence on result distribution,
scatter plots of three different rewiring levels for the L.k4, L.k6 and L.k12 lattices for the
Sph.n20 domain are shown in Figure 6.45. The deceptive nature of the search domain is
shown by the horizontal banding of results. There is a clear decrease in success rate (blue
circle) results as both the rewiring levels are increased (from left to right panels) and as
the base lattice degree is increased (from L.k4 in (a) to L.k12 in(c)).

Figure 6.46 shows the rewired success ratio for the MTTP.100i domain, where influence
of rewiring is less consistent across lattice degree groups, but still increases the observed
ratio of fixed results. This is again shown in a series of scatter plots (Figure 6.47) where
the distribution of success (blue), fixed (red) and limit (white) circles change in response
to the topology created by rewiring.

The difficult and epistatic FSMi domain has few success results across all topology
instances (Figure 6.48) and presents a large sample of fixed results. Within the scatter
plot distribution of fixed results shown in Figure 6.49 we can see not only a clustering of
suboptimal solutions separated at a distance from the ideal zero value, but also numerous
“near” results that are also fixed. It seems that not only does the domain have deceptive
values away from the optimal, but also near the best values as well.

It can also be seen that successful results often occur early within the number of
evaluations; the loss of diversity within an older population makes it less likely to find
success results. Based on this, one targeted strategy for the domain would be a “multiple
restart” approach of many short runs instead of one long run; this should collect more
overall success results for an equivalent number of evaluations.

238

Chapter 6: Population Organisation

110 130 150 170 190

485

490

495

500

110 130 150 170 190 110 130 150 170 190

(a) L.k4

110 130 150 170 190

485

490

495

500

110 130 150 170 190 110 130 150 170 190

(b) L.k6

110 130 150 170 190

485

490

495

500

110 130 150 170 190 110 130 150 170 190

(c) L.k12

Figure 6.45: Rewired lattice success results scatter for the Sph.n20 domain. In each panel the
horizontal axes represent the number of evaluations and the vertical axes the solution fitness.
Each circle represent a single run result. Blue indicates a success, red a fixed result, and white
a limit result (if any). The circles are transparent so that the density of points is also apparent.
The three panels in each group represent rewiring levels of p = 0.0, p = 0.04 and p = 0.64
respectively.

239

Chapter 6: Population Organisation

h
k3

.0
0

h
k3

.0
1

h
k3

.0
4

h
k3

.1
6

h
k3

.6
4

k4
.0

0
k4

.0
1

k4
.0

4
k4

.1
6

k4
.6

4
h
k8

.0
0

h
k8

.0
1

h
k8

.0
4

h
k8

.1
6

h
k8

.6
4

k6
.0

0
k6

.0
1

k6
.0

4
k6

.1
6

k6
.6

4
k8

.0
0

k8
.0

1
k8

.0
4

k8
.1

6
k8

.6
4

k1
2

.0
0

k1
2

.0
1

k1
2

.0
4

k1
2

.1
6

k1
2

.6
40

10

20

30

40

50

S
u
cc

e
ss

 F

ix
e
d

 L
im

it

Rewired Lattices, problem MTTP.100i

Figure 6.46: Rewired lattice success rate performance comparison for the MTTP.100i domain

6.4 Discussion

6.4.1 Outcomes

Perhaps the strongest overall outcome of the work presented in this chapter is simply that
specific topological properties can and do influence evolutionary progress and outcomes.
Results are sensitive to the application domain and the nature of the search space. Other
factors such as selection pressure can dominate result outcomes. There are many examples
where a varied topology property has a specific, correlated and often significant impact.

It was observed that as topology scale increases, the typical distribution of evaluations
to success also increases. Also, as scale increases initial genetic diversity is increased, which
can subsequently postpone premature convergence; this positively impacts success ratio
results in many examples where a small population size struggles to find good solutions.
The performance influence of scale on different topologies varies.

Circular and bound lattice performance was compared. The change in topological
properties does translate to search performance influence, where the larger range of mean
path length in non-circular lattices increases the mixing (takeover) time of a population,
and so increases the evaluation time to success as well as increasing success rate for some
domains.

Different lattice and structure based update orders were considered, as well as fitness
based update order. Although results show that such processes can influence outcomes,
their influence (on the base configuration) was minimal. A simple strong mate selection
operator, by comparison, has a much stronger influence, with classic speed (AES) and
quality (SR) tradeoffs.

A delayed replacement model is a simple implementation of juvenile (age structured)
population interactions. Strong results clearly showed that delayed replacement increased
evaluation time to success and improved success rate on all topology types, but particularly
for sparse structured lattices. Full graph models were the least influenced by delayed

240

Chapter 6: Population Organisation

50 100 150 200 250
300

280

260

240

220

200

50 100 150 200 250 50 100 150 200 250

(a) L.k4

50 100 150 200 250
300

280

260

240

220

200

50 100 150 200 250 50 100 150 200 250

(b) L.k6

50 100 150 200 250
300

280

260

240

220

200

50 100 150 200 250 50 100 150 200 250

(c) L.k12

Figure 6.47: Rewired lattice success result scatter for the MTTP.100i domain. In each panel
the horizontal axes represent the number of evaluations and the vertical axes the solution
fitness. Each circle represent a single run result. Blue indicates a success, red a fixed result,
and white a limit result (if any). The circles are transparent so that the density of points is
also apparent. The three panels in each group represent rewiring levels of p = 0.0, p = 0.04
and p = 0.64 respectively.

241

Chapter 6: Population Organisation

h
k3

.0
0

h
k3

.0
1

h
k3

.0
4

h
k3

.1
6

h
k3

.6
4

k4
.0

0
k4

.0
1

k4
.0

4
k4

.1
6

k4
.6

4
h
k8

.0
0

h
k8

.0
1

h
k8

.0
4

h
k8

.1
6

h
k8

.6
4

k6
.0

0
k6

.0
1

k6
.0

4
k6

.1
6

k6
.6

4
k8

.0
0

k8
.0

1
k8

.0
4

k8
.1

6
k8

.6
4

k1
2

.0
0

k1
2

.0
1

k1
2

.0
4

k1
2

.1
6

k1
2

.6
40

10

20

30

40

50

S
u
cc

e
ss

 F

ix
e
d

 L
im

it

Rewired Lattices, problem FMSi

Figure 6.48: Rewired lattice success rate performance comparison for the FMSi domain

replacement. As suggested in earlier discussions, this result certainly encourages further
consideration of ecological principles and models within evolutionary search.

Lastly, the influence of rewired lattice topology on evolutionary performance was con-
sidered. A range of lattices, ordered by mean degree, showed a base-line trend that as the
mean degree of the lattice increased the ES performance decreased, mixing increased and
success rate decreased. With the addition of rewired topology, the ES trend is extended;
as rewiring levels increase, ES performance decreases and success rates drop. The shape
of the drop-off rate profile matches observed increases in global efficiency of lattices due
to rewiring. This suggests that success rates, and a graphs’ global efficiency, are strongly
connected. Also, as rewiring levels increase, global mixing levels are increasing with the
repercussion of greater levels of rapid premature convergence.

6.4.2 Future Opportunities

Numerous avenues exist for further research, many of which could easily be considered
by extending the existing body of work presented in this chapter. For example, graph
edges can be specified as directed and the influence on search considered with different
overall topologies. For equivalent comparison two directed edges should be allocated for
the equivalent bi-directional edges used to date.

Another interesting and strong ecology-based concept is the influence of occupancy
pressure. If locations of the population topology can be unoccupied, then the influence of
progressive colonisation and migration within topology can be considered, as well as the
potential for interesting behaviour during different phases of system level occupation.

Disturbances such as extinction events, dynamic population topology and topology
(environment) based gradient influence are all natural ecological extension that can be
considered. Kirley and colleagues [199, 194, 195, 196] have considered several “Ecolog-
ical Algorithm” approaches using population level ecology ideas (such as disturbances

242

Chapter 6: Population Organisation

40 80 120 160 200
25

20

15

10

5

0

5

40 80 120 160 200 40 80 120 160 200

(a) L.k4

40 80 120 160 200
25

20

15

10

5

0

5

40 80 120 160 200 40 80 120 160 200

(b) L.k6

40 80 120 160 200
25

20

15

10

5

0

5

40 80 120 160 200 40 80 120 160 200

(c) L.k12

Figure 6.49: Rewired lattice success result scatter for the FMSi domain. In each panel the
horizontal axes represent the number of evaluations and the vertical axes the solution fitness.
Each circle represent a single run result. Blue indicates a success, red a fixed result, and white
a limit result (if any). The circles are transparent so that the density of points is also apparent.
The three panels in each group represent rewiring levels of p = 0.0, p = 0.04 and p = 0.64
respectively.

243

Chapter 6: Population Organisation

and gradients), and their work can be replicated by the ESEC model and extended to
consider additional variations. The body of work by Kirley and colleagues provides an
excellent point of reference in regard to ecology based population topology ideas, as well
as multi-species and meta-population models which related directly to the community and
ecosystem organisations of the ESEC model.

As mentioned in the selection of problem landscapes, the base configuration for exper-
iments specified the use of binary genomes. An experiment was conducted to confirm that
the influence of topology was also present when using real valued genomes. The results
were not presented in detail in this chapter, but are included as part of the CDROM
appendices. However, the decision to use binary genomes does limit the generality of the
results, and many of the investigations using real value landscapes could be repeated us-
ing specific real valued genomes with appropriate crossover and mutation operators. An
extended investigation in this area could also try to determine the sensitivity of topology
with respect to other parameter influences.

6.4.3 Complex Topology and Computational Cost

The addition of specific, and possibly complex, topology as part of an EA instance can add
additional computational complexity. In the experiments considered here, topology struc-
ture is constant during each evolutionary run, and so the impact of the additional topology
complexity is limited to initialisation, and a small lookup overhead to those operations
that are based on topology. In the implementation of esec, graph related functionality is
supported by an external compiled library which is well tested and optimised. As a result,
the practical impact of additional topology related complexity is very small in comparison
to other algorithm routines implemented in Python.

If topology were to be altered during an evolutionary run, as in adaptive parameter
control experiments, this would impose an additional (but typically localised) computa-
tional cost. This type of impact could be reduced by reducing the frequency of topology
changes to an episodic (epoch) model rather than a continuous one. Similarly, if topology
is distributed to take advantage of parallel processing, the cost of topology change can
also be distributed and parallelised.

6.4.4 Topology Selection Guidelines

From the results presented in this chapter, and results presented by other authors, there are
several insights and recommendations regarding the use of different population structures
that can be suggested to assist researchers and practitioners.

For all topology types, the issue of population size is influential to overall success and
search time. If the population size is too small the search is more likely to be deceived,
while a population that is too big takes more computational steps to achieve similar
success rates. Finding adequate population size is a difficult problem for new domains,
and perhaps best derived using parameter control approaches.

If we consider a simple problem domain that does not contain deceptive features, a
simple panmictic population is all that is needed or justified. For example, if an EA using

244

Chapter 6: Population Organisation

a panmictic topology is applied to a new problem domain and consistently finds a good
solution, there is no motivation for additional population complexity. Alternatively, if the
EA search is regularly deceived, a different population topology can be selected to see
if an alternative is useful. There may also be practical application advantages to using
other population topologies, such as the advantage of distributed processing, but this is
not considered in detail here.

Regular lattice topologies are well known to support specialisation and diversity
through localised operators. An undesirable consequence is that EAs using lattice struc-
tures typically take longer to converge. This is noted by measures of increased trait
takeover time in cellular EAs. This result correlates directly to the increased mean path
length profile of lattice topology with respect to full graphs. One suggestion, then, is that
when a simple population topology is regularly (or suspected of being) deceived by a new
unknown domain, a lattice topology should be tried instead. If success rate performance
improves, it can indicate that the domain is deceptive and niche support is a useful feature.
As notes, lattice populations can take longer to succeed in comparison to a full graphs,
however the increased success rate can justify the decision.

While circular lattices are a homogenous structure, within a bound lattice there is a
greater range of path lengths and longer paths. As a result, circular lattices support a
wider range of niche structures with differing levels of isolation. If a bound lattice provides
better results than those of a circular lattice, it may indicate that the overall size of niches
in a circular lattice is not optimal, or that a range of different niche sizes is a better
support structure for successful evolution.

Mean edge degree (the density of edges in a graph) affects convergence time and success
rates. Higher edge degree lowers mean path length and so supports rapid convergence.
While more local links mean better local efficiencies, and as a result greater local fitness
selection pressure (competition), it also essentially creates less capacity for specialisations.
Also, if local clique subgraph topologies overlap it reduces the mean path length of the
topology to a greater amount. From this it can be suggested that increasing the mean
degree of a lattice is another parameter that can be adjusted for an EA, with low val-
ues encouraging niches and specialisation, and high values decreasing convergence time
but also reducing niche support and make the population more susceptible to deception
features of a new problem domain.

One strategy for deceptive domains is to combine the niche supporting features of a
lattice population with other approaches, such as local search optimisation or distributed
island EA models.

Another topology model explored in this chapter was the use of rewiring on lattices.
When a regular lattice is randomly rewired, the mean path length values decrease while
regular local niche structure remain until rewiring levels become too destructive. By
specifying a lattice of this form, an EA search can take advantage of niche diversity
support, while still enabling better overall convergence rates. It was shown in the work
of this chapter that rewiring level creates another tuneable EA parameter. Low levels of
rewiring improve convergence, especially for simple non-deceptive domains. High levels

245

Chapter 6: Population Organisation

of rewiring can destroy the usefulness of lattice niche support such that the a search
population is deceived in a deceptive domains.

Although there are some clear recommendations regarding population topology that
can be applied to new domains, EAs contain many other influential parameters. Popula-
tion topology should be selected, tried and adapted using a controlled processes to find
an appropriate structure that supports other algorithm operators.

6.5 Closing

The work presented in this chapter shows that topology can and will influence evolutionary
search outcomes, moderated by the complexity and deceptiveness of the search domain
an EA is being applied to, as well as the form of representation used for individuals and
specific operator details.

Overall topology form and scale, as well as other topology based factors such as circu-
lar and bound lattice configuration, update order within structured populations, delayed
replacement models and the influence of rewiring, all present representative examples of
the topology based influence.

Chapter 7 continues the work of this chapter by exploring the capability of the ESEC
model using community and ecosystem organisation models, and in particular considers
the opportunities for further research.

246

Chapter 7

Open Research and the ESEC
Model

7.1 Introduction

The objective of this chapter is to describe how the design of the ESEC model, and the
esec package implementation, lend themselves to further investigations in open areas of
EC research.

In Chapter 6 the ecosystem notion of simple and complex population topology for
single species populations was explored, using an ecosystem framework for evolutionary
computation presented in Chapter 5 and implemented as the esec Python package. The
varying of a single species population organisation highlighted how specific topological
properties can influence evolutionary adaption and search outcomes. Chapter 6 represents
the main research investigations and results of the thesis.

This chapter presents and considers in detail the two additional organisational struc-
tures that the ESEC model includes: community and ecosystem. Supporting concepts
are first considered in Section 7.2 and Section 7.3, and then esec package configuration
details are outlined. Several reference configuration examples are presented for both com-
munity and ecosystem organisations, followed by a discussion of many interesting and
open research questions.

7.2 Community

7.2.1 Subpopulations

As noted in Chapter 2, in natural systems coevolution is by far the dominant example of
evolution; it is rare to find an environment that contains an isolated population of a single
species. Niches, speciation and interaction between species create important dynamics for
diverse and robust adaptation in natural systems.

The ESEC model extends a single species population organisation to that of a commu-
nity organisation containing multiple interacting species. Single species populations are

247

Chapter 7: Open Research and the ESEC Model

Figure 7.1: Community organisation composition within the ESEC framework. The role of
the community is to define and contain a collection of species populations and interspecies
interactions.

included (as presented in Chapter 6), with an additional topology of interaction between
species individuals.

7.2.2 Multiple Species

The term “community”, as a part of ecology vocabulary, represents a group (or “assem-
blage”) of interdependent organisms that inhabit a common location and interact with
each other.1 When the characteristics of species evolve (adapt) together it is an example
of coevolution. Thus, a coevolution model composed of multiple species fits within the
“community” organisation of the ESEC framework.

Problem landscapes with multiple parameters can easily be applied to a cooperative
coevolution community model by creating separate species and populations for each of the
problem parameters. Evaluation of a potential solution for the landscape requires that a
set of individuals from each species be selected. Such a simple approach is not generally
applicable. Many problem domains contain variables and parameter interactions that are
difficult to separate, making an external “hard-coded” definition of each species a limited
approach.

Similarly, search methods for some problem landscapes benefit from an incremental
development of solution complexity which is possible using a competitive coevolutionary
community model. Different species interact competitively creating a dynamic fitness
evaluation; the fitness of one individual is its ability to successfully defeat other species
individuals.

A community model does not need to be limited to exclusive cooperative or competitive
models. Biological examples show that interactions between species can have a complex
mixture of helpful, harmful and neutral influences.

1In a more basic sense community may be defined simply by a common or shared attribute such as an
individuals’ location or goals.

248

Chapter 7: Open Research and the ESEC Model

7.2.3 Interaction Models

As listed and described in Section 2.3.5 of Chapter 2, there are three distinct models of
interaction within a community of individuals:

• Symbiosis: Interaction between individuals of two or more species which benefits
at least one. There are three kinds of symbiosis: commensalism, mutualism and
parasitism.

• Predation: Predator-prey relationships where predator individuals remove prey in-
dividuals from the community.

• Competition: Two or more individuals, of the same (intraspecific) or different (in-
terspecific) species, competing for resources.

Competition within a single species population is embodied within classic EC mod-
els as one or more forms of selection pressure based on fitness measures. For example,
fitness based parent selection, fitness based fertility, and the replacement of old or low
fitness individuals. Single species models have been considered in detail in Chapter 3 and
Chapter 6.

Interspecific competition between different species opens a range of interaction pro-
cesses and variables. As discussed in Chapter 2, the competitive exclusion principle states
that two or more species with similar environment requirements will not coexist indefi-
nitely, and as a consequence all but one species will be excluded.

In natural systems predator-prey relationships are typically between different species,
although cannibalistic behaviour within a single species does occur. For example an adult
individual might prey on juvenile members of the population, a parent individual might
consume a mate after reproduction, and rivalry between siblings can result in fatalities.2

Predator-prey systems often exhibit interesting interaction dynamics such as seasonal
cyclic population growth of prey, and subsequently predator populations. There are also
examples of correlated adaptation of traits between predator and prey species in a so
called “arms-race” of successional changes. For example, when a prey species acquires a
useful trait (such as speed) that allows it to avoid predators, the predator species is then
pressured to acquire a matching trait (such as speed or alternative stealth abilities).

Symbiosis provides the model of mutualism where multiple species cooperate to over-
come the challenges of their environment. In nature the ultimate expression of mutually
beneficial relationships is endosymbiosis where two species are so interdependent that they
are linked and cannot exist without each other.

Symbiotic evolution has been successfully applied and reported in EC literature, partic-
ularly as cooperative coadaptation or cooperative coevolution. The fundamental concept
is that the fitness of individuals from one species are defined in relation to one or more

2Spiders provide many supportive examples. In Australia the female Redback spider (Latrodectus
hasselti) is known to consume males during and after mating. For many spider species, young spiders have
been observed consuming their siblings immediately after hatching.

249

Chapter 7: Open Research and the ESEC Model

other species. The term “cooperation” suggests that all species have a positive contribu-
tion (mutualism) or influence. In general symbiosis does not require mutual benefit to all
species involved.

7.2.4 Interaction Structure

A challenge for any EC model supporting interacting species is how to define which specific
individuals are to be involved in collaborations, and how any measure of interaction-
based performance (the raw fitness value) should be credited to contributing species. An
exhaustive evaluation of all individuals of a species with all individuals of other species is
combinatorially expensive. The concern of selecting an appropriate subset of individuals
to evaluate together is well known as the “pairing problem”.

In natural systems interaction between species is localised by the environment and
mobility of individuals, and from a computational perspective a small yet adequate sample
of pairings is certainly preferred. The selection of sample individuals can be arbitrary (by a
structured population or through random selection), or in a more “directed” (and greedy)
approach a representative individual (such as “best”) can be selected for each species.

The structured (cellular) population approach to pairing is a celebrated EC cohabi-
tation model [98]. Lattice topologies have a well established ability to support localised
variation3 within a population. Collaboration between two or more species is done in
a localised way defined by cohabitation of individuals within a lattice. The number of
combined evaluations is reduced and coadaptation can occur.

Populations of different species groups can have many different interaction structures.
Consider the following interaction models and example scenarios:

• 1-to-1: A symbiotic bacterial organism living in the gut of a large mammal has a
limited “1-to-1” interaction with a single host animal from the species population.

• 1-to-many: A single keystone predator with a great range of mobility will have a
“1-to-many” influence on numerous prey species in its hunting area.

• many-to-many: Small prey compete with other similar species in complex “many-
to-many” interaction models.

In all cases the connection between one species and another is a topology. Although
simple rules can be used to define the interaction topology, such as a simple full graph or
a basic lattice, other more complex graphs can also be used. Interaction topology can also
be dynamic, changing periodically and adapted from one form to another, influencing the
rate and outcome of coadaptation.

3Also known as “speciation” but in this context the notion of different “subspecies” within a single
species population could be confusing.

250

Chapter 7: Open Research and the ESEC Model

7.3 Ecosystem

7.3.1 Concepts

The next aspect of the ESEC framework to consider is the ecosystem; an evolutionary sys-
tem composed of interacting subsystems. The rules or “protocol” for interactions between
subsystems define a connection topology, while subsystems individually have the capacity
for any specification that is possible for a population or community, as well as support for
nested ecosystem models.

An ecosystem model of organisation for evolutionary computation within the ESEC
framework, is in many regards the simplest to define. It is essentially a high-level specifi-
cation for composition. Figure 7.2 shows a conceptual example of the ecosystem organi-
sational model, composed of simple and complex subsystem components.

Ecosystem Organisation

Composition

of Subsystems

Interaction
(Migration)

Population
Subsystem

Community
Subsystem

Ecosystem
Subsystem

(Single Species)

(Multiple Species)

Figure 7.2: Ecosystem organisation model within the ESEC framework. The role of the
ecosystem is to define and contain subsystems and interactions.

It is the role of the ecosystem organisation to contain subsystems, and to define how and
when (at least initially) the subsystem components interact with each other. Subsystems
may be unaware of other subsystems or the ecosystem in a direct sense, however they are
implicitly “linked” to each other.

In keeping with the concepts of an ecological model, the ecosystem structure can also
define the distribution and limits of resources, such that an economic notion of quotas for
resources can be managed. For example, all subsystems can be allocated a quota of time
that limits the amount of adaptation or evolution. Similarly, subsystems may be allocated
specific resources which then limit the number of individuals that can be sustained within
subsystem populations. As in natural systems, it is possible for such energy and resource
limits to be adjusted dynamically, either deterministically or stochastically.

Using the notion of quota limits, an ecosystem can contain different subsystems that
“evolve” at different rates. This could allow mitigation of the influence interacting species

251

Chapter 7: Open Research and the ESEC Model

have simply through “size” (resource) quotas. For example, the development of species
in one subsystem population could be “slowed down” while other subsystems are allowed
periods of accelerated adaption or reduced relative fitness competition by increasing the
available population size. Similarly, reducing the size of a subsystem is a means of spe-
cialising evolution while limiting resource use.

The roll of the ecosystem organisation defined in this manner may be thought of as a
“master” in classic master-slave models. However, implementation need not be limited to
communication via the ecosystem as a master proxy. Direct links between subsystems can
be created based on the specification of the ecosystem. In this way the “initialisation” of
the ecosystem (or later, possibly dynamic restructuring of the ecosystem) is used to specify
the connections between subsystems, which then – during allocated quotas of activity –
directly communicate with other subsystems as local subsystem protocol dictates.

Note that this model, and the notion of energy or resource quotas, are not inherently
synchronous or asynchronous. It is entirely possible for an ecosystem model to support
a mixture of both. A mixed model may make specific sense in that inter-subsystem
communication can be synchronised, while intra-subsystem activities can be parallelised
and asynchronous. A mixed synchronisation model introduces a requirement for additional
parameters to be specified for communication protocols and the implementation of quota
limits.

It should be evident that the ecosystem composition model has unlimited potential for
complexity, given that subsystems may each be complex systems or nested compositions.
As a general rule, considered in other fields such as design and architecture, additional
complexity should only be included in a system when there is a reasonable expectation of
benefit. Complexity should not be added simply because a model supports it.

7.3.2 Island Models as Ecosystems

As an immediate example of a traditional EC model that fits simply into the ecosys-
tem framework, consider the classic island EA population model. (See Section 5.4.3 of
Chapter 5.)

One common requirement for all “coarse-grain” EC models is the need to clearly de-
fine the structure of connections between coarse groups of individuals (demes) and the
nature of communication. Common inter-group structures include fully connected pan-
mictic graphs, ring lattices or toroidal grid lattices. The inter-group structure for many
applications has been determined by the nature of underlying available hardware support-
ing parallel processing. A standard communication method is to allow selected individuals
(typically based on fitness) to be copied and copies migrated between island groups at fixed
generation intervals or “epochs” of relative generation (evolution) time.

The ideal benefit of an island model is that the evolution of independent island popu-
lations provides a structured exploration of unique aspects of the search landscape, while
within each particular island the pressure of relative competition encouraged exploitation.
Is it possible for each island to contain radically different genotypes, each with different
relative levels of fitness. A single population model would be unable to support such spe-

252

Chapter 7: Open Research and the ESEC Model

cialisation without explicit mechanisms such as crowing or fitness sharing. The migration
of individuals between islands supports a mixing of possibly diverse genetic material.

The concept of the island model is an attractive theory, with implicit parallelisation
and structured exploration and exploitation. Multimodal problem domains are a moti-
vation for island migration models, and have been applied to such domains with success.
Interestingly, there is also evidence that show the model is an effective strategy even for
unimodal domains. The negative aspects of the model are the introduction of additional
parameters to consider, and no guarantee that subpopulations are in fact exploiting dif-
ferent niche regions of a search landscape.

Subpopulations need not be homogeneous in size or conditions; there may be variation
in selection schemes, mutation rates or operators, and so on. This may create an oppor-
tunity to support dynamic problem domains and/or niche requirements during different
stages of evolution.

As an example, consider one island supporting a large “step-size” range of mutation
values which, for a particular problem domain, provides a very useful “raw” material during
early stages of evolution. At a later evolutionary stage a different island with a smaller
step-size range of mutation values is of greater use in the specialisation (exploitation) of
the domain. It would be the role of migration in this example to communicate from the
early successful population to the latter specialisation conditions.

It is also possible to apply problem specific enhancements to the island migration
model, such as special “seeded” initialisation for some subpopulations. Similarly, it is
possible to incorporate the notions of variable subgroup size or occupation. For example,
as a start-up process expansion can be used within each subgroup. This creates a phase
transition between initially low competitive fitness pressure to that of high pressure as a
result of crowding and competition.

Considering subpopulation diversity could lead to expansion or contraction of both
subpopulation size or island number. If a particular island group lacks diversity, perhaps
its size should be reduced to save computational resources. An entire subpopulation could
be removed from the ecosystem if, over time, its contribution is considered negligible.
If, however, the diversity of a subpopulation is high, or a means of measuring “species”
formation determines the need, the subpopulation could be divided into two or more new
replacement subpopulations. Automatic expansion or contraction are difficult and problem
domain sensitive features, and yet they are potentially quite useful additions to the model,
albeit at the expense of additional parameters and complexity.

7.3.3 Structure and Migration

The island migration model of coarse-grained EC clearly has interesting potential. Eiben
and Smith have listed [98] important questions for general island migration models that
are adapted and repeated here:

• Subpopulations: How many subpopulations should there be, of what size, and should
they be in homogeneous environments?

253

Chapter 7: Open Research and the ESEC Model

• Migration topology: Should all subpopulations be connected to all others or should
a sparse topology be used?

• Migration frequency: How often should individuals be communicated between is-
lands?

• Migrant group size: How many individuals should be transferred? Is this a fixed size
or a dynamic, possibly fitness related, quantity?

• Emigration selection: Which individuals should be selected for exchange? Should
a fitness-based measure be used? Should the best always be selected, or should
a random sample or biased sample be used instead or as well? Is the method of
selection sensitive to the problem domain, or the overall stage of evolution.

• Migrant transfer model: Are migrants moved from one population to another, or are
they “copied” to another subpopulation without altering the source subpopulation?
Should multiple copies be created to multiply the influence of selected individuals?

• Emigrant integration: Should immigrants compete with their new subpopulation on
an equal basis, or should they be allowed special treatment - at least temporarily -
to help bias the integration of diverse solution qualities?

If the migration frequency is too high the overhead of communication is similarly high
with respect to other computation elements such as fitness evaluation, reproduction oper-
ators and so on. Also, a high frequency may result in overall convergence results similar
to a single panmictic population model. Alternatively, a low communication frequency
may result in isolated and stagnant subpopulations that converge quickly and lead to an
overall state of ineffective premature convergence.

The term “epoch” is often used to describe the evolutionary time between migration
transfers. Typical epoch frequency values seem to be in the range of 25− 150 generations.
A simple adaptive strategy, presented by Martin in [19], is to halt individual subpopulation
evolution when no improvement has been made for a number of generations (say around
25).

Regarding the size of migrant groups, it seems that many authors have found that in
order to limit the result of overall premature convergence it is better to exchange a small
number of individuals (2− 5) as this limits the mixing between each subpopulation. This
also suggests that creating multiple copies of good individuals for migration might lead to
premature convergence.

Common methods of emigrant selection are “select-the-best” strategies and stochastic
fitness-proportional or fitness-rank based selection. Essentially any method used for parent
selection or replacement selection can easily be applied to the selection of individuals to
migrate. It is also possible to specifically select individuals of a subpopulation to be
replaced by new immigrants, to require competitive tournament-based replacement, or to
truncate the entire subpopulation.

254

Chapter 7: Open Research and the ESEC Model

If individuals are moved between subpopulations rather than copied, then it is possible
that emigrant integration is simply a replacement model. For a simple model this requires
that the number of emigrants and immigrants balances.

What is clear is that epoch length has a fundamental effect on the influence of migration
parameters such as group size, migrant selection and migrant integration policy. For
example, if the migration frequency period is low then each subpopulation has a greater
tendency to converge, which in effect reduces the influence of selection bias for both
migrant selection and integration strategy.

Results have suggested that, provided a practical minimum subpopulation size is re-
spected, more subpopulations are useful when evolution of subpopulations is run in paral-
lel. If there are problem-dependent features that match somewhat to the idea of subpopu-
lations it is possible to select the number and size of subpopulations to match the number
of features and their complexity as an act of capacity planning. The initial individuals of
a subpopulation might also be “seeded” with known useful qualities so that they will be
available for integration.

Each subpopulation island can be exposed to a different fitness landscape, such as a fit-
ness bias to encourage specialisation (exploitation) of unique solution features. Similarly,
different subpopulations may be configured to support different evolutionary operators
and parameters, such as increased mutation or crossover rates, as another means of en-
couraging specialisation. Subpopulations are then in competition with each other, and
may themselves adapt their strategic role [306].

Injection island models are an example of this, where subpopulations are connected in
a hierarchy of levels, and each level is configured for different fitness or operator values.
Effectively this can act as a competitive “ladder”, where successful solutions evolved at
lower levels are migrated up (“injected”) to higher levels until the final required complexity
is achieved. (For example, see [96].) While this is an elegant metaphor and structure, it
again creates a number of new configuration options, many of which are sensitive to specific
problem domain features.

A more recent example of large scale distributed evolution is the model of “oppor-
tunistic evolution” as proposed by Sullivan, Luke and colleagues. (See [333] and the
discussion presented in Section 5.4.3.) Essentially, their island hybrid distributed model
strives for efficient use of resources by adaptively evolving subpopulation configurations
to make the most of the opportunity and limits created by communication overhead. It is
a very effective approach to large scale evolution while practically reducing the multitude
of parameters such models create.

7.4 System Configuration

7.4.1 Introduction

The objective of this section is to outline how, at a system level, the community and
an ecosystem models of the ESEC framework can be described using the configuration

255

Chapter 7: Open Research and the ESEC Model

syntax of the esec package. Later sections demonstrate specific community and ecosystem
examples using these system configuration details.

7.4.2 Community

For the sake of simplicity, the esec package defines two basic models of interspecies in-
teraction within a community: cooperate and compete. Examples of each interaction
policy are presented in later sections. Other complex or domain specific models of inter-
action can be easily programmed using an event call-back architecture presented by the
esec package design.

Listing 7.1 shows the essential element syntax of the overall system configuration used
for community organisations. As a community is composed of nested populations, the
systems element contains a list of subsystem configuration dictionaries. The count ele-
ment can either be a simple integer value (specifying the number of instances each system
configuration is used to create), or a list of integer values (one for each system configura-
tion) to specify the number of instances that are to be created.

Listing 7.1: Community configuration syntax

config = {
...
'system': {

'type': str, # 'community',
'systems': list, # of subsystems (populations)
'count': [int, list], # subsystem instances
'interact': {

'policy': str, # ie 'cooperate', 'compete'
'matchup': [str,dict], # ie 'all', 'best' etc.
'mapping': dict, #
'interval': ('on_gen', 'on_gap'),
'topology?': dict, # if used
...

},
'quota': [None, list], # quota per subsystem
'order': str, # ie 'sequence' or 'random'

},
'species': list, # configuration details

}

The quota element value can be simply set as “None”, but if it is given a list it must be
specified so that it matches either the number of subsystem specifications or the number
of instances created (as specified by the count value). In this way the quota limit can be
specified for either each group of subsystem instances matching a single configuration, or
uniquely for each specific subpopulation instance (regardless of any shared configuration
details).

Species configuration details are stored within a list and mapped for use to each nested
subsystem. The length of the species list must match the length of the systems list,
and in this way there is a single species configuration (or a reference to another species)
for each subsystem.

The interact element is a dictionary that specifies the interaction model (policy)
and the interaction topology used by the community, as well as the matchup (“pairing”)

256

Chapter 7: Open Research and the ESEC Model

model used and the interval (generational or gap). In simple cases the interaction topology
can be implied from the matchup details.

The cooperate interaction policy is suitable for problem domains for which individ-
uals from multiple species are combined to form a solution, analogous to symbiosis. The
compete interaction policy is applicable to problem domains where a competitive de-
velopmental “arms-race” is a valuable means of creating increasing levels of complexity.
Seeding the initial complexity of each species’ population, and regulating the competitive
adaptation rate are important dynamic aspects of competitive models.

Although it is conceivable for interaction between three or more species to involve both
cooperation and competition, a general model is not presented here or supported by the
default policy models of the esec package. Domain specific interaction policies of this
form are easily implemented.

Predator-prey models have been applied to EC before, but the strict notion of “con-
sumption” (removal of prey individuals) is not always adhered to. Instead, many EA
search models using predator-prey or host-parasite terms are better defined as competi-
tive interaction models. In the predator-prey example presented later in Section 7.5.2, the
basic compete interaction form is used.

The specification of quota in this model is simple, and it is possible to create dy-
namic quota models influenced by the relative evolutionary change or contribution to the
community. Alternately, population size, or at least the occupancy of the population
topology, could be expanded or reduced as a means of altering the resources available to
each subsystem.

Interaction order determines the sequence that subsystems are allowed to interact and
evolve. A simple order is adequate for many communities while a random order can help
to reduce unwanted order-based influence.

7.4.3 Ecosystem

Listing 7.2 shows the essential element syntax of the overall system configuration used
for ecosystem organisations. It is the same as the community syntax, with the exception
of interact details which critically describe how individuals from each subsystem will
interact. As with the community model, the search domain landscape can be mapped (via
interact settings) to multiple subsystem individuals (as in cooperative and competitive
models) at the expense of an additional level of interfacing.

257

Chapter 7: Open Research and the ESEC Model

Listing 7.2: Ecosystem configuration syntax

config = {
...
'system': {

'type': str, # 'ecosystem',
'systems': list, # of subsystems
'count': [int, list], # subsystem instances
'interact': {

'policy': str, # ie 'island', 'migrate'
'interval': ('on_gen', 'on_gap','on_quota'),
Other details needed depend on policy value
'topology?': [str, dict], # if used
'size?': int, # of the migrant group
'dest?': str, # ie. 'random', 'graph', 'order'
'out_selection?': str,
'in_selection?': str,
'mode?': ('copy','move'), # migration model
...

},
'quota': [None, list], # quota per subsystem
'order': str, # ie 'sequence' or 'random'

},
'species': list, # configuration details

}

7.5 Community Examples

7.5.1 Cooperative Symbiosis

As a supportive example of cooperative coevolution within the ESEC framework the esec
package is configured to support a community organisation of two species and two matched
populations. It is possible to create multiple populations for each species type if desired,
or dynamic population configuration models, however that is beyond the scope of this
example.

In a basic parameter separation scheme, each species of a community is allocated a
single parameter of the problem domain. This type of parameter separation is simplistic
and limited. As a more involved example, a simple string matching problem landscape is
created, in which the fitness of any solution is the number of correctly matched characters
to a target string. A number of species are used to search this domain, in a manner that
requires the species cooperate.

Each solution is composed of two species individuals mapped to form a single solution.
A basic textual representation of the domain is presented in Figure 7.3. Each individual is
represented by a string of characters. The set of valid characters is inclusive of those in the
target string, as well as an additional “-” character. A single individual does not contain
enough characters to create a complete solution. Rather, an individual from each species
is selected, and the two combined to create a single solution, which is then evaluted and
assigned a fitness value. Two obvious concerns are raised: how are the two individuals
combined, and how is fitness allocated to each individual?

This example deliberately uses a nontrival mapping of value characters from each in-
dividual. Each species is a different length and when combined the characters partially

258

Chapter 7: Open Research and the ESEC Model

Target Character Set : {A,B,C,D, E, F ,G}
Target S t r i n g Length : 8

S p e c i e s Character Set : {A,B,C,D, E, F ,G,−}
S p e c i e s 1 : Length=6, O f f s e t=0
S p e c i e s 2 : Length=5, O f f s e t=3

Mapping Example
Target S t r i n g : ’FABCDAFB’ (random)
O f f s e t p o s i t i o n s : 01234567
S p e c i e s 1 sample : ’FB−CA−’
S p e c i e s 2 sample : ’−ABFG’
Combined sample : ’FB−C−BFG’
Target matches : ’F−−C−−F−’ (F i t n e s s = 3)

Figure 7.3: String matching problem domain for cooperative species

overlapped. The length and overlap amount are fixed arbitrary values. In regions where
only one species contributes a character the solution character is easily resolved. Within
the overlap region, when both individuals contribute a valid character, the solution charac-
ter is considered unknown (“-”) to encourage unique species contributions (see Figure 7.3).

The fitness of a solution is the number of matches with the target string. Partial credit
is assigned to each particular individual based on the number of contributions it made to
the solution. In this simple model there is no direct penalty for contributing a majority of
the target characters; it is possible that one species provide most of the final characters.
In natural systems resource limitations are often a strong fitness pressure that motivate
cooperations; penalising excessive contribution (as “wasteful” behaviour) is a useful fitness
consideration.

Within the system configuration section shown in Listing 7.3 we can see how a single
population configuration is defined which is used twice (as specified by the count list of
integers) to create population instances. A simple panmictic subpopulation topology is
used for each species.

The species details for each population are defined in the species section, and al-
though there are “two” species conceptually (with different length and offset values), the
basic details are the same and so the second species configuration simply refers to the
first. The “length” needed for each species is actually determined by the function named
in interact.mapping.on_init. (See the full configuration provided on the CDROM for
exact details.) Note that each species uses “matchup” evaluation (genome.eval) rather
than direct simple evaluation against the landscape.

The four common interact details are the policy, matchup, interval, and mapping
values. Because the matchup has been specified as “best” in this case the interaction
topology is implied to be a full graph, where each individual of one population is evaluated
with the best member of each other species. Each population is considered in sequential
order, and with no quota limitations.

Details for how individuals from each species population are combined and evaluated as
a single landscape solution are defined by the mapping dictionary. This typically involves
initialisation details (already mentioned) and a specialised evaluation function. In this
case the mapping evaluation function is named which is subsequently called each time a

259

Chapter 7: Open Research and the ESEC Model

Listing 7.3: Cooperative ESEC community configuration example

config = {
'EA': 'Cooperative Community Example',
Begin with a list of species
'species': [

1. Species A
{

'genome': {
'type': 'char', 'init': 'random', 'eval': 'matchup'

},
'recombine': { ... },
'mutate': { ... },

},
2. Species B is the same as species A
'0 copy',

],
Specify a community that contains multiple subsystems
'system': {

'type': 'community',
'systems': [{ # list of subsystem details

A simple population graph for both species
'type': 'population',
'topology': 'panmictic',
'size': 20, # population size
'epoch': 'on_gen',
'breed': {

'size': 20, # 'all' at once (generational)
},
'survive': {

'selection': 'all',
'group': 'offspring', # default non-overlapping

},
}],
'count': [1,1], # each subsystem used once
'interact': {

'policy': 'cooperate', #symbiosis
'matchup': 'best',
'interval': 'on_gen',
'mapping': {

'on_init': 'mapping_on_init', # function name
'eval_fn': 'mapping_eval_fn', # function name

},
},
'quota': None,
'order': 'sequence',

},
'character' value landscape details
'landscape': { ... },

}

group of individuals (selected using the matchup settings) needs to be evaluated. Fitness
is credited to a single matchup contributor. This means that each individual gets given a
single fitness value even though the “best” individuals from each population are selected
and used many times during the evaluation of the entire population.

If different fitness values need to be assigned to different species this can also be done
using a custom evaluation function, or from a specialised landscape evaluation function

260

Chapter 7: Open Research and the ESEC Model

that returns multiple fitness values and working in concert with a special mapping evalu-
ation function.

Figure 7.4 shows a single representative run of the cooperative symbiosis community
example described. It can be seen in the overall solution fitness value, and in the sub-
system species fitness values, that the overall success increases as a result of incremental
improvements and contributions from both species.

0 20 40 60 80 100
Generation

2

3

4

5

6

7

8

9

10

Fi
tn

e
ss

Cooperative Symbiosis Example

Best Solution
Population 1
Population 2

Figure 7.4: A representative plot of the best solution fitness and subpopulation (species)
fitness values (solution contributions) from a sample run of the cooperative symbiosis example
of a community system within the ESEC framework.

7.5.2 Competitive Predator-Prey

As an example of ESEC support for a classic predator-prey model, the esec package is
configured for a community cohabitation configuration of two species in competition with
each other. In particular, a simple search domain landscape is created to demonstrate
a classic competitive “arms-race” scenario of adaptation between two species. In many
EC examples the predator species is the main objective function (solution) while the prey
species are test cases. It can be important for the test cases to begin at a simple level.

Listing 7.4 shows the essential aspects of the configuration details. Note that two
different species and their population subsystems have been specified. Each species has
a basic but different population topology; the prey population is a standard Moore-style
lattice neighbourhood (eight neighbours), while the predator population is a simple pan-
mictic population. In this way, the prey population is localised to particular regions of the
community environment, while the predator species is considered as having a high degree
of mobility for reproduction (presented by a full graph).

In contrast to the cooperative example presented earlier the result of evaluation is
different for each species. Prey individuals are rewarded (given a good fitness value) for
being challenging for predator species, while predator species are rewarded based on the
number of success cases they achieve within a sample group of interactions with prey. Un-

261

Chapter 7: Open Research and the ESEC Model

like a true predator-prey model, in a competitive policy prey individuals are not removed
by predators from the population.

A simple binary competitive problem landscape is contrived to demonstrate arms-race
behaviour between two species. A textual example of the domain is shown in Figure 7.5.
Predator and prey species are composed of matching length binary value strings. The
evaluation of individuals is done by comparing each boolean value, and awarding a positive
or negative fitness score. The competition is deliberately weighted so that success for prey
individuals is independent of predators (simply the sum of true boolean values), while
the predator fitness is dependent on the number of matching true values in prey species.
The initial population of both species is seeded with zero value genomes to demonstrate
incremental development.

Evaluation of each individual is performed by a sample group of matchup pairings
between each species, as in the cooperative community example. The selection of matchup
pairs is done using an interaction topology.

Predator individuals are randomly allocated (“scattered”) to locations of the prey
species topology. Conceptually, the mobile predator species move to an environment
location and consume prey, and then move on to other locations.

The process of predator allocation can be triggered on any number of events, such as
the generational rate of the predator species, the generational event of the prey species, or
an epoch number of system-wide steps. In this case, the prey species’ generational event
is used to trigger the reallocation of prey species.

Considering the modularity of the design and configuration, the predator and prey
species are not specifically aware of the interaction topology. Individuals from either
species are simply used within their own “known” neighbourhood context. For a prey
species, their survival fitness is based on their interaction with a sample of randomly
allocated prey individuals, and reproduction fitness is based on a relative comparison with
their neighbours – some of which will have experienced interaction with different predator
species.

As can be seen in the simple results of a single simulation run (Figure 7.6), both
predator and prey species adapt to achieve the maximum possible fitness for the predator
species.

7.6 Ecosystem Examples

7.6.1 Basic Island Model

Consider a simple island model EA example presented as an ecosystem organisation con-
figuration for the ESEC framework. Table 7.1 lists the essential specification details, and
Listing 7.5 provides partial configuration details as needed for the esec software. The
full configuration is available on the CDROM. (See Appendix D for a description of the
CDROM contents.)

In Chapter 3 and the presentation of reference EC algorithms, Listing 3.5 showed
a simple synchronous island population example EA where migration is controlled by a

262

Chapter 7: Open Research and the ESEC Model

System Representation
Organisation Type Ecosystem
Subsystem Type(s) uniform population (island)

No. Subsystems d = 5
Interaction Policy Panmictic migration

.
Individuals Bit-string (length l)

Subsystem Representation(s)
Topology Panmictic (size = m = 20)

Individuals <match system>
.

Subsystem Selection Pressure
Generations Non-overlapping

Parent Selection Fitness proportional
Mate Selection Fitness proportional

Survivor Selection Truncate (age)
Interaction Policy

Migration Mode Parallel (synchronised)
Migration Interval dt = 20 (generations)
Emigrant Island Order

Immigrant Island Random
Emigrant Selection Truncate (best)
Immigrant Survival Truncate (best)
Migrate Group Size k (individuals)

Communication Mode Copy

Table 7.1: Island EA configuration as a simple ecosystem

single method. Given an infrequent migration policy (as described) this configuration is
an especially good opportunity for decentralised (subprocess and distributed data) island
algorithm control.

In this case, the ecosystem contains a small fixed number of subsystem “islands” (five),
each a single species population system using a simple panmictic population topology of
size 20. All subsystems are of the same population size and support the same (shared)
species type allowing simple migration of individuals between islands without adaptation.
The ecosystem controller allows each subsystem to evolve in parallel, using an equal-quota
model.

There are many possible island interaction policies and topologies. Here a panmictic
topology is used with a simple “island” migration policy, specifying that individuals from
each island may migrate to any other island. An interval of 20 generations is set as the
period of time between migration activity. Selection pressure is applied both to selection
of individuals for migration, as well as the selection of individuals that are retained after
migration. The migration mode in this case is “copy” so that individuals selected for
migration are copied rather than moved and lost from their original island population.

The interaction topology is simply a fully connected graph. Other common forms
are ring lattices and grid lattices, but clearly any topology could apply. Practically, and

263

Chapter 7: Open Research and the ESEC Model

as already noted, islands are typically distributed and connected in a manner that takes
advantage of underlying computation hardware.

A representative sample run of the island ecosystem configuration is presented in Fig-
ure 7.7. A simple non-deceptive maximisation problem domain is shared among the is-
lands. Note the influence of migration events on each islands fitness, and the overall best
fitness value within the ecosystem.

Another possible interaction policy between islands is a “ladder” model, which creates
a fitness-based hierarchy in which migration direction is specified. Source or sink islands
can be created such that a bias of emigration or immigration occurs respectively. This
could allow islands of “weaker” fitness levels (but perhaps useful genetic diversity) to avoid
the disruptive immigrant influence of stronger individuals. Similarly “sink” islands can
become useful, highly-competitive and strongly mixed populations that feed off the genetic
diversity of source islands that feed into them.

The coordination and selection policies required to manage an island-based ecosystem
model is much simpler than those required for multi-species coevolution models (compet-
itive or cooperative) discussed earlier.

7.6.2 Complex Ecosystem

The island model, as researched and discussed by many, has clearly provided a very useful
organisational model for evolutionary computation, and so its inclusion in a cohesive
ecosystem framework is highly valued. As already described in the introduction of this
chapter, the ecosystem organisation model within the ESEC framework is not limited to
relatively simple island interaction models.

As a supportive example of the potential of the ESEC framework to describe complex
systems, let us consider another, more complex, example. In the introduction, Figure 7.2
showed a conceptual diagram of an ecosystem composed of three subsystems: a simple
population, a community and a nested ecosystem. Based around this general capacity,
an ecosystem instance with three specific subsystems is defined; a simple single species
panmictic population (species A), a cooperative coevolution community of two species
(species B and C), and an island-style nested ecosystem (also for species A). A simple
problem landscape is defined for which only a single “species” solution type is required.
All subsystems will attempt to evolve solutions for the problem in their own manner,
limited by evolution quota.

As the problem landscape only requires a single species, the cooperative dual-species
community will need a mapping scheme so that its two species are used to form solutions.
The specification of this is the same as that used previously in community organisation
models. Note that the nested community subsystem contains its own mapping between
the external representation requirements and internal representation, in a self-contained
manner, which separates their unique concerns from the specification of the overall ecosys-
tem.

The specific subsystem composition is illustrated in Figure 7.8, showing the specific

264

Chapter 7: Open Research and the ESEC Model

number of subsystems, their type, and some internal details for each subsystem (such as
the specific number of island populations used in the nested ecosystem).

Listing 7.6 is the essential configuration details as required for this example in the
ESEC framework. The complete configuration is available on the CDROM. (See Ap-
pendix D for details.)

This example is provided as support that the ecosystem model, as implemented by the
esec package, is capable of describing complex composite systems.

The landscape selected for the example does not contain NKC style epistatic complex-
ities between subsystem species. As already noted, a simple landscape was selected in
order to reduce the already contrived complexity of the overall ecosystem. An NKC style
problem domain can be applied, in which the relative progress of evolutionary adaptation
for each subsystem is limited by both the search landscape complexity and the ecosystem
complexity.

7.7 Open Questions

There are many interesting avenues for investigation for both the community and the
ecosystem organisation models presented as part of the ESEC framework. Within the
brief examples presented, a range of simple and complex interactions has been shown
providing an initial view of the open research potential.

By explicitly supporting interaction topology the model supports not only multiple
interacting species, but also habitation and other ecological concepts. The number of
topology based possibilities in defining interaction between multiple species is broad, and
based on existing work, the utilisation of coadapting species is a useful paradigm worth
exploring.

The ESEC model of community organisation clearly supports many established co-
adaptation models, as well as providing a clear context for novel extensions. Understanding
and predicting when models of multiple species are a useful EC search paradigm is a
difficult question. A number of questions can be asked of a community EC model. Perhaps
the most dominant questions are centred around what exactly the benefit of multiple species
is and what problem domains are best matched to a community search model? From these
general questions follow many other model and implementation related questions. For
example:

• Is there an advantage to dynamic species formation and reduction?

• Does a model occupancy and variable cohabitation resource pressure offer any ben-
efit?

• Are lattice or geometry style lattice population topologies important or required for
particular forms of coadaptation? (Would simpler random models suffice?)

• What is the sensitivity of search outcomes to community parameters?

265

Chapter 7: Open Research and the ESEC Model

• Could interaction and pairing models be dynamically modelled or formed, and would
this be useful for particular problem domains?

• Are community organisations more robust than single species population models, in
particular when applied to dynamic search environments?

• When should a community model not be used? Are there clear domains where a
simpler organisation model is preferred?

Many of these questions, or aspects of them, have been addressed to some degree
in previous work, such as the cooperative coevolutionary systems presented by De Jong
and Potter, and the ecological (cellular) algorithm approaches of Kirley (considered in
Section 5.4.4).

As the ESEC framework can support existing models, as well as an additional range of
interaction topologies not previously explored, it is a somewhat obvious avenue for future
research to include, validate and extend prior work. This could include the following:

• Rewired lattices: Many multi-species coevolutionary systems (both competitive and
cooperative) have used lattice population topology. It would be interesting to inves-
tigate the influence that rewiring has on coevolution performance by first validating
existing models and results, and then applying levels of rewiring. Would a random
network of similar resources perform differently to basic lattice structures?

• Endosymbiosis: The endosymbiosis model of Kim et al. [192] discussed earlier is an
interesting model for both its species distinctions and its community level interac-
tions and compositions. Species composition interaction models are a challenging
aspect of coevolution.

The application of coevolutionary search is not without criticisms, most of which are
based not on a fundamental flaw of coevolutionary concepts, but rather implementation
limits or lack of consideration for appropriate influences (such as selection operators or
population structure). In order to clarify particular concerns or points, the ESEC model
(and esec package) could be used.

The notion of an ecosystem organisational model provides several high-level oppor-
tunities. Consider the following features, most of which apply to both ecosystem and
community organisations:

• Subsystems: How many subsystems should there be, and of what type and degree
of complexity. Should they be homogenous?

• Interaction, of which there are several aspects:

– Topology: What is an appropriate structure for interactions, and should they
be explicitly defined by the ecosystem, or an emergent property of individuals
or subsystems?

– Frequency: Is there an general principle of interaction frequency from macro to
micro levels of organisation, and how sensitive are systems to this property?

266

Chapter 7: Open Research and the ESEC Model

– Model: How are individuals of one subsystem influenced by those of another,
and how is influence applied? Are there principles underlying the use of average
influence, subsystem averages or interaction samples?

• Quota: Energy or resource limited systems can be used to influence evolutionary
search outcomes, and so how should this be applied to subsystems? Should quota
vales be dynamic? What events are significant?

• System morphology: Should the number, size, type and composition of subsystems
change? Should this be coupled with fitness or quota limits as indicators for change?

These questions are aligned to some degree with those presented for community models,
complicated by the potential for additional interactions between complex subsystems.

As presented in Section 6.4 of Chapter 6, the variability of population topology creates
additional parameters for EAs to utilise. The ESEC model suggests additional commu-
nity and ecosystem structures, also with additional parameters. Determining appropriate
topology form and suitable parameter values creates an extensive open area of research.

Perhaps the most viable avenue to explore these concerns is the use of parameter
setting and control [97, 219]. This is one of the most important and interesting research
directions relevant to the overall ecosystem model presented in this thesis. Future work
should investigate the use and possible benefit of self-adaptive topologies with the ESEC
model, not only at the level of population, but also at community and collective ecosystem
levels.

7.8 Closing

This chapter has presented community as a specific organisational model within the ESEC
framework, incorporating notions of cohabitation and interaction topology between pop-
ulations of different species. Many different interaction types can be explored using the
ESEC framework and the esec package, including cooperative coadaptation and classic
predator-prey cohabitation models.

As an addition to many coevolutionary examples presented in literature, the com-
munity model presented here includes an explicit evolution quota, such that the rate of
evolutionary development per species (or subpopulation) can be specified and weighted.
This provides a means of changing the rate of adaptation each species experiences, and
can be altered as a way of balancing species concerns with respect to overall community
performance.

Two relatively simple coevolutionary example configurations, a cooperative symbiosis
and a competitive “arms race” model, have been presented to demonstrate the viability of
the community abstraction and its practical implementation. Exploring the many possible
applications of the community coevolutionary model is outside the scope of this thesis,
and indeed the body of work in the area of coadaptation is large and growing; it is a useful
paradigm.

267

Chapter 7: Open Research and the ESEC Model

Within an entire ecological model of evolutionary computation, a community organi-
sation is a useful system component, and it is possible for the community to be utilised
within a larger organisational composition of an ecosystem as a subsystem component.

This chapter has also illustrated how the proposed ecosystem organisational model of
evolutionary computation is able to represent the desirable qualities of an ecological model.
Considerable past work by many authors supports that distributed and coarse grained EC
models are useful and effective. As examples, the ESEC framework is used to represent a
simple classic island population dEA model, as well as a complex ecosystem composition
using all three system organisational levels as subsystems: population, community and
ecosystem.

Thorough experiments and analysis of complex ecosystem models are beyond the scope
of this thesis, however the ESEC framework is a viable platform to support investigation
in these areas. An important underlying principle for any investigations of a complex
system should be clear questions based on a consistent underlying framework. There are
many open questions related to the features and potential of complex ecosystem models,
in particular at the organisation level of ecosystem.

268

Chapter 7: Open Research and the ESEC Model

Listing 7.4: Predator-prey coevolution community example

config = {
'EA': 'Predator-Prey Coevolution Example',

Specify community species
'species': [# list of subsystem species

{ # 1. Species A: Predator
'genome': {

'type': 'binary', 'init': 'zero', 'eval': 'matchup'
},
... # + recombine and mutate settings

},
{ # 2. Species B: Prey

'genome': {
'type': 'binary', 'init': 'zero', 'eval': 'matchup'

},
... # + recombine and mutate settings

},
],

Community of interacting subsystems
'system': {

'type': 'community',
'systems': [# list of subsystem details

{ # Predator species population - simple full graph
'type': 'population',
'topology': 'panmictic',
'size': 20, # number of predators
... # + epoch, breed.size, replace, survive

},
{ # Prey species population - Moore lattice

'type': 'structured',
'topology': {

'type': 'lattice', 'dim': [10,10], ...
},
'size': '#topology', # number of prey
... # + epoch, breed.size, replace, survive

}
],
'count': [1,1], # each subsystem created once
'interact': {

'policy': 'compete', # predator-prey
'interval': 'on_gen',
'matchup': {

'count': [1,1],
0: ['*', {'src': 'nei', 'selection': 'uniform_random' }],
1: [{'src': 'all', 'selection': 'uniform_random' }, '*'],

},
'mapping': {

'on_init': 'mapping_on_init',
'eval_fn': 'mapping_eval_fn',

},
},
'quota': None, # or a quota per subpopulation
'order': 'sequence',

},
Custom landscape details
'landscape': { 'type: 'custom'; ... },

}

269

Chapter 7: Open Research and the ESEC Model

(Predator , Prey) = Predator s c o r e
(0 , 0) = 0
(0 , 1) = −1
(1 , 0) = 0
(1 , 1) = +2

Example :
Predator 0010
Prey 1 1010 , Predator s c o r e = −1+0+2+0 = 1
Prey 2 0111 , Predator s c o r e = +0−1+2−1 = 0
Prey 3 1101 , Predator s c o r e = −1−1+0−1 = −3

Figure 7.5: Binary competitive domain for predator-prey species

0 10 20 30 40 50 60 70 80
Generation

0

5

10

15

20

25

30

35

40

Fi
tn

e
ss

Competitive Predator-Prey Example

Best Predator
Best Prey

Figure 7.6: A representative plot of subpopulation (species) fitness values from a sample run
of the competitive symbiosis example of a community system within the ESEC model. The
binary predator-prey problem domain is described in Figure 7.3. Note that the prey species
soon achieves maximal fitness, and this then enables the dependent predator species to improve
also.

270

Chapter 7: Open Research and the ESEC Model

Listing 7.5: Island EA as an ESEC ecosystem configuration

config = {
'EA': 'Island',
'system': {

'type': 'ecosystem',
'systems': [{

A simple generational population model
'type': 'population',
subtype - panmictic generational implied
'topology': 'panmictic',
'size': 20, # island size
'epoch': 'on_gen',
'breed': {

'size': 20, # 'all' at once (generational)
},
'replace': {

'selection': 'all', # parents[:] = survivors
},
'survive': {

'selection': 'truncate_best',
'group': 'offspring+parents', # overlapping

},
'adapt': ... # optional

}],
'count': 5, # number of island subsystems
'interact': {

'policy': 'island',
'topology': 'panmictic',
'interval': 20, # generations
'size': 5, # number sent per
'dest': 'random', # or 'order' or 'graph'
'out_selection': 'truncate_best',
'in_selection': 'truncate_best',
'mode': 'copy',

}
'order': 'sequence'

},
'species': [{ # A single common shared species

'genome': { 'type': 'binary', ... },
'recombine': { ... },
'mutate': { ... },

}],
}

271

Chapter 7: Open Research and the ESEC Model

0 50 100 150 200
Generation

350

300

250

200

150

100

50

0

Fi
tn

e
ss

Island Ecosystem Example

Island 1
Island 2
Island 3
Island 4
Island 5

Figure 7.7: Island ecosystem composition example. All islands share a simple maximisation
problem domain. Each island is the same size, and migration events occur every 20 generations,
which can assist in some cases by transferring useful aspects of a good solution between island
populations.

Interaction
(Migration)

Panmictic
Population

Cooperative
Community

Island
Ecosystem

Species A

Species
B & C

10
10

10

10
10

10

10
Species A

Figure 7.8: Composition of a complex ESEC ecosystem example

272

Chapter 7: Open Research and the ESEC Model

Listing 7.6: Complex ESEC ecosystem configuration example

config = {
'EA': 'Ecosystem Example',
'system': {

'type': 'ecosystem',
'systems': [# list of subsystem details

{ ... }, # 1. simple panmictic population
{ ... }, # 2. two cooperative species
{ ... }, # 3. island EA ecosystem

],
'count': 3, # implied
'interact': {

'policy': 'migrate',
'topology': 'panmictic',
'size': 2,
...

},
'quota': [# quota per subsystem

...
],
'order': 'sequence',

},
'species': [# list of subsystem species

{ ... }, # 1. species A
[# 2. list of co-species

{ ... }, # species B
{ ... }, # species C

],
'0 copy', # 3. species A

],
}

273

Chapter 7: Open Research and the ESEC Model

274

Chapter 8

Conclusions

8.1 Overview

The overriding motivation of this thesis was to create a new ecosystem model of evolution-
ary computation (ESEC) and to investigate the influence that topology and interaction
has on the outcome of evolutionary computation search.

A new ESEC model was proposed, using additional inspiration from biology, ecology
and ecosystems to explicitly include the notion of structure in a manner that supports
complex and efficient topology.

One of the strongest investigative outcomes of this work is that the specification of
topology does influence both the EA search efficacy and efficiency. This motivates future
investigations to consider in more detail how and why such influence can be used to an
advantage as a way of optimising EC search applications.

8.2 Contributions

To address the stated research goals, detailed reviews of three important and interrelated
fields were presented in Part I of the thesis:

• Chapter 2 presented concepts and properties of the domains of ecology, ecosystems
and evolution. The accompanying glossary in Appendix A.1 supports the review. Of
particular importance is the ecosystem as a structural model, which later provides an
organisational architecture for extending simple evolutionary computation models.

• Chapter 3 introduced the field of evolutionary computation (EC) and evolutionary
algorithms (EA) as a biologically inspired search metaphor, and presented the com-
ponents of an EA with an emphasis on structural aspects and features that are often
obscured or implicit in existing work.

• Chapter 4 examined current research and models of graph theory and complex sys-
tems, with particular emphasis on graph measurements of topological properties and
models of graph development. Appendix A.2 is a detailed glossary to support the
review.

275

Chapter 8: Conclusions

All three domains are strongly coupled, with mutual benefit gained through an under-
standing of each field in greater detail.

Part II of the thesis has presented an ecosystem model for evolutionary computation
(ESEC) using the reviewed fields, and explored three organisational levels of the ESEC
model (population, community and ecosystem) and their relationship to existing EC mod-
els.

The main contributions of this thesis are:

• The development of an Ecosystem model of Evolutionary Computation, presented
in Chapter 5, which is inclusive and supportive of prior EC work and supportive of
additional topological features.

• Software realisation of the proposed model (the esec package) written in Python
to provide a flexible platform for algorithmic experimentation. See Appendix E and
the CDROM documents (Appendix D) for additional details.

• Demonstrated ability of the proposed model to investigate different organisational
models at population (Chapter 6), community and ecosystem (Chapter 7) levels.

• The creation of a set of investigation themes using the proposed model, and a body
of empirical work to address some of the questions raised in relation to single species
population models of differing population topology qualities (Chapter 6).

To support the presentation of topology models, Appendix C is a detailed survey of the
properties and models that are central to the ESEC model and investigation presented.

Similarly, as part of the ESEC realisation in the esec package, an extensive collection
of classic EC benchmark problem domains were considered and implemented. A large
portion of these are detailed in Appendix B including, where applicable, motivations and
features of each landscape.

The empirical results presented in Chapter 6 clearly showed that topology properties
of a population influence evolutionary process. Subsequently, topology can influence the
efficacy of success, the quality of solutions found, and the efficiency (such as the search
time required) of the search. Understanding the relationships of topology and EC, and
in particular within a ecosystem based framework, provides a useful means of configuring
EAs in ways that may improve the likelihood of high quality solutions and/or the efficiency
of search for particular domains.

8.3 Future Work

Throughout the thesis a number of questions and extension have been presented. In
particular a number of key questions were presented with the ESEC model description in
Section 5.5 of Chapter 5, as a model capable of incorporating a broad range of features
opens many avenues for investigation. Questions can be grouped into two main areas,
biological models and graph theory concepts, although there is typically a close relationship
between both.

276

Chapter 8: Conclusions

These include, for example, consideration of the importance or influence of the follow-
ing topics and questions:

• Ecosystem resources: What is the impact of resource (quota) limits, and should they
be dynamically adapted? Could interactions also be limited as an analogy of cost?

• Mobility: Are models of movement useful or important? Are there advantages, and
should they be based on particular geometric constraints, or do other models have
benefits (such as small-world networks)?

• Gradients and Flow: Are directed interaction models (ie. for population structure)
influential, extending the concepts of update order on lattice graphs? How do exist-
ing models of population topology “gradients” compare and can the two models be
unified?

• Successional/Episodic Change: Consider episodic models, including extinction
events, migration, successional change and founder/colonisation models. Do these
models offer particular EC search advantages? Are some advantages more pro-
nounced within community (multiple-species) models?

• Layered Populations: Can models of age or interaction structure (hierarchy) within
single species populations be used to assist EC search? (Consider the delayed re-
placement model for juvenile individuals considered in Chapter 6.)

• Dynamic Topology: Are there advantages in the use of dynamic population size
and/or structure? Could the interaction of individuals be used to alter population
topology in a useful manner? Consider growth models for populations, and phases
of behaviour (which links to successional models). How disruptive are dynamic
topology changes?

• Motifs: Are there particular motif structures that are observed in natural systems
that may relate or be useful for EC search? Is there an advantage to population or
interaction topology that is based on a particular distribution or presence of motif
components.

The incorporation of a number of existing EC models, in particular those that explicitly
utilise topology, is important as this facilitates comparison of any new or alternative EC
techniques to existing results, and validation of other work.

Specifying and altering topology provides a means of influencing diversity, “niche” like
behaviour with EC search. This applies to single species populations, within community
models of multiple interacting species, and ecosystem compositions of nested subsystems.
As there are well established explicit niche schemes, the benefit of topology controlled
diversity or niche behaviour should be considered with respect to explicit approaches.

Problem generator domains could be used to better understand the relationship be-
tween domain modality and population diversity and niche performance, and consequently
EC search robustness. For example, the MSG problem domain has been implemented

277

Chapter 8: Conclusions

within the esec package to facilitate exactly this form of investigation. The approach
could be applied across ESEC organisational models, from populations to communities
of multiple interacting species. Consider, for example, if the modality of a problem do-
main has a relationship with the diversity support of the population structure. A lattice
population would be expected to have greater diversity than simple full graph population.

Many topologies and EC operations are amenable to parallel and distributed imple-
mentation. The ESEC model and the esec package implementation could be extended
to support parallel and distributed processing explicitly within configuration details. This
has practical benefits in expediting simulation time, but also extends the capabilities of the
ESEC model to include, and thus enable comparison with models such as Opportunistic
Evolution in which search is distributed and adapted to available computing resources.

Complex search complexity is only beneficial when the search domain presents chal-
lenges and where improvements in search performance justify the complexity. Extensions
and consideration or future work should be balanced within this practical criteria. In-
creasing algorithm complexity without qualification can easily reduce effective techniques
to poor ones.

8.4 Closing Comment

Some EC investigations are motivated on the basis of characterising ecological models and
observations. However the primary intent of the ESEC model is to support evolutionary
search within an ecosystem architecture

There continues to be a practical need to develop new and robust search algorithms.
Not only can biology provide interesting models and inspiration for search algorithms, but
the expanding fields of complex systems and graph topology models and properties can
also add to our knowledge and approaches. The ESEC model supports both biological
inspiration and lessons from topology, enabling evolutionary search within an ecosystem
architecture.

278

Part III

References and Appendices

279

280

References

[1] David H. Ackley. A Connectionist Machine for Genetic Hillclimbing. Kluwer,
Boston, 1987. 341

[2] David H. Ackley. Stochastic Iterated Genetic Hillclimbing. PhD thesis, Carnegie
Mellon University, Pittsburge, PA, 1987. 45, 341

[3] Himanshu Agrawal. Extreme Self-Organization in Networks Constructed from Gene
Expression Data. Physical Review Letters, 89:268702, 2002. 128

[4] Enrique Alba. Parallel Evolutionary Algorithms Can Achieve Superlinear Perfor-
mance. Information Processing Letters, 82(1):7–13, April 2002. 69

[5] Enrique Alba, Mario Giacobini, Marco Tomassini, and Sergio Romero. Comparing
Synchronous and Asynchronous Cellular Genetic Algorithms. In Juan J. Merelo
Guervós, Panagiotis Adamidis, Hans-Georg Beyer, José Luis Fernández-Villaca nas
Martín, and Hans-Paul Schwefel, editors, PPSN, volume 2439 of Lecture Notes in
Computer Science, pages 601–610. Springer, 2002. 218

[6] Enrique Alba and Marco Tomassini. Parallelism and Evolutionary Algorithms. IEEE
Transactions on Evolutionary Computation, 6(5):443–461, October 2002. 63, 64, 68,
69, 153

[7] Enrique Alba and José M. Troya. A Survey of Parallel Distributed Genetic Algo-
rithms. Complexity, 4(4):31–52, 1999. 64, 68, 153

[8] Enrique Alba and José M. Troya. Cellular Evolutionary Algorithms: Evaluating the
Influence of Ratio. In Marc Schoenauer, Kalyanmoy Deb, Günter Rudolph, Xin Yao,
Evelyne Lutton, Juan J. Merelo Guervós, and Hans-Paul Schwefel, editors, PPSN,
volume 1917 of Lecture Notes in Computer Science, pages 29–38. Springer, 2000.
156

[9] Réka Albert and Albert-László Barabási. Statistical Mechanics of Complex Net-
works. Reviews of Modern Physics, 74(47):47–49, 2002. 83, 87, 98, 113, 114, 120

[10] Uri Alon. Network Motifs: Theory and Experimental Approaches. Nature Reviews
Genetics, 8:450–461, 2007. 101, 102, 126

[11] Peter J. Angeline. Genetic Programming’s Continued Evolution. In Peter J. Angeline
and K. E. Kinnear, Jr., editors, Advances in Genetic Programming 2, chapter 1,
pages 1–20. MIT Press, Cambridge, MA, USA, 1996. 65

[12] Peter J. Angeline and Jordan B. Pollack. Competitive Environments Evolve Better
Solutions for Complex Tasks. In Stephanie Forrest, editor, Proceedings of the Fifth
International Conference on Genetic Algorithms and their Applications, pages 264–
270. Morgan Kaufmann, 1993. 161

281

References

[13] Daniel Angus and Clinton Woodward. Multiple Objective Ant Colony Optimisation.
Swarm Intelligence, 3:69–85, 2009. 71

[14] Jaroslaw Arabas, Zbigniew Michalewicz, and Jan J. Mulawka:. GAVaPS - A Ge-
netic Algorithm with Varying Population Size. In Proceedings of the First IEEE
Conference on Evolutionary Computation, volume 1, pages 73–78, 1994. 51

[15] Robert Axelrod. The Evolution of Strategies in the Iterated Prisoner’s Dilemma.
In L. D. Davis, editor, Genetic Algorithms and Simulated Annealing, pages 32–41.
Morgan Kaufmann, Los Altos, CA, 1987. 46

[16] Thomas Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University
Press, New York, 1996. 67, 330, 341

[17] Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz, editors. Handbook of
Evolutionary Computation. Oxford University Press, Oxford, 1997. 46, 47, 48, 49,
65, 66, 67, 354

[18] Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz. Evolutionary Computa-
tion 1: Basic Algorithms and Operators. Institute of Physics Publishing, Bristol,
2000. 47

[19] Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz. Evolutionary Computa-
tion 2: Advanced Algorithms and Operators. Institute of Physics Publishing, Bristol,
2000. 47, 155, 254

[20] Thomas Bäck, Frank Hoffmeister, and Hans-Paul Schwefel. A Survey of Evolution
Strategies. In Lashon B. Booker and Richard K. Belew, editors, Proceedings of the
4th International Conference on GAs, pages 2–9. Morgan Kaufmann, 1991. 65

[21] Thomas Bäck, Gunter Rudolph, and Hans-Paul Schwefel. Evolutionary Program-
ming and Evolution Strategies: Similarities and Differences. In David B. Fogel and
J. Wirt Atmar, editors, Proceedings of the Second Conference on Evolutionary Pro-
gramming, pages 11–22, La Jolla, CA, 1993. Evolutionary Programming Society. 66,
341

[22] James E. Baker. Reducing Bias and Inefficiency in the Selection Algorithm. In
John J. Grefenstette, editor, Proceedings of the Second International Conference
on Genetic Algorithms and Their Applications, pages 14–21, Hillsdale, NJ, 1987.
Lawrence Erlbaum Associates. 55, 56

[23] Shumeet Baluja. Structure and Performance of Fine-grained Parallelism in Genetic
Search. In Stephanie Forrest, editor, Proceedings of the Fifth International Confer-
ence on Genetic Algorithms, pages 155–162. Morgan Kaufmann, 1993. 69

[24] Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D. Francone. Genetic
Programming - An Introduction; On the Automatic Evolution of Computer Programs
and its Applications. Morgan Kaufmann, San Mateo, CA, 1998. 67

[25] Albert-László Barabási. The Physics of the Web. http://physicsweb.org/
articles/world/14/7/09, 2001. 12

[26] Albert-László Barabási. Linked: The New Science of Networks. Perseus, Cambridge,
MA, 2002. 11, 81, 83, 87, 126

[27] Albert-László Barabási and Réka Albert. Emergence of Scaling in Random Net-
works. Science, 286(5439):509–512, 1999. 108, 109, 119

282

http://physicsweb.org/articles/world/14/7/09
http://physicsweb.org/articles/world/14/7/09

References

[28] Albert-László Barabási, Réka Albert, Hawoong Jeong, and Ginestra Bianconi.
Power-Law Distribution of the World Wide Web. Science, 287:2115, 2000. 98

[29] Albert-László Barabási and Zoltán N. Oltvai. Network Biology: Understanding the
Cell’s Functional Organization. Nature Reviews Genetics, 5(2):101–13, 2004. 123,
127

[30] Mauricio Barahona and Louis M. Pecora. Synchronization in Small-World Systems.
Physical Review Letters, 89(5):054101, Jul 2002. 106

[31] Mark A. Bedau, Emile Snyder, and Norman J. Packard. A Classification of Long-
Term Evolutionary Dynamics. In Christoph Adami, Richard K. Belew, Hiroaki
Kitano, and Charles Taylor, editors, Artifical Life VI, pages 189–198. MIT Press,
Cambridge, MA, 1998. 71

[32] Theodore C. Belding. The Distributed Genetic Algorithm Revisited. In Proceed-
ings of the 6th International Conference on Genetic Algorithms, pages 114–121, San
Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc. 63, 68

[33] Peter J. Bentley. An Introduction to Evolutionary Design by Computers. In Peter J.
Bentley, editor, Evolutionary Design by Computers, pages 1–73. Morgan Kaufmann,
San Francisco, 1999. 46, 48

[34] Peter J. Bentley. Evolutionary Design by Computers. Morgan Kaufmann, San Mateo,
CA, 1999. 65

[35] Hugues Bersini and Francisco J. Varela. Hints for Adaptive Problem Solving Gleaned
from Immune Networks. In Parallel Problem Solving from Nature, First Workshop
PPSW 1, Dortmund, October 1990. 40, 70

[36] Stefano Boccaletti, Vito Latora, Yamir Moreno, Mario Chavez, and Dong-Uk Hwang.
Complex Networks: Structure and Dynamics. Physics Reports, 424(4-5):175–308,
Fervier 2006. 81, 86, 87, 127, 128

[37] Stefan Boettcher. Extremal Optimization - Heuristics via Co-evolutionary
Avalanches. Computing in Science & Engineering, 2:75–82, 2000. 70

[38] Stefan Boettcher and Allon G. Percus. Extremal Optimization: Methods Derived
from Co-evolution. In Proceedings of the Genetic and Evolutionary Computation
Conference, 1999. 70

[39] Bela Bollobás. Modern Graph Theory. Springer, New York, 1998. 87

[40] Stefan Bornholdt and Heinz Georg Schuster. Handbook of Graphs and Networks:
From the Genome to the Internet. Wiley-VCH, Berlin, 2003. 87

[41] George E.P. Box. Evolutionary Operation: a Method for Increasing Industrial Pro-
ductivity. Applied Statistics, 6(2):81–101, 1957. 40

[42] Hans J. Bremermann. Optimization through Evolution and Recombination. In
M.C. Yovits, G.T. Jacobi, and G.D. Goldstine, editors, Self-Organizing Systems,
pages 93–106. Spartan Books, 1962. 40

[43] Mark Buchanan. Nexus: Small Worlds and the Ground-breaking Science of Net-
works. Norton, New York, 2002. 87

[44] Larry Bull and Terence C. Fogarty. Artificial Symbiogenesis. Artificial Life, 2:269–
292, 1995. 159, 161

283

References

[45] Raffaele Calabretta, Riccardo Galbiati, Stefano Nolfi, and Domenico Parisi. Two
is Better than One: A Diploid Genotype for Neural Networks. Neural Processing
Letters, 4(3)(4):149–155, 1996. 161

[46] Raffaele Calabretta, Stefano Nolfi, Domenico Parisi, and Günter P. Wagner. A Case
Study of the Evolution of Modularity: Towards a Bridge Between Evolutionary Bi-
ology, Artificial Life, Neuro- and Cognitive Science. In Christoph Adami, Richard K.
Belew, Hiroaki Kitano, and Charles Taylor, editors, Proceedings of Artifical Life VI,
Los Angeles. MIT Press, 1998. 161

[47] Raffaele Calabretta, Stefano Nolfi, Domenico Parisi, and Günter P. Wagner. An
Artificial Life Model for Investigating the Evolution of Modularity. In Y. Bar-Yam,
editor, Proceedings of the International Conference on Complex Systems, Nashua,
NH. Addison-Wesley, 1998. 161

[48] Raffaele Calabretta, Stefano Nolfi, Domenico Parisi, and Günter P. Wagner. Emer-
gence of Functional Modularity in Robots. In Christoph Adami, Richard K. Belew,
Hiroaki Kitano, and Charles Taylor, editors, Proceedings of Artificial Life VI, Los
Angeles, 1998. 161

[49] Erick Cantú-Paz. A Survey of Parallel Genetic Algorithms. Technical Report Illi-
GAL 97003, Illinois Genetic Algorithms Laboratory, University of Illinois, Urbana-
Champaign, 1997. 63, 64, 154

[50] Erick Cantú-Paz. Designing Efficient and Accurate Parallel Genetic Algorithms.
PhD thesis, University of Illinois, 1999. 154

[51] Erick Cantú-Paz. Efficient and Accurate Parallel Genetic Algorithms. Kluwer Aca-
demic Publishers, United States, 2000. 51, 60, 63, 64, 69, 153, 154

[52] Erick Cantú-Paz. Migration Policies, Selection Pressure, and Parallel Evolutionary
Algorithms. Journal of Heuristics, 7(4):311–334, 2001. 51, 60, 78, 154

[53] Lewis Carroll. Through the Looking-Glass, and What Alice Found There. Macmillan,
United Kingdom, 1872. 161

[54] Walter Cedeño. The Multi-Niche Crowding Genetic Algorithm: Analysis and Appli-
cations. PhD thesis, Computer Science Department, University of California, Davis
CA, September 1995. 57, 152

[55] Hao Chen, Nicholas S. Flann, and Daniel W. Watson. Parallel Genetic Simulated
Annealing: A Massively Parallel SIMD Algorithm. IEEE Transactions on Parallel
and Distributed Systems, 9(2):805–811, February 1998. 360

[56] Jason P. Cohoon, Shailesh U. Hegde, Worthy N. Martin, and Dana S. Richards.
Punctuated Equlibria: A Parallel Genetic Algorithm. In John J. Grefenstette, editor,
Proceedings of the Second International Conference on Genetic Algorithms, pages
148–154, Hillsdale, NJ, 1987. Lawrence Earlbaum Associates. 63

[57] Howard Copland and Tim Hendtlass. An Evolutionary Algorithm with a Genetic
Encoding Scheme. In José Mira and Angel P. Del Pobil, editors, Methodology and
Tools in Knowledge-Based Systems, 11th International Conference on Industrial and
Engineering Applications of Artificial Intelligence and Expert Systems, IEA/AIE-
98, Castellón, Spain, June 1-4, 1998, volume 1415:1 of Lecture Notes in Computer
Science, pages 632–639. Springer, 1998. 50

284

References

[58] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press, 2nd edition, 2001. 102

[59] Nichael Lynn Cramer. A Representation for the Adaptive Generation of Simple
Sequential Programs. In John J. Grefenstette, editor, Proceedings of an International
Conference on Genetic Algorithms and Their Applications, pages 183–187, Hillsdale,
NJ, 1985. Lawrence Erlbaum Associates. 67

[60] Paolo Crucitti, Vito Latora, Massimo Marchiori, and Andrea Rapisarda. Com-
plex Systems: Analysis and Models of Real-World Networks. In Larissa S. Brizhik
Francesco Musumeci, Mae-Wan Ho, editor, Energy and Information Transfer in Bi-
ological Systems: How Physics Could Enrich Biological Understanding, Proceedings
of the International Workshop Acireale, Catania, Italy 18 - 22 September 2002, pages
188–204, Singapore, 2003. World Scientific Publishing Co. Pte. Ltd. 84, 104

[61] Gábor Csárdi and Tamás Nepusz. The igraph Software Package for Complex Net-
work Research. In Proceedings of the International Conference on Complex Systems,
2006. 96

[62] Charles R. Darwin. On the Origin of Species by Means of Natural Selection or the
Preservation of Favoured Races in the Struggle for Life. John Murray, London, 1859.
3

[63] Charles R. Darwin and Alfred R. Wallace. Evolution by Natural Selection. Cambridge
University Press, Cambridge, 1958. 3

[64] Dipankar Dasgupta, editor. Artificial Immune Systems and Their Applications.
Springer-Verlag, Inc., Berlin, 1999. 70

[65] Yuval Davidor. A Naturally Occuring Niche & Species Phenomenon. In Richard K.
Belew and Lashon B. Booker, editors, Proceedings of the Fourth International Con-
ference on Genetic Algorithms, pages 257–263, San Mateo, 1991. Morgan Kaufmann.
51, 63, 154, 155, 156

[66] Yuval Davidor. Free the Spirit of Evolutionary Computing: The Ecological Genetic
Algorithm Paradigm. In Raymond C. Paton, editor, Computing With Biological
Metaphors, pages 311–322. Chapman and Hall, London, UK, 1994. 63, 154, 155

[67] Yuval Davidor, Takeshi Yamada, and Ryohei Nakano. The ECOlogical Framework
II: Improving GA Performance at Virtually Zero Cost. In Stephanie Forrest, editor,
Proceedings of the Fifth International Conference on Genetic Algorithms (ICGA),
pages 171–176, San Mateo, CA, 1993. Morgan Kaufmann. 155

[68] Ron Davidson and David Harel. Drawing Graphs Nicely using Simulated Annealing.
Technical Report CS 89-13, Department of Applied Mathematics and Computer
Science, The Wiezmann Institute of Science, Rehovot, 1989. 95

[69] Ron Davidson and David Harel. Drawing Graphs Nicely using Simulated Annealing.
ACM Transactions on Graphics, 15(4):301–331, 1996. 95

[70] Lawrence Davis. The Handbook of Genetic Algorithms. Von Nostrand Reinhold,
New York, first edition, 1991. 47, 59

[71] Richard Dawkins. The Selfish Gene. Oxford University Press, Oxford, 1976. 37

[72] Richard Dawkins. The Extended Phenotype. Oxford University Press, Oxford, 1982.
37

285

References

[73] Richard Dawkins. The Blind Watchmaker, volume ISBN 0-393-31570-3. W. W.
Norton & Company, Inc., New York, 1986. 41

[74] Kenneth A. De Jong. Analysis of Behavior of a Class of Genetic Adaptive Systems.
PhD thesis, University of Michigan, Ann Arbor, MI, 1975. 51, 152, 153, 156, 330

[75] Kenneth A. De Jong. Generation Gap Revisited. In Proceedings of the Foundation
of Genetic Algorithms 2, pages 19–28, San Mateo, CA, 1993. Morgan Kaufmann. 63

[76] Kenneth A. De Jong. Genetic Algorithms Are NOT Function Optimizers. In L. Dar-
rell Whitley, editor, Foundations of Genetic Algorithms 2, pages 5–17. Morgan Kauf-
mann, CA, 1993. 44

[77] Kenneth A. De Jong. Evolutionary Computation: A Unified Approach. MIT Press,
Cambridge, Massachusetts, 2006. 41, 44, 46, 47, 48, 54, 65, 67, 163

[78] Kenneth A. De Jong and Mitchell A. Potter. Evolving Complex Structures via Co-
operative Coevolution. In Fourth Annual Conference on Evolutionary Programming,
San Diego, CA, pages 307–317, Cambridge, MA, 1995. MIT Press. 156, 159, 160

[79] Kenneth A. De Jong, Mitchell A. Potter, and William M. Spears. Using Problem
Generators to Explore the Effects of Epistasis. In Proceedings of the Seventh Interna-
tional Conference on Genetic Algorithms, Michigan State University, East Lansing,
MI,, pages 338–345. Morgan Kaufmann, 1997. 349, 351

[80] Kalyanmoy Deb and Ram Bhushan Agrawal. Simulated Binary Crossover for Con-
tinuous Search Space. Complex Systems, 9:115–148, 1995. 75

[81] Kalyanmoy Deb, Ashish Anand, and Dhiraj Joshi. A Computationally Efficient Evo-
lutionary Algorithm for Real-parameter Optimization. Evolutionary Computation,
10(4):371–395, 2002. 58, 74, 75, 76, 198

[82] Kalyanmoy Deb, Ashish Anand, and Dhiraj Joshi. A Computationally Efficient
Evolutionary Algorithm for Real-Parameter Optimization. Report No. 2002003,
KanGAL, April 2002. 67, 74

[83] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Algo-
rithms for Drawing Graphs: An Annotated Bibliography. Computational Geometry:
Theory and Applications, 4:235–282, 1994. 87, 93, 95

[84] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph
Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, 1999. 93, 95

[85] Laurence Charles Ward Dixon and Gabor P. Szegő. The Optimization Problem:
An Introduction. In L. C. W. Dixon and G. P. Szego, editors, Towards Global
Optimization II. North Holland, 1978. 348

[86] Raul Donangelo and Kim Sneppen. Self-organization of Value and Demand. Physica
A: Statistical Mechanics and its Applications, 276:572–580, 2000. 126

[87] Luca Donetti, Pablo I. Hurtado, and Miguel A. Muñoz. Entangled Net-
works, Synchronization, and Optimal Network Topology. Physical Review Letters,
95(18):188701–+, October 2005. 105

[88] Luca Donetti, Pablo I. Hurtado, and Miguel A. Muñoz. Synchronization in Network
Structures: Entangled Topology as Optimal Architecture for Network Design. In
Computational Science - ICCS 2006, volume 3993 of Lecture Notes in Computer
Science, pages 1075–1082. Springer Berlin / Heidelberg, 2006. 105

286

References

[89] Kejutan Dontas and Kenneth A. De Jong. Discovery of Maximal Distance Codes
using Genetic Algorithms. In Proceedings of the 2nd International IEEE Conference
on Tools for Artificial Intelligence, number IEEE Cat. No. 90CH2915 in 7, pages
805–811, Herndon, VA, 6-9 Nov 1990. IEEE Computer Society Press, Los Alamitos,
CA. 360

[90] Marco Dorigo and Thomas Stützle. Ant Colony Optimization. MIT Press, Cam-
bridge, 2004. 71

[91] Sergey N. Dorogovtsev and José Fernando Ferreira Mendes. Evolution of Networks.
Advances in Physics, 51:1079–1187, 2002. 87, 126

[92] Sergey N. Dorogovtsev and José Fernando Ferreira Mendes. Evolution of Networks:
From Biological Nets to the Internet and WWW. Oxford University Press, 2003. 81,
87, 114, 119

[93] Peter Eades. A Heuristic for Graph Drawing. Congressus Numerantium, 42:149–160,
1984. 94

[94] Peter Eades and Roberto Tamassia. Algorithms for Drawing Graphs: An Annotated
Bibliography. Technical report, Department of Computer Science. Providence, RI:
Brown University, 1989. 95

[95] Eric E. Easom. A Survey of Global Optimization Techniques. MEng thesis, Univer-
sity of Louisville, 1990. 334

[96] David Eby, Ron C. Averill, Boris Gelfand, William F. Punch, Owen Mathews, and
Erik D. Goodman. An Injection Island GA for Flywheel Design Optimization. In
Proceedings of the 5th European Congress on Intelligent Techniques and Soft Com-
puting (EUFIT ’97), pages 687–691, Aachen, 1997. Verlag Mainz. 255

[97] Agoston E. Eiben, Robert Hinterding, and Zbigniew Michalewicz. Parameter Con-
trol in Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation,
3(2):124–141, 1999. 10, 267

[98] Agoston E. Eiben and James E. Smith. Introduction to Evolutionary Computation.
Springer-Verlag, Berlin Heidelberg, 2003. 41, 44, 46, 47, 48, 51, 55, 59, 61, 65, 67,
152, 154, 155, 163, 250, 253, 354

[99] Agoston E. Eiben and J. K. van der Hauw. Solving 3-SAT with Adaptive Genetic
Algorithms. In In Proceedings of the 4th IEEE Conference on Evolutionary Compu-
tation, pages 81–86. IEEE Service Center, 1997. 353

[100] Manfred Eigen and Peter Schuster. The Hypercycle: A Principle of Natural Self-
Organization. Springer, Berlin, 1979. 127

[101] Niles Eldredge and Stephen Jay Gould. Punctuated Equlibria: an Alternative to
Phyletic Gradualism. In T J M Schopf, editor, Models of Paleobiology, pages 82–115,
San Francisco, CA, 1972. Freeman, Cooper. 63, 154

[102] Andries P. Engelbrecht. Fundamentals of Computational Swarm Intelligence. Wiley
& Sons, 2006. 7, 9, 40, 46, 49, 71

[103] Paul Erdös and Alfréd Rényi. On Random Graphs I. Publ. Math. Debrecen, 6:290–
297, 1959. 83, 109, 113

287

References

[104] J. Doyne Farmer, Norman H. Packard, and Alan S. Perelson. The Immune System,
Adaptation and Machine Learning. Physica D, 2:187–204, 1986. 40, 70

[105] David E. Featherstone and Kendal Broadie. Wrestling with Pleiotropy: Genomic and
Topological Analysis of the Yeast Gene Expression Network. BioEssays, 24(3):267–
274, 2002. 128

[106] Sevan G. Ficici and Jordan B. Pollack. Challenges in Coevolutionary Learning:
Arms-race Dynamics, Open-endedness, and Mediocre Stable States. In Christoph
Adami, Richard K. Belew, Hiroaki Kitano, and Charles Taylor, editors, Proceedings
of the Sixth International Conference on Artificial Life, pages 238–247, Cambridge,
MA, 1998. The MIT Press. 162

[107] George B. Field and William C. Saslaw. A Statistical Model of the Formation of
Stars and Interstellar Clouds. The Astrophysical Journal, 142:568, 1965. 109, 121

[108] J. Michael Fitzpatrick and John J. Grefenstette. Genetic Algorithm in Noisy Envi-
ronment. Machine Learning, 3(2-3):101–120, 1988. 54

[109] David B. Fogel. Evolving Artificial Intelligence. PhD thesis, University of California,
San Diego, CA, 1992. 66

[110] David B. Fogel. Evolutionary Computation: Towards a New Philosophy of Machine
Intelligence. IEEE Press, Piscataway, NJ, 1995. 66

[111] David B. Fogel. Evolutionary Computation: the Fossil Record. IEEE Press, Piscat-
away, NJ, 1998. 40, 65

[112] David B. Fogel. Blondie24: Playing at the Edge of AI. Morgan Kaufmann, San
Francisco, CA, 2002. 158

[113] David B. Fogel. Evolutionary Computation: Towards a New Philosophy of Machine
Intelligence. IEEE Press, Piscataway, NJ, third edition, 2006. 5, 42, 47, 48, 62, 65,
163

[114] David B. Fogel and J. Wirt Atmar. Comparing Genetic Operators with Gaussian
Mutations in Simulated Evolutionary Processes using Linear Systems. Biological
Cybernetics, 63(1):111–114, 1990. 66

[115] David B. Fogel and L. C. Stayton. On the Effectiveness of Crossover in Simulated
Evolutionary Optimization. BioSystems, 32(3):171–182, 1994. 66

[116] Lawerence J. Fogel. Biotechnology: Concepts and Applications. Prentice Hall, En-
glewood Cliffs, NJ, 1963. 66

[117] Lawerence J. Fogel, Alvin J. Owens, and Michael J. Walsh. Artificial Intelligence
through Simulated Evolution. John Wiley & Sons, New York, 1966. 66, 67

[118] Carlos M. Fonseca and Peter J. Fleming. Genetic Algorithms for Multiobjective
Optimization: Formulation, Discussion and Generalization. In Stephanie Forrest,
editor, Genetic Algorithms: Proceedings of the Fifth International Conference, pages
141–153, San Mateo, CA, 1993. Morgan Kaufmann. 53

[119] Carlos M. Fonseca and Peter J. Fleming. An Overview of Evolutionary Algorithms
in Multiobjective Optimization. Evolutionary Computation, 3(1):1–16, 1995. 53

288

References

[120] Carlos M. Fonseca and Peter J. Fleming. Multiobjective Optimisation. In Thomas
Bäck, David B. Fogel, and Zbigniew Michalewicz, editors, Evolutionary Computation
2: Advanced Algorithms and Operators, pages 25–37. Institute of Physics Publishing,
Bristol, 2000. 53, 54

[121] Alex S. Fraser. Simulaton of genetic systems by automatic digital computers 1:
Introduction. Australian Journal of Biological Sciences, 10:484–491, 1957. 40

[122] Thomas M. J. Fruchterman and Edward M. Reingold. Graph Drawing by Force-
Directed Placement. Software-Practices and Experience, 21(11):1129–1164, 1991. 94,
95, 120

[123] John Fulcher and Lakhmi C. Jain, editors. Computational Intelligence: A Com-
pendium, volume 115 of Studies in Computational Intelligence. Springer, 2008. 40,
41

[124] Marcus Gallagher and Bo Yuan. A General-Purpose Tunable Landscape Genera-
tor. IEEE Transactions on Evolutionary Computation, 10(5):590–603, October 2006.
189, 349, 362

[125] Abbas A. El Gamal, Lane A. Hemachandra, Itzhak Shperling, and Victor K. Wei.
Using Simulated Annealing to Design Good Codes. IEEE Transactions on Informa-
tion Theory, 33(1):116–123, 1987. 360

[126] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freeman, New York, 1979. 352, 358

[127] Simon Garrett. How Do We Evaluate Artificial Immune Systems? Evolutionary
Computation, 13(2):145–178, 2005. 70

[128] Ashish Ghosh and Shigeuoshi Tsutsui. Advances in Evolutionary Computing: Theory
and Applications. Springer-Verlag, Germany, 2003. 41, 65

[129] Mario Giacobini, Enrique Alba, Andrea Tettamanzi, and Marco Tomassini. Mod-
eling Selection Intensity for Toroidal Cellular Evolutionary Algorithms. In Kalyan-
moy Deb, Riccardo Poli, Wolfgang Banzhaf, Hans-Georg Beyer, Edmund K. Burke,
Paul J. Darwen, Dipankar Dasgupta, Dario Floreano, James A. Foster, Mark Har-
man, Owen Holland, Pier Luca Lanzi, Lee Spector, Andrea Tettamanzi, Dirk
Thierens, and Andrew M. Tyrrell, editors, GECCO (1), volume 3102 of Lecture
Notes in Computer Science, pages 1138–1149. Springer, 2004. 218

[130] Michelle Girvan and Mark E. J. Newman. Community Structure in Social and
Biological Networks. Proceedings of the National Academy of Sciences U. S. A.,
99:7821–7826, 2002. 102

[131] David Eugene Glover. Experimentation with an Adaptive Search Strategy for Solving
a Keyboard Design/Configuration Problem. PhD thesis, University of Iowa, 1986. 67

[132] David E. Goldberg. Computer-Aided Gas Pipeline Operation using Genetic Algo-
rithms and Rule Learning. PhD thesis, University of Michigan, 1983. 67

[133] David E. Goldberg. Simple Genetic Algorithms and the Minimal Deceptive Problem.
In Lawrence Davis, editor, Genetic Algorithms and Simulated Annealing, Research
Notes in AI, pages 74–88. Pitman, London, 1987. 327

[134] David E. Goldberg. Genetic Algorithms and Walsh Functions: Part I, A Gentle
Introduction. Complex Systems, pages 129–152, 1989. 159, 327

289

References

[135] David E. Goldberg. Genetic Algorithms and Walsh Functions: Part II, Deception
and Its Analysis. Complex Systems, pages 153–171, 1989. 327

[136] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, Reading, MA, 1989. 40, 46, 61, 66, 67

[137] David E. Goldberg. Accounting for Noise in the Sizing of Populations. In L. Dar-
rell Whitley, editor, Foundations of Genetic Algorithms 2, pages 127–140. Morgan
Kaufmann, Foundations of Genetic Algorithms 2, 1993. 51

[138] David E. Goldberg and Kalyanmoy Deb. A Comparative Analysis of Selection
Schemes used in Genetic Algorithms. In Gregory J. E. Rawlins, editor, Proceed-
ings of the First Workshop on Foundations of Genetic Algorithms, pages 69–93.
Morgan Kaufmann, San Mateo, CA, 1991. 54

[139] David E. Goldberg, Kalyanmoy Deb, and Jeffrey Horn. Massive Multimodality,
Deception, and Genetic Algorithms. In Reinhard Männer and Bernard Manderick,
editors, Parallel Problem Solving from Nature, 2, Amsterdam, 1992. Elsevier Science
Publishers, B. V. 349, 350

[140] David E. Goldberg, Kalyanmoy Deb, and Bradley Korb. Don’t Worry, Be Messy.
In Richard K. Belew and Lashon B. Booker, editors, Proceedings of the Fourth
International Conference on Genetic Algorithms, pages 24–30. Morgan Kaufmann,
1991. 50

[141] David E. Goldberg, Kalyanmoy, and Dirk Thierens. Towards a Better Understanding
of Mixing in Genetic Algorithms. Journal of the Society of Instrumentation and
Control Engineers, 32(1):10–16, 1993. 51

[142] David E. Goldberg and Jon Richardson. Genetic Algorithms with Sharing for Multi-
modal Function Optimization. In Proceedings of the Second International Conference
on Genetic Algorithms and their Application, pages 41–49, Mahwah, NJ, USA, 1987.
Lawrence Erlbaum Associates, Inc. 152

[143] V. Scott Gordon and L. Darrell Whitley. Serial and Parallel Genetic Algorithms as
Function Optimizers. In Stephanie Forrest, editor, Proceedings of the 5th Interna-
tional Conference on Genetic Algorithms, pages 177–183, 1993. 69

[144] Martina Gorges-Schleuter. ASPARAGOS - an Asynchronous Parallel Genetic Opti-
mization Strategy. In Proceedings of the Third International Conference on Genetic
Algorithms, pages 422–427, San Mateo, CA, 1989. Morgan Kaufmann. 154, 156

[145] Martina Gorges-Schleuter. Explicit Parallelism of Genetic Algorithms through Pop-
ulation Structures. In Hans-Paul Schwefel and Reinhard Männer, editors, PPSN,
volume 496 of Lecture Notes in Computer Science, pages 150–159. Springer, 1990.
63, 154

[146] David G. Green, David Newth, and Michael A. Kirley. Connectivity and Catastrophe
- Towards a General Theory of Evolution. In Mark A. Bedau et al, editor, Artificial
Life VII: Proceedings of the Seventh International Conference, pages 153–161. MIT
Press, 2000. 160

[147] John J. Grefenstette. GENSIS: A System For Using Genetic Search Procedures. In
In Proceedings of the Conference on Intelligent Systems and Machines, 1984. 59

[148] John J. Grefenstette. Optimization of Control Parameters for Genetic Algorithms.
IEEE Transactions on Systems, Man, and Cybernetics, 16(1):122–128, 1986. 51

290

References

[149] John J. Grefenstette. A System for Learning Control Strategies with Genetic Algo-
rithms. In J. David Schaffer, editor, Proceedings of the Third International Confer-
ence on Genetic Algorithms, pages 183–190. Morgan Kaufmann, 1989. 158

[150] John J. Grefenstette. Strategy Acquisition with Genetic Algorithms. In Lawrence
Davis, editor, Handbook of Genetic Algorithms, pages 186–201. Van Nostrand Rein-
hold, New York, 1991. 46, 67

[151] John J. Grefenstette, Connie Loggia Ramsey, and Alan C. Schultz. Learning Sequen-
tial Decision Rules Using Simulation Models and Competition. Machine Learning,
5:355–381, 1990. 158

[152] Paul Bryant Grosso. Computer Simulation of Genetic Adaptation: Parallel Sub-
component Interation in a Multilocus Model. PhD thesis, University of Michigan,
Computer and Communication Sciences Department, 1985. 160

[153] John Guare. Six Degrees of Separation: A Play. Vintage Books, New York, 1990.
84

[154] Frank Harary. Graph Theory. Perseus, Cambridge, MA, 1995. 87

[155] Georges R. Harik. Finding Multimodal Solutions Using Restricted Tournament Se-
lection. In Larry J. Eshelman, editor, Proceedings of the Sixth International Confer-
ence on Genetic Algorithms, pages 24–31, San Francisco, CA, 1995. Morgan Kauf-
mann. 57, 152

[156] Dietrich Hartmann. Optimierung balkenartiger Zylinderschalen aus Stahlbeton mit
elastischem und plastischem Werkstoffverhalten. PhD thesis, University of Dort-
mund, 1974. 65

[157] Inman Harvey. Cognition is Not Computation; Evolution is Not Optimisation. In
Wulfram Gerstner, Alain Germond, Martin Hasler, and Jean-Daniel Nicoud, edi-
tors, Proceedings of the 7th International Conference on Artificial Neural Networks
(ICANN ’97), pages 685–690, Berlin, 1997. Springer Verlag. 44

[158] Brian Hayes. Graph Theory in Practice: Part I. American Scientist, 88(1):9–13,
2000. 87

[159] Brian Hayes. Graph Theory in Practice: Part II. American Scientist, 88(2):104–109,
2000. 87

[160] Francisco Herrera and Manuel Lozano. Gradual Distributed Real-coded Genetic
Algorithms. IEEE Transactions on Evolutionary Computation, 4:43–63, 2000. 69

[161] Francisco Herrera, Manuel Lozano, and Claudio Moraga. Hybrid Distributed Real-
coded Genetic Algorithms. In PPSN V: Proceedings of the 5th International Con-
ference on Parallel Problem Solving from Nature, pages 603–612, London, UK, 1998.
Springer-Verlag. 69

[162] Daniel W. Hillis. Co-Evolving Parasites Improve Simulated Evolution as an Opti-
mization Procedure. Physica D, 42:228–234, 1990. 158, 161, 162

[163] Daniel W Hillis. Co-Evolving Parasites Improve Simulated Evolution as an Opti-
mization Procedure. In Christopher G. Langton, C. Taylor, J. Doyne Farmer, and
Steen Rasmussen, editors, Artificial Life II, volume X, pages 313–324, Redwood City,
CA, 1991. Santa Fe Institute Studies in the Sciences of Complexity, Addison-Wesley.
158

291

References

[164] John H. Holland. Outline for a Logical Theory of Adaptive Systems. Journal of the
Association of Computing Machinery, 9(3):297–314, 1962. 66

[165] John H. Holland. Genetic Algorithms and the Optimal Allocations of Trials. SIAM
Journal of Computing, 2(2):88–105, 1973. 66

[166] John H. Holland. Adaptation in Natural and Artificial Systems. University of Michi-
gan Press, Ann Arbor, MI, 1 edition, 1975. 45, 55, 66, 154, 160

[167] John H. Holland. Escaping Brittleness: The Possibilities of General-Purpose Learn-
ing Algorithms Applied to Parallel Rule-Based Systems. In R. S. Michalski, J. G.
Carbonell, and T. M. Mitchell, editors, Machine Learning: An Artificial Intelligence
Approach: Volume II, pages 593–623, Los Altos, CA, 1986. Morgan Kaufmann. 158

[168] John H. Holland. Genetic Algorithms. Scientific American, 267(1):44–50, 1992. 40,
158

[169] John H. Holland. Echoing Emergence: Objective, Rough Defintions, and Specu-
lations for Echo-Class Models. In G. Cowan, D. Pines, and D. Melzner, editors,
Complexity: Metaphors, Models and Reality. Addison-Wesley, Reading, MA, 1994.
71, 158

[170] John H. Holland and Judith S. Reitman. Cognitive Systems based on Adaptive Al-
gorithms. In D. A. Waterman and F. Hayes-Roth, editors, Pattern Directed Interface
Systems, pages 313–329. Academic Press, New York, 1978. 158

[171] Kurt Hornik. The R FAQ, 2007. 96

[172] Phil Husbands. Distributed Coevolutionary Genetic Algorithms for Multi-Criteria
and Multi-Constraint Optimisation. In Terence C. Fogarty, editor, Evolutionary
Computing, AISB Workshop Selected Papers, volume 865 of LNCS, pages 150–165.
Springer-Verlag, 1994. 159, 162

[173] Phil Husbands, Giles Jermy, Malcolm McIlhagga, and Robert Ives. Two Applications
of Genetic Algorithms to Component Design. In Terence C. Fogarty, editor, Selected
Papers from AISB Workshop on Evolutionary Computing, pages 50–61. Springer-
Verlag, 1996. 46

[174] Takashi Ito, Tomoko Chiba, Ritsuko Ozawa, Mikio Yoshida, Masahira Hattori, and
Yoshiyuki Sakaki. A Comprehensive Two-Hybrid Analysis to Explore the Yeast
Protein Interactome. Proceedings of the National Academy of Sciences U. S. A.,
98(8):4569Ű4574, 2001. 127

[175] Sanjay Jain and Sandeep Krishna. Autocatalytic Sets and the Growth of Complexity
in an Evolutionary Model. Physical Review Letters, 81(25):5684–5687, Dec 1998. 127

[176] Sanjay Jain and Sandeep. Krishna. A Model for the Emergence of Cooperation,
Interdependence, and Structure in Evolving Networks. Proceedings of the National
Academy of Sciences U. S. A., 98:543–547, January 2001. 127

[177] Hawoong Jeong, Bálint Tombor, Réka Albert, Zoltán N. Oltvai, and Albert-László
Barabási. The Large-Scale Organization of Metabolic Networks. Nature, 407:651–
654, 2000. 127, 129

[178] Ari Juels and Martin Wattenberg. Stochastic Hillclimbing as a Baseline Method for
Evaluating Genetic Algorithms. Technical Report CSD-94-834, Computers Science
Department, University of California at Berkeley, USA, 18 1995. 45

292

References

[179] Hugues Juillé. Incremental Co-evolution of Organisms: A New Approach for Opti-
mization and Discovery of Strategies. In Proceedings of the Third European Confer-
ence on Artifical Life, pages 246–260, Granada, Spain, 1995. 160

[180] Hugues Juillé and Jordan B. Pollack. Co-evolving Intertwined Spirals. In Proceedings
of the Fifth Annual Conference on Evolutionary Programming, San Diego, CA, pages
461–468. MIT Press, 1996. 160, 161

[181] Hugues Juillé and Jordan B. Pollack. Coevolving the ‘Ideal’ Trainer: Application to
the Discovery of Cellular Automata Rules. In Genetic Programming 1998. Proceed-
ings of the Third Annual Conference, San Francisco, CA, 1998. Morgan Kaufmann.
160, 161

[182] Hugues Juillé and Jordan B. Pollack. Coevolutionary Learning and the Design of
Complex Systems. Advances in Complex Systems, 2(4):371–394, 2000. 160, 162

[183] Tomihisa Kamada and Satoru Kawai. An Algorithm for Drawing General Undirected
Graphs. Information Processing Letters, 31(1):7–15, 1989. 120

[184] Laveen Kanal and Vipin Kumar, editors. Search in Artificial Intelligence. Springer-
Verlag, 1988. 45

[185] Richard M. Karp. Reducibility Among Combinatorial Problems. In Richard E.
Miller and James W. Thatcher, editors, Complexity of Computer Computations,
page 85Ű103. Plenum Press, New York, 1972. 358, 359

[186] Nadav Kashtan, Shalev Itzkovitz, Ron Milo, and Uri Alon. Efficient Sampling Al-
gorithm for Estimating Subgraph Concentrations and Detecting Network Motifs.
Bioinformatics, 20:1746–58, 2004. 101

[187] Stuart A. Kauffman. Adaptation on Rugged Fitness Landscapes. In Daniel L. Stein,
editor, Lecture in the Sciences of Complexity, volume 1, pages 527–618. Addison-
Wesley, 1989. 53, 161, 349, 354

[188] Evelyn Fox Keller. Revisiting “Scale-free” Networks. BioEssays, 27(10):1060–1068,
2005. 98, 109, 122

[189] James Kennedy, Russell C. Eberhart, and Yuhui Shi. Swarm Intelligence. Morgan
Kaufmann, San Francisco, CA, 2001. 71

[190] Sami Khuri, Thomas Bäck, and Jörg Heitkötter. An Evolutionary Approach to
Combinatorial Optimization Problems. In Proceedings of the 1994 Computer Science
Conference (CSC’94), pages 66–73. ACM Press, 1994. 349, 358, 359, 361

[191] Beom Jun Kim, Ala Trusina, Petter Minnhagen, and Kim Sneppen. Self Organized
Scale-Free Networks from Merging and Regeneration. European Physical Journal B,
43(3):669–672, 2005. 121, 122

[192] Jae Yun Kim, Yeongho Kim, and Yeo Keun Kim. An Endosymbiotic Evolutionary
Algorithm for Optimization. Applied Intelligence, 15:117–130, 2001. 161, 266

[193] Michael A. Kirley. A Coevolutionary Genetic Algorithm for Job Shop Scheduling
Problems. In Lakhmi C. Jain, editor, The Proceedings of The Third International
Conference on Knowledge-Based Intelligent Information Engineering Systems, pages
84–87. IEEE Press, 1999. 160

293

References

[194] Michael A. Kirley. MEA: A Metapopulation Evolutionary Algorithm for Multi-
objective Optimisation Problems. In In Proceedings of Congress on Evolutionary
Computation (CEC2001), Korea , pages 949–956. IEEE Press, 2001. 160, 242

[195] Michael A. Kirley. A Cellular Genetic Algorithm with Disturbances: Optimisation
Using Dynamic Spatial Interactions. Journal of Heuristics, 8(3):321–342, 2002. 242

[196] Michael A. Kirley. Ecological Algorithms: Investigation of Adaptation, Diversity and
Spatial Patterns in Complex Optimisation Problems. PhD thesis, Charles Stuart
University, NSW, Australia, 2002. 159, 160, 242

[197] Michael A. Kirley and David G. Green. An Empirical Investigation of Optimisa-
tion in Dynamic Environments Using the Cellular Genetic Algorithm. In L. Dar-
rell Whitley et al., editor, The Proceedings of Genetic and Evolutionary Computation
Conference (GECCO-2000), pages 11–18. Morgan Kaufmann, 2000. 160

[198] Michael A. Kirley, David G. Green, and David Newth. Multi-objective Problem,
Multi-species Solution: An Application of the Cellular Genetic Algorithm. In M. Mo-
hammadian, editor, Proceedings of International Conference on Advances in Intel-
ligent Systems: Theory and Applications (ICAIS 2000), pages 129–135. IOS press,
2000. 160

[199] Michael A. Kirley, X. Li, and David G. Green. Investigation of a Cellular Genetic
Algorithm that Mimics Landscape Ecology. In R. McKay et al., editor, Simulated
Evolution and Learning -SEAL98, volume 1585 Lecture Notes in Artificial Intelli-
gence, pages 90–97. Springer, 1998. 51, 242

[200] Hajime Kita. A Comparison Study of Self-Adaptation in Evolution Strategies and
Real-Coded Genetic Algorithms. Evolutionary Computation, 9(2):223–241, 2001. 74

[201] Hajime Kita, Isao Ono, and Shigenobu Kobayashi. Multi-parental Extension of the
Unimodal Normal Distribution Crossover for Real-coded Genetic Algorithms. In
Vicent W. Porto, editor, Proceedings of the 1999 Congress on Evolutionary Compu-
tation, pages 1581–1587, Piscataway, New Jersey, 1999. IEEE Press. 74

[202] Sachio Kizu, Hidefumi Sawai, and Susumu Adachi. Parameter-free Genetic Algo-
rithm (PfGA) Using Adaptive Search with Variable-size Local Population and its
Extension to Parallel Distributed Processing. In Trans. On IEICE, volume J82-D-II,
No. 3, pages 1–10, 1999. 10

[203] Sachio Kizu, Hidefumi Sawai, and Tetsuro Endo. Parameter-free Genetic Algorithm:
GA without Setting Genetic Parameters. In Proc. Of the 1997 Int. Symp. On Non-
linear Theory and its Applications, volume 2, pages 1273–1276, 1997. 10

[204] Jon M. Kleinberg. The Small-World Phenomenon: An Algorithmic Perspective.
Technical Report 99-1776, Cornell Computer Science, 1999. 85, 116

[205] Jon M. Kleinberg. Navigation in a Small World. Nature, 406:845, 2000. 116

[206] Jon M. Kleinberg. Small-World Phenomena and the Dynamics of Information. In
Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani, editors, Advances
in Neural Information Processing Systems (NIPS), volume 14, pages 431–438. MIT
Press, 2001. 85

[207] Konstantin Klemm and Victor M. Eguiluz. Growing Scale-Free Networks with Small
World Behavior. Physical Review E, 65:057102, 2002. 108

294

References

[208] Manfred Kochen, editor. The Small World. Ablex, Norwood, NJ, 1989. 84

[209] Charles Korte and Stanley Milgram. Acquaintance Linking Between White and
Negro Populations: Application of the Small World Problem. Journal of Personality
and Social Psychology, 15(101-118):101, 1970. 84

[210] John R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, 1992. 41, 67

[211] John R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press, Cambridge, MA., 1994. 67

[212] John R. Koza, Forrest H. Bennett III, David Andre, and Martin A. Keane. Genetic
Programming III: Darwinian Invention and Problem Solving [Book Review]. IEEE
Transactions on Evolutionary Computation, 3(3):251–253, 1999. 67

[213] Paul L. Krapivsky and Sidney Redner. A Statistical Physics Perspective on Web
Growth. Computer Networks, 39:261–276, 2002. 119

[214] William B. Langdon. Data Structures and Genetic Programming: Genetic Program-
ming + Data Structures = Automatic Programming! Kluwer Academic Publishers,
Boston, 1998. 67

[215] Vito Latora and Massimo Marchiori. Efficient Behavior of Small-world Networks.
Physical Review Letters, 87(19):198701, 2001. 100, 103, 105, 107

[216] Vito Latora and Massimo Marchiori. Economic Small-world Behavior in Weighted
Networks. European Physical Journal B, 32:249–263, 2003. 103, 104, 107

[217] Vito Latora and Massimo Marchiori. The Architecture of Complex Systems. In
Interdisciplinary Applications of Ideas from Nonextensive Statistical Mechanics and
Thermodynamics. Oxford University Press, Santa Fe Institute for Studies of Com-
plexity, 2003. 83, 103, 104, 107

[218] David Levine. A Parallel Genetic Algorithm for the Set Partitioning Problem. PhD
thesis, Argonne National Laboratory, Illinois Institute of Technology, Illinois, USA,
1994. 46

[219] Fernando G. Lobo, Cludio F. Lima, and Zbigniew Michalewicz, editors. Parameter
Setting in Evolutionary Algorithms. Studies in Computational Intelligence. Springer-
Verlag, Berlin, 2007. 10, 267

[220] Charles Lyell. Principles of Geology, Being an Attempt to Explain the Former
Changes of the Earth’s Surface, by Reference to Causes Now in Operation. John
Murray, London, 1830-1933. 3

[221] Florence Jessie MacWilliams and Neil J. A. Sloane. The Theory of Error-correcting
Codes. North-Holland, 1977. 349, 360

[222] Samir W. Mahfoud. Crowding and Preselection Revisited. In Reinhard Männer and
Bernard Manderick, editors, Parallel problem solving from nature 2, pages 27–36,
Amsterdam, 1992. North-Holland. 153

[223] Kim-Fung Man, Kit Sang Tang, and Sam Kwong. Genetic Algorithms: Concepts
and Designs. Springer-Verlag, London, UK, 1999. 47

295

References

[224] Bernard Manderick and Piet Spiessens. Fine-grained Parallel Genetic Algorithms.
In Proceedings of the Third International Conference on Genetic Algorithms, pages
428–433, San Mateo, CA, 1989. Morgan Kaufmann. 51, 63, 154

[225] Shmoolik Mangan and Uri Alon. Structure and Function of the Feed-Forward
Loop Network Motif. Proceedings of the National Academy of Sciences U. S. A.,
100:11980–11985, 2003. 101

[226] Henry B. Mann and D. R. Whitney. On a Test Whether One of Two Random
Variables is Stochastically Larger than the Other. Annals of Mathematical Statistics,
18:50–60, 1947. 166

[227] Sergei Maslov and Kim Sneppen. Specificity and Stability in Topology of Protein
Networks. Science, 296:910–913, 2002. 127, 128

[228] Ernst W. Mayr. Animal Species and Evolution. Belknap, Cambridge, MA, 1963. 48

[229] Ole J. Mengshoel and David E. Goldberg. Probabilistic Crowding: Deterministic
Crowding with Probabilistic Replacement. IlliGAL Report 99005, University of
Illinois, 1999. 57, 152

[230] Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Pro-
grams. Springer-Verlag, Berlin, Germany, 1992. 343

[231] Kaisa Miettinen, Pekka Neittaanmäki, Marko M. Mäkelä, and Jacques Périaux,
editors. Evolutionary Algorithms in Engineering and Computer Science. John Wiley
and Sons, New York, 1999. 46

[232] Stanley Milgram. The Small World Problem. Psychology Today, 2:60–67, 1967. 11,
84, 126

[233] Brad L. Miller and Michael J. Shaw. Genetic Algorithms with Dynamic Niche
Sharing for Multimodal Function Optimization. In International Conference on
Evolutionary Computation, pages 786–791, 1996. 57, 152

[234] Ron Milo, Shalev Itzkovitz, Nadav Kashtan, Reuven Levitt, Shai S. Shen-Orr, Inbal
Ayzenshtat, Michal Sheffer, and Uri Alon. Superfamilies of Designed and Evolved
Networks. Science, 303:1538–42, 2004. 101

[235] Ron Milo, Shai S. Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii,
and Uri Alon. Network Motifs: Simple Building Blocks of Complex Networks. Sci-
ence, 298:824–827, 2002. 101, 102, 128

[236] David G. Mitchell, Bart Selman, and Hector J. Levesque. Hard and Easy Distri-
butions for SAT Problems. In Paul Rosenbloom and Peter Szolovits, editors, Pro-
ceedings of the Tenth National Conference on Artificial Intelligence, pages 459–465,
Menlo Park, California, 1992. AAAI Press. 352

[237] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge,
MA, 1998. 46, 47, 67

[238] Melanie Mitchell and Stephanie Forrest. Fitness Landscapes: Royal Road Functions.
In Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz, editors, Handbook of
Evolutionary Computation. Institute of Physics Publishing and Oxford University,
1997. 326

296

References

[239] Melanie Mitchell, Stephanie Forrest, and John H. Holland. The Royal Road for
Genetic Algorithms: Fitness Landscapes and GA Performance. In Francisco J.
Varela and Paul Bourgine, editors, Proceedings of the First European Conference on
Artificial Intelligence, Cambridge, MA, 1992. MIT Press. 326

[240] Melanie Mitchell, Michale D. Thomure, and Nathan L. Williams. The Role of Space
in the Success of Coevolutionary Learning. In Proceedings of Artificial Life X: Tenth
Annual Conference on the Simulation and Synthesis of Living Systems, Cambridge,
MA, 2006. MIT Press. 162

[241] M. Molloy and B. Reed. A critical point for random graphs with a given degree
sequence. Random Structures and Algorithms, 6:161–179, 1995. 109, 114

[242] M. Molloy and B. Reed. The size of the giant component of a random graph with a
given degree sequence. Combinatorics, Probability and Computing, 7:295Ű305, 1998.
114

[243] P.A.P. Moran. The theory of some genetical effects of population sub-division. Aus-
tralian Journal of Biological Sciences, 12:109–116, 1959. 154

[244] David E. Moriarty and Risto Miikkulainen. Forming Neural Networks Through
Efficient and Adaptive Coevolution. Evolutionary Computation, 5:373–399, 1997.
160

[245] Heinz Mühlenbein. Parallel Genetic Algorithms, Population Genetics and Com-
binatorial Optimization. In Proceedings of the Third International Conference on
Genetic Algorithms, pages 416–421, San Mateo, CA, 1989. Morgan Kaufmann. 63,
154

[246] Heinz Mühlenbein and Dirk Schlierkamp-Voosen. Predictive Models for the Breeder
Genetic Algorithm. Evolutionary Computation, 1(1):39–80, 1993. 337, 339

[247] Heinz Mühlenbein, M. Schomisch, and Joachim Born. The Parallel Genetic Al-
gorithm as Function Optimizer. Parallel Computing, 17(6-7):619–632, 1991. 154,
337

[248] Andrew Gerard W. Murray. Micro-net: The Parallel Path Artificial Neuron. PhD
thesis, Swinburne University of Technology, Melbourne, Victoria, Australia, 2006.
95

[249] Gerard Murray and Tim Hendtlass. Enhanced Artificial Neurons for Network Ap-
plications. In IEA/AIE ’01: Proceedings of the 14th International Conference on
Industrial and Engineering Applications of Artificial Intelligence and Expert Sys-
tems, pages 281–289, London, UK, 2001. Springer-Verlag. 95

[250] Gerard Murray, Tim Hendtlass, and John R. Podlena. The Parallel Path Artificial
Micronet. In Ibrahim F. Imam, Yves Kodratoff, Ayman El-Dessouki, and Moonis Ali,
editors, Multiple Approaches to Intelligent Systems, 12th International Conference
on Industrial and Engineering Applications of Artificial Intelligence and Expert Sys-
tems, IEA/AIE-99, Cairo, Egypt, May 31 - June 3, 1999, volume 1611:1 of Lecture
Notes in Computer Science, pages 111–117. Springer, 1999. 95

[251] Tomoharu Nakashima, Takanobu Ariyama, and Hisao Ishibuchi. Combining Mul-
tiple Cellular Genetic Algorithms for Efficient Search. In Lipo Wang, Kay Chen
Tan, Takeshi Furuhashi, Jong-Hwan Kim, and Xin Yao, editors, Proceedings of the
4th Asia-Pacific Conference on Simulated Evolution and Learning (SEAL’02), pages
712–716, Singapore, 2002. 154

297

References

[252] V. Nannen, S. K. Smit, and A. E. Eiben. Costs and benefits of tuning parameters
of evolutionary algorithms. In G. Rudolph, Th. Jansen, S.M. Lucas, C. Poloni, and
N. Beume, editors, Parallel Problem Solving from Nature Ű PPSN X, volume 5199
of Lecture Notes in Computer Science, page 528Ű538, Berlin / Heidelberg, 2008.
Springer. 10

[253] Mark E. J. Newman. Models of the Small World: A Review. Journal of Statistical
Physics, 101:819–841, 2000. 87

[254] Mark E. J. Newman. Assortative Mixing in Networks. Physical Review Letters,
89:208701, 2002. 99

[255] Mark E. J. Newman. The Structure and Function of Networks. Computer Physics
Communications, 147:40–45, 2002. 84

[256] Mark E. J. Newman. Mixing Patterns in Networks. Physical Review E, 67:026126,
2003. 99

[257] Mark E. J. Newman. The Structure and Function of Complex Networks. SIAM
Review, 45(2):167–256, 2003. 12, 81, 82, 83, 85, 87, 98, 100, 103, 108, 114, 117, 118,
119, 124, 127

[258] Mark E. J. Newman. Power Laws, Pareto Distributions and Zipf’s Law. Contempo-
rary Physics, 46:323–351, 2005. 87

[259] Mark E. J. Newman, Albert-László Barabási, and Duncan J. Watts. The Structure
and Dynamics of Networks. Princeton University Press, 2006. 11, 81, 86, 87, 97,
126

[260] Stefano Nolfi and Dario Floreano. Coevolving Predator and Prey Robots: Do Arms
Races Arise in Artificial Evolution. Artificial Life, 4:311–335, 1998. 161

[261] Stefano Nolfi and Dario Floreano. How Co-Evolution can Enhance the Adaptation
Power of Artificial Evolution: Implications for Evolutionary Robotics. In P. Hus-
bands and Jean-Arcady Meyer, editors, Proceedings of the First European Workshop
on Evolutionary Robotics, volume 468 of LNCS, Berlin, 1998. Springer. 161

[262] Stefano Nolfi and Dario Floreano. Evolutionary Robotics: The Biology, Intelligence
and Technology of Self-Organizing Machines. MIT Press, Cambridge, MA, 2000.
161

[263] Mariusz Nowostawski and Riccardo Poli. Parallel Genetic Algorithm Taxonomy.
Knowledge-Based Intelligent Information Engineering Systems, pages 88–92, 1999.
63, 153

[264] Eugene Odum, Richard Brewer, and Gary W Barret. Fundamentals of Ecology.
Brooks Cole, 5 edition, 2004. 18

[265] Eugene P. Odum. Fundamentals of Ecology. W. B. Saunders Company, Philadelphia,
1st edition, 1971. 18

[266] Travis E. Oliphant. Python for Scientific Computing. Computing in Science &
Engineering, 9(3):10–20, May/June 2007. 462

[267] Jukka-Pekka Onnela. Complex Networks in the Study of Financial and Social Sys-
tems. PhD thesis, Helsinki University of Technology, Department of Electrical and
Communications Engineering, 2006. 121

298

References

[268] Ludo Pagie and Paulien Hogeweg. Evolutionary Consequences of Coevolving Tar-
gets. Evolutionary Computation, 5(4):401–418, 1997. 161, 162

[269] Ludo Pagie and Paulien Hogeweg. Information Integration and Red Queen Dynamics
in Coevolutionary Optimization. In Proceedings CEC 2000, pages 1260–1267, 2000.
162

[270] Ludo Pagie and Melanie Mitchell. A Comparison of Evolutionary and Coevolution-
ary Search. International Journal of Computational Intelligence and Applications,
2(1):53–69, 2002. 161

[271] Jan Paredis. The Symbiotic Evolution of Solutions and their Representations. In
Larry J. Eshelman, editor, Proceedings of the Sixth International Conference on
Genetic Algorithms, pages 359–365. Morgan Kaufmann, 1995. 159

[272] Jan Paredis. Coevolving Cellular Automata: Be Aware the Red Queen! In Thomas
Bäck, editor, Proceedings ICGA VII, pages 393–400, 1997. 161, 162

[273] Romualdo Pastor-Satorras, Alexei Vázquez, and Alessandro Vespignani. Dynamical
and Correlation Properties of the Internet. Physical Review Letters, 87(25):258701,
Nov 2001. 99

[274] Raymond C. Paton. Computing With Biological Metaphors. Chapman & Hall, 1994.
40, 48, 65

[275] Raymond C. Paton. Enhancing Evolutionary Computation using Analogues of Bi-
ological Mechanisms. In Evolutionary Computation, AISB Workshop, pages 51–64.
Springer-Verlag, 1994. 41

[276] Jordan B. Pollack, A. D. Blair, and M. Land. Coevolution of a Backgammon Player.
In Christopher G. Langton and Katsunori Shimohara, editors, Proceedings of the
Fifth Artificial Life Conference, pages 92–98, Cambridge, MA, 1997. MIT Press.
158, 162

[277] Ithiel de Sola Pool and Manfred Kochen. Contacts and Influence. Social Networks,
1:5Ű51, 1978. 84

[278] Mitchell A. Potter. The Design and Analysis of a Computational Model of Cooper-
ative CoEvolution. PhD thesis, George Mason University, Fairfax, Virginia, 1997.
52, 159, 160

[279] Mitchell A. Potter and Kenneth A. De Jong. Evolving Neural Networks with Collabo-
rative Species. In Proceedings of the 1995 Summer Computer Simulation Conference,
Ottawa, Ontario, Canada, pages 340–345. The Society for Computer Simulation,
1995. 160

[280] Mitchell A. Potter and Kenneth A. De Jong. The Coevolution of Antibodies for
Concept Learning. In Proceedings of the Fifth International Conference on Par-
allel Problem Sovling From Nature, Amsterdam, The Netherlands, pages 530–539.
Springer-Verlad, 1998. 160

[281] Mitchell A. Potter and Kenneth A. De Jong. Cooperative Coevolution: An Architec-
ture for Evolving Coadapted Subcomponents. Evolutionary Computation, 8(1):1–29,
2000. 52, 159

[282] Derek John de Solla Price. Networks of Scientific Papers. Science, 149:510–515,
1965. 83, 109, 117

299

References

[283] Derek John de Solla Price. A General Theory of Bibliometric and Other Cumulative
Advantage Processes. Journal of the American Society for Information Science,
27:292–306, 1976. 117

[284] R Development Core Team. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria, 2007. ISBN
3-900051-07-0. 96

[285] Nicholas J. Radcliffe and Patrick D. Surry. Co-operation through Hierarchical Com-
petition in Genetic Data Mining. Technical Report EPCC-TR94-09, Edinburgh
Parallel Computing Centre„ University of Edinburgh, Scotland, 1994. 46

[286] Erzsebet Ravasz, A. L. Somera, D. A. Mongru, Zoltán N. Oltvai, and Albert-László
Barabási. Hierarchical Organization of Modularity in Metabolic Networks. Science,
297:1551, 2002. 113, 122

[287] Thomas S. Ray. An Evolutionary Approach to Synthetic Biology: Zen and the Art
of Creating Life. Artificial Life, 1(1/2):195–226, 1994. 71, 158

[288] Ronald C. Read and Robin J. Wilson. An Altas of Graphs. Oxford University Press,
1998. 102

[289] Ingo Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach
Prinzipien der Biologischen Evolution. Frommann-Holzboog Verlag, Stuttgart, 1973.
65, 330

[290] Ingo Rechenberg. Cybernetic Solution Path of an Experimental Problem. Royal
Aircraft Establishment, Library Translation 1122, 1965. In David B. Fogel, editor,
Evolutionary Computation – The fossil record, chapter 6, pages 297–309. IEEE Press,
1998. 65

[291] Jon Reed, Robert Toombs, and Nils Aall Barricelli. Simulation of Biological Evolu-
tion and Machine Learning. Journal of Theoretical Biology., 17:319–342, 1967. 40,
158

[292] Edward M. Reingold and John S. Tilford. Tidier Drawing of Trees. IEEE Transac-
tions on Software Engineering, 7:223–228, 1981. 95

[293] Robert G. Reynolds. Cultural Algorithms: Theory and Application. In David
Corne, Marco Dorigo, and Fred Glover, editors, New Ideas in Optimisation, page
367. McGraw-Hill, 1999. 40, 71

[294] Howard H. Rosenbrock. An Automatic Method for Finding the Greatest or Least
Value of a Function. Computer Journal, 3:175–184, 1960. 335

[295] Christopher D. Rosin and Richard K. Belew. Methods for Competitive Co-evolution:
Finding Opponents Worth Beating. In Larry J. Eshelman, editor, Proceedings of the
Sixth International Conference on Genetic Algorithms, pages 373–380, San Fran-
cisco, CA, 1995. Morgan Kaufmann. 158

[296] Christopher D. Rosin and Richard K. Belew. New Methods for Competitive Coevo-
lution. Evolutionary Computation, 5(1):1–19, 1997. 158, 161, 162

[297] Martin Rosvall. Information Horizons in a Complex World. PhD thesis, Department
of Physics, Umeå University, 2006. 121, 126

300

References

[298] Martin Rosvall and Kim Sneppen. Modeling Dynamics of Information Networks.
Physical Review Letters, 91(17):178701, Oct 2003. 121, 126

[299] Jayshree Sarma and Kenneth A. DeJong. An Analysis of Local Selection Algorithms
in a Spatially Structured Evolutionary Algorithm. In Thomas Bäck, editor, Proceed-
ings of the Seventh International Conference on Genetic Algorithms, pages 181–187.
Morgan Kaufmann, 1997. 69, 156

[300] Jayshree Sarma and Kenneth A. De Jong. An Analysis of the Effects of Neighbor-
hood Size and Shape on Local Selection Algorithms. In Proceedings of the Fourth
PPSN, volume 1141 of LNCS, pages 236–244. Springer-Verlag, 1996. 69, 156

[301] Jayshree A. Sarma. An Analysis of Decentralized and Spatially Distributed Genetic
Algorithms. PhD thesis, George Mason University, 1998. 156

[302] Hiroshi Satoh, Masayuki Yamamura, and Shigenobu Kobayashi. Minimal Generation
Gap Model for GAs Considering Both, Exploration and Exploitation. In Proceedings
of IIZUKA: Methodologies for the Conception, Design, and Application of Intelligent
Systems, pages 494–497, Singapore, 1996. World Scientific. 74

[303] Hidefumi Sawai and Sachio Kizu. Parameter-free Genetic Algorithm Inspired by
“Disparity Theory of Evolution”. In Proceedings of the 1997 International Confer-
ence on Parallel Problem Solving from Nature, pages 702–711, 1998. 10

[304] J. David Schaffer and Larry J. Eshelman. On Crossover as an Evolutionary Viable
Strategy. In Richard K. Belew and Lashon B. Booker, editors, Proceedings of the 4th
International Conference on Genetic Algorithms, pages 61–68. Morgan Kaufmann,
1991. 325

[305] J. David Schaffer and Larry J. Eshelman. Combinatorial Optimization by Genetic
Algorithms: The Value of the Genotype/Phenotype Distinction. In Proceedings of
the Conference on Applied Decision Technologies (ADT’95). Volume 1: Compu-
tational Learning and Probabilistic Reasoning , pages 29–40, Uxbridge, UK, 1995.
Unicom Seminars. 46

[306] Dirk Schlierkamp-Voosen and Heinz Mühlenbein. Strategy Adaptation by Com-
peting Subpopulations. In R. Männer Yuval Davidor, Hans-Paul Schewefel, editor,
Proceedings of the 3rd Conference on Parallel Problem Solving from Nature, number
866 in Lecture Notes in Computer Science, pages 199–209, Berlin, Heidelberg, New
York, 1994. Springer. 255

[307] Birgitt Schönfisch and André de Roos. Synchronous and Asynchronous Updating in
Cellular Automata. BioSystems, 51:123–143, 1999. 218

[308] Hans-Paul Schwefel. Evolutionsstrategie und numerische Optimierung. PhD thesis,
Technical University of Berlin, Berlin, Germany, 1975. 65

[309] Hans-Paul Schwefel. Numerische Optimierung von Computer-Modellen mittels der
Evolutionsstrategie. Basel and Stuttgart, Birkhäuser, 1977. 65

[310] Hans-Paul Schwefel. Numerical Optimization of Computer Models. John Wiley &
Sons, New York, 1981. 65, 188, 342

[311] Hans-Paul Schwefel. Evolution and Optimum Seeking. John Wiley & Sons, New
York, 1995. 332

301

References

[312] Hans-Paul Schwefel. Advantages (and Disadvantages) of Evolutionary Computa-
tion Over Other Approaches. In Thomas Bäck, David B. Fogel, and Zbigniew
Michalewicz, editors, Handbook of Evolutionary Computation, page A1.3. Institute
of Physics Publishing Ltd and Oxford University Press, UK and USA, release 97/1
edition, 1997. 65

[313] Anthony V. Sebald and Jennifer Schlenzig. Minimax Design of Neural Net Con-
trollers for Highly Uncertain Plants. IEEE Transactions of Neural Networks,
5(1):73–82, 1996. 66

[314] Jonathan L. Shapiro. Does Data-Model Co-evolution Improve Generalization Per-
formance of Evolving Learners? In Agoston E. Eiben, Thomas Bäck, Marc Schoe-
nauerr, and Hans-Paul Schwefel, editors, Parallel Problem Sovling from Nature
(PPSN) V, volume 1498 of LNCS, pages 540–549, 1998. 162

[315] Shai S. Shen-Orr, Ron Milo, Shmoolik Mangan, and Uri Alon. Network Motifs in the
Transcriptional Regulation Network of Escherichia coli. Nature Genetics, 31:64–68,
2002. 101, 128

[316] Herbert A. Simon. On a Class of Skew Distribution Functions. Biometrika,
42(3/4):425–440, 1955. 83, 117

[317] Karl Sims. Evolving 3D Morphology and Behavior by Competition. In Rodney A.
Brooks and Pattie Maes, editors, Proceedings Artifical Life IV, pages 28–39, 1994.
161

[318] Moshe Sipper, Marco Tomassini, and Mathieu S. Capcarrère. Evolving Asyn-
chronous and Scalable Non-uniform Cellular Automata. In G. D. Smith, N. C.
Steele, and R. F. Albrecht, editors, Proceedings of International Conference on
Arti?cial Neural Networks and Genetic Algorithms (ICANNGA97), pages 67–71,
Vienna, 1997. Springer-Verlag. 218

[319] Zbigniew M. Skolicki. An Analysis of Island Models in Evolutionary Computation.
PhD thesis, George Mason University, Fairfax, VA, USA, 2007. 154, 157

[320] Zbigniew M. Skolicki and Kenneth A. De Jong. Improving Evolutionary Algorithms
with Multi-representation Island Models. In Xin Yao, Edmund K. Burke, José An-
tonio Lozano, Jim Smith, Juan J. Merelo Guervós, John A. Bullinaria, Jonathan E.
Rowe, Peter Tiño, Ata Kabán, and Hans-Paul Schwefel, editors, Parallel Problem
Solving from Nature - PPSN VIII, 8th International Conference, number 3242 in
Lecture Notes in Computer Science, pages 420–429. Springer, 2004. 154

[321] Selmar K. Smit and Agoston E. Eiben. Comparing parameter tuning methods for
evolutionary algorithms. In CEC’09: Proceedings of the Eleventh conference on
Congress on Evolutionary Computation, pages 399–406, Piscataway, NJ, USA, 2009.
IEEE Press. 10

[322] Robert E. Smith and Jim Smith. An Examination of Tunable, Random Landscapes.
In Worthy N. Martin and William M. Spears, editors, Foundations of Genetic Algo-
rithms 6, pages 47–67. Morgan Kaufmann, San Francisco, 2001. 53, 354

[323] Stephen F. Smith. Flexible Learning of Problem Solving Heuristics Through Adap-
tive Search. In Alan Bundy, editor, Proceedings of the Eighth International Joint
Conference on Artificial Intelligence, pages 422–425. Morgan Kaufmann, 1983. 158

302

References

[324] Artem Sokolov and L. Darrell Whitley. Unbiased Tournament Selection. In Genetic
and Evolutionary Computation Conference (GECCO 2005). ACM Press, 2005. 56

[325] Ray Solomonoff and Anatol Rapoport. Connectivity of Random Nets. Bulletin of
Mathematical Biophysics, 14:107–117, 1951. 83

[326] William M. Spears, Kenneth A. De Jong, Thomas Bäck, David B. Fogel, and Hugo
de Garis. An Overview of Evolutionary Computation. In Proceedings of European
Conference on Machine Learning, pages 442–459, 1993. 66, 198

[327] Piet Spiessens and Bernard Manderick. A Genetic Algorithm for Massively Parallel
Computers. In Rolf Eckmiller, Gert Hartmann, and Georg Hauske, editors, Parallel
Processing in Neural Systems and Computers, page 31Ű36, Amsterdam, 1990. North
Holland. 154

[328] Piet Spiessens and Bernard Manderick. A Massively Parallel Genetic Algorithm: Im-
plementation and First Analysis. In Proceedings of the Fourth International Confer-
ence on Genetic Algorithms, pages 279–285, La Jolla, CA, 1991. Morgan Kaufmann.
154

[329] Douglas R. Stinson. An Introduction to the Design and Analysis of Algorithms. The
Charles Babbage Research Center, Winnipeg, Manitoba, Canada, second edition,
1987. 361

[330] Rainer Storn and Kenneth Price. Differential Evolution - A Simple and Efficient
Adaptive Scheme for Global Optimization over Continuous Spaces. Technical Report
TR-95-012, Berkeley, Berkeley, CA, 1995. 65, 70

[331] Rainer Storn and Kenneth Price. Differential Evolution: A Simple and Efficient
Adaptive Scheme for Global Optimization over Continuous Spaces. Journal of Global
Optimization, 11:341–359, 1997. 65, 70

[332] Steven H. Strogatz. Exploring Complex Networks. Nature, 410:268–276, 2001. 87

[333] Keith Sullivan, Sean Luke, Curt Larock, Sean Cier, and Steven Armentrout. Op-
portunistic Evolution: Efficient Evolutionary Computation on Large-scale Computa-
tional Grids. In GECCO ’08: Proceedings of the 2008 GECCO conference companion
on Genetic and evolutionary computation, pages 2227–2232, New York, NY, USA,
2008. ACM. 156, 255

[334] Gilbert Syswerda. A Study of Reproduction in Generational and Steady-state Ge-
netic Algorithms. In Gregory J. E. Rawlins, editor, Foundations of Genetic Algo-
rithms, pages 94–101. Morgan Kaufmann, San Mateo, CA, 1991. 63

[335] Kazuhiro Takemoto and Chikoo Oosawa. Evolving Networks by Merging Cliques.
Physical Review E, 72:046116, 2005. 122

[336] Roberto Tamassia. Graph Drawing. In Jörg Rüdiger Sack and Jorge Urrutia, editors,
Handbook of Computational Geometry, chapter 21, pages 937–971. North-Holland,
Amsterdam, Netherlands, 2000. 95

[337] Reiko Tanese. Distributed Genetic Algorithms. In J. David Schaffer, editor, Pro-
ceedings of the 3rd International Conference on Genetic Algorithms, pages 434–439,
1989. 63, 68

[338] Arthur George Tansley. The Use and Abuse of Vegetational Concepts and Terms.
Ecology, 16:284–307, 1935. 18

303

References

[339] Dirk Thierens and David E. Goldberg. Mixing in Genetic Algorithms. In Proceedings
of the Fifth International Conference on Genetic Algorithms., pages 38–45, Urbana-
Champaign, 1993. Morgan Kaufmann. 51

[340] Adrian Thompson. Evolving Fault Tolerant Systems. In Proceedings of the First
IEE/IEEE International Conference on Genetic Algorithms in Engineering Systems:
Innovations and Applications (GALESIA’95), number 414 in IEE Conf. Publication,
pages 524–529, 1995. 46

[341] Adrian Thompson. Evolutionary Techniques for Fault Tolerance. In Proceedings of
the UKACC International Conference on Control, pages 693–698, 1996. 46

[342] Aimo Törn and Antanas Zilinskas. Global Optimization. In Lecture Notes in Com-
puter Science 350, Berlin Heidelberg, 1989. Springer-Verlag. 337, 339

[343] Shigeyoshi Tsutsui and Yoshiji Fujimoto. Forking Genetic Algorithm with Blocking
and Shrinking Modes (fGA). In Stephanie Forrest, editor, 5th International Confer-
ence of Genetic Algorithms (ICGA), pages 206–215, San Mateo, CA, 1993. Morgan
Kaufmann. 344

[344] Shigeyoshi Tsutsui, Masayuki Yamamura, and Ashish Ghosh. Forking GAs: GAs
with Search Space Division Schemes. Evolutionary Computation, 5(1):61–80, 1997.
344

[345] Shigeyoshi Tsutsui, Masayuki Yamamura, and Takahide Higuchi. Multi-parent Re-
combination with Simplex Crossover in Real Coded Genetic Algorithms. In Proceed-
ings of the 1999 Genetic and Evolutionary Computation Conference (GECCO-99),
pages 657–664, 1999. 74

[346] Leigh Van Valen. A New Evolutionary Law. Evolutionary Theory, 1:1–30, 1973. 161

[347] Rajesh Vasa, Jean-Guy Schneider, Oscar Nierstrasz, and Clinton Woodward. On
the Resilience of Classes to Change. ECEASST, 8, 2007. 126

[348] Rajesh Vasa, Jean-Guy Schneider, Clinton Woodward, and Andrew Cain. Detect-
ing Structural Changes in Object Oriented Software Systems. In 2005 Interna-
tional Symposium on Empirical Software Engineering (ISESE 2005), 17-18 Novem-
ber 2005, Noosa Heads, Australia, pages 479–486. IEEE, 2005. 126

[349] Andreas Wagner. Energy Constraints on the Evolution of Gene Expression. Molec-
ular Biology and Evolution, 22(6):1365–1374, 2005. 129

[350] Andreas Wagner and David A. Fell. The Small World Inside Large Metabolic Net-
works. Tech. Rep. 00-07-041, Santa Fe Institute, 2000. 127, 129

[351] Andreas Wagner and David A. Fell. The Small World Inside Large Metabolic Net-
works. Proceedings Biological Sciences / The Royal Society, 268(1478):1803–1810,
2001. 127, 129

[352] M. Mitchell Waldrop. Complexity: The Emerging Science at the Edge of Order and
Chaos. Simon and Schuster, New York, 1992. 12

[353] Toby Walsh. Search in a Small World. In Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence (IJCAI’99), pages 1172–1177. Morgan
Kaufmann, 1999. 105

304

References

[354] Jean-Paul Watson. A Performance Assessment of Modern Niching Methods for
Parameter Optimization Problems. In Wolfgang Banzhaf, Jason Daida, Agoston E.
Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors,
Proceedings of the Genetic and Evolutionary Computation Conference, volume 1,
pages 702–709, Orlando, Florida, USA, 13–17 1999. Morgan Kaufmann. 57, 152

[355] Richard A. Watson. Compositional Evolution: Interdisciplinary Investigations in
Evolvability, Modularity, and Symbiosis. PhD thesis, Brandeis University, Waltham,
MA, USA, 2002. 157, 160

[356] Richard A. Watson, Gregory S. Hornby, and Jordan B. Pollack. Modeling Building-
block Interdependency. In Agoston E. Eiben, T. Bäck, Marc Schoenauer, and Hans-
Paul Schwefel, editors, Proceedings of Parallel Problem Solving from Nature, pages
97–106. Springer, 1998. 160

[357] Richard A. Watson and Jordan B. Pollack. How Symbiosis Can Guide Evolution.
In Dario Floreano, Jean-Daniel Nicoud, and Francesco Mondada, editors, Fifth Eu-
ropean Conference on Artificial Life. Springer, 1999. 160

[358] Duncan J. Watts. Small Worlds: The Dynamics of Networks between Order and
Randomness. Princeton University Press, Princeton University Press, 1999. 85

[359] Duncan J. Watts. Six Degrees: The Science of a Connected Age. W. W. Norton and
Co., New York, 2003. 81, 84, 87

[360] Duncan J. Watts and Steven H. Strogatz. Collective Dynamics of ‘Small-World’
Networks. Nature, 393:440–442, 1998. 11, 84, 100, 102, 105, 108, 109, 114, 115, 116,
117, 467, 469

[361] Joshua S. Weitz, Philip N. Benfey, and Ned S. Wingreen. Evolution, Interactions,
and Biological Networks. PLoS Biol., 5(1):doi:10.1371/journal.pbio.0050011, 2007.
81

[362] Justin Werfel, Melanie Mitchell, and James P. Crutchfield. Resource Sharing and
Coevolution in Evolving Cellular Automata. IEEE Transactions on Evolutionary
Computation, 4(4):388–393, 2000. 161

[363] Sebastian Wernicke and Florian Rasche. FANMOD: A Tool for Fast Network Motif
Detection. Bioinformatics, 22(9):1152–1153, 2006. 102

[364] L. Darrell Whitley. The GENITOR Algorithm and Selection Pressure: Why Rank-
based Allocation of Reproductive Trials is Best. In J. David Schaffer, editor, Proceed-
ings of the Third International Conference on Genetic Algorithms, pages 116–123.
Morgan Kaufmann, 1989. 44, 56

[365] L. Darrell Whitley. Fundamental Principles of Deception in Genetic Search. In
G. J. E Rawlings, editor, Foundations of Genetic Algorithms. Morgan Kaufmann,
San Mateo, 1991. 328

[366] L. Darrell Whitley, Soraya B. Rana, John Dzubera, and Keith E. Mathias. Building
Better Test Functions. In Larry J. Eshelman, editor, International Conference on
Genetic Algorithms. Morgan Kaufmann, 1995. 339

[367] L. Darrell Whitley, Soraya B. Rana, and Robert B. Heckendorn. The Island Ge-
netic Algorithm: On Separability, Population Size and Convergence. Journal of
Computing and Information Technology, 2(1):33–47, 1999. 154

305

References

[368] Frank Wilcoxon. Individual Comparisons by Ranking Methods. Biometrics, 1:80–83,
1945. 166

[369] Nathan L. Williams and Melanie Mitchell. Investigating the Success of Spatial
Coevolutionary Learning. In Hans-Georg Beyer et al., editor, Proceedings of the 2005
Genetic and Evolutionary Computation Conference, GECCO-2005, pages 523–530.
New York: ACM Press, 2005. 162

[370] David H. Wolpert and William G. Macready. No Free Lunch Theorems for Search.
Technical Report Technical Report SFI-TR-95-02-010, Santa Fe Institute, 1995. 5,
46

[371] Clinton Woodward and Tim Hendtlass. Dynamic Trait Expression for Multiploid
Individuals of Evolutionary Algorithms. In Laszlo Monostori, József Váncza, and
Moonis Ali, editors, Engineering of Intelligent Systems, 14th International Confer-
ence on Industrial and Engineering Applications of Artificial Intelligence and Expert
Systems, IEA/AIE 2001, Budapest, Hungary, June 4-7, 2001, volume 2070 of Lec-
ture Notes in Computer Science, pages 374–382. Springer, 2001. 50

[372] Clinton Woodward and Gerard Murray. Visualising the Internal Components of Net-
works. In Paul W. H. Chung, Chris J. Hinde, and Moonis Ali, editors, Developments
in Applied Artificial Intelligence, 16th International Conference on Industrial and
Engineering Applications of Artificial Intelligence and Expert Systems, IEA/AIE
2003, Laughborough, UK, June 23-26, 2003, volume 2718 of Lecture Notes in Com-
puter Science, pages 555–564. Springer, 2003. 95

[373] Sewall Wright. The Roles of Mutation, Inbreeding, Crossbreeding, and Selection in
Evolution. In Proceedings of the Sixth International Congress on Genetics, volume 1,
pages 356–366, 1932. 40

[374] Sewall Wright. Stochastic processes in evolution. In John Gurland, editor, Stochastic
Models in Medicine and Biology, pages 199–241, MAdison, WI, 1964. University of
Wisconsin Press. 40

[375] Sewall Wright. Evolution and the Genetics of Populations. Chicago University Press,
Chicago, USA, 1968. 40

[376] Stefan Wuchty. Scale-Free Behavior in Protein Domain Networks. Molecular Biology
and Evolution, 18(9):1694–1702, 2001. 127, 128

[377] Takeshi Yamada and Ryohei Nakano. A Genetic Algorithm with Multi-step
Crossover for Job-shop Scheduling Problems. In 1st IEE/IEEE International Con-
ference on Genetic ALgorithms in Engineering Systems (GALESIA ’95), pages 146–
151, 1995. 46

[378] George Kingsley Zipf. Human Behavior and The Principles of Least Effort. Addison
Wesley, Cambridge, 1949. 117

306

Appendix A

Glossaries

307

Ecology, Ecosystems and Evolution

A.1 Ecology, Ecosystems and Evolution
Abiotic The non-living factors (material) of an environment. 19, 22

Adaptation A process of change (adjustment) to take advantage of environmental fac-
tors. Evolution. 29

Allele One of the variant forms of a gene at a particular locus (chromosome location).
28, 29

Assortative Mating Sexually reproducing organisms tending to mate with individuals
like themselves. A possible mechanism of speciation. 31

Biome Regional (large scale) ecosystem, composed of similar types of dynamic commu-
nities. 17

Biosphere Earth’s largest ecosystem. The zone of air, land and water at the surface of
the earth that is occupied by organisms. 17

Biotic Living organisms (the biological aspects of an environment). 19

Carrying Capacity A measure of equilibrium between births and deaths at the maxi-
mum sustainable population size. 24, 25

Cell The structural and functional unit of organisms, and the smallest unit classified as
living. 17

Change Typically, the alteration of environment (conditions). 22

Cyclic C. Periodic (rhythmic) changes, such as seasonal variations, day/night cycles
and lunar (tidal) influences. 22

Directional C. A sustained direction of change, typically over a long period of time,
such as glaciers, erosion, siltation, salination. 22

Erratic C. Change without rhythm or periodic nature, such as earthquakes, tsunami,
volcanoes, fires, land-slides, cyclones or hurricanes. 22

Chromosome A structure in the nucleus of cells which contains genes (of DNA). Linear
and sometimes circular. See haploid and diploid. 32

Co-adaptation (or co-adaptation) The adaptation or evolution of characteristics of two
or more species to their mutual advantage. 31, 38

Coevolution (or co-evolution) Characteristics of species evolve together (in concert). 27,
31, 38

Community Different species interacting in common space and time. 17

C. Density The number of individuals (of all community species) per unit of space.
Absolute or Relative. 23

C. Interaction The number of species that can sustainably flourish within a commu-
nity. 23

C. Resilience The speed of an community to return to a stable state. 23

308

Ecology, Ecosystems and Evolution

C. Resistance A communities ability to resist (avoid) change to its current stable
state. 23

C. Stability The degree to which a dynamically stable community will return to its
original state after a disturbance. 23

C. Structure A list of species within an ecosystem community order by abundance.
23

Fragile C. A community that is dynamically stable only within a limited (narrow)
range of environmental conditions. 23

Robust C. A community that is dynamically stable across a wide range of environ-
mental conditions. 23

Competition Two or more individuals in competition for resources, either interspecific
or intraspecific. 27, 29

Asymmetrical C. Unbalanced (strong-weak) competition. 28

Symmetrical C. Balanced (evenly matched) competition. 28

C. Exclusion Interspecific competition removal. 28

C. Exploitation Use of a resource removes it from competitors (“first come – first
served” principle). 28

C. Interference The physical exclusion of a competitor by another (territorial be-
haviour). 28

Interspecific C. Competition between individuals of different species. 27, 28

Intraspecific C. Competition between individuals of the same species. 27, 28

Competitive Involving, or based on, competition between individuals. 38

Competitive Exclusion Principle Also known as Gausse’s Law. Two species with
similar environmental requirements cannot coexist indefinitely in the same niche. 27

Cooperative An association (integration) of organisms formed to create some kind of
combined benefit. 38

Cultural Evolution The gradual changes in customs, beliefs, values and knowledge in
societies and communities. An evolution model where changes of memetic ideas
occur through a selection processes. 38

Density Dependent A factor that changes in direct response to density (population,
resources, competition). 24

Over-compensating D.D. Changes in density dependent factors (births or deaths)
that over-compensate for the overall change, resulting in a reduction in final density.
24

Under-compensating D.D. Changes in density dependent factors (births or deaths)
that under-compensate for the overall change, resulting in a smaller growth rates to
the final density. 24

Development Relating to the stages of an organisms development (phenotype) or growth
and its interactions with the environment. 20, 29

309

Ecology, Ecosystems and Evolution

Diploid An organism having two sets (pairs) of chromosomes. 20, 32

Disease, Endemic A disease affects a small proportion of the overall population all the
time. The disease is retained in the community. 26

Disease, Epidemic A disease affects a large proportion of the population at the same
time. 26

Disease, Pandemic A disease affects an entire population at the at the same time. 26

Distribution The spatial range of a species, or the spatial arrangement (pattern) of a
species in a habitat. 26, 96

D. Clustering The grouping of individuals for mutual benefit. 25, 26

D. Dispersal The spread of individuals away from each other (from parent or birth-
place to breeding locations). 25, 26

Island D. An isolated (geographic) habitat. 26

Regular D. A spatial distribution of organisms with a regular (consistent) pattern.
25

Spatial D. The disposition of organisms according to a spatial property (such as al-
titude, latitude or territorial regions). 25

DNA Deoxyribonucleic acid. Nucleic acid molecules that contain genetic instructions
used in all known living organisms. See Genome, RNA. 17, 33

Ecology The scientific study of environmental systems including the distribution and
abundance of life and the interactions between organisms and their environment. 15

Ecosystem The set of biotic factors, abiotic factors, interactions and processes between
the organisms of multiple species and their environment. 17, 18

Ensemble A group of organisms (of uniform or mixed species). 27

Evolution A change in allele frequencies in a population of individuals over time. 28

Fertilisation The physical union of male and female gametes. 34

Fitness A representation of how “good” an individual is in its current environment, or,
the capability of a particular genotype to reproduce. 29, 30

Food Chain A listing of organisms in order of primary producers, secondary consumers
and so on within an ecosystem. 19

Food Web All feeding interactions between organisms (at a species level) within an
ecosystem. 19

Founder Effect The principle that the founders of a new colony carry only a fraction of
the total genetic variation in the source population. 33, 34

Gamete A specialised reproductive cell, such as a sperm or egg cell. 32

Gametogenesis A process by which diploid or haploid precursor cells undergo cell divi-
sion and differentiation to form mature haploid gametes. 32, 34, 67

310

Ecology, Ecosystems and Evolution

Gene The basic biological units of heredity variation, composed of DNA sequences and
organised into long chain chromosome molecules. 29

Gene Flow The migration of genetic material from one population to another. 29, 33

Genetic Drift Generational variations in allele frequency due to stochastic (random)
processes. 29, 31

Genome A full set of chromosomes and genes for an organism (a complete genetic se-
quence). The genome can be divided into chromosome and gene components (DNA
and/or RNA). 17

Genotype The genetic make-up of an organism, as distinguished from its physical ap-
pearance (the phenotype). See Phenotype. 29, 30

Growth, Exponential A rate of growth that increases as the size of the population
increases (an exponent). 24

Growth, Logistic A growth curve with a characteristic “S” shape that indicates envi-
ronmental (carrying capacity) growth constraints. 24

Habitat The place an organism lives, or is usually found. 25, 26

Habitat Cycle Cyclic changes in habitat factors including regular (such as seasonal vari-
ations, day/night cycles, tidal) and irregular (weather, earthquakes) quality. 25

Habitat Diversity The range (number) of habitats present in a particular region. 25

Haploid An organisms having only one set of chromosomes. 34

Individual See organism. 17

Insertion The placement of new (offspring) individuals into the population. 20

Interaction Interaction modes between species within a community. See Symbiosis, Pre-
dation and Competition. 27

Intrinsic Growth Rate The combined rates or natality, mortality, immigration and em-
igration contributing to population growth. 24

Juvenile An organism that has not yet reached its adult form, size or sexual maturity.
37

Life Cycle The cycle of life stages for the development and reproduction of organisms.
20

Life Table A tabular summary of age survivorship, based on natality and mortality rates.
23

Macro-evolution A high-level view of evolution, where the individual is an aggregate
and the population contains multiple high-level aggregate groups. 37, 38

Matter Cycle The closed movement of material in an ecosystem model. Well known
examples include the carbon cycle, nitrogen and oxygen cycles. 19

Meiotic The process of cell division that results in the formation of gametes. 32

311

Ecology, Ecosystems and Evolution

Memetic Of or pertaining to memes; the replication of concepts. 21

Micro-evolution A low-level gene centric view of evolution, where a chromosome repre-
sents the population and gene the individuals. 37

Migration The movement of individuals from one location (population) to another. 24,
29

Emigration Migration of individuals leaving a population. 24

Immigration Migration of individuals into a population. 24

Molecule A sufficiently stable group of two or more atoms held together by a strong
chemical bond. 17

Mortality Death rate, or the number of deaths during a certain period of time. 24

Mutation Heritable changes to genetic information including both small scale and large
structural changes in genetic material. 29, 33

Natality Birth rate, or the number of lives births during a certain period of time. 24

Niche The role or functional position of a species in the community, or a description of
the range of conditions required for sustained survival of a species. 21, 26

N. Breadth The potential (idealised) range of all environment conditions in which an
organism can thrive. 26

Complimentary N. The tendency for coexisting niche species to differ along another
niche dimension (resource). 26

Fundamental N. The potential (idealised) range of all environment conditions in
which an organism can thrive. 26

Realised N. The range of the fundamental niches that a species occupies due to com-
petition limits. 26

Occupation Density The ratio of occupied to unoccupied (available) habitat within an
ecosystem community environment). Depends on species habitat requirements. 21

Organ A group of tissues that perform a specific function or set of functions. 17

Organelle A confined and specialised sub-unit of a cell with a specific function. (“elle”:
small, a “little-organ” of a cell). 17

Organism An individual. Any living thing; unicellular or multicellular. 17

Phenotype The visible appearance or set of traits of an organism, resulting from the
combined action of genotype and environment. See Genotype. 29, 30

Pleiotropy A single gene influencing multiple phenotype traits. 36

Polygeny A phenotype feature that can be attributed to two or more genes interacting.
36

Polymorphism The occurrence of many forms of the same species. 25

Population Group of organisms (usually) of a single species occupying a given area at
the same time. Typically, organisms with homologous alleles. 17, 23, 29

312

Ecology, Ecosystems and Evolution

P. Cycles Oscillations in population size or high and low density. 25

P. Density The number of individuals per unit of space. 25

P. Dynamics The variations in population size and density over time and space. 25

P. Ecology Field of ecological study which focuses on the changes in size and density
of a population over time and space, and the contributing factors. 24

P. Fluctuations Variations over time in the population size. 25

P. Growth The change in population size per unit of time. Include natality, mortality,
immigration and emigration. 24

P. Pyramid A diagrammatic way to show the age structure of a population by break-
ing ages into different groups (infant, youth, elder etc) placing the youngest age class
at the base and stacking successive age classes above it. 23

P. Regulation A population size or density regulated (limited) by some factor (such
as density, competition or resource limitations. 25

Predation A predator-prey relationships between animals, animals and plants, or be-
tween plants. The predator consumes the prey. See Predator, Prey and Predator-
Prey Cycle. 27

Predator A species that feeds on prey species. 27

Predator-Prey Cycle A chart of the relative population abundance of predator and
prey species, such that the interdependent and cyclic nature of the predator-prey
relationship can be observed. 27

Prey A species that is a potential food source for predator species. 27

Primary Producer An organism such as plants (autotrophic) capable of manufacturing
food (complex organic compounds) from sunlight and simple inorganic substances.
19

Reproduction The biological process of generating offspring. 20, 32

RNA Ribonucleic acid. Long chain molecules of nucleotide units. RNA is transcribed
from DNA and is central to the synthesis of proteins. See Genome, DNA. 17

Secondary Consumer An organism that feeds on primary consumers. A carnivore. 19

Selection The mechanism whereby particular varieties of genes (alleles) that confer a
fitness advantage will increase in frequency from one generation to the next. 20, 29

Directional S. A fitness-trait relationship (ie. linear) that results is a median change
of populations trait distribution in response to the directional selection pressure. 30

Disruptive S. A form of non-linear fitness-trait relationship where under selection
pressure the mean trait frequency of the population does not change, however, the
variance increases potentially to the point of distribution bifurcation. 31

Linear S. A simple linear relationship between fitness and trait values results in linear
selection pressure. 30

313

Ecology, Ecosystems and Evolution

Negative S. Linear selection pressure where there is a negative change in fitness to
trait value increases. 30

Neutral S. Linear selection pressure where there is no change in fitness with respect
to any change in trait value. 30, 33

Positive S. Linear selection pressure where fitness increase with positive trait value
increases. 30

Sexual S. A specialised form of selection that acts differently on males and females of
the same species. See Assortative Mating. 31

Stabilising S. A form of non-linear fitness-trait relationship, where under selection the
mean trait frequency in the population does not change but the variance decreases.
30

Speciation The process or formation of one or more species from an existing species. 29,
31, 33, 34

Allopatric S. Theory. Population is split into two isolated groups and undergoes
genetic divergence. (Habitat fragmentation). 34

Parapatric S. Theory. Localised mating frequency change related to environment
niches which undergo genetic divergence. 34

Peripatric S. Theory. A relative small proportion of the population is isolated in a
peripheral population which undergoes genetic divergence. 34

Sympatric S. Theory. Genetic divergence within single population in a homogeneous
environment resulting in speciation. (Disruptive selection). 34

Species A group of organisms whose members have the same structural traits and are
able to interbreed with each other. 24, 34

S. Abundance The number of individuals belonging to a given species. 25

S. Diversity A community measure that takes into account both the relative species
abundance and richness. 24, 25

S. Richness The total number of species in the community. 25

Keystone S. The top predator within a community of species. 25

Succession A gradual and orderly process of community change (sequence) over time.
28

Survivorship The probability of new offspring surviving to a particular age. 23

Symbiosis Two or more organisms living in a relationship that benefits at least one of
them. A result of co-adaptation. 27

Commensalism One species benefits (symbiont), while the other neither benefits nor
harmed (host). 27

Mutualism Both species benefit (host and symbiont). 27

Parasitism One species benefits (symbiont), the other is harmed (host). 27

Host Typically a larger organism which provides for a symbiont. 27

314

Ecology, Ecosystems and Evolution

Symbiont Typically a smaller organism that is living in or on a host. 27

Tissue An ensemble of cells from the same origin that carry out the same function.
Typically tissue cells are of the same type but not always. 17

Topology The way in which geographical or similar elements relate to one another. The
configuration of a network, or the manner in which components are arranged and
interrelated. 30

Trait Any observable or measurable characteristic of an organism, such as physical fea-
tures (phenotype). 29, 30

Transcription The synthesis of RNA under the direction of DNA. 33

Utility A measure (value) of relative or practical usefulness. 30

Zygote A fertilised egg (combined egg and sperm cells) before cell division begins. 32

315

Graphs and Topology

A.2 Graphs and Topology
Acyclic A directed graph that does not contain cycles. 94

Adaptability The ability to change form or function (adapt) in response to outside
influence or stimulus. 82

Adjacency Matrix A representation of graph vertex connections in matrix form. The
adjacency matrix is symmetric for undirected graphs, and asymmetric for directed
graphs. 96

Adjacent Two vertices are adjacent if they are connected by one (or more) edges. 88

Affiliation Networks An affiliation is a type of connection or partnership between two
entities. We can represent social (and other) systems as affiliation networks based
on their social affiliation behaviours. 106

Assortative Coefficient A single measure of degree correlation using a Pearson corre-
lation coefficient of the degree at either ends of an edge. This results in a value that
is positive for assortative mixing, and negative for disassortative mixing. 99

Assortative Mixing A network whose edges are biased towards connecting similar ver-
tices. In social networks, it is the behaviour of individuals to associate with others
of similar age, race, location, religion and so on. 99, 106

Disassortative Mixing A network whose edges are biased towards connections of
dissimilar vertices. Sexual contact networks (by gender). 99

Bridge An edge whose removal from a graph results in a disconnected graph. 89

C.elegans Caenorhabditis elegans. A small (1mm) free-living nematode (roundworm)
which lives in temperate soil environments. Well known because of the extensive
research applied to it, including a complete mapping of the nervous system which
exhibits small-world properties. 107

Chain See Path. 89

Citation Network A graph of publication as vertices, with edges indicated by publica-
tion citations of previous work. Classic examples are academic journals. 83

Cliquishness The tendency to associate with only a select group. See Assortative Mixing
and Clustering Coefficient. 99

Cluster (Clustering) A term used in both the formal sense (as in the definition of the
clustering coefficient), as well as an informal notion of general community structures
with vague boundary definition. 85

Clustering Coefficient A measure of (quantity) of how likely the neighbour of a vertex
are to be directly connected also. In social networking terms, two of your friends
are also likely to be friends to each other. Also known as Transitivity or loosely as
Network Density. 96, 100, 115

Complex System A system that can be broken into simpler parts, without the overall
system itself being simple. Ideally a complex system can be broken down into smaller
solvable pieces. Emergent qualities of a complex system may only be observable when
the parts are combined (patterns). 82, 83

316

Graphs and Topology

Complicated System A system that cannot (or easily) be broken down into simpler
parts. Complicated is a term indicative of problematic, convoluted, torturous, diffi-
cult or inconsistent features. 83

Component Formally, the set of vertices that a vertex is connected (adjacent) to by its
edges. Also known as a neighbourhood. Informally, a component simply refers to any
unit or part of a large system. 85, 88

In Component The set of vertices (component) that can reach a vertex (via in-coming
edges). 88

Out Component The set of vertices (component) that a vertex can reach (via out-
going edges). 88

Critical An edge, vertex or component whose removal from a graph will result in a major
change in graph topology (such as disconnected) or processes. 89

Cumulative Advantage See Preferential Attachment for a graph specific meaning. 117

Cycle A path in a directed graph (directed edges) with the same initial and terminal
vertex. Also known as a loop. 87–89

Euler C. A cycle that passes through all graph edges. 89

Hamiltonian C. A cycle that passes through each graph vertex once. 89

Degree The number of edges connected to a vertex. Note that, because there may be
more than one edge between two vertices, the degree may be greater than the number
of adjacent vertices. Also known as the local degree or valence of a vertex.. 87, 88,
90, 96, 97, 111

D. Correlation A way of describing that the probability P (k, k′) of degree for one
vertex k is correlated to the number of edges k′ that neighbours have. A random
graph has no such correlation, but many complex networks do. Also known as
degree-degree correlation. 96

D. Distribution The distribution of vertex degrees in a graph, and characterised by
a distribution function P (k). 97

In-degree The number of “in-coming” edges to a vertex v with v as their terminal
vertex. 87, 88

Out-degree The number of “out-going” edges from a vertex v with v as their initial
vertex. 87, 88

D. Distribution Function A function that gives the probability that a randomly se-
lected node has exactly k edges (degree). Different graph models have characteristic
distribution functions. 97

Mean D. The mean degree 〈k〉 of all vertex degrees ki in a graph. An overall measure
of edge density in a graph. 97

Power-Law A relationship between variables such that one is proportional to a power
of the other. A power-law degree distribution, when plotted on a log-log graph,
present as straight lines. Power-law relationships exhibit the property scale invari-
ance, and hence systems with power-law relationships are known as “scale-free”. 96,
98

317

Graphs and Topology

Diameter See Graph Diameter. 90, 102

Distance See Path Length. 89

Distance Matrix A matrix representation of a weighted graph where cells represent
direct connection weights or minimum path weights. Useful for shortest path lookup
between vertices. 96

Edge Connection between two vertices. The vertices are called the endpoints of the edge.
An edge can be directed or undirected, and weighted. Also called a link (computer
science), bond (physics), tie (sociology), line or an arc. The term arc is often reserved
for directed edges. 81, 86

Directed E. An edge that includes direction (initial and terminal vertices). 90

Weighted E. An edge with an associated weight “value” (or values) used to represent
information other than topology. 90, 92

Effective The capability to produce a desired result. For a network, the ability of a
topology to support desired processes such as communication or movement. 82

Efficient The minimisation of cost. A measure of the realised cost in comparison to a
worst case outcome. For a topology, the ability to effectively support the desired
processes while minimising the cost of the topology. 82, 85

Global Efficiency The normalised sum of the inverse shortest path lengths between
all pairs of vertices; the harmonic mean. Can also be applied to weighted graphs.
Unlike the characteristic path length measure it is well-defined for disconnected
graphs. 96, 103

Local Efficiency A localised form of the global efficiency measure, indicating the
mean normalised ratio of local clustering for each vertex in a graph. 96, 103

Emergent Property A property that cannot be observed locally (at a component level)
but only as a global structure (patterns) or dynamic abilities. 82

Entangled Graph A type of graph that exhibits a highly “interwoven” topology, with
highly homogeneous structure with respect to degree, node distance, betweenness
and loop distance which are all very narrow. 105

Free Tree An unrooted tree graph. (A normal tree without a single special root node).
94

Girth See Graph Girth. 90

Graph A finite set of vertices connected by edges, also called a network. A description
of vertices, edges and connections (excluding geometry or weight) is known simply
as the topology. 81, 86

G. Betweenness The vertex that participates the most number of times in the short-
est path between all vertex pairs in the graph. This is a measure of shortest path
utility. 102, 103

G. Centre The vertex with the lowest mean path length to all other nodes in the
graph. However this does not indicate that it will be used (utility) for other shortest
paths in the graph. 102, 103

318

Graphs and Topology

G. Cost A measure of the relative cost of a network compared to a fully-connected
graph with all possible connection. 85, 96

G. Degree The maximum degree of any vertex present within a graph. See Degree.
90

G. Diameter The number of edges in the longest geodesic path between two vertices
or the average geodesic path length. 90

G. Girth The length of the shortest cycle in a graph. See Cycle . 90

G. Order The number of vertices in a graph. 90

G. Size The number of edges in a graph. 90

Graph Layout A visual representation type or method for graphs based on the organi-
sation of vertex placement and the drawing of edges. 93

Force-directed Placement A graph layout algorithm using an iterative gradient-
descent process to minimisation an energy function based on a physical (mechanical)
model of forces (springs, attraction, repulsion). 94

General A description of graph drawing methods that are “general” in nature (and
most applicable to complex topology representation). 93

Grid Graph layout using a regular grid pattern. 92

Hierarchical Graph layout using a regular hierarchical organisational pattern. 92

Lattice Graph layout using a regular lattice pattern. 92

Linear Graph layout using a regular linear pattern. 92

Ring Graph layout using a regular ring pattern. (A linear pattern that repeats). 92

Graph Models Methods of defining or creating graph topology through either a deter-
ministic description or a randomised graph generator (growth model or game). 108

BA A growth model using preferential attachment proposed by Barabási and Albert.
It is similar to Price’s model except that is uses undirected edges. Preferential
attachment is based only on vertex degree. 109, 118

Configuration Random graph model using a specified (configuration) degree distri-
bution (or function) and applying it to an otherwise random graph. 109, 114

ER Random graph models proposed by Erdös and Rényi, using either a fixed number
of vertices G(n, p) or a fixed number of vertices and edges G(n,m). 83, 109, 113

Hierarchical Graph models based on repetition (growth) of simple components cre-
ating a hierarchical structure. 112, 123

Merge-Regenerate A graph model whose central principle is that groups of nodes
are selected, merged and then new nodes added with random edges. The initial
graph is simply random. Also known as “merge and create” or “aggregation and
injection” or simply “merging”. 109, 121, 124

Price A preferential growth model used by Price in the research of paper citation
networks. As new nodes are added, the probability that an existing node will be
connected to is directly proportional to the number of edges it already has. 117–119

319

Graphs and Topology

Random A graph model using random probability to determine topology. Examples
include the ER Model and the Configuration Model. 113, 124

Regular Graph models based on regular lattices of n dimensions, or spatial (tessella-
tion) patterns. 110, 123

Small-World Graph model used by Watts and Strogatz to model small-world char-
acteristics. Starts with a regular lattice model (ie. ring) and uses incremental
adaptation to “re-wire” the regular model towards a random model. 109, 115, 124

Graph Types The characterisation of a graph based on features of its topology. 90, 91

Acyclic G. A directed graph that does not contain cycles. 89

Complete G. A graph with n vertices (denotedKn) for which each vertex is connected
to all other vertices directly (with one edge between every possible pair of vertices).
90, 91

Connected G. A graph is connected if there is a path (chain) connecting every pair
of vertices, otherwise it is called disconnected and the graph is composed of discrete
sub-graph components. 90, 91

Directed G. A graph in which all edges are directed. Also known as a digraph or an
oriented graph. 90, 91, 93

Disconnected G. A graph (or multigraph) in which there are isolated (discrete) sub-
components not connected to the entire graph. A disconnected graph results from
the removal of a critical bridge edge. See Connected Graph. 89–91

Isomorphic G. Two or more graphs are isomorphic if they have equivalent topologies
(i.e. the same set of edges and vertices), but are drawn differently. 91

Multigraph A graph with multiple edges between vertices. 90, 91

Planar G. A graph that can be drawn on a two dimensional plane with no edges
‘crossing’ (‘overlapping’) each other. Planar graphs can be drawn in non-planar
form, but the “planar” quality is topological, not presentation specific. 91, 93

Random G. A graph for which the properties such as vertices, edges and connections
are determined in a random way. There are many random graph models. 85, 91, 92

Regular G. A graph in which every vertex has the same degree. 91

Topological G. An unweighted or unity weighted graph that is described only by the
topology. Weighted graphs can be treated this way to isolate the topology. 91

Undirected G. A graph in which all edges are without direction. Also known as an
unoriented graph. 91

Weighted G. Edges of the graph are weighted. See Edge (weighted). 90, 91

Harmonic Mean See Efficiency, Global. 96

Homophily Like of the same. The tendency of individuals to associate and bond with
others of similar nature. 106

Local Degree See Vertex Degree. 88

320

Graphs and Topology

Maximal See Complete Graph. 90

Mean Path Length See Characteristic Path Length. 85, 115

Motif A pattern of interconnection within a graph that occurs at a frequency higher than
expected for a similar randomised graph with the same degree characteristics. Motifs
can be used to identify and classify network types and functions. 96, 100, 101

Neighbourhood See Component. 88, 111

Network Density Typically a reference to the degree of vertices in a graph. See: Degree,
Mean; Degree Distribution; and Clustering Coefficient. 99

Node See Vertex. 81

Order See Graph Order. 90

Path A sequence of consecutive edges in a graph connected by edges. Also known as a
chain. 87–89

Euler P. A path that passes through all graph edges. 89

Geodesic P. The shortest path in a graph between two vertices. There may be more
that one equivalent geodesic path between vertices. 88, 89

P. Length The number of edges traversed in a path (chain). Also known as distance.
89

Preferential Attachment Used to describe a graph growth process where new edges
(attachments) are allocated with preference to an existing vertex quality such as the
number of edges a vertex has. Also by many names including the “Yule Process”,
“Gibrat’s Law” and “cumulative advantage”. 109, 118

Resilient The ability to recover from adversity or other challenges. Applies to networks
and processes that can adapt to topology changes (vertex removal). 82, 85

Ring Lattice A regular graph model formed in a ring. Used as the basis for a famous
small-world graph model by Watts and Strogatz. 84

Robustness A measure of how stable graph qualities (such as connectedness) and prop-
erties (such as mean path length) are in response to vertex removal. 90

Scale-Free A scale free network is one that has been observed to contain scale-invariant
relationship in properties, namely degree distribution. Scale-free properties have
been strongly associated with complex systems. See Power-Law. 85, 93, 98, 124

Separation Characteristic The properties and qualities that describe the path between
two vertices in a graph. In social networks, the separation degree (steps) between
two people. 84

Simulated Annealing An optimisation method that simulates the physical process of
annealing by allowing the occasional acceptance of less attractive solutions or values.
94

321

Graphs and Topology

Six Degrees of separation. Refers to the idea that in the world-wide network of people,
any two people will be separated by an average of six steps (involving seven people).
This small average number of steps gives the impression that we live in a “small
world”. 84, 87

Size See Graph Size. 90

Small-World Phenomena The idea that people are separated, on average, by a small
number of intermediate steps, and that this gives people the impression that we rel-
atively close to everyone even though there are many people in the world. Networks
with similar characteristics (low mean path length and high clustering) as said to
exhibit the same “small-world” phenomena. See Six Degrees. 84

Spring Embedder See Force-directed Placement. 94

Topology (Graph specific) A description of vertices, edges and connections in a graph
(excluding geometry or weight properties). 86

Transitivity See Clustering Coefficient. 99, 100

Travelling Salesman Problem (TSP) A classic tour optimisation problem in which a
hypothetical salesperson must find the most efficient sequence (order) of destinations
to visit in their territory. See Hamiltonian Cycle. 89

Tree A connected acyclic graph. A rooted tree has a single special identified root node.
Graph layout using a regular, tree based pattern with a root, parent, children, sib-
lings and leaf concepts. 92, 93

Children Tree nodes that are connected to a higher-level parent node. 94

Parent A tree node that has children node(s) of a lower level connected to it. 94

Root A single root node at the first level of a tree. 94

Sibling A tree node that shares the same parent node with another node. 94

Valence See Degree. 87, 88

Vertex (Plural: vertices). A single point or ‘dot’ in a graph. Also called a node in
computer science, a site in physics or an actor in sociology. 86

Isolated V. A vertex of zero degree. (No edges in or out.) See Vertex Degree. 88

Initial V. For a directed edge, the vertex the edge starts from. 89

Terminal V. For a directed edge, the vertex the edge ends at. 89

322

Appendix B

Benchmark Problems

B.1 Domain Qualities
There are many traditional and classic benchmark problems that have been used to eval-
uate search algorithms, including the different algorithms of evolutionary computation
(EC). Within EC, some benchmarks are particular to specific dialects such as GAs or EP.
Although the generality of results based on benchmarks must be limited, they are a useful
means of developing qualitative insight into the effectiveness of EA based search. So the
role of most benchmark suites is to collect examples of different domain qualities. These
can include:

• dimensionality, given that most problems increase in difficulty with increases in
input and output dimensionality;

• range or resolution of parameter variables;

• constraints that may be imposed upon the feasible space;

• objectives which may be singular or multiple, including maximisation or minimi-
sation. It is possible to argue that these are also constraints;

• modality, either unimodal or multimodal, and may include the concave or convex
form;

• regularity of modality (if present) or otherwise random features; and

• separability. If the domain can be broken into a summation of independent func-
tions the domain is likely to be easier than a domain with complex inter-dependent
variables.

It is a practical requirement that benchmark problems include high-dimensional in-
stances, as it is arguable that to be of real-world value a trivial one or two dimensional
test domain is insufficient.

The notation used is xi for each value of a solution vector x, which is applied to a
function f(x). A solution vector is of length n and typically maps to the dimensions of the
problem. The exception being where the solution vector maps multiple values to a single
dimension of the problem domain. An optimal solution vector is denoted as x∗ such that
f(x∗) gives the optimal possible output for the domain.

Many functions have a traditional minimisation or maximisation goal. For example,
benchmark problems from the domain of continuous “function optimisation” are often
minimisation domains, while benchmark functions used to investigate the role of niching
mechanisms are often maximisation in nature. However, in almost all cases it is a trivial

323

Appendix B: Benchmark Problems

matter to create “inverted” forms of the initial function by changing the overall sign
and optionally adding an “offset” value to elevate (or lower) the surface as needed. The
examples listed in this appendix have been presented in their most common form.

All of the charts shown in this appendix have been created using data generated directly
from the ESEC framework software as part of testing and validation. Although not all of
these functions are of importance to the key research experiments of the thesis, they are
important useful additions to the EC framework software for classic comparisons. There
are also additional domains within the framework that are not specifically mentioned in
this appendix.

B.2 Classic Binary Problems

B.2.1 Introduction

The following binary problems are not considered examples of “real-world” domains.
Rather, each of the following binary problems have been used by researchers as part of in-
vestigations into the processes of evolutionary search. For example, the OneMax function
is a basic binary search domain, while the Royal Road function is specifically designed to
match the “building block” mechanisms that have been theorised at work in GAs. The
deceptive 3-bit and 4-bit functions are tough domains for any comparative hill-climbing
function.

These problems have been included as part of a good coverage and reference for those
interested in this area. Of most relevance to this thesis are the binary (represented)
problems in Section B.4 such as MMDP, P-PEAKS, L-SAT, and NK.

324

Appendix B: Benchmark Problems

B.2.2 OneMax Function

The “OneMax” function is a simple maximisation problem and commonly used as a GA
binary genome benchmark test. The search objective for this domain is to maximise the
number of ‘1’ bits in a bit string [304]. For this reason the problem is also known as “Bit
Counting” or quite simply the “Max” problem.

Stated in a more formal manner, the search objective is to find a vector x =
(x1, x2, . . . , xn) where the variables of x are in the range of (0,1). That is, xi ∈ [0, 1].
The function is defined by the following equation:

F (x) =
n∑
i=1

xi (B.1)

The optimum maximised vector is x∗ = (1, 1, . . . , 1) resulting in an output of f(x∗) =
n, where n is the length of the bit string.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 32 64 96 128 160 192 224 256

f(x
)

x

OneMax Function (Binary)

(a) Standard binary encoding

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 32 64 96 128 160 192 224 256

f(x
)

x

OneMax Function (Gray)

(b) Gray encoding

Figure B.1: The OneMax function on a simple 8-bit binary string representing integer values
from 0 to 255. The output of the function is the total number of 1’s that occur in the binary
string. In (a) standard binary encoded integers have been used and results in some large step
transitions between adjacent values, while (b) uses Gray encoding and transition from one
adjacent input value to the next only require a single bit change.

325

Appendix B: Benchmark Problems

B.2.3 Royal Road Function

The Royal Road function has been used as part of the investigation and analysis of GAs, in
particular with respect to comparisons with hill-climbing algorithms. Mitchell and Forrest
performed a number of experiments during the 1990s to gain insight into what makes a
“hard” problem for GAs, and how GAs perform when hierarchical building-block (BB)
schema are deliberately made part of the search domain. See [239, 238] and related work.

The Royal Road function is a discrete, non-deceptive, unimodal problem space. In
principle, BB combinations should allow a GA to find the optimal solutions easily. Com-
paratively, a hill-climbing algorithm, using a single bit-change-per-step style of adaptation,
should find the domain difficult. The component evaluation uses an all-or-none style of
reward. A GA should try to recombine components that have been “rewarded” by evalu-
ation.

As a general case, the minimising Royal Road function can be described as:

f(x) = cn−
n∑
i=i

σ(xi) (B.2)

where c is the number of bits used to represent each variable and n is the number of
dimensions. The function σ provides reward for the presence of schema or building-blocks.
For example, we can define σ as:

σ(xi) =
{
c if(x1

i ∧ x2
i ∧ . . . ∧ xci = 1)

0 otherwise

So for a binary string genome, divided into say c = 3 bits per dimension, a global
optima at x∗ = ((1, 1, 1), (1, 1, 1), . . . , (1, 1, 1)) will give the minimum of f(x∗) = 0. For
clarity and comparison a sample of five vectors and evaluations is shown in Table B.1.

x = (x1, x2, x3, x4) σ f(x)
000 000 000 000 0 0 0 0 12− 0 = 12
000 111 000 000 0 3 0 0 12− 3 = 9
010 011 111 000 0 0 3 0 12− 3 = 9
111 000 000 111 3 0 0 3 12− 6 = 6
111 111 111 111 3 3 3 3 12− 12 = 0

Table B.1: Royal Road evaluations for five example vectors (rows) of length n = 4. The final
vector is the optimum. Each component of the vector contains c = 3 bits and is represented
by a space divider. The σ values show the individual component evaluation. It can been seen
from the example vectors the all-or-none nature of the reward of this domain. Useful building
blocks (entire components) are strongly rewarded.

326

Appendix B: Benchmark Problems

B.2.4 Goldberg’s Deceptive 3-bit Function

This deliberately deceptive function was conceived for the analysis of binary string GAs.
It uses three bits to represent values for each dimension of the function space, and has also
been called “Goldberg’s order-3 minimal deceptive problem”. (See [133, 135] with [134]
for more details of the design and analysis.)

The function is described by:

f(x) =
n∑
i=1

m(xi) (B.3)

where xi is a 3-bit binary string, and m is a mapped table of values for either the minimi-
sation or maximisation case, shown in Table B.2.

Global optima are located at x∗ = ((1, 1, 1), (1, 1, 1), . . . , (1, 1, 1)) and will yield either
f(x∗) = 0 for minimisation or f(x∗) = n · 8 for the maximisation case.

Note that the deceptive nature of the function operates at the genotype level, so that
operators most affected are those that utilise binary level transitions. Figure B.2 shows
a hypercube representation of a single 3-bit component with associated payoff values for
the maximising case.

i String Max. Value Min. Value
0 000 7 1
1 001 5 3
2 010 5 3
3 011 0 8
4 100 3 5
5 101 0 8
6 110 0 8
7* 111 8 0

Table B.2: Goldberg’s deceptive 3-bit function. The * indicates the optimal string. Values
for both the maximisation (max.) and minimisation (min.) domains are listed.

Figure B.2: Hypercube representation of Goldberg’s 3-bit deceptive function. Each dimension
of the problem is encoded as 3-bit value. Bit-wise transitions are deceptive both away from
the optima and toward the poorer regions.

327

Appendix B: Benchmark Problems

B.2.5 Whitley’s Deceptive 4-bit Function

Similar in concept and motivation to Goldberg’s 3-bit deceptive function, Whitley’s 4-bit
deceptive function includes misleading component values. However, the extended range of
values allows deception across the entire range of 4-bit values, not just the extremes [365].
It is considered harder than the 3-bit deceptive function.

The definition of the function x is the same as Equation (B.3), however 4-bits per
dimension are used, and the table m of coded values (shown in Table B.3) is different.

i String Max. Value Min. Value
0 0000 28 2
1 0001 26 4
2 0010 24 6
3 0011 18 12
4 0100 22 8
5 0101 16 14
6 0110 14 16
7 0111 0 20
8 1000 20 10
9 1001 12 18
10 1010 10 20
11 1011 2 28
12 1100 8 22
13 1101 4 26
14 1110 6 24
15* 1111 30 0

Table B.3: Whitley’s deceptive 4-bit function. The * indicates the optimal string value. Values
for both the maximisation (max.) and minimisation (min.) cases are listed.

Figure B.3: Graph representation of the encoded values used in Whitley’s 4-bit deceptive
function. Both the binary string values and the maximisation values have been shown, with
colour added to help represent the deceptive nature of the domain.

328

Appendix B: Benchmark Problems

B.3 Classic Continuous Optimisation Problems

B.3.1 Introduction

As already discussed in the body of this thesis, EAs are not intrinsically function opti-
misers despite the fact that they can be applied to this type of domain and many others.
Historically, though, EAs have been heavily tested and validated against a number of
continuous optimisation functions.

In this section all of the functions contain a single optima. Similar functions with
multiple optima are presented in Section B.4. All functions in this section except two,
Easom and FSM, are generalised for an n dimensional case, although some were historically
proposed as two-dimensional functions (as in Rosenbrock’s function). As a guide, a value
in the order of n = 30 is often used as the “high dimensional test” value, although this is
arbitrary.

Table B.4 show a list of the functions and a summary of the dimensionality, if the
domain is stated with limited input constraints, if the function is separable (into addi-
tive components), and if the domain is unimodal or multimodal with regular or irregular
features. Other qualities such as concave or convex nature could also be listed.

Function n Constraints Separable Modality
Sphere N No Additive Unimodal
Hyperellipsoid N No Additive Unimodal
Quadric N No No Unimodal
Noisy Quartic N No Additive Unimodal
Easom 2 Yes No Unimodal
Rosenbrock(2D) 2 No No Unimodal
Rosenbrock(N) > 2 No No Irregular
Rastrigin N No Additive Regular
Griewangk N∗ No No Regular
Ackley N No No Regular
Schwefel N Yes Additive Irregular
Michalewicz N Yes Additive Irregular
FSM 6 Yes No Irregular

Table B.4: Comparison of classic continuous optimisation function. Modality is noted as
“Regular” for regular multimodal and “Irregular” for irregular multimodal features. N is used
to denote the set of positive integer values. Note: The Griewangk function does not generalise
well to high n and is so indicated with N∗.

329

Appendix B: Benchmark Problems

B.3.2 Sphere

The Sphere function is a simple, continuous, strongly convex and unimodal surface. Tra-
ditionally it is a minimisation problem, but can easily be inverted and offset to create a
maximisation problem.

This classic problem is also known as De Jong’s Function 1 (F1) due to its early
and referenced use in GA research as a baseline test problem [74], and similarly for ES
research [289]. The Sphere function was originally defined for two dimensions and then
subsequently generalised for N dimensions [16].

The objective is to find a vector x = (x1, x2, . . . , xn) of range xi ∈ [−32.768, 32.768]
(although other ranges have been defined in literature) but is not considered constrained
in general. The function is defined by the following equation:

f(x) =
n∑
i=1

x2
i (B.4)

where the optimum vector x∗ = (0, 0, . . . , 0) will result in f(x∗) = 0.
In Figure B.4 are two examples of the Sphere function at two different value ranges to

emphasise the scale invariant nature of this test domain.

Sphere (View A)

-6 -4 -2 0 2 4 6
x1 -6

-4
-2

 0
 2

 4
 6

x2

 0
 10
 20
 30
 40
 50
 60

(a) xi ∈ [−6, 6]

Sphere (View B)

-600 -400 -200 0 200 400 600
x1 -600

-400
-200

 0
 200

 400
 600

x2

 0
 100000
 200000
 300000
 400000
 500000
 600000

(b) xi ∈ [−600, 600]

Figure B.4: Two examples of the Sphere function (De Jong F1) illustrating the scale invariant
nature of this domain. Even though (a) and (b) are different (by two orders of magnitude)
the resulting graphs look identical in shape and proportion.

330

Appendix B: Benchmark Problems

B.3.3 Hyperellipsoid

The hyperellipsoid function is similar to the Sphere function, and is a simple, convex
unimodal surface. It is also known as an “axis parallel hyperellipsoid function”. The form
of this function is essentially that of the Sphere function “stretched” along each additional
dimensional axis i of n.

The hyperellipsoid function is included mainly as a reference for the Quadric function.
The objective is to search for a vector x = (x1, x2, . . . , xn) of range xi ∈ [−5.12, 5.12]. The
function is defined by the following equation:

f(x) =
n∑
i=1

i2 · x2
i (B.5)

where the optimum vector x∗ = (0, 0, . . . , 0) results in f(x∗) = 0.

Hyper-ellipsoid

-6 -4 -2 0 2 4 6
x1 -6

-4
-2

 0
 2

 4
 6

x2

 0
 20
 40
 60
 80

 100
 120
 140

Figure B.5: Hyperellipsoid function for n = 2 dimensions.

331

Appendix B: Benchmark Problems

B.3.4 Quadric

The Quadric minimisation problem is continuous, convex and unimodal. It is similar to
the hyperellipsoid function (a stretched Sphere), however it is also rotated. Due to its use
in cited benchmark suites it has also been given the names of “Schwefel’s function 1.2”,
“Schwefel’s Double Sum” [311] and the “rotated hyperellipsoid function”.

The objective is to search for a vector x = (x1, x2, . . . , xn) of range xi ∈
[−65.536, 65.536]. The function is defined by the following equation:

f(x) =
n∑
i=1

 i∑
j=1

xj

2

(B.6)

where the optimum vector x∗ = (0, 0, . . . , 0) will result in f(x∗) = 0.

Quadric

-80 -60 -40 -20 0 20 40 60 80
x1 -80

-60
-40

-20
 0

 20
 40

 60
 80

x2

 0

 5000

 10000

 15000

 20000

 25000

Figure B.6: Quadric function for n = 2 dimensions. The standard range of xi ∈
(−65.536, 65.536) has been used.

There are other variations to this function that displace (offset) the optimum region
in proportion to the magnitude of each axis dimension value, and thus create a non-
symmetrical version. Such variations are applied when there are specific research questions
begin investigated.

332

Appendix B: Benchmark Problems

B.3.5 Noisy Quartic Function

Search algorithms can be tested for their “robust” qualities with the use of noisy test
problems. The Noisy Quartic function is a summation of simple quartic terms with an
added noise term.

f(x) =
n∑
i=1

i · (xi)4 + random (B.7)

In the case shown here the noise term is a random Gaussian variable (with a mean of
0 and standard deviation of 1). Some references appear to use a uniform random value in
the range of [0, 1) or similar. As the importance of the noise term is simply to disrupt the
search space the general quality of any noise term is similar. See Figure B.7 which shows
the influence of noise on the familiar quartic function.

It is not possible to define the minimum location or expected value due to the noise
term. Despite this, a robust search should be able to locate a solution vector in the area
of x∗ ≈ (0, 0, . . . , 0) resulting in f(x∗) ≈ 0.

Noisy Quartic (View A)

-6 -4 -2 0 2 4 6
x1 -6

-4
-2

 0
 2

 4
 6

x2

-200 0
 200
 400 600 800 1000 1200

 1400 1600 1800 2000

(a) xi ∈ [−5, 5]

Noisy Quartic (View B)

-1.5 -1 -0.5 0 0.5 1 1.5
x1 -1.5

-1
-0.5

 0
 0.5

 1
 1.5

x2

-4
-2
 0
 2
 4
 6
 8

 10
 12

(b) xi ∈ [−1.28, 1.28]

Figure B.7: The noisy quartic function from a (a) macro view of the entire domain (showing
the overall quartic function), and (b) the micro view near the average global optima with
obvious noise perturbations.

333

Appendix B: Benchmark Problems

B.3.6 Easom Function

The Easom function is a very specific unimodal two dimensional maximisation func-
tion [95]. It can be inverted for use in minimisation (as shown here). The most striking
feature of the search landscape is the large global plateau area with almost no gradi-
ent “hint” information to guide a gradient-based search to the small region surrounding
the global optima. Thus the Easom function is a difficult domain for methods reliant
on global gradient information and can allow other techniques (such as EC) to perform
comparatively well in this spartan domain.

The objective is to search for a vector x = (x1, x2) where both dimensions are in the
range [−100, 100]. The function is defined by the following equation:

f(x) = f(x1, x2) = − cos(x1) · cos(x2) · e−(x1−π)2−(x2−π)2 (B.8)

where the optimum vector of x∗ = (π, π) will result in f(x∗) = −1.0.

Easom (View A)

-100
-50

 0
 50

 100
x1 -100

-50
 0

 50
 100

x2

-0.02
-0.018
-0.016
-0.014
-0.012

-0.01
-0.008
-0.006
-0.004
-0.002

 0
 0.002

(a) xi ∈ [−100, 100]

Easom (View B)

-10
-5

 0
 5

 10
x1 -10

-5
 0

 5
 10

x2

-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

 0
 0.1

(b) xi ∈ [−10, 10]

Figure B.8: The Easom function at both (a) the full range of values (-100,100), and (b)
a closer inspection of the surface (-10,10) which emphasises the small region of landscape
information to assist search.

334

Appendix B: Benchmark Problems

B.3.7 Rosenbrock’s valley

Rosenbrock’s valley is a very well known classic optimisation problem [294], with many
alternative titles. For example, it is also called De Jong’s Function 2 (F2), Rosenbrock’s
“saddle” and the “Banana” function.

The function is continuous and unimodal, though the non-convex surface gradient can
be deceptive to some search methods. In Figure B.9 the domain is presented with both
a linear and log output scale to emphasise the subtle and deceptive nature of the global
optimal area.

A two dimensional case, where the objective is to search for a vector x = (x1, x2) of
range xi ∈ [−2.048, 2.048], is given as:

f(x) = (1− x1)2 + 100 · (x2 − x2
1)2 (B.9)

Convergence to the “valley” region is considered a trivial task due to the large dominant
parabolic feature, however convergence to the global optimum is quite difficult for purely
gradient based techniques.

For a more general n-dimensional case, the objective function is x = (x1, x2, . . . , xn)
also in the range xi ∈ (−2.048, 2.048). One version of the generalised n-dimensional case
is shown below.

f(~x) =
n∑
i=1

100 ·
(
xi+1 − x2

i

)2
+ (1− xi)2 (B.10)

where the optimum vector x∗ = (1, 1, . . . , 1) results in f(x∗) = 0.
Note that there are other n dimensional generalisations that maintain a summation

of separate independent 2D cases (n/2) rather than allowing the more difficult overlap-
ping interdependence of the case shown. It is not always clear how practitioners have
implemented a general n dimensional case as the visually presented 2D cases are identical.

335

Appendix B: Benchmark Problems

Rosenbrock' Valley (View A)

-2.5 -1.5 -0.5 0.5 1.5 2.5
x1 -2.5

-1.5
-0.5

 0.5
 1.5

 2.5

x2

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

(a) Linear output scale

Rosenbrock' Valley (View B)

-2.5 -1.5 -0.5 0.5 1.5 2.5
x1 -2.5

-1.5
-0.5

 0.5
 1.5

 2.5

x2

 0.01
 0.1

 1
 10

 100
 1000

 10000

(b) Log output scale

Figure B.9: The 2D Rosenbrock function. Both (a) and (b) use the same range of values for
x, however (a) uses a linear output scale to give a sense of the overall global gradient, while
(b) uses a log scale to emphasise the surface details in the global optimal region. Note the
graph artefacts in the region near the global optima x = (1, 1).

336

Appendix B: Benchmark Problems

B.3.8 Rastrigin Function

Rastrigin’s minimisation problem is also similar to the Sphere (De Jong’s F1) function,
however the surface is modulated with an additional cosine term to induce multiple local
minima and hence create a highly multimodal and deceptive surface. The minima are,
however, regularly distributed. Regular modal features are typically easier for a search
method to deal with and the function is also separable.

This function was first proposed by Rastrigin for two dimensions [342] and later gen-
eralised for n dimensions [247, 246].

The objective is to search for a vector x = (x1, x2, . . . , xn) in the range of xi ∈
[−5.12, 5.12]. The function is defined by the following equation:

f(x) = A · n+
n∑
i=1

(
x2
i −A · cos(ω · xi)

)
(B.11)

A = 10 ; ω = 2 · π ; xi ∈ [−5.12, 5.12]

where A controls the amplitude and ω sets the frequency modulation. The optimum vector
for the case shown is x∗ = (0, 0, . . . , 0) resulting in f(x∗) = 0.

337

Appendix B: Benchmark Problems

Rastrigin (View A)

-6 -4 -2 0 2 4 6
x1 -6

-4
-2

 0
 2

 4
 6

x2

 0
 10
 20
 30
 40
 50
 60
 70
 80

(a) xi ∈ [−5.12, 5.12]

Rastrigin (View B)

-1
-0.5

 0
 0.5

 1
x1 -1

-0.5
 0

 0.5
 1

x2

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

(b) xi ∈ [−1.0, 1.0]

Figure B.10: The Rastrigin function has an overall Sphere quality with a modulated cosine.
In (a) the entire global region is shown and (b) gives a closer view of the region near the global
optima (0, 0).

338

Appendix B: Benchmark Problems

B.3.9 Griewangk Function

Griewangk’s function is a minimisation problem similar to Rastrigin’s function. The do-
main is also similar to an n-dimensional Sphere function, and modulated by a cosine based
term [342, 246]. The function contains many local optima regularly distributed. Of inter-
est are the distinct levels of scale (see Figure B.11). At the macro-scale level (largest value
range) this function is somewhat easier to navigate than the Rastrigin function, however
it contains deceptive qualities at medium and micro-scale ranges of values.

The search objective is for a vector x = (x1, x2, . . . , xn) in the range of xi ∈ [−600, 600].
The function is defined by the following equation:

f(x) = 1 +
n∑
i=1

x2
i

4000 −
n∏
i=1

cos

(
xi√
i

)
(B.12)

where the optimum vector x∗ = (0, 0, . . . , 0) results in f(x∗) = 0.
Although at first consideration this function appears to be a good scalable, non-

separable and non-linear test function it has been shown by Whitely et al. [366] that
it does not scale well and actually becomes relatively easier (smoother and so less decep-
tive) as n increases. With this understanding it is not recommended as a high-dimensional
benchmark for comparing algorithm performance.

339

Appendix B: Benchmark Problems

Griewangk (View A)

-600 -400 -200 0 200 400 600
x1 -600

-400
-200

 0
 200

 400
 600

x2

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

(a) xi ∈ [−600, 600]

Griewangk (View B)

-60 -40 -20 0 20 40 60
x1 -60

-40
-20

 0
 20

 40
 60

x2

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

(b) xi ∈ [−60, 60]

Griewangk (View C)

-6 -4 -2 0 2 4 6
x1 -6

-4
-2

 0
 2

 4
 6

x2

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

(c) xi ∈ [−6, 6]

Figure B.11: The Griewangk function at (a) a macro-level view where it resembles the Sphere
(De Jong F1) function, (b) an intermediate level where it resembles the Rastrigin function,
and (c) the micro-level view of the global optima region.

340

Appendix B: Benchmark Problems

B.3.10 Ackley Function

Ackley’s function or “Ackley’s Path” [1, 2] is a minimisation problem widely used as a
multimodal benchmark. Originally defined for two dimensions it was later generalised for
n dimensions by Bäck [21, 16]. The basic two-dimensional form is an overall exponen-
tial “well” that is modulated by a cosine term providing the familiar macro and micro
level challenges of many benchmark functions. However as a distinction to the Rastrigin
function, Ackley’s function is not separable despite the appearance of regular local optima.

The search objective is for a vector x = (x1, x2, . . . , xn) limited to the range of xi ∈
[−32.768, 32.768] (although some references state xi ∈ [−30, 30]). The function is defined
by the following equation:

f(x) = −20 · e
−0.2

√
1
n
·

n∑
i=1

x2
i

− e
1
n
·

n∑
i=1

cos(2πxi)
+ 20 + e1 (B.13)

where the optimum vector x∗ = (0, 0, . . . , 0) results in f(x∗) = 0.
The constant terms of the function are listed separately in some references, but rarely

altered in practice from those shown.

Ackley (View A)

-30 -20 -10 0 10 20 30
x1 -30

-20
-10

 0
 10

 20
 30

x2

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24

(a) xi ∈ [−30, 30]

Ackley (View B)

-3 -2 -1 0 1 2 3
x1 -3

-2
-1

 0
 1

 2
 3

x2

 0

 2

 4

 6

 8

 10

 12

(b) xi ∈ [−3, 3]

Figure B.12: The Ackley function at both (a) a macro view of the entire domain (showing the
overall exponential well), and (b) the micro view near the global optima with obvious periodic
modulation.

341

Appendix B: Benchmark Problems

B.3.11 Schwefel Function

Schwefel’s multimodal minimisation problem [310] is deceptive because the single global
minimum is geometrically distant from the best local minima within the search space,
making it likely for search algorithms to converge to non-optimal locations.

The search objective is for a vector x = (x1, x2, . . . , xn) in the range of xi ∈ [−500, 500].
The function is defined by the following equation:

f(x) =
n∑
i=1

xi · sin
(√
|xi|
)

+ 418.9829 · n (B.14)

where the single optimum vector x∗ = (−420.9687,−420.9687, . . . ,−420.9687) will result
in f(x∗) = 0.

The offset term is used to make the optimum value of f(x∗) = 0. Some implementations
remove this offset term, negate the sum, and require the search to find the optimum value
of f(x∗) = −n · 418.9829 instead.1

Figure B.13 shows the entire domain and the region near the single global optimum.
Other sub-optima are a significant distance from the global best.

Schwefel (View A)

-500 -300 -100 100 300 500
x1 -500

-300
-100

 100
 300

 500

x2

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

(a) xi ∈ [−500, 500]

Schwefel (View B)

-500
-450

-400
-350

-300
x1 -500

-450
-400

-350
-300

x2

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

(b) xi ∈ [−500,−300]

Figure B.13: Schwefel function at (a) the entire domain view and (b) a micro scale view near
the global optimal (-420.9687,-420.9687).

1This can affect search algorithms in regard to scaling and performance measures, but does not change
the multimodal qualities.

342

Appendix B: Benchmark Problems

B.3.12 Michalewicz’s Function

Michalewicz’s multimodal minimisation problem creates a domain with n! local op-
tima [230]. A parameter m is used to define the “steepness” of valley features. When
m is large, the search space become very difficult as there are many narrow valleys and
little global information (gradients) to guide a search process. (See Figure B.14.) When m
is large this domain has been likened to searching for the proverbial “needle in a haystack”.

The search objective is for a vector x = (x1, x2, . . . , xn) in the range of xi ∈ [0, π]. The
function is defined by the following equation:

f(x) = −
n∑
i=1

sin(xi) ·
(
sin

(
i · x2

i

π

))2m

(B.15)

where, for example, in the case of m = 10 and n = 10 the global minimum value is
f(x∗) = −9.66.

Michalewicz

 0 0.5 1 1.5 2 2.5 3 3.5
x1 0

 0.5
 1

 1.5
 2

 2.5
 3

 3.5

x2

-1.8
-1.6
-1.4
-1.2

-1
-0.8
-0.6
-0.4
-0.2

 0

Figure B.14: An example of Michalewicz’s function for a simple 2D (n = 2) case. Note that
although the domain features can be separated, there is little gradient information that might
guide a search process.

343

Appendix B: Benchmark Problems

B.3.13 Frequency Modulation Sounds Problem

The Frequency Modulated Sounds problem (FMS) [343, 344] is a parameter identification
problem in a highly complex multimodal function with strong epistasis. It consists of
determining a set of six real value parameters x = (a1, ω1, a2, ω2, a3, ω3) in the range of
[−6.4, 6.35] used in a FM sound model represented by:

y(t) = a1 · sin(ω1 · t · θ + a2 · sin(ω2 · t · θ + a3 · sin(ω3 · t · θ))) (B.16)

where θ = (2 · π/100).
For comparison a standard set of values is defined:

x0 = (1.0, 5.0,−1.5, 4.8, 2.0, 4.9)

which gives the standard function of:

y0(t) = 1.0 · sin(5.0 · t · θ − 1.5 · sin(4.8 · t · θ + 2.0 · sin(4.9 · t · θ))) (B.17)

The objective is to minimise the difference between a standard sound function y0(t)
and the function y(t) using the supplied values for x. The two functions are sampled at
100 points during the period of 2 · π, the error squared (removing the sign) and summed.

f(x) =
100∑
t=1

(y(t)− y0(t))2 (B.18)

An optimum vector x∗ indicates that no error exists between the standard and the data,
in which case f(x∗) = 0.0. Because of the complexity of this domain, algorithms without
local search operators find it difficult to find solutions with high accuracy, and so it is
reasonable to adjust the accuracy expectation to the algorithm qualities and investigation
goals.

As a general note for algorithm comparison, that is especially important for this dif-
ficult domain, is that value representation (and resolution capability) in each algorithm
must be equal.2

Other model standard instances for y0(t) can be defined which enables this FSM to be
a problem generator. (See Section B.5 for other benchmark problem generators.)

2For example, both algorithms should use equivalent 32-bit binary encoded strings to ensure sufficient
resolution and equal algorithm representation ability.

344

Appendix B: Benchmark Problems

B.4 Multiple Niche Problems

B.4.1 Introduction

The functions in this section have been included because they have been specifically used
to research search algorithms that exploit niches (using methods such as fitness shar-
ing, crowding and explicit speciation). Most test functions selected for such research are
multiple-solution domains that contain more than one equal best optima, as occupation
of multiple equivalent niches demonstrates an algorithm’s ability to distribute resources.

Although niching is often discussed in research as applied to maximisation domains,
it is of course possible with minimisation. The first four simple functions presented are
maximisation domains. The last two functions, Himmelblau and the Six-hump Camel
Back, are presented in their more common minimisation form but are easily inverted.

B.4.2 One-dimensional Standards

The following set of four one-dimensional functions operate on a single variable x, con-
strained to x ∈ [0, 1], and have an overall maximisation objective.

f(x) = sin6(5πx) (B.19)

f(x) = sin6(5π(x3/4 − 0.05)) (B.20)

f(x) =
(
e−2 log(2)·(x−0.1

0.8)2
)
· sin6(5πx) (B.21)

F (x) =
(
e−2 log(2)·(x−0.08

0.854)2
)
f · sin6(5π(x3/4 − 0.05)) (B.22)

For (B.19) and (B.21) solutions are located at:

x = (0.1, 0.3, 0.5, 0.7, 0.9)

For (B.20) and (B.22) solutions are located at:

x = (0.08, 0.25, 0.45, 0.68, 0.93)

There are two modal varying qualities of these functions: regularity and equality. The
first two functions (equations (B.19) and (B.20)) both contain equal value peaks, however
in the first instance peaks are regularly (periodically) spaced, and in second peak spacing
varies. The last two functions (equations (B.21) and (B.22)) both contain a set of peaks
with different peak values, however in (B.21) the peaks are regularly spaced and in (B.22)
the peaks are irregularly spaced. Graphs of these equations are shown in Figure B.15.

It is possible to extend all four functions to general n dimensional cases. Although this
has been done it is a trivial exercise (using a basic summation with optional normalisation)
and is not shown here. A more interesting variation is to both create an n dimensional
and rotated form, so that the result is a non-separable multimodal domain for niches.

345

Appendix B: Benchmark Problems

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

f(x
)

x

Multipeak 1

(a) Equal height and equal spacing

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

f(x
)

x

Multipeak 3

(b) Varying height and equal spacing

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

f(x
)

x

Multipeak 2

(c) Equal height and varying spacing

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

f(x
)

x

Multipeak 4

(d) Varying height and varying spacing

Figure B.15: Four standard one-dimensional multi-peak functions showing the different config-
urations of the varied modal qualities: regularity of peak spacing and equality of peak heights.
(The order differs from the equation listing to enhance visual presentation.)

346

Appendix B: Benchmark Problems

B.4.3 Himmelblau Function

The Himmelblau function is a standard multi-solution minimisation function of two di-
mensions. It is non-separable. It is formalised by the following equation:

F (x) = (x2
1 + x2 − 11)2 − (x1 + x2

2 − 7)2 (B.23)

where x = x1x2 and x1, x2 ∈ [−5, 5]. The set of standard known local optima are:

{x∗} = {(−2.81, 3.13), (3.00, 2.00), (3.58,−1.85), (−3.78,−3.28)}

Each optima location gives an output of f(x∗) = 0.00 however there are slight difference
in the value of f(x∗) at higher resolution.

This function is commonly used in an inverted (and offset) form for niche-related
research. Figure B.16 shows a graph of the entire domain space in its minimisation form.

Himmelblau

-6 -4 -2 0 2 4 6
x1 -6

-4
-2

 0
 2

 4
 6

x2

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

Figure B.16: Himmelblau function presented as a minimisation domain. The two-dimensional
function contains four (approximately equal) optima.

347

Appendix B: Benchmark Problems

B.4.4 Six-hump Camel Back Function

The colourfully named “Six-hump Camel Back” function is a two dimensional non-
separable multimodal minimisation problem with six minima features within the bounded
domain [85]. Two of the minima are global (equal), making this a multi-solution problem.
In Figure B.17 four of the optima features are clearly visible on the surface, while the
remaining two resemble subtle plateau rather than clear optima.

The search objective is a vector x = {x1, x2} in the range of x1 ∈ [−3, 3] and x2 ∈
[−2, 2]. Asymmetric value range constraints are an unusual feature for a benchmark
problem. The function is defined by the following equation:

F (x) = 4x2
1 − 2.1x4

1 + 1
3x

6
1 + x1x2 − 4x2

2 + 4x4
2 (B.24)

where the two optimum vectors are {x∗} = {(−0.0898, 0.7126), (0.0898,−0.7126)} with
both resulting in f(x∗) = −1.0316.

Six-hump Camel Back (View A)

-3 -2 -1 0 1 2 3
x1 -2

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

x2

-20
 0

 20
 40
 60
 80

 100
 120
 140
 160
 180

(a) x1 ∈ [−3, 3], x2 ∈ [−2, 2]

Six-hump Camel Back (View B)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x1 -1

-0.5
 0

 0.5
 1

x2

-2
-1
 0
 1
 2
 3
 4
 5
 6

(b) x1 ∈ [−2, 2], x2 ∈ [−1, 1]

Figure B.17: Six-hump Camel Back Function. In (a) the entire asymmetric range of values is
shown, while (b) is a closer view of the six “hump” areas (in this case minimisation “dips”) of
which four are distinctive.

348

Appendix B: Benchmark Problems

B.5 Problem Generators

B.5.1 Introduction

Problem generators are used to create many unique instances of a particular problem class
with specific common characteristics. Given a high number of random instances created by
a generator, a search algorithm can be applied to each and the results provide a general
and predictive view of the algorithms performance on the class of problem. Problem
generators also help to support fairer comparisons of algorithms.

Table B.5 provides a summary of the generators described in this section, including the
abbreviations used in this thesis and basic details. Most of the generators use binary rep-
resentations but some can be altered to integer or real value forms. Problem descriptions
in this section also try to highlight the benefit of these generator techniques for research.

Name Long Name / Description Values Parameters

MMDP Massively Multimodal Deceptive Problem Binary k, n = 6k
Summation of 6-bit bipolar deceptive subcomponents. [139]

P-PEAKS Multimodal Problem Generator Binary n, P

Nearest matching random peak. Strongly epistatic problem. [79]
L-SAT Random Satisfiability Problem Binary C,L, V, n = V

Number (normalised) of True clauses in a Boolean CNF satisfiability expression. NP-
hard and NP-complete when L ≥ 3.

NK NK Landscape (Kauffman’s) Binary n, k

Fitness of n genes with k epistatic dependencies. [187]
NKC NKC Landscape Binary n, k, c, s

Fitness of n genes, with k self epistatic dependencies and c interspecies links. Used
as a co-evolutionary test. [187]

SSP Subset Sum Problem Binary n,C

Determine if a subset S of elements from W can total the required sum C. NP-
complete. [190]

MAXCUT Maximum Cut Graph Binary G = (V,E), n, p
Find a cut of graph G that maximises the sum of weighted edges joining the two
subgraphs V1 and V2. NP-complete. [190]

ECC Error Correcting Code Design Binary n,M, d

Maximise the distance between codewords. [221]
MTTP Minimum Tardy Task Problem Binary n, tasks (li, di, wi)

Allocate tasks and minimise the penalty cost of un-allocated tasks. [190]
MSG Max Set of Gaussians Real n,m,D, p, r

Max value of a set of Gaussian components with parameterised
peaks and distribution. Irregular and inseparable. [124]

Table B.5: Summary of problem generators. See relevant sections for full details.

349

Appendix B: Benchmark Problems

B.5.2 Massively Multimodal Deceptive Problem

The Massively Multimodal Deceptive Problem (MMDP) was specifically conceived by
Goldberg [139] to be both deceptive and massively multimodal and hence help to “push
the envelope” of GA research. The notion of a deceptive binary space has already been
introduced in Section B.2 with Whitley’s Deceptive 4-bit and Goldberg’s Deceptive 3-bit
functions.

A MMDP is composed of k deceptive bipolar binary substrings (si). Each binary
substring (in this case composed of 6 bits) is evaluated based on the number of 1’s it
contains (unitation). The unitation value is then mapped to a fitness payoff value, with
two equivalent global maxima at each unitation extreme (all 1’s or 0’s) and a wide deceptive
local minima attractor based around the middle point (see Figure B.18). A summation
of the substrings fitness values gives the overall MMDP fitness with the maximum payoff
equal to k.

F (s) =
k∑
i=1

fitness(si) (B.25)

where s is the set of substrings (which together make up the vector x) and fitness is the
substring payoff function. In the case used here, the substrings are 6-bit and the fitness
payoff mapping is shown in Figure B.18.

Unitation fitness
0 1.000000
1 0.000000
2 0.360384
3 0.640576
4 0.360384
5 0.000000
6 1.000000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

fit
ne

ss
 (s

i)

unitation (si)

6-bit bipolar deceptive fitness

Figure B.18: A basic 6-bit bipolar deceptive payoff function used as a subfunction to create a
Massively Multimodal Deceptive Problem. The fitness payoff values are shown as a table and
as a representative figure.

For any substring length there are only 2k global optima, although even for relatively
short 6-bit substrings there are 22k local optima (which certainly fulfils the criteria of
“massively” deceptive). The k parameter controls the degree of modality.

350

Appendix B: Benchmark Problems

B.5.3 Multimodal Problem Generator P-PEAKS

The P-PEAKS problem [79] was developed to help investigate epistasis by providing a
tuneable parameterised problem space of selected size. It is also known as a “Bit-string
Multimodality Generator”3 or a random N-dimensional binary multimodal landscape.

Initialisation of the P-PEAKS problem creates P random Boolean n-bit strings (pi) to
represent “peaks” in the search space. The fitness of any n-bit string in the search space
is the maximum number of bits is has in common with one of the peaks. By definition,
the one winning peak is the “nearest” peak in the coded space to the search location x.
The fitness can be described by:

F (x) = 1
n

max
1≤i≤P

{n−Hamming(x, pi)} (B.26)

where Hamming is a function to calculate the Hamming distance between two vectors.
The fitness is normalised between 0.0 (no match) to 1.0 (an exact match).

By using a relatively small number of peaks in the landscape we can create a weak
epistatic problem, while a relatively large number of peaks in the landscape creates a
strongly epistatic problem. Note also that this problem is not effected by “flattening” of
the landscape as epistasis increases (as observed in NK and L-SAT problems).

3See http://www.cs.uwyo.edu/~wspears/generators.html for implementation details of this and
other generator test problems.

351

http://www.cs.uwyo.edu/~wspears/generators.html

Appendix B: Benchmark Problems

B.5.4 L-SAT Random Satisfiability Problem

A Boolean satisfiability (SAT) problem is one in which, for a given formula and a given set
of values, if the expression is satisfied the result evaluates to True otherwise it is False. Or,
more strictly from the Boolean perspective, is there some assignment of True and False
values that will result in True? Many real and interesting problems can be expressed as
formula (or rules) of this form.

If expressions are constructed using literals (variables) OR’d together to make up
clauses, and multiple clauses are AND’d together to create conjunctions, we have the
Conjunctive Normal Form (CNF). The NOT operator can be used only for single literals.
In Disjunctive Normal Form (DNF) literals are AND’d together and clauses OR’d, and
thus the domain is trivial to solve by comparison to CNF and is not considered here.

For example, the following Boolean logic expressions are all in CNF.

A ∧B ∧ ¬C (B.27)

A ∧ (B ∨ ¬C) ∧ (A ∨ ¬D ∨ E) ∧ (C ∨ F) (B.28)

(A ∨B) ∧ (¬B ∨ C) ∧ (D ∨ ¬E) (B.29)

Expression (B.27) is a simple combination of literals, (B.28) shows a more complex
form where clauses are of different lengths, and (B.29) is a regular set of clauses each with
an equal number of literals.

By randomly creating a set of C clauses, each containing L literals selected from a set
of V Boolean variables, we can create epistatic problems where the greater the number
of clauses the greater the epistasis of the search domain. When L ≥ 3 SAT problems are
known to be NP-hard4 [126].

In [236] it was shown that for SAT problems the “hardest area for satisfiability is near
the point where 50% of the formulas are satisfiable”, and further that this 0.5 satisfiable
point is related to the ratio of clauses to variables. Their results suggest that for a
fixed clause-length model a ratio of “roughly 4.3 times as many clauses as variables” will
provide “computationally challenging instances” with a 50% chance of being satisfiable.
For example, a random 3-SAT (L=3) problem of 430 clauses 100 variables will belong to
this challenging set and is used in this work.

The method described below to create Random SAT problems in conjunctive normal
form (CNF) for use with Binary search representation is based on an implementation by
[236] and modified by William Spears5.

To initialise the problem C clauses are created and filled with literals by choosing (with
replacement) L variables uniformly from the set of all V variables, and negating with 50%
probability to indicate NOT terms.

A solution attempt x is a Boolean string of length V . It assigns True or False values
to each of the V variables.6 The fitness of any given solution then is a ratio of the clauses
satisfied using this allocation of Boolean values.

F (x) = 1
C

C∑
i=1

ci(x) (B.30)

where ci(x) represents a clause of the set allocated with values from x. The clause results
in 1 for satisfied and 0 for not satisfied. The overall result f(x) is normalised so that it
will be 1.0 for all clauses satisfied and 0.0 for none satisfied.

4Informally NP-hard means that a problem is considered at least as hard as the hardest problems in
NP (nondeterministic polynomial-time).

5See http://www.cs.uwyo.edu/~wspears/epist.html
6Note that not all variables many be used as literals to the random clauses created.

352

http://www.cs.uwyo.edu/~wspears/epist.html

Appendix B: Benchmark Problems

If the overall fitness is modified to be a linear weighting of clauses, the weights can be
adapted to give more importance to the unsatisfied clauses.

F (x) = 1
C

C∑
i=1

wi · ci(x) (B.31)

Eiben and van der Hauw [99] used Stepwise Adaptation of Weights (SAW) to update
weight values based on the current best solution x∗. This method uses integer weight
values and will increment the value by 1 if a clause is not satisfied, and decrement the
weight to 0 over time once satisfied.

w′i = wi + 1− ci(x∗) (B.32)

353

Appendix B: Benchmark Problems

B.5.5 Kauffman’s NK Landscape

Kauffman’s NK fitness landscapes [187] were specifically designed as a rugged domain
to test the effects of epistasis [17, 322, 98]. The two tuneable parameters are n for the
problem length (number of binary genes in a haploid chromosome) and k for the number
of linkages (epistatic interactions) between genes.

The landscape design uses two “principle” assumptions about the interactions of genes
and the fitness of an individual.

• The fitness of a individual is the additive sum of contributions by each gene.

• The effects of polygeny and pleiotropy are effectively random.

To calculate the fitness for a chromosome x of n genes, the fitness of each locus (posi-
tion) needs to be considered.

F (x) = 1
n

n∑
i=1

f(locusi) (B.33)

Simple versions of NK only consider k immediate neighbours to any gene, and although
still interesting this is not a general model. Instead, a general model creates an arbitrary
random mapping of k genes per gene – an epistasis matrix E of n× k random gene index
values (excluding self index) – which can be predetermined and referred to as needed.7
Listing B.1 shows a concise way of generating an epistasis matrix using Python.

Similarly, the fitness values for any single gene in combination with k other genes can
be stored in a pre-determined fitness matrix of size n × 2k+1. (See Listing B.2.) This
enables easy reference during the evaluation of any individual’s genes but is quite memory
expensive. Fitness values in F are from a normal random distribution of range [0, 1).

The fitness for an individual then is the sum of each gene with its linked contribution
of k other genes (Listing B.3) as stored in the fitness matrix F .

By allowing random walk models to repeatedly explore instances of the NK model,
Kauffman noted that the best overall fitnesses were obtained when k ≈ 2 and only increases
slightly as n increases.

One problem with the NK model is that all genes have the same degree k of epistatic
connections, which is likely not a “real-world” model. Similarly, it does not represent
interspecies connections which is addressed by the NKC model.

7See http://www.cs.uwyo.edu/~wspears/nk.c for an implementation in C using a Hash map to save
memory.

354

http://www.cs.uwyo.edu/~wspears/nk.c

Appendix B: Benchmark Problems

Listing B.1: Epistasis matrix initialisation code for an NK landscape in Python

def CreateE(n, k):
''' Create epistasis matrix E with N x K random index links '''
E = [None] * n
for i in range(n):

links = range(n) # all possible links
links.remove(i) # no epistasis link to self
shuffle(links) # random permutation
E[i] = links[:k] # copy just what we need [0...(k-1)]

return E

Listing B.2: Fitness matrix initialisation code for an NK landscape in Python

def CreateF(n, k):
''' Create fitness matrix F with n x 2^(k+1) random values '''
F = [None] * n
for i in range(n):

Use a list comprehension to create each list
F[i] = [random() for col in range(2**(k+1))]

return F

Listing B.3: Fitness evaluation code for binary genome with N-K dependencies.

def Evaluate(genes, n, k, E, F):
''' Calculate and return the fitness using n-to-k dependencies

- The genome is a list of binary values named genes.
- E (epistatis) and F (fitness) matrices pre-defined.

'''
fitness = 0.0
for gene in range(n): # fitness for each locus

fit_index = genes[gene]
for i in range(n):

multiplier = 2**(i+1) # 2^(i+1)
epi_index = E[gene][i]
fit_index += multiplier * genes[epi_index]

fitness += F[gene][fit_index]
return fitness / n

355

Appendix B: Benchmark Problems

B.5.6 NKC Landscape

The NKC landscape model is an extension of NK model specifically used with co-evolving
systems. Not only are there k linkage connections between between genes within an
individual, but there are also c linkages to other species genes. From a coevolution point of
view, this is a representation of the competitive and cooperative fitness influences between
different species.

Figure B.19: A representation of the epistatic linkages for a single gene in the NKC model.
There are s = 3 species, each individual has a genome length n = 5, with k = 2 intragenome
linkages and c = 3 interspecies gene links. The linkages of the second gene in the first
individual are shown.

An additional parameter is number of species s; if not specified this is typically s =
2. It is possible that rather than c representing interactions with a specific individual,
c connections are representative of the species (ie. average or strongest traits) as this
would be a more realistic representation of the biological population based (species level)
interactions.

Unlike the NK model where best fitness values result with a low k ≈ 2 value, for the
NKC model a low k and high c lead to a chaotic regime while stasis occurs with high k
and low c. It is interesting that the presence of c, although low, contributes to a stable
system with higher k. The separation between chaotic and stable regions is roughly where
k = c and appears to be a natural region of attraction for systems that can adapt k.

An extension to the previous NK implementation for an epistasis matrix is shown in
Listing B.4 and the fitness evaluation in Listing B.5. Note that as a simple way to eval-
uate a single individual interacting with other individuals, the genes from all interacting
individuals are joined into a single string of genes. This makes the indices easy to store
and reference during evaluation. A more flexible implementation is needed if n, k or c
vary amongst species.

356

Appendix B: Benchmark Problems

Listing B.4: Epistasis matrix for NKC problem.

def CreateE(n, k, c, s):
''' Create the epistasis matrix n x (k+c) with random links

- also need group_size to calculate external gene indexes
'''
E = [None] * n
for i in xrange(n):

Add the base k internal links first
links = range(n)
links.remove(i) # no epistasis link to self
shuffle(links)
E[i] = links[:k]
Now add c additional links (indices continue past n)
links = range(n, n*s)
shuffle(links)
E[i].extend(links[:c]) # only what we need

return E

Listing B.5: Fitness evaluation for binary genome with N-K-C dependencies.

def Evaluate(genes, n, k, c, E, F):
''' Calculate the fitness using n to (k+c) dependencies

- genes is a join of this individual and any other
individual needed for the c external dependencies

'''
fitness = 0.0
for gene in range(n): # do this for first individual only

fit_index = genes[gene]
for i in range(k+c):

multiplier = 2**(i+1)
epi_index = E[gene][i]
note: epi_index may be for any individual
fit_index += multiplier * genes[epi_index]

fitness += F[gene][fit_index]
return fitness / n

357

Appendix B: Benchmark Problems

B.5.7 Subset Sum Problem Generator

The subset sum problem (SSP) consists of a set W of n integers, and considers if a subset
S of W can be selected that equals an integer value C. Although the implementation
suggested here allows for the optimisation of a function f(x), the problem formally requires
a decision (‘yes’ or ‘no’) rather than optimisation.

The subset sum problem is a challenging NP-hard and NP-complete8 domain, and it
is a special case of the well known “knapsack” problem [126]. The partition problem is a
special case of the subset sum problem and can be polynomially transformed into it [185].

One method of implementation is to randomly select n values for the set W from a
pool of positive integers in the range {1, . . . , 1000}. This arbitrary limit is consistent with
previous work by [190] and other authors. The value for C is created from the summation
of a random subset selection S of W .

A subset S of W can be defined as string of Boolean values, such that x =
(x1, x2, . . . , xn) where xi ∈ {0, 1}. If xi = 1 the corresponding wi is considered part
of the set S and included in the subset summation P (x).

P (x) =
n∑
i=1

wi · xi (B.34)

The function to be minimised is the difference between C and the summation of the
selected subset P (x). A conditional form is used to penalise infeasible solutions so they
will never have a value better than feasible solutions, and the function f(x is always ≥ 0.

F (x) =
{
C − P (x) if C − P (x) ≥ 0
P (x) otherwise

(B.35)

8NP-complete problems (also known as NP-C or NPC) is a complexity theory class of problem. They
are the most difficult problems in NP (non-deterministic polynomial time).

358

Appendix B: Benchmark Problems

B.5.8 MAXCUT Maximum Cut Graph Problem

Consider an undirected graph G = (V,E) where V denotes the set of n vertices and E
the set of edges. Let the edges be weighted and there be no self-connected vertices. The
maximum cut problem is to partition the set of vertices V into two disjoint sets V0 and
V1 such that it maximises the sum of the weights edges from E that span V0 and V1.

This problem is also known to be NP-complete, and that the Satisfiability problem
(SAT) can be polynomially transformed into it [185].

The partitions V0 and V1 can be represented by a string of Boolean values of a length
equal to the number of vertices in V. If x = (x1, x2, . . . , xn) where xi ∈ {0, 1}, a Boolean
value of 0 indicates the corresponding vertex of V belongs to subset V0 and a value of 1
to the set of V1.

A weighted edge value between vertices i and j is denoted by wij . The function to be
maximised is the sum of edges that span both V0 and V1 partitions [190].

F (x) =
∑

i = 1n−1
n∑

j=i+1
wij · [xi(1− xj) + xj(1− xi)] (B.36)

Instances of the problem can be constructed using a random graph (ER style) of n
vertices and with an edge probability p that any pair of vertices will have an edge. Two
well-known cases are “cut20-0.1” and “cut20-0.9” which contain n = 20 vertices each, and
with p = 0.1 for a sparse graph and p = 0.9 for a dense graph respectively. Weight values
for edges are random value in the range of [0, 1]. For example, a case of “cut20-0.9” it has
been reported [190] to have a maximum fitness of 56.74007.

As an implementation note, the connectivity and the weight values can be stored in a
single adjacency matrix or list, where 0 indicates no connection and a none zero value as
the weight value. In a matrix form values for wij should be reflected to wji to match the
undirected nature of the graph (at the expense of memory).

359

Appendix B: Benchmark Problems

B.5.9 Error Correcting Code Design

The challenge of designing codes has strong application to any digital communication or
storage system. One essential feature identified early in the field of Error Correcting Codes
(ECC) [221] is that a code with as much space as possible between codewords will be more
robust to transcription errors. This in turn minimises the length of transmitted messages
required to provide maximal correction of single uncorrelated bits. So, it is desirable to
create codes with exactly this property of maximal distance between codewords.

Although formal design and incremental processes can be used to create error correcting
codes, it is an interesting search space for discrete search algorithms. Many techniques
have been applied including genetic algorithms [89], repulsion algorithms, particle swarm
(using repulsion) and simulated annealing [125] and other hybrid forms [55].

The Binary code form considered here is created with parameters of (n,M, d) where
n is the number of bits in each codeword, M the number of codewords required in the
code, and d the minimum Hamming distance between any pair of codewords for the code
to be valid. A good code contains a minimal n with a maximum possible d value for the
required number of words M .

We can use a minimal-energy style measure of how well M words are placed in the
corners of an n-dimensional code space. This is based on the summation of Hamming
distances between all pairs of codewords.

F (C) = 1
M∑
i=1

M∑
j=1,i6=j

d−2
ij

(B.37)

where dij is the Hamming distance between codewords i and j in code C.
One simplification is to search for M/2 codewords and create a complement9 of each

codeword for the full set ofM codewords. This creates a considerably smaller search space
and incorporates knowledge of the problem domain to reduce the search.

As an implementation consideration this means that for any M/2 set of codewords to
be valid there must not only be the minimal separation distance d between all codewords
but also that no complementary pairs exist in the M/2 set. Some search algorithms can
utilise the invalid regions of search space, however a penalty would be needed if duplicate
(invalid) codewords existed in a potential solution as the minimum energy formula is
undefined (divide by zero) for any dij = 0 pair.

9For example with two binary strings the complement of 0110 is simply 1001.

360

Appendix B: Benchmark Problems

B.5.10 Minimum Tardy Task Problem

The Minimum Tardy Task Problem (MTTP) is a single processor task scheduling problem.
The description presented here for the problem is based on that presented by Khuri et al.
in [190] which refers to the work of Stinson [329].

Consider a set T of n tasks where each task i contains three positive integer numbers
for the task length li, task deadline di and task penalty (or weight) wi. The objective is
to select a subset S of T that represents a feasible schedule and which minimises the total
penalty of all unallocated tasks.

This problem is very similar to a “maximum profit” schedule problem where the weight
of allocated tasks represents profit which is to be maximised.

The subset S of T can be represented by a simple binary string. If x = (x1, x2, . . . , xn)
for each task in T with each xi ∈ {0, 1}. a Boolean value of 1 for xi indicates the task is
in the set S and xi = 0 that the task is absent from S.

Implementation style is divided into two groups; those that only evaluate valid (feasi-
ble) subsets, and those that allow invalid (not feasible or infeasible) subsets with penalty.
If we evaluate a known valid solution, the sum of tardy tasks to be minimised is simply:

F (x) =
∑

i∈T−S
wi (B.38)

The inverse of this value can be used as a maximisation case.
Note that S does not explicitly indicate the order of tasks, and not all permutations

would be feasible due to task deadline constraints. However, determining the feasibility
of S is considerably easier than testing all k! permutations of task order. It can be shown
[329] that S is feasible if and only if tasks can be ordered by increasing task deadlines
without violating any individual deadline. Other permutations may be valid, but this rule
must still hold. So by pre-ordering all tasks in T by deadline, and maintaining this order
for any subset S selected, the evaluation of feasibility is programatically a simple and
quick sequence of task length additions and deadline constraint checks.

If infeasible solutions are also to be evaluated a penalty can be applied with a partial
value for the valid parts of the solution [190]. A penalty value equal to the sum of all
task penalties is used so that feasible solutions will always be better than infeasible one.
Evaluation considers each task of S in turn, and rejects any that make the current schedule
infeasible from the set S creating S′. The rejected tasks are counted as tardy tasks.

F (x) =

∑

i∈T−S
wi if S is feasible∑

i∈T−S′
wi + ∑

i∈T
wi otherwise

(B.39)

where S′ represents the feasible version of the infeasible S subset.

Task 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Length 2 4 1 7 4 3 5 2 4 7 2 9 8 6 1 4 9 7 8 2
Deadline 3 5 6 8 10 15 16 20 25 29 30 36 49 59 80 81 89 97 100 105
Weight 15 20 16 19 10 25 17 18 21 17 31 2 26 42 50 19 17 21 22 13

Table B.6: The “mttp20” standard minimum tardy task problem of n = 20 with a known
global minima of f(x∗) = 41 [190].

As a classic reference Table B.6 presents “mttp20” which contains 20 tasks and an
allocation of task length, deadline and penalty values[190]. This is known to have a global
minimum of f(x∗) = 41 or the inverse maximum of 1/41 ≈ 0.02439.

361

Appendix B: Benchmark Problems

B.5.11 Max Set of Gaussians Landscape Generator

The Max Set of Gaussians (MSG) landscape generator was specifically designed by Gal-
lagher and Yuan [124] to “increase the research value of experimental studies” using a
minimal but effective set of parameters. Two key features of this type of generator are
that a large number of similar instances can be created (landscape classes), and that in-
sights into algorithm behaviour can be gained by relating results to generated landscape
structure.

Multivariate Gaussian functions are used as the basic building blocks of this landscape
generator.

g(x) = 1
(2π)π/2|Σ|1/2

· e(−
1
2 (x−µ)T ·Σ−1·(x−µ)) (B.40)

To calculate the fitness of a vector x = {x1, x2, . . . , xN} for a set of m weighted
components, the largest component value is used.

F (x) = max
i
ωi · gi(x) (B.41)

The weight component ωi can also include the constant normalisation terms for each
Gaussian factor, so that the final form can be:

F (x) = max
i
ωi · e(−

1
2n

(x−µ)T ·Σ−1(x−µ)) (B.42)

where (by probability convention) σ is the covariance matrix and µ is the expected value
for each Gaussian component.

n dimensionality of landscape
m number of Gaussian components

D = (l, u) lower and upper range for component locations
p value for the global optimum peak
r ratio of local optima to global value

Table B.7: Parameters used for a standard implementation of the Max Set of Gaussians
landscape generator.

Table B.7 lists the parameters that can be modified in a standard implementation.
Similarly, it is possible to set parameters for distribution of mean vectors and other aspects
of the initialisation. However the parameters shown support a substantial amount of
variation. It is also possible to “seed” the landscape with components in specific locations
in order to create specific landscape features such as gaps.

In Figure B.20 are two random instances of the landscape each with different numbers
of components and different ratio values of optimal peak to subpeak heights. Ridges
can be formed due to the max function and this can be a problem for some gradient
based techniques. Some Gaussian components are hidden by other larger or overlapping
components.

Implementation details for Matlab software have been provided by the originating au-
thors.10 This has been converted into Python code using the NumPy11 numerical module
to provide the matrix based operations needed. It would be challenging to implement this
generator in a language without good support for matrix operations.

10See http://www.itee.uq.edu.au/~marcusg/msg.html for descriptions, examples, references and
source code.

11See http://numpy.scipy.org/

362

http://www.itee.uq.edu.au/~marcusg/msg.html
http://numpy.scipy.org/

Appendix B: Benchmark Problems

Max Set of Gaussians (Instance A)

-10
-5

 0
 5

 10
x1 -10

-5
 0

 5
 10

x2

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

(a) 20 components, ratio=0.6

Max Set of Gaussians (Instance B)

-10
-5

 0
 5

 10
x1 -10

-5
 0

 5
 10

x2

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

(b) 5 components, ratio=0.8

Figure B.20: Two configurations of the Max Set of Gaussians landscape. Both are two
dimensional instances with a peak global value of 1.0 and Gaussian component centres in
the range of [−8, 8]. In a) there are 20 components and a ratio of 0.6, and b) has only 5
components and a ratio of 0.8.

363

Appendix B: Benchmark Problems

364

Appendix C

Topology Survey

C.1 Introduction, Measures and Details
The intent of this appendix is to present a detailed survey of topologies that are central
to, or components of, the investigations presented in the thesis body.

Graph properties and details are presented for a range of graphs types, organised in
groups. The order begins with Full graphs, deterministic regular Lattices, Tree and Star
graph models, and then moves on to stochastic random Erdös-Rényi (ER) models, the
small-world growth model of Watts and Strogatz (WS), the Barabási-Albert (BA) scale
free growth model, and the Merge-Regenerate (MR) model.

The title of each graph group or type includes characters used to abbreviate the topol-
ogy type and features. For example, “L.hk4.b” represents a regular “Lattice” (L) graph
with a hollow (h) “k4” neighbourhood size, and bounded (b) (non-circular) dimensions.

The potential complexity and variance of graph model parameters makes a complete
survey of all possible graph instances impossible. It is hoped, however, that this survey
provides a supportive and comparative explanation of the known and expected properties
of the graph instances selected for use in experiments.

Basic notation of G(n,m) is used for each graph topology G of n vertices and m
edges. For each topology instance considered, there are three common assessment and
presentation forms:

• Table of properties and statistics for the specified topology type for three (or more)
standard graph sizes.

• Two dimensional layout image (or sample of images if presentation is variable) to
visually represent the graph model topology.

• Sets of histogram plots for vertex degree and path length; one set for each standard
scale.

Addition details, summaries and relevant comments are provided to assist in the com-
parison of topology instances.

The three standard scale values selected are n = 100, n = 400 and n = 900. If it is not
possible for a topology model to exactly match these standard sizes, the nearest suitable
value for n is selected. The selection of these values is based on the relationship in two
dimensional lattices with equal dimensional sizes of 10× 10, 20× 20 and 30× 30.

Each table of properties and statistics presents the following details which are all
discussed in the thesis body and in the glossary:

• Number of vertices n.

365

Appendix C: Topology Survey

• Number of edges m.

• Components of the graph (if a graph is disconnected).

• Diameter of the graph.

• Girth of the smallest cycle (if possible).

• Density of the graph, normalised.

• Mean vertex degree 〈k〉.

• Mean path length L.

• Clustering coefficient (transitivity) C.

• The normalised global efficiency of the graph Eglob.

• The normalised local efficiency of the graph Eloc.

For a single deterministic topology the values of a single graph instance are used. If a
graph is stochastic, a sample (usually 30) of graph instances are created and the average
values used where appropriate. All graph models are treated as undirected.

Page breaks have been intentionally added in order to present each new topology on a
new page.

366

Appendix C: Topology Survey

C.2 Full
Synopsis: A full graph topology in which every vertex is directly connected to all other
vertices in the graph.

This is also referred to as a “panmictic” topology in the thesis. Basic properties
and statistics are shown in Table C.1 for four different instances of increasing vertex
number. Note the exponential increase in edges and the unity values for mean path length,
clustering, efficiency and density. The graph is a single component, the mean degree 〈k〉
is defined as n− 1, triangles resulting in a minimal girth of 3, and the mean path length
is quite simply 1 as there are direct paths to all other vertices.

A simple circular layout for a small n = 20 full graph is shown in Figure C.1. Even
for a full graph of only n = 100 vertices, the edge density in an image makes edges
indistinguishable.

The total number of edges m in a full undirected graph is n(n − 1)/2, where n is
the number or vertices. This exponential growth relationships means that any process or
function that scales with respect to the number of edges will be exponentially impacted
as the graph increases in vertex number. For example, the measure of local efficiency Eloc
calculated empirically will take a very long time (although by definition it is simply 1 for
a full graph), as every local subgraph considered is also a full graph of size n′ = n− 1.

As a note on implementation, it makes little sense to explicitly define edges for a full
graph if there are no variations in edge attributes (weights). A list of vertices is simpler
and requires minimal computation and memory resources.

Property n100 n200 n400 n900

n 100 200 400 900

m 4950 19900 79800 404550

Components 1 1 1 1

Diameter 1 1 1 1

Girth 3 3 3 3

Density 1.000 1.000 1.000 1.000

〈k〉 99 199 399 899

L 1.000 1.000 1.000 1.000

C 1.000 1.000 1.000 1.000

Eglob 1.000 1.000 1.000 1.000

Eloc 1.000 1.000 1.000 1.000

Table C.1: Properties and statistics for full graph instances.

367

Appendix C: Topology Survey

Figure C.1: Circle layout for a small n = 20 full graph.

368

Appendix C: Topology Survey

C.3 Lattice (L)

C.3.1 Introduction

The presentation of the many lattice types deserves a quick introduction on both dimen-
sional boundary issues, neighbourhood structures and the influence of rewiring.

Firstly, all the lattices selected in this survey are two dimensional (2D) in construction
and presentation. It is common in for lattices graphs to be implemented with circular
dimensional topology, in which case the “surface” of a lattices can be considered toroidal.
Not only are such circular dimensional behaviour is rare in natural system, but bounded
(non-circular) graphs present interesting changes in topology properties along or near
bound edges, suggesting that they should be included and investigated rather than avoided.

Secondly, there are a number of different neighbourhood structures used, each denoted
by the number of edges k a single vertex will have to other neighbours. As a reference the
first three regular forms are presented in Figure C.2. Note that, in non-circular lattices,
vertices located along boundaries will not contain the median vertex degree.

(a) k=4 (b) k=8 (c) k=12

Figure C.2: Neighbourhoods for (a) k = 4, (b) k = 8 and (c) k = 12. Also known as the
Von Neumann, Moore and Extended Moore neighbourhoods respectively.

Finally, as discussed in the body of the thesis, there are interesting transitions or “phase
changes” in the properties of regular graphs as they are rewired by differing amounts. For
each of the circular lattice forms selected, a sample of rewired instances is also evaluated
for changes in normalised mean path length L/L0 and clustering coefficient C, and the
similar measures of global and local efficiency (denoted Eglob and Eloc respectively).

369

Appendix C: Topology Survey

C.3.2 L.k4

Synopsis: A two-dimensional (2D) lattice where each vertex is connected to axes neigh-
bours (nei = 1) resulting in a vertex degree of k = 4.

This type of vertex connection topology is also commonly known as a Von Neumann
neighbourhood. The lattice axes in this topology are circular and create a toroidal space.
See Section C.3.3 for the bound (non-circular) of this base topology type.

Property n100 n400 n900

n 100 400 900

m 200 800 1800

Components 1 1 1

Diameter 10 20 30

Girth 4 4 4

Density 0.040 0.010 0.004

〈k〉 4.000 4.000 4.000

L 5.051 10.025 15.017

C 0.000 0.000 0.000

Eglob 0.384 0.222 0.157

Eloc 0.000 0.000 0.000

Table C.2: Properties and statistics for L.k4 graph instances.

Figure C.3: 2D layout for a 10× 10 L.k4 circular lattice.

Basic properties and statistics are shown in Table C.2 for three different instances
selected for a linear increase in dimension size. They are 10 × 10 for n = 100, 20 × 20
for n = 400 and 30 × 30 for n = 900. The 10 × 10 (n = 100) circular layout is shown in
Figure C.3.

Histograms for vertex degree and path length for each size are shown in Figure C.4,
Figure C.5 and Figure C.6 respectively. Note that vertex degree is always k = 4 and also
the triangular shape of the path length histogram. The most expensive paths are those
that travel diagonally as they must take a Manhattan route.

370

Appendix C: Topology Survey

1 0 1 2 3 4 5
Vertex Degree

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10 12
Path Length

0.00

0.05

0.10

0.15

0.20

Fr
e
q
u
e
n
cy

Figure C.4: Vertex degree and path length histograms for L.k4, n = 100.

1 0 1 2 3 4 5
Vertex Degree

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

5 0 5 10 15 20 25
Path Length

0.00

0.02

0.04

0.06

0.08

0.10

Fr
e
q
u
e
n
cy

Figure C.5: Vertex degree and path length histograms for L.k4, n = 400.

1 0 1 2 3 4 5
Vertex Degree

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

5 0 5 10 15 20 25 30 35
Path Length

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fr
e
q
u
e
n
cy

Figure C.6: Vertex degree and path length histograms for L.k4, n = 900.

371

Appendix C: Topology Survey

C.3.3 L.k4.b

Synopsis: A version of the 2D L.k4 lattice (Section C.3.2) that has fixed boundaries, and
so is not circular.

Note that unlike the L.k2 topology, the diameter of each L.k4.b lattice does not match
the specified dimension size, and that the vertices located on the boundaries introduce
degrees of k = 3 (sides) and k = 2 (corners) into the vertex degree histogram. The path
length histogram is no longer the triangle shape of the circular case, but rather a skewed
parabolic distribution.

Property n100 n400 n900

n 100 400 900

m 180 760 1740

Components 1 1 1

Diameter 18 38 58

Girth 4 4 4

Density 0.036 0.010 0.004

〈k〉 3.600 3.800 3.867

L 6.667 13.333 20.000

C 0.000 0.000 0.000

Eglob 0.329 0.189 0.133

Eloc 0.000 0.000 0.000

Table C.3: Properties and statistics for L.k4.b graph instances.

Figure C.7: 2D layout for a 10× 10 L.k4.b non-circular lattice.

372

Appendix C: Topology Survey

1 0 1 2 3 4 5
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
e
q
u
e
n
cy

5 0 5 10 15 20
Path Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fr
e
q
u
e
n
cy

Figure C.8: Vertex degree and path length histograms for L.k4.b, n100.

1 0 1 2 3 4 5
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
e
q
u
e
n
cy

5 0 5 10 15 20 25 30 35 40
Path Length

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Fr
e
q
u
e
n
cy

Figure C.9: Vertex degree and path length histograms for L.k4.b, n = 400.

1 0 1 2 3 4 5
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
e
q
u
e
n
cy

10 0 10 20 30 40 50 60
Path Length

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Fr
e
q
u
e
n
cy

Figure C.10: Vertex degree and path length histograms for L.k4.b, n = 900.

373

Appendix C: Topology Survey

C.3.4 Rewired L.k4

Synopsis: Rewired circular 2D L.k4 lattices of size n = 400 to present the influence of
rewiring on graph properties.

For each rewiring probability p > 0 a sample of 30 instances is used. In all cases
n = 400, m = 800, the density remains 0.010 and the mean degree 〈k〉 = 4.

As the degree of rewiring is increased, it can be seen in Figure C.11 that that normalised
mean path length L/L0 drops from its expensive full lattice high. L0 is the value of L for
p = 0.00 shown in Table C.4. The use of a log scale for p in Figure C.11 shows an initial
linear decrease in L/L0 and a slight plateau as it approaches p = 1.0.

Clustering C is initially zero as a regular lattice of this type has no neighbourhood
triangles, however when rewiring has a greater degree of influence the girth value decreases
from its initial 4.0 down to the minimal value of 3.0 indicating that triangles are created.

Note that when the degree of rewiring is high (p ≥ 0.32) the number of components
begins to rise above 1.0 indicating isolated sub-graphs may sometimes be created.

The measures of global and local efficiency also reflect same changes as those indicated
by L/L0 and C, however without the need for normalisation or special-case handling for
disconnected graphs.

Property k4.00 k4.01 k4.02 k4.04 k4.08 k4.16 k4.32 k4.64 k4all

p 0.00 0.01 0.02 0.04 0.08 0.16 0.32 0.64 1.00

Components 1.000 1.000 1.000 1.000 1.000 1.000 1.050 1.050 1.250

Diameter 20.000 17.400 14.950 12.850 11.150 9.700 8.900 8.250 8.550

Girth 4.000 3.950 3.750 3.600 3.400 3.100 3.000 3.000 3.000

L 10.025 8.577 7.655 6.887 6.071 5.401 4.885 4.630 4.572

C 0.000 0.000 0.001 0.001 0.002 0.003 0.005 0.007 0.007

Eglob 0.222 0.244 0.263 0.282 0.307 0.334 0.360 0.375 0.378

Eloc 0.000 0.000 0.001 0.001 0.001 0.003 0.005 0.007 0.008

Table C.4: Properties and statistics for rewired L.k4 lattice instances.

10-2 10-1 100

Rewire probability p

0.0

0.2

0.4

0.6

0.8

1.0

L/L0

C

(a)

10-2 10-1 100

Rewire probability p

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Eglob

Eloc

(b)

Figure C.11: Influence of p on (a) L/L0 and C, and on (b) Eglob and Eloc.

374

Appendix C: Topology Survey

1 0 1 2 3 4 5 6
Vertex Degree

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

5 0 5 10 15 20
Path Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fr
e
q
u
e
n
cy

(a) p = 0.01

1 0 1 2 3 4 5 6 7 8
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10 12 14 16
Path Length

0.00

0.05

0.10

0.15

0.20

Fr
e
q
u
e
n
cy

(b) p = 0.04

2 0 2 4 6 8 10
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10 12
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
e
q
u
e
n
cy

(c) p = 0.16

2 0 2 4 6 8 10 12
Vertex Degree

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10 12
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fr
e
q
u
e
n
cy

(d) p = 0.64

Figure C.12: Vertex degree and path length histograms for rewired L.k4 lattices.

375

Appendix C: Topology Survey

C.3.5 L.k8

Synopsis: A two dimensional circular lattice with the same vertex edge profile as the
L.k4 lattice (horizontal and vertical neighbours) and four additional edges to diagonal
neighbours – a total of k = 8 edges per vertex.

This type of vertex connection topology is also known as a Moore neighbourhood. Not
only are there more edges, but local vertex neighbourhoods overlap which is interesting
with respect to processes and mixing of information in a graph.

Property n100 n400 n900

n 100 400 900

m 400 1600 3600

Components 1 1 1

Diameter 5 10 15

Girth 3 3 3

Density 0.081 0.020 0.009

〈k〉 8.000 8.000 8.000

L 3.384 6.692 10.017

C 0.429 0.429 0.429

Eglob 0.503 0.301 0.216

Eloc 0.798 0.798 0.798

Table C.5: Properties and statistics for L.k8 graph instances.

Figure C.13: 2D layout for L.k8 circular lattice.

In comparison to a L.k4 lattice, the L.k8 lattice has a higher density (cost), but also
cycles of length = 3 (triangles, or a girth of 3). As a result, the clustering and local
efficiency measures are no longer zero as in the L.k4 and L.k4.b cases. The diameter is
halved (by the elimination of Manhattan routes for diagonal paths) and the mean path
length 〈k〉 drops by ≈ 1/3 and so the overall global efficiency increases. The path length
histogram shape is essentially a half triangle.

376

Appendix C: Topology Survey

2 0 2 4 6 8 10
Vertex Degree

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

1 0 1 2 3 4 5 6
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
e
q
u
e
n
cy

Figure C.14: Vertex degree and path length histograms for L.k8, n = 100.

2 0 2 4 6 8 10
Vertex Degree

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10 12
Path Length

0.00

0.05

0.10

0.15

0.20

Fr
e
q
u
e
n
cy

Figure C.15: Vertex degree and path length histograms for L.k8, n = 400.

2 0 2 4 6 8 10
Vertex Degree

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10 12 14 16
Path Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fr
e
q
u
e
n
cy

Figure C.16: Vertex degree and path length histograms for L.k8, n = 900.

377

Appendix C: Topology Survey

C.3.6 L.k8.b

Synopsis: A non-circular (bound) version of the L.k8 2D lattice.
The degree of side and corner vertices is k = 5 and k = 3 respectively. The overall

path length histogram, as in the non-circular L.k4.b lattice, resembles a slightly skewed
parabolic distribution.

In comparison to the circular L.k8 lattice the density drops slightly, diameter nearly
doubles and mean path length increases by ≈ 1/3; the global efficiency decreases slightly.
Clustering and local efficiency increase slightly as boundary side vertices are more “effi-
cient” (with a higher ratio of the available triangles) then general vertices.

Property n100 n400 n900

n 100 400 900

m 342 1482 3422

Components 1 1 1

Diameter 9 19 29

Girth 3 3 3

Density 0.069 0.019 0.008

〈k〉 6.840 7.410 7.604

L 4.680 9.340 14.004

C 0.458 0.442 0.437

Eglob 0.423 0.251 0.179

Eloc 0.828 0.812 0.807

Table C.6: Properties and statistics for L.k8.b graph instances.

Figure C.17: 2D layout for L.k8 non-circular lattice.

378

Appendix C: Topology Survey

2 0 2 4 6 8 10
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10
Path Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Fr
e
q
u
e
n
cy

Figure C.18: Vertex degree and path length histograms for L.k8.b, n = 100.

2 0 2 4 6 8 10
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
e
q
u
e
n
cy

5 0 5 10 15 20
Path Length

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Fr
e
q
u
e
n
cy

Figure C.19: Vertex degree and path length histograms for L.k8.b, n = 400.

2 0 2 4 6 8 10
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
e
q
u
e
n
cy

5 0 5 10 15 20 25 30
Path Length

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Fr
e
q
u
e
n
cy

Figure C.20: Vertex degree and path length histograms for L.k8.b, n = 900.

379

Appendix C: Topology Survey

C.3.7 Rewired L.k8

Synopsis: Rewired circular L.k8 lattices of size n = 400.
In all cases n = 400, m = 1600, the density is therefore 0.020 and the mean degree

〈k〉 = 8. As in the rewired L.k4 study, for each rewiring probability p > 0 a sample of 30
instances is used.

With the presence of edges aligned along diagonal as well as horizontal and vertical
axes, the Diameter is initially only 10 units and due to triangle structure the Girth is the
minimal 3. As a result, there is a very high level of clustering C which translates to a
strong local efficiency of 0.798.

With a greater density of edges the influence of rewiring is increased, as rewiring is the
probability that each individual edge is rewired. Figure C.21 shows the dramatic changes
in both mean path length and clustering coefficient C which, unlike the rewiring of the
L.k4 lattice, is initially quite strong and reduces only after significant rewiring occurs.

Property k8.00 k8.01 k8.02 k8.04 k8.08 k8.16 k8.32 k8.64 k8all

p 0.00 0.01 0.02 0.04 0.08 0.16 0.32 0.64 1.00

Components 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Diameter 10.000 10.000 9.300 8.000 7.050 6.000 5.200 5.000 5.050

Girth 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000

L 6.692 5.570 5.060 4.540 4.086 3.657 3.337 3.149 3.127

C 0.429 0.415 0.403 0.378 0.335 0.254 0.140 0.035 0.018

Eglob 0.301 0.340 0.358 0.390 0.416 0.449 0.481 0.500 0.502

Eloc 0.798 0.779 0.763 0.721 0.651 0.500 0.240 0.045 0.020

Table C.7: Properties and statistics for rewired L.k8 lattice instances.

10-2 10-1 100

Rewire probability p

0.0

0.2

0.4

0.6

0.8

1.0

L/L0

C

(a)

10-2 10-1 100

Rewire probability p

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Eglob

Eloc

(b)

Figure C.21: Influence of p on (a) L/L0 and C, and on (b) Eglob and Eloc.

380

Appendix C: Topology Survey

2 0 2 4 6 8 10 12
Vertex Degree

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10 12
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

Fr
e
q
u
e
n
cy

(a) p = 0.01

2 0 2 4 6 8 10 12 14
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
e
q
u
e
n
cy

(b) p = 0.04

2 0 2 4 6 8 10 12 14
Vertex Degree

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fr
e
q
u
e
n
cy

1 0 1 2 3 4 5 6 7
Path Length

0.0

0.1

0.2

0.3

0.4

0.5

Fr
e
q
u
e
n
cy

(c) p = 0.16

5 0 5 10 15 20
Vertex Degree

0.00

0.05

0.10

0.15

0.20

Fr
e
q
u
e
n
cy

1 0 1 2 3 4 5 6
Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
e
q
u
e
n
cy

(d) p = 0.64

Figure C.22: Vertex degree and path length histograms for rewired L.k8 lattices.

381

Appendix C: Topology Survey

C.3.8 L.k12

Synopsis: An extension of the L.k8 lattice, adding four additional edges to neighbours
at a distance nei = 2 along the horizontal and vertical axes.

This type of vertex connection topology is also known as an Extended Moore neigh-
bourhood. As in the progression from the L.k4 to L.k8 lattice, the additional edges create
a greater amount of overlap with other vertex neighbourhoods, but as L.k12 extensions
are only along the horizontal and vertical axes, the effective diameter (limited by diagonal
diameter) is actually the same as the L.k8 topology.

In comparison to the L.k8 lattice, overall global efficiency is increased due to the
increased density, lower mean path length and increased clustering. The path length
histogram reflects the similar triangular shape.

Property n100 n400 n900

n 100 400 900

m 600 2400 5400

Components 1 1 1

Diameter 5 10 15

Girth 3 3 3

Density 0.121 0.030 0.013

〈k〉 12.000 12.000 12.000

L 2.778 5.263 7.759

C 0.455 0.455 0.455

Eglob 0.579 0.368 0.271

Eloc 0.813 0.813 0.813

Table C.8: Properties and statistics for L.k12 graph instances.

Figure C.23: 2D layout for L.k12 circular lattice. Although the appearance looks very similar
to layout for a L.k8 lattice, note that the extended neighbourhood of each vertex overlaps to
a greater degree.

382

Appendix C: Topology Survey

2 0 2 4 6 8 10 12 14
Vertex Degree

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

1 0 1 2 3 4 5 6
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
e
q
u
e
n
cy

Figure C.24: Vertex degree and path length histograms for L.k12, n = 100.

2 0 2 4 6 8 10 12 14
Vertex Degree

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10 12
Path Length

0.00

0.05

0.10

0.15

0.20

Fr
e
q
u
e
n
cy

Figure C.25: Vertex degree and path length histograms for L.k12, n = 400.

2 0 2 4 6 8 10 12 14
Vertex Degree

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10 12 14 16
Path Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fr
e
q
u
e
n
cy

Figure C.26: Vertex degree and path length histograms for L.k12, n = 900.

383

Appendix C: Topology Survey

C.3.9 L.k12.b

Synopsis: A non-circular (bound) version of the L.k12 lattice.
The differences of the bound L.k12.b lattice are similar in nature to the previous

circular to non-circular lattice comparisons. However, because of the larger base vertex
degree of k = 12, the side, corner and adjacent side/corner vertices add degrees of k =
[5, 7, 8, 10, 11] to the vertex degree histogram.

Global efficiency decreases as diameter approximately doubles, density drops and the
mean path length increases. Local efficiency increases slightly due to higher cluster ratios
of the side, corner and adjacent vertices (as seen in the L.k8.b profile).

The path length histogram has a basic parabolic form with an extended right tail due
to the exotic range of vertex degrees present in side and diagonal paths.

Property n100 n400 n900

n 100 400 900

m 502 2202 5102

Components 1 1 1

Diameter 9 19 29

Girth 3 3 3

Density 0.101 0.028 0.013

〈k〉 10.040 11.010 11.338

L 3.586 6.917 10.250

C 0.487 0.469 0.464

Eglob 0.505 0.316 0.231

Eloc 0.832 0.822 0.819

Table C.9: Properties and statistics for L.k12.b graph instances.

Figure C.27: 2D layout for L.k12 non-circular lattice.

384

Appendix C: Topology Survey

2 0 2 4 6 8 10 12 14
Vertex Degree

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

Fr
e
q
u
e
n
cy

Figure C.28: Vertex degree and path length histograms for L.k12.b, n = 100.

2 0 2 4 6 8 10 12 14
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
e
q
u
e
n
cy

5 0 5 10 15 20
Path Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fr
e
q
u
e
n
cy

Figure C.29: Vertex degree and path length histograms for L.k12.b, n = 400.

2 0 2 4 6 8 10 12 14
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
e
q
u
e
n
cy

5 0 5 10 15 20 25 30
Path Length

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Fr
e
q
u
e
n
cy

Figure C.30: Vertex degree and path length histograms for L.k12.b, n = 900.

385

Appendix C: Topology Survey

C.3.10 Rewired L.k12

Synopsis: Rewired circular L.k12 lattices of size n = 400.
Of all the lattices considered, the k12 configuration presents the highest density. For

all the rewiring cases presented here n = 400, m = 2400, the density is therefore 0.030 and
the mean degree 〈k〉 = 12. For each rewiring probability p > 0 a sample of 30 instances is
used.

In comparison to the rewired lattices of L.k4 and L.k8, the increased density and the
greater proportion of overlapping neighbourhoods in a L.k12 structure means that the
initial graph has a large number of triangles and a strong level of local efficiency. This can
be seen by comparing the local efficiency plots in Figure C.31 with those shown earlier
for L.k8 in Figure C.21. Unlike the change in local efficiency, the comparative change in
global efficiency is essentially the same as seen in the L.k8 survey.

Property k12.00 k12.01 k12.02 k12.04 k12.08 k12.16 k12.32 k12.64 k12all

p 0.00 0.01 0.02 0.04 0.08 0.16 0.32 0.64 1.00

Components 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Diameter 10.000 7.900 7.000 6.200 5.450 5.000 4.250 4.050 4.050

Girth 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000

L 5.263 4.265 3.951 3.638 3.322 3.065 2.830 2.699 2.686

C 0.455 0.441 0.428 0.404 0.355 0.276 0.157 0.046 0.028

Eglob 0.368 0.415 0.434 0.459 0.486 0.513 0.540 0.557 0.559

Eloc 0.813 0.795 0.778 0.745 0.680 0.563 0.341 0.067 0.034

Table C.10: Properties and statistics for rewired L.k12 lattice instances.

10-2 10-1 100

Rewire probability p

0.0

0.2

0.4

0.6

0.8

1.0

L/L0

C

(a)

10-2 10-1 100

Rewire probability p

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Eglob

Eloc

(b)

Figure C.31: Influence of p on (a) L/L0 and C, and on (b) Eglob and Eloc.

386

Appendix C: Topology Survey

5 0 5 10 15 20
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
e
q
u
e
n
cy

(a) p = 0.01

2 0 2 4 6 8 10 12 14 16
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
e
q
u
e
n
cy

1 0 1 2 3 4 5 6 7 8
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Fr
e
q
u
e
n
cy

(b) p = 0.04

5 0 5 10 15 20
Vertex Degree

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
e
q
u
e
n
cy

1 0 1 2 3 4 5 6
Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
e
q
u
e
n
cy

(c) p = 0.16

5 0 5 10 15 20 25
Vertex Degree

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Fr
e
q
u
e
n
cy

1 0 1 2 3 4 5 6
Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
e
q
u
e
n
cy

(d) p = 0.64

Figure C.32: Vertex degree and path length histograms for rewired L.k12 lattices.

387

Appendix C: Topology Survey

C.3.11 L.hk4

Synopsis: An L.k4 lattice with vertices and edges removed at regular intervals to create
hollow regions within the lattice topology.

The L.hk4 lattice is the first of several “hollow” topology profiles. By removing, at
regular intervals, vertices and their edges lattices can exhibit a hybrid set of characteristics
associated with both dense and sparse lattices.

Property n100 n400 n900

n 96 408 901

m 142 574 1224

Components 1 1 1

Diameter 10 22 34

Girth 4 4 4

Density 0.031 0.007 0.003

〈k〉 2.958 2.814 2.717

L 5.561 11.534 17.281

C 0.000 0.000 0.000

Eglob 0.354 0.196 0.138

Eloc 0.000 0.000 0.000

Table C.11: Properties and statistics for L.hk4 graph instances.

Figure C.33: 2D layout for L.k4 circular lattice with hollows.

In all of the standard 2D lattices presented here, hollows are created at regular non-
overlapping intervals. (See Figure C.33.) This may create, as an artefact, exotic vertex
degrees from side vertices in non-circular lattices, and unusual patterns from circular
lattices. Alternative patterns or random removal schemes could also be easily used but
are not considered here.

As vertices are removed to create hollow lattices, the dimensional size is increased
slightly to compensate and create hollow lattices that are approximately equal in vertex
count to the lattice scales profiled already.

The hollow lattice dimensions used to approximate the three existing lattice scales are
11× 11 for n = 96, 23× 23 for n = 408, and 34× 35 for n = 901.

388

Appendix C: Topology Survey

Consider the initial case of a circular L.hk4 lattice with hollows. The hybrid nature
of the topology can be seen in the vertex degree and path length histograms. Although
the path length histogram approximately resembles the standard circular L.k4 triangle
distribution, the vertex degree histogram includes vertices of degree k = 2 and k = 3 and
the base degree of k = 4. The degree k = 2 is easily observed in Figure C.33, however
the k = 3 is less obvious in that they exist as an artefact of the circular connections. By
selecting even dimension sizes it is possible to avoid these artefacts and create a graph
with only vertices of degree k = 2 and k = 4.

Although the girth of all circular instances with an odd dimension size is four, it is
only for a minority set of side boundary vertices; for the majority of vertices the natural
girth is eight, as seen in the non-circular case where the are no circular boundary related
artefacts.

In comparison to the circular L.k4 lattice, the hollow L.hk4 lattice diameters and
mean path lengths are slightly larger, the densities are – importantly – lower, and global
efficiency is only slightly lower. As in the L.k4 lattice, the lack of cycles of length 3 means
that there are no clusters, and local efficiency is measured as zero.

389

Appendix C: Topology Survey

1 0 1 2 3 4 5
Vertex Degree

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10 12
Path Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Fr
e
q
u
e
n
cy

Figure C.34: Vertex degree and path length histograms for L.hk4, n = 96.

1 0 1 2 3 4 5
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
e
q
u
e
n
cy

5 0 5 10 15 20 25
Path Length

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Fr
e
q
u
e
n
cy

Figure C.35: Vertex degree and path length histograms for L.hk4, n = 408.

1 0 1 2 3 4 5
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
e
q
u
e
n
cy

5 0 5 10 15 20 25 30 35
Path Length

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Fr
e
q
u
e
n
cy

Figure C.36: Vertex degree and path length histograms for L.hk4, n = 901.

390

Appendix C: Topology Survey

C.3.12 L.hk4.b

Synopsis: A non-circular (bound) version of the hollow L.k4 lattice.
In comparison to the circular L.hk4 lattice, the diameter of the non-circular L.hk4

lattice doubles. As discussed in the circular case, the natural girth of eight is present, and
as a result the cluster and local efficiency measures are zero.

The removal of circular edges reduces the cases of k = 3 vertices as seen in the path
length histogram, while the influence of two frequent and regular vertex degree types (k = 2
and k = 4) creates an obvious bifurcation of path length histograms which becomes more
obvious as scale increases (and the influence of side vertex degree artefacts is reduced).

Property n100 n400 n900

n 96 408 901

m 120 528 1172

Components 1 1 1

Diameter 20 44 67

Girth 8 8 8

Density 0.026 0.006 0.003

〈k〉 2.500 2.588 2.602

L 7.596 15.578 23.135

C 0.000 0.000 0.000

Eglob 0.295 0.164 0.117

Eloc 0.000 0.000 0.000

Table C.12: Properties and statistics for L.hk4.b graph instances.

Figure C.37: 2D layout for L.hk4.b non-circular lattice with hollows.

391

Appendix C: Topology Survey

1 0 1 2 3 4 5
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
e
q
u
e
n
cy

5 0 5 10 15 20 25
Path Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fr
e
q
u
e
n
cy

Figure C.38: Vertex degree and path length histograms for L.hk4.b, n = 96.

1 0 1 2 3 4 5
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
e
q
u
e
n
cy

10 0 10 20 30 40 50
Path Length

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Fr
e
q
u
e
n
cy

Figure C.39: Vertex degree and path length histograms for L.hk4.b, n = 408.

1 0 1 2 3 4 5
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
e
q
u
e
n
cy

10 0 10 20 30 40 50 60 70
Path Length

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Fr
e
q
u
e
n
cy

Figure C.40: Vertex degree and path length histograms for L.hk4.b, n = 901.

392

Appendix C: Topology Survey

C.3.13 L.hk8

Synopsis: A hollow version of the L.k8 lattice.
The hollow L.hk8 lattice uses the same pattern of vertex removal as the L.hk4 lattice.

With the addition of diagonal edges the girth reduces to 3 and the measures of clustering
and strong local efficiency are present.

Of the three vertex degree types present (see Figure C.42 for example), the k = 4
and the k = 6 are the natural forms, with a side artefact of k = 7. The half triangle
distribution of the path length histogram presents some slight bifurcation most noticeable
in the n = 901 instance.

Property n100 n400 n900

n 96 408 901

m 284 1148 2448

Components 1 1 1

Diameter 6 13 18

Girth 3 3 3

Density 0.062 0.014 0.006

〈k〉 5.917 5.627 5.434

L 3.724 7.713 11.533

C 0.383 0.362 0.344

Eglob 0.467 0.268 0.191

Eloc 0.627 0.581 0.550

Table C.13: Properties and statistics for L.hk8 graph instances.

Figure C.41: 2D layout for L.hk8 circular lattice with hollows.

393

Appendix C: Topology Survey

1 0 1 2 3 4 5 6 7 8
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
e
q
u
e
n
cy

1 0 1 2 3 4 5 6 7
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
e
q
u
e
n
cy

Figure C.42: Vertex degree and path length histograms for L.hk8, n = 96.

1 0 1 2 3 4 5 6 7 8
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10 12 14
Path Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Fr
e
q
u
e
n
cy

Figure C.43: Vertex degree and path length histograms for L.hk8, n = 408.

1 0 1 2 3 4 5 6 7 8
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
e
q
u
e
n
cy

5 0 5 10 15 20
Path Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fr
e
q
u
e
n
cy

Figure C.44: Vertex degree and path length histograms for L.hk8, n = 901.

394

Appendix C: Topology Survey

C.3.14 L.hk8.b

Synopsis: A non-circular (bound) version of the L.hk4 lattice.
Artefact vertices of degrees k = 7 are no longer present, but several new artefact

species of k = 2 and k = 3 appear. Despite this, the bifurcation of the slightly skewed
parabolic path length histogram is consistent with earlier results and expectations.

In comparison to the circular L.hk8 lattice, the global efficiency decreases in line with
the reduced density, increased diameter and increased mean path length. Local efficiency
also reduces, although the circular lattice values are elevated by the side artefacts (incon-
sistent neighbourhood pattern) already discussed.

Property n100 n400 n900

n 96 408 901

m 220 1012 2294

Components 1 1 1

Diameter 11 23 34

Girth 3 3 3

Density 0.048 0.012 0.006

〈k〉 4.583 4.961 5.092

L 5.314 10.901 16.194

C 0.346 0.339 0.338

Eglob 0.383 0.220 0.158

Eloc 0.556 0.542 0.547

Table C.14: Properties and statistics for L.hk8.b graph instances.

Figure C.45: 2D layout for L.hk8 non-circular lattice with hollows.

395

Appendix C: Topology Survey

1 0 1 2 3 4 5 6 7
Vertex Degree

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10 12
Path Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Fr
e
q
u
e
n
cy

Figure C.46: Vertex degree and path length histograms for L.hk8.b, n = 96.

1 0 1 2 3 4 5 6 7
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
e
q
u
e
n
cy

5 0 5 10 15 20 25
Path Length

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Fr
e
q
u
e
n
cy

Figure C.47: Vertex degree and path length histograms for L.hk8.b, n = 408.

1 0 1 2 3 4 5 6 7
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
e
q
u
e
n
cy

5 0 5 10 15 20 25 30 35
Path Length

0.00

0.01

0.02

0.03

0.04

0.05

Fr
e
q
u
e
n
cy

Figure C.48: Vertex degree and path length histograms for L.hk8.b, n = 901.

396

Appendix C: Topology Survey

C.3.15 Rewired L.hk8

Synopsis: Rewired and hollow circular L.hk8 lattices of size n = 408.
The hollowed-out L.hk8 configuration presents an interesting base before rewiring be-

gins. For all values of p > 0 considered 30 samples are taken, the size is n = 408 (≈ 400),
m = 1148, the Density 0.014 and the mean degree k = 5.627 a hybrid of two natural forms
(k = 4 and k = 6).

It is conceivable that the presence of heterogeneous neighbourhood structure might
be advantageous or even essential to processes that require different local degrees. For
example, strong or weak competition based on the number of neighbours. The rewiring
may provide the additional small-world style adjustments needed to improve overall per-
formance.

In many respects the L.hk8 is an intermediate between the L.k4 and L.k8 graphs,
offering some of the advantages over the simpler and triangle free L.k4, while avoiding
some of the cost of the L.k8 (and L.k12) structures.

The initial clustering coefficient is a strong C = 0.362, while the mean path length
of L = 7.71 is only a little higher than that of L.k8 graphs (L = 6.69). The influence of
rewiring is characteristically similar to that seen in other examples as p is increased; L
rapidly reduces and the plateaus increasing global efficiency, while clustering is initially
robust but eventually breaks down and local efficiency falls.

What is not clear from this standard review is the influence rewiring has on the vertex
species (of degree k = 4 and k = 6) and how they might diverge. As there is a greater
proportion of k = 8 vertices it would be expected that they are initially more sensitive the
the rewiring process. However, it is the edges that are being rewired rather than vertices
being move (or removed) and given the stochastic process involved, the importance of this
may be negligible.

397

Appendix C: Topology Survey

Property hk8.00 hk8.01 hk8.02 hk8.04 hk8.08 hk8.16 hk8.32 hk8.64 hk8all

p 0.00 0.01 0.02 0.04 0.08 0.16 0.32 0.64 1.00

Components 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Diameter 13.000 12.100 11.250 9.950 8.800 7.450 6.950 6.350 6.600

Girth 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000

L 7.713 6.732 6.171 5.441 4.882 4.364 3.970 3.731 3.696

C 0.362 0.351 0.341 0.317 0.280 0.215 0.120 0.027 0.012

Eglob 0.268 0.295 0.311 0.338 0.364 0.394 0.422 0.441 0.444

Eloc 0.581 0.564 0.550 0.515 0.456 0.344 0.179 0.032 0.013

Table C.15: Properties and statistics for rewired L.hk8 lattice instances.

10-2 10-1 100

Rewire probability p

0.0

0.2

0.4

0.6

0.8

1.0

L/L0

C

(a)

10-2 10-1 100

Rewire probability p

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Eglob

Eloc

(b)

Figure C.49: Influence of p on (a) L/L0 and C, and on (b) Eglob and Eloc.

398

Appendix C: Topology Survey

2 0 2 4 6 8 10
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10 12 14
Path Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Fr
e
q
u
e
n
cy

(a) p = 0.01

2 0 2 4 6 8 10
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10 12
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
e
q
u
e
n
cy

(b) p = 0.04

2 0 2 4 6 8 10 12
Vertex Degree

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fr
e
q
u
e
n
cy

(c) p = 0.16

2 0 2 4 6 8 10 12 14
Vertex Degree

0.00

0.05

0.10

0.15

0.20

0.25

Fr
e
q
u
e
n
cy

1 0 1 2 3 4 5 6 7 8
Path Length

0.0

0.1

0.2

0.3

0.4

0.5

Fr
e
q
u
e
n
cy

(d) p = 0.64

Figure C.50: Vertex degree and path length histograms for rewired L.hk8 lattices.

399

Appendix C: Topology Survey

C.3.16 L.k6

Synopsis: A circular two dimensional (2D) lattice using three axes to create a topology
where each vertex has a degree of k = 6.

A standard 2D regular lattice is used as a base, and every odd row is offset when
considered for neighbourhood connection.

Property n100 n400 n900

n 100 400 900

m 300 1200 2700

Components 1 1 1

Diameter 7 15 22

Girth 3 3 3

Density 0.061 0.015 0.007

〈k〉 6.000 6.000 6.000

L 3.990 7.932 11.885

C 0.400 0.400 0.400

Eglob 0.451 0.266 0.189

Eloc 0.767 0.767 0.767

Table C.16: Properties and statistics for L.k6 graph instances.

Figure C.51: 2D 3-axes layout for L.k6 circular lattice.

In comparison to the 2D two axes L.hk4 lattice, a L.k6 lattice has a high number of
triangles and as a result, strong clustering and local efficiency. Also the diameter and mean
path length are smaller and the overall density higher. Unlike the L.k4 lattice, this lattice
does not suffer from the constraint of Manhattan routes for diagonal paths. Similarly, the
L.k6 lattice is not as dense as the L.k8 lattice, which makes L.k6 a suitable intermediate
model between the L.k4 and more dense L.k8 lattice.

The path length histogram for the L.k6 lattice is similar to the L.k4 and L.k8 lattice in
that it has a somewhat triangular shape with an additional right skew shift. This is due
to a three axes model being constrained by a square 2D connection boundary. (Ideally
this boundary space should be aligned to the axes.)

400

Appendix C: Topology Survey

1 0 1 2 3 4 5 6 7
Vertex Degree

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

1 0 1 2 3 4 5 6 7 8
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

Fr
e
q
u
e
n
cy

Figure C.52: Vertex degree and path length histograms for L.k6, n = 100.

1 0 1 2 3 4 5 6 7
Vertex Degree

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10 12 14 16
Path Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fr
e
q
u
e
n
cy

Figure C.53: Vertex degree and path length histograms for L.k6, n = 400.

1 0 1 2 3 4 5 6 7
Vertex Degree

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

5 0 5 10 15 20 25
Path Length

0.00

0.02

0.04

0.06

0.08

0.10

Fr
e
q
u
e
n
cy

Figure C.54: Vertex degree and path length histograms for L.k6, n = 900.

401

Appendix C: Topology Survey

C.3.17 L.k6.b

Synopsis: A non-circular (bound) version of the three axes L.k6 lattice.
This bound L.k6 lattice is similar in characteristics to previous lattice models and

their bound/circular comparisons. In this bound form the diameter doubles, mean path
length is higher, density lower resulting in an overall lower global efficiency. Locally the
clustering and local efficiency all appear higher due to boundary (side) artefacts. All path
length histograms take a parabolic distribution shape with a right tail.

Property n100 n400 n900

n 100 400 900

m 261 1121 2581

Components 1 1 1

Diameter 14 29 44

Girth 3 3 3

Density 0.053 0.014 0.006

〈k〉 5.220 5.605 5.736

L 5.391 10.758 16.130

C 0.416 0.407 0.405

Eglob 0.383 0.224 0.159

Eloc 0.788 0.776 0.773

Table C.17: Properties and statistics for L.k6.b graph instances.

Figure C.55: 2D 3-axes layout for L.k6 non-circular lattice.

402

Appendix C: Topology Survey

1 0 1 2 3 4 5 6 7
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10 12 14 16
Path Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fr
e
q
u
e
n
cy

Figure C.56: Vertex degree and path length histograms for L.k6.b, n = 100.

1 0 1 2 3 4 5 6 7
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
e
q
u
e
n
cy

5 0 5 10 15 20 25 30
Path Length

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fr
e
q
u
e
n
cy

Figure C.57: Vertex degree and path length histograms for L.k6.b, n = 400.

1 0 1 2 3 4 5 6 7
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
e
q
u
e
n
cy

10 0 10 20 30 40 50
Path Length

0.00

0.01

0.02

0.03

0.04

0.05

Fr
e
q
u
e
n
cy

Figure C.58: Vertex degree and path length histograms for L.k6.b, n = 900.

403

Appendix C: Topology Survey

C.3.18 Rewired L.k6

Synopsis: Rewired circular L.k6 lattices of size n = 400.
Using a planar three axes configuration the L.k6 structure creates a strong base of

triangles and highly localised clustering with no overlapping neighbourhoods, while also
avoiding the higher density and edge costs of the L.k8 and L.k12 configurations.

All instances are of size n = 400, m = 1200, Density 0.015 and by design a mean
degree of 〈k〉 = 6. Sample sizes of 30 are used for each value of p > 0 considered.

The initial diameter is 15, the mean path length L = 7.932, and the local clustering a
high C = 0.4 (for a local efficiency of Eloc = 0.767). This is quite good in comparison to
the expensive L.k12 graphs.

Again, the influence of increased rewiring levels reduces the mean path length increas-
ing global efficiency, however greater levels of rewiring also eventually breaks down local
clustering and reduces local efficiency.

Property k6.00 k6.01 k6.02 k6.04 k6.08 k6.16 k6.32 k6.64 k6all

p 0.00 0.01 0.02 0.04 0.08 0.16 0.32 0.64 1.00

Components 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.100 1.000

Diameter 15.000 12.750 11.250 9.850 8.450 7.150 6.250 6.100 6.050

Girth 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000

L 7.932 6.612 6.016 5.357 4.737 4.234 3.833 3.596 3.566

C 0.400 0.388 0.377 0.353 0.309 0.236 0.128 0.030 0.012

Eglob 0.266 0.298 0.318 0.346 0.372 0.402 0.433 0.453 0.456

Eloc 0.767 0.746 0.726 0.671 0.591 0.430 0.199 0.034 0.011

Table C.18: Properties and statistics for rewired L.k6 lattice instances.

10-2 10-1 100

Rewire probability p

0.0

0.2

0.4

0.6

0.8

1.0

L/L0

C

(a)

10-2 10-1 100

Rewire probability p

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Eglob

Eloc

(b)

Figure C.59: Influence of p on (a) L/L0 and C, and on (b) Eglob and Eloc.

404

Appendix C: Topology Survey

2 0 2 4 6 8 10
Vertex Degree

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10 12 14 16
Path Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Fr
e
q
u
e
n
cy

(a) p = 0.01

2 0 2 4 6 8 10
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10 12
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
e
q
u
e
n
cy

(b) p = 0.04

2 0 2 4 6 8 10 12
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fr
e
q
u
e
n
cy

(c) p = 0.16

2 0 2 4 6 8 10 12 14 16
Vertex Degree

0.00

0.05

0.10

0.15

0.20

0.25

Fr
e
q
u
e
n
cy

1 0 1 2 3 4 5 6 7 8
Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
e
q
u
e
n
cy

(d) p = 0.64

Figure C.60: Vertex degree and path length histograms for rewired L.k6 lattices.

405

Appendix C: Topology Survey

C.3.19 L.hk3

Synopsis: A hollow form of the three axes L.k6 lattice, resulting in a natural “honeycomb”
topology where each vertex has a degree of k = 3.

The L.k6 lattice lends itself elegantly to a hollow form. When a regular number of
“centre” vertices are removed the resultant lattice is a familiar low density “honeycomb”
structure. This also results in a rather large girth size of six.

Property n100 n400 n900

n 96 416 912

m 144 624 1368

Components 1 1 1

Diameter 10 21 31

Girth 6 6 6

Density 0.032 0.007 0.003

〈k〉 3.000 3.000 3.000

L 5.474 11.335 16.773

C 0.000 0.000 0.000

Eglob 0.356 0.196 0.139

Eloc 0.000 0.000 0.000

Table C.19: Properties and statistics for L.hk3 graph instances.

In order to ensure a minimal artefact model (as discussed in the L.hk hollow lattice
models) it is best to require that the number of rows be a multiple of two and the columns
a multiple of three. This ensures, assuming the lattice coordinates and axes as shown in
Figure C.61, that in a circular case there are no artefact vertices of exotic degree. This
can be seen in the vertex degree histograms (only degree k = 3 is present). Note also the
skewed triangular distribution of the path length histogram confirming that it is not due
to artefacts but rather the use of a square border and not the natural axes of the lattice.

Figure C.61: 2D 3-axes layout for L.hk3 circular lattice with hollows.

With the additional constraints on axes size, the nearest suitable size is selected for
each standard scale size. These are 12× 12 for n = 96, 24× 26 for n = 418, and 36× 38
for n = 912.

Interestingly, in terms of density, diameter and global efficiency, this model is almost
equivalent to the L.hk4 model, except that in this L.hk3 model the girth is a high 8 and

406

Appendix C: Topology Survey

this model does not display the path length distribution bifurcation that results of a mix
of vertex degree species in the L.hk4 model.

The large girth value creates a lot of separation and very low local connectivity prop-
erties. Based on triangles only, local efficiency is zero. In a related manner, there is no
overlap of vertex neighbourhoods. This isolation, may be a useful feature for specific types
of processes that need sparse distribution and degree structure.

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Vertex Degree

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10 12
Path Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Fr
e
q
u
e
n
cy

Figure C.62: Vertex degree and path length histograms for L.hk3, n = 96.

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Vertex Degree

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

5 0 5 10 15 20 25
Path Length

0.00

0.02

0.04

0.06

0.08

0.10

Fr
e
q
u
e
n
cy

Figure C.63: Vertex degree and path length histograms for L.hk3, n = 418.

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Vertex Degree

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

5 0 5 10 15 20 25 30 35
Path Length

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fr
e
q
u
e
n
cy

Figure C.64: Vertex degree and path length histograms for L.hk3, n = 912.

407

Appendix C: Topology Survey

C.3.20 L.hk3.b

Synopsis: The non-circular (bound) form of the hollow L.hk3 lattice.
As expected from the result of other circular/bound lattice comparisons, in the bound

case the diameter increases, mean path length increases, and the overall global efficiency
decreases. Local efficiency measures remain zero. The side boundary vertices introduce
additional vertex degree types which can be seen in the vertex degree histogram. The
path length histogram is parabolic in shape with a small right tail. Note also the presence
of “leaf” vertices with single edges (k = 1).

Property n100 n400 n900

n 96 416 912

m 130 595 1325

Components 1 1 1

Diameter 18 40 60

Girth 6 6 6

Density 0.029 0.007 0.003

〈k〉 2.708 2.861 2.906

L 7.440 15.440 22.875

C 0.000 0.000 0.000

Eglob 0.300 0.165 0.117

Eloc 0.000 0.000 0.000

Table C.20: Properties and statistics for L.hk3.b graph instances.

Figure C.65: 2D 3-axes layout for L.hk3 non-circular lattice with hollows.

408

Appendix C: Topology Survey

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
e
q
u
e
n
cy

5 0 5 10 15 20
Path Length

0.00

0.02

0.04

0.06

0.08

0.10

Fr
e
q
u
e
n
cy

Figure C.66: Vertex degree and path length histograms for L.hk3.b, n = 96.

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
e
q
u
e
n
cy

10 0 10 20 30 40 50
Path Length

0.00

0.01

0.02

0.03

0.04

0.05

Fr
e
q
u
e
n
cy

Figure C.67: Vertex degree and path length histograms for L.hk3.b, n = 418.

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Vertex Degree

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

10 0 10 20 30 40 50 60 70
Path Length

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Fr
e
q
u
e
n
cy

Figure C.68: Vertex degree and path length histograms for L.hk3.b, n = 912.

409

Appendix C: Topology Survey

C.3.21 Rewired L.hk3

Synopsis: Rewired circular honeycomb L.hk3 lattices of size n = 416.
In this final lattice configuration we alter the classic honeycomb, denoted as L.hk3.

For all values of p > 0 a sample of 30 graph instances are used. All L.hk3 graphs are of
size n = 416 (≈ 400), m = 612, have a Density of 0.007 and a mean degree of 〈k〉 = 3.

The initial honeycomb lattice is most like the L.k4 configuration, in that the absence
of triangles means that clustering and local efficiency are zero. The mean path length is a
little larger than a similarly sized L.k4 graph, however the L.hk3 structures has only 3/4
of edges.

With its isolated configuration of vertices, the Girth for the L.hk3 lattice is a large 6.
If processes on a network need a degree of isolation, this is a good topology.

Rewiring has the expected result of reducing mean path length and thus improving
global efficiency, while essentially having little influence on clustering until rather large
degrees of rewiring are applied. It is interesting to note again that in sparse graphs, such
as this one, the process of rewiring is more likely to create isolated components.

Property hk3.00 hk3.01 hk3.02 hk3.04 hk3.08 hk3.16 hk3.32 hk3.64 hk3all

p 0.00 0.01 0.02 0.04 0.08 0.16 0.32 0.64 1.00

Components 1.000 1.000 1.000 1.000 1.000 1.000 1.200 1.800 3.100

Diameter 21.000 20.500 18.100 16.350 14.500 13.150 12.700 12.150 12.900

Girth 6.000 5.700 5.050 4.350 4.050 3.300 3.250 3.050 3.050

L 11.335 10.283 9.382 8.603 7.661 6.940 6.400 6.102 5.942

C 0.000 0.000 0.000 0.001 0.001 0.003 0.003 0.004 0.005

Eglob 0.196 0.209 0.220 0.234 0.254 0.274 0.291 0.301 0.307

Eloc 0.000 0.000 0.000 0.000 0.001 0.003 0.004 0.005 0.004

Table C.21: Properties and statistics for rewired L.hk3 lattice instances.

10-2 10-1 100

Rewire probability p

0.0

0.2

0.4

0.6

0.8

1.0

L/L0

C

(a)

10-2 10-1 100

Rewire probability p

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Eglob

Eloc

(b)

Figure C.69: Influence of p on (a) L/L0 and C, and on (b) Eglob and Eloc.

410

Appendix C: Topology Survey

1 0 1 2 3 4 5
Vertex Degree

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

5 0 5 10 15 20 25
Path Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fr
e
q
u
e
n
cy

(a) p = 0.01

1 0 1 2 3 4 5 6
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
e
q
u
e
n
cy

5 0 5 10 15 20
Path Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Fr
e
q
u
e
n
cy

(b) p = 0.04

1 0 1 2 3 4 5 6 7
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10 12 14 16
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

Fr
e
q
u
e
n
cy

(c) p = 0.16

2 0 2 4 6 8 10
Vertex Degree

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10 12 14
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

Fr
e
q
u
e
n
cy

(d) p = 0.64

Figure C.70: Vertex degree and path length histograms for rewired L.hk3 lattices.

411

Appendix C: Topology Survey

C.3.22 Regular Lattice Summary

Property Regular Lattice Type

L.k4 L.k6 L.k8 L.k12 L.k4.b L.k6.b L.k8.b L.k12.b

n = 100

m 200 300 400 600 180 261 342 502

Diameter 10 7 5 5 18 14 9 9

Girth 4 3 3 3 4 3 3 3

Density 0.040 0.061 0.081 0.121 0.036 0.053 0.069 0.101

〈k〉 4.000 6.000 8.000 12.000 3.600 5.220 6.840 10.040

L 5.051 3.990 3.384 2.778 6.667 5.391 4.680 3.586

C 0.000 0.400 0.429 0.455 0.000 0.416 0.458 0.487

Eglob 0.384 0.451 0.503 0.579 0.329 0.383 0.423 0.505

Eloc 0.000 0.767 0.798 0.813 0.000 0.788 0.828 0.832

n = 400

m 800 1200 1600 2400 760 1121 1482 2202

Diameter 20 15 10 10 38 29 19 19

Girth 4 3 3 3 4 3 3 3

Density 0.010 0.015 0.020 0.030 0.010 0.014 0.019 0.028

〈k〉 4.000 6.000 8.000 12.000 3.800 5.605 7.410 11.010

L 10.025 7.932 6.692 5.263 13.333 10.758 9.340 6.917

C 0.000 0.400 0.429 0.455 0.000 0.407 0.442 0.469

Eglob 0.222 0.266 0.301 0.368 0.189 0.224 0.251 0.316

Eloc 0.000 0.767 0.798 0.813 0.000 0.776 0.812 0.822

n = 900

m 1800 2700 3600 5400 1740 2581 3422 5102

Diameter 30 22 15 15 58 44 29 29

Girth 4 3 3 3 4 3 3 3

Density 0.004 0.007 0.009 0.013 0.004 0.006 0.008 0.013

〈k〉 4.000 6.000 8.000 12.000 3.867 5.736 7.604 11.338

L 15.017 11.885 10.017 7.759 20.000 16.130 14.004 10.250

C 0.000 0.400 0.429 0.455 0.000 0.405 0.437 0.464

Eglob 0.157 0.189 0.216 0.271 0.133 0.159 0.179 0.231

Eloc 0.000 0.767 0.798 0.813 0.000 0.773 0.807 0.819

Table C.22: Comparison of regular lattice details.

412

Appendix C: Topology Survey

C.3.23 Hollow Lattice Summary

Property Hollow Lattice Type

L.hk4 L.hk3 L.hk8 L.hk4.b L.hk3.b L.hk8.b

n = 100

n 96 96 96 96 96 96

m 142 144 284 120 130 220

Diameter 10 10 6 20 18 11

Girth 4 6 3 8 6 3

Density 0.031 0.032 0.062 0.026 0.029 0.048

〈k〉 2.958 3.000 5.917 2.500 2.708 4.583

L 5.561 5.474 3.724 7.596 7.440 5.314

C 0.000 0.000 0.383 0.000 0.000 0.346

Eglob 0.354 0.356 0.467 0.295 0.300 0.383

Eloc 0.000 0.000 0.627 0.000 0.000 0.556

n = 400

n 408 416 408 408 416 408

m 574 624 1148 528 595 1012

Diameter 22 21 13 44 40 23

Girth 4 6 3 8 6 3

Density 0.007 0.007 0.014 0.006 0.007 0.012

〈k〉 2.814 3.000 5.627 2.588 2.861 4.961

L 11.534 11.335 7.713 15.578 15.440 10.901

C 0.000 0.000 0.362 0.000 0.000 0.339

Eglob 0.196 0.196 0.268 0.164 0.165 0.220

Eloc 0.000 0.000 0.581 0.000 0.000 0.542

n = 900

n 901 912 901 901 912 901

m 1224 1368 2448 1172 1325 2294

Diameter 34 31 18 67 60 34

Girth 4 6 3 8 6 3

Density 0.003 0.003 0.006 0.003 0.003 0.006

〈k〉 2.717 3.000 5.434 2.602 2.906 5.092

L 17.281 16.773 11.533 23.135 22.875 16.194

C 0.000 0.000 0.344 0.000 0.000 0.338

Eglob 0.138 0.139 0.191 0.117 0.117 0.158

Eloc 0.000 0.000 0.550 0.000 0.000 0.547

Table C.23: Comparison of hollow lattice details.

413

Appendix C: Topology Survey

C.3.24 Rewired Lattice Summary

Initial lattice density and local clustering configuration are the main influences of the
variations observed when comparing the properties of rewired lattices.

10-2 10-1 100

Rewire probability p

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Eglob

Eloc

(a) L.hk3, n = 416

10-2 10-1 100

Rewire probability p

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Eglob

Eloc

(b) L.k4

10-2 10-1 100

Rewire probability p

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Eglob

Eloc

(c) L.k8

10-2 10-1 100

Rewire probability p

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Eglob

Eloc

(d) L.k12

10-2 10-1 100

Rewire probability p

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Eglob

Eloc

(e) L.hk8, n = 408

10-2 10-1 100

Rewire probability p

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Eglob

Eloc

(f) L.k6

Figure C.71: Comparing the influence of rewiring on Eglob and Eloc.

If density is initially low, as rewiring is applied it is possible that a graph can be-
come disconnected (the number of components becomes > 1), forming isolated subgraphs.
Whether the formation of subgraph is good or bad is application specific. For evolution-
ary computation, isolation and be an opportunity for specialisation, or a crippling loss of
diversity.

If a lattice initially contains no triangles, the process of rewiring may introduce them,
and reduce the girth of a lattice to the minimal possible value of 3.

414

Appendix C: Topology Survey

Table C.24 presents a comparison of details of interest for each of the rewired lattice
types considered. As most graphs remain a single large component, unless values are shown
the number of components is always 1. Similarly, lattices that originate with triangles will
remain at the minimal girth value of 3 throughout the influence of rewiring. If not shown,
the girth size is 3.

The main properties of interest that change in response to increased levels of rewiring
p are a reduction in mean path length L (and graph diameter), and a decrease in local
clustering C. Two similar measure of presenting this change are the global Eglob and local
Eloc efficiency values, which by definition are normalised and unaffected by disconnected
graphs. Figure C.71 shows lattice efficiency changes in response to rewiring for each of
the lattice types surveyed. For additional details see each respective topology survey.

415

Appendix C: Topology Survey

Property Rewired Lattices

p 0.00 0.01 0.02 0.04 0.08 0.16 0.32 0.64 1.00

L.hk3, n = 416, m = 624, density = 0.007, 〈k〉 = 3

Components 1.000 1.000 1.000 1.000 1.000 1.000 1.200 1.800 3.100

Diameter 21.000 20.500 18.100 16.350 14.500 13.150 12.700 12.150 12.900

Girth 6.000 5.700 5.050 4.350 4.050 3.300 3.250 3.050 3.050

L 11.335 10.283 9.382 8.603 7.661 6.940 6.400 6.102 5.942

C 0.000 0.000 0.000 0.001 0.001 0.003 0.003 0.004 0.005

Eglob 0.196 0.209 0.220 0.234 0.254 0.274 0.291 0.301 0.307

Eloc 0.000 0.000 0.000 0.000 0.001 0.003 0.004 0.005 0.004

L.k4, n = 400, m = 800, density = 0.010, 〈k〉 = 4

Components 1.000 1.000 1.000 1.000 1.000 1.000 1.050 1.050 1.250

Diameter 20.000 17.400 14.950 12.850 11.150 9.700 8.900 8.250 8.550

Girth 4.000 3.950 3.750 3.600 3.400 3.100 3.000 3.000 3.000

L 10.025 8.577 7.655 6.887 6.071 5.401 4.885 4.630 4.572

C 0.000 0.000 0.001 0.001 0.002 0.003 0.005 0.007 0.007

Eglob 0.222 0.244 0.263 0.282 0.307 0.334 0.360 0.375 0.378

Eloc 0.000 0.000 0.001 0.001 0.001 0.003 0.005 0.007 0.008

L.hk8, n = 408, m = 1148, density = 0.014, 〈k〉 = 5.627, Girth = 3

Diameter 13.000 12.100 11.250 9.950 8.800 7.450 6.950 6.350 6.600

L 7.713 6.732 6.171 5.441 4.882 4.364 3.970 3.731 3.696

C 0.362 0.351 0.341 0.317 0.280 0.215 0.120 0.027 0.012

Eglob 0.268 0.295 0.311 0.338 0.364 0.394 0.422 0.441 0.444

Eloc 0.581 0.564 0.550 0.515 0.456 0.344 0.179 0.032 0.013

L.k6, n = 400, m = 1200, density = 0.015, 〈k〉 = 6, Girth = 3

Components 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.100 1.000

Diameter 15.000 12.750 11.250 9.850 8.450 7.150 6.250 6.100 6.050

L 7.932 6.612 6.016 5.357 4.737 4.234 3.833 3.596 3.566

C 0.400 0.388 0.377 0.353 0.309 0.236 0.128 0.030 0.012

Eglob 0.266 0.298 0.318 0.346 0.372 0.402 0.433 0.453 0.456

Eloc 0.767 0.746 0.726 0.671 0.591 0.430 0.199 0.034 0.011

L.k8, n = 400, m = 1600, density = 0.020, 〈k〉 = 8, Girth = 3

Diameter 10.000 10.000 9.300 8.000 7.050 6.000 5.200 5.000 5.050

L 6.692 5.570 5.060 4.540 4.086 3.657 3.337 3.149 3.127

C 0.429 0.415 0.403 0.378 0.335 0.254 0.140 0.035 0.018

Eglob 0.301 0.340 0.358 0.390 0.416 0.449 0.481 0.500 0.502

Eloc 0.798 0.779 0.763 0.721 0.651 0.500 0.240 0.045 0.020

L.k12, n = 400, m = 2400, density = 0.030, 〈k〉 = 12, Girth = 3

Diameter 10.000 7.900 7.000 6.200 5.450 5.000 4.250 4.050 4.050

L 5.263 4.265 3.951 3.638 3.322 3.065 2.830 2.699 2.686

C 0.455 0.441 0.428 0.404 0.355 0.276 0.157 0.046 0.028

Eglob 0.368 0.415 0.434 0.459 0.486 0.513 0.540 0.557 0.559

Eloc 0.813 0.795 0.778 0.745 0.680 0.563 0.341 0.067 0.034

Table C.24: Comparison of rewired lattice details.

416

Appendix C: Topology Survey

(a) p = 0.01 (b) p = 0.08 (c) p = 0.64

Figure C.72: Sample layout instances of rewired L.k4 lattices.

(a) p = 0.01 (b) p = 0.08 (c) p = 0.64

Figure C.73: Sample layout instances of rewired L.k8 lattices.

(a) p = 0.01 (b) p = 0.08 (c) p = 0.64

Figure C.74: Sample layout instances of rewired L.k12 lattices.

417

Appendix C: Topology Survey

(a) p = 0.01 (b) p = 0.08 (c) p = 0.64

Figure C.75: Sample layout instances of rewired L.hk8 lattices.

(a) p = 0.01 (b) p = 0.08 (c) p = 0.64

Figure C.76: Sample layout instances of rewired L.k6 lattices.

(a) p = 0.01 (b) p = 0.08 (c) p = 0.64

Figure C.77: Sample layout instances of rewired L.hk3 lattices.

418

Appendix C: Topology Survey

C.4 Star
Synopsis: A simple graph topology of a single central root vertex with all other vertices
connected as leaves.

Star topology creates a single component graph of low cost with a highly critical central
hub vertex. This results in a low mean path length (for which limn→∞ L = 2), but also
results in no cycles (Girth is zero) or clustering (C = Eloc = 0).

Only the histograms for the n = 100 case are shown because of the simple analytically
expected result. For any value of n the majority of n − 1 leaf vertices each have a single
k = 1 connection to the centre hub vertex, which has a degree of k = n− 1.

Property n100 n400 n900

n 100 400 900

m 99 399 899

Diameter 2 2 2

Density 0.020 0.005 0.002

〈k〉 1.980 1.995 1.998

L 1.980 1.995 1.998

Eglob 0.673 0.668 0.667

Table C.25: Properties and statistics for star graph instances.

Figure C.78: Force-based layout for star graph of n = 100 size.

20 0 20 40 60 80 100
Vertex Degree

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

0.5 0.0 0.5 1.0 1.5 2.0 2.5
Path Length

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

Figure C.79: Vertex degree and path length histograms for a star, n = 100.

419

Appendix C: Topology Survey

C.5 Tree (T)

C.5.1 T.c2

Synopsis: A rooted tree growth model that adds c = 2 new children to leaf vertices each
growth step until the specified number of vertices n is obtained.

If an appropriate number of vertices n is selected for the value of c then the tree will
be balanced. There will always be n− 1 edges.

The vertex degree histogram shows the two dominant species; parent vertices of k =
c + 1 edges, and leaf vertices with only one edge to a parent. The single root vertex
has a degree of exactly c. If the tree is not balanced then other vertex degree types will
exist. Path length histogram distribution is exponential for a balanced tree, and is a close
approximation for unbalanced trees.

Property n100 n400 n900

n 100 400 900

m 99 399 899

Components 1 1 1

Diameter 12 16 18

Girth 0 0 0

Density 0.020 0.005 0.002

〈k〉 1.980 1.995 1.998

L 7.731 11.427 13.726

C 0.000 0.000 0.000

Eglob 0.269 0.181 0.149

Eloc 0.000 0.000 0.000

Table C.26: Properties and statistics for T.c2 graph instances.

(a) (b)

Figure C.80: (a) Tree and (b) force-based layout for T.c2 graph.

420

Appendix C: Topology Survey

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10 12 14
Path Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Fr
e
q
u
e
n
cy

Figure C.81: Vertex degree and path length histograms for T.c2, n = 100.

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

Fr
e
q
u
e
n
cy

5 0 5 10 15 20
Path Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Fr
e
q
u
e
n
cy

Figure C.82: Vertex degree and path length histograms for T.c2, n = 400.

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

Fr
e
q
u
e
n
cy

5 0 5 10 15 20
Path Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Fr
e
q
u
e
n
cy

Figure C.83: Vertex degree and path length histograms for T.c2, n = 900.

421

Appendix C: Topology Survey

C.5.2 T.c3

Synopsis: A rooted tree growth model with c = 3 children added each growth step until
the required number of n vertices is reached.

Interestingly, the mean degree 〈k〉 remains relatively low despite the increased number
of children added to parent vertices. Insight into this can be observed in the degree
distribution; the increase in vertex degree of inner parent nodes (k = 3) is offset by the
increased proportion of leaf vertices (k = 1). As a result, density also remains the same
with respect to graph size n.

The change in mean path length L is a significant characteristic of Trees with larger
values for C. With fewer edges between the root and leaf vertices, all vertices are closer
to each other.

Property n100 n400 n900

n 100 400 900

m 99 399 899

Components 1 1 1

Diameter 8 11 12

Girth 0 0 0

Density 0.020 0.005 0.002

〈k〉 1.980 1.995 1.998

L 5.880 8.291 9.717

C 0.000 0.000 0.000

Eglob 0.324 0.233 0.198

Eloc 0.000 0.000 0.000

Table C.27: Properties and statistics for T.c3 graph instances.

(a) (b)

Figure C.84: (a) Tree and (b) force-based layout for T.c3 graph.

422

Appendix C: Topology Survey

1 0 1 2 3 4 5
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

Fr
e
q
u
e
n
cy

Figure C.85: Vertex degree and path length histograms for T.c3, n = 100.

1 0 1 2 3 4 5
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10 12
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
e
q
u
e
n
cy

Figure C.86: Vertex degree and path length histograms for T.c3, n = 400.

1 0 1 2 3 4 5
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10 12 14
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

Fr
e
q
u
e
n
cy

Figure C.87: Vertex degree and path length histograms for T.c3, n = 900.

423

Appendix C: Topology Survey

C.5.3 T.c4

Synopsis: A rooted tree growth model with c = 4 children added each growth step until
the required number of n vertices is reached.

As in the comparison for T.c2 to T.c3, we see very little change in the mean degree
or the density. There are more leaf vertices of degree k = 1 to approximately balance the
increased mean degree of inner parent vertices. The mean path length is again reduced.

It influence of the unbalanced number of nodes for a complete exponential tree is also
more noticeable in the degree distribution, where the number of intermediate vertex degree
species is greater.

Property n100 n400 n900

n 100 400 900

m 99 399 899

Components 1 1 1

Diameter 7 9 10

Girth 0 0 0

Density 0.020 0.005 0.002

〈k〉 1.980 1.995 1.998

L 5.099 7.013 8.155

C 0.000 0.000 0.000

Eglob 0.358 0.266 0.230

Eloc 0.000 0.000 0.000

Table C.28: Properties and statistics for T.c4 graph instances.

(a) (b)

Figure C.88: (a) Tree and (b) force-based layout for T.c4 graph.

424

Appendix C: Topology Survey

1 0 1 2 3 4 5 6
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
e
q
u
e
n
cy

1 0 1 2 3 4 5 6 7 8
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
e
q
u
e
n
cy

Figure C.89: Vertex degree and path length histograms for T.c4, n = 100.

1 0 1 2 3 4 5 6
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
e
q
u
e
n
cy

Figure C.90: Vertex degree and path length histograms for T.c4, n = 400.

1 0 1 2 3 4 5 6
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10 12
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
e
q
u
e
n
cy

Figure C.91: Vertex degree and path length histograms for T.c4, n = 900.

425

Appendix C: Topology Survey

C.5.4 T.c5

Synopsis: A rooted tree growth model with c = 5 children added each growth step until
the required number of n vertices is reached.

The density and mean degree remain stable with respect to the Tree instances already
presented. The influence of an incomplete (unbalanced) tree is again noticeable in the
degree distributions. Mean path length again decreases and the number of path length
species is few (as seen in the path length distribution histograms).

Property n100 n400 n900

n 100 400 900

m 99 399 899

Components 1 1 1

Diameter 6 8 9

Girth 0 0 0

Density 0.020 0.005 0.002

〈k〉 1.980 1.995 1.998

L 4.648 6.276 7.276

C 0.000 0.000 0.000

Eglob 0.382 0.290 0.253

Eloc 0.000 0.000 0.000

Table C.29: Properties and statistics for T.c5 graph instances.

(a) (b)

Figure C.92: (a) Tree and (b) force-based layout for T.c5 graph.

426

Appendix C: Topology Survey

1 0 1 2 3 4 5 6 7
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
e
q
u
e
n
cy

1 0 1 2 3 4 5 6 7
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
e
q
u
e
n
cy

Figure C.93: Vertex degree and path length histograms for T.c5, n = 100.

1 0 1 2 3 4 5 6 7
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
e
q
u
e
n
cy

Figure C.94: Vertex degree and path length histograms for T.c5, n = 400.

1 0 1 2 3 4 5 6 7
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Fr
e
q
u
e
n
cy

Figure C.95: Vertex degree and path length histograms for T.c5, n = 900.

427

Appendix C: Topology Survey

C.5.5 T.c6

Synopsis: A rooted tree growth model with c = 6 children added each growth step until
the required number of n vertices is reached.

The continuing trends of reduced mean path length and stable density are present.
With each parent having so many children, the majority of graph vertices are clearly
leaves (≈ 85%) with only a minority of parents (≈ 15%).

Property n100 n400 n900

n 100 400 900

m 99 399 899

Components 1 1 1

Diameter 6 7 8

Girth 0 0 0

Density 0.020 0.005 0.002

〈k〉 1.980 1.995 1.998

L 4.350 5.798 6.719

C 0.000 0.000 0.000

Eglob 0.400 0.309 0.270

Eloc 0.000 0.000 0.000

Table C.30: Properties and statistics for T.c6 graph instances.

(a) (b)

Figure C.96: (a) Tree and (b) force-based layout for T.c6 graph.

428

Appendix C: Topology Survey

1 0 1 2 3 4 5 6 7 8
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
e
q
u
e
n
cy

1 0 1 2 3 4 5 6 7
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
e
q
u
e
n
cy

Figure C.97: Vertex degree and path length histograms for T.c6, n = 100.

1 0 1 2 3 4 5 6 7 8
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
e
q
u
e
n
cy

1 0 1 2 3 4 5 6 7 8
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fr
e
q
u
e
n
cy

Figure C.98: Vertex degree and path length histograms for T.c6, n = 400.

1 0 1 2 3 4 5 6 7 8
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
e
q
u
e
n
cy

Figure C.99: Vertex degree and path length histograms for T.c6, n = 900.

429

Appendix C: Topology Survey

C.5.6 Tree Summary

In all Tree graph cases the vertex number n and edge number m were fixed. Because of
the lack of cycles, Girth, C and Eloc are all zero. Diameter is essentially two times the
number of growth steps required for a balance tree to exceed the required size n. It is
clear that the mean path length and diameter decrease the larger the number of children
added each growth step, and so the global efficiency increases.

Property Children c

2 3 4 5 6

n = 100, m = 99, density= 0.020

Diameter 12 8 7 6 6

L 7.731 5.880 5.099 4.648 4.350

Eglob 0.269 0.324 0.358 0.382 0.400

n = 400, m = 399, density= 0.005

Diameter 16 11 9 8 7

L 11.427 8.291 7.013 6.276 5.798

Eglob 0.181 0.233 0.266 0.290 0.309

n = 900, m = 899, density= 0.002

Diameter 18 12 10 9 8

L 13.726 9.717 8.155 7.276 6.719

Eglob 0.149 0.198 0.230 0.253 0.270

Table C.31: Comparison of tree models for different children number.

The tree sizes selected for profiles were based simply on the vertex count requirement
of prior lattice models. As a result all of the tree instances created are unbalanced, and
this can be important with respect to a hierarchical process.

Table C.32 lists the size growth for a complete (balanced) trees. The exponential and
hierarchical growth nature becomes clear.

Step Children c

1 2 3 4 5 6 7 8 9

0 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10

2 3 7 13 21 31 43 57 73 91

3 4 15 40 85 156 259 400 585 820

4 5 31 121 341 781 1555 2801 4681 7381

5 6 63 364 1365 3906 9331 19608 37449 66430

6 7 127 1093 5461 19531 55987 137257 299593 597871

7 8 255 3280 21845 97656 335923 960800 2396745 5380840

8 9 511 9841 87381 488281 2015539 6725601 19173961 48427561

9 10 1023 29524 349525 2441406 12093235 47079208 153391689 435848050

Table C.32: Balanced tree growth for c children from 1 to 9 for 9 growth steps.

The Star model is equivalent to a single growth step tree graph, where the number of
children added is simply n− 1.

430

Appendix C: Topology Survey

C.6 Erdös-Rényi (ER)

C.6.1 ER.01

Synopsis: A simple Erdös-Rényi (ER) random graph model G(n, p) for n vertices, with
a probability of p = 0.01 that an edge will exists between each unique pair of vertices.

On average each graph will have 〈m〉 = pn(n− 1)/2 edges. So, for n = [100, 400, 900],
the number edges should average to 〈m〉 = [49.5, 798, 4045.5] respectively.

Since this is a stochastic graph model, statistics for each model are sampled for 30
instances for each scale size n. Note the large number of components for the smaller scale
graphs, however the n = 900 is usually a single connected component.

It can be seen that the density of the graph is equal to the value of p used, and this
is also approximately equal to the clustering coefficient C. The lack of dense or regular
local structure results in an overall low local efficiency at all scales, however the global
efficiency does improve as the scale increases and the number of components is typically
1.

It is expected that the degree distribution will be Poisson with an average degree
〈k〉 = p(n − 1) ≈ pn, and this can be confirmed in the vertex degree histograms (when
the number of components approaches one) and against the values in Table C.33. The
expected values for 〈k〉 for the scales of n = [100, 400, 900] are [0.99, 3.99, 8.99] respectively
which matches reasonably well.

Property n100 n400 n900

n 100 400 900

m 50.700 791.467 4047.000

Components 50.067 8.700 1.067

Diameter 10.000 9.533 5.867

Girth 1.767 3.000 3.000

Density 0.010 0.010 0.010

〈k〉 1.014 3.957 8.993

L 3.819 4.469 3.344

C 0.010 0.010 0.010

Eglob 0.034 0.372 0.475

Eloc 0.003 0.009 0.011

Table C.33: Properties and statistics for ER.01 graph instances.

Figure C.100: Force-based layout for three different ER.01 instances.

431

Appendix C: Topology Survey

1 0 1 2 3 4 5 6 7 8
Vertex Degree

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fr
e
q
u
e
n
cy

5 0 5 10 15 20
Path Length

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

Figure C.101: Vertex degree and path length histograms for ER.01, n = 100.

2 0 2 4 6 8 10 12 14
Vertex Degree

0.00

0.05

0.10

0.15

0.20

0.25

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10 12
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
e
q
u
e
n
cy

Figure C.102: Vertex degree and path length histograms for ER.01, n = 400.

5 0 5 10 15 20 25
Vertex Degree

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fr
e
q
u
e
n
cy

1 0 1 2 3 4 5 6 7
Path Length

0.0

0.1

0.2

0.3

0.4

0.5

Fr
e
q
u
e
n
cy

Figure C.103: Vertex degree and path length histograms for ER.01, n = 900.

432

Appendix C: Topology Survey

C.6.2 ER.02

Synopsis: An ER G(n, p) random graph model for p = 0.2.
For instances of this model and graph sizes of n = [100, 400, 900], it is expected that

the number of edges should average to 〈m〉 = [99, 1596, 8091] respectively, and that the
average degree 〈k〉 will be [1.98, 7.98, 17.98] respectively.

Note that the number of components for the n = 100 scale is quite large, however for
the larger graph scales, with n(n−1)/2 edges, there is also greater number of opportunities
for edges and this increases the probability of a single component forming.

Property n100 n400 n900

n 100 400 900

m 98.600 1603.567 8103.000

Components 17.600 1.033 1.000

Diameter 13.700 5.400 4.000

Girth 3.133 3.000 3.000

Density 0.020 0.020 0.020

〈k〉 1.972 8.018 18.007

L 5.626 3.104 2.669

C 0.023 0.020 0.020

Eglob 0.219 0.505 0.559

Eloc 0.014 0.021 0.025

Table C.34: Properties and statistics for ER.02 graph instances.

Figure C.104: Force-based layout for three different ER.02 instances.

433

Appendix C: Topology Survey

2 0 2 4 6 8 10
Vertex Degree

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
e
q
u
e
n
cy

5 0 5 10 15 20 25
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fr
e
q
u
e
n
cy

Figure C.105: Vertex degree and path length histograms for ER.02, n = 100.

5 0 5 10 15 20 25
Vertex Degree

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Fr
e
q
u
e
n
cy

1 0 1 2 3 4 5 6 7
Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Fr

e
q
u
e
n
cy

Figure C.106: Vertex degree and path length histograms for ER.02, n = 400.

5 0 5 10 15 20 25 30 35 40
Vertex Degree

0.00

0.02

0.04

0.06

0.08

0.10

Fr
e
q
u
e
n
cy

1 0 1 2 3 4 5
Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
e
q
u
e
n
cy

Figure C.107: Vertex degree and path length histograms for ER.02, n = 900.

434

Appendix C: Topology Survey

C.6.3 ER.03

Synopsis: The ER G(n, p) random graph model for p = 0.3.
It is expected that for graph sizes of n = [100, 400, 900], the number edges should

average to 〈m〉 = [148.5, 2394, 12136.5] respectively, and that the average degree 〈k〉 will
be [2.97, 11.97, 26.97] respectively. A sample of 30 instances for each graph size is used for
profile details.

Property n100 n400 n900

n 100 400 900

m 148.733 2388.867 12178.033

Components 6.267 1.000 1.000

Diameter 9.500 4.300 3.400

Girth 3.033 3.000 3.000

Density 0.030 0.030 0.030

〈k〉 2.975 11.944 27.062

L 4.164 2.680 2.400

C 0.029 0.030 0.030

Eglob 0.381 0.560 0.604

Eloc 0.024 0.037 0.058

Table C.35: Properties and statistics for ER.03 graph instances.

Figure C.108: Force-based layout for three different ER.03 instances.

435

Appendix C: Topology Survey

2 0 2 4 6 8 10 12
Vertex Degree

0.00

0.05

0.10

0.15

0.20

0.25

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10 12 14
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
e
q
u
e
n
cy

Figure C.109: Vertex degree and path length histograms for ER.03, n = 100.

5 0 5 10 15 20 25 30
Vertex Degree

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fr
e
q
u
e
n
cy

1 0 1 2 3 4 5 6
Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Fr

e
q
u
e
n
cy

Figure C.110: Vertex degree and path length histograms for ER.03, n = 400.

10 0 10 20 30 40 50
Vertex Degree

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Fr
e
q
u
e
n
cy

1 0 1 2 3 4 5
Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
e
q
u
e
n
cy

Figure C.111: Vertex degree and path length histograms for ER.03, n = 900.

436

Appendix C: Topology Survey

C.6.4 ER.04

Synopsis: The ER G(n, p) random graph model for p = 0.4.
For the graph sizes of n = [100, 400, 900], the expected number edges should average to

〈m〉 = [198, 3192, 16182] respectively, and the average degree 〈k〉 to be [3.96, 15.96, 35.96]
respectively. A sample of 30 instances for each graph size is used for profile details.

Property n100 n400 n900

n 100 400 900

m 201.467 3183.467 16188.667

Components 2.500 1.000 1.000

Diameter 7.167 4.000 3.000

Girth 3.000 3.000 3.000

Density 0.041 0.040 0.040

〈k〉 4.029 15.917 35.975

L 3.395 2.471 2.188

C 0.039 0.040 0.040

Eglob 0.474 0.595 0.642

Eloc 0.037 0.063 0.159

Table C.36: Properties and statistics for ER.04 graph instances.

Figure C.112: Force-based layout for three different ER.04 instances.

437

Appendix C: Topology Survey

2 0 2 4 6 8 10 12 14
Vertex Degree

0.00

0.05

0.10

0.15

0.20

0.25

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10 12
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
e
q
u
e
n
cy

Figure C.113: Vertex degree and path length histograms for ER.04, n = 100.

5 0 5 10 15 20 25 30 35
Vertex Degree

0.00

0.02

0.04

0.06

0.08

0.10

Fr
e
q
u
e
n
cy

1 0 1 2 3 4 5
Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Fr

e
q
u
e
n
cy

Figure C.114: Vertex degree and path length histograms for ER.04, n = 400.

10 0 10 20 30 40 50 60 70
Vertex Degree

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fr
e
q
u
e
n
cy

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
e
q
u
e
n
cy

Figure C.115: Vertex degree and path length histograms for ER.04, n = 900.

438

Appendix C: Topology Survey

C.6.5 ER.05

Synopsis: The ER G(n, p) random graph model for p = 0.5.
For the graph sizes of n = [100, 400, 900], the expected number edges should av-

erage to 〈m〉 = [247.5, 3990, 20227.5] respectively, and the average degree 〈k〉 to be
[4.95, 19.95, 44.95] respectively. A sample of 30 instances for each graph size is used for
profile details.

Property n100 n400 n900

n 100 400 900

m 246.067 3983.067 20236.067

Components 1.933 1.000 1.000

Diameter 6.033 3.533 3.000

Girth 3.000 3.000 3.000

Density 0.050 0.050 0.050

〈k〉 4.921 19.915 44.969

L 3.029 2.302 2.050

C 0.056 0.050 0.050

Eglob 0.517 0.625 0.667

Eloc 0.060 0.109 0.322

Table C.37: Properties and statistics for ER.05 graph instances.

Figure C.116: Force-based layout for three different ER.05 instances.

439

Appendix C: Topology Survey

2 0 2 4 6 8 10 12 14
Vertex Degree

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Fr
e
q
u
e
n
cy

1 0 1 2 3 4 5 6 7 8
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Fr
e
q
u
e
n
cy

Figure C.117: Vertex degree and path length histograms for ER.05, n = 100.

5 0 5 10 15 20 25 30 35 40
Vertex Degree

0.00

0.02

0.04

0.06

0.08

0.10

Fr
e
q
u
e
n
cy

1 0 1 2 3 4 5
Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Fr

e
q
u
e
n
cy

Figure C.118: Vertex degree and path length histograms for ER.05, n = 400.

10 0 10 20 30 40 50 60 70 80
Vertex Degree

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fr
e
q
u
e
n
cy

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
e
q
u
e
n
cy

Figure C.119: Vertex degree and path length histograms for ER.05, n = 900.

440

Appendix C: Topology Survey

C.6.6 ER Summary

In an ER graph instance of G(n, p), the average Density and clustering coefficient C values
are known to be essentially equal to the specified edge probability p.

An interesting feature of the ER G(n, p) model is that all properties, including the
direct Density ≈ C ≈ p relationship, have definite analytical relationships to the specified
values of n and p. This model does not require an understanding of any other processes
or features.

Property Edge Probability p

ER.01 ER.02 ER.03 ER.04 ER.05

n = 100

m 50.7 98.6 148.7 201.5 246.1

Components 50.067 17.600 6.267 2.500 1.933

Diameter 10.000 13.700 9.500 7.167 6.033

Girth 1.767 3.133 3.033 3.000 3.000

Density ≈ C ≈ p 0.010 0.020 0.030 0.040 0.050

〈k〉 1.014 1.972 2.975 4.029 4.921

L 3.819 5.626 4.164 3.395 3.029

Eglob 0.034 0.219 0.381 0.474 0.517

Eloc 0.003 0.014 0.024 0.037 0.060

n = 400

m 791.5 1603.6 2388.9 3183.5 3983.1

Components 8.700 1.033 1.000 1.000 1.000

Diameter 9.533 5.400 4.300 4.000 3.533

Girth 3.000 3.000 3.000 3.000 3.000

Density ≈ C ≈ p 0.010 0.020 0.030 0.040 0.050

〈k〉 3.957 8.018 11.944 15.917 19.915

L 4.469 3.104 2.680 2.471 2.302

Eglob 0.372 0.505 0.560 0.595 0.625

Eloc 0.009 0.021 0.037 0.063 0.109

n = 900

m 4047.0 8103.0 12178.0 16188.7 20236.1

Components 1.067 1.000 1.000 1.000 1.000

Diameter 5.867 4.000 3.400 3.000 3.000

Girth 3.000 3.000 3.000 3.000 3.000

Density ≈ C ≈ p 0.010 0.020 0.030 0.040 0.050

〈k〉 8.993 18.007 27.062 35.975 44.969

L 3.344 2.669 2.400 2.188 2.050

Eglob 0.475 0.559 0.604 0.642 0.667

Eloc 0.011 0.025 0.058 0.159 0.322

Table C.38: Comparison of ER model properties for n and p values.

441

Appendix C: Topology Survey

C.7 Watts-Strogatz (WS)

C.7.1 WS.001

Synopsis: A regular one dimensional (1D) circular lattice with a neighbourhood (nei)
size of 3 and a rewiring probability of p = 0.001.

This topology is created using the Watts-Strogatz small-world model. It uses a regular
lattice, typically a ring or toroid, and rewires exiting edges (or alternatively add new
edges). As the amount of rewiring p is increased, the graphs mean path length reduces
(on average) while the initial highly clustered locally efficiency lattice features remain. If
rewiring is increased to p = 1.0 the graph reverts to a simple random topology.

Property n100 n400 n900

n 100 400 900

m 300 1200 2700

Components 1.000 1.000 1.000

Diameter 17.000 56.967 97.967

Girth 3.000 3.000 3.000

Density 0.061 0.015 0.007

〈k〉 6.000 6.000 6.000

L 8.191 24.094 40.616

C 0.596 0.596 0.597

Eglob 0.310 0.137 0.084

Eloc 0.852 0.852 0.852

Table C.39: Properties and statistics for WS.001 graph instances.

Figure C.120: Force-based layout for two different WS.001 instances.

In the instances used here, a ring lattice (single dimension and circular) with a neigh-
bourhood size of nei = 3 is used and results in a mean degree of k = 6.

With a small rewiring probability of p = 0.001 the graph retains the base lattice
characteristics (as can be see visually in Figure C.120 and in the vertex degree histograms).
A sample of 30 instances for lattices sizes of n of 100, 400 and 900 is averaged and shown
in Table C.39.

Note the large amount of clustering (C ≈ 0.6) but also a large mean path length
whose value is related to the neighbourhood size and the total number of nodes in the
base lattice. The path length histograms are spread over a wide range of length values,
due to the nature of the base lattice.

442

Appendix C: Topology Survey

1 0 1 2 3 4 5 6 7 8
Vertex Degree

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

5 0 5 10 15 20
Path Length

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fr
e
q
u
e
n
cy

Figure C.121: Vertex degree and path length histograms for WS.001, n = 100.

1 0 1 2 3 4 5 6 7 8
Vertex Degree

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

10 0 10 20 30 40 50 60 70
Path Length

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Fr
e
q
u
e
n
cy

Figure C.122: Vertex degree and path length histograms for WS.001, n = 400.

1 0 1 2 3 4 5 6 7 8
Vertex Degree

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

20 0 20 40 60 80 100 120 140 160
Path Length

0.000

0.005

0.010

0.015

0.020

Fr
e
q
u
e
n
cy

Figure C.123: Vertex degree and path length histograms for WS.001, n = 900.

443

Appendix C: Topology Survey

C.7.2 WS.01

Synopsis: A regular one dimensional circular lattice with a neighbourhood size of nei = 3
and a rewiring probability of p = 0.01.

This level of lattice rewiring brings the initial lattice into the “small-world” region
of characteristics, where a relatively high clustering value C is retained but also a much
reduced mean path length L.

The graph characteristics are altered towards those of a random (ER) graph which can
be seen in the layout examples, statistics and histograms.

Property n100 n400 n900

n 100 400 900

m 300 1200 2700

Components 1.000 1.000 1.000

Diameter 12.267 20.067 24.633

Girth 3.000 3.000 3.000

Density 0.061 0.015 0.007

〈k〉 6.000 6.000 6.000

L 5.655 9.072 11.165

C 0.568 0.563 0.562

Eglob 0.373 0.238 0.191

Eloc 0.825 0.818 0.818

Table C.40: Properties and statistics for WS.01 graph instances.

Figure C.124: Force-based layout for three different WS.01 instances.

444

Appendix C: Topology Survey

2 0 2 4 6 8 10
Vertex Degree

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

5 0 5 10 15 20
Path Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Fr
e
q
u
e
n
cy

Figure C.125: Vertex degree and path length histograms for WS.01, n = 100.

2 0 2 4 6 8 10
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
e
q
u
e
n
cy

5 0 5 10 15 20 25
Path Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fr
e
q
u
e
n
cy

Figure C.126: Vertex degree and path length histograms for WS.01, n = 400.

2 0 2 4 6 8 10
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
e
q
u
e
n
cy

5 0 5 10 15 20 25 30 35
Path Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fr
e
q
u
e
n
cy

Figure C.127: Vertex degree and path length histograms for WS.01, n = 900.

445

Appendix C: Topology Survey

C.7.3 WS.1

Synopsis: A regular one dimensional circular lattice with a neighbourhood size of nei = 3
and a rewiring probability of p = 0.1.

In this case, the level of lattice rewiring brings the graph towards the simpler char-
acteristics of a random (ER) graph. This can be seen in the layout examples, and the
statistics and histograms for the average of 30 instances at each size n.

Property n100 n400 n900

n 100 400 900

m 300 1200 2700

Components 1.000 1.000 1.000

Diameter 6.133 7.867 8.967

Girth 3.000 3.000 3.000

Density 0.061 0.015 0.007

〈k〉 6.000 6.000 6.000

L 3.272 4.391 5.082

C 0.328 0.313 0.312

Eglob 0.505 0.393 0.345

Eloc 0.518 0.496 0.492

Table C.41: Properties and statistics for WS.1 graph instances.

Figure C.128: Force-based layout for three different WS.1 instances.

446

Appendix C: Topology Survey

2 0 2 4 6 8 10 12
Vertex Degree

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Fr
e
q
u
e
n
cy

1 0 1 2 3 4 5 6 7 8
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
e
q
u
e
n
cy

Figure C.129: Vertex degree and path length histograms for WS.1, n = 100.

2 0 2 4 6 8 10 12
Vertex Degree

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fr
e
q
u
e
n
cy

Figure C.130: Vertex degree and path length histograms for WS.1, n = 400.

2 0 2 4 6 8 10 12 14
Vertex Degree

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
e
q
u
e
n
cy

Figure C.131: Vertex degree and path length histograms for WS.1, n = 900.

447

Appendix C: Topology Survey

C.7.4 WS Summary

A summary of the comparative statistics of the Watts-Strogatz (WS) topology models is
presented in Table C.42. For each graph size n selected, three rewiring probabilities p were
used to broadly cover the range of the model from a regular lattice (p = 0.001) towards a
disrupted (p = 0.1) random model.

The number of edges is set at m = 3n in each case, and the density decreases as scale
n increases. Diameter in each scale is large, as expected for a regular lattice model, and
drops to levels familiar to random graph instances.

It is expected that for instances with low p the mean path length L will be high, and
should drop as a greater degree of rewiring is applied. This is clearly evident in each
sample of instances, and is supported by the increased global efficiency as L decreases.

Similarly, clustering C is high in the initial near-regular lattice instance, and stays
relatively high despite some rewiring (p = 0.01) unlike L which dropped at this level of
p. Eventually C begins to decrease later when the amount of rewiring becomes significant
(p = 0.1). This is also reflected in the local efficiency values which are initially high and
fall significantly only when the amount of rewiring is large.

The ability of a graph to have both low mean path length and relatively high levels of
clustering are the defining characteristics of small-world networks.

p Diameter L C Eglob Eloc

n = 100, m = 300, density= 0.061

0.001 17.000 8.191 0.596 0.310 0.852

0.01 12.267 5.655 0.568 0.373 0.825

0.1 6.133 3.272 0.328 0.505 0.518

n = 400, m = 1200, Density= 0.015

0.001 56.967 24.094 0.596 0.137 0.852

0.01 20.067 9.072 0.563 0.238 0.818

0.1 7.867 4.391 0.313 0.393 0.496

n = 900, m = 2700, Density= 0.007

0.001 97.967 40.616 0.597 0.084 0.852

0.01 24.633 11.165 0.562 0.191 0.818

0.1 8.967 5.082 0.312 0.345 0.492

Table C.42: WS model comparison for each size and rewiring probability.

448

Appendix C: Topology Survey

C.8 Barabási-Albert (BA)
Synopsis: The Barabási-Albert (BA) preferential attachment growth model, using a
simple power relationship of p = 1.

As discussed in the thesis, of particular note for graphs of this model is the linear
slope of a vertex degree plot (or histogram) using a log-log scale (not shown). This linear
scale-free behaviour is indicative of preferential attachment and growth models. In this
basic form cycles are not formed, and so the girth and clustering values are zero. Overall
cost is also very low, with overall robustness and several critical hub vertices.

Property n100 n400 n900

n 100 400 900

m 99.000 399.000 899.000

Components 1.000 1.000 1.000

Diameter 10.800 14.433 16.867

Girth 0.000 0.000 0.000

Density 0.020 0.005 0.002

〈k〉 1.980 1.995 1.998

L 4.692 6.010 6.749

C 0.000 0.000 0.000

Eglob 0.394 0.316 0.285

Eloc 0.000 0.000 0.000

Table C.43: Properties and statistics for BA.p1 graph instances.

Figure C.132: Force-based layout for three different BA.p1 instances.

449

Appendix C: Topology Survey

5 0 5 10 15 20 25 30 35 40
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10 12 14 16
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

Fr
e
q
u
e
n
cy

Figure C.133: Vertex degree and path length histograms for BA.p1, n = 100.

10 0 10 20 30 40 50 60 70
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
e
q
u
e
n
cy

5 0 5 10 15 20
Path Length

0.00

0.05

0.10

0.15

0.20

Fr
e
q
u
e
n
cy

Figure C.134: Vertex degree and path length histograms for BA.p1, n = 400.

20 0 20 40 60 80 100 120 140
Vertex Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
e
q
u
e
n
cy

5 0 5 10 15 20
Path Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Fr
e
q
u
e
n
cy

Figure C.135: Vertex degree and path length histograms for BA.p1, n = 900.

450

Appendix C: Topology Survey

C.9 Merge-Regenerate (MR)
Synopsis: The Merge-Regenerate graph generation method begins initially with an Erdös-
Rényi (ER) model which is then modified with a “merge-regenerate” (MR) process that
merges connected vertices and adds replacement vertices with a mean number of edges
(k = 5 in this case). The MR process is applied a number of times (50 for the n = 100
case here).

Property n100 n400 n900

n 100 400 900

m 228.533 749.833 1368.933

Components 5.200 27.333 95.233

Diameter 6.400 9.233 12.167

Girth 3.000 3.000 3.000

Density 0.046 0.009 0.003

〈k〉 4.571 3.749 3.042

L 3.017 4.214 5.291

C 0.070 0.014 0.005

Eglob 0.486 0.352 0.265

Eloc 0.077 0.013 0.004

Table C.44: Properties and statistics for MR.5 graph instances.

With an underlying ER model, the initial features of an MR graph match an equivalent
ER profile, and as the number of MR steps increases features can resemble parts of Tree and
Star graphs. It is possible and likely that some vertices remain isolated. (See Figure C.136
where isolated vertices are indicated as unfilled circles.)

Cycles and triangles are created so a minimal girth of 3 is frequent. The overall cost of
the graph is relatively low, proportional to the k selected and the number of times the MR
process is applied. The mean path length L also remains very low due to the concentrating
nature of merges.

Unfortunately the MR model introduces several parameters which are not explored in
detail here. These include the initial probability of connections p or the number of connec-
tions m in the base ER graph, the mean degree k selected when adding new regenerated
vertices (or the type of distribution used), and the number of steps – all influence the final
graph properties.

The values selected here were arbitrarily selected to be suitable for interesting features;
low mean path length similar to an ER or WS model, but with strong clustering (and its
influence on mean path length distribution) more typical of growth such as the BA or
hierarchical model.

451

Appendix C: Topology Survey

Figure C.136: Force-based layout for three different MR.5 instances.

452

Appendix C: Topology Survey

5 0 5 10 15 20 25
Vertex Degree

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fr
e
q
u
e
n
cy

Figure C.137: Vertex degree and path length histograms for MR.5, n = 100.

5 0 5 10 15 20 25 30
Vertex Degree

0.00

0.05

0.10

0.15

0.20

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10 12
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
e
q
u
e
n
cy

Figure C.138: Vertex degree and path length histograms for MR.5, n = 400.

5 0 5 10 15 20 25
Vertex Degree

0.00

0.05

0.10

0.15

0.20

0.25

Fr
e
q
u
e
n
cy

2 0 2 4 6 8 10 12 14 16
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

Fr
e
q
u
e
n
cy

Figure C.139: Vertex degree and path length histograms for MR.5, n = 900.

453

Appendix C: Topology Survey

454

Appendix D

CDROM Guide

As an overview, the CDROM contains the following files and folder structure. Where
appropriate, folders contain an individual readme.txt file with additional details.

• readme.txt CDROM details, notes and instructions.

• index.html HTML file list and links to content.

• links.html HTML file with links to online resources.

• thesis.pdf Thesis document as a single PDF file.

• esec/ The esec Python package and support files:

– esec/ Module source files.
– docs/ Module documentation generated from source files.
– test/ The esec module test files.
– testorama.bat Windows Quick-Test Script.
– testorama.sh Linux/OS X Quick-Test Script.
– run.py Executes configuration and batch files.
– report.py Generates batch reports using batch file details.

• chap6/ Chapter 6 Population Investigation:

– cfgs/ Batch Configuration Files.
– reports/ Report Files (HTML and PDF).

• chap7/ Chapter 7 Community and Ecosystem Examples:

– cooperate/ Cooperative Symbiosis.
– compete/ Competitive Predator-Prey.
– island/ Classic Island Model.
– convoluted/ Convoluted Ecosystem.

455

Appendix D: CDROM Guide

456

Appendix E

The esec Python Package

E.1 Introduction

E.1.1 Purpose

The esec Python package contains a number of “modules” designed to support research
using an ecosystem model of evolutionary computation. esec has extensive support for
different ecosystem models at community and population levels. It is also a robust and
flexible platform for simpler traditional models of evolutionary computation.

The original scope of esec was to support the research objectives of this thesis, and
while accomplishing this goal it became clear that other users could benefit. It is hoped
that by providing this package under a liberal license others will not only find it useful,
but also contribute to its ongoing development.

With this in mind, the wider group of intended users of esec now includes university
students at both undergraduate and postgraduate levels, and other EC researchers inter-
ested in either the existing features or in using a Python based approach to algorithm
development and research.

E.1.2 Features

The esec package was created to enable research of ecosystem models of evolutionary
computation. It has the following features:

• Supports a wide range of classic EC models.

• Many standard benchmark problem, including classic real valued continuous function
optimisation and binary problem landscapes.

• An abstracted and flexible model of evolution based on system levels. Evolution
can be specified at different levels within the same framework, and different systems
levels can be mixed and structured together.

• Evolution using complex topological structures; from localised population graphs,
up to community and ecosystem structures.

• Flexible Python dictionary-based programmable configuration files. Settings are hi-
erarchical and different configurations can be compounded (overlaid) for easy adap-
tation and extension of existing simulations.

• Automatic and integrated configuration syntax and value validation.

• Easily override any configuration setting from the command line.

457

Appendix E: The esec Python Package

• Flexible reporting and data logging features.

• Batch-level experiment configuration, with automatic report summaries and com-
pression of result data files.

• Integrated module and method level documentation using Python “docstring” de-
tails.

• Operating system independent; wherever Python and the required Python packages
are supported esec can be used.

The decision to use Python has been a positive and rewarding feature of the ESEC
implementation. In contrast to building complex systems in other languages, the flexi-
bility of Python has resulted in a clear and compact code base without large amounts of
unnecessary “boiler-plate” code. Documenting code is rewarded by the integrated use of
Python “docstring” features. Testing and profiling are also well supported in Python.

Python is platform independent and flexible high-level language with a clear syntax.
It has excellent support for using other libraries and packages. In particular, this has
been essential in enabling esec to take advantage of two very useful and mature packages;
numpy and igraph. numpy provides powerful and efficient numerical calculation routines,
and the igraph library supports nearly all of the desired topological features.

E.2 Architecture
The top level package is named esec, which contains submodules and an Application
class which is the recommended way of using other package features.

Outside of the top level module are two useful Python scripts: run.py and report.py.
The run.py script is used to run individual simulation configurations or batch experiments,
and supports a number of command line options. The report.py script can be used to
automatically create HTML and PDF reports using batch data.

The esec package contains several major submodules:

• esec.ea Contains an abstract EA base class for all dialects to extend. The
esec.ea.dialect module contains concrete EA instances.

• esec.landscape A collection of problem landscapes divided into modules based
on value type. The binary and real modules currently contain the majority of
problem landscapes, including all of the domains described in Appendix B.

• esec.species Supports all things related to the management and manipulation of
species and their genomes, including the tracking of statistics. A separate submodule
is created for each type of species and any custom genome specific operations.

• esec.selection Selection methods for use in various different ESEC contexts. Di-
vided into submodules for uniform, tournament, truncate, proportional and
special types of selection.

• esec.system The isolation and abstraction of the organisational systems and pro-
cesses in the ESEC model: population, community and ecosystem. Each system
contains an internal system specific controller. System controllers use a command
queue model where breeding operations are stored and each called in turn. System
and process complexities are determined at system initialisation, so that the opera-
tion of the system is then trivial. This module also contains classes for individuals,
groups of individuals and other system support.

458

Appendix E: The esec Python Package

• esec.utils A collection of supportive classes and functions. In particular configu-
ration dictionary handling.

• esec.monitor Classes used by an Application instance to monitor and report on
the progress of an EA instance.

The Application class is able to process a configuration dictionary, create appropriate
EA object, problem landscape and monitor instances. The Application.run() method
is then called to perform the EA operations as configured, with the progress and the result
present by the monitor instance.

E.3 Dependencies
Experiments and results presented in this thesis were performed using Python version 2.5.2
on both Windows XP and Mac OS X 10.5 (Leopard) operating systems. The package has
also been successfully tested with Python 2.6. Although Python 3 was available, it breaks
backward compatibility with version 2 and not all dependencies were available, and so was
not considered for use.

The esec package makes use of a number of other packages, some of which are optional.
All of these projects are open source and free, typically released under BSD or GNU GPL
style licenses.

• igraph A well respected software library written in C for creating and analysing
graphs. Use extensively by esec. See http://igraph.sourceforge.net. Version
0.5.1 was used in this work.

• numpy is well known as a “fundamental” package for scientific computing with python
and supports powerful N-dimensional array objects, sophisticated “broadcasting”
functions and numerous mathematical and statistical routines. Although the basic
use of esec does not require numpy, some landscape and the report generation
features do, and so this package is considered a required dependency. See http:
//numpy.scipy.org/. Version 1.2.1 was used in this work.

• psyco (optional). A specialising compiler that, as an extension module, can greatly
speed up the execution of Python code at the expense of memory usage. There
are limitations: generates only 32-bit x86 code and is limited to Python 2.5 and
2.6 versions. See http://psyco.sourceforge.net/. Version 1.6 was used in this
work.

• matplotlib (optional). A plotting library, mainly 2D, used to produce figures
for batch result reports. See http://matplotlib.sourceforge.net/. Version
0.98.5.2 was used in this work.

• nose (optional). To quote the project website nose is a “unittest-based testing
framework for Python that makes writing and running tests easier”. Once installed
nose provides a “nosetests” script that can discover and run tests for a project. See
http://code.google.com/p/python-nose/. Version 0.10.4 was used in this work.

Most of these packages can be installed from a command line prompt using the Python
“easy_install” script that is part of the setuptools package and included with most recent
Python distributions.

459

http://igraph.sourceforge.net
http://numpy.scipy.org/
http://numpy.scipy.org/
http://psyco.sourceforge.net/
http://matplotlib.sourceforge.net/
http://code.google.com/p/python-nose/

Appendix E: The esec Python Package

E.4 Installation and Testing

E.4.1 Installation and Setup

The typical installation and usage of the current esec package is to simply copy the esec
folder from the CDROM to a work location, and work within it. New configuration files
should be placed within the esec/cfgs folder and executed from a command prompt
using the esec/run.py script with appropriate parameters.

Although the esec package can be installed as part of the global site-packages available
to Python, the process is not described in detail here.

Future important development work for esec will provide a more complete range of
installation options using standard Python approaches including the creation of “egg”
archive files, platform specific installers and making the package available via standard
online package repositories.

E.4.2 Running Self-Tests

There are two quick and easy “high level” ways to verify a working environment for
esec and its dependences; using a simple script to run a small number of quick example
simulations, or running the suite of package tests.

A simple windows “bat” file named testorama.bat, and an equivalent shell script
named testorama.sh, are located in the base esec directory. By executing the platform
appropriate “testorama” file from the command line (or possibly “double-click” on the file
using a GUI and the right OS environment settings) should launch a series of small and
sample simulations, each using the esec/run.py script.

The second and more detailed self-test is to run the nosetests command in the
esec/tests directory and observe the results. It is possible that some tests will fail
as some are stochastic operations are tested using sampling techniques and these can
occasionally fail. If there are errors, run tests again to assess if errors are consistent or
sampling artefacts.

E.5 Basic Usage
Once installed, use the esec/run.py script to run a simulation. Figure E.1 shows a
sample execution of the script with no parameters (default settings). The result is a
simple genetic algorithm (GA) tested on a real-value problem (RVP) landscape named
“Sphere”, with two parameters (n2) and executing for 10 generations. We can see that
the small population of 10 individuals makes some improvement during the simulation.

The run.py script supports a number of command line options. These include:

• -v VERBOSE level. 0 is lowest, 5 is highest. Particularly useful when investigating
complicated configurations. The default behaviour is the refer to the configuration
file which defaults to level 1.

• -o OPTIMISE. Use the psyco module (if available) to optimise execution. Default
is False. Highly recommended if available.

• -p PROFILE. Uses the Python cProfile module to analyse the execution time of
the script and prints a call report.

• -c CONFIG. A set of configuration names, as a single string joined by “+” char-
acters. If we create a “test1.py” configuration file, and save it to the esec/cfgs
directory, we can then use python run.py -c test1 (no “.py” needed) to use the

460

Appendix E: The esec Python Package

C: \ p r o j e c t s \python\ esec >python run . py
−−−

ESEC: EcoSystem Evolut ionary Computation
Copyright (c) Cl inton Woodward 2007−2009
−−−

∗∗ Psyco Optimisat ion ! ∗∗
∗∗ Conf igurat ion names : RVP+Sphere+n2+GA

−−−
Simulat ion l i m i t s (run_stop) : gen

∗ Generation l i m i t : 10
Random number seed : 12345
Run Count : 1

−−−
Using landscape Sphere d e f in e d on 2 parameter (s)

−−−
>> EA name :GA − Genetic Algorithm
>> Type : Generat iona l
−−−
>> Populat ion i n f o :

∗ parents : 10 and o f f s p r i n g : 10
−−−
>> Report c o n f i g u r a t i o n : b r i e f , s t a t u s+best
−−−
>> New Seed : 12345 + 0 (o f f s e t)

#gen . | b i r t h s | e v a l s . | best− f i t . ###
1 10 10 4.234470 e+001
2 20 20 4.234470 e+001
3 30 30 4.234470 e+001
4 40 40 4.234470 e+001
5 50 50 4.454935 e+001
6 60 60 4.454935 e+001
7 70 70 4.454935 e+001
8 80 80 4.481228 e+001
9 90 90 4.484959 e+001

10 100 100 5.083816 e+001
>>GEN_LIMIT
−−−

stop why? | b . date | e v a l s . | f i t n e s s ###
GEN_LIMIT 100 100 5.083816 e+001

−−−

−>> DONE <<− in 0.0276920043539

Figure E.1: Sample execution of the run.py script using the esec package.

461

Appendix E: The esec Python Package

configuration. As another example, the equivalent default sample can be specified
using -c "RVP+Sphere+n2+GA". Multiple configurations are loaded and overlaid on
each other in the order specified.

• -b BATCH. The name of a single batch file.

• -s SETTINGS. Override any configuration settings using a quoted and semi-colon
separated string. Each setting value is evaluated to support correct types. For
example, the default generation limit of the default sample could be extended to 20
generations using -s "application.gen_limit=20”.

The typical usage of the esec package is to write a configuration file, save it to the
esec/cfgs directory, and to load and execute the configuration using the esec/run.py
script. Configuration dictionaries have been described in some detail in the thesis body,
and are also detailed in the package documentation and code comments.

In particular, see the series of batch experiment files (located in the chap6/cfg di-
rectory) as examples of configuration and report creation details. A full presentation and
discussion of the capabilities of batch and report features is beyond the scope of this
document.

E.6 Documentation
The source code has been extensively commented for a wide range of audience knowledge
levels. API documentation is generated directly from the Python source code using a
modified version of the epydoc software. The documentation is available in HTML format
located in the /docs/api/ directory. Documentation includes module and class hierarchy
details, and a detailed “identifier index” which supports navigation.

E.7 Design and Implementation Notes

E.7.1 Language Selection: Why Python?

The use of the Python programming language for EC research has not been widely adopted.
It was selected for implementation of the ESECmodel for a number of reasons, in particular
because it is a nimble and expressive language, and it is good at “gluing” other useful and
established software components, such as the igraph library.

For the reader not familiar with Python or its features, the following is a list of positive
general features based loosely on the points of Travis Oliphant in [266].

• Clean and clear language syntax. Blocks are defined by whitespace indentation. A
human reader should have the same idea of what code means as the computer, and
without spurious character taking up precious screen space.

• Code in procedural or object-oriented style as needed. An OO design or language is
not a panacea to good software design, or correct and verifiable operation.

• A liberal Open Source Initiative (OSI) approved license, supporting liberal commer-
cial usage and no GPL-like “copyleft” restrictions.

• An interpreter that is supported on many multiple platforms. There is also a Java
based interpreter Jython1, so anywhere Java is supported, Python can be used. Simi-
lary, IronPython2 is a .NET implementation of Python that is closely integrated with
the .NET Framework but with some compatibility issues with standard CPython.

1See http://www.jython.org.
2See http://ironpython.net.

462

http://www.jython.org
http://ironpython.net

Appendix E: The esec Python Package

• Interactive interpreter supporting live experimentation which eliminates the compile
step from the traditional write-compile-test routine of development. The IPython
project3 shell enhances this even further.

• Many ways to extend Python and let it do the important things as fast as your
hardware will allow. The argument of slow Python speed does not need to apply;
it’s simply a matter of spending time optimising when needed.

• Easily interact with other existing pieces of software through either standard libraries
or the ability to bind to many other libraries and protocols.

• The “batteries included” mentality of Python development has result in many use-
ful built-in standard libraries, and many other freely available and easily installed
libraries.

• Bindings to all standard GUI toolkits including TK, QT and wx.

• Package based distribution and installation of python modules, as well as a growing
online repository that vastly simplifies package management.

Perhaps the main criticism against using Python for this type of application, evolu-
tionary computation, is the lack of machine execution speed. Python code, being a flexible
interpreted language, can run much slower than a complied language. However, it is rela-
tively easy to identify performance issues (using built-in profiling tools) and to selectively
spend effort to improve performance in the areas identified.

When the need for machine speed becomes the priority, python provides many ways
to ease the transition from Python code to, for example, optimised C code extension
modules. As with the optimisation of any software or process, prematurely optimising
code can result in wasted effort, complex and perhaps brittle code that resists change and
make it inflexible to new research requirements.

E.7.2 Software Quality

A significant amount of time, effort and thought has been applied to the testing and
verification of the esec package. This is based on the principle that software quality is
a designed objective, and that it needs to be monitored and maintained throughout the
entire software lifecycle. Although tests do not prove that software is correct, without a
methodology of testing, software quality is very difficult to maintain.

As already described, esec has used the nose package for testing during development.
The esec/tests directory contains an extensive number of unit tests.

One unfortunate result of a strong test-driven development mentality is that more
code is written for testing then for the actual software features. This is a situation worth
avoiding if the coverage and quality of testing can be maintained. A common approach to
writing unit tests is the use a unit testing framework (such as JUnit for Java or NUnit for
.NET code) and to write unit tests that inherit to specify testing details. This often results
in a lot of so-called “boiler-plate” code, as well as mock objects and other dependencies.

The “nose” package uses an alternative approach to only writing unit tests, and which
automatically collects tests as long as they are written using some simple guidelines. Using
nose writing and running tests is simpler and easier and ideally this enables researchers
to continue with good testing practices while still adding all the new features they want
to experiment and investigate with.

3See http://ipython.scipy.org.

463

http://ipython.scipy.org

Appendix E: The esec Python Package

464

Appendix F

Population Topology Experiments

The following population experiment reports are available as an electronic appendices in
both PDF and HTML formats on the accompanying CDROM. A description of the report
content presentation was included in Chapter 5 as part of the discussion on performance
comparison.

• Topology Influence

– Base Results: batch01a_base
– Additional Problem Results: batch01b_extended
– Real Genome Results: batch00_real_species

• Topology Scale

– Scale-up Results: batch02a_n400 and batch02b_n900

– Scale Comparison Results: batch02c_compare
– Full Graph Comparison Results: batch00_full

• Circular and Bound Lattices:

– batch03_bound

• Influence of Order and Mate Selection

– Lattices and Line Sequence:
batch04a_FLS, batch04b_FLSR and batch04c_ZigZag

– Lattices and FLS with Competition:
batch05a_FLS_c, batch05b_FLSR_c and batch05c_compare

– Lattices and Spiral:
batch06a_SpiralIn, batch06b_SpiralOut and batch06c_Compare

– Fitness sequence:
batch08a_FIT, batch08b_FITR and batch08c_compare

• Juveniles with Delayed Competition:

– batch09_delayed

• Rewired Lattices:

– batch10_rewire

465

Appendix F: Population Topology Experiments

466

Appendix G

Classic Small-World Simulation

G.1 The Small-World Model
A small-world simulation was created and performed by Watts and Strogatz for their
classic and often cited Nature paper in 1998 [360].

However there seems to be few recreations of the experiment available, perhaps because
it is relatively simple. As a useful reference the recreation of the Watts and Strogatz small-
world model, using open source software, is included here in the hope that it may assist
others.

G.2 Required Software
Two specific pieces of software are required. The first is “R”1 which is a “free software
environment for statistical computing and graphics” and a very appropriate tool for repli-
cating this particular experiment. The second piece of software is the igraph library2,
“a free software package for creating and manipulating undirected and directed graphs”.
igraph is a C library that also has an R package and a Python extension (used extensively
for this thesis).

G.3 The Code
A large proportion of this code is simply related to presentation (plot appearance), and
practically it is one of the most useful aspects of this code. (Getting a plot to look right
can take some effort with any tool, and R is no exception.)

Listing G.1: Recreation of the Watts-Strogatz classic small-world ring lattice simulation
using R and igraph

Need the igraph library
library(igraph)

Set up required parameters and create Watts/Strogatz lattice model
1998 model is n=1000, k=10 (average), normalised L(0) and C(0)
average of 20 runs

n <- 1000
k <- 5 # == avg degree 10
reps <- 20
px = 0.52^(seq(14, 0, -1)) # from ~0.0002 to 1.0

1http://www.r-project.org
2http://cneurocvs.rmki.kfki.hu/igraph/

467

http://www.r-project.org
http://cneurocvs.rmki.kfki.hu/igraph/

Appendix G: Classic Small-World Simulation

c_avg <- vector(mode='numeric')
l_avg <- vector(mode='numeric')

Using the model
for (i in 1:length(px)) {
prep somewhere to store the results
l_set <- vector(mode='numeric')
c_set <- vector(mode='numeric')
do repeat model samples of random graph instances
cat('p=',px[i])
for (j in 1:reps) {
g <- watts.strogatz.game(dim=1, size=n, nei=k, p=px[i])
l_set <- c(l_set, average.path.length(g))
c_set <- c(c_set, transitivity(g, type="average"))
cat('.') # show progress
flush.console()

}
save the average of the runs
l_avg <- c(l_avg,mean(l_set))
c_avg <- c(c_avg,mean(c_set))

user feedback
cat('\n')
flush.console()

}
cat('\n')

create a normalisation values and normalise
g <- watts.strogatz.game(dim=1, size=n, nei=k, p=0)
L0 <- average.path.length(g)
C0 <- transitivity(g, type="average")
l_norm <- l_avg / L0 # y1
c_norm <- c_avg / C0 # y2

options(scipen=5) # force avoid scientific notation

Plot the normalised l (mean path length) values
plot(x=px, y=l_norm, log="x", axes=F, frame=T,

xlim=c(0.0001,1.0), ylab=NA, xlab='p', font.lab=3,
type="b", pch=19, col='purple')

Plot the normalised c (clustering) values
par(new=TRUE) # treat as if a "new" device (so don't clean)
plot(x=px, y=c_norm, log="x", axes=F, frame=T,

xlim=c(0.0001,1.0), ylab=NA, xlab=NA,
type="b", pch=21, col='blue')

Create big and small ticks for a log graph
bigtcks = c(0.0001, 0.001, 0.01, 0.1, 1.0)
smltcks <- vector("numeric") # the in-between points
for (i in 1:(length(bigtcks)-1)) {
smltcks <- c(smltcks, bigtcks[i]*(2:9))

}

Left+Right side as per defaults
axis(2, tcl=0.5, las=1) # las=0 default, see par
axis(4, tcl=0.5, labels=F)

Bottom with big/small ticks
axis(1, at=bigtcks, tcl=0.8, labels=expression(0.0001,0.001,0.01,0.1,1.0))
axis(1, at=smltcks, tcl=0.4, labels=F)

468

Appendix G: Classic Small-World Simulation

Top, no labels
axis(3, at=bigtcks, tcl=0.8, labels=F)
axis(3, at=smltcks, tcl=0.4, labels=F)

paste some text within the plot at the plot coords indicated
text(0.005, 0.8, "C(p)/C(0)", cex=1.5)
text(0.0005, 0.2, "L(p)/L(0)", cex=1.5)

G.4 The Result
The small-world model is discussed in Section 4.5.5, and the result of this code is presented
in Figure 4.13. The plot (without a detailed caption) is presented in Figure G.1.

Figure G.1: The effect of p on L and C in the small-world (SW) Model. This figure is a
recreation of the model and experiment data as described by Watts and Strogatz in Figure 2
of [360].

469

	01front.pdf
	I Ecosystems, Topology and Evolutionary Computation
	Introduction
	Overview
	Evolution and Genetics
	Ecology and Ecosystems
	Evolutionary Computation
	Performance and No Free Lunch
	Algorithm Performance
	Problems and Problem Solving
	Parameter Adaptation and Control
	Evolution and Topology
	Graphs, Complex Systems and Efficiency
	Graph Concepts
	Complex Systems
	Efficient Topology

	Research Objectives
	Contributions
	Thesis Structure

	Ecology, Ecosystems and Evolution
	Introduction
	Ecology
	Ecosystem
	Definitions and Origins
	Structure and Function
	Life Cycle Model
	Community Model
	Components, Properties and Processes

	Evolution
	Origins and Fitness
	Mechanisms
	Selection
	Genetic Drift
	Gene Flow
	Mutation
	Speciation
	Limitations
	Evolution and Organisational Scale

	Evolutionary Computation
	Introduction
	Objectives
	The Simple Evolutionary Algorithm
	Search and Fitness Landscape
	Convergence
	EAs as Robust, Adaptive Search
	EAs and Conventional Optimisation
	Further Resources

	An Ecosystem Model for EA
	Introduction
	Components
	Representation
	Evaluation
	Selection
	Variation
	Migration
	Initialisation
	Termination
	Components and Influence

	Common Dialect Classification
	The EA Union
	Evolutionary Strategies (ES)
	Evolutionary Programming (EP)
	Genetic Algorithm (GA)
	Genetic Programming (GP)
	Structured EAs
	Other Approaches

	Reference Algorithms
	Introduction
	GA: Genetic Algorithm
	ES: Evolutionary Strategy
	G3: Generalised Generation Gap Model
	cEA: Cellular Evolutionary Algorithm
	dEA: Distributed Evolutionary Algorithm
	Closing

	Summary

	Graph Theory, Topology and Efficiency
	Introduction
	Networks and Graphs
	Graphs Everywhere
	Complex Systems
	Small-World Phenomena
	Graph Theory
	Additional Resources

	Graph Concepts
	Overview
	Vertices, Properties and Sets
	Paths and Cycles
	Critical Components
	Graphs Terms and Properties

	Visual Representation
	Introduction
	Regular and Random Structures
	Graph Drawing
	Further Resources

	Measurements and Properties
	Introduction
	Degree, Distribution and Correlation
	Clustering Coefficient
	Motifs
	Characteristic Path Length
	Global and Local Efficiency
	Cost
	Other Measures and Properties
	Real-World Examples

	Topology Models
	Introduction
	Regular Models
	Hierarchical Models
	Random Graphs
	Small-World Model
	Price's Growth Model
	Barabási and Albert (BA) Growth Model
	Merge-Regenerate Models
	Comparing Topology Models

	Networks and Processes
	Introduction
	Utilisation
	Navigation
	Evolution
	Biology and Genetics

	Summary

	II Investigations within Ecosystem EC
	An Ecosystem Model for Evolutionary Computation
	Introduction
	Ecosystem Evolutionary Computation
	A Composition of Models
	Ecology, Ecosystems and Organisation Scale
	Evolutionary Computation
	Topology, Complexity and Efficiency
	An Organisation of Systems

	A Python Package: esec
	Package Objectives
	Configuration
	Batch Experiments and Reports

	Consideration of Related Work
	Introduction
	Explicit Niche Schemes
	Structured EAs
	Communities of Species
	Summary

	Key Questions
	Comparing Performance
	Introduction
	Measurement and Concepts
	Box and Whisker Evaluation Plots
	Mann-Whitney U Test Comparison Matrix

	Closing

	Population Organisation
	Introduction
	Investigation Scope
	Objectives
	Selected Population Topology
	Selected Problem Landscapes
	Result Comparison Methods

	Experiments
	Introduction
	Topology Influence
	Topology Scale
	Circular and Bound Lattices
	Influence of Order and Mate Selection
	Juveniles with Delayed Competition
	Rewired Lattices

	Discussion
	Outcomes
	Future Opportunities
	Complex Topology and Computational Cost
	Topology Selection Guidelines

	Closing

	Open Research and the ESEC Model
	Introduction
	Community
	Subpopulations
	Multiple Species
	Interaction Models
	Interaction Structure

	Ecosystem
	Concepts
	Island Models as Ecosystems
	Structure and Migration

	System Configuration
	Introduction
	Community
	Ecosystem

	Community Examples
	Cooperative Symbiosis
	Competitive Predator-Prey

	Ecosystem Examples
	Basic Island Model
	Complex Ecosystem

	Open Questions
	Closing

	Conclusions
	Overview
	Contributions
	Future Work
	Closing Comment

	III References and Appendices
	References
	Glossaries
	Ecology, Ecosystems and Evolution
	Graphs and Topology

	Benchmark Problems
	Domain Qualities
	Classic Binary Problems
	Introduction
	OneMax Function
	Royal Road Function
	Goldberg's Deceptive 3-bit Function
	Whitley's Deceptive 4-bit Function

	Classic Continuous Optimisation Problems
	Introduction
	Sphere
	Hyperellipsoid
	Quadric
	Noisy Quartic Function
	Easom Function
	Rosenbrock's valley
	Rastrigin Function
	Griewangk Function
	Ackley Function
	Schwefel Function
	Michalewicz's Function
	Frequency Modulation Sounds Problem

	Multiple Niche Problems
	Introduction
	One-dimensional Standards
	Himmelblau Function
	Six-hump Camel Back Function

	Problem Generators
	Introduction
	Massively Multimodal Deceptive Problem
	Multimodal Problem Generator P-PEAKS
	L-SAT Random Satisfiability Problem
	Kauffman's NK Landscape
	NKC Landscape
	Subset Sum Problem Generator
	MAXCUT Maximum Cut Graph Problem
	Error Correcting Code Design
	Minimum Tardy Task Problem
	Max Set of Gaussians Landscape Generator

	Topology Survey
	Introduction, Measures and Details
	Full
	Lattice (L)
	Introduction
	L.k4
	L.k4.b
	Rewired L.k4
	L.k8
	L.k8.b
	Rewired L.k8
	L.k12
	L.k12.b
	Rewired L.k12
	L.hk4
	L.hk4.b
	L.hk8
	L.hk8.b
	Rewired L.hk8
	L.k6
	L.k6.b
	Rewired L.k6
	L.hk3
	L.hk3.b
	Rewired L.hk3
	Regular Lattice Summary
	Hollow Lattice Summary
	Rewired Lattice Summary

	Star
	Tree (T)
	T.c2
	T.c3
	T.c4
	T.c5
	T.c6
	Tree Summary

	Erdös-Rényi (ER)
	ER.01
	ER.02
	ER.03
	ER.04
	ER.05
	ER Summary

	Watts-Strogatz (WS)
	WS.001
	WS.01
	WS.1
	WS Summary

	Barabási-Albert (BA)
	Merge-Regenerate (MR)

	CDROM Guide
	The esec Python Package
	Introduction
	Purpose
	Features

	Architecture
	Dependencies
	Installation and Testing
	Installation and Setup
	Running Self-Tests

	Basic Usage
	Documentation
	Design and Implementation Notes
	Language Selection: Why Python?
	Software Quality

	Population Topology Experiments
	Classic Small-World Simulation
	The Small-World Model
	Required Software
	The Code
	The Result

	02whole.pdf
	I Ecosystems, Topology and Evolutionary Computation
	Introduction
	Overview
	Evolution and Genetics
	Ecology and Ecosystems
	Evolutionary Computation
	Performance and No Free Lunch
	Algorithm Performance
	Problems and Problem Solving
	Parameter Adaptation and Control
	Evolution and Topology
	Graphs, Complex Systems and Efficiency
	Graph Concepts
	Complex Systems
	Efficient Topology

	Research Objectives
	Contributions
	Thesis Structure

	Ecology, Ecosystems and Evolution
	Introduction
	Ecology
	Ecosystem
	Definitions and Origins
	Structure and Function
	Life Cycle Model
	Community Model
	Components, Properties and Processes

	Evolution
	Origins and Fitness
	Mechanisms
	Selection
	Genetic Drift
	Gene Flow
	Mutation
	Speciation
	Limitations
	Evolution and Organisational Scale

	Evolutionary Computation
	Introduction
	Objectives
	The Simple Evolutionary Algorithm
	Search and Fitness Landscape
	Convergence
	EAs as Robust, Adaptive Search
	EAs and Conventional Optimisation
	Further Resources

	An Ecosystem Model for EA
	Introduction
	Components
	Representation
	Evaluation
	Selection
	Variation
	Migration
	Initialisation
	Termination
	Components and Influence

	Common Dialect Classification
	The EA Union
	Evolutionary Strategies (ES)
	Evolutionary Programming (EP)
	Genetic Algorithm (GA)
	Genetic Programming (GP)
	Structured EAs
	Other Approaches

	Reference Algorithms
	Introduction
	GA: Genetic Algorithm
	ES: Evolutionary Strategy
	G3: Generalised Generation Gap Model
	cEA: Cellular Evolutionary Algorithm
	dEA: Distributed Evolutionary Algorithm
	Closing

	Summary

	Graph Theory, Topology and Efficiency
	Introduction
	Networks and Graphs
	Graphs Everywhere
	Complex Systems
	Small-World Phenomena
	Graph Theory
	Additional Resources

	Graph Concepts
	Overview
	Vertices, Properties and Sets
	Paths and Cycles
	Critical Components
	Graphs Terms and Properties

	Visual Representation
	Introduction
	Regular and Random Structures
	Graph Drawing
	Further Resources

	Measurements and Properties
	Introduction
	Degree, Distribution and Correlation
	Clustering Coefficient
	Motifs
	Characteristic Path Length
	Global and Local Efficiency
	Cost
	Other Measures and Properties
	Real-World Examples

	Topology Models
	Introduction
	Regular Models
	Hierarchical Models
	Random Graphs
	Small-World Model
	Price's Growth Model
	Barabási and Albert (BA) Growth Model
	Merge-Regenerate Models
	Comparing Topology Models

	Networks and Processes
	Introduction
	Utilisation
	Navigation
	Evolution
	Biology and Genetics

	Summary

	II Investigations within Ecosystem EC
	An Ecosystem Model for Evolutionary Computation
	Introduction
	Ecosystem Evolutionary Computation
	A Composition of Models
	Ecology, Ecosystems and Organisation Scale
	Evolutionary Computation
	Topology, Complexity and Efficiency
	An Organisation of Systems

	A Python Package: esec
	Package Objectives
	Configuration
	Batch Experiments and Reports

	Consideration of Related Work
	Introduction
	Explicit Niche Schemes
	Structured EAs
	Communities of Species
	Summary

	Key Questions
	Comparing Performance
	Introduction
	Measurement and Concepts
	Box and Whisker Evaluation Plots
	Mann-Whitney U Test Comparison Matrix

	Closing

	Population Organisation
	Introduction
	Investigation Scope
	Objectives
	Selected Population Topology
	Selected Problem Landscapes
	Result Comparison Methods

	Experiments
	Introduction
	Topology Influence
	Topology Scale
	Circular and Bound Lattices
	Influence of Order and Mate Selection
	Juveniles with Delayed Competition
	Rewired Lattices

	Discussion
	Outcomes
	Future Opportunities
	Complex Topology and Computational Cost
	Topology Selection Guidelines

	Closing

	Open Research and the ESEC Model
	Introduction
	Community
	Subpopulations
	Multiple Species
	Interaction Models
	Interaction Structure

	Ecosystem
	Concepts
	Island Models as Ecosystems
	Structure and Migration

	System Configuration
	Introduction
	Community
	Ecosystem

	Community Examples
	Cooperative Symbiosis
	Competitive Predator-Prey

	Ecosystem Examples
	Basic Island Model
	Complex Ecosystem

	Open Questions
	Closing

	Conclusions
	Overview
	Contributions
	Future Work
	Closing Comment

	III References and Appendices
	References
	Glossaries
	Ecology, Ecosystems and Evolution
	Graphs and Topology

	Benchmark Problems
	Domain Qualities
	Classic Binary Problems
	Introduction
	OneMax Function
	Royal Road Function
	Goldberg's Deceptive 3-bit Function
	Whitley's Deceptive 4-bit Function

	Classic Continuous Optimisation Problems
	Introduction
	Sphere
	Hyperellipsoid
	Quadric
	Noisy Quartic Function
	Easom Function
	Rosenbrock's valley
	Rastrigin Function
	Griewangk Function
	Ackley Function
	Schwefel Function
	Michalewicz's Function
	Frequency Modulation Sounds Problem

	Multiple Niche Problems
	Introduction
	One-dimensional Standards
	Himmelblau Function
	Six-hump Camel Back Function

	Problem Generators
	Introduction
	Massively Multimodal Deceptive Problem
	Multimodal Problem Generator P-PEAKS
	L-SAT Random Satisfiability Problem
	Kauffman's NK Landscape
	NKC Landscape
	Subset Sum Problem Generator
	MAXCUT Maximum Cut Graph Problem
	Error Correcting Code Design
	Minimum Tardy Task Problem
	Max Set of Gaussians Landscape Generator

	Topology Survey
	Introduction, Measures and Details
	Full
	Lattice (L)
	Introduction
	L.k4
	L.k4.b
	Rewired L.k4
	L.k8
	L.k8.b
	Rewired L.k8
	L.k12
	L.k12.b
	Rewired L.k12
	L.hk4
	L.hk4.b
	L.hk8
	L.hk8.b
	Rewired L.hk8
	L.k6
	L.k6.b
	Rewired L.k6
	L.hk3
	L.hk3.b
	Rewired L.hk3
	Regular Lattice Summary
	Hollow Lattice Summary
	Rewired Lattice Summary

	Star
	Tree (T)
	T.c2
	T.c3
	T.c4
	T.c5
	T.c6
	Tree Summary

	Erdös-Rényi (ER)
	ER.01
	ER.02
	ER.03
	ER.04
	ER.05
	ER Summary

	Watts-Strogatz (WS)
	WS.001
	WS.01
	WS.1
	WS Summary

	Barabási-Albert (BA)
	Merge-Regenerate (MR)

	CDROM Guide
	The esec Python Package
	Introduction
	Purpose
	Features

	Architecture
	Dependencies
	Installation and Testing
	Installation and Setup
	Running Self-Tests

	Basic Usage
	Documentation
	Design and Implementation Notes
	Language Selection: Why Python?
	Software Quality

	Population Topology Experiments
	Classic Small-World Simulation
	The Small-World Model
	Required Software
	The Code
	The Result

