
Disease- and age-related changes in histone
acetylation at gene promoters in psychiatric disorders
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Increasing evidence suggests that epigenetic factors have critical roles in gene regulation in neuropsychiatric disorders and in
aging, both of which are typically associated with a wide range of gene expression abnormalities. Here, we have used chromatin
immunoprecipitation-qPCR to measure levels of acetylated histone H3 at lysines 9/14 (ac-H3K9K14), two epigenetic marks
associated with transcriptionally active chromatin, at the promoter regions of eight schizophrenia-related genes in n¼ 82
postmortem prefrontal cortical samples from normal subjects and those with schizophrenia and bipolar disorder. We find that
promoter-associated ac-H3K9K14 levels are correlated with gene expression levels, as measured by real-time qPCR for several
genes, including, glutamic acid decarboxylase 1 (GAD1), 5-hydroxytryptamine receptor 2C (HTR2C), translocase of outer
mitochondrial membrane 70 homolog A (TOMM70A) and protein phosphatase 1E (PPM1E). Ac-H3K9K14 levels of several of the
genes tested were significantly negatively associated with age in normal subjects and those with bipolar disorder, but not in
subjects with schizophrenia, whereby low levels of histone acetylation were observed in early age and throughout aging.
Consistent with this observation, significant hypoacetylation of H3K9K14 was detected in young subjects with schizophrenia
when compared with age-matched controls. Our results demonstrate that gene expression changes associated with psychiatric
disease and aging result from epigenetic mechanisms involving histone acetylation. We further find that treatment with a histone
deacetylase (HDAC) inhibitor alters the expression of several candidate genes for schizophrenia in mouse brain. These findings
may have therapeutic implications for the clinical use of HDAC inhibitors in psychiatric disorders.
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Introduction

Epigenetic mechanisms of gene regulation involve both DNA
methylation and posttranslational modifications of histone
proteins.1 Although it is known that DNA methylation of
cytosine residues at CpG dinucleotide sites results in gene
silencing, the effects of posttranslational modifications on
histone proteins are more complex.2 Histone tails are
subjected to many kinds of chemical modifications, such as
methylation, acetylation, phosphorylation, ubiquitination and
ribosylation,3 which can lead to diverse effects on chromatin
structure and gene activity. For example, acetylation of lysine
residues usually correlates with chromatin accessibility and
transcriptional activation, whereby lysine methylation has
either activating or repressive effects on gene regulation.3

During the last several years, there has been an increased
interest in the epigenetic origins of psychiatric diseases.4–7 Of
the diverse epigenetic machinery associated with gene
regulation, DNA methylation has been the most widely studied
in the context of psychiatric disorders. Altered methylation
status of CpG sites has been found within the regulatory
regions of several candidate genes in subjects with schizo-
phrenia, including HTR1A,8 HTR2A,9 glutamic acid decarbox-
ylase 1 (GAD1),10,11 REELIN,12,13 COMT,14 DRD215 and
SOX10.16 More recently, epigenome-wide profiling has
revealed large scale changes in DNA-methylation associated

with major psychosis, some of which involve genes asso-
ciated with neuronal development as well as genes involved
with glutamatergic and GABAergic neurotransmission.17

To date, much less is known about alterations in histone
modifications in schizophrenia. Previous studies have quanti-
fied global levels of histone phosphorylation, acetylation and
methylation, at different lysine (K), serine (S) and arginine (R)
residues of histones H3 and H4. Overall, no significant
differences in the levels of these histone marks were found
in the prefrontal cortex of individuals with schizophrenia
compared with normal control subjects;18 however, higher
methylation levels of histone H3 at R17 were detected within a
subset of affected patients.18 More recently, decreases in
trimethylated H3 at K4 were found specifically at the GAD1
locus in the prefrontal cortex of patients with schizophrenia
compared with control subjects, in correlation with reduced
GAD1 mRNA levels.11 These data suggest that changes in
histone modifications at specific genomic loci, rather than on a
global scale, may be occurring in schizophrenia, and
identification of such loci may unveil the role of epigenetic
regulation of gene expression in schizophrenia.

Given the widespread changes in gene expression that have
been associated with psychiatric disorders,19,20 we investi-
gated the contribution of histone acetylation at specific gene
promoters to gene expression regulation in schizophrenia and
bipolar disorder. Previous studies have shown that acetylation
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levels of histone H3 at K9 (ac-H3K9) and at K14 (ac-H3K14)
are highest at the predicted transcriptional start sites of active
genes and are positively correlated with one another, as well
as with transcriptional activity across a range of yeast genes.21

Therefore, we measured histone acetylation at K9 and K14 at
the proximal promoter regions of eight selected genes
representing diverse functionalities that have been implicated
in the pathophysiology of schizophrenia.

We find that histone acetylation at K9 and K14 is associated
with gene expression levels for eight schizophrenia-related
genes, and that histone acetylation patterns at specific loci show
distinct disease and age-related effects in normal subjects and
those with schizophrenia and/or bipolar disorder. Importantly,
understanding the role of histone acetylation in schizophrenia
and bipolar disorder may have relevant therapeutic implications,
whereby the use of histone deacetylase (HDAC) inhibitors may
be clinically beneficial by means of restoring abnormal histone
acetylation patterns and accompanying gene expression
deficits in schizophrenia and with aging in normal subjects.

Materials and methods

Samples. This study utilizes postmortem human brain
samples (n¼ 82 in total) from two different brain banks:
The Harvard Brain Tissue Resource Center (HBT) and the
Victorian Brain Bank Network (VBBN) at the Mental Health
Research Institute. For the VBBN samples, approval was
obtained from both the Ethics Committee of the Victorian
Institute of Forensic Medicine and the Mental Health
Research and Ethics Committee of Melbourne Health.
Cases were split into two groups. The first group consists
of brains from the HBT collection: the prefrontal cortex
(Brodmann area 10) from n¼ 50 subjects (n¼ 18 normal
subjects, n¼ 16 subjects with schizophrenia and n¼ 16
subjects with bipolar disorder). The second group consisted
of young subjects from the VBBN collection: the prefrontal
cortex (Brodmann area 46) from n¼ 16 subjects (n¼ 8
control, n¼ 8 subjects with schizophrenia; 18–36 years of
age) and old subjects from the HBT collection: the prefrontal
cortex (Brodmann area 10) from n¼ 16 subjects (n¼ 8
control and n¼ 8 subjects with schizophrenia; 55–92 years of
age). Demographic data for individual subjects are shown in
Supplementary Table 1. Ascertainment and diagnosis of all
subjects were based on the diagnostic and statistical manual
of mental disorders (DSM-IV) criteria (American Psychiatric
Association 1994). In the case of the VBBN collection, an
additional validated instrument, the Diagnostic Instrument for
Brain Studies, was used.22 None of the subjects had a record
of treatment with valproic acid, an HDAC inhibitor. For the
VBBN subjects, cadavers had been refrigerated within 5 h
from death to ensure slowing of any autolysis of the CNS
tissue; the recorded postmortem intervals (PMIs) include
refrigeration times. For these samples, tissue integrity was
assessed by pH, which is now recognized as a better
measure of tissue preservation than PMI,23 and all samples
with pHo6.1 were excluded. For all samples, RNA quality
was assessed by Bioanalyzer tracings or gel electrophoresis
and spectrophotometric measurements, which showed no
evidence for degradation products or protein contamination.

Chromatin immunoprecipitation. Chromatin immuno-
precipitation (ChIP)-PCR was performed on postmortem
human brain samples using an adaptation of a method
previously described in detail.24 Briefly, B60–100 mg of the
prefrontal cortex from human postmortem brain was fixed
with 1% of formaldehyde for 15 min at room temperature then
homogenized to isolate nuclei. DNA was sonicated in lysis
buffer (1% SDS, 10 mM EDTA, 50 mM Tris-HCl (pH 8.0), 1�
protease inhibitors cocktail (Roche, Germany)) to B0.2—
0.8 kb in size of DNA fragments. 100ml of precleared nuclear
lysate was diluted with dilution buffer (1% Triton � 100, 2 mM
EDTA, 20 mM Tris-HCl (pH 8.0), 150 mM NaCl and 1�
protease inhibitors cocktail), and incubated with 3mg of
histone ac-H3K9K14 (Upstate, Billerica, MA, USA), 3 mg
rabbit control IgG (Cell Signaling Technology, Danvers, MA,
USA) or total histone H3 (Abcam, Cambridge, MA, USA)
antibodies overnight at 4 1C. 60 ml of Protein A Agarose
beads (Millipore, CA, USA) were added and incubated for 2 h
to capture the immune complexes. The protein–DNA
complexes were washed and eluted in elution buffer (1%
SDS and 0.1 M NaHCO3) at 65 1C for 20 min. The proteins
were digested by proteinase K, and the cross-linking reaction
was reversed at 65 1C overnight. DNA was purified with
phenol/chloroform and ethanol precipitation, and analyzed by
real-time PCR analysis.

Gene expression analysis. Real-time qPCR analysis was
performed using the ABI PRISMs 7900HT Sequence
Detection System (Applied Biosystems, Foster City, CA,
USA) on the recovered DNA from the ChIP experiments
using primers directed against the proximal promoter regions
of schizophrenia-related genes (Supplementary Table 2), or
on cDNA prepared from the same samples using the primers
designed in the exonic regions of selected genes (Supple-
mentary Table 2) as described previously.25,26 The proximal
promoter region (B1 kb upstream from transcription start
site) of each gene was obtained from UCSC browser
(http://genome.ucsc.edu/cgi-bin/hgGateway). Primers were
designed to generate amplicons of 80–150 nucleotides with
similar melting temperatures (641C) using Invitrogen’s Primer
Designer and their specificity for binding to the desired
sequences was searched against the NCBI database. We
analyzed the ChIP-qPCR data using the Percent Input Method
(Invitrogen, Carlsbad, CA, USA). Briefly, the amplification
efficiency (AE) of the qPCR reaction for each primer pair and
sample was determined by the input DNA using the formula
AE¼ 10^(-1/slope). The threshold cycle (Ct) value of Input,
which is 1% of the immunoprecipitation (IP) reaction was
adjusted to 100% by subtracting 6.644 cycles (log2 of 100),
and then the percent input was calculated by the formula
100�AE4(adjusted input Ct-IP Ct). For gene expression, the
amount of cDNA in each sample was calculated using SDS2.1
software (Applied Biosystems, Foster City, CA, USA) by the
comparative Ct method and expressed as 2exp (Ct) using
beta-2-microglobulin (B2M) as an internal control.

Differences in the levels of microarray expression values,
from our previously published microarray dataset,27 were
calculated by ANOVA, performed using the National Institutes
of Aging Array Tools,28 with the FDR controlled at a default
setting of 0.1, according to Benjamini and Hochberg.29
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Statistics. The demographic characteristics for each cohort
were compared using Student’s t-tests to verify matching for
age, sex ratio, PMIs and tissue pH. The PMI between the two
brain banks were significantly different (46.13±2.43 vs
21.3±1.74 h; Po0.0001) (Supplementary Table 1), which
could be due, in part, to different criteria for defining PMI (see
above). Importantly, the PMIs did not show any significant
difference when compared by cohort. The gene expression
and ChIP-qPCR data values were analyzed for normal
distribution using the Kolmogorov–Smirnov method, which
confirmed that the data were normally distributed for all
subjects. Given that the data were normally distributed, each
data set was interrogated for outliers using the Grubbs’ test,
which resulted in the removal of ChIP-qPCR values from one
of the old control subjects from the HBT collection. For
assessment of disease effects of the qPCR and ChIP-qPCR
data among the control, schizophrenia and bipolar disorder
cohorts, significant differences were determined by one-way
ANOVA and Student’s unpaired t-tests (GraphPad 5.0; San
Diego, CA, USA). The effects of demographic and brain
collection parameters (age, sex, PMI and tissue pH) on the
disease effect for all data were assessed by ANCOVA
(XLSTAT software, Addinsoft, New York, NY, USA). From
this analysis, age showed a significant contribution to data
variation in gene expression and/or ChIP data for all genes
tested (Supplementary Table 3). Tissue pH showed a
significant effect on gene expression only for translocase of
outer mitochondrial membrane 70 homolog A (TOMM70A) in
the schizophrenia comparison and for GAD1 in the bipolar
disorder comparison, but no significant effects of pH on ChIP
data were observed for any genes (Supplementary Table 3).
Pearson’s product moment correlation analysis was further
performed for the ac-H3K9K14 levels (as percentage input)
and the B2M-normalized expression values against the age
of the subjects, and for ac-H3K9K14 levels against the gene
expression values.

Results

Disease effects on gene expression . We selected eight
diverse ‘‘schizophrenia-related’’ genes (Table 1) for this
study based on the following criteria: (1) genes showing

differential expression in schizophrenia and/or bipolar
disorder from published microarray studies;30,31 (2) genes
showing CNS cell type-specific expression patterns based on
comparison with previous transcriptome studies performed
on isolated astrocytes, neurons and oligodendrocytes;32 (3)
genes representing different functions/pathways related to
schizophrenia based on review of the literature.20,33–35

Additionally, these selected genes are representative of
different gene co-expression networks, based on our
previous studies, which identified over 20 gene co-
expression modules in the prefrontal cortex from subjects
with schizophrenia and bipolar disorder.36 We first tested for
expression differences for five neuronally expressed genes,
GABAergic neurotransmission: GAD1; mitochondrial
function/import: TOMM70A; neurotransmitter receptor
signaling: serotonin 5-hydroxytryptamine receptor 2C
(HTR2C) and regulator of G protein signaling 4 (RGS4);
signal transduction: protein phosphatase, Mg2þ /Mn2þ

dependent, 1E (PPM1E) in the postmortem prefrontal
cortex (Brodmann area 10) from a cohort of subjects with
schizophrenia and bipolar disorder from the Harvard Tissue
Resource Center (group 1; Supplementary Table 1). Real-
time qPCR analysis revealed decreased expression of
HTR2C, TOMM70A, RGS4 and PPM1E in subjects with
schizophrenia and bipolar disorder compared with matched
controls, and a decrease expression in GAD1 only in
subjects with schizophrenia (Figure 1).

Histone acetylation at gene promoters. To test for
correlations between gene expression activity and promoter
histone acetylation, we performed ChIP-qPCR assays on
cortical samples from these same subjects, using an
antibody directed against ac-H3K9K14, followed by real-
time qPCR analysis using primers directed against the
proximal promoter regions of these genes. Linear
regression analysis revealed that gene expression levels
were correlated with promoter-associated ac-H3K9K14
levels for GAD1, TOMM70A, HTR2C and PP1ME, but not
for RGS4, in all 50 subjects (psychiatric cases and controls)
(Figure 2). Ac-H3K9K14 levels were also compared among
all psychiatric cases and controls, and no significant
differences were detected (data not shown).

Table 1 Summary of genes selected for this study

Gene ID Gene description Cell type associationa Function SCZb SCZc BPc

GAD1 Glutamic acid decarboxylase 1 Neuron GABAergic neurotransmission k k k
HTR2C 5-hydroxytryptamine (serotonin)

receptor 2C
Neuron Neurotransmitter receptor signaling k m k

RGS4 Regulator of G-protein signaling 4 Neuron k — k
TOMM70A Translocase of outer mitochondrial

membrane 70 homolog A
Neuron Mitochondrial function/import k k k

PPM1E Protein phosphatase, Mg2+/Mn2+

dependent, 1E
Neuron Signal transduction k k m

MBP Myelin basic protein Oligodendrocyte Myelination-associated k k k
UGT8 UDP glycosyltransferase 8 Oligodendrocyte White matter function k k
H1FNT H1 histone family, member N Ubiquitous Chromatin-related k NP NP

The arrows designate the direction of the significant gene expression change in schizophrenia (SCZ) or bipolar disorder (BP) from previous microarray studies.
‘–’ designates no significant change in expression; NP, indicates not present in the dataset.
aCell-type specific expression was determined by comparing with transcriptome datasets for astrocytes, neurons and oligodendrocytes, from Cahoy et al.32

bFrom Narayan et al.30

cFrom the Stanley Medical Research Database, https://www.stanleygenomics.org/and Kim and Webster.31
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Age effects on gene activity. ANCOVA of the
demographic and sample variables with the experimental
data values revealed that age significantly contributed to the
variation in gene expression and/or ac-H3K9K14 levels
among disease cohorts for all genes tested. Therefore, we
further highlighted the effects of age on ac-H3K9K14 levels
by performing Pearson’s linear correlation analyses.
Promoter associated ac-H3K9K14 levels were significantly
negatively associated with age for GAD1, RGS4, PPM1E,

HTR2C and TOMM70A in normal subjects (Table 2).
Importantly, there was also an effect of age on levels of
gene expression in normal subjects for all genes except
HTR2C (Table 2). The same effects of age on histone
acetylation and gene expression levels were observed for
GAD1, TOMM70A and PPM1E in subjects with bipolar
disorder (Table 2); however, in marked contrast, and with the
exception of GAD1, there was no effect of age on histone
acetylation levels in the prefrontal cortex from subjects with
schizophrenia (Table 2).

Histone acetylation differences in young vs old subjects.
To further explore the age effect on histone acetylation, we
measured ac-H3K9K14 levels at the promoter regions of three
of the neuronal genes, GAD1, TOMM70A and HTR2C, plus
two oligodendrocyte-expressing genes, myelin basic protein
(MBP) and UDP glycosyltransferase 8 (UGT8), and a
ubiquitously-expressed gene, H1 histone family, member N
(H1FNT) in the postmortem prefrontal cortex from a second
cohort of subjects (group 2; Supplementary Table 1). This
cohort was comprised of young subjects (18–36 years of age)
and old subjects (55–92 years of age) with schizophrenia and
age-matched controls (n¼ 32 in total). Consistent with the
results from subjects in group 1 above, Pearson’s correlation
analysis of ac-H3K9K14 levels against age revealed strong
negative correlation with age in normal subjects (Table 2;
Figure 3), but not in subjects with schizophrenia, despite
measuring levels in a cohort of subjects with a greater age
range (18–91 years). Examining our previous microarray data

Figure 1 Real-time PCR analysis for the indicated genes in subjects with
schizophrenia, bipolar disorder and non-psychiatric controls. Real-time qPCR
assays were performed as described in the materials and methods on postmortem
Brodmann area (BA) 10 from subjects with schizophrenia, bipolar disorder and
matched controls (group 1; n¼ 50 total). Data shown are gene expression values
normalized by the housekeeping gene, B2M. Asterisks denote significant
differences in expression as determined by one-way ANOVA followed by Student’s
t-test: *Po0.05; þPo0.08; **Po0.01; ***Po0.001.

Figure 2 Correlation between gene expression levels and acetylation of histone H3 at K9 and K14. ChIP-qPCR assays were performed on postmortem BA10 from the
same subjects as in Figure 1, measuring ac-H3K9K14 levels at the promoter regions of the indicated genes (as designated by UniGene IDs). Rabbit IgG was used as a
negative control for the pull-down. Histone acetylation is presented as percentage input DNA. Gene expression levels were determined by real-time qPCR, from Figure 1. Each
point represents one subject. Pink, control subjects; blue, subjects with schizophrenia; black, subjects with bipolar disorder. Pearson’s correlation (r) values are indicated within
each graph.
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generated from the prefrontal cortex from case and control
subjects ranging in age from 18–81 years (GEO accession
#GSE21138),30,37 which consisted of one-half of the same
young subjects as used in this study, we similarly find that
the expression levels of these genes decreases with age
(Supplementary Figure 1).

From the linear plots shown in Figure 3, it is apparent that
for several genes, ac-H3K9K14 levels do not decrease with
advanced age because levels are low in subjects with
schizophrenia at an early age, and remain low throughout
aging. Hence, we performed group-wise comparisons of the
ChIP-qPCR data according to age. This analysis revealed
hypoacetylation of H3K9K14, the promoter regions of GAD1,
UGT8, HTR2C and H1FNT in young subjects with schizo-
phrenia compared with matched controls (Figure 4A). In
contrast, only HTR2C showed a decrease in ac-H3K9K14
levels in old subjects compared with matched controls,
although this did not reach significance (P¼ 0.071)
(Figure 4A). Interestingly, ac-H3K9K14 levels at the MBP
promoter were significantly increased in old subjects com-
pared with matched controls (Figure 4A).

Again, we examined whether the expression of these
genes from our previous microarray studies (GEO accession
#GSE21138), which were performed on the prefrontal cortex
from one-half of the same young subjects,30 was associated
with ac-H3K9K14 levels. We also examined gene expression
from subjects at late stage, although they were different than
those used for ChIP-qPCR in the current study. Consistent
with the observed hypoacetylation of H3K9K14 in young
subjects with schizophrenia, we find that the expression of
GAD1, TOMM70A, HTR2C, MBP, UGT8 and H1FNT are
decreased in young-aged subjects compared with age-
matched controls (Figure 4B). Old-aged subjects with schizo-
phrenia compared with their age-matched controls showed no
significant changes in expression of these genes, consistent
with the lack of difference in ac-H3K9K14 levels in older
subjects (Figure 4B).

HDAC inhibitors and schizophrenia candidate genes. The
role of histone acetylation on gene regulation is especially
pertinent because of the therapeutic potential of HDAC inhi-
bitors, which have gained considerable attention as a relevant
therapeutic option for many neurological disorders38,39

including psychiatric disorders.5,40 Our previous studies have
focused on novel, HDAC1/3-selective HDAC inhibitors,
including HDACi 4b.25,41 To gain insight into the potential
usefulness of novel selective HDAC inhibitors, such as HDACi
4b, we screened our previously published microarray data
from HDACi 4b-treated mouse brain25(GEO accession
#GSE26317) for schizophrenia candidate genes as deter-
mined from the SZGene database (www.szgene.org). We
found that HDACi 4b treatment altered the expression of
several candidate genes for schizophrenia; from the top 45
candidate genes listed on the SZGene database, 17 genes,
including RGS4 and MBP, two genes from this study, were
found to be altered in the mouse brain by 4b (Figure 5). This is
a significant overrepresentation of 4b-regulated candidate
genes than would be expected by chance (Fisher’s exact test;
P¼ 0.02). For most of these genes, which have been shown toT
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be decreased in expression in schizophrenia, HDACi 4b
caused an elevation of gene expression (Figure 5).

Discussion

In this study, we measured gene expression and promoter-
associated histone ac-H3K9K14 levels in human postmortem
cortex for eight genes representing diverse functions asso-
ciated with schizophrenia in order to assess the role of
epigenetic mechanisms on gene activity. In particular, we
included assessment of GAD1, which encodes the 67-kDa
glutamate decarboxylase GABA synthesis enzyme. Deficits in
the expression of GAD1 are considered to be among the most

frequently replicated findings in schizophrenia postmortem
brain42,43(reviewed in ref. 44). The major findings from this
study are: (1) histone ac-H3K9K14 levels are correlated with
gene expression levels for several schizophrenia-related
genes, including GAD1; (2) age is strongly negatively
associated with promoter-associated histone acetylation
levels in normal subjects and those with bipolar disorder, but
not schizophrenia and (3) histone H3K9K14 levels are
hypoacetylated at the promoter regions of important genes
in young subjects with schizophrenia.

Epigenetic mechanisms of gene regulation involve both DNA
methylation and an array of posttranslational modifications of
histone proteins.1 Although DNA methylation has been more

Figure 3 Ac-H3K9K14 levels as a function of age in control subjects and those with schizophrenia. ChIP-qPCR assays were performed on postmortem BA46 from control
subjects (closed circles, solid line) and those with schizophrenia (open circles, dashed line) representing a wide age range (group 2; n¼ 32 subjects in total). Pearson’s (r)
values are shown in Table 2.

Figure 4 Histone H3K9K14 is hypoacetylated at the promoter regions of genes in young subjects with schizophrenia and associated with decreased gene expression
levels. (a) ChIP-qPCR assays were performed on young and old subjects with schizophrenia and age-matched controls (group 2; n¼ 32 subjects in total), measuring ac-
H3K9K14 levels at the promoter regions of the indicated genes (UniGene IDs). Asterisks denote significant differences in ac-H3K9K14 levels, as determined by Student’s
t-test: *, Po0.05, þ , Po0.08. (b) Significant differences in microarray expression values were determined by ANOVA as described in Materials and methods; *, Po0.05, **,
Po0.01.
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widely studied in the context of psychiatric disorders, in this
study we focused on histone acetylation at two specific lysine
residues, K9 and K14. We demonstrated correlation of ac-
H3K9K14 levels with expression levels of selected genes in
the postmortem human prefrontal cortex. These findings are
consistent with previous studies showing that acetylation of
histone H3 at K9 and K14 are positively correlated with one
another and associated with transcriptional activity across a
majority of yeast genes.21 Epigenetic studies in yeast have
also found that ac-H3K9 and ac-H3K14 levels are correlated
with levels of trimethylated H3K4 (H3K4me3), another
epigenetic mark associated with active gene transcription
and abundant at the transcription start sites of genes.
Genome-wide maps of histone H3K4me3 have been pre-
viously identified in the human prefrontal cortex45 and these
data are freely available on the UCSC web browser (http://
genome.ucsc.edu). Again, consistent with the findings from
yeast, we found that the promoter loci bearing ac-H3K9K14

marks for GAD1, RGS4, HTR2C, PPM1E and UGT8 also
harbor H3K4me3 marks in the human prefrontal cortex. An
example of this overlap is shown for UGT8 in Supplementary
Figure 2.

The second major finding from this study is that age is
strongly negatively correlated with promoter-associated his-
tone acetylation levels in normal subjects. Normal aging is
known to be accompanied by genomic instability and changes
in gene expression,46 and evidence now suggests that
epigenetic factors are a major cause of these age-related
changes in mice and humans.47,48 Most epigenetic studies of
the aging brain have focused on DNA methylation where
positive correlations between DNA methylation and chron-
ological age have been demonstrated for selected genes,
such as GAD1,49 as well as genome wide.47–49 However,
information on how histone modifications change with age is
more limited.50 Here, we have shown that histone acetylation
levels are negatively correlated with age at several gene
promoters, including GAD1, RGS4, HTR2C, PPM1E and
MBP and that the expression levels of these genes are
similarly negatively correlated with age. The gene expression
data are consistent with a previous study showing that the
expression of several schizophrenia candidate genes, includ-
ing RGS4 and GAD1, decreases with age in the postmortem
prefrontal cortex from normal individuals.51 We also found that
promoter-associated histone acetylation levels were signifi-
cantly negatively correlated with age in subjects with bipolar
disorder, but not schizophrenia, indicating disease-specific
effects of epigenetic gene regulation. We further show that
these effects are not unique to cell type-specific gene
promoters, as acetylation changes were detected in both
neuron- and glia-expressed genes.

The mechanism of the reduced site-specific acetylation with
age is unclear; however, a few possibilities could be
considered. Altered acetylation levels of histones could occur
by changes in the activities of HDAC enzymes. For example, a
decrease in HDAC activity has been observed in normal rat
liver with increasing age.52 Another possibility is that
acetylated histones are replaced by newly synthesized
unmodified ones. Although it has been shown that histone
turnover in the brain is slow,53 it could be potentially
substantial with aging. It is also possible that some histone
modifications decay with time at the promoters of genes that
are not active in aged individuals. The lack of an age effect on
histone acetylation observed in the brains of subjects with
schizophrenia could be due to abnormalities in any of the
above-mentioned mechanisms.

Thirdly, we demonstrated that histone H3 is hypoacetylated
in young subjects with schizophrenia when compared with
age-matched controls. Such hypoacetylation of histone
proteins could be reversed by the actions of HDAC inhibitors,
thereby improving the associated gene expression deficits. To
date, 18 human HDAC subtypes have been identified, which
can be divided into four main groups, classes I–IV.38 Valproic
acid, an inhibitor of class I HDACs,54 has a long and
established history of efficacy in the treatment of bipolar
disorder. Reports have further shown that typical and atypical
antipsychotics are more potent, more efficacious and less
toxic if they are co-administered with valproic acid,55–57

although, some studies did not report such benefit.58–60

Figure 5 Heatmap depiction of the 17 schizophrenia candidate genes found to
be significantly regulated by HDACi 4b treatment in the mouse brain. Official
UniGene symbols are shown for each gene. Each colored pixel represents an
individual gene expression value. Relative decreases in gene expression are
indicated by green and increases in expression by red. Two-dimensional
hierarchical clustering of the samples is shown along the top.
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Nonetheless, the beneficial effects of valproic acid that were
observed in schizophrenia suggest that more potent and/or
more selective HDAC inhibitors may represent a new
opportunity for pharmacological interventions for this disorder.
Consistent with this view, previous studies have shown that
another class I HDAC inhibitor, MS-275, potently activates
GAD1 gene expression in NT2 cells accompanied by
decreased GAD1 promoter methylation,10 and in the current
study, we have shown that HDACi 4b altered the levels of 17
schizophrenia candidate genes in the mouse brain (see
Figure 5). Consistent with these findings, previous studies
have demonstrated that inhibition of the class I HDACs,
HDAC2 and HDAC3, enhances cognition and memory
function in rodents.61,62

One final note is that the similarity between histone
hypoacetylation observed with normal aging and in young
subjects with schizophrenia is consistent with emerging data
showing phenotypic overlap between normal aging and early-
stage schizophrenia. Normal aging has been linked to
alterations in white matter density and volume, gray matter
volume decline, cognitive dysfunction, shortened telomeres,
microglia activation and psychotic symptoms,63–66 which also
characterize schizophrenia at first episode or recent onset.67–71

Furthermore, our own previous studies have demonstrated
that normal human aging and early-stage schizophrenia share
common molecular phenotypes.37

In summary, our data demonstrate that gene expression
changes associated with psychiatric disease and aging result
from epigenetic mechanisms of gene regulation involving
histone acetylation. These findings provide a relevant basis
for the use of HDAC inhibitors as therapeutic treatment for
schizophrenia, particularly in young subjects (that is,
o36 years of age), whereby the use of HDAC inhibitors may
be therapeutically beneficial by means of restoring abnormal
histone acetylation patterns and accompanying gene expres-
sion deficits in schizophrenia leading to improved clinical
symptoms. Similarly, HDAC inhibitors may also be useful for
treatment of age-related phenotypes, such as psychosis and
cognitive decline, which are similar to those typically observed
in subjects with schizophrenia.
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