
Swinburne Research Bank
http://researchbank.swinburne.edu.au

Author: Islam, Md. Saiful; Zhou, Rui; Liu, Chengfei
Title: On answering why-not questions in reverse

skyline queries
Conference name: 29th IEEE International Conference on Data

Engineering (ICDE 2013)
Conference location: Brisbane, Australia
Conference dates: 8-12 April 2013
Publisher: IEEE
Year: 2013
Pages: 973-984

Copyright: Copyright © 2013 IEEE. The accepted manuscript
of the paper is reproduced here in accordance
with the copyright policy of the publisher.
Personal use of this material is permitted.
However, permission to reprint/republish this
material for advertising or promotional purposes
or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any
copyrighted component of this work in other
works must be obtained from the IEEE.

This is the author’s version of the work, posted here with the permission of the publisher for your
personal use. No further distribution is permitted. You may also be able to access the published
version from your library.

The definitive version is available at: http://hdl.handle.net/1959.3/314731

Powered by TCPDF (www.tcpdf.org)

Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au

http://www.tcpdf.org

On Answering Why-not Questions in Reverse
Skyline Queries

Md. Saiful Islam, Rui Zhou and Chengfei Liu
Swinburne University of Technology, VIC 3122, Australia

{mdsaifulislam, rzhou, cliu}@swin.edu.au

Abstract—This paper aims at answering the so called why-
not questions in reverse skyline queries. A reverse skyline query
retrieves all data points whose dynamic skylines contain the query
point. We outline the benefit and the semantics of answering
why-not questions in reverse skyline queries. In connection with
this, we show how to modify the why-not point and the query
point to include the why-not point in the reverse skyline of the
query point. We then show, how a query point can be positioned
safely anywhere within a region (i.e., called safe region) without
losing any of the existing reverse skyline points. We also show
how to answer why-not questions considering the safe region
of the query point. Our approach efficiently combines both
query point and data point modification techniques to produce
meaningful answers. Experimental results also demonstrate that
our approach can produce high quality explanations for why-not
questions in reverse skyline queries.

I. INTRODUCTION

In recent years, why-not questions have received a con-
siderable amount of attention in the database community in
the hope of improving the usability of database systems.
Today’s database systems are highly efficient in terms of query
execution time and resource usage. However, these systems are
not usable for the end users to the same degree as they are
proficient in underlying data management and query evaluation
[12]. These days users expect systems to be more interactive
and cooperative. That is, users are not satisfied only with
receiving the query output, but also they want to know why
the system returns only the current set of objects as output. In
particular, users may want to know why a particular data object
does not appear in the query output. Any database system
that provides a good explanation for the missing objects in
the query output, is very helpful for a user to understand her
information need and thereby refine her initial query [17], [7].

There are three different aspects of answering “why-not
questions” for query output. The first one is finding the causes
why the expected data point does not appear in the query
output. Chapman et al. [3] propose to return the query operator
that filters out the desired data point from the query output in
this direction. The second aspect is modifying the data point
so that it appears in the query output in terms of the modified
database as proposed by Huang et al. [9] for SPJ (Select-
Project-Join) and by Herschel et al. [8] for SPJUA (SPJ-Union-
Aggregation) queries, respectively. The third aspect is refining
the initial query so that the why-not point appears in the refined
query output as proposed by Tran et al. [17] for SPJA (SPJ-
Aggregation) queries. In a recent work, He et al. [7] also

propose a query refinement approach for answering why-not
questions in top-k queries. In this paper, we study the problem
of answering why-not questions in reverse skyline queries in
light of the above aspects.

To introduce reverse skyline, we introduce dynamic sky-
line [16] first. Given a set of products P and a query point q
as a customer’s preference, a dynamic skyline query retrieves
all products that are not dynamically dominated by other
products from the customer’s perspective. A product p1 is
considered as dynamically dominating another product p2 with
respect to a customer if p1 compared with p2 is closer to the
customer’s preference in at least one dimension and not farther
to the customer’s preference in the other dimensions. While
regular skyline [2] prefers maximum or minimum values in
each dimension, dynamic skyline prefers products closer to a
given customer’s preference. In other words, dynamic skyline
adheres to the around-by semantics, under which a cheap
product may not be necessarily preferable to an expensive
one if the latter matches the customer’s preference better.
Based on dynamic skyline, a reverse skyline query retrieves
information from the companies’ perspectives. That is, given
a set of products P , a query product q and a set of customer
preferences C, a reverse skyline query according to q retrieves
all customers that contain q in their dynamic skylines [4]. A
reverse skyline query is used to measure the interestingness of
a product in the market [6]. Consider the example in Fig.1(a):
a database of cars and customer preferences are stored as
tuples in a relation. Suppose pt2 is a customer preference
c2 ∈ C, pt1, pt3 − pt8 are cars p1, p3 − p8 ∈ P , the dynamic
skyline of c2 can be found as {p1, p4, p6} (let us take the
result for granted, visualized justification is in Section II). This
means customer c2 is interested in cars {p1, p4, p6}. Now,
a car dealer wants to put a car q(price:8.5K, mileage:55K)
onto the market and see which customers are interested in this
car. After careful examination, c2’s dynamic skyline becomes
{p1, p4, p6, q} including q, which means c2 is in the reverse
skyline of q, so customer c2 is a potential buyer of the car q.
Similarly, c2 is also in the reverse skylines of p1, p4 and p6.

To answer why-not questions in reverse skyline queries, we
aim to find out why a particular point is not in a reverse
skyline, and what actions we should take to put the point
into a reverse skyline. Let us illustrate the problem using an
example. Consider again the car database, this time, let pt1
be a customer preference c1 ∈ C, let pt2 − pt8 be the cars
p2 − p8 ∈ P on the market, suppose a car dealer wants to

ID Price($) Mileage(m)
pt1 5K 30K
pt2 7.5K 42K
pt3 2.5K 70K
pt4 7.5K 90K
pt5 24K 20K
pt6 20K 50K
pt7 26K 70K
pt8 16K 80K

(a) Data Points Served as
Products and Customers (b) Skyline

Figure 1: An Skyline Query Example.

sell a car q(price:8.5K, mileage:55K), after a careful reverse
skyline computation, we found c1 is not in the reverse skyline
of q, then the car dealer may want to know why c1 is not
interested in q. Firstly, we can explain the reason as that car
p2 is more interesting to customer c1, because q is dynamically
dominated by p2 according to c1. To go further, the car dealer
may seek a negotiation with the customer and make q turn up
in the dynamic skyline of the customer c1 (i.e., c1 becomes a
reverse skyline point of q). This includes changing the price of
the car q or persuading the customer to change her preference
or both for the purpose of narrowing the gap. An important
aspect here is that the car dealer might not want to lose existing
customers who are already interested in the car q, therefore
during the negotiation, it may be better to keep the existing
q’s reverse skyline points.

To sum up, this paper aims at answering why-not questions
in reverse skyline queries. More specifically, we show how to
modify the why-not point and query point to include the why-
not point in the reverse skyline of the query point. To do so,
we propose techniques that incur minimum changes to both
the why-not point and the query point. We also show how to
modify the why-not point and the query point while keeping its
existing reverse skyline points. To the best of our knowledge,
this is the first attempt ever made to answer why-not questions
in reverse skyline queries. The main contributions of this paper
are summarized as follows:

(1) We provide the semantics of answering why-not question
in reverse skyline queries.

(2) Then, we show how to modify the why-not data point and
the query point to include the why-not data point in the
reverse skyline list of the query point, respectively.

(3) We also show how to modify both the query point and the
why-not point while keeping existing reverse skyline.

(4) Finally, we present a detailed evaluation of the proposed
scheme that demonstrates its effectiveness in both real and
synthetic data sets.

Here is a road map of the paper. Section II describes
preliminaries and terminology used in this paper. Section III
describes the semantics of answering why-not questions in
reverse skyline queries in detail. Section IV describes how to
modify the why-not point. Section V describes how to modify
the query point while keeping existing reverse skyline points.
Section VI presents our experiments. Section VII presents
related work and finally, Section VIII concludes our paper.

(a) Dynamic Skyline of q (b) Dynamic Skyline of c2
Figure 2: Dynamic Skylines of q (8.5K, 55K) and c2.

II. PRELIMINARIES

Let D = (D1, ..., Dd) be a d-dimensional data space,
P ⊆ D be the dataset of products and C ⊆ D be the dataset
of customer preferences. Each Di refers to the universe of
discourse for the ith dimension. We assume that each Di

consists of numeric values only. A point p ∈ P is represented
as p = {p1, p2, ..., pd}, where pi ∈ Di and i ∈ {1, 2, ..., d}.
Similarly, a point c ∈ C is represented as c = {c1, c2, ..., cd},
where ci ∈ Di and i ∈ {1, 2, ..., d}. We contextualize the
previous definitions of skyline [2], dynamic skyline [16] and
reverse skyline [4] in this paper as follows.

Definition 1: (Skyline) Given a dataset of products P , the
Skyline (SK) query retrieves all points p in P that are not
dominated by others, and a point p1 dominates another point
p2 (denoted by p1 � p2) iff (1) ∀i ∈ {1, ..., d} : pi1 ≤ pi2 and
(2) ∃j ∈ {1, ..., d} : pj1 < pj2. Equivalently, a point p1 is in
SK iff ∀p2 6≡ p1,∃i ∈ {1, ..., d} : pi1 < pi2.

Without loss of generality, we assume that a smaller value is
preferred in every dimension in the above definition. Consider
the data points given in Fig. 1 (a) as P . Then, the skyline
points of P , SK = {p1, p3, p5}, are shown in Fig. 1(b). Point
p4 is not part of the skyline as it is dominated by p1 and p3.

Definition 2: (Dynamic Skyline) Given a query point q as
customer preference and a dataset of products P , a Dynamic
Skyline (DSL) query according to q retrieves all points p ∈ P
that are not dynamically dominated by others, and a point
p1 ∈ P dynamically dominates p2 ∈ P with regard to the
query point q (denoted by p1 �q p2) iff (1) ∀i ∈ {1, ..., d} :
|qi − pi1| ≤ |qi − pi2| and (2) ∃j ∈ {1, ..., d} : |qj − pj1| <
|qj − pj2|. Equivalently, a point p1 is in DSL(q) iff ∀p2 6≡
p1,∃i ∈ {1, ..., d} : |qi − pi1| < |qi − pi2|.

The dynamic skyline of a point q can be computed by
any traditional skyline computing algorithm having all points
p ∈ P transformed to the new data space where point q is
considered as the origin and the absolute distances to q are
used as the mapping functions [4], [16]. The mapping function,
f i, is defined as f i(pi) = |qi − pi|. For example, consider
the data points given in Fig. 1 (a) as P and the query point,
q(8.5K, 55K) as a customer preference. Then, the dynamic
skyline of q, DSL(q) = {p2, p6}, is shown in Fig. 2(a). Here,
point p5 is transformed to p′5 w.r.t. q, p1 to p′1, p2 to p′2 and so
on. Point p1 is not in DSL(q) as p1 is dynamically dominated
by p2 w.r.t. q. It is verifiable from Fig. 1(b) and Fig. 2(a) that
dynamic skyline adheres to around-by semantics (realized by
coordinate-wise absolute differences to q), whereas traditional

(a) Partial DDR and DDR of
c2 in the transformed space

(b) Full DDR and DDR of c2
in the original space

Figure 3: Dynamic Dominance and Anti-dominance Regions of c2.

skyline is computed with respect to the origin zero.
Definition 3: (Reverse Skyline) Given a dataset of products

P , a query point q as product and a dataset of customer
preferences C, a Reverse Skyline (RSL) query according to
q retrieves all points c ∈ C where q is in the dynamic skyline
of c. That is, a point c1 ∈ C is a reverse skyline point of q
iff @p ∈ P such that (1) ∀i ∈ {1, ..., d} : |ci1− pi| ≤ |ci1− qi|,
and (2) ∃j ∈ {1, ..., d} : |cj1 − pj | < |c

j
1 − qj |. Equivalently,

c1 is in RSL(q) iff ∀p,∃i ∈ {1, ..., d} : |ci1 − qi| < |ci1 − pi|.
The RSL(q) is realized by computing DSL(c) for each

point c ∈ C and then by checking whether DSL(c) contains
q or not. For example, consider the data points pt1, pt3 − pt8
given in Fig. 1(a) as the dataset of products P and pt2 in Fig.
1(a) as the customer preference c2 ∈ C and the query point
q(8.5K, 55K). Then, c2 is in the reverse skyline of q as q is
in the dynamic skyline of c2 as shown Fig. 2(b).

Definition 4: (Dynamic Dominance Region) The dynamic
dominance region (DDR) of a point c contains the points
dominated by at least one dynamic skyline point. We use
DDR(c) to denote the absolute complement of DDR(c) with
respect to the universe. We refer DDR(c) as the dynamic anti-
dominance region of c in this paper1.

In general, DSL(c) defines the border between DDR(c)
and DDR(c). If an arbitrary point q is positioned in DDR
of a point c, then q will be in DSL(c). This also eliminates
all points from DSL(c) that are dynamically dominated by q
with regard to c. The DDR and DDR of c2 in the transformed
and original space are shown in Fig. 3(a) and Fig. 3(b). It is
easily verifiable from Fig. 3 that, if the query point q appears
within the DDR of c ∈ C, then c appears in the RSL(q).

The computation of the reverse skyline of the query point
q requires computation of the dynamic skyline of each point
c ∈ C (and thereby DDR(c)), which can be bypassed by
running a window query centered at c [4]. The extent of the
window is defined by the coordinate-wise distances to q. If
the window query returns no point, then c is included in
RSL(q). For example, given the query point q(8.5K, 55K)
as product, the green dashed-rectangle in Fig. 4(a) represents
the window query of point c2. This window query returns an
empty result and therefore, c2 is in RSL(q).

Now, consider the data points pt2 − pt8 given in Fig. 1(a)
as the dataset of products P and data point pt1 in Fig. 1(a)

1Note that the term anti-dominance region is defined differently in [4].

(a) Window query of c2 (b) Window query of c1
Figure 4: Window query of c2 and c1.

as the customer preference c1 ∈ C and the same query point
q(8.5K, 55K) as product. The window query centered at point
c1 (red dashed-rectangle as shown in Fig. 4(b)) returns a non-
empty result (i.e., {p2}) for which c1 is not in RSL(q). In this
paper, we study the problem of answering why-not question in
reverse skyline queries. More specifically, we address why the
data point c1 is not in the reverse skyline of the given query-
point, q(8.5K, 55K). Then, we show how the data-point c1
can be included in the reverse skyline of the query-point, q.

III. SEMANTICS OF WHY-NOT QUESTION FOR REVERSE
SKYLINE QUERIES

There are three different aspects of answering why-not
questions in reverse skyline queries as we discuss in Section
I. These are: (1) finding the causes of why point ct does
not appear in the reverse skyline of the query point q; (2)
modifying the why-not point ct into c∗t so that c∗t appears in
the reverse skyline of q (i.e., c∗t ∈ RSL(q)); and (3) modifying
the query point q into q∗ so that ct appears in the reverse
skyline of q∗ (i.e., ct ∈ RSL(q∗)).

The first aspect of answering why-not questions in reverse
skyline queries is finding the causes of why-not ct ∈ RSL(q).
We already know that why point ct does not appear in RSL(q)
because the window query centered at ct returns a non-empty
result. In other words, the query point q does not appear in the
dynamic skyline of ct either. If we delete all points returned
by window query(ct, q) from the data set P , ct can appear
in RSL(q). For example, consider the data points pt2 − pt8
given in Fig. 1(a) as P and pt1 in Fig. 1(a) as the why-not
point c1, we see that c1 does not appear in RSL(q) because
the window query centered at c1 returns {p2} (see Fig. 4(b)).
This can be interpreted as “c1 finds p2 more interesting than
q”. We may find this kind of answer insightful in many real
life cases. For example, if a company wants to investigate why
their customers are not interested in its product ‘X’ anymore,
then they may collect similar product information available
in the market and store it in the database together with the
user preferences, then query the product ‘X’ in the database
and finally, find that there are other products in the market
customers prefer more than the product ‘X’. The company may
then encounter the above by redesigning ‘X’ and/or modifying
the different features of ‘X’ (e.g., packaging, price etc).

The second aspect of answering why-not questions in re-
verse skyline queries is modifying the why-not point ct into
c∗t so that c∗t appears in the reverse skyline of q. However, the

(a) Frontiers of ct : {pk, pm, pl+1} (b) Calculation of p′k

Figure 5: Window query and frontiers of ct.

modification of ct into c∗t should not incur lots of changes to
the original point ct, i.e., |ct − c∗t | should be minimum. This
kind of answer also has practical applications as we already
discuss in Section I of this paper.

The third aspect of answering why-not questions in reverse
skyline queries is modifying the query point q into q∗ so
that q∗ appears in the dynamic skyline of ct. Importantly,
the modification of the query point q into q∗ should be done
in a way so that we do not lose any of the existing reverse
skyline points of q, because, in many cases we do not want to
lose existing reverse skyline points. For example, consider a
company has a product ‘X’ in the market, if the company
modifies many of its features, then many of the existing
customers may not prefer this product, which is undesirable.

In this paper, we study only the second and third aspects
in depth as they are computationally challenging. The first
aspect is trivial to compute, because we just need to return the
window query result. In Section IV, we show how to move
the why-not point ct in the space to include it in the reverse
skyline of the query point with minimum cost. In Section V,
we first show how to move the query point q to include ct
in its reverse skyline list, and then we show how to move the
query point q while keeping the existing reverse skyline.

IV. MODIFYING THE WHY-NOT POINT

In this section, we describe how to move the why-not point
ct ∈ C in the data space to include it in the reverse skyline
of the query point q. We know that ct is not in the reverse
skyline list of q (i.e., ct 6∈ RSL(q)) as q is not in the dynamic
skyline list of ct (i.e., q 6∈ DSL(ct)). Now, we want to modify
ct into c∗t in a way so that q appears in the dynamic skyline
of c∗t (i.e., q ∈ DSL(c∗t)). Therefore, we formally define our
why-not point modification problem as follows:

Definition 5: (Moving the Why-not Point) Given a dataset
of products P , a query point q as product and a why-not point
ct ∈ C, modify ct into c∗t so that q appears in the dynamic
skyline of c∗t , i.e., q ∈ DSL(c∗t).

We observe that the why-not point ct is not in the re-
verse skyline list of q as points p ∈ P exist in the space
between ct and q as shown in Fig. 5 (a) and the result of
the window query centered at ct is not empty. To move
a why-not point, we need to find this set of points, say
Λ = {pl−1, pl, pk, pm, pl+1} ⊆ P as shown in Fig 5(a). Some
of its member points, for example {pl−1, pl, pl+1}, are also
included in DSL(ct), i.e., Λ ∩ DSL(ct) 6= ∅. An important
property of Λ is that the deletion of its member points can

(a) Movement of ct in terms of pk (b) Movement of why-not ct

Figure 6: Modification of why-not point ct.

include q in ct’s dynamic skyline and therefore can also
include ct in RSL(q), as we can see from Fig. 5(a).

Lemma 1: The deletion of points ∈ Λ from P can include
ct in RSL(q).

Proof: The proof of the above lemma is obvious. This is
because deletion of points ∈ Λ from P ensures that q will be in
DSL(ct) and the result of the window query will be empty.
Therefore, ct will be in RSL(q) according to the definition of
reverse skyline and construction of RSL(q).

The Λ can be retrieved by running a window query
centered at ct, i.e., Λ ← window query(ct, q). Now, to find
the movement of ct, we only need to pick the frontiers, say
F = {pk, pm, pl+1} from Λ as shown in Fig. 5. The property
of this frontier point-set F ⊆ Λ, is given below:

∀e1 ∈ F,@e2 ∈ Λ : e2 �q e1

The frontier point-set F can be calculated as follows: (1)
F is initialized to Λ and (2) if for each e1 ∈ F , ∃e2 ∈ F
such that e2 �q e1, then we remove e1 from F . For each
point e1 in F , we need to make sure that all points that are
dominated by e1 w.r.t. q in the transformed space of ct, will
not be returned by the window query centered at c∗t again.
Consider the frontier point pk ∈ F . Now, we want to find
the regions where ct can be moved and the window query
centered at c∗t will not return points that are dominated by pk
w.r.t. q including pk itself. To do so, we need to make sure
that ct will be at least 1

2× | q
i − pik | far away from pk in

every dimension i ∈ {1, 2, ..., d} so that q dominates pk w.r.t.
c∗t , as shown in Fig. 5(b). Then, ct can be moved in terms of
pk to the area ABqDCp′k as shown in Fig. 6(a). We need to
compute these areas for all points in F and the intersecting
area of them is the valid area where ct can be moved, as shown
in Fig. 6(b). The area where ct can be moved in terms of pk
relies on the computation of p′k. The general formula of this
computation for each entry el ∈ F is given below:

uil = eil +
|eil − qi|

2
,∀i ∈ {1, ..., d} (1)

The valid area computed by following the above technique
gives us an infinite number of choices for c∗t as ct can be
moved anywhere in the valid area. We want to reduce this
infinite number of choices to only a few. Assume that M =
{ul}. Then, we sort M based on an arbitrary dimension, say i.
Then, we update the entries of M by replacing each successive
pair ul, ul+1 ∈M by ul,l+1 except the first and last one. The
construction of ul,l+1 is done as follows:

Algorithm 1 Modify Why-Not Point (ct, q)

1: Λ← window query(ct, q);
2: F ← Λ;
3: for each e1 ∈ F do
4: if ∃e2 ∈ F such that e2 �q e1 then
5: remove e1 from F ;
6: M ← {}; // M contains new locations for ct
7: for each el ∈ F do
8: ui

l = eil +
|eil−qi|

2
,∀i ∈ {1, ..., d};

9: Add ul to M ;
10: Sort M based on dimension i;
11: for ul, ul+1 ∈M do
12: ui

l,l+1 = min (ui
l, u

i
l+1),∀i ∈ {1, ..., d};

13: if ul is the first entry in M then
14: Replace ul+1 in M by ul,l+1;
15: else if ul+1 is the last entry in M then
16: Replace ul in M by ul,l+1;
17: else
18: Replace ul and ul+1 in M by ul,l+1;
19: ui

1 ← cit; // u1 is the first entry in M
20: uj

|M| ← cj 6=i
t ; // u|M| is the last entry in M

uil,l+1 = min (uil, u
i
l+1),∀i ∈ {1, ..., d} (2)

We argue that ul,l+1 is a better choice for c∗t than any
location in the valid area that is dominated by ul,l+1 (ul,l+1

dominates ul and ul+1 too) in terms of changes that are needed
to be done on ct (i.e., |ct − c∗t |) . Finally, we update the first
entry, u1 and the last entry, u|M | in M as follows:

ui1 = cit and uj|M | = cjt , where j 6= i (3)

The points in M computed by following the above tech-
nique are marked with arrows in Fig. 6(b). Clearly, these
locations are better choices for c∗t in terms of |ct − c∗t |. It
should also be noted that no two points in M dominate each
other. The pseudo-code of all the above computational steps
is given in Algorithm 1.
Example. Consider the data points pt2 − pt8 given in Fig.
1(a) as P , the query point q(8.5K, 55K) and data point pt1
given in Fig. 1(a) as why-not point c1. The window query
centered at c1 returns Λ = {p2}. The two different locations
of c∗1 according to Algorithm 1 are c∗1(price,mileage) =
{(5K, 48.5K), (8K, 30K), } as shown in Fig. 7. According
to our first option (5K, 48.5K), we see that the customer c1
has to modify her mileage preference from 30K to 48.5 K to
be interested in car q(8.5K, 55K) and for the second option,
we see that c1 has to pay at least 3K more to be interested
in car q. Based on the above suggestions received from the
system, the car dealer may now decide whether they should
include c1 in the plausible customer list of q or not.
Complexity Analysis. The complexity of modifying a why-
not point is mainly dominated by the cost of checking pair-
wise dominance tests performed in steps 3-5 (i.e., O(|Λ|2))
and sorting the entries in M performed in step 10 (i.e.,
O(|M |× log2|M |)) in Algorithm 1. Steps 7-9 and steps 11-18
in Algorithm 1 require linear scan of the entries in F and M ,

Figure 7: Movement of why-not point c1(5K, 30K).

respectively. We assume that the execution of window query
in step 1, computation of Eqn. (1) and (2) in step 8 and
step 12, as well as computation of steps 19-20 can be done
in constant time. Therefore, the overall complexity becomes
O(|Λ|2) + |M | × log2|M |).

V. MODIFYING THE QUERY POINT

In this section, we describe how to modify the query point
q into q∗ to include the why-not point ct ∈ C in the reverse
skyline of q∗ (i.e., ct ∈ RSL(q∗)). Recall that to modify
the why-not point ct, we propose to move ct towards q, but
now to modify the query point q, naturally we aim to move q
towards ct. However, their computations are not symmetrical.
For query point modification, we want to move q onto the
dynamic skyline of ct so that ct becomes a reverse skyline
point of q. But for why-not point modification, the solution
is not moving ct onto the dynamic skyline of q. Rather, we
have moved ct towards q in a way so that q can dynamically
dominate all points returned by window query(ct, q). Next,
we formally define our query-point modification problem in
this section as follows:

Definition 6: (Moving the Query Point) Given a dataset of
products P , a query point q as product and a why-not point
ct ∈ C, modify q into q∗ so that ct appears in the reverse
skyline of q∗, i.e., ct ∈ RSL(q∗).

From Section II, we know that the query point q can be
moved arbitrarily in the DDR(ct) to include ct in RSL(q∗).
However, this arbitrary movement may incur lots of changes to
the query point q and it may also happen that we lose many of
the existing reverse skyline points (existing customers), which
is not always desirable. We find that it is possible to locate
a safe region (defined in Definition 7), where the query point
q can be moved without losing any existing reverse skyline
point. Therefore, in this section, we show how to move the
query point q with and without considering this safe region to
include ct in the reverse skyline list of q∗.

Definition 7: (Safe Region) A region in the data space is
said to be safe, termed as safe region (SR(q)), for the query
point q where q can be moved without losing any of the
original reverse skyline points. That is, if q is modified to
q∗ by moving the query point q anywhere within SR(q), then
the following holds:

RSL(q) ∩RSL(q∗) = RSL(q), only if q∗ ∈ SR(q)

A. Moving the Query Point without Considering Safe Region

We already know from Section II that we can move the
query point q within DDR of the why not point ct to include
ct in RSL(q). However, moving the query point arbitrarily
within DDR(ct) may incur lots of changes to q. Therefore,
we need to consider only those locations within DDR(ct) that
can minimize the edit distance between the original q and the
refined query point q∗. For example, it can be easily seen from
Fig. 8 that q should be moved to the locations ‘A-B-C-D’ at
least to include ct in RSL(q). But only locations ‘A’, ‘B’, ‘C’,
and ‘D’ can possibly minimize |q − q∗|. Therefore, we want
to compute only these locations within the DDR of ct.

Figure 8: Movement of query point q.

Let Λ = {pl−1, pl, pk, pm, pl+1} ⊆ P be the data points
whose deletion can include q in ct’s dynamic skyline. The Λ
can be retrieved by running a window query centered at ct, i.e.,
Λ← window query(ct, q). Assume that F ← Λ∩DSL(ct).
That is, F contains only points that appear in both Λ and
DSL(ct). The point-set F can be computed as follows: (1)
F is initialized to Λ and (2) if for each e1 ∈ F , ∃e2 ∈ F
such that e1 �ct e2, then we remove e2 from F . The above
steps allow computing F without computing DSL(ct) and
therefore, save a lot of computational time.

Then, we assign F to M . Now, we sort M based on an
arbitrary dimension, say i. Then, we update the entries of M
by replacing each successive pair ul, ul+1 ∈ M by ul,l+1

except the first and last one. The construction of ul,l+1 is
done as follows:

uil,l+1 = max (uil, u
i
l+1),∀i ∈ {1, ..., d} (4)

Then, we update the first entry, u1and the last entry, u|M | as

z1 = q, zi1 = ui1, u1 = z1, z|M | = q, zj|M | = uj 6=i
|M |, u|M | = z|M |

(5)
Finally, M contains the locations of q∗.

Example. Consider the data points pt2 − pt8 given in Fig.
1(a) as P , the query point q(8.5K, 55K) and data point p1
given in Fig. 1(a) as why-not point c1. The window query
centered at c1 returns Λ = {p2}. The two different locations
of q∗ according to Algorithm 2 are q∗(price,mileage) =
{(8.5K, 42K), (7.5K, 55K)} as shown in Fig. 9. According
to option q∗(7.5K, 55K), the car dealer has to decrease the
price of q at least 1K to make q interesting to customer c1.
Complexity Analysis. The complexity of modifying a query-
point without considering the safe region is the same as
modifying a why-not point, and is mainly dominated by the

Algorithm 2 Modify Query Point (ct, q)

1: Λ← window query(ct, q);
2: F ← Λ;
3: for each e1 ∈ F do
4: if ∃e2 ∈ F such that e1 �ct e2 then
5: remove e2 from F ;
6: M ← F ;
7: Sort M based on dimension i;
8: for ul, ul+1 ∈M do
9: ui

l,l+1 = max (ui
l, u

i
l+1),∀i ∈ {1, ..., d};

10: if ul is the first entry in M then
11: Replace ul+1 in M by ul,l+1;
12: else if ul+1 is the last entry in M then
13: Replace ul in M by ul,l+1;
14: else
15: Replace ul and ul+1 in M by ul,l+1;
16: z1 ← q; z|M| ← q;
17: zi1 ← ui

1; // u1 is the first entry in M
18: Replace u1 ∈M by z1;
19: zj|M| ← uj 6=i

|M| ; // u|M| is the last entry in M
20: Replace u|M| ∈M by z|M|;

Figure 9: Movement of query point q(8.5K, 55K) for why-not point
c1(5K, 30K).
cost of checking pairwise dominance tests performed in steps
3-5 (i.e., O(|Λ|2)) and sorting the entries in M performed in
step 7 (i.e., O(|M | × log2|M |))) in Algorithm 2. Steps 8-15
in Algorithm 2 require linear scan of the entries in M . We
assume that the execution of the window query in step 1,
the computation of Eqn. (4) in step 9 as well as compuation
of steps 16-20 can be done in constant time. Therefore, the
overall complexity becomes O(|Λ|2) + |M | × log2|M |).
B. Moving the Query Point Considering Safe Region

Computing the safe region of the query point q relies on
the fact that existing reverse skyline points include q in their
dynamic skylines. That is, DDR of each point cl ∈ RSL(q)
contains q. For example, DDR of c2 ∈ C includes q as shown
in Fig. 3. If the query point q is moved to an arbitrary position
within DDR(cl), then q∗ will again be in the dynamic skyline
of cl. Therefore, the following important lemma is our key to
the construction of the safe region of q.

Lemma 2: The safe region of the query point q is the
intersection of DDRs of all points cl ∈ RSL(q). That is,

SR(q) =
⋂

cl∈RSL(q)

DDR(cl) (6)

Proof: Let RSL(q) consists of k points as follows:
{c1, c2, ..., ck}. According to the definition of reverse skyline

Algorithm 3 Exact Safe Region (RSL(q))

1: SR(q)← null
2: for each cl ∈ RSL(q) do
3: Compute DDR(cl);
4: if SR(q) = null then
5: SR(q)← DDR(cl);
6: else
7: SR(q)← SR(q) ∩DDR(cl);

and DDR, each cl ∈ RSL(q) contains q in its dynamic
skyline and q must reside within DDR(cl). If we move q
arbitrarily within DDR(cl), it will still be in the dynamic
skyline of cl. Therefore, if we take the intersection of DDRs
of all k points of RSL(q) and move q in their intersecting
region, q will still be in their dynamic skylines. Therefore,
q can move arbitrarily anywhere in the intersecting region of
DDR(cl) and can retain the original reverse skyline.

Lemma 3: The safe region of the query point q computed
by following equation (7) is correct and exact.

Proof: Suppose that the safe region, SR, of q computed
by following the equation (7) is not correct. Assume that the
correct safe region of q is SR∗. According to the definition
of safe region, this SR∗ must be included in DDR of all
points cl ∈ RSL(q). Then, the only way we can construct
this SR∗ is by taking the intersection of all DDR(cl). Hence,
SR∗ = SR. Therefore, the SR of the query point q computed
by following Eqn. (7) is correct and exact.
Computing the Safe Region. The steps for computing the
exact safe region of the query point q are given in Algorithm
3. To find the intersection of all DDR(cl), we represent each
DDR(cl) by a collection of rectangles (rectangles for 2D data
points, cubes for 3D data points and so on).

Consider a particular reverse skyline point cl (cl ∈ C). We
first compute the dynamic skyline points of cl, DSL(cl) ⊆ P
and assign it to M . Then, we sort M based on any dimension i.
Then, we update the entries of M by replacing each successive
pair ul, ul+1 ∈M by ul,l+1 (ul,l+1 is computed by following
Eqn. (4)) except the first and last one. The first entry is updated
by shifting it’s ith dimensional value to the maximum value
appearing in the ith dimension in the dataset of products P .
Similarly, the last entry is updated by shifting it’s jth (j 6= i)
dimensional value to the maximum value appearing in the jth

dimension in the dataset of products P .
Considering each entry ul ∈ M , then we form rectangles,

whose extension are the coordinate-wise distances from the
point cl. It should be noted that a rectangle is represented by
its lower-left and upper-right corner points only, as shown in
Fig. 10 (b). Though the rectangles here have common space
between them, it reduces the number of intersections needed
to compute the safe region of q. The DDR of cl is then
represented by |DSL(cl)|+1 rectangles, as shown Fig. 10(a).
The step 3 in Algorithm 3 computes the above rectangle-based
representation of DDR of each reverse skyline point cl of q.

Finally, the safe region of the query point is computed by
taking intersections of constituent rectangles of DDR(cl) of

(a) (b)
Figure 10: Representation of DDR of a point cl: DDR(cl) =
{r1, r2, r3}, where DSL(cl) = {A,B}.

all cl ∈ RSL(q) as shown in step 7 of Algorithm 3. For
example, assume that we have two reverse skyline points of q,
i.e., RSL(q) = {c1, c2} ⊆ C and the DDRs of c1 and c2 are
rectangles {r11, r12} and {r21, r22}, respectively. Then, SR(q)
is computed as r11 · r21 + r11 · r22 + r12 · r21 + r12 · r22, where
+ and · represents the union and the intersection operation,
respectively.

The safe region constructed in this section (i.e., follow-
ing Eqn. (7)) can be, however, truncated/expanded to a
smaller/greater one by limiting/relaxing certain product fea-
ture to achieve certain flexibility for practical applications.
Because, the companies know about the certain feature range
of the query product, they can modify. Though trunca-
tion/expansion of the safe region gives more flexibility, the
companies may lose a few existing customers as a side effect.
Example. Consider the data points given in Fig 1(a) as
set of products P as well as set of customer preferences
C. Then, the safe region of the query point q(8.5K, 55K)
for our example data given in Fig. 1(a) consists of two
rectangles: (a) (price, mileage): {(7.5K, 50K), (10K, 58K)}
and (b) {(7.5K, 50K), (12.5K, 54K)}. That is, if we move q
in these regions, none of the existing reverse skyline points
{c2, c3, c4, c6, c8} will be lost.
Complexity Analysis. The computation of the safe region of
the query point q requires computing the DDR of all cl ∈
RSL(q) and their representations. Then, finally computing the
pairwise intersections of DDR of all cl ∈ RSL(q). Therefore,
the overall complexity of computing the safe region of the
query point q is O(C × (|DSL(cl)|+ 1)|RSL(q)|).

In the following, we adopt the query point as well as the
data point modification approach to answer why-not questions
in reverse skyline queries. That is, we want to modify the
original query point q into q∗ to retain the original reverse
skyline points. Then, we want to modify the why-not point if
necessary. We formally redefine our problem as follows:

Definition 8: (Moving Both Points) Given a data set of
products P , a query point q and a why-not point ct ∈ C,
derive a new query point q∗ and a new c∗t where q∗ appears
in the dynamic skyline of c∗t , i.e., q∗ ∈ DSL(c∗t).

We already know that we can refine the query point q into q∗

by moving q within SR(q) while keeping its original reverse
skyline points. However, the DDR of the why-not point ct
may or may not include q∗ if we move the query-point q within
SR(q), as shown Fig. 11. If DDR(ct) and SR(q) overlap

(a)SR(q) ∩DDR(ct) = ∅ (b)SR(q) ∩DDR(ct)! = ∅

Figure 11: Safe region of q and DDR of why-not point ct.

with each other, then we need to modify only the query point
q, otherwise we need to modify the why-not point ct too.
Therefore, there are two different cases in why-not reverse
skyline queries as shown in Table I. In the first case, we need
to modify only the query point q. In the second case, we need
to modify both the query point q and the why-not point ct.

TABLE I: Two cases in why-not reverse skyline queries

Cases Modify ct Modify q Comment
C1: DDR(ct) ∩ SR(q) 6= ∅ no yes ct ∈ RSL(q∗)

C2: DDR(ct) ∩ SR(q) = ∅ yes yes c∗t ∈ RSL(q∗)

However, it is possible to modify both the query point q and
the why-not point ct arbitrarily in the data space to include
c∗t in the reverse skyline of q∗. Then, we need to report the
optimal (q∗, c∗t) subject to the following:

minimize
(q∗,c∗t)∈S

cost(q∗, c∗t) (7)

The cost(q∗, c∗t) of an arbitrary answer (q∗, c∗t) is defined
as follows:

cost(q∗, c∗t) = cost(q, q∗) + cost(ct, c
∗
t)

= α· | q − q∗ | +β· | ct − c∗t |

=

d∑
i=1

αi× | qi − q∗i |+
d∑

i=1

βi× | cit − c∗it |

(8)

where αi, βi ∈ [0, 1]. The αi and βi can be set based
on how much we are willing to modify q and why-not ct
along the ith dimension, respectively. But, solving the above
equation is very difficult as there are an infinite number of
pairs (q∗, c∗t) in the data space that can minimize the cost
function, cost(q∗, c∗t), optimally. Also, we do not want to lose
existing reverse skyline points. Therefore, we allow the query
point q to move only within the safe region of q, and assume
that the cost of moving the query point q within the safe region
of the query point q is zero. That is,

cost(q, q∗) = 0, if q∗ ∈ SR(q) (9)

Therefore, Eqn. (9) becomes as follows:

cost(q∗, c∗t)
q∗∈SR(q)

=

d∑
i=1

βi× | cit − c∗it | (10)

Figure 12: Moving the query point q within SR(q).

From Eqn. (11), we conclude that the minimization of
cost(q∗, c∗t) becomes the minimization of cost(ct, c∗t) if q∗

stays within the safe region of q (i.e., q∗ ∈ SR(q)).
Now, assume that DDR(ct) of why-not point ct and SR(q)

of the query point q overlap with each other as shown in Fig.
12 (case C1 in Table I). Therefore, we need to modify only
the query point q. The new location of q in the space must
be anywhere in DDR(ct) ∩ SR(q). But, we consider only
those locations that can minimize the edit distance between
the original query point, q and the refined query point, q∗.

To test whether DDR(ct) and SR(q) overlap with each
other or not, we first compute the rectangle(s) based repre-
sentation of DDR(ct) and perform intersection with SR(q)
(SR(q) is also a collection of of rectangles). For example,
consider the DDR(ct) of a why-not point ct as shown in
Fig. 12. This DDR(ct) of ct here consists of four rectangles,
{r1, r2, r3, r4} and the SR(q) of q here consists of two rect-
angles {rq1, r

q
2}. The result of intersection between DDR(ct)

and SR(q) consists of three new rectangles {A,B,C}, which
indicates that DDR(ct) and SR(q) overlap with each other.
Finally, we compute the new locations of the query point q by
locating the nearest point of these rectangles from q. These
new locations are shown as big dots in Fig. 12 and marked
with arrows originated from q. The pseudo-code of the above
is shown in steps 1-6 in Algorithm 4.

Now, assume that the dynamic anti-dominance region of
the why-not point ct, DDR(ct) and the safe region of the
query point q, SR(q) do not overlap with each other, i.e.,
DDR(ct) ∩ SR(q) = ∅. Therefore, we need to modify both
q and ct (case C2 in Table I). But the query point can not
move outside its safe region, SR(q). This is because we want
to keep the existing reverse skyline of q and we can move the
query point q only within SR(q) with zero cost. Therefore,
we need to maximize the movement of q towards the why-
not point ct to minimize the movement of ct. The movement
of the query point q can be maximized by moving it up to
the edges of SR(q) towards ct as shown in Fig. 13. To find
the best new locations of q within its safe region, we first
get the corner points of the constituent rectangle(s) of SR(q)
and assign them to E. Then, we transform these points into
a new space considering ct as their origin. Then, we perform
the dominance test on these points. Then, we take only the
non-dominated points and assign these points to Q. Then,
considering each entry in Q as the refined query point q∗,
we call Algorithm 1 to find the movement of ct and collect
all movements of ct into Mc. Finally, the new locations in

Algorithm 4 Modify Query and Why-not Point (SR, ct, q)

1: if SR(q) ∩DDR(ct) 6= ∅ then
2: Mq ← {};
3: OR(ct, q)← SR(q) ∩DDR(ct);
4: for each rec1 ∈ OR(ct, q) do
5: e1 ← nearest point(rec1, q);
6: Add e1 to Mq;
7: else
8: E ← {};
9: for each rec1 ∈ SR(q) do

10: E ← E ∪ corner points(rec1);
11: Q← TS(E, ct); // transformed space, ct is origin
12: for ∃e1, e2 ∈ Q such that e1 �ct e2 do
13: Remove e2 from Q;
14: Mc ← {};
15: for each e1 ∈ Q do
16: T ← move why not point(ct, e1); // Algorithm 1
17: Mc ←Mc ∪ T ;

//compute score s1 of the entries e1 ∈Mc

18: for e1 ∈Mc do

19: s1 =
d∑

i=1

βi× | cit − e∗i1 |; // Eqn. (11)

20: Mc ← ∀e1 ∈Mc which has the lowest score s1;

Figure 13: Move both query point, q and why-not point, ct.

Mc are ranked according to the predefined weight vector β
and the top ranked location(s) are returned. The pseudo-code
of the above is given in Steps 7-20 in Algorithm 4.
Example. Consider the data points given in Fig. 1(a) as set
of products P as well as set of customers C, query point
q(8.5K, 55K) as product and why-not point c7 ∈ C, then the
DDR of c7 consists of four rectangles as follows:
rc71 = {(2.5K, 60K), (49.5K, 80K)},
rc72 = {(16K, 50K), (36K, 90K)},
rc73 = {(20K, 20K), (32K, 120K)}, and
rc74 = {(24K, 50K), (28K, 90K)}.
If we intersect the DDR of c7 with SR(q), we get:
{(7.5K, 60K), (10K, 70K)}, which is the overlapped region
between DDR(c7) and SR(q). If we move q in this over-
lapped region, customer c7 will be included in RSL(q).
Therefore, the new location of q according to Algorithm 4 is
q∗(8.5K, 60K). Now, consider another why-not point c1 ∈ C,
the DDR of c1 ∈ C does not overlap with SR(q). According
to Algorithm 4, the best candidate of q∗ within SR(q) is
q∗(7.5K, 50K). Therefore, the new location of c1 ∈ C with
respect to this q∗ is c∗1(50K, 46).
Complexity Analysis. The complexity of modifying both
query and why-not point is dominated by the computational
cost of constructing the safe region of q (O(C×(|DSL(cl)|+
1)|RSL(q)|)) for step 1 and step 6 in Algorithm 4) and then

checking whether it overlaps with the DDR of why-not point
ct or not (O(C × |SR(q)| × (|DSL(ct)|+ 1) for step 3). We
assume that computing the nearest point of the intersecting
rectangles from q can be done in constant time in step 5
of Algorithm 4 and therefore, the complexity of steps 4-6 is
O(C × |OR(ct, q)|). Steps 9-10 in Algorithm 4 can be done
in O(C × |SR(q)|), assuming that we can retrieve the corner
points in constant time. Step 11 requires a linear scan of the
points in Q. The dominance tests performed in steps 12-13
require O(|Q|2) time. Step 16 calls Algorithm 1 for each entry
in Q. Finally, steps 18-20 require a linear scan of the entries
in Mc and computing Eqn. 11 requires constant time.

TABLE II: Data statistics

Parameter Ranges
Data Types Real (Yahoo! Autos) and Synthetic (UN, CO, AC)
Data Size 50K, 100K, 200K

Size of RSL per Query 1-15

VI. EXPERIMENTS

We evaluate our proposed techniques for answering why-not
questions in reverse skyline queries using real data, namely
CarDB2, of varying size (50K, 100K and 200K tuples). This
is a six-dimensional dataset with attributes referring to Make,
Model, Year, Price, Mileage and Location. The two numerical
attributes Price and Mileage are considered in our experiments.
Answering why-not questions in this dataset makes excellent
sense in practice. The car sellers are often interested in
finding potential customers to maximize the chance of a car
being sold. An extended customer list (for targeted marketing)
can be found by answering why-not questions in reverse
skyline queries in such a dataset. We also present experimental
results based on three types of synthetic data3: uniform (UN),
correlated (CO) and anti-correlated (AC). A summary about
the above datasets is given in Table II.

All experiments presented in this paper are performed on a
Windows PC with 2.99 GHz CPU and 3.49 GB main memory.
For each experiment we run queries with 1-15 reverse skyline
points. The queries follow the distribution of the particular
tested dataset. Each dataset is indexed by an R-tree[1], where
the page size is set to 1536 bytes. We also implement the
BBRS algorithm developed in [4] to compute the reverse
skylines for the tested queries. All of our methods proposed in
this paper are implemented in Java using the XXL library[5].

A. Effectiveness

In this section, we demonstrate the effectiveness of our
proposed approach of answering why-not question in reverse
skyline queries. More specifically, we compare the three
different techniques proposed in this paper: (1) modifying only
the why-not point (MWP), (2) modifying only the query point
(MQP), and (3) modifying both the query point and the why-
not point (MWQ). To do so, we first randomly select a data-
point as an why-not-point for each reverse skyline query where
each reverse skyline query has a different number of reverse

2Downloaded from autos.yahoo.com. The distribution of data is sparse.
3The distribution of data is dense and |RSL(q)| is small in this dataset.

TABLE III: Quality of results in CarDB datasets.

Queries MWP MQP MWQ
q1, |RSL(q1)| = 1 0.573633056 0.077233219 0.000000000
q2, |RSL(q2)| = 2 0.208203022 0.779414615 0.000000000
q3, |RSL(q3)| = 4 0.089639196 0.506414971 0.075080839
q4, |RSL(q4)| = 5 0.062404909 0.198753477 0.047772136
q5, |RSL(q5)| = 6 0.130741812 0.447395608 0.129937287
q6, |RSL(q6)| = 7 0.108113847 1.007441591 0.108113847
q7, |RSL(q7)| = 8 0.123956143 1.224492322 0.123724504

(a) CarDB-50K dataset

Queries MWP MQP MWQ
q1, |RSL(q1)| = 1 0.578931072 0.832696525 0.000000000
q2, |RSL(q2)| = 2 0.246704746 0.235568427 0.000000000
q3, |RSL(q3)| = 4 0.050311016 0.177055208 0.036971632
q4, |RSL(q4)| = 5 0.048688266 0.481636457 0.048361713
q5, |RSL(q5)| = 7 0.117195707 0.764211836 0.105643573
q6, |RSL(q6)| = 8 0.061553161 0.361610434 0.048393802
q7, |RSL(q7)| = 10 0.070768028 0.907164402 0.070754936
q8, |RSL(q8)| = 11 0.097542681 0.88364149 0.097542681

(b) CarDB-100K dataset

Queries MWP MQP MWQ
q1, |RSL(q1)| = 2 0.274162197 0.966525902 0.270083225
q2, |RSL(q2)| = 3 0.371958746 1.280325545 0.339225107
q3, |RSL(q3)| = 4 0.230578336 1.10082634 0.211690534
q4, |RSL(q4)| = 5 0.038138603 0.243090389 0.02951842
q5, |RSL(q5)| = 6 0.135468879 1.413703538 0.135450054
q6, |RSL(q6)| = 7 0.089828649 0.642190348 0.089768971
q7, |RSL(q7)| = 8 0.028030879 0.210567316 0.028030879
q8, |RSL(q8)| = 9 0.079989249 0.542973513 0.079284723
q9, |RSL(q9)| = 10 0.044557559 0.400313076 0.033984709

q10, |RSL(q10)| = 12 0.065886539 0.696464647 0.065886539
q11, |RSL(q11)| = 13 0.009078408 0.26180871 0.009078408
q12, |RSL(q12)| = 14 0.07612146 0.959489884 0.07612146
q13, |RSL(q13)| = 15 0.007091629 0.254541311 0.007085752

(c) CarDB-200K dataset

skyline points (1-15). Then, we compute the cost of a solution
by first normalizing the point using min-max normalization
and then calculating its score (Eqn. 11) by assigning equal
weight to each dimension (also

∑
βi = 1). For MQP, we

compute the cost of the modified query point q∗ as follows:

(a) CarDB-50K (b) CarDB-100K

Figure 14: CarDB datasets: RSL size vs. Safe Region area.

cost(q, q∗) = α · |q′ − q∗|+
∑

cl∈RSL(q),cl 6∈RSL(q∗)

β · |cl − c∗l |

where, q′ is the closest point within SR(q) to q∗ w.r.t. α · |q′−
q∗|. We also set α = β. Finally, we compare the quality of
the proposed methods (MWP, MQP and MWQ) by comparing
the cost4 of the best output received by each method.

1) MWQ vs. MWP: From Table III and Table IV, we see
that the outputs returned by MWQ are less costly (at least
equal) than MWP for both CarDB and synthetic datasets. If
the DDR of why-not point overlaps with the safe region of the
query point, we can also receive zero-cost output from MWQ
as we see in the first two rows of Table III (a) and Table III
(b). However, MWQ does not perform very well when the
number of reverse skyline points of the query point increases
(as we see in Table III and Table IV). This is because the
safe region shrinks if the number of reverse skyline points

4A small difference is significant.

TABLE IV: Quality of results in synthetic datasets.

Queries MWP MQP MWQ
q1, |RSL(q1)| = 1 0.484858586 0.452025253 0.484858586
q2, |RSL(q2)| = 2 0.119975009 0.118691919 0.000000000
q3, |RSL(q3)| = 4 0.060102683 0.055560606 0.060102683

(a) UN-100K dataset

Queries MWP MQP MWQ
q1, |RSL(q1)| = 2 0.054717866 0.121272727 0.045459596
q2, |RSL(q2)| = 3 0.163473577 0.621267677 0.15909596
q3, |RSL(q3)| = 4 0.114681736 0.550580808 0.111116162

(b) CO-100K dataset

Queries MWP MQP MWQ
q1, |RSL(q1)| = 1 0.555555556 1.085893939 0.545459596
q2, |RSL(q2)| = 2 0.416850813 1.212181818 0.409095960
q3, |RSL(q3)| = 3 0.022625598 0.065699495 0.015156566
q4, |RSL(q4)| = 4 0.162777034 0.777888889 0.161621212

(c) AC-100K dataset

Queries MWP MQP MWQ
q1, |RSL(q1)| = 1 0.045454545 0.042934343 0.042934343
q2, |RSL(q2)| = 2 0.310519291 0.772787879 0.181823232
q3, |RSL(q3)| = 4 0.099253142 0.449606061 0.095964646

(d) UN-200K dataset

Queries MWP MQP MWQ
q1, |RSL(q1)| = 2 0.097412478 0.257616162 0.090924242
q2, |RSL(q2)| = 4 0.034838692 0.121323232 0.030308081

(e) CO-200K dataset

Queries MWP MQP MWQ
q1, |RSL(q1)| = 1 0.070707071 0.237835394 0.068186869
q2, |RSL(q2)| = 2 0.109853207 0.287939394 0.101015152
q3, |RSL(q3)| = 4 0.042653853 0.171747475 0.040429293

(f) AC-200K dataset

of the query point increases, as we see in Fig. 14. This also
reflects real life scenarios where the companies might not like
to decrease the price of a product (for example) if they already
have sufficient number of customers interested in the product.
Finally, the effectiveness of MWQ is the same as MWP when
the safe region consists of the query point itself only, as we
see from last two rows in Table III(a) and and Table III(b),
and last four rows in Table III(c). Otherwise, MWQ always
outperforms MWP.

2) MWQ vs. MQP: MWQ provides cheaper solution than
MQP in most cases as we see from Table III and Table
IV. However, it is possible to receive cheaper solution from
MQP than MWQ as we see from the first row of Table
IV(a). This is because, the query point can move without
restriction (can move outside of the safe region) in MQP,
whereas the query point can only move within the safe region
in MWQ. However, MQP does not guarantee of keeping the
existing reverse skyline of the query point, which is a major
disadvantage of MQP. On the other-hand, MWQ guarantees
of keeping the existing reverse skyline of the query point, i.e.,
RSL(q) ∩ RSL(q∗) = RSL(q) (as MWQ does not move q
outside of its SR(q)), and is desirable in practical applications.
B. Performance

The execution times of both MWP and MQP methods are
quite smaller compared to MWQ, as we see from Fig. 15.
The execution time of MWQ also increases as the number
of reverse skyline points of the query point increases. This
is because, we need to compute the DSL for each reverse
skyline point to compute the safe region used for MWQ and
computing the DSL of a point itself is a very costly operation
[16]. This can also easily be observed from Fig. 15 that most
of the execution time of MWQ is spent for computing the

(a) CarDB-100K (b) CarDB-200K

(c) UN-100K (d) AC-100K

Figure 15: Execution time of MWP, MQP, Safe Region (SR) and
MWQ in CarDB and synthetic datasets.

safe region of the query point, SR(q). An important aspect of
computing the safe region of the query point is that we do not
need to recompute it to answer another why-not question for
the same query point. This property allows a user to inspect
multiple why-not questions for a query once the safe region
of the query point is computed by MWQ. Beside of this,
we intend to find an approximated safe region that can be
computed quickly by taking advantage of the precomputed
approximated DSL of data-points [4].

1) Approximating the Safe Region: To find an approximated
safe region of the query point, we pre-compute an approxi-
mated DSL for each data-point in C and store it (off-line). To
approximate the DSL of the data-point, we first sort the points
∈ DSL to a specific dimension and then, every (|DSL|/k)th

point is drawn from the sorted sequence to store [4], where k
is a constant. Now, when a query is submitted, we calculate
its safe region from these precomputed approximated DSLs.
However, we do not replace the successive pair ul and ul+1

by ul,l+1 here as we do for computing the exact safe region
of the query point (Algorithm 3). But, to maximize the chance
of overlap between the DDR of why-not point and the safe
region of the query point, we always store the first and last
point from the sorted sequence to approximate the DSL for
each data-point as shown in Fig. 16.

2) Effect of Approximation: The execution time of MWQ
for approximated DSLs (which are precomputed) dramatically
reduces from mins to secs as we see in Fig. 175. However,
we may not receive results as good as the one returned by
the original MWQ when the number of reverse skyline points
increases as we see in Table V and Table VI. But, the result
is no worse than the one received from MWP. The value of k
is chosen empirically in our experiments for both datasets.

5The execution time includes the time spent for computing the best result.

Figure 16: Approximated DSL and DDR of ct for k=3, and
approximated DDR(ct) misses the shaded region.

(a) CarDB-100K (b) CarDB-200K

(c) UN-100K (d) UN-200K

Figure 17: Execution time of MWP, MQP, and Approx-MWQ in
CarDB and synthetic datasets.

VII. RELATED WORK AND DISCUSSION

Previous studies [9], [3], [8], [17] and [7] have addressed the
issue of answering why-not questions in different data settings.
In [9], Huang et al. and in [8], Herschel et al. propose to
modify the original tuple values in the database so that why-
not (missing) tuples become part of the (SPJ and SPJUA,
respectively) query output. In [3], Chapman et al. propose
to identify the culprit operator(s) that filters out the why-
not (missing) tuple(s) from the query output. As a next step,
Tran and Chan [17] answer why-not questions for SPJA
queries through query refinement where they collect why-
not (missing) tuples as feedback from the user. The authors
exploit the idea of skyline queries to report the closest refined
query with respect to the original one to minimize the distance
between refined and original query. In [7], He et al. propose
an approach to answer why-not questions on top-k queries
through the modification of both k and/or weightings. Yet,
before [9], [3], [8], [17] and [7], Motro [15] has discussed
about the approaches for explaining empty answer for a query.

In user feedback-based query refinement techniques, only
false positives (why) feedback have been emphasized in both
database and information extraction areas before [14],[13]. In
[14], Ma et al. model user feedback query refinement for
both learning the structure of the query as well as learning

TABLE V: Effect of Approximation in cost for CarDB datasets.

Queries MWP MQP MWQ Approx-MWQk=10
q1, |RSL(q1)| = 1 0.583105121 0.292546395 0.000000000 0.000000000
q2, |RSL(q2)| = 2 0.257558213 0.357151016 0.000000000 0.000000000
q3, |RSL(q3)| = 4 0.050311016 0.177055208 0.036971632 0.050311016
q4, |RSL(q4)| = 5 0.086962389 0.50232323 0.08839361 0.086962389
q5, |RSL(q5)| = 7 0.064378944 0.421775274 0.064355373 0.064378944
q6, |RSL(q6)| = 8 0.09346712 0.867555893 0.093459366 0.09346712
q7, |RSL(q7)| = 10 0.083575728 0.691113567 0.083559007 0.083575728
q8, |RSL(q8)| = 11 0.107217572 1.007932269 0.107204479 0.107217572

(a) CarDB-100K dataset

Queries MWP MQP MWQ Approx-MWQk=20
q1, |RSL(q1)| = 2 0.317222443 0.780333802 0.32123177 0.32123177
q2, |RSL(q2)| = 3 0.38737201 1.06368824 0.292690644 0.292690644
q3, |RSL(q3)| = 4 0.163688678 0.487682365 0.140717077 0.140717077
q4, |RSL(q4)| = 5 0.076933034 0.298898582 0.075045841 0.056923304
q5, |RSL(q5)| = 6 0.172445738 0.788075013 0.220154031 0.172445738
q6, |RSL(q6)| = 7 0.161279426 1.29542575 0.190381004 0.161279426
q7, |RSL(q7)| = 8 0.028030879 0.210567316 0.029396864 0.028030879
q8, |RSL(q8)| = 9 0.079989249 0.542973513 0.079284723 0.079989249
q9, |RSL(q9)| = 10 0.045925736 0.818973575 0.045906123 0.045925736

q10, |RSL(q10)| = 12 0.040420303 0.539585348 0.04041207 0.040420303
q11, |RSL(q11)| = 13 0.04782151 0.595096374 0.04782151 0.04782151
q12, |RSL(q12)| = 14 0.062465558 0.800602413 0.057050319 0.062465558
q13, |RSL(q13)| = 15 0.036071785 0.44020813 0.036065908 0.036071785

(b) CarDB-200K dataset

TABLE VI: Effect of Approximation in cost for synthetic datasets.

Queries MWP MQP MWQ Approx-MWQk=10
q1, |RSL(q1)| = 1 0.111111111 0.191954545 0.101015152 0.106065657
q2, |RSL(q2)| = 2 0.144572892 0.393979798 0.136378788 0.144572892
q3, |RSL(q3)| = 4 0.296552062 1.459651515 0.292944444 0.296552062

(a) UN-100K dataset
Queries MWP MQP MWQ Approx-MWQk=10

q1, |RSL(q1)| = 2 0.125424936 0.333393939 0.116166667 0.125424936
q2, |RSL(q2)| = 3 0.097817012 0.358641414 0.093439394 0.097817012
q3, |RSL(q3)| = 4 0.170237292 0.828358586 0.166671717 0.170237292

(b) CO-100K dataset
Queries MWP MQP MWQ Approx-MWQk=10

q1, |RSL(q1)| = 1 0.151515152 0.277813131 0.141419192 0.151515152
q2, |RSL(q2)| = 2 0.522911419 1.489949495 0.462126263 0.462126263
q3, |RSL(q3)| = 3 0.280323728 1.085944444 0.277782828 0.280323728
q4, |RSL(q4)| = 4 0.162777034 0.777888889 0.161621212 0.162777034

(c) AC-100K dataset
Queries MWP MQP MWQ Approx-MWQk=10

q1, |RSL(q1)| = 1 0.237373737 0.444479798 0.227277778 0.232328283
q2, |RSL(q2)| = 2 0.583246564 1.590969697 0.454550505 0.454550505
q3, |RSL(q3)| = 4 0.367259132 1.787949495 0.363651515 0.367259132

(d) UN-200K dataset

the relative importance of query components, but they collect
only false positive feedback from users. In [13], Liu et al.
collect false positives (why tuples), again identified by users,
to modify the initial rules in information extraction settings. In
a very recent work, Islam et al. [11] propose a user feedback
based query refinement framework for encountering both why
and why-not questions in SPJ query output by exploiting
the skyline operator. The authors consider minimizing the
unexpected (why) tuples as well as maximizing the expected
(why-not) tuples in the refined query output.

To the best of our knowledge, we are the first to address
why-not questions in reverse skyline queries. The contributions
mostly related to this paper are [18] and [10]. Given a “cost”
column in Q, the authors in [18] create top-k profitable
products that are not dominated by any product available in
the market, P . The authors in [10] propose skyline distance
as a measure of multidimensional competence and propose
algorithms for computing the minimum cost of upgrading a
point to the skyline given a cost function. In our work, we
show how to make a product (query point) interesting to
a customer (why-not point) by modifying product features
(query attributes) and/or customer preferences. We also con-
sider that modification of product features does not affect

existing customers who are already interested in the product.

VIII. CONCLUSION

In this paper, we present the semantics of answering why-
not questions in reverse skyline queries. In connection with
this, we also show how to modify the why-not data point as
well as the query point to answer why-not questions. Then, we
show how to compute the safe region of a query-point where
it can be moved while keeping its existing reverse skyline,
and how to answer why-not questions considering the safe
region of the query-point. Experimental results demonstrate
the effectiveness of our approach in answering why-not
questions in reverse skyline queries. As the construction of
the exact safe region of the query point is time inefficient, we
also show how to construct approximated safe region of the
query point to answer why-not questions in reverse skyline
queries by sacrificing the quality of results.
Acknowledgments. This work is supported by the grants of
ARC Discovery Projects DP120102627 and DP110102407.
We are grateful to the anonymous reviewers for their con-
structive comments.

REFERENCES

[1] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The r*-tree:
An efficient and robust access method for points and rectangles. In
SIGMOD, pages 322–331, 1990.

[2] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In
ICDE, pages 421–430, 2001.

[3] A. Chapman and H. V. Jagadish. Why not? In SIGMOD, pages 523–534,
2009.

[4] E. Dellis and B. Seeger. Efficient computation of reverse skyline queries.
In VLDB, pages 291–302, 2007.

[5] J. V. den Bercken, B. Blohsfeld, J.-P. Dittrich, J. Krämer, T. Schäfer,
M. Schneider, and B. Seeger. Xxl - a library approach to supporting
efficient implementations of advanced database queries. In VLDB, pages
39–48, 2001.

[6] P. M. Deshpande and D. P. Efficient reverse skyline retrieval with
arbitrary non-metric similarity measures. In EDBT, pages 319–330,
2011.

[7] Z. He and E. Lo. Answering why-not questions on top-k queries. In
ICDE, pages 750–761, 2012.

[8] M. Herschel and M. A. Hernández. Explaining missing answers to spjua
queries. PVLDB, 3(1):185–196, 2010.

[9] J. Huang, T. Chen, A. Doan, and J. F. Naughton. On the provenance
of non-answers to queries over extracted data. PVLDB, 1(1):736–747,
2008.

[10] J. Huang, B. Jiang, J. Pei, J. Chen, and Y. Tang. Skyline distance: a
measure of multidimensional competence. Knowledge and Information
Systems, 2012.

[11] M. S. Islam, C. Liu, and R. Zhou. User feedback based query refinement
by exploiting skyline operator. In Conceptual Modeling, pages 423–438,
2012.

[12] H. V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian, Y. Li, A. Nandi,
and C. Yu. Making database systems usable. In SIGMOD, pages 13–24,
2007.

[13] B. Liu, L. Chiticariu, V. Chu, H. V. Jagadish, and F. Reiss. Automatic
rule refinement for information extraction. PVLDB, 3(1):588–597, 2010.

[14] Y. Ma, S. Mehrotra, D. Y. Seid, and Q. Zhong. Raf: An activation
framework for refining similarity queries using learning techniques. In
DASFAA, pages 587–601, 2006.

[15] A. Motro. Flex: A tolerant and cooperative user interface to databases.
IEEE Trans. Knowl. Data Eng., 2(2):231–246, 1990.

[16] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and progressive
algorithm for skyline queries. In SIGMOD, pages 467–478, 2003.

[17] Q. T. Tran and C.-Y. Chan. How to conquer why-not questions. In
SIGMOD, pages 15–26, 2010.

[18] Q. Wan, R. C.-W. Wong, and Y. Peng. Finding top-k profitable products.
In ICDE, pages 1055–1066, 2011.

	cover_page-16
	Final_ICDE2013_Camery_Ready

