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Accurate Delay Distribution for IEEE 802.11 DCF
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Abstract— We derive the access delay generating function
of the IEEE 802.11 DCF protocol. Our analysis corrects a
model recently presented in [6]. We demonstrate that numerical
transform inversion can be used to efficiently obtain values of
the distribution. Simulations show that our analytical results are
highly accurate.

Index Terms— IEEE 802.11 DCF, MAC access delay, generat-
ing function, numerical inversion.

I. INTRODUCTION

CURRENTLY, analytical modeling and performance eval-
uation of the IEEE 802.11 Medium Access Control

(MAC) protocol [4] for wireless local area networks is an
area of active research. The MAC layer employs a channel
access mechanism called the distributed coordination function
(DCF) where stations contend for the channel using a carrier
sense multiple access mechanism with collision avoidance
(CSMA/CA).

In this paper, we are concerned with the access delay of
the IEEE 802.11 DCF. We define the access delay as the
time interval between the instant when the packet reaches
the head of the transmission queue and begins contending for
the channel, and the instant when the packet is successfully
received at the destination station. A trivial variation on the
access delay is the service-time delay which equals the access
delay plus the (deterministic) time to receive an acknowl-
edgement packet. Existing work on the delay performance
of DCF has focused primarily on the average access delay,
with most papers using the seminal Markov chain model
developed in [1] as a starting point. Recently, the authors in [7]
proposed a method to derive the service-time delay generating
function from the same Markov chain model. However, this
approach is rather complex and, as we will demonstrate, the
distributional values predicted by its generating function are
not very accurate. A new approach for deriving the service-
time delay generating function is presented in [6]; however
the paper ignored an important detail, namely the dependence
between the number of backoff slots of a node and the delay
due to transmissions and collisions of competing stations.
Neither [7] nor [6] discuss the non-trivial task of deriving
the distribution from the generating function. In this letter,
we develop the access delay generating function taking into
account the dependency mentioned above, and show that the
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delay distribution can be readily computed by numerically
inverting the generating function.

II. ANALYTICAL MODEL FOR THE ACCESS DELAY

We consider N stations that always have packets to send
(saturated stations), and assume ideal channel conditions so
that the only source of packet corruption is packet collision.
We assume as in [6] that each packet regardless of its source
collides with a constant and independent probability p. Based
on the mechanism associated with the exponential backoff of
DCF protocol, the overall average backoff window can be
calculated. In particular, a packet is successfully transmitted
with probability 1−p, and the average backoff for such packet
is (W−1)/2, where W is an initial backoff window. If the first
transmission fails, the packet is successfully transmitted on
the second attempt with probability (1 − p)p, and the average
backoff in this case is (2W − 1)/2. Using similar arguments,
the overall average backoff window is then given by

W = η

(
m−1∑

i=0

pi (2iW − 1)/2 +
K−1∑

i=m

pi (2mW − 1)/2

)
,

(1)
where m is the number of times the backoff window is
doubled, K ≥ m is the maximum number of transmissions
for one packet, η = (1 − p)/(1 − pK) and (1 − pK)−1

is a normalization term. The collision probability p can be
expressed as a function of the W as follows [6]

p = 1 − (1 − 1/W )N−1. (2)

Equations (1) and (2) establish a fixed point formulation from
which the collision probability p can be computed using an
iterative method.

Next we derive the generating function of the access delay
using a similar approach to [6] by decomposing the delay
into different components. We define the following discrete
random variables (RVs) and discrete probability density func-
tions (pdfs). Let X,Y, V be RVs representing, respectively,
the number of backoff slots of the tagged station, the delay
contribution due to packet transmissions and the collisions of
the tagged station, and the delay contribution due to packet
transmissions and collisions of other stations. Furthermore, let

• ui() denote the discrete uniform pdf between 0 and
2iW − 1, 0 ≤ i ≤ m,

• l() denote the pdf of the RV representing the channel
occupancy of a transmitted packet,

• ψ() denote the pdf of the RV representing the channel
occupancy of collisions involving the tagged station,

• θ() denote the pdf of the RV representing the channel
occupancy of a collision not involving the tagged station,

• f (i)() denote the i-fold convolution of the pdf f(),
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• F (z) denote the Z-transform of the pdf f(), e.g.
Ψ(z),Θ(z) are the Z-transform of the above ψ(), θ()
functions, respectively.

We first derive the probability of delay due to backoffs, trans-
missions and collisions that involve the tagged station. With
normalized probability η, the packet is successfully transmit-
ted in its first attempt after x backoff slots. Since the number
of backoff slots is chosen uniformly between 0 and W −1, the
probability that there are x backoff slots is u0(x). The packet
transmission time takes y units of time with probability l(y).
Thus, P (X = x, Y = y) = η u0(x) l(y). With probability ηp
the first transmission attempt fails, but the second attempt
is successful. In this case, the probability that there are x
backoff slots is u0 ∗ u1(x) where ∗ represents convolution.
The y units of time delay caused by the first collision and the
packet transmission time in the second attempt has probability
ψ ∗ l(y). Extending this logic to K − 1 retransmissions, the
probability that the tagged station experiences x backoff slots,
and that there are y units of time delay due to collisions and
packet transmission involving the tagged station, is given by

P (X = x, Y = y) = η u0(x) l(y)
+ η p u0 ∗ u1(x) ψ ∗ l(y) + ...
+ η pm u0 ∗ u1 ∗ .. ∗ um(x) ψ(m) ∗ l(y) + ...

+ η pK−1 u0 ∗ .. ∗ u
(K−m)
m (x) ψ(K−1) ∗ l(y).

(3)

In the rest of the paper we use the shorthand notation P (x, y)
for P (X = x, Y = y), etc..

The backoff period of the tagged station can be interrupted
by transmissions and/or collisions of other stations. The prob-
ability that an arbitrary backoff slot of the tagged station is
interrupted by one or more other stations is q = 1 − (1 −
1/W )N−1. The probability that an arbitrary backoff slot of
the tagged station is interrupted by only one other station is
q′ =

(
N−1

1

)
(1/W )(1 − 1/W )N−2. Thus, the probability that

there is a collision, given that a slot is interrupted, can be
expressed as

P (collision|slot is interrupted) = qc = (q − q′)/q. (4)

Given that the tagged station experiences x backoff slots
before it successfully transmits a packet, the probability that
the transmissions and collisions of other stations during these
backoff slots contribute v units of time to the tagged station’s
delay is

P (v|x) =
x∑

j=0

(
x

j

)
qj(1 − q)x−j

×
j∑

i=0

(
j

i

)
qi
c(1 − qc)j−il(j−i) ∗ θ(i)(v).

(5)

Equation (5) expresses the dependence between the number of
backoff slots and the number of transmissions and collisions of
other stations during this period. In particular, given x backoff
slots, there are j interruptions by other stations and among
them i interruptions result in collision. The authors in [6]
ignored this dependence i.e. they made the approximation that
the probability that there are j interruptions by other stations
is independent of the number of backoff slots of the tagged
station (see (17), (31) in [6]). This approximation leads to

significant errors in the distributional values, as we illustrate
in Section III.

To calculate the generating function, let k be an in-
teger, k ≥ 0, and let g(k) =

∑

Ω

P (x, y, v), where

Ω = {(x, y, v) : δx + y + v = k}, and δ is the length of the
backoff slot in units of time. The generating function of the
access delay of the tagged station can be expressed as:

G(z) =
∞∑

k=0

g(k)zk =
∞∑

δx+y+v=0

P (x, y, v)zδx+y+v

=
∞∑

δx+y=0

P (x, y)zδx+y
∞∑

v=0

P (v|x, y)zv, (6)

where the notation
∑

δx+y+v=k, 0 ≤ ∀k ≤ ∞ is to be under-
stood as the sum over all combinations of x, y, v nonnegative
integers such that δx + y + v = k. Observe that P (v|x, y) =
P (v|x) and the second term of the product in (6) can be
simplified using (5) (after some algebraic manipulations) as
follows:

∞∑

v=0

P (v|x)zv =
x∑

j=0

(
x

j

)
qj(1 − q)x−j

×
j∑

i=0

(
j

i

)
qi
c(1 − qc)j−iLj−i(z)Θi(z) = Ax(z),

where A(z) = q(qcΘ(z) + (1 − qc)L(z)) + (1 − q).
Substituting back into (6), we have

G(z) = η L(z)
∑m−1

i=0 p i Ψi(z)
∏i

j=0 Uj(ẑ)
+ η L(z) pm Ψm(z)

∏m
j=0 Uj(ẑ)

× 1−[p Um(ẑ)Ψ(z)]K−m

1−p Um(ẑ)Ψ(z) ,

(7)

where ẑ = zδA(z), and ∀ i = 0, 1, ..,m,
Ui(ẑ) = (1/(2iW ))(1 − ẑ2iW )/(1 − ẑ).

To numerically invert the generating function, we use the
lattice-poisson algorithm developed in [3]. The inversion for-
mula used in this algorithm is

g(k) ≈ 1
2klrk

kl−1∑

j=−kl

G(re−iπj/(kl))eiπj/l,

for real r and integer l. The results we present in the next
section are calculated using l = 1 and r = 10−4/k, which
results in an error less than 10−8 in the numerical inversion
process.

III. NUMERICAL EVALUATION AND DISCUSSION

In this section we verify our analytical results by simulation,
and compare the delay distribution of our model with those
obtained by inverting the generating functions given in [6], [7]
using the lattice-poisson algorithm. (To be precise, we invert
the access delay variants of the service-time generating func-
tions that appear in these papers.) The simulation is conducted
using the ns-2 simulator (version 2.27) [2]. We found that the
MAC implementation in ns-2 simulator contains several bugs
that noticeably affect the output delay statistics, so these were
remedied. The main problems with the standard simulator are:
the timer modelling the DIFS (distributed interframe space)



VU and SAKURAI: ACCURATE DELAY DISTRIBUTION FOR IEEE 802.11 DCF 319

100 200 300 400 500 600
10−2

10−1

Delay [ms]

P
ro

ba
bi

lit
y

Complementary cdf functions (30 stations)

Simulation
Analysis
Tickoo’s results
Zhai’s results

Fig. 1. Access delay distribution (ccdf) function for 30 stations using packet
size of 1000 bytes.

deferral is not stopped when the channel becomes busy; a
post-backoff is not preceded by a DIFS; after the backoff
counter is frozen, the remaining backoff time is incorrectly
calculated; and the EIFS (extended interframe space) period
is erroneously followed by a DIFS deferral.

We simulate the access delay on the uplink where a number
of mobile stations send to an access point. In our setup
the four-way handshake (RTS/CTS) mechanism for channel
reservation is not used. All the stations are saturated using
UDP traffic with the same fixed packet size, and consequently
collisions are also then of fixed duration. Note that although

the results presented here use a fixed UDP packet size, our
analytical model is valid for general packet size distribution.
We simulate an 802.11b system [5], where the data transmis-
sion rate is 11 Mbps, the control rate is 1 Mbps, and m,K
are set to 5 and 7, respectively. The initial window W is set
to 32. Fig. 1 shows the delay distribution for N = 30 active
stations and a packet size of 1000 bytes.

Observe that our analytical results exhibit excellent agree-
ment with the simulation results. The delay distribution ob-
tained from the generating function presented in [6] by Tickoo
et al. is inaccurate due to the reasons cited in Section II.
Results obtained by using Zhai’s et al. generating function [7]
are closer to the simulation results but still inaccurate. The in-
accuracy stems from the model used for the delay contribution
of non-tagged stations.
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