

Lifetime Service Level Agreement
Management for Service Composition

by

Qiang He

B.Eng. (HUST)

A thesis submitted to

Swinburne University of Technology

for the degree of

Doctor of Philosophy

March, 2009

To my parents

i

Declaration

This thesis contains no material which has been accepted for the award of

any other degree or diploma, except where due reference is made in the

text of the thesis. To the best of my knowledge, this thesis contains no

material previously published or written by another person except where

due reference is made in the text of the thesis.

Qiang He

March, 2009

ii

Acknowledgements

It had been a great pleasure working with the staff and students at the Swinburne

University of Technology (SUT), during my candidature as a doctoral student.

My foremost thank goes to my coordinate supervisors, Prof. Yun Yang at SUT

and Prof. Hai Jin at HUST; associate supervisors, Dr. Jun Yan and Prof. Ryszard

Kowalczyk – they are also my friends and mentors. Guidance and keen insight from

Yun and Jun in particular, along with their thirst for new knowledge and excitement

had made this time fun, and always stimulating and inspiring.

I thank Prof. Hai Jin, who first introduced me to SUT, opening the door for my

academic journey in Australia.

The Faculty of Information and Communication Technologies (FICT) is made

up of dedicated, insightful and fun people. My thanks go to Ke Liu, Xiao Liu and

Dong Yuan – my colleagues in the Workflow Technology Program – for their

advice and support. Sean Hunter, a smart, diligent and helpful friend, had been an

enormous help to my research. I will not forget the many times I asked him to work

overtime in order to meet deadlines. Playing basketball, working out and surfing

with him and his girlfriend Matilda had been fun and wonderful. Rui Zhou and Jiajie

Xu, two basketball fans, had watched National Basketball Association (NBA) games

with me, laughing, screaming, applauding and complaining. My thanks go to Nigel

Fisher for teaching me rock climbing and scuba diving, which I had never tried

before. To Ke Liu, my gym buddy, who had been an interesting partner and a source

of stimulation. To the members of our badminton club, who had given me great fun

and relaxation. To other postgraduates in the faculty, for all the fun we had had,

some of whom had worked with me until late (5:30am the latest, wow). To all the

staff in the faculty, for helping me figure out how to use the coffee machine and

photocopy machine (they are more complicated than a lot of people would think),

iii

how to apply for my trips to conferences, how to relieve myself from awkward

moments, and so much stuff that I wound not have known without their instruction

and help. To all my friends, both in and out of the university, thanks for the music,

movies, phone calls, lunches, dinners and all the fun.

My parents, Bifen Chen and Xizhuo He (Mom and Dad), had always been there.

Their love and support had been a foundation for my life. To them, I owe a huge

debt of gratitude. Their love, understanding, moral support, care and very existence

are my keystone. I can honestly say that without them, I would not be able to

complete this work.

Finally, I express my sincere appreciation to SUT, who provided the scholarship

to financially support my research work.

iv

Abstract

This thesis presents a set of technologies supporting service level agreement (SLA)

management for service composition in the service-oriented computing (SOC)

environment. Its purpose is to tackle some of the existing problems in the research

on quality of service (QoS) aware service composition. The QoS guarantee

throughout the process of service provision is a critical and challenging issue,

especially in the service composition scenarios where a group of component services

compose a composite service.

As services are considered merchandises on the Internet, the quality of a service

is as important as, if not more than, the functionality of the service. SLAs can be

used to specify service consumers’ QoS requirements and service providers’ QoS

promises. A set of supporting technologies are proposed in this thesis to address the

major issues of QoS-aware service composition that arise at different stages of the

lifetime of SLAs: establishment, enforcement and completion. Specifically, an

innovative SLA negotiation approach is proposed to support SLA establishment at

build time based on combinatorial auctions; a new SLA adaptation approach is

proposed to support SLA enforcement at runtime; and a novel trust system is

proposed to support reputation-oriented service selection based on SLA profiling

upon SLA completion at completion time. Experimental results shows that our

approaches 1) effectively improve the quality of the composite service through SLA

negotiation; 2) significantly improve the satisfaction rates of service consumers’

QoS requirements for the composite services through SLA adaptation; and 3)

remarkably improve the success rate of composite services and well resist the unique

threats in the open SOC environment through SLA profiling.

The major contribution of this research is to provide a comprehensive and

integrated solution to lifetime SLA management for service composition in the open

SOC environment. With the new approaches developed, the quality of the composite

v

services can be guaranteed at different stages of the lifetime of the composite

services: build time, runtime and completion time.

vi

The Author’s Publications

Published:

[1] He, Q., Yan, J., Kowalczyk, R., Jin, H., Yang, Y. "Lifetime Service Level Agreement
Management with Autonomous Agents for Services Provision," Information Sciences,
Elsevier, 179(15):2591-2605, July 2009.

[2] He, Q., Yan, J., Jin, H., Yang, Y. "Adaptation of Web Service Composition Based on

Workflow Patterns," Proc of 6th International Conference on Service-Oriented Computing
(ICSOC2008), Sydney, Australia, 2008, Lecture Notes in Computer Science, pp. 22-37.

[3] He, Q., Yan, J., Yang, Y., Kowalczyk, R., Jin, H. "Chord4S: A P2P-based Decentralised

Service Discovery Approach," Proc of IEEE International Conference on Services
Computing (SCC2008), Honolulu, Hawaii, USA, 2008, IEEE Computer Society, pp.
221-228.

[4] He, Q., Yan, J., Yang, Y., Kowalczyk, R., Jin, H. "Towards Collaborative Service Level

Agreement Negotiation," Proc of 4th International Conference on Grid Service Engineering
and Management (GSEM2007) Leipzig, Germany, 2007, pp. 123-134.

[5] He, Q., Yan, J., Kowalczyk, R., Jin, H., Yang, Y. "An Agent-based Framework for Service

Level Agreement Management," Proc of 11th International Conference on CSCW in Design
(CSCWD2007), Melbourne, Australia, 2007, pp. 412-417.

Submitted:

[1] He, Q., Yan, J., Jin, H., Yang, Y.: "A Quantitative Trust System for Reputation-Oriented
Service Selection", submitted to IEEE Transactions on Services Computing, 2009.

[2] He, Q., Yan, J., Jin, H., Yang, Y.: "A Decentralized Service Discovery Approach on

Peer-to-Peer Overlay Network", submitted to IEEE Transactions on Services Computing,
2009.

[3] He, Q., Yan, J., Jin, H., Yang, Y.: "Dynamic Service Selection for Service Composition

Based on Iterative Multi-Attribute Combinatorial Auction", submitted to IEEE Transactions
on Software Engineering, 2008.

vii

Table of Contents

0Declaration .. 1i

1Acknowledgements .. 1ii

2Abstract ... 1iv

3The Author’s Publications ... 1vi

4Table of Contents .. 1vii

5List of Figures .. 1x

6List of Tables ... 1xii

Chapter 1 7Introduction ... 11

81.1 Introduction to service composition ... 12

91.2 Key issues of this research ... 17

11.3 Overview of this thesis ... 18

Chapter 2 1Literature review and requirements analysis 110

12.1 Background .. 110

12.1.1 Service .. 110

12.1.2 Service composition ... 116

12.1.3 Service level agreement ... 118

12.2 Research problem analysis ... 127

12.3 SLA negotiation ... 130

12.3.1 Related work .. 130

12.3.2 Discussion .. 132

22.4 SLA adaptation .. 133

viii

22.4.1 Related work .. 133

22.4.2 Discussion .. 134

22.5 SLA Profiling ... 134

22.5.1 Related work .. 134

22.5.2 Discussion .. 136

22.6 Requirements analysis .. 137

22.6.1 A motivating example .. 137

22.6.2 SLA negotiation at build time .. 138

22.6.3 SLA adaptation at runtime ... 142

32.6.4 SLA profiling at completion time .. 144

32.7 Summary .. 146

Chapter 3 3Service level agreement lifetime ... 148

33.1 Introduction .. 148

33.2 SLA negotiation ... 150

33.3 SLA adaptation .. 151

33.4 SLA profiling ... 152

33.5 Discussion .. 152

33.6 Summary .. 153

Chapter 4 3Flexible negotiation in SLA establishment ... 154

44.1 Preliminaries .. 155

44.1.1 Combinatorial auction .. 155

44.1.2 Bidding language ... 155

44.2 CASS procedure ... 156

44.3 CASS mechanisms ... 157

44.3.1 Bidding constraints .. 158

44.3.2 QoS model.. 160

44.3.3 Bid evaluation .. 163

44.3.4 Winner determination .. 165

44.3.5 Ask QoS generation ... 168

54.3.6 Completion criteria .. 171

54.4 Experimental evaluation .. 173

54.4.1 Experiment configuration... 173

54.4.2 Effectiveness evaluation... 175

ix

54.4.3 Efficiency evaluation ... 178

54.5 Discussion .. 180

54.6 Summary .. 181

Chapter 5 5Runtime adaptation in SLA enforcement ... 183

55.1 Adaptation for composite service based on workflow patterns 184

55.1.1 Sequence pattern (Seq) ... 184

65.1.2 Parallel patterns .. 187

65.1.3 Other patterns ... 196

65.2 Adaptation method ... 196

65.3 Experimental evaluation .. 198

65.4 Discussion .. 1101

65.5 Summary .. 1102

Chapter 6 6Effective profiling in SLA completion ... 1103

66.1 Design consideration .. 1104

66.2 ServiceTrust mechanisms .. 1105

66.2.1 Generating local transactional ratings .. 1105

76.2.2 Aggregating local transactional ratings .. 1106

76.2.3 Combining personal trust ... 1109

76.2.4 Evaluating transactional trust ... 1112

76.3 Initial trust for new services ... 1114

76.4 Experimental evaluation .. 2116

76.4.1 Simulation configuration .. 2116

76.4.2 Effectiveness of ServiceTrust .. 2119

76.4.3 Resistibility against threats .. 2120

76.5 Discussion .. 2128

76.6 Summary .. 2128

Chapter 7 8Conclusions and future work ... 2130

87.1 Summary of this thesis ... 2130

87.2 Contribution of this thesis .. 2132

87.3 Future work .. 2134

8Bibliography .. 2136

http://en.wikipedia.org/wiki/Platform-independent�
http://en.wikipedia.org/wiki/Extensible_Markup_Language�
http://en.wikipedia.org/wiki/Registry�
http://en.wikipedia.org/wiki/Internet�
http://en.wikipedia.org/wiki/OASIS_%28organization%29�
http://en.wikipedia.org/wiki/White_Pages_%28UDDI%29�
http://en.wikipedia.org/wiki/Yellow_Pages_%28UDDI%29�
http://en.wikipedia.org/wiki/Yellow_Pages_%28UDDI%29�
http://en.wikipedia.org/wiki/Yellow_Pages_%28UDDI%29�
http://en.wikipedia.org/wiki/Taxonomies�
http://en.wikipedia.org/wiki/Green_Pages_%28UDDI%29�
http://www.w3.org/TR/ws-policy/#policy�
http://www.w3.org/TR/ws-policy/#policy_alternative�
http://www.w3.org/TR/ws-policy/#policy_assertion�
http://www.w3.org/TR/ws-policy/#policy_expression�
http://www.w3.org/TR/ws-policy/#policy_expression�
http://www.w3.org/TR/ws-policy/#policy_scope�

x

List of Figures

Figure 1.1 Architecture of Web services ... 3

Figure 2.1 Web service interaction model ... 12

Figure 2.2 A composite service composed of five component services 37

Figure 3.1 Lifetime of an SLA .. 49

Figure 4.1 CASS procedure .. 56

Figure 4.2 Example models for dynamic minimum increment 60

Figure 4.3 Winner determination – heuristic backtracking algorithm 67

Figure 4.4 Generation of dynamic minimum increment ... 71

Figure 4.5 Maximum discount for component services with small, medium and large

degrees of complementarity ... 74

Figure 4.6 Comparison of the quality of the composite service achieved from

traditional auction and CASS .. 76

Figure 4.7 Comparison of the quality of the composite service achieved from CASS

against the optimal results.. 77

Figure 5.1 Parallel Split + Synchronisation pattern .. 89

Figure 5.2 Implementation of Multi-Merge pattern .. 92

Figure 5.3 Parallel Split + Discriminator pattern .. 93

Figure 5.4 Pseudo code for adapting a composite service .. 97

Figure 5.5 Probability density functions ... 100

Figure 5.6 Comparison between traditional adaptation and our adaptation for

Sequence pattern .. 101

xi

Figure 6.1 A sample time window (s=7) ... 109

Figure 6.2 An example of EMA weight decrease (α=0.1 and 0.3, and s =10) 109

Figure 6.3 An example of the calculation of i , jβ .. 111

Figure 6.4 Increase of average success rates of overall composite service instances

with ServiceTrust enabled…..………………………………………………119

Figure 6.5 Average success rates in different volatile environments under threat

model #1 .. 122

Figure 6.6 Averagge success rates in different volatile environments under threat

model #2 .. 123

Figure 6.7 Averagge success rates in different volatile environments under threat

model #3 .. 124

Figure 6.8 Averagge success rates in different volatile environments under threat

model #4 .. 125

Figure 6.9 An example of normal distribution functions used to generate service

providers’ historic transaction amounts ... 127

Figure 6.10 Average success rates in different volatile environments under threat

model #5 .. 127

xii

List of Tables

Table 4.1 Aggregation functions for execution time .. 62

Table 4.2 Intervals for bidders’ reserved capacities .. 74

Table 4.3 Increment of quality of the composite service .. 77

Table 4.4 Quality of the composite service compared to the optimal results 78

Table 6.1 ServiceTrust parameters used in simulation ... 118

Table 6.2 Simulation settings .. 118

Table 6.3 Service consumers and providers’ behaviour ... 120

1

Chapter 1

Introduction

This thesis addresses the issue of service level agreement (SLA) management for

quality-of-service (QoS) aware service composition in the service-oriented

computing (SOC) environment. The major contribution of the research is to develop

a set of technologies to support SLA management for service composition at

different stages of the lifetime of SLA, including establishment, enforcement and

completion. To support SLA establishment, an SLA negotiation approach based on

combinatorial auction is designed which allows service consumers and providers to

flexibly exchange offers and counter-offers for QoS. To support SLA enforcement,

an SLA adaptation approach is designed which adapts a subset of the composite

service in a confined scope when SLA violations occur in component services. A

service trust system based on SLA profiling upon SLA completion is designed

which evaluates service consumers’ trust over service providers based on their

historic performance over past SLA enforcement.

The background, motivations and key issues of this research are introduced in

this chapter. First, an introduction to service composition is given in Section 21.1.

Then the key issues of this research are introduced in Section 21.2 . At last, an

overview of the structure of this thesis is presented in Section 21.3.

2

1.1 Introduction to service composition

Service-oriented computing (SOC) is the computing paradigm that utilises services

as fundamental elements for developing applications [83]. In the SOC environment,

service-based applications are developed as independent sets of interacting services

offering self-describing standardised interfaces to potential service consumers.

Services perform functions – from simple requests to complicated business

processes. Organisations can expose their core competencies in the form of services

over the Internet (or intranet) using standard (XML-based) languages and protocols

[82].

Web Services are the current most promising technology based on the concept of

SOC, offering significant benefits in flexibility, ease of use, and reuse as well as

providing a way to develop an SOA incrementally, although an SOA contains more

than Web services. Web services technologies enable making connections among

heterogeneous software that each performs a discrete function. By wrapping these

softwares with Web service interfaces, they can communicate and interoperate to

perform a complex business process. Technically, the term “Web services” describes

a standardised way of integrating Web-based applications using the Extensible

Markup Language (XML), Simple Object Access Protocol (SOAP) [36], Web

Service Description Language (WSDL) [20, 22] and Universal Description,

Discovery and Integration (UDDI) [23] open standards over an Internet protocol

backbone. For example, if a programmer wants to make a Java program accessible

to other applications deployed over the Internet, the programmer can publish the

program as a Web service in a UDDI server, with its interface (some of the method

names and associated parameters) detailed with a service description written in

WSDL. Then the application builders who need the Java program can find it in the

UDDI server and invoke it through sending SOAP messages typically conveyed

using HTTP. 2Figure 1.1 presents the architecture of Web services [57]. By adopting

the Web services technology, heterogeneous applications distributed across the

Internet can be integrated in a uniform and standardised manner because Web

services provide the following benefits:

3

 Decoupling of service interfaces from implementations and platform

considerations;

 Enablement of dynamic service binding; and

 Increase in cross-language and cross-platform interoperability.

Figure 1.1 Architecture of Web services

A great advantage of SOC is its support for service composition which

encompasses the functionality for the consolidation of multiple services into a single

new value-added service. Such a service is referred to as a composite service while

its constituent services are called component services. The resulting composite

services can be used as a component service in further service compositions or be

utilised as applications/solutions by service consumers [83].

4

Service composition provides a number of benefits:

 Service composition allows service providers to minimise the amount of

coding work for building new applications;

 Service composition reduces the cost and risks for building new application

on top of the existing reusable Web services; and

 Service composition reduces the complexity of building new applications

by separating application development and implementation.

In the SOC environment, services are delivered as merchandises from service

providers to consumers and hence expose both functional properties (i.e. what they

do) and non-functional properties (i.e. the way they are provided). There are many

various non-functional properties of services, including all properties that are not

directly related to the provided functions. QoS is a most important subset of

non-functional properties. QoS is traditionally used to refer specifically to network

performance and reliability characteristics. In the context of SOC, QoS refers to a

wider variety of service properties. QoS plays an important role in all service-related

tasks, especially in service selection. Imagine a scenario in which multiple services

(provided by different service providers) provide the same functionality that can

fulfil a service consumer’s request, the ability of the service consumer to

differentiate between the services as well as the service providers depends on the

quality of the services that they can provide.

Service consumers’ QoS requirements for requested services usually vary from

one to another. For example, a service consumer with a sufficient budget may want a

service delivered rapidly regardless of price while another service consumer with

limit budget may want the service delivered at a low price by sacrificing the delivery

time. How to guarantee QoS in order to meet service consumers’ requirements at

different stages of the service provision is a very important problem.

5

In a service composition scenario, component services are composed to create a

composite service that meets the service consumer’s functional and non-functional

requirements. In this research, we focus on the non-functional aspect.

In the service composition scenarios, the issue of service composition with QoS

constraints, namely QoS-aware service composition, is complicated and challenging.

Before the service provision, the service consumer needs to select a service provider

from several candidates for each of the component services that compose the

composite service. In this case, the component services not only jointly offer the

functionalities, but also collectively fulfil the service consumers’ requirements for

the quality of the composite services. During the service provision, exceptions may

occur in component services. The faulty component services may result in violations

of service consumers’ requirements for the quality of the composite services. After

the service provision, service providers’ performance – at what extent they fulfil

service consumers’ requirements – needs to be collected to profile the service

providers for future analysis of their reputation and capability.

The fact that a service consumer usually has requirements for more than one

QoS property of the service turns the problem of optimising QoS-aware service

composition with multiple QoS constraints into NP-complete, as proved by the work

presented in [11]. A lot of efforts in the area of QoS-aware service composition have

been devoted to addressing the computational issue of the optimisation of

QoS-aware service composition before actual service provision based on the static

quality of the component services. However, considering the dynamic nature of the

Internet and the SOC environment, the issue of QoS-aware service composition

must be addressed from a more comprehensive perspective – not just before but also

during and after the service provision. As an important part of SOC, Service Level

Agreement (SLA) offers service consumers contractual guarantee that service

providers and the services they provide will operate within pre-specified bounds –

particularly with regards to the QoS. At the same time, SLAs serve a role for the

service providers in planning resource allocation and avoiding unexpected legal

wrangles. Before the service provision, an SLA must be established between the

service consumer and the service provider, in order to unambiguously specify the

service consumer’s expectations and the service provider’s promises of the service.

6

During the service provision, the established SLA must be enforced, which includes

monitoring the status of the service and checking whether the service provision is

compliant with the SLA. If SLA violations occur, the faulty service must be adapted

– updated or replaced – to ensure that the service consumer’s requirements are met.

After the service provision, the results of the SLA enforcement – at what extent the

SLA is enforced – must be collected and profiled for future analysis of the service

provider’s reputation and capability of enforcing SLAs.

In the service composition scenarios, the issue of SLA management is more

complicated and challenging. Before the provision of the composite service, the

service consumer must establish SLAs with each of the service providers that

provide the component services. The quality of the component services must be

specified, collectively fulfilling the service consumer’s requirements for the quality

of the composite service. Moreover, during the provision of the composite service,

when a faulty component service needs to be adapted, the SLA attached needs to be

adapted. However, adapting the faulty component service only might not be able to

guarantee the quality of the composite service as required by the service consumer.

Other component services, as well as the attached SLAs, might need to be adapted

accordingly. Therefore, it is imperative to determine the scope of adaptation and

then the adaptation solution when SLA violations occur. Finally, the service

providers’ reputation and their capability of enforcing SLAs must be evaluated

effectively through SLA profiling in order to enhance future SLA management.

With the support of SLA profiling, the trustworthiness of the service providers can

be evaluated based on their reputation, which can improves the effectiveness of SLA

establishment and enforcement.

Therefore, SLA management for service composition is complicated and

challenging, yet will be of much importance in the filed of SOC.

7

1.2 Key issues of this research

The following key issues need to be addressed to provide a comprehensive solution

to SLA management for service composition:

 For SLA establishment: A lot of efforts have been devoted in research on

selecting service providers, whose capacities for providing the QoS are

static, to fulfil QoS requirements for composite services [5, 8, 61, 107, 108].

However, service providers’ capacity of providing QoS can change

dynamically due to different reasons, e.g. schedule of the service providers,

status of the market, macroeconomic policy, etc. Also, service consumers

may have acceptable ranges for the QoS instead of mandatory and

unnegotiable requirements. During the process of deciding the QoS

acceptable to both parties, i.e. service consumer and provider, the

dynamicity referred above needs to be captured. Service consumers and

providers should be allowed to flexibly express their preferences and

capacities for the QoS.

 For SLA enforcement: When an SLA violation of a component service

occurs, the component service needs to be adapted with satisfying QoS to

meet the service consumer’s requirements for the quality of the composite

service. Sometimes the adaptation of the faulty component service may

trigger the need of the adaptation of other component services, hence

expanding the scopes of the adaptation. Therefore, the confines of the

adaptation should be determined automatically and dynamically. In addition,

when selecting the adaptation solution, e.g. selecting which service

provider to provide which service, not only the benefit but also the cost that

applies during the adaption process should be taken into account.

 For SLA completion: When selecting service providers, service consumers

usually prefer those that are most likely to successfully enforce the SLAs.

Unfortunately, the success rate of the service transaction – the probability

that the service provider is likely to enforce the SLA successfully – cannot

8

be provided by the service provider. Generally speaking, the service

providers that have higher success rates of past service transactions are

more trusted by the service consumers in having the capability of enforcing

SLAs successfully. Therefore, a service trust system is needed to identify

trustworthy service providers. A promising way to achieve this is to

evaluate service consumers’ trust over service providers based on their

historic performance because the service providers with better reputation –

attained from better past performance – are believed to be more trustworthy.

Therefore, the results of SLA enforcement, as the data needed for SLA

profiling, must be collected and analysed upon the completion of the SLAs.

1.3 Overview of this thesis

We propose a set of technologies to support SLA management for service

composition in the open and dynamic SOC environment throughout the lifetime of

SLA (corresponding to the process of service provision).

In Chapter 2, some basic concepts related to service, service composition and

SLA are presented. The research problems are described and discussed in detail.

Then the work related to SLA negotiation, adaptation and profiling are presented.

Finally, the requirements for the abovementioned topics are analysed.

In Chapter 3, we present the lifetime of an SLA. In particular, we introduce the

major SLA operations performed at different stages of the lifetime of the SLA,

including SLA negotiation, adaptation and profiling. Finally, the interactions among

the SLA operations are discussed.

In Chapter 4, we present an innovative SLA negotiation approach to support

SLA establishment for service composition based on combinatorial auction. We first

give some preliminary ideas about combinatorial auctions. Then we illustrate the

procedure of the proposed combinatorial auction. We also provide the details of the

mechanisms supporting the combinatorial auction for service composition, including

9

bidding constraints, QoS model, bid evaluation, winner determination, ask QoS

generation and completion criteria. Finally we demonstrate some experimental

results to evaluate the proposed approach.

In Chapter 5, we describe a new SLA adaptation approach to support SLA

enforcement for service composition based on workflow patterns. In particular, we

introduce some basic ideas related to our approach, including value of change (VOC)

and workflow patterns. Then we present an adaptation approach that takes into

consideration the internal logic of the composite services and the impact of

adaptation for a single component service on other component services during the

adaptation process. Finally, we present some experimental results to demonstrate the

effectiveness of the proposed approach.

In Chapter 6, we describe ServiceTrust – a novel service trust system to support

reputation-oriented service selection based on SLA profiling upon SLA completion.

In particular, we introduce the calculation of local transactional ratings, local trust,

global trust and transactional trust. We also assess the effectiveness of ServiceTrust

and ServiceTrust’s resistibility against the threats of malicious reputation

manipulation and QoS abuse.

The final chapter, Chapter 7, summarises this thesis, the major contribution of

this research and discuss the further research directions.

10

Chapter 2

Literature review and requirements
analysis

In this chapter, we give an introduction to the research fields of service composition.

We present some major approaches and standards related to our research, and

analyse the research problems and requirements to help the readers of this thesis

gain a better understanding of the work described in this thesis.

This chapter is organised as follows. Section 2.1 introduces some basic concepts

related to this thesis, including service, service composition and service level

agreement. Section 2.2 analyses the research problem in this thesis. Sections 2.3, 2.4

and 2.5 present related work about SLA negotiation, adaptation and profiling

respectively. Finally, Section 2.6 analyses the research requirements using a

motivating example and Section 2.7 summaries this chapter.

2.1 Background

This section gives an introduction on service and service composition in order to

help the readers of this thesis understand the background of this research.

2.1.1 Service

A generic definition for a service in SOA is an application function packaged as a

reusable component for use in a business process [24]. From the service requester’s

11

perspective, a service has the appearance of a software component that provides

self-contained function and can be invoked through defined communication

protocols. The actual service implementation may involve many steps executed on

different computers within one enterprise or across a number of enterprises. As Web

services are the most popular paradigm of service in the field of SOC, we introduce

the Web service technologies in this section to help the readers of this thesis better

understand some foundation concepts and knowledge.

Existing definitions for Web services range from very generic to very specific.

Web services can be defined as software identities, technologies and even platforms.

A Web service is defined by the World Wide Web Consortium (W3C) as “a

software system designed to support interoperable machine-to-machine interaction

over a network. It has an interface described in a machine-processable format

(specifically WSDL). Other systems interact with the Web service in a manner

prescribed by its description using SOAP-messages, typically conveyed using HTTP

with an XML serialisation in conjunction with other Web-related standards” [37].

This definition puts Web services in the confines formed by specific standards, i.e.

WSDL and SOAP.

IBM defines Web services as a set of emerging standards that enable

interoperable integration between heterogeneous IT processes and systems. They

can be thought of as a new breed of Web applications that is self-contained and

self-describing, and can provide functionality and interoperation ranging from the

basic to the most complicated business and scientific processes. This definition is

proposed form the business perspective instead of the technical perspective since

IBM is a corporation that aims at providing business solutions to meet service

consumers’ goals.

Microsoft sees XML Web services as the platform for application integration

where applications are constructed using multiple XML Web services from various

sources that work together regardless of where they reside or how they were

implemented. And the individual Web services are defined as the fundamental

12

building blocks in the move to distribute computing on the Internet [103]. The term

“XML Web services” exhibits the importance of XML in Web services. The

standards and protocols used by Web services, specifically WSDL and SOAP, are

XML-based.

So many definitions for Web services have been proposed because there are

companies building them, but all the definitions have the following things in

common:

 Web services expose useful functionalities for service consumers to invoke

with messages that conform to a standard Web format, in most cases the

SOAP format.

 Web services provide a way to describe their interfaces in enough detail to

allow service consumers to build client applications to access them. The

descriptions are usually provided in the form of WSDL documents.

 Web services are registered so that potential service consumers can find

them easily. This can be done using UDDI.

Figure 2.1 Web service interaction model

13

2Figure 2.1 presents the Web service interaction model [7]. From the figure we

can see there are two main roles involved: service requestor and service provider.

Web services are published in a UDDI service registry as WSDL service

descriptions by the service providers. Service requesters (in most cases the service

consumers) discover the Web services in the UDDI service registry and then invoke

the Web services through sending SOAP messages according to the WSDL service

descriptions.

The three main standard specifications for Web services are WSDL, UDDI and

SOAP. From 2Figure 2.1 we can see what roles WSDL, UDDI and SOAP play in the

interaction model of Web service. To help readers from other areas better understand

the work presented in this thesis, we give a brief introduction to WSDL, UDDI and

SOAP.

1. Web Service Description Language (WSDL) [22]: WSDL is an XML

format for describing network services as a set of endpoints operating on

messages containing either document-oriented or procedure-oriented

information. The operations and messages are described abstractly, and then

bound to a concrete network protocol and message format to define an

endpoint. Related concrete endpoints are combined into abstract endpoints

(services). WSDL is extensible to allow description of endpoints and their

messages regardless of what message formats or network protocols are used

to communicate.

A WSDL document defines services as collections of network endpoints, or

ports. In WSDL, the abstract definition of endpoints and messages is

separated from their concrete network deployment or data format bindings.

This allows the reuse of abstract definitions: messages, which are abstract

descriptions of the data being exchanged, and port types which are abstract

collections of operations. The concrete protocol and data format

specifications for a particular port type constitute a reusable binding. A port

is defined by associating a network address with a reusable binding, and a

14

collection of ports define a service. Hence, a WSDL document uses the

following elements in the definition of network services:

 Types: a container for data type definitions using some type system.

 Message: an abstract, typed definition of the data being communicated.

 Operation: an abstract description of an action supported by the

service.

 Port Type: an abstract set of operations supported by one or more

endpoints.

 Binding: a concrete protocol and data format specification for a

particular port type.

 Port: a single endpoint defined as a combination of a binding and a

network address.

 Service: a collection of related endpoints.

2. Universe Description, Discovery, and Integration (UDDI) [23]: The focus

of UDDI is the definition of a set of services supporting the description and

discovery of (1) businesses, organisations, and other Web services providers,

(2) the Web services they make available, and (3) the technical interfaces

which may be used to access those services. Based on a common set of

industry standards, including HTTP, XML [14], XML Schema [9, 31, 94],

and SOAP, UDDI provides an interoperable, foundational infrastructure for

a Web services-based software environment for both publicly available

services and services only exposed internally within an organisation.

UDDI is a 8platform-independent, 8XML-based 8registry for businesses

worldwide to list themselves on the 8Internet. UDDI is an open industry

15

initiative, sponsored by 8OASIS [81], enabling businesses to publish service

listings and discover each other and define how the services or software

applications interact over the Internet. A UDDI business registration

consists of three components:

 9White Pages: address, contact, and known identifiers.

 9Yellow Pages: industrial categorisations based on standard 9taxonomies.

 9Green Pages: technical information about services exposed by the

business.

3. Simple Object Access Protocol (SOAP) [36]: SOAP is a lightweight

protocol for exchange of information in a decentralised, distributed

environment. It is an XML based protocol that consists of three parts: an

envelope that defines a framework for describing what is in a message and

how to process it, a set of encoding rules for expressing instances of

application-defined datatypes, and a convention for representing remote

procedure calls and responses.

SOAP provides a simple and lightweight mechanism for exchanging

structured and typed information between peers in a decentralised,

distributed environment using XML. SOAP itself does not itself define any

application semantics such as a programming model or

implementation-specific semantics; rather it defines a simple mechanism

for expressing application semantics by providing a modular packaging

model and encoding mechanisms for encoding data within modules. This

allows SOAP to be used in a large variety of systems ranging from

messaging systems to remote procedure call (RPC).

SOAP consists of three parts:

 SOAP Envelope Construct: defining an overall framework for

16

expressing what is in a message, who should deal with it, and whether

it is optional or mandatory.

 SOAP Encoding Rules: defining a serialisation mechanism that can be

used to exchange instances of application-defined datatypes.

 SOAP RPC Representation: defining a convention that can be used to

represent remote procedure calls and responses.

Although these parts are described together as part of SOAP, they are

functionally orthogonal. In particular, the envelope and the encoding rules

are defined in different namespaces in order to promote simplicity through

modularity.

In addition to the SOAP envelope, the SOAP encoding rules and the SOAP

RPC conventions, e.g. how a SOAP message can be carried in HTTP [33]

messages either with or without the HTTP Extension Framework [80].

2.1.2 Service composition

A great advantage of SOC is its support for service composition. Existing services

can be dynamically composed in the form of business processes to offer new

functions. Such a business process is known as a composite service while its

constituent services are called component services. Business process execution

language for Web Service (BPEL4WS, i.e. BPEL) [3, 53] is the de facto standard to

specify the fashion in which Web services interact in a business process. Semantics

[50, 55, 86] and artificial intelligence (AI) techniques [43, 85] are also popular in the

area of service composition.

Research on service composition has been carried out for several years. A brief

survey can be found in [72]. BPEL4WS, Semantics and AI are the three most

popular approaches to service composition. Service composition based on

BPEL4WS can be achieved in a centralised [6, 19, 53] or decentralised way [35, 78].

17

[53] examines the compositional aspects of BPEL4WS and explains what role it

plays in service composition. In [6], the authors propose a non-intrusive platform,

named ORQOS, on which the Web service composition is executed at both

pre-deployment time and runtime, using a policy-based language, namely QoSL4BP,

designed to express QoS behavioural logic specification. In [19], an approach is

presented that uses XPath, WS-Policy and WS-Policy Attachment to enable

non-intrusive specification of QoS requirements in BPEL4WS processes on both the

messaging and process levels. To demonstrate the mechanisms, a prototype on top

of the Colombo BPEL4WS engine is implemented and presented. In [35], the

authors investigate some build time issues and runtime issues related to

decentralised Web service composition. Build time issues include code partitioning

and error handling while runtime issues include application server, messaging,

potential deadlocks, error propagation and error recovery. In [78], a program

dependence graph (PDG) based technique is proposed to partition a BPEL4WS

business process into an equivalent set of decentralised business processes. Its goal

is to maximise the throughput of the network of servers which execute the business

processes.

Semantics and AI techniques are the other two popular approaches for service

composition. Semantic Annotations for WSDL and XML Schema (SAWSDL), a

recently announced World Wide Web Consortium (W3C) standard, provides a

strong tool to automate semantics-based service composition [32, 56]. To name a

few latest works in Semantic Web service composition, [55] describes

Inter-Matching Automatic Composition (IMA), a technique for automatic generation

of composite Web services. IMA uses Web service ontologies to find appropriate

Web services through matching the input and output parameters. In [50], the authors

consider the problem of semantic service composition on conceptual and practical

levels. A “value propagation” semantics is used for service description. And a

plug-in matching is adopted to find satisfactory or partially satisfactory component

services in order to finally constitute the desired composite services. The authors in

[86] propose a tractable greedy algorithm for automatic semantic Web service

composition and implement the algorithm in a framework named jUDDI+ in

18

OWL-S [70]. In the AI community, authors in [85] represent Web services using

transition systems [75] that communicate via exchanging messages. Symbolic model

checking techniques are adopted to determine a parallel composition of all the

available services. And then a controller is generated to make sure that the service

composition meets the user-specified requirements. In [43], the authors analyse the

planning tractability when new constraints can be introduced to limit the amount and

form of outputs when formalising Web service composition. With the additional

constraints, the set of possible states of the Web services becomes static and then

can be modelled in terms of a standard notion of initial state uncertainty. Finally,

scalable Web service composition can be realised with powerful background

ontologies and modern planning techniques.

Some other solutions for service composition do not adopt either BPEL4WS.

semantics or AI, [1, 2] propose a two-step, i.e. logical and physical, methodology for

end to end composition of Web services by semantically annotating component Web

services. In the first step, planning techniques are used to create desired functionality

based on existing service types. In the second step, appropriate Web service

instances are selected and bound together for deploying the newly created composite

service. However, the two-step approach does not consider the issue of QoS. [16]

proposes a service selection scheme that uses a broker to advertise and offer the

composite service with a range of service classes. What makes it different from

other approaches is that services are grouped requiring the same QoS level

according to requesting user/organisation. Using SLA, statistical guarantee of QoS

constraints can be met for provision of flows of requests.

2.1.3 Service level agreement

SLA is being utilised in many fields, including computer networks [63], grid

computing [59, 62], electronic commerce [64] and SOC [44]. Briefly, an SLA is a

contract between a provider and a customer that specifies, usually in measurable

terms, the service and the level of service the service provider will furnish. SLAs

between service providers and their customers will assure customers that they can

get the service they pay for and will obligate the service providers to achieve their

19

service promises [48]. Failing to meet SLAs could result in serious financial

consequences for service providers.

2.1.3.1 Preliminary

An SLA usually has the following components [48]:

 Purpose: describes the reasons behind the creation of the SLA;

 Parties: describe the parties involved in the SLA and their respective roles

(provider and consumer);

 Validity period: defines the period of time that the SLA will cover. This is

delimited by start time and end time of the term;

 Scope: defines the service(s) covered in the agreement;

 Restrictions: define the necessary steps to be taken in order for the

requested service levels to be provided;

 Service level objectives: specify the levels of service that both the service

consumers and the service providers agree on, and usually include a set of

service level indicators, like availability, performance and reliability. Each

aspect of the service level, such as availability, will have a target level to

achieve;

 Penalties: spell out what happens in case the service provider

under-performs and is unable to meet the objectives in the SLA. If the

agreement is with an external service provider, the option of terminating the

contract in light of unacceptable service levels should be built in;

 Optional services: provide for any services that are not normally required

by the service consumer, but might be required as an exception;

20

 Exclusions: specify what is not covered in the SLA;

 Administration: describes the processes created in the SLA to meet and

measure its objectives and defines organisational responsibility for

overseeing each of those processes.

In different fields, SLAs contain service level objectives regarding different

service performance metrics (properties of services). For example, in the field of

telecom, SLAs usually indicate properties of telecom services promised by the

telecom companies, such as guaranteed uptime, technical response speed to faults,

while in the field of computer networks SLAs often contain ISP’s promises for

bandwidth, delay packet loss rate and jitter. In the field of SOC, the range of

properties that can be associated with services is much wider. Any non-functional

property which affects the definition and execution of a service falls into the content

of SLA, most notably, accessibility, integrity, reliability, regulatory and security

[68].

2.1.3.2 SLA specifications

SLAs must be specified precisely and flexibly. For SLAs to be widely employed in

the SOC environment, SLA specifications should remove all the ambiguities and

inflexibilities.

Precision.

To understand the notion of precision in SLAs, consider the following example.

Imagine a service for ordering supplies on the Internet. Assume that “order-supplies”

is an operation supported by this service. In order to execute this operation, a

customer should send a “purchase-order” document and should obtain a

“confirmation” document in response. Now, consider the following guarantee by the

supplier: 90% of the time, the time for executing “order-supplies” will be less than

15 seconds. While this may seem like a reasonable specification on the first look,

there are several ways to interpret this:

21

a. When? When should a service check for the compliance of this SLA? Here are

some examples when the evaluation of this SLA can be triggered: (i) whenever a

new “order supplies” execution is completed, (ii) after every 10 “order-supplies”

executions, (iii) at the end of the day, or (iv) just before the completion of the SLA.

It is trivial to note that if this guarantee holds true in one of these cases, it does not

necessarily hold in the rest.

b. Which? Which inputs should be considered in evaluating the SLA? In order to

check whether the above guarantee is upheld or not, one can consider (i) all

executions of “order-supplies” since the establishment of the SLA, (ii) all executions

of “order-supplies” since the beginning of that day, (iii) all executions of

“order-supplies” no matter who the customer is, (iv) all executions of

“order-supplies” initiated by the customer with which the SLA is established, or (v)

the last 100 executions of “order-supplies”, no matter when they happened.

c. Where? Where is the timing of the execution monitored? It can be monitored at

the time of either the customer issuing the request or the service provider handling

the request. Usually, customers are interested in SLAs that give guarantees from

their perspective as opposed to the service provider’s perspective. On the other hand,

it is quite hard for the service provider to make service-consumer-side guarantees

since that could be influenced by factors that are outside the control of the service

provider (e.g., the documents between the service consumer and service provider

often flow through other service providers such as ISPs).

d. What and How? In the above example, the metric of interest is the response time

from the time when the purchase-order is sent out to that when a confirmation is

received. The guarantee is on the 90th percentile. One way to interpret this is that

out of every 100 executions, 90 will have a response time of less than 15 seconds.

Another way to interpret this is that 90 out of every 100 executions will have a mean

response time of less than 15 seconds. Metrics that are not as well defined as the

typically well known metrics like availability, reliability, cost, and quality will

further complicate how an SLA should be evaluated.

22

Flexibility.

There are many kinds of interactions between service consumers and providers –

single request-reply interaction, multiple back-and-forth messages, short-lived

interactions, or interactions that last for several hours or days. Services themselves

are quite diverse. The metrics that are of interest in an SLA are, in many cases, quite

specific to the service. For example, a bookseller would like to provide a guarantee

on the number of days it takes to deliver a book. A credit card authorisation service

provider would like to provide a guarantee on the security of the transmitted

information. The vast diversity in the kinds of interactions as well as metrics that are

of interest necessitates the need for a flexible SLA formalisation.

Standards such as WSDL [20, 22] and Web Service Flow Language (WSFL) [60]

create flexible and generic interaction models for services. For example, WSDL

introduces concepts such as messages, operations, ports, and end points – which are

useful for describing the operations of any Web service. Similarly, WSFL introduces

the notion of activities and flows – which are useful for describing both local

business process flows and global flows of messages between multiple services. So,

one way to create a flexible SLA formalisation is to build upon these concepts. In

other words, one can create a flexible SLA formalisation by associating “quality

metrics” to the formalisations that are already defined in WSDL and WSFL. Here

are some examples that show how such association can be done.

 Response time of a Web service operation.

 Response time of a flow.

 Security of an operation.

 Number of times an activity being executed in a flow.

 Cost of executing an operation.

23

 Availability of an end point.

Another way to guarantee flexibility is to identify generic components in typical

SLA specifications, which in turn are extensible so that new components can be

defined by extending these base components.

2.1.3.3 SLA specification standards

In light of precision and flexibility, Web Services Policy (WS-Policy) [96], Web

Service Level Agreements (WSLA) [52, 66] and Web Services Agreement

(WS-Agreement) [4, 65] are the three most recognised SLA specifications.

WS-Policy

Briefly, ‘Web Services Policy 1.5 – Framework’ defines a base set of constructs that

can be used and extended by other Web services specifications to describe a broad

range of service requirements and capabilities [96].

‘Web Services Policy 1.5 – Framework’ defines a framework and a model for

expressing policies that refer to domain-specific capabilities, requirements, and

general characteristics of entities in a Web service-based system.

A 9policy is a collection of policy alternatives. A 9policy alternative is a collection

of policy assertions. A 9policy assertion represents a requirement, capability, or other

property of a behaviour. A 9policy expression is an XML Infoset representation of its

policy, either in a normal form or in its equivalent compact form. Some policy

assertions specify traditional requirements and capabilities that will manifest

themselves in the messages exchanged (e.g., authentication scheme, transport

protocol selection). Other policy assertions have no wire manifestation in the

messages exchanged, yet are relevant to service selection and usage (e.g., privacy

policy, QoS properties). ‘Web Services Policy 1.5 – Framework’ provides a single

policy language to allow both kinds of assertions to be expressed and evaluated in a

consistent manner.

24

‘Web Services Policy 1.5 – Framework’ does not cover discovery of policy,

policy scopes and subjects, or their respective attachment mechanisms. A 9policy

attachment is a mechanism for associating policy with one or more policy scopes.

A 9policy scope is a collection of policy subjects to which a policy applies. A 1policy

subject is an entity (e.g., endpoint, message, resource, interaction) with which a

policy can be associated. ‘Web Services Policy 1.5 – Attachment’ [97] defines such

policy attachment mechanisms, especially for associating policy with arbitrary XML

elements [14], WSDL artefacts [20, 22], and UDDI elements [23]. Other

specifications are free to define either extensions to the mechanisms defined in ‘Web

Services Policy 1.5 – Attachment’ or additional mechanisms not covered by ‘Web

Services Policy 1.5 – Attachment’, for purposes of associating policy with policy

scopes and subjects.

WSLA

WSLA is developed by IBM and used to define assertions of a service provider to

perform a service according to agreed guarantees for IT-level and business

process-level service properties such as response time and throughput, and measures

to be taken in case of violation and failure to meet the asserted service guarantees,

for example, a notification of the service customer. The assertions of the service

provider are based on a detailed definition of the service properties including how

basic metrics are to be measured in systems and how they are aggregated into

composite metrics. In addition, a WSLA expresses which party monitors the service,

third parties that contribute to the measurement of metrics, supervision of guarantees

or even the management of violations of service guarantees. Interactions among the

parties supervising the WSLA are also defined.

The WSLA language is based on XML, defined as an XML schema.

WSLA can be used by both service provider and service customer to configure

their respective systems to provide and supervise their services. This process is

called deployment. Each organisation uses its own independent deployment function

that interprets the WSLA and takes appropriate action. The deployment step

25

includes creation and parameterisation of the relevant service implementing systems

and WSLA supervising services. Also, parts of the WSLA (or derived information)

can be passed on to third parties that support WSLA's supervision. After deployment,

the WSLA can be enacted by supervising services.

An important aspect of WSLA is its capability to deal with specifics of particular

domains and technologies. The language is extensible to include specific types of

operation descriptions, (e.g., using WSDL to describe a Web services operation),

measurement directive types for specific systems, special functions to compose

aggregate metrics and predicates to evaluate specific metrics. The extension

mechanism makes use of the ability to create derived types using XML schema. By

design, the core of the WSLA language is very compact. To be of immediate use,

the WSLA language encompasses a set of standard extensions that allow WSLA

authors to define complete agreements that relate to Web services and include

guarantees for response time, throughput and other common metrics. For other

technical fields, for example, online storage based on the Network Attached Storage

(NAS) technology, specific extensions may be defined by interested organisations.

WS-Agreement

WS-Agreement is a Web Services protocol for establishing an agreement between

two parties, such as between a service provider and consumer, using an extensible

XML language for specifying the nature of the agreement, and agreement templates

to facilitate the discovery of compatible agreement parties.

In a distributed SOC environment, service consumers like to obtain guarantees

related to services they use, often related to quality of a service. Whether service

providers can offer and meet guarantees usually depends on their resource situation

at the requested time of service. Hence, quality of service and other guarantees that

depend on actual resource usage cannot simply be advertised as an invariant

property of a service and then bound to by a service consumer. Instead, the service

consumer must obtain state-dependent guarantees from the service provider,

represented as an agreement on the service and the associated guarantees.

26

Additionally, the guarantees on service quality should be monitored and service

consumers may be notified of failure to meet these guarantees. The objective of the

WS-Agreement specification is to define a language and a protocol for advertising

the capabilities of service providers and creating agreements based on creational

offers, and monitoring agreement compliance at runtime.

To obtain assurance on service quality, the service consumer or an entity acting

on its behalf must establish a service agreement with the service provider, or another

entity acting on behalf of the service provider. Because the service objectives relate

to the definition of the service, the service definition must be part of the terms of the

agreement or be established prior to agreement creation. WS-agreement provides a

schema for defining overall structure for an agreement document. An agreement

includes information on the agreement parties and a set of terms. The terms may

comprise one or more service terms and zero or more guarantee terms specifying

service level objectives and business values associated with these objectives.

The agreement establishment process typically starts with a pre-defined

agreement template specifying customisable aspects of the documents, and rules that

must be followed in establishing an agreement, which we call agreement

establishment constraints. WS-agreement defines a schema for an agreement

template.

The establishment of an agreement can be initiated by the service consumer side

or by the service provider side, and the protocol provides hooks enabling such

symmetry. The WS-Agreement specification covers various aspects, particularly the

relationship of service level objectives with service description, an agreement

specifying alternative service description terms and use of logical grouping

operators, and agreement establishment constraints in negotiating service level

objectives.

27

2.2 Research problem analysis

It is believed that the SLA is a powerful tool to address the problem of QoS-aware

service composition because SLAs can offer the service consumers contractual

guarantee that service providers will provide services with promised QoS. Through

managing SLAs at different stages of the composite service provision, the issue of

QoS-aware service composition can be addressed in a comprehensive and integrated

way. The problem of QoS-aware service composition needs to be addressed before,

during and after the service provision. Thus, the SLAs must be addressed

accordingly at build time, runtime and completion time. Here we give the definitions

of build time, runtime and completion time.

 Build time: refers to the time between the point when a service consumer

starts to negotiate the SLA with a service provider and the point when an

SLA is established between the two.

 Runtime: refers to the time between the point when the SLA is established

and the point when an SLA is fulfilled or terminated.

 Completion time: refers to the time after an SLA is fulfilled or terminated.

Accordingly, an SLA between a service consumer and a service provider goes

through three stages: establishment, enforcement and completion. The objective of

SLA establishment is to reach an agreement on the terms that are going to be

included in the SLA between the service consumer and the service provider. The

SLA enforcement is the process during which the terms specified in the SLA are

enforced, usually along with the provision of the service that the SLA is attached to.

When SLA violations occur, measures must be carried out to adapt the service as

well as the SLA. Upon the completion of an SLA, the results of the SLA

enforcement, are collected and profiled for future analysis of the service provider’s

reputation and its capability of enforcing SLAs. The results of the analysis can be

used for future SLA management, e.g. to identify trustworthy and untrustworthy

service providers.

28

In service composition scenarios, where multiple component services

collectively serve the functional and non-functional requirements of the component

services, the problem of SLA management is more complicated and challenging.

First, a composite service is composed by several component services. The service

consumer needs to establish SLAs with each of the service providers that provide

the component services. Second, when an SLA violation in component service

occurs, the adaptation of the faulty component service might trigger the adaptation

of other component services in order to meet the service consumer’s requirements

for the composite service. The corresponding SLAs must also be adapted

accordingly. Finally, although attached with SLAs, services may still fail due to

various reasons, e.g. service providers’ incapability, which may cause unexpected

consequences, such as economic loss of service consumers that the penalty for the

service providers specified in the SLAs cannot compensate. In the service

composition scenarios, the failure of the component services may lead to exceptions

in the composite services. Therefore, selecting trustworthy service providers for the

component services can minimise the failure of composite services.

As analysed above, a comprehensive solution to SLA management for service

composition should provide mechanisms to manage SLAs at different stages,

specifically establishment, enforcement and completion, in order to guarantee the

service consumers’ requirements for the quality of the composite services. Specific

requirements for each of the stages are as follows.

• SLA establishment at build time. Service consumers’ QoS requirements

for services, as well as service providers’ capacities of providing QoS, are

unnecessarily static. Instead, they usually have acceptable ranges for the

QoS. Therefore, service consumers and providers should be allowed to

negotiate with each other to reach an agreement on the QoS. As a service

usually involves multiple QoS properties, the negotiation approach for SLA

establishment should be able to deal with multiple QoS properties.

Moreover, in service composition scenarios, a service consumer usually

needs to negotiate with multiple groups of service providers, each of the

groups competing for a component service. It must be assured that the

29

finally selected service provides can collectively fulfil both the service

consumer’s functional and non-functional requirements for the composite

service. Also, if a service provider can provide more than one of the

component services with better quality, it should be given the opportunity

to flexibly express its offers.

• SLA enforcement at runtime. When SLA adaptation is being carried out

to adapt faulty services, not only the benefit but also the cost caused by the

adaptation solution must be considered. The reason is that the adaptation is

supposed to be performed only when it is worth performing, i.e. brining

more benefit than cost. Moreover, if there are more than one adaptation

solutions that satisfy this criterion, the one that brings the most profit

should be identified and carried out. The SLA adaptation approach should

also be able to identify the subset of the composite services that need to be

adapted in order to meet the service consumers’ QoS requirements for the

composite services. Finally, the SLA adaptation should start within a

minimised scope and then expand to a larger one if necessary, in order to

limit the impact of the SLA adaptation. Therefore, an approach to confine

the scope of the SLA adaptation is necessary.

• SLA completion at completion time. The service providers’ capability of

enforcing SLAs can be evaluated based on their performance over past SLA

enforcement. Briefly, the service providers that have higher success rates of

historic SLA enforcement gain better reputation, and are more likely to

enforce SLAs successfully. To allow the service consumers to identify

trustworthy service providers, the result must be collected for SLA profiling

upon the completion of the SLAs. The evaluation of the service consumers’

trust over the service providers based on their reputation must highlight the

service providers’ reputation in the long term. Moreover, there are some

threats existing in the open SOC environment. The SLA profiling approach

must be able to well resist these threats in order to protect the service

consumers.

30

As cloud computing is becoming popular with the support from different

communities, including industrial, commercial and academic ones, more services are

being provided over the Internet in the form of service. Our research can definitely

contribute to the research on cloud computing.

2.3 SLA negotiation

2.3.1 Related work

SLA negotiation is the process of negotiating SLAs between service consumers and

providers to establish SLAs. During SLA negotiation, service consumers and

providers can propose QoS that are acceptable by them until an agreement is made

or the negotiation is terminated. In most cases in the open SOC environment, there

are a group of service providers that can provide services with the same functionality

yet different quality. Therefore, the selection of services (i.e. selection of service

providers) usually depends on the results from SLA negotiation – the service

provider that can provide the QoS that is most preferable by the service consumers

will be selected. In the service composition scenarios, SLA negotiation becomes

much more challenging because the service selection involves multiple groups of

candidate service providers – each group for one component services.

With QoS constraints, service selection for service composition becomes a much

more challenging problem and has been attracting tremendous research attention in

recent years. The work in [11] proves that the optimisation of service selection with

multiple QoS constraints is NP-complete. The authors built some computational

foundation for the problem of QoS-aware service selection by proposing and

evaluating some optimal and suboptimal solutions. Suboptimal solutions [15, 47,

106] and optimal solutions [8, 61, 107, 108] have also been proposed.

[15] uses genetic algorithms to address the issue of QoS-aware Web service

composition. Their work focuses on domain-specific QoS properties and customised

QoS aggregation formulae. WS-Binder Tool is implemented to support both

cross-domain and domain-specific QoS properties and to determine suboptimal

31

solutions for Web service compositions according to given fitness functions and

QoS constraint sets. [47] models QoS-aware Web service selection as a 0-1

knapsack problem or resource constraint project scheduling problem and identifies

four approaches to find near-optimal solutions, including greedy selection,

discarding subsets, bottom-up approximation and pattern-wise selection. [106] also

models QoS-aware Web service selection as a 0/1 knapsack problem as well as a

multi-constraint optimal path problem. The authors present heuristic algorithms to

find near-optimal solutions in polynomial time. For different composition structures,

e.g. sequential, parallel, conditional and loops of services, different algorithms are

proposed.

Zeng et al. [107, 108] present AgFlow, a middleware platform that enables

quality-driven composition of Web services. The selection of component service is

performed to meet the service consumers’ requirements on the composite service’s

QoS modelled from multiple dimensions. Integer programming (IP) is used to

compute the optimal plan for composite service executions from several execution

paths represented by directed acyclic graph (DAG). Authors in [8] design an Web

service-based workflow engine named WSQoSX, which aims at optimising

QoS-aware service composition in real-time and under heavy load. A heuristic

algorithm is proposed. Firstly, linear programming is used to relax the mixed integer

programming formulation of the service composition problem constructed in [107,

108]. Then a backtracking algorithm is used to construct a feasible solution based on

the result of the relaxed integer problem. Following the work in [107, 108]. In [5],

Ardagna and Pernici formulate the QoS-aware service selection problem as mixed

integer linear programming (MILP) problem and adopt loops peeling for

optimisation. When a feasible solution does not exist, a QoS negotiation algorithm is

suggested to enlarge the solution space of the optimisation problem. In [61], the

authors use a different philosophy from works described above to address the

QoS-aware service selection problem. They use service composition graph (SCG) to

represent the composite service. Then multiple criteria decision making (MCDM)

and Simple Additive Weighting (SAW) are used to convert the problem of

QoS-aware service selection from a multi-constrained problem to a

32

single-constrained problem. Finally, Dijkstra’s shortest-path algorithm is employed

to find the optimal solution to the service composition problem.

Work in [77] presents a solution for QoS driven Web service composition using

combinatorial auctions, named QWESC (QoS-Aware WEb Services Composer).

QWESC facilitates combinatorial auctions to capture the Web service providers’

willingness to provide a composite service at a lower price than the total price of

stand-alone services that form the composite service, as well as other QoS properties.

integer programming formulation is provided to solve the problem of QoS-aware

Web service composition. We argue that several essential issues in designing a

combinatorial auction for Web service composition have not been addressed, e.g.

bidding language, winner determination and ask QoS generation. QWESC is far

from comprehensive and practical.

2.3.2 Discussion

Current research except [77] assumes that the quality of a component service that a

service provider can provide is static. Actually in the open SOC environment the

service providers’ capacities of providing QoS may dynamically change over time

and the QoS they are willing to offer may vary depending on how many component

services they can win in the SLA negotiation. In this regard, mechanisms that can

motivate service providers to provide satisfactory QoS should be employed in

service selection in the SOC environment. In light of the above, combinatorial

auction is widely recognised as a promising approach to provide the bidders (i.e.

service providers) with flexible bidding options, hence motivating the bidders to

compete for the component services involved in the SLA negotiation [27].

None of the current research addresses the following three issues: 1) service

providers’ capacities for providing QoS may change; 2) the more service providers

competing for a service, the more likely the service consumer will be able to obtain

favourable QoS; and 3) service providers tend to offer better QoS to win more

services.

33

2.4 SLA adaptation

2.4.1 Related work

Composite services are often executed in volatile environments where the QoS

parameters of the participating component services might change during the

execution of the composite services. Recently, research has been carried out on

adapting composite service in volatile SOC environments. However, current

approaches do not consider the internal logic of the composite services and the

impact of adaptation for a single component service – the faulty one – on other

component services. Other than QoS parameters, effective adaptation requires

specific information about the component services in terms of their positions and

interactions with other component services.

Harney and Doshi [38] present a mechanism called value of changed information

(VOC) which computes the estimated value brought by the changes of the composite

service and compares the value to the cost required to make the changes. The update

is performed only when it is expected to pay off. In [39], Harney and Doshi utilise

service expiration times to reduce the computational overhead of adaptation. The

improvement is based on the insight that service providers often keep the quality of

their services at a certain level for a period of time. A new approach is proposed,

namely VOC with expiration times (VOCε). VOCε manages to reduce the

computational burden of adaptation. However, while considering adapting one

individual component service, the effect of VOC and VOCε is limited on just one

component service without taking into account the composite service. In other words,

VOC and VOCε facilitate only local adaptation solutions for composite services

which cannot guarantee the satisfaction of the service consumers’ requirements for

the composite services.

Chafle et al. [17] introduce adaptation on different levels, including the instance

level, logic level and physical level. Multiple backup workflows are prepared to

substitute the failed components or workflows at any moment. By enabling this,

workflow systems can adapt to environmental changes. Verma et al. [98] introduce a

34

suite of stochastic optimisation based methods, including centralised and

decentralised ones for adapting business process modelled as Markov decision

processes. Exogenous events and inter-service constraints are both taken into

account when performing the adaptation. Narendra et al. [79] use the aspect-oriented

programming (AOP) technology to dictate modifications in component services in

order to meet non-functional requirement changes in the composite service.

2.4.2 Discussion

None of the above approaches considers the cost that may occur in the adaptation of

composite services and may generate worthless adaptation solutions which bring

cost more than profit. Also, the impact of the SLA adaptation for one component

service on other component services has not been considered properly. When SLA

adaptation is required, it is sometimes essential to adapt a group of component

services and the attached SLAs because otherwise the QoS requirements of the

composite services cannot be met. Besides, the adaptation is supposed to be

confined within a certain scope, usually the smaller the better, to limit the impact of

faulty services on other services and the cost and complexity of the adaptation.

2.5 SLA Profiling

2.5.1 Related work

Service transactions, although attached with SLAs, may still fail due to various

reasons – intentionally or accidentally – in the open and volatile SOC environment.

In service selection, service consumers often have to estimate the trustworthiness of

the service providers without or with limited prior experience and knowledge about

them. Moreover, the SOC environment exposes service consumers to various threats,

e.g. malicious reputation manipulation and QoS abuse. A trust system which profiles

service providers based on their historic performance on SLA enforcement can help

service consumers identify trustworthy service providers and protect them from the

threats described above 0

1.

1 Although profiling may involve information on service providers from various aspects, we

35

Reputation-based trust research is being carried out in several distinct areas,

most notably computer science and economics. An overview of many trust systems

for online service provision can be found in [46]. And many key issues in

reputation-based trust evaluation mechanisms in e-commerce environments are

discussed in [99].

In the domain of distributed computing, several reputation systems have been

proposed. Cornelli et al. [26] propose P2PRep, a P2P protocol which complements

Gnutella, an existing P2P file-sharing protocol. In P2PRep, peers can keep track of

and share information about the reputation of other peers. However, there are no

formalised approaches to evaluate the reputation and credibility of the peers and no

experimental evaluation is provided. Damiani et al. [28] enhance their previous work

in [26] by introducing XRep, a distributed polling protocol that inquires the P2P

network for peers’ opinions (votes) on targeted resources. Votes are clustered based

on IP address to prevent Sybil and collaboration attack. XRep focuses on supporting

anonymous and secure services while preserving anonymity to a degree. Kamvar et

al. [51] propose EigenTrust, a distributed method for P2P file-sharing networks.

Unique global trust values are computed and assigned to each peer in the network.

EigenTrust requires pretrusted peers in the network to address the collusion problem.

The limitation of their approach is that pretrusted peers may not always be available

in all cases. Xiong et al. [104] propose PeerTrust, a feedback based trust

management system. PeerTrust incorporates three basic trust parameters (the

feedback, the total number of transactions a peer performs and the credibility of the

feedback sources) and two adaptive factors (transaction context factor and the

community context factor) into computing the trustworthiness of peers. However,

the solution adopted to measure feedback credibility, namely Trust-Value based

credibility Measure (TVM), assumes that trustworthy nodes be more likely to be

honest on the feedback they provide. This assumption is not generally true because

peers may send incorrect feedbacks to ruin the reputations of its competitors.

Srivatsa et al. [92] propose TrustGuard, a safeguard framework in decentralised

focus on utilising their historic performance in this research.

36

overlay networks, aiming at countering various vulnerabilities in reputation

management. In TrustGuard, a peer rates credibility of feedback from other peers

using a personalised similarity measure (PSM). Feedbacks that are similar to the

peer’s own are considered more credible. This method is limited in the cases where

peers with long-term reputation are preferable and credible. For example, if a service

provider delivers a poor service transaction to a service consumer by accident,

malicious peers can flood negative feedbacks to rapidly ruin the service consumer’s

trust over the service provider.

Wang et al. [101] presents a model which incorporates transaction amount into

trust evaluation. A simple method is proposed to measure the difference between old

and new transaction amounts. However, no amount-related malicious behaviour is

modelled and no experimental results are presented to validate their approach.

2.5.2 Discussion

In the open SOC environment, service providers may not always successfully

enforce the SLAs due to various reasons. SLA violations occur from time to time,

intentionally or accidentally. In service selection, the QoS can be negotiated over,

but the success rate of a service transaction cannot be provided by the service

provider. This problem is especially severe in the service composition scenarios

where a composite service is composed by several component services. The failure

of an individual component service may result in exceptions of the composite

service. Therefore, when selecting service providers, service consumers usually

prefer those who are most likely to successfully enforce the SLAs.

In addition, the open and volatile SOC environment exposes service consumers

to various threats, including malicious reputation manipulation [58] and QoS abuse

[101].

In service selection, approaches should be provided to help the service

consumers estimate the trustworthiness of the service providers, as suggested but not

specified by [5, 54, 107]. However, it is difficult for a service consumer to determine

37

how much it can trust a service provider due to the lack of sufficient experience and

knowledge about the service provider. A direct approach to address this issue is to

use a trust system which collects and processes feedbacks about service providers’

past behaviour [51, 88, 92, 104]. However, to the best of our knowledge, no trust

system has been tailored for service selection in the SOC environment and the

threats described earlier have not been sufficiently addressed.

2.6 Requirements analysis

After the literature review of the state-of-the-art and the in-depth analysis of the

unsolved problems in the QoS-aware service composition, it can be seen that

QoS-aware service composition is challenging yet essential to supporting service

applications. While current research on QoS-aware service composition is

incomplete by focusing on calculating the quality of the composite services based on

static quality of the component services, we advocate that the problem of QoS-aware

service composition should be addressed at build time, runtime and completion time.

Corresponding approaches for SLA negotiation, adaptation and profiling should be

provided.

2.6.1 A motivating example

This section presents a simplified example of trading business process to analyse the

research requirements in this thesis.

Figure 2.2 A composite service composed of five component services

38

This trading business process, shown in Figure 2.2, can be modelled as a

composite service which consists of five component services – manufacturing,

rough processing, fine machining, land carriage and shipping.

The business process starts with a manufacturing service, which produces the

goods required by the service consumer. When the goods are produced, half of it is

delivered for rough processing and another half for fine machining. When both the

rough processing and fine machining services are completed, the goods are delivered

to the service consumer by a land carriage service and then a shipping service.

Although the services in the above example are domain specific, the services we

are dealing with in this research are generic.

2.6.2 SLA negotiation at build time

Current research on QoS-aware service composition focuses on build time QoS

guarantee for service composition – aggregating the QoS of the composite services

based on static QoS of the component services given by the service providers before

the service provision. However, in the open SOC environment, the QoS that service

providers can offer and guarantee during service provision is not static but dynamic

– it largely depends on the service providers’ resource situations. Therefore, service

consumers and providers should be given the opportunity to flexibly exchange their

expectations and offers over the terms in the SLAs.

Also, the popularity of e-business and e-commerce pushes the world market

closer and closer to the perfectly competitive business environment [25]. In such an

environment, competition between the service providers gives the service consumers

leverage when negotiating with the service providers. Thus the more service

providers there are vying to win the order for a service, the more likely the service

consumer will be able to obtain favourable QoS. Apparently, better quality of the

component services will result in better quality of the composite service. Hence, an

effective approach for SLA negotiation should involve multiple candidate service

39

providers if there are any, create competition between them, and allow them to

revise their bids in order to win the order for the service.

Moreover, a service provider’s profit increases as the number of obtained orders

for services increases. This gives the service providers, which can provide multiple

types of services, a very appealing incentive to propose good QoS in order to win

more orders for the component services in SLA negotiation for service composition.

Those service providers who are capable of providing complementary component

services will be able to gain competitive advantages in the competition for the

component services. A set of services are complementary when they can be provided

with better quality by a single service provider than multiple service providers [27].

Due to the above characteristics, SLA negotiation in service composition

scenarios can be very complicated so that an approach that supports effective and

efficient service selection for service composition is needed. It has been long proven

that auction is effective and efficient in a perfect competition environment [74, 102].

In many e-commerce cases, such as Amazon, 1eBay and Overstock.com, auction has

been proven to be able to well capture buyers and sellers’ preferences and to ensure

their satisfaction and the auction revenue. We advocate that an auction-based

approach is also applicable to SLA negotiation for service composition. In an

auction for service composition, multiple candidate service providers bid for the

component services and the service consumer selects the final winners for service

provision. In the open SOC environment, a dynamic service selection approach for

service composition based on auction should address the following key issues:

1. Bidders biding for multiple component services. Traditional single-item

auctions are unsuitable for service composition scenarios, because they

ignore the fact that a service provider (referred to as a bidder in an auction)

can and wishes to bid for multiple component services (referred to as items

in an auction) at the same time. And a bidder’s offer for the quality of the

component services, including the quality and the prices 1

2 of the component

2 Usually the price is not recognised as the quality of a service, but it is one of service

40

services, is dependent on the number of items it wins. Therefore, the

auction-based service selection should allow the service providers to place

bids on combinations of component services flexibly.

2. Multiple properties of items for auction. In traditional auctions, items

usually have one property, i.e. price. In the SOC environment, besides the

price, a service consumer usually has constraints and preferences for other

QoS properties of the composite service, such as execution time, throughput,

availability, etc. Therefore, the auction-based service selection for service

composition should allow bidders to propose offers for multiple properties

of the component services. The auction should be aimed at meeting the

service consumer’s multiple dimensional non-functional requirements for

the composite service.

Take the composite service presented in Section 2.6.1 for example, the service

consumer demands to obtain the goods as soon as possible at an acceptable price. In

order to achieve these goals, the service consumer needs to negotiate with each of

the candidate service providers over the execution time and prices of the component

services.

As there might be factories that can provide both rough processing and fine

machining services, and logistics companies that can provide both land carriage and

shipping services, the following four issues may have major impacts on the selection

of services.

1. The quality of the composite service is determined by the aggregation of

the quality of the component services. For example, the total execution time

of the composite service depends on the execution time of the five

component services.

consumers’ most important concerns about the services. Hence, we consider it as a QoS property

when evaluating the quality of a service.

41

2. A bidder may have different preferences and bidding strategies when it bids

for different numbers of component services. For example, a factory may

charge a lower price for the rough processing service if it also wins the fine

machining service.

3. Multiple QoS properties need to be considered when the winning bidders

are being determined. For example, different service consumers might have

different preferences for price and execution time. As traditional auctions,

such as English auction, Dutch auction, First-Price Sealed-Bid Auction and

Vickrey auction [73], often involve a single item with a single property

only (normally price), they cannot be applied directly to the service

composition scenarios described here.

4. Different service consumers might have different criteria for determining

when the auctions complete. For example, the service consumer can require

the auction to complete when the overall price and execution time of the

composite service achieved from the current winning bids meet its

pre-specified requirements. A completion criterion can also be set with a

preset timer. By setting a timer, the auction can be forced to complete when

the time allowed for the auction is up. The auction can also be configured to

continue as long as there are new and better bids. When there is only one

bid left for each of the component, the auction completes and the standing

winning bidders (referred to as final winning bidders) are allocated the

orders for the component services with the QoS specified in the remaining

bids (referred to as final winning bids).

To summarise, an SLA negotiation approach based on auction is needed to

support SLA establishment, which allows candidate service providers to propose

offers for combinations of component services with multi-dimensional QoS, and to

provide different completion criteria to be set to cater for service consumer’s

requirements.

42

2.6.3 SLA adaptation at runtime

Runtime QoS guarantee for composite services is also a very important issue. When

exceptions in component services occur during the service provision, e.g. current

service providers claim to be incapable of providing promised services or service

providers fail to deliver results as specified in the SLA, the faulty component

services need to be adapted (updated or replaced), which might lead to modifications

to the component services, including their interfaces, implementations and quality.

Therefore, an approach is needed to keep service consumers’ QoS requirements for

the composite services met. Sometimes, adapting the faulty component services only

cannot guarantee the required quality of the composite services. In this case, it is

necessary to extend the scope of the SLA adaptation – taking more component

services into adaptation instead of just the faulty one. For example, it takes a certain

amount of time to recover the failed service, which, with the addition of

pre-specified time consumption of the remaining unexecuted component services,

will lead to violation of the service consumer’s requirements for the time

consumption of the composite service and thus would require adaptation of more

unexecuted component services.

So far, little efforts have been placed on the adaptation for composite services

which considers the impact of the adaptation for one service on other services. A

comprehensive adaptation approach is needed. Besides, adaptation is supposed to be

confined within a certain scope, usually the smaller the better, to limit the impact of

failed services on other services and the cost and complexity of adaptation. Hence,

defining the scope and then find an optimal adaptation solution in the defined scope

is considerably important.

In order to illustrate the requirements for and the complexity of adaptation for

composite service, we use the example presented in Section 22.6.1. The SLAs for the

manufacturing, the rough processing, the fine machining, the land carriage and the

shipping services have been established between the service consumer and the

service providers, which collectively fulfil the service consumer’s QoS requirements

for the composite service. Suppose that the land carriage company suddenly claims a

43

delay and cannot deliver the goods within the timeframe as promised in the SLA,

this delays the whole process. Therefore, the composite service must have the

adaptation capability to recover from this exceptional situation. In addition, it is

possible that the schedule of the shipping company may be interfered. For example,

the shipping company may have specified the related term in the SLA such as “the

shipping service will be completed with 10 days during May 1 to May 30.” With the

land carriage service rearranged, this constraint may no longer be held. Therefore,

the shipping service needs to be adapted by either updating the SLA between the

service consumer and the shipping company or selecting another shipping company

that is capable of providing the shipping service as required.

In the adaptation process, cost applies, e.g. the service query cost and the

negotiation cost. The service consumer may adapt the land carriage service by either

renegotiating with the land carriage company or selecting another land carriage

company to replace the original land carriage company. When deciding the

adaptation solution for land carriage service, the service consumer needs to estimate

both the value and cost that each adaptation solution may bring. Meanwhile, the

service consumer needs to compute the probability that the adaptation of land

carriage service will lead to interference of the shipping service and the

corresponding value and cost from adapting the shipping service. Based on the

results, the service consumer can determine the adaptation solution, e.g. how to

adapt the land carriage service, whether to adapt the shipping service and if so, how.

In this case, the optimal solution is not necessarily selecting the companies with

the best quality but the one with the best tradeoff between the value and cost. This

motivating example reveals three important factors for selecting the optimal

adaptation solution. First, the service consumer must estimate the tradeoff between

the value and cost brought by different solutions. Second, the service consumer must

estimate the impact of adapting the faulty service on other services to see if they

need to be updated. Third, the value of cost caused by the adaptation of other

services must be considered.

44

To summarise, an SLA adaptation approach is needed to support SLA

enforcement, which aims at guaranteeing service consumers’ QoS requirements for

the composite services by adapting a group of component services within a confined

scope and considers both the value and cost of the adaptation solutions.

2.6.4 SLA profiling at completion time

Although associated with SLAs, the service transactions might not be performed

exactly as required in the SLAs. SLA violations occur from time to time due to

various reasons, e.g. inherent unreliability of the underlying Internet and internal

infrastructures of the service providers. Generally speaking, the service providers

with lower success rates of past SLA enforcement tend to fail SLA enforcement

more frequently. In order to guarantee the quality of the composite services, service

providers’ capability of successfully enforcing the SLAs must be taken into account.

When selecting service providers, those service providers with better reputation,

meaning higher success rates of past SLA enforcement, should be more trustworthy.

Therefore, upon the completion of SLAs, the results of SLA enforcement should be

recorded and profiled in an effective way to support the analysis of service providers’

reputation and capability of enforcing future SLAs.

Take the composite service presented in Section 2.6.1 for example, if the land

carriage company fails in delivering the goods on time as specified in the SLA, its

poor performance must be recorded. Based on a series of such records, the land

carriage company can be profiled and its reputation can be evaluated. Next time a

service consumer considers selecting this land carriage company, it can evaluate its

trust over the land carriage company based on its reputation. On the other hand, if

any of the services are provided successfully as specified in the SLAs, the results of

the service transactions must also be recorded for future profiling. When selecting

service providers during the SLA negotiation and adaptation for any of the

component services, the service consumer can incorporate the reputation of the

candidate service providers as one of the selection criteria. For example, a land

carriage company with a lower reputation – attained from poor performance over

45

time – is usually less likely to be selected by the service consumer as it cannot earn

the service consumer’s trust.

Besides the abovementioned issues, the following two threats existing in the

SOC environment must be addressed through SLA profiling.

1. Malicious reputation manipulation. Malicious service providers may

manipulate service consumers through such as bribery to provide incorrect

ratings in order to boost their reputations or to ruin their competitors’

reputations. Malicious service providers can also inject incorrect ratings by

faking service consumers.

2. QoS abuse. Malicious service providers may strategically alter their

behaviour in QoS offering in order to obtain profit. For example, malicious

service providers may use successful service transactions with small

amounts to build its reputation, obtain service consumers’ trust and then

defraud them of their money with fraudulent service transactions with large

amounts. Genuine service providers may also strategically alter their

behaviour under a certain circumstance, e.g. given an order of a service

transaction with an unusually large amount, a genuine service provider

might make the transition into being a malicious service provider and then

provide a fraudulent service transaction.

Take the composite service presented in Section 2.6.1 for instance, in order to

boost its reputation, a malicious land carriage company can manipulate or fake

several clients to get good ratings over poor or fake service transactions. These

manipulative ratings will jeopardise the accuracy of service consumers’ evaluation

of their trust over the land carriage company. If such service providers are selected

to provide the component services, the actual success rate of the composite service

will be lower than the service consumers estimate it would be. In addition, a

malicious land carriage company can perform some service transactions with low

transaction amounts to boost its reputation. By doing so, it can take advantage of its

46

high reputation to attract potential big clients and defraud them of their money with

fraudulent services with large amount. This may cause violations of the service

consumer’s requirements for the composite service because 1) the land carriage

service has to be rearranged; and 2) the shipping service may have to be rearranged

too.

To resist the threat of malicious reputation manipulation, service consumers’

trust over service providers should be evaluated based on service providers’

long-term reputations which are evaluated based on service providers’ long-term

performance. Long-term reputations can smooth out short-term fluctuations and

highlight long-term trend of service providers’ reputation. Another benefit of basing

service consumers’ trust over service providers’ long-term reputation is that it

encourages service providers’ trustworthy and consistent behaviour at present.

To resist the threat of QoS abuse, when evaluating service consumers’ trust over

individual service transactions, the QoS of the past successful service transactions

that the service providers have performed must be taken into account. By comparing

service providers’ current offers for the QoS against their historic QoS, potential

fraudulent service transactions can be identified and avoided.

To summarise, a service trust system based on SLA profiling upon SLA

completion is needed to facilitate reputation-oriented service selection. By

employing the service trust system, service consumers should be able to identify

trustworthy service providers, and the threats described above, including malicious

reputation manipulation and QoS abuse, should be well resisted.

2.7 Summary

In this chapter, the analysis of the research problems has been presented. The major

problem of current research on service composition is the lack of a comprehensive

solution that addresses the issue of service composition at different stages of the

composite service provision. The literature in relation to the issues that arise at

47

different stages of the composite service provision has been intensively reviewed.

Based on the problems analysis and literature review, the research requirements

have been analysed in detail.

48

Chapter 3

Service level agreement lifetime

In this chapter, we introduce the SLA lifetime, the major SLA operations at each

stage of the lifetime and the interactions among the operations.

This chapter is organised as follows. Section 23.1 gives a general introduction

about the SLA lifetime and the operations at each step. Sections 23.2, 23.3 and 23.4

introduce SLA negotiation, SLA adaptation and SLA profiling respectively.

Section 23.5 discusses the interactions among the three SLA operations. Finally,

Section 23.6 summarises this chapter.

3.1 Introduction

SLA management is a complicated process involving operations at different stages

of the service provision. Briefly, before the service provision, an SLA needs to be

established between the service consumer and the service provider. The key

objective of SLA establishment is to achieve an agreement between the service

consumer and the service provider on QoS guarantees and constraints, which

represent the service consumer’s QoS requirements and the service provider’s QoS

promises. During the service provision, the established SLA needs to be enforced.

The key operations of SLA enforcement include monitoring of actual QoS values,

evaluation of the SLA compliance by comparing actual QoS values against agreed

values in the SLA, detection of SLA violation and SLA adaptation. SLA violations

can be remedied by SLA adaptation. Upon the completion of an SLA, the enforced

49

SLA needs to be profiled to provide valuable information for future SLA

management. The key operation of SLA profiling is to manage service trust. Clearly,

operations at these three SLA management stages are inherently interrelated and

should be provided in an integrated way. SLA management supported by provision

of incomplete SLA operations or operations in an isolated manner would be either

ineffective or inefficient. Therefore, we developed a model of SLA management

which logically connects all the SLA operations, as presented in Figure 3.1.

Figure 3.1 Lifetime of an SLA

50

As depicted in Figure 3.1, the lifetime of an SLA includes three major steps:

establishment, enforcement and completion. An SLA is established between the

service consumer and the service provider before the service provision. In this step,

we develop a negotiation approach to support SLA establishment. During the service

provision, the attached SLA is enforced. In this step, SLA violations are detected by

whoever it is in charge of SLA monitoring and compliance checking. We develop an

SLA adaptation technique to support SLA enforcement. Upon the completion of an

SLA, the results of SLA enforcement are collected for SLA profiling in order to

enhance future SLA management, specifically SLA negotiation and adaptation.

We have developed the SLA negotiation, adaptation and profiling approaches to

support SLA establishment, enforcement and completion respectively. Chapters 4, 5

and 6 will present the details. SLA monitoring and compliance checking are not

included in our research, because they are usually delegated to third authentic parties

for credibility and security purposes.

3.2 SLA negotiation

The major objective of SLA establishment is to select, among (possibly many)

functionally equivalent service providers, a service provider with essential QoS that

is “right” for the usage context. In the case of service composition, a set of service

providers will be selected for component services in the composition that are

collectively “right” for the usage context [28]. Whether service providers can offer

essential quality for the specific service provision context depends on their resource

situations at the requested time of service. Therefore, QoS that depends on actual

resource usage cannot simply be advertised as an invariant property of the service

and then bound to by a service consumer. Instead, the service consumer must obtain

state-dependent guarantees from the service provider, represented as an agreement

on the service and the associated QoS guarantees.

We develop a negotiation technique to facilitate SLA establishment. The use of

negotiation as a means of establishing service contracts has been a topic of

51

considerable interest for quite some time [18]. In this research, negotiation refers to

the process by which the service consumer and the service provider arrive at a

desired outcome for QoS. In the context of service composition, because the service

consumer must negotiate with multiple service providers for multiple services, a

coordinated negotiation approach is needed, enabling the outcomes of individual

negotiation to be achieved collectively.

When an agreement on all the terms in the SLA attached to the service is reached,

the SLA can be established between the service consumer and the service provider.

At this point, the SLA establishment is completed.

3.3 SLA adaptation

Because of the dynamic features of the services, the actual QoS may vary over time.

Therefore, it is essential to monitor the service provision closely, check the

compliance of the SLA and detect any QoS violation, in order to finally adapt

service and SLA to these changes at runtime. This will enable the agreed SLA to be

enforced despite the changing environment, thereby ensuring that the service remain

“right” throughout the service provision.

The first issue to be addressed in SLA enforcement is SLA monitoring. Due to

authority and credibility issues, the task of SLA monitoring is usually commissioned

to supporting third parties. Therefore, the implementation of SLA monitoring is not

included in our research. Due to the same reason, the second issue to be addressed in

SLA enforcement, SLA compliance checking, is also excluded from our research.

The second issue to address in SLA enforcement is SLA adaptation. The key to

effective SLA adaptation is the accurate analysis of the impact of any SLA violation

on the service. Adaptation in this research is generally achieved by updating or

replacing the service and the attached SLA to best restore the faulty service.

52

When the SLA is fulfilled successfully or terminated, the SLA enforcement is

completed.

3.4 SLA profiling

Results collected upon the completion of SLA enforcement can provide useful

information about the service providers’ historical performance in various contexts,

for future SLA negotiation and adaptation. SLA profiling can deal with the issues of

maintaining up-to-date service profiles to support the evaluation of service

consumers’ trust over service providers based on their reputation. Well-managed

service profiles can largely support decision making in tasks such as SLA

negotiation and SLA adaptation. Therefore, an SLA profile is much appreciated in

the comprehensive and integrated solution to SLA management for service

composition.

The key issue in SLA profiling is quantifying and comparing the trustworthiness

of service providers, based on their historic performance over SLA enforcement, via

the management of service trust.

3.5 Discussion

SLA negotiation, adaptation and profiling are the three major operations in the

lifetime of SLA. Working together, they provide a comprehensive and integrated

solution to lifetime SLA management for service composition.

SLA negotiation usually happens at build time, i.e. before the service provision.

However, during the execution of the composite services, SLA violations will

trigger SLA adaptation, in which component services might need to be updated or

replaced. During SLA adaptation, the QoS properties of the faulty component

services must be renegotiated between the service consumer and the original service

provider, or negotiated between the service consumer and other service providers, or

the combination of the two.

53

The aim of SLA negotiation and adaptation is to select appropriate service

providers for the services in order to meet the service consumers’ requirements.

Service providers’ reputation, as one of the service consumers’ most important

concerns, needs to be taken into account when selecting service providers. An

effective way to identify trustworthy service providers can help enhance SLA

negotiation and adaptation. It can also protect the service consumers from the

jeopardy caused by disreputable service providers. An effective way to identify

trustworthy service providers is through their historic performance over past SLA

enforcement. Upon the completion of a service transaction, the outcome of the

service transaction can be compared against the attached SLA to evaluate the SLA

enforcement. With analysis of service providers’ performance over past SLA

enforcement in long term, their reputation can be quantified and used for service

selection.

3.6 Summary

In this chapter, we have introduced the lifetime of an SLA, and the major SLA

operations that constitute the lifetime SLA management. We have also discussed the

interactions among the three major SLA operations: namely SLA negotiation,

adaptation and profiling.

54

Chapter 4

Flexible negotiation in SLA
establishment

As discussed in Section 22.3 and Section 23.2, SLA establishment, as the first stage of

the lifetime of an SLA, needs the support of SLA negotiation before the service

provision to reach an agreement between the service consumer and the service

provider. SLA negotiation in service composition scenarios is a more complicated

issue as it often involves multiple QoS properties of the composite service and the

component services, and multiple service providers for each of the component

services. In this chapter we introduce Combinatorial Auction for Service Selection

(CASS), an innovative approach that supports effective and efficient SLA

negotiation for service composition based on combinatorial auction.

This chapter is organised as follows. Section 24.1 introduces some preliminaries

about combinatorial auctions. Then Section 24.2 presents the procedure of CASS,

followed by supporting mechanisms discussed in Section 24.3. Experimental

evaluation is given in Section 24.4. Discussion about how CASS can be used for SLA

adaptation and how CASS can be enhanced by incorporating reputation

consideration based on SLA profiling are presented in Section 24.5. Finally,

Section 24.6 summarises this chapter.

55

4.1 Preliminaries

4.1.1 Combinatorial auction

Combinatorial auctions are auctions where bidders can bid for combinations of

items [27]. It has been proven that combinatorial auctions can lead to more effective

allocation of multiple items than traditional auctions [90]. In combinatorial auctions

for service composition, let K = {1, 2, …, m} be the set of items for auction and I =

{1, 2, …, n} be the set of the participating bidders. An arbitrary bid Bi proposed by a

bidder can be represented by a tuple (Si, Vi), where iS K⊆ iS()≠∅ represents the set

of items the bid is placed on, and Vi = (vi1, vi2, …, vip) denotes the QoS property

vector (e.g. price, execution time, etc.) for Si. The key problem of a combinatorial

auction for service composition is to find the set of bids from all proposed bids that

can maximise the auction revenue which is evaluated according to the service

consumer’s preferences for the QoS properties of the composite service. Optimised

quality of the composite service can be achieved from the winning bids that

maximise the auction revenue. The issue of getting the optimised QoS is essentially

equivalent to weighted set packing problem [91] and hence the winner determination

problem for combinatorial auctions is NP-complete [89].

4.1.2 Bidding language

The bidding language for a combinatorial auction specifies the structure of bids and

the operators for combining the bids. A bidding language should allow bidders to

bid in a straightforward manner. It should not be overly expressive because that

would unnecessarily increase the complexity of the auction. For example, if a

bidding language requires a bidder to attach a value to each possible combination,

then given m items, a bidder has to submit a bid of size
m

1 m n
m m m

n 1
C ... C C

=
+ + =∑ , which is

only practically feasible for very small m. There are two general bidding languages

for combinatorial auctions, exclusive-or (XOR) and additive-or (OR) [12]. The

former allows bidders to submit bids in the form of (S1, p1) xor (S2, p2) xor … xor (Sn,

pn) stating the semantics “I will buy at most one of these combinations.” while the

latter allows bids in the form of (S1, p1) or (S2, p2) or … or (Sn, pn) stating the

56

semantics “I’ll buy one or more of these combinations”. In this research, the XOR

bidding language is adopted because it is expressive and straightforward in

expressing the complementarity of items and has emerged as the definitive choice in

recent combinatorial auction designs [27].

4.2 CASS procedure

In CASS, the set of component services that constitute a composite service are open

for auction. Bidders (service providers or representatives of service providers) can

place bids on individual or bundled items (component services) round by round and

the final winning bidders are selected to provide the component services. CASS is a

simultaneous multi-round auction, which allows bidders to update their bids round

by round. This section presents the procedure of CASS.

The five steps of CASS are depicted in Figure 4.1, as explained below.

Figure 4.1 CASS procedure

57

Step 1: At the start of the auction, a predetermined set of component

services are established and included in the Request for Proposal (RFP)

which is then distributed to potential service providers. The main content in

the RFP specifies the composite service consisting of a set of component

services. According to the RFP, potential service providers can decide if

they are interested and which component services they will bid for.

Step 2: The service providers interested in participating the auction submit

their bids and become candidate service providers.

Step 3: The auctioneer, i.e. the service consumer or an agent of the service

consumer, receives the submitted bids and solves the Winner Determination

Problem (WDP). If the completion criterion is met, the auction completes.

Step 4: If the auction needs to continue, the auctioneer generates and then

distributes the ask QoS, which contain guiding information such as the

current winning bids and the required bids for the bidders to enter the next

round, to the bidders.

Step 5: According to the ask QoS, the bidders can choose to accept it or

propose boosted bids, i.e. bids that specify better QoS than required in the

ask QoS, to enter the next round, or simply quit the combinatorial auction.

Steps 2 to 5 are repeated until the completion criteria are met. Sometimes a final

deal-sealing round will be triggered to determine the final winning bidder for an

item or a combination of items. The details will be provided in Section 24.3.1.3.

4.3 CASS mechanisms

In this section, we present the mechanisms that support CASS, including bidding

constraints, QoS model, bid evaluation, winner determination, ask QoS generation

and completion criteria.

58

4.3.1 Bidding constraints

In CASS, three bidding constraints are imposed: XOR bidding language, dynamic

minimum increment and final deal-sealing round.

4.3.1.1 XOR bidding language

Given the reason described in Section 24.1.2, CASS adopts the exclusive-or (XOR)

bidding language with which a bidder can bid for multiple items and combinations

of items, but can win at most one of them at the end of the auction. A bid is

submitted in the form of ((S1, V1) xor (S2, V2) xor … xor (Sn, Vn)), where iS K⊆

denotes the items or combinations of items that the bidder is bidding for and Vi is the

vector of QoS properties for Si. The component units that assemble the bids, in the

form of (Si, Vi), is referred to as component bids.

In the open SOC environment, services usually have multiple QoS properties

and service consumers and providers have diversified preferences for those QoS

properties. CASS allows bidders to express their component bids associated with a

vector Vi to specify the QoS properties of corresponding items or combinations of

items Si. Note that the additive QoS properties in component bids, e.g. price,

execution time, etc, can be non-linear. For example, a bidder can propose a bid

which involves three component bids: (S1, V1) xor (S2, V2) xor (S3, V3), where

3 1 2 1 2S S S , S S= =∅∪ ∩ and 3 1 2V V V≠ +
2

3. This allows bidders to apply discounts to

negative properties of or premiums to positive properties of the component services

according to the complementarities of the items they are bidding for. The definitions

of negative and positive properties of services will be given in Section 24.3.2.

4.3.1.2 Dynamic minimum increment

In each round, the auctioneer distributes ask QoS to the bidders. The bidders can

choose to accept the ask QoS or revise their bids. And those that cannot afford the

ask QoS will have to quit the auction. Ask QoS is used to coordinate the auction

process. When generating the ask QoS, minimum increments (or decrements in the

3 Here “+” means the aggregation of QoS properties.

59

case of negative properties), denoted by σ, can be imposed on the properties of the

items. For example, “at least an increase of price by 5% than the previous bid”

requires a bidder to bid a monetary price at least 5% higher than its previous bid in

the last round.

In the open SOC environment, some functionally-equivalent service providers

may have huge different reserved capacities for the QoS while some others may

have similar ones. In order for a combinatorial auction for service composition to be

efficient, bidders with low reserved capacities should be filtered fast while bidders

with high reserved capacities should be given more chances to propose better bids.

In addition, the most notable approaches, which adopt Integer Programming (IP)

and Mixed Integer Linear Programming (MILP) to solve the problem of QoS-aware

service composition [5, 107, 108], are subject to computational uncertainty and

scaling-up concerns. Specifically, there is no guarantee that the solution can be

found in a reasonable amount of time when the number of bidders and items

becomes larger.

To address the above issues, we design a novel mechanism, named dynamic

minimum increment (DMI). In general, at the early stage, higher minimum

increment is adopted to generate ask QoS in order to efficiently filter the bidders

with low capacities. By doing this, DMI efficiently decreases the number of bidders

and bids at the early stage of the auction and thus reduces the complexity of the

winner determination problem. And at the late stage, low minimum increment is

adopted to distinguish the small difference among the remaining bidders’ reserved

capacities, which guarantees the final outcome of the auctions (i.e. the quality of the

composite services). Consequently, DMI can improve the efficiency of the

combinatorial auction without sacrificing the effectiveness. Figure 4.2 illustrates

three example models for the generation of DMI based on Chi-Square distribution,

F-Distribution and Linear functions respectively.

60

Figure 4.2 Example models for dynamic minimum increment

4.3.1.3 Final deal-sealing round

If a timer has been set for auction, when the time is up, a final deal-sealing round

will be held in which the remaining bidders have a last chance to propose their best

offers. And the result will determine the final winning bidders. If the bids proposed

in the final deal-sealing round are estimated equivalent, the final winning bidder will

be selected randomly.

4.3.2 QoS model

There are various QoS properties in the open SOC environment. They are often

treated in accordance with domain-specific semantics. Nevertheless, as long as the

QoS properties are negotiable between service consumers and providers and

specifiable in SLAs, they can be accommodated by CASS. In addition, in service

composition scenarios, the component services collectively fulfil the QoS

requirements for the composite services. In order to evaluate the quality of a

composite service, the quality of the component services need to be aggregated.

61

Component services may have various QoS properties, some of which can be

aggregated 3

4 while others cannot. The former properties are defined as compatible

properties (e.g. price and execution time) and the latter are defined as incompatible

properties (e.g. colours and shapes of goods). The formal definitions are given as

follows:

Definition 1: (Compatible property). A property is compatible to two services

when:

 both services have the property; AND

 the corresponding property of the combination of the two services can be

attained by aggregating the properties of the two services.

Definition 2: (Incompatible property). A property is incompatible to two services

when:

 one service has the property while the other does not; OR

 both services have the property but the corresponding property of the

combination of two services cannot be attained by aggregating the two

services.

We aggregate the compatible QoS of the component services to obtain the QoS

of the composite service based the workflow patters [95]. For the demonstration

purpose, the definitions and aggregation functions for price and execution time,

which are used in the example presented in this thesis, are as follows.

1. Price. The monetary amount that the service consumer has to pay to the

service provider for the service transaction. Price can be measured in any

4 The operation of aggregating a QoS property of two services is to obtain the QoS property of

the service composed by the two.

62

currencies as agreed by the service consumer and provider. The aggregation

function for the price of a combination of services, noted as SA+B, composed

of two services, SA and SB, is:

 pr pr prBA B AS .v S .v S .v+ = + (4.1)

where prS.v denotes the price of service S.

2. Execution time. The delay between the moment when the request is sent to

the service and the moment when expected result is returned. Execution

time is usually measured in seconds. Different from price, the execution

time of a combination of services cannot be calculated by simply summing

the execution time of individual component services. It depends on the

local structure of composite service where the component services are

located. Table 4.1 provides the aggregation functions for execution time

[95].

Table 4.1 Aggregation functions for execution time

A B exe A exe B exeS .v S .v S .v+ = +

A B exe A exe B exeS .v max(S .v ,S .v)+ =

A B exe MC SM A A exe MC SM B B exeS .v min(isSelected (S) S .v ,isSelected (S) S .v)+ + += ⋅ ⋅

A B exe A exe B exeS .v min(S .v ,S .v)+ =

A B exe MC D A A exe MC D B B exeS .v min(isSelected (S) S .v ,isSelected (S) S .v)+ + += ⋅ ⋅

Although the QoS properties discussed in this section is limited (for the purpose

of demonstration), our model can be similarly applied to other QoS properties

(either generic or domain specific) without fundamental alterations.

Moreover, we divide the numerical QoS properties into two categories: positive

and negative properties, defined as follows.

63

Definition 3: (Positive property). A positive property is a property whose

evaluation will increase as its value increases. Given the utility function u(S.v) to

evaluate a property v of a service S, v is a positive property when:

 1 2 1 2 1 2v ,v , v v u(S.v) u(S.v)∀ ≤ ⇒ ≤ (4.2)

Definition 4: (Negative property). Similarly, a negative property is a property

whose evaluation will decrease as its value increases. Given the utility function

u(S.v), a property v of a service S is a negative property when:

 1 2 1 2 1 2v ,v , v v u(S.v) u(S.v)∀ ≤ ⇒ ≥ (4.3)

The above two concepts usually apply to numerical properties. Properties like

“colour” and “shape” cannot be termed positive or negative. Although there are

types of multi-property utility functions [87], we assume that the utility functions

used by the auctioneer and the bidders in the combinatorial auction have the same

monotonicity on the same properties.

4.3.3 Bid evaluation

To facilitate the heuristic backtracking algorithm to solve the winner determination

problem in the combinatorial auction, a bid evaluation function, denoted as E(b), is

needed to estimate how much a component bid is likely to maximise the auction

revenue – optimise the quality of the composite service. The reason for adopting the

heuristic backtracking approach will be given later in Section 24.3.4.

Given a service consumer’ explicit utility function, it will be simple to

implement E(b) which calculates the total utility of a component bid by summing up

the utilities of individual QoS properties [84]. When the service consumer’s utility

function is unknown, CASS provides a novel scheme named ARPE (Additive

Ranking Position Evaluation) to evaluate the component bids.

64

The philosophy of ARPE is to compare each of the QoS properties shared by the

set of component bids proposed for the same component service. The procedure is as

follows:

Step 1: Organise all the component bids into groups according to the items

involved in the component bids. A component bid can fall into multiple

groups if it involves several items. For example, the bid ({A, B, C},

{$3,000}) goes into groups A, B and C.

Step 2: For each group, compare the bids based on each of the QoS

properties (basically numerical QoS properties) of the corresponding

component services.

a) Average the QoS properties of the component service of all bids in

the group. The average value of QoS properties j of item i is denoted

as i , j
avev ;

b) Evaluate individual QoS properties of the bids. For QoS property j of

component service i of bid n, denoted as i , j
nv , the evaluation value is

computed as:

i , j
n

i , j i , j
n ave

i , j
ave

i , j i , j
ave n

i, j
ave

for positive attributes

for negative attributes
e

v v
v

v v
v

−

−

⎧
⎪
⎪
⎨
⎪
⎪
⎩

= (4.4)

c) Sum up the evaluation values of all QoS properties of the

corresponding component service in the bids. For component service i

with m QoS properties, the evaluation of bid n is:

m m
i, ji

n nj j
j 1 j 1

E e 1λ λ
= =

= =∑ ∑

(4.5)

65

where jλ is the weight assigned to capture the service consumer’s

preferences for different QoS properties. If the service consumer’s

preferences are not given, jλ will be assigned with 1/m.

Step 3: For bids that involve a combination of component services, sum up

the respective i
nE of the involved component services to attain the total

evaluation value, and then divide it by the number of the involved

component services. The evaluation value of a bid that involves p

component services is calculated as:

p
i
n

i 1

1E(b) Ep =
= ∑

(4.6)

The higher iE(b) is, the more likely the QoS proposed in bi is to maximise the

quality of the composite service. This is the basis of the heuristic backtracking

approach to the winner determination problem. In order to facilitate ARPE, bidders

will be required to specify the QoS of individual component services when they bid

for combinations of component services.

4.3.4 Winner determination

The objective of winner determination is, from all submitted bids, to search for a set

of component bids, denoted as B = (b1(S1, V1),b2(S2, V2) … bn(Sn, Vn)) where iS K⊆

(i = 1, 2, …, n) i(S)≠∅ , which fulfils the following two constraints:

 n1 2S S ... S K=∪ ∪ ∪ (4.7)

 i j i jS ,S , S S∀ =∅∩ (4.8)

and meanwhile, maximises the quality of the composite service:

66

n

i
i 1

E(B) E(b)
=

=∑ (4.9)

Constraint (4.7) ensures that all component services are covered by

n1 2S S ... S∪ ∪ ∪ because all the component service must to be allocated. Constraint

(4.8) ensures that each component service is included in only one selected

component bid because a component service can be allocated to only one service

provider. Finding the optimal solution is equivalent to the weighted set packing

problem, and hence is NP-complete [89]. Accordingly, we propose a heuristic

method based on backtracking algorithm [13] to solve the winner determination

problem. The heuristics selects the most satisfactory component bid first. In

determining an appropriate order of the component bids, function E(b) is used to

evaluate how much a component bid is likely to maximise the auction revenue.

Prior to being ordered, component bids need to be extracted out of the bids

which are in the form of Bi((S1, V1) xor (S2, V2) xor … xor (Sj, Vj)), so that they can

be considered individually in the heuristic winner determination. Here a concept is

defined that will be used in the heuristic algorithm.

Definition 5: (Compatible bids). Two component bids m m(S ,V) and n n(S ,V) are

compatible when m nS S =∅∩ .

Definition 6: (Incompatible bids). Two component bids m m(S ,V) and n n(S ,V) are

incompatible when m nS S ≠∅∩ .

The heuristic algorithm adopted to solve the winner determination problem in

CASS is as follows.

Step 1: Order the component bids by their evaluation values in a

non-increasing order.

67

B.OrderByValueDesc()

BS.Push(B[i])

B.deactiveSiblingComponentBids(B[i])

Input: B[] // Component bids

for i=1 to B.Length
B[i].Value = E(B[i])

end algorithm

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.

Stemp=BS.Pop()

end while19.

BS[] // Candidate set initiated as Ø

if B[i].isActive==True and BS.isCompatible(B[i])

B[i].Active = True

while BS.ServiceSet!=ST

for i=1 to B.Length

if BS.ServiceSet==ST

return BS
end if

end if
end for

B.Deactivate(STemp)
B.activateSiblingComponentBids(STemp)

end for

Figure 4.3 Winner determination – heuristic backtracking algorithm

Step 2: Set a candidate bid set Bs, starting as∅ .

Step 3: From the set of ordered component bids, select the first one that is

compatible to Bs, denoted as bt, add it to Bs, i.e. s s tB B b← ∪ . If there are

multiple such component bids with the same evaluation value, select the

one with the largest cardinality. The cardinality of a component bid bt is

defined as |bt|, meaning the number of component services involved in the

component bid. Then temporarily deactivate other component bids that

were submitted along with bt by the same bidder.

Step 4: Check if constraint (4.7) is satisfied, if so, the heuristic process

completes. Otherwise, go to Step 5.

68

Step 5: If no more component bids compatible to Bs can be found and

constraint (4.7) is not yet satisfied, backtrack to the component bid that was

last selected, remove it from Bs, activate the component bids that were

deactivated when the removed component bid was previously selected.

Return to Step 3.

The corresponding pseudo code for the algorithm is presented in Figure 4.3.

4.3.5 Ask QoS generation

Ask QoS, as an extension of ask price, specifies the QoS asked by the auctioneer

from a bidder. In each round, CASS provides bidders with non-linear and

non-anonymous ask QoS to guide their bidding. Non-linear and non-anonymous ask

QoS are defined as follows.

Definition 7: (Non-linear). Given a compatible QoS property vi about services Sm

and Sn, proposed in an ask QoS, where m nS S S= ∪ and m nS S =∅∩ , non-linear ask

QoS allows:

 m ni i iS.v S .v S .v≠ + . (4.10)

For example, the auctioneer can propose to a bidder an ask price of $200.00 for

component service M, $300.00 for item N and $470.00 for the combination of M and

N.

Definition 8: (Non-anonymous). Given a QoS property vi about a service S in two

ask QoS proposed to two different bidders, non-anonymous ask QoS allows:

 m ni iS .v S .v≠ . (4.11)

For example, the auctioneer can propose to a bidder an ask price of $200.00 for a

component service while proposes to another bidder an ask price of $250.00 for the

same component service.

69

Non-linear ask QoS allows the auctioneer to take into account the

complementarities of the component services. Non-anonymous ask QoS allows the

auctioneer to elicit bidders’ discriminatory capacities for providing the QoS. For

instance, a bidder with potential capacity of providing low price might be asked for

lower price while another bidder being able to provide short execution time might be

asked for shorter execution time.

We compute the ask QoS by analysing bidders’ historical performance retrieved

from an SLA profiling system [41], e.g. ServiceTrust presented in Chapter 6. In

general, an SLA profiling system is an infrastructure deployed to collect service

providers’ historical performance based on which the service providers can be

evaluated and ranked. A novel concept called Surplus Bidding Space is defined

below, which models the bidders’ potential capacity for boosting their offers for the

QoS.

Definition 9: (Surplus Bidding Space). Given the QoS property j of component

service i proposed by bidder k in the previous round, denoted as i, j
kv , the surplus

bidding space of bidder k for QoS property j of component service i is defined as:

k ,i , j k ,i , j k ,i , jk ,i , j i , j ave max minmax k
k ,i , j k ,i , j k ,i , j k ,i ,
max maxmin min

k ,i , j k ,i , j k ,i , ji , j k ,i , j max aveminmink
k ,i , j k ,i , j k ,i , j k ,i , j
max maxmin min

i , j
k

1
2

1
2 for negative attributes

v (v v)v v
v v v v

(v v) vv v
v v v v

ε =

− +− +− −

+ −− +− −

j for positive attributes
⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

 k ,i , j
k (0,1)ε ∈ when k ,i, j i , j k ,i , j

maxmin kv v v< < . (4.12)

where k ,i , j
maxv , k ,i , j

minv and k ,i , j
avev denote the maximum, minimum and average value of QoS

property j of component service i that bidder k has ever provided. When an unknown

bidder participates in the combinatorial auction, whose historical data cannot be

provided by the SLA profiling system, equation (4.12) cannot be adopted to

compute the bidder’s surplus bidding space. In this case, the average value of the

70

surplus bidding space of the other bidders competing for the same component

service will be used by default to generate the ask QoS for the unknown bidder.

A higher i , j
kε means a greater potential capacity a bidder has for providing better

QoS, thereby the bidder can be pushed harder by the auctioneer with a higher

minimum increment. Besides, relatively weak bidders, i.e. bidders with smaller

surplus bidding space, will be excluded from the auction soon by the increasingly

demanding ask QoS. This reduces the complexity of the winner determination

problem and hence improves the efficiency of the auction.

As described in Section 24.3.1.2, high minimum increments can speed up the

auction process at the early stage of the auction by efficiently filtering out weak

bidders while low minimum increments can maximise the outcome of the auction at

the late stage by effectively capture the difference among the remaining bidders. Ask

QoS generation in CASS is based on dynamic minimum increment, aiming at

guaranteeing both the efficiency and the effectiveness of the auction. In general,

there are two factors that affect the calculation of the dynamic minimum increments:

surplus bidding space of the bidders and the adopted model for generating dynamic

minimum increment. As illustrated in Figure 4.4, the generation of ask QoS for

bidder n which specifies asked QoS property j of component service i, proceeds as

follows:

Step 1: Calculate i , j
kε , the surplus bidding space of the bidder k for property

j of component service i, using equation (4.12);

Step 2: Draw a straight line from the origin with i , j
kε as the slope;

Step 3: Locate the point at which the straight line drawn at Step 2 intersects

with the curve used to generate the dynamic minimum increment.

Step 4: Obtain the y value of the intersection point, which is the dynamic

minimum increment of QoS property j of component service i for bidder k.

71

We point out that i , j
k 0ε ≤ when j j

maxiv v≥ (for positive properties) or j j
i minv v≤ (for

negative properties). In such cases, i , j
kε will no longer work the way it is supposed to

be. This situation happens when the QoS property of the current bid leaves the range

of the bidder's historic performance. In such cases, using the bidder’s historic

performance to estimate its surplus bidding space becomes infeasible. According to

Figure 4.4, the straight line with i , j
kε as the slope does not intersect with the curves of

dynamic minimum increment. To tackle this issue, we will use half of the dynamic

minimum increment in the previous round as default to generate the ask QoS for the

bidder.

∞

0.7ε =

0.4ε =

0.1ε =

Figure 4.4 Generation of dynamic minimum increment

4.3.6 Completion criteria

In the combinatorial auction, when the winning bids have been determined in a

certain round, the auctioneer needs to determine whether the auction completes by

checking if the completion criteria are met. CASS provides flexible completion

criteria. Three primitive completion criteria can be used, i.e. preset reserved QoS,

pre-set time constraint and final-best-bids.

72

The first completion criterion is to meet reserved QoS pre-specified by the

service consumer. When the current winning bids fulfil or exceed the reserved QoS,

the auction completes and the winning bids constitute the final solution. This

completion criterion is frequently used in service composition scenarios because

service consumers often have certain QoS requirements. The reserved QoS cannot

be changed throughout the auction process. Reserved QoS can be pre-specified for

the quality of the composite service, e.g. “total price < $300,000”, “total execution

time < 30 days”, etc. Service consumers can also pre-specify reserved quality for

component services, such as required quality for the goods and particular size of the

containers during shipping. Furthermore, those constraints can be combined to form

complicated ones using logic operators, e.g. “(total price < $300,000) AND (total

execution time < 30 days)”, or conditional operators, e.g. “IF total price ≥ $300,000

THEN total execution time ≤ 28 days”.

The second primitive completion criterion is related to a preset time constraint

for the combinatorial auction. Similar to eBay, a timer can be set to determine when

the combinatorial auction ends. The timer begins to count down as the auction starts.

When time is up, the bidders are no longer allowed to propose bids. The component

services are allocated to the current winning bidders. Or, final deal-sealing rounds

can be performed, which is fair by giving the bidders a last chance to propose bids,

in order to obtain better quality of the composite service.

The third primitive completion criterion, i.e. final-best-bids, is to let the

combinatorial auction continue until only one bidder left for each component service.

As the auction proceeds, bidders that cannot afford to accept the ask QoS would

have to quit the auction while the capable ones enter the next round. Finally, only

one bidder remains for each component service. The component services are

allocated to the remaining bidders.

The three primitive completion criteria can be combined to form more

complicated completion criteria. Usually, reserved QoS might be used together with

a time constraint on the auction as some service consumers have specific QoS

requirements of the composite services and they want the solutions within a certain

amount of time. Also, time constraints are often used in combination with the

73

final-best-bids completion criterion. For example, an obvious issue of adopting

final-best-bids completion criterion is that sometimes it takes a long time to sort out

the best bids when the bidders competing for the same component service have very

similar reserved capacities for providing QoS. The reason is that a very small

dynamic minimum increment, which will only appear in late rounds, is needed to

differentiate the remaining bidders. This prolongs the combinatorial auction and thus

reduces the efficiency. Therefore, setting a proper timer for the combinatorial

auction is a direct method to address this issue.

4.4 Experimental evaluation

We conducted experiments on CASS to evaluate its effectiveness and efficiency. The

mechanisms supporting CASS were implemented in the agent-based framework

presented in [41] in which SLA negotiation can be automated through agents’

interactions.

4.4.1 Experiment configuration

We utilised the example presented in Section 22.6.1 for evaluation. Bidders’ reserved

capacities for price and execution time for individual component services were

picked randomly from the fixed intervals as presented in Table 4.2. And bidders

were willing to give discounts when they bided for combinations of component

services. In the experiments, some bidders would bid for the combination of services

B and C, and some for the combination of services D and E (see Figure 2.2).

Considering that the varying degrees of complementarity of the component services

lead to different maximum discounts, we modelled the maximum discounts that the

bidders were willing to apply to combinations of component services with small,

medium and large degrees of complementarity using beta distribution functions

presented in Figure 4.5. The Chi-Square distribution model presented in Figure 4.4

was used to compute the dynamic minimum increments and the ask QoS.

74

Table 4.2 Intervals for bidders’ reserved capacities

Figure 4.5 Maximum discounts for component services with small, medium and
large degrees of complementarity

We conducted four sets of experiments with zero, small, medium and large

degrees of complementarity assigned to the combinations of services B and C, and

services D and E, respectively. With zero complementarity assigned to the

combinations of component services the combinatorial auction is actually equivalent

to traditional single-item auctions because no discounts or premium would be

applied by the bidders. Random values from the intervals presented in Table 4.2

were picked to specify the reserved capacities of the bidders. The QoS proposed in a

bidder’s first bid (the bid proposed in the first round as response to the request for

75

proposal) is selected from a reasonable range conforming to the normal distribution.

For example, if a bidder’s reserved capacity for the price of the rough processing

service is $100,000, then the price proposed in its first bid will be selected between

[$150,000, $200,000]. This configuration captures the nature of the bidders with

various concession spaces. To access the performance of CASS in environments on

different scales, we conducted each set of the experiments with 25, 100 and 250

bidders. By doing so, an average number of 5, 20 and 50 bidders competed for each

service, creating different competitive environments. In each experiment, a random

proportion (between 30% to 50%) of the bidders was given the ability to bid for

combinations of component services, either services B+C or D+E. Those bidders

would be able to apply discounts to the bids for combinations of component services.

The maximum discount percentages depended on the adopted beta distribution

functions. 1β presented in Figure 4.5 was adopted to generate the maximum discount

percentages for combinations of component services with small degrees of

complementarity, and 2β and 3β for medium and large degrees of complementarities

respectively. For each set of experiments, 300 instances were executed, 100 with 25

bidders, 100 with 100 bidders and 100 with 250 bidders. And the outcomes were

averaged.

4.4.2 Effectiveness evaluation

Figure 4.6 compares the quality of the composite service from traditional auctions

(with zero complementarity of the component services CASS is equivalent to

traditional single-item auctions) and CASS with different degrees of

complementarity assigned to the combinations of component services. The results

demonstrate that the traditional auctions yielded the worst quality of the composite

service. And the quality of the composite service gets better as the degree of

complementarity increases. Specific increments are presented in Table 4.3.

76

(a) Execution time

(b) Price

Figure 4.6 Comparison of the quality of the composite service achieved from
traditional auction and CASS 4

5

5 Since price and execution time are both negative QoS properties, decreased prices and execution times imply increments of auction

revenues.

0

50

100

150

200

250

300

350

400

450

500

Zero Small Medium Large

Pr
ic
e
($
)

Degree of Complementarity

25 Bidders 100 Bidders 250 Bidders

77

Table 4.3 Increment of quality of the composite service

Number of Bidders
Small Medium

100
250

31.0%
38.5%

42.0%
47.4%

25 18.6% 29.1%

Degree of Complementarity
Large

54.7%
62.5%

42.5%

We observe that as the degree of complementarity increases, the increment in the

quality of the composite service increases. The reason is that the maximum

discounts the bidders were capable of offering increase as the degree of

complementarity increases. We also observe that an auction involving a larger

number of bidders yields better quality of the composite service. This demonstrates

that CASS facilitates effective SLA negotiation through capturing the basic

economic theory: the more sellers there are, the more likely it is that the buyer will

be able to obtain a favourable price.

Figure 4.7 Comparison of the quality of the composite service achieved from
CASS against the optimal results

78

We also compare the results from CASS against the optimal results, as

demonstrated in Figure 4.7. The specifics are presented in 2Table 4.4. The optimal

resultes are manually calculated using the best bidders’ reserved capacitites. We

observe that the results from CASS are very close to the optimal results.

Table 4.4 Quality of the composite service compared to the optimal results

4.4.3 Efficiency evaluation

The auction overhead, measured in auction duration, is also a relevant concern of

CASS because long auction duration usually implies low efficiency. Also, increased

auction duration may reduce service consumer’s profit from the auction because

usually a certain amount of administrative cost for maintaining the auction applies in

each round of the auction. When the auction proceeds to later stages, the marginal

benefit for the service consumers from the bidders’ competition may decrease

dramatically which, in the worst case scenario, is not even worth the additional

administrative cost. However, with the final-best-bids completion criterion applied, a

longer auction has potentials to improve the quality of the composite service because

it gives the auctioneer more time to elicit the high-value bidders’ reserved capacities.

Apparently, there is a tradeoff between the efficiency and the effectiveness of the

auction. The bottom line is that the auction duration must be generally tolerable to

the service consumers.

In the experiments, we assessed the auction duration measured by rounds. Recall

that there are three primitive completion criteria. In the experiments, we adopted the

final-best-bids completion criterion because it leads to the most time-consuming

auctions. To evaluate the performance of CASS in environments on different scales,

79

again, we ran the experiments with different numbers of bidders, i.e. 25, 100 and

250. 2Figure 4.8 plots the rounds taken for the auction to complete as the number of

bidders increases. Specifically, an average of 5.42, 5.58 and 5.67 rounds were taken

respectively for the auctions with 25, 100 and 250 bidders to complete. We observe

that the fluctuations of the number of rounds varied in environments on different

scales and no auctions took unusually high numbers of rounds. All the auctions with

25 bidders completed within 4 to 6 rounds, 100 bidders 4 to 7 rounds and 250

bidders 5 to 7 rounds. This demonstrates that a larger number of bidders would

result in more fierce competition and hence increase the auction duration. However,

4 to 7 rounds is a reasonable range that we believe is tolerable in most scenarios

especially compared to the improvement gained on the quality of the composite

service. From the experimental results we conclude that CASS can achieve high

efficiency in various environments on different scales.

(a) 25 bidders

(b) 25 bidders

80

(c) 250 bidders

Figure 4.6 Rounds for completion of CASS

4.5 Discussion

The QoS can be negotiated between the service consumers and providers before

service provision. However, SLA violations may still happen due to faulty services,

leading to failed SLA enforcement. Although penalty in the case of faulty services

can be specified in the SLA beforehand, the service consumers, in most cases, would

still expect the SLAs to be enforced successfully. Generally speaking, the service

providers with good performance over past SLA enforcement, which implies good

reputation, tend to be reputable and thus trustworthy to the service consumers.

Therefore, during the process of service selection based on combinatorial auction,

service consumers’ trust over the service providers can be taken into account as a

selection criterion. In this way, not only what the service providers advertise but also

what essentially they can do is taken into account for the service selection.

The trust information can be utilised in two stages of CASS, before the auction

and during the auction. Before the auction, candidate service providers with

unsatisfactory reputation can be filtered out. By doing this, the complexity and

duration of CASS can be reduced because the number of bidders involved in the

auction decreases. During the auction, the service providers’ reputation can be seen

as one of the QoS properties. Although it must be noted that the reputation is a

81

nature of the service provider based on its performance over the past SLA

enforcement and thus which cannot be negotiated – essentially different from other

QoS properties.

As the reputation of a service provider is calculated based on its performance

over past SLA enforcement, upon the completion of each of its SLA enforcement,

no matter successfully or unsuccessful, the result must be collected to generate the

basic reputation metric which can later be used to calculate more useful reputation

metric. Therefore, SLA profiling is an indispensable part to facilitate the

enhancement of SLA negotiation. We have proposed ServiceTrust, a novel service

trust system for reputation-oriented service selection based on SLA profiling which

is detailed in Chapter 6.

4.6 Summary

In this chapter, we introduced CASS, an innovative effective and efficient SLA

negotiation approach based on iterative multi-property combinatorial auction to

support SLA establishment for service composition. CASS can significantly

improve the effectiveness of the SLA negotiation with reasonable overhead via an

effective information exchange of service consumers’ preferences and service

providers’ offers. Thus, the quality of the composite service, which is achieved from

the final winning bids, can be improved in an efficient way. The key features of

CASS are:

1. CASS allows candidate service providers to bid for combinations of

component services. This feature captures the dynamics, e.g. preferences

and capacities of the candidate service providers. This feature also benefits

the service consumers because it improves the quality of the composite

services by allocating the component services to the service providers who

are capable of providing the best QoS.

82

2. CASS allows SLA negotiation over multi-dimensional QoS. This feature

captures the service consumers’ preferences for different properties of the

composite services. A novel approach for the generation of ask QoS (an

extension of ask price) that involves multiple QoS properties, is proposed to

coordinate the auction process by guiding the bidders in each round.

3. CASS allows different completion criteria to be set to cater for service

consumer’s requirements. The completion criteria are optional and can be

combined to create complicated completion criteria.

83

Chapter 5

Runtime adaptation in SLA
enforcement

As discussed in Section 22.4 and Section 23.3, SLA enforcement, as the second stage

of the lifetime of an SLA, needs the support of SLA adaptation during the service

provision to adapt the services and attached SLAs when SLA violations occur at

runtime. However, in service composition scenarios, adapting the failed service only

may not be able to adapt the composite service as a whole. Hence, the adaptation

approach needs to consider updating a certain subset of the composite service while

adapting the faulty component service. To determine the adaptation solution, the

SLA adaptation approach needs to identify the adaptation scope and analyse the

profit from different adaptation solutions [40]. In this chapter, we discuss how the

value of changed information (VOC) [18, 38] is extended and applied to SLA

adaptation based on workflow patterns. Specifically, we will analyse and present

how to compute the VOC for sequence and parallel patterns. If the adaptation

solution is expected to pay off, it is performed within a certain scope defined by

workflow patterns. By doing so, the SLA adaptation can deliver satisfactory results

while being kept within a reasonable scope. The experimental results show that our

approach can significantly improve the satisfaction rates of service consumers’

requirements for the composite services in different situations.

This chapter is organised as follows. Section 25.1 presents the approach for SLA

adaptation for composite service based on workflow patterns. Section 25.2 presents

the adaptation method that implements the mechanisms presented in Section 25.1.

84

Section 25.3 presents the experimental results from the evaluation of the proposed

approach. Section 25.4 discusses the support of SLA negotiation for SLA adaptation.

Section 25.5 summarises this chapter.

5.1 Adaptation for composite service based on workflow patterns

Composite services can be modelled as executable business processes using service

composition languages like BPEL and WSFL which incorporates the concepts and

mechanisms in the workflow community. Therefore, the internal logic of a

composite service can be captured using workflow patterns. In this section, we

introduce the workflow patterns presented in [95], and discuss and analyse how the

VOC mechanism can be extended based on these workflow patterns to facilitate

SLA adaptation for composite service.

5.1.1 Sequence pattern (Seq)

 Pattern 1 Sequence A Sequence pattern describes the structure where a

component service starts after the completion of another component service in

the same process.

When a service violates the SLA, there are two ways to adapt it. The service

consumer can either renegotiate with the current service provider – the one that

violated the SLA – to see if it can still provide the service with satisfactory quality to

meet the service consumers’ requirements for the composite service, or find a new

service provider to replace the current service provider. Before performing the

adaptation process, the VOC of the adaptation solution needs to be computed.

Since the actual values of the adapted QoS are not known until after negotiating

with the service providers, we average all the possible combinations of the values of

adapted QoS using current belief distributions which can be obtained from the

pre-defined SLAs, previous interactions with the service providers or ServiceTrust –

a service trust system based on SLA profiling as detailed in Chapter 6.

85

Suppose there are two component services, A and B, that are compliant with the

Sequence pattern, when an SLA violation occurs in service A, the SLA adaptation

mechanisms must be triggered. If there are several candidate service providers for

service A – very common in the open SOC environment, for each candidate service

provider (including the current service provider), an estimated value is computed.

Formally,

 A'
A' A' A'V(A| A') u(e,p) Pr(E e,P p)d

Ω
Ω= ⋅ = =∫

5

6

(5.1)

whereV(A| A') is the estimated value from adapting service A with service

provider A' , u(e,p) is a utility function which computes the utility of a service

based on the service consumer’s preferences for execution time, e, and price, p,

Pr(E e,P p)= = denotes the belief distribution of the combination (e, p) and A'Ω =

<(e1, p1), (e2, p2), …, (en, pn)>A’ represents the possible combinations of the values

of execution time and price from the candidate service providers for service A. Here

we take the current service provider as a candidate service provider if it is still

potentially capable of providing the service with satisfactory SLA.

Then the service consumer computes the probability that service B needs to be

rearranged due to selecting adapting service A with service provider A' . The

probability, denoted as P(A| A' B)→ , is affected by three main aspects:

1) the extra resource consumption caused by the adaptation of service A. For

example, delay and increased price from adapting service A might trigger

the need of adapting service B;

2) the margins of the related terms in the SLA attached to services A and B. If

the service consumer had succeeded in contracting SLAs for service A or B

or both with extra marginal violation tolerance, there would be a relatively

slim chance that service B needs to be adapted; and

6 In this chapter we use the execution time and price of the services for the purpose of demonstration.

86

3) the estimated capability of candidate service providers for service A. If it is

expected to adapt service A with better QoS, the need of updating service B

will decrease.

In the sequence pattern, the formal computation of SeqP (A| A' B)→ is:

SeqP (A| A' B)→

A'

A' A' A'
A'

1 is RequirementViolated(e,p) Pr(E e,P p)d| | Ω
Ω

Ω
= ⋅ ⋅ = =∫ (5.2)

where isRequirementViolated(e, p) is a function which, given the execution time, e,

and price, p, returns 1 if the service consumer’s requirements for the composite

service will be violated and 0 otherwise. This function involves QoS aggregation [45]

and multiple criteria decision making (MCDM) [49] and is implemented

application-specifically.

Then we formulate the VOC due to the service adaptation as:

A|A' B|B'VOC V(A| A') P(A| A' B) V(B| B')+ = + → ⋅

A' B'
A' A' A' Seq B' B' B'u(e,p) Pr(E e,P p)d P (A| A' B) u(e,p) Pr(E e,P p)d

Ω Ω
Ω Ω= ⋅ = = + → ⋅ ⋅ = =∫ ∫

(5.3)

where A|A' B|B'VOC + is the value brought from adapting service A with service provider

A' and service B with service provider B' .

Since adapting services A and B may be expensive, the adaptation is performed

only when it is expected to pay off. The adaptation cost, including querying

information, renegotiating and negotiating with service providers, and switching

service providers, must be lower than the corresponding VOC. Formally, the

adaptation is performed when:

87

 A|A' B|B'VOC COST(A| A' B| B')+ > + (5.4)

where COST(A| A' B| B')+ is the cost of adapting service A with service provider A'

and service B with service provider B' . When there are more than one qualified

combination of candidate service providers for services A and B, the one with the

greatest profit, i.e. A|A' B|B'VOC COST(A| A' B|B')+ − + , is selected.

From formulas (5.1) – (5.4), we can observe that it is the combination of

candidate service providers for services A and B that collectively determines the

profit of the adaptation solution. The service consumer needs to compute the VOC

of each of the possible combinations of candidates for services A and B – possible

adaptation solutions – which is computationally intensive if the number of candidate

service providers is large. Under this circumstance, the service consumer can select

several candidates according to the ranking based on their trust over the candidature

service providers calculated using ServiceTrust which is presented in Chapter 6.

5.1.2 Parallel patterns

Besides the sequence pattern, parallel is another major pattern in business processes

as well as composite services. The authors in [95] consider the parallel patterns in

terms of (1) how the branches are picked, (2) how they are executed and (3) how

they converge. In this section, we analyse the SLA adaptation mechanisms for

different types of parallel patterns considering the three aspects above.

There are three typical split patterns that describe the logic of processes being

split and enacted:

 Pattern 2 Parallel Split A Parallel Split describes the structure where a

single thread splits into multiple threads which can be executed in parallel.

In this pattern, component services A and B will both be executed and can

be executed simultaneously in any order.

88

 Pattern 3 Exclusive Choice An Exclusive Choice pattern descries the

structure where, based on a decision or process control data, only one

selected branch is activated and executed.

 Pattern 4 Multi-Choice A Multi-Choice pattern describes the structure

where, based on a decision or process control data, a number of branches

are chosen.

We must also consider how the branches will converge (if they will). There are

five typical patterns that model the logic of the branches converging:

 Pattern 5 Synchronisation A Synchronisation pattern describes the

structure where multiple parallel branches converge into one single thread

synchronised.

 Pattern 6 Simple Merge A Simple Merge pattern describes the structure

where more than one branches converge without synchronisation and only

one of them has ever been executed.

 Pattern 7 Synchronising Merge A Synchronising Merge pattern describes

the structure where synchronising happens only when more than one

branches are active (i.e. they are being executed).

 Pattern 8 Multi-Merge A Multi-Merge pattern describes the structure

where the branches converge without synchronisation and the service

succeeding the mergence will be activated by the completion of every

incoming branch.

 Pattern 9 Discriminator A Discriminator pattern describes the structure

where the subsequent service will be activated by the first and only the first

completed branch. The remaining branches will be ignored.

89

The combination of the split patterns and converge patterns determines the

solution to SLA adaptation. Starting with the simplest combination, i.e. Parallel

Split + Synchronisation, the corresponding SLA adaptation mechanisms are

discussed as follows.

Parallel Split + Synchronisation (PSS)

In this pattern combination, multiple branches split at a certain point and then

converge with synchronisation after the completion of all the branches. Here we

suppose there is only one service on each parallel branch. This assumption is

realistic because if there are more than one service on any branch, they can be

considered as a composite service. When the service on one of the parallel branches

needs to be adapted, the service consumer must compute the VOC and select an

appropriate adaptation solution. Moreover, to guarantee the satisfaction of its

requirements for the composite service, the service consumer must also consider if it

is necessary to adapt the services on other branches.

Figure 5.1 Parallel Split + Synchronisation pattern

We consider the adaptation under two circumstances:

1. All the branches have not been activated and executed when the SLA

adaptation is triggered. In this case, the SLA adaptation is performed before

point M in Figure 5.1; and

90

2. All the branches have been activated when the SLA adaptation is triggered.

In this case, the SLA adaptation is performed between point M and N in

Figure 5.1.

In case 1), the service consumer needs to estimate if the adaptation of the faulty

service, i.e. service A in Figure 5.1, will cause the delay in the activation of service

D due to the newly contracted SLA and the time consumption of the adaptation

process. If the answer is yes, the service consumer can consider giving services B

and C more time to complete because given more flexible time constraint, the

service consumer may be able to renegotiate with the providers of services B and C

to obtain lower prices or better quality for services B and C.

For the PSS pattern combination, the probabilities of additional execution time

for services B and C caused by the adaptation of service A, assuming service A is

adapted with service A' , are computed as:

A'

BPSS A' A'E
A'

1P (A| A' B) Pr(E e) isBigger(e,e)dE
| E |

→ = ⋅ ⋅ = ⋅∫ (5.5)

A'

PSS A' C A'E
A'

1P (A| A' C) Pr(E e) isBigger(e,e)dE
| E |

→ = ⋅ ⋅ = ⋅∫ (5.6)

where eB and eC are the execution times for services B and C, A'| E | is the modulo of

A'E , and isBigger(x, y) is a function returns 1 when x is bigger than y or 0 otherwise.

Then the VOC of different adaptation solutoins, involving services A, B and C, can

be computed as:

A|A' B|B' C|C'
PSSVOC V(A| A') P(A| A' B) V(B| B') P(A| A' C) V(C |C')+ + = + → ⋅ + → ⋅ (5.7)

In case 2), when the SLA violation of service A is detected, services on other

branches, i.e. services B and C, have already been activated. When the adaptation of

service A is being performed, services B and C are already under execution.

91

Therefore, the estimated time consumption from adapting service A, must be

included in the computation of P(A| A' B)→ and P(A| A' C)→ :

PSSP (A| A' B)→

 A'
BA' A'adaptation adaptation adaptationEA'

1 Pr(E e,E e) isBigger(e e ,e)dE| E |= ⋅ ⋅ = = ⋅ +∫
(5.8)

PSSP (A| A' C)→

 A
A' C A'adaptation adaptation adaptationE 'A'

1 Pr(E e,E e) isBigger(e e ,e)dE| E |= ⋅ ⋅ = = ⋅ +∫
(5.9)

 where eadaptation is the estimated time to adapt service A.

Then the VOC of different adaptation solutions can be computed using formula

(5.7) withV(A| A') , V(B| B') andV(C |C')computed using formula (5.1).

Parallel Split + Multi-Merge (PSMM)

In a Multi-Merge pattern, the service succeeding the mergence will be executed

every time an incoming branch completes. Most of the workflow products, e.g.

Eastman, Verve Workflow and Forte Conductor, implement the Multi-Merge pattern

by replicating the service(s) succeeding the mergence (see Figure 5.2 for a simple

example) [95]. And the replicated services will be made sequential to the services on

each of the original branches, generating several independent sequence structures.

Actually, at runtime, no Multi-Merge structures will be found. Therefore, VOC

computation for Sequence pattern will be applied to the created Sequence structures

in adaptation.

92

Figure 5.2 Implementation of Multi-Merge pattern

Parallel Split + Discriminator (PSD)

In a Discriminator pattern, the service succeeding the mergence waits for the

first completed incoming branch and ignores the rest. In other words, the succeeding

service will be activated once one of the incoming branches is firstly completed. We

now discuss how to adapt the parallel services when SLA violations occur.

In this pattern combination the fastest branch (the one with the shortest

execution time) determines the start time of the service succeeding the mergence.

Once the succeeding service is activated, the uncompleted branches will be ignored.

In fact, the Discriminator pattern is not found often in business processes where

93

SLA is enabled because generally the execution time of the services will be

specified in the SLAs and hence it can be estimated that which branch is likely to

complete first and which branches will be ignored. However, there is one exception

– the service consumer wants to hedge the risk of delay caused by SLA violations.

In this case, by employing the Discriminator pattern, when a branch is broken, other

branches can still deliver expected results in a relatively tolerant period of time.

Intuitively, the most effective way to hedge the risk is to allocate low execution time

for individual branches while obtaining a high successful global execution rate of

the branches. It is also the major objective of the adaptation of the services when

SLA violations occur. Since the services on different branches are functionally

equivalent, they share a group of candidate service providers and a utility function.

For the demonstration purpose, we use the example in Figure 5.3.

Figure 5.3 Parallel Split + Discriminator pattern

First, the normalised successful execution rate weights, w1, w2 and w3, are

assigned to the candidate service providers. The success rate weights range from 0 to

1, representing the service consumer’s trust over the service providers, based on

their historical performance which can be provided by ServiceTrust detailed in

Chapter 6. Service providers with better reputation, obtained from higher successful

rates of past SLA enforcement, will be assigned with higher weights. The historical

performance of service providers can also be provided by the service providers

through pre-defined SLAs or be learnt from the service consumer’s previous

interactions with the service providers.

94

Second, the VOC can be computed as:

(A',B',C')

A|A' B|B' C|C'
PSD 1 A' A' A' A' A' A'VOC w u(e , p) Pr(E e ,P p)

Ω
+ + = ⋅ ⋅ = =∫

2 B' B' B' B' B' B' 3 C' C' C' C' C' C' (A',B',C')w u(e ,p) Pr(E e ,P p) w u(e ,p) Pr(E e ,P p)dΩ+ ⋅ ⋅ = = + ⋅ ⋅ = = (5.10)

Based on formula (5.10), the combination of candidate service providers that

maximises A|A' B|B' C|C'
PSDVOC Cost(A| A') Cost(B| B') Cost(C |C')+ + − − − will be selected.

Sometimes which branches will be executed is dependent on the runtime

decision making. Pattern 3 Exclusive Choice and pattern 4 Multi-Choice describe the

two different situations in this category. In pattern 3 Exclusive Choice, only one

branch will be chosen and executed in a running process instance and it leads to a

Simple Merge. This makes the branches uninfluential in one another. Therefore,

when the service on one branch needs to be adapted, the services on other branches

do not need to be considered. The VOC mechanism can still be applied here because

the broken branch, together with the service succeeding the mergence, can be seen to

constitute a Sequence pattern. In pattern 4 Multi-Choice, multiple branches will be

chosen for execution. Therefore, the service consumer needs to consider the services

on other branches when trying to adapting the faulty service on one branch. Next we

will discuss the pattern combinations involving the Multi-Choice pattern.

Multi-Choice + Synchronising Merge (MCSM)

In this pattern combination, multiple branches will be chosen for execution and

they will be synchronised when they merge. The way the branches merge is similar

to pattern 5 Synchronisation. The difference is that not all the incoming branches

will be activated for every running instance. If one of the branches is broken and

needs to be adapted, the service consumer needs to estimate the probabilities of

whether other branches need to be activated, and whether they can benefit from the

adaptation.

95

Generally speaking, there is no way to ascertain which branches will be activated

for a specific running instance until the dynamic decision is made. However, the

service consumer can estimate the probability that a branch will be activated based

on the historical performance of the branches. For example, if a branch was executed

80 times out of the last 100 composite service instances, we consider the branch will

be selected with a probability of 80%. The probability of being selected for each

branch can be normalised as weights, s1, s2, … sn, ranging between 0 and 1

representing the importance of the branches. Take the composite service in Figure

5.1 as an example, with Parallel Split replaced with Multi-Choice. Based on this

assumption the computation of the VOC for the adaptation solution can be

formalised as:

A|A' B|B' C|C'
MCSM 1 2 3VOC s V(A| A') s P(A| A' B) V(B|B') s P(A| A' C) V(C|C')+ + = ⋅ + ⋅ → ⋅ + ⋅ → ⋅ (5.11)

where V(A| A') , V(B| B') and V(C |C') are computed using formula (5.1),

MCSMP (A| A' B)→ and MCSMP (A| A' C)→ are computed using formulas (5.5) and (5.6).

Multi-Choice + Multi-Merge (MCMM)

Similar to the PSMM combination, in a MCMM pattern combination the

branches will be transformed into several independent sequence structures before

being executed. Thus, VOC computation for the Sequence pattern can be applied

when necessary.

Multi-Choice + Discriminator (MCD)

In this pattern combination, a number of branches are selected and executed in

parallel based on a decision dynamically made. The first branch that completes will

trigger the service succeeding the mergence and after that other branches will be

ignored. As discussed before, the aim of employing the Discriminator pattern is to

achieve relatively tolerant execution time when SLA violations occur. Therefore, in

96

adaptation solution determination, the branches that have higher successful rates and

higher probabilities of being selected should be given higher preferences. Here we

adopt the weights used before: w, to represent the successful execution rate, and s, to

represent the probability of branches being selected. Again, for three parallel

branches, the formalised VOC computation is:

(A',B',C')

A|A' B|B' C|C'
MCD 1 1 A' A' A' A' A' A'VOC s w u(e , p) Pr(E e ,P p)

Ω
+ + = ⋅ ⋅ ⋅ = =∫

 2 2 B' B' B' B' B' B's w u(e ,p) Pr(E e ,P p)+ ⋅ ⋅ ⋅ = =

 3 3 C' C' C' C' C' C' (A',B',C')s w u(e ,p) Pr(E e ,P p)dΩ+ ⋅ ⋅ ⋅ = = (5.12)

5.1.3 Other patterns

In addition to the nine patterns addressed so far, there are other eleven patterns

introduced in [95]. Some of them are used to describe the global properties and

special activities of the business processes, including Arbitrary Cycles, Implicit

Termination, Multiple Instance, Cancel Activity and Cancel Case. Patterns of

Deferred Choice and Milestone are used to specify the triggering condition of

services based on decision dynamically made. The last pattern, Interleaved Parallel

Routing, describes a set of services that are executed one by one in an arbitrary order

decided at runtime. However, our work, VOC calculation based on workflow

patterns, is dedicated to analysing adaptation solution for composite services based

on specific influence between services in a confined adaptation scope described

using workflow patterns. The above eleven patterns do not serve the goal and thus

are excluded from this thesis.

5.2 Adaptation method

Figure 5.4 shows the pseudo code for adapting the composite services using the

mechanisms presented in Section 25.1. The algorithm takes one input – the

component service that needs to be adapted, denoted as S0. The algorithm starts with

identifying the pattern that S0 belongs to (line 3). After the pattern identification, the

VOC of different adaptation solutions is computed (line 7 for Sequence pattern and

97

line 18 for Parallel pattern). The adaptation solution that is estimated to bring the

most profit will be performed (lines 9 and 20). If the adaptation solution within the

current scope is not satisfactory, the component services in the current scope will be

considered as a composite service (lines 12-13 and lines 23-24) and the adaptation

will expand to a larger scope. The algorithm returns true if the composite service is

successfully adapted or false if all the unexecuted component services have been

taken into account and still no satisfactory adaptation solution can be found.

Figure 5.4 Pseudo code for adapting a composite service

98

5.3 Experimental evaluation

To evaluate the performance of the proposed SLA adaptation approach for

composite services, we conducted experiments in a simulated volatile environment.

The experimental evaluation is aimed to show the effectiveness of our approach in

guaranteeing the satisfaction of the service consumers’ requirements for the

composite services.

We utilised the example composite service presented in Section 22.6.1.

Component service D (land carriage) and E (shipping) are compliant with the

Sequence pattern. We evaluated the satisfaction rate of the service consumer’s

requirements for the composite service with our SLA adaptation approach enabled

that considers both adapting the land carriage service and the shipping service while

the land carriage needs to be adapted. Considering that in different situations the

difficulty levels of adapting and updating services might vary significantly, we

model the land carriage companies’ distribution and the shipping companies’

distribution over their service satisfaction rates at two difficulty levels, i.e. easy and

difficult, using beta distribution functions presented in 2Figure 5.5. Intuitively,

service providers expose relatively high and low service satisfaction rates in easy

and difficult situations respectively.

We ran 1,000 independent composite service instances for each experiment

within a simulated volatile environment. Since the difficulty of adapting two

sequential services might vary in different situations, we conducted comprehensive

experiments with all the four combinations of difficulty levels. We measured the

satisfaction rate of the service consumer’s requirements by calculating the number of

successful cases, i.e. cases where service consumer’s requirements can be met after

the adaptation, out of the overall cases.

99

(a) Easy service satisfaction rates of land carriage companies

(b) Difficult service satisfaction rates of land carriage companies

100

(c) Easy service satisfaction rates of shipping companies

(d) Difficult service satisfaction rates of shipping companies

Figure 5.5 Probability density functions

2Figure 5.6 compares the satisfaction rates of service consumer’s requirements for

the composite service in different situations with and without our approach enabled.

The results demonstrate that in all situations our adaptation approach provides a

101

more effective solution to the satisfaction of service consumer’s requirements for the

composite service. In situations with different combinations of difficulty levels,

including difficult-difficult, easy-difficult, difficult-easy and easy-easy, our

approach provides an increment of 22%, 12%, 46% and 25% respectively in the

satisfaction rates of service consumer’s requirements for the composite service.

Figure 5.6 Comparison between traditional adaptation and our adaptation for
Sequence pattern

The results from experiments demonstrate that our SLA adaptation approach a

promising for the sequence pattern. Since the parallel patterns are also addressed

using the same method (VOC), the results would be similar.

5.4 Discussion

SLA negotiation may also happen during the execution of the composite services

due to the possibility of SLA violations. When a component service fails, it must be

adapted (either updated or replaced). And the adaptation of a faulty service may

trigger the adaptation of other component services. Accordingly, the SLAs attached

to these component services must be adapted (either renegotiated or replaced). In

SLA adaptation, if multiple component services need to be adapted, CASS

introduced in Chapter 4 can be held in which the component services that need to be

102

adapted are open for auction. In the cases where only one component service needs

to be adapted, simpler SLA negotiation techniques can be adopted, e.g. one-on-one

SLA negotiation between the service consumer and the failed service provider, or

between the service consumer and new service providers, or the combination of the

two.

Sometimes the SLA adaptation is required to be rapid, for example in

time-sensitive business processes such as stock trading. In those cases, CASS needs

to be configured to complete with accepted results within the time limit required.

The analysis of the tradeoff between effectiveness and efficiency of CASS under

these circumstances has yet to be undertaken.

5.5 Summary

In this Chapter, we have discussed how the value of changed information (VOC) is

extended and applied to a new SLA adaptation to support SLA enforcement for

service composition based on workflow patterns. Specifically, we have analysed and

presented how to compute VOC for sequence and different parallel pattern scenarios.

The SLA adaptation is performed within a certain scope defined by workflow

patterns only when it is expected to pay off. By doing so, SLA adaptation for service

composition can deliver satisfactory results while being kept within a reasonable

scope. The experimental results show that our approach can significantly improve

the satisfaction rates of service consumers’ QoS requirements for the composite

services in different situations.

103

Chapter 6

Effective profiling in SLA completion

As discussed in Section 22.5 and Section 23.4, SLA completion, as the third and also

the last stage of the lifetime of an SLA, needs the execution of SLA profiling after

the service provision to collect the results of SLA enforcement for future analysis of

the service provider’s reputation and its capability of enforcing SLAs. The basic

principle is that the service providers with higher success rates of past SLA

enforcements are more trusted by the service consumers in having the capability of

enforcing SLAs successfully.

A service trust system based on service providers’ performance over their past

SLA enforcement can facilitate reputation-oriented service selection, which can

enhance SLA negotiation and SLA adaptation, and protect the service consumers

from various threats in the open and volatile SOC environment.

This chapter introduces ServiceTrust, a novel reputation-based service trust

system which supports reputation-oriented service selection by estimating service

consumers’ trust over service providers based on their historic performance on SLA

enforcement.

This chapter is organised as follows. Section 26.1 addresses the design

consideration of ServiceTrust. Section 26.2 introduces the mechanisms that

implement ServiceTrust. Section 26.3 describes how ServiceTrust evaluates the

reputation of new services. Section 26.4 presents the experimental results regarding

104

the effectiveness of ServiceTrust, and the resistibility of ServiceTrust against the

two threats, i.e. malicious reputation manipulation and QoS abuse. Section 26.5

discusses the support of ServiceTrust for SLA negotiation and adaptation. Finally,

Section 26.6 summarises this chapter.

6.1 Design consideration

One design goal of ServiceTrust is to help the service consumers evaluate the

trustworthiness of the service providers. We believe that the evaluation of service

providers’ reputation should be based on their long-term reputation. The reasons are

twofold. First, long-term reputation can highlight service providers’ performance in

the long term and smooth out fluctuations in the short term. Second, service

providers’ expectation of long-term reputation creates an incentive for their good

performance at present. Another design goal of ServiceTrust is to help protect the

service consumers from threats in the open SOC environment. A widely recognised

threat that the service consumers are exposed to in the open SOC environment is that

malicious service providers manipulate service consumers to report incorrect

feedbacks in order to boost their reputations or to ruin their competitors’ reputations

[58]. It can also be done by malicious service providers to fake service consumers.

Another major threat is QoS abuse, where service providers strategically alter their

behaviour in QoS offering and then provide fraudulent service transactions in order

to earn profit [101].

Due to the above issues, in service selection, approaches should be provided to

help the service consumers evaluate the trustworthiness of the service providers, as

suggested but not specified in [5, 54, 107]. However, sometimes it is difficult for a

service consumer to determine how much it can trust a service provider due to the

lack of sufficient experience and knowledge about the service provider. A direct

approach to address this issue is to use a trust system which collects and processes

feedbacks about service providers’ past behaviour [51, 88, 92, 104]. However, to the

best of our knowledge, no trust system has been tailored for service selection in the

open SOC environment and the threats described earlier have not been properly

105

addressed. Furthermore, different from the peers in the peer-to-peer (P2P)

environment, the service providers in the SOC environment usually have unique

identifications in order for the service consumers to identify their services. Therefore,

existing trust systems in the P2P environment, which usually put a lot of effort in

maintaining peers’ anonymity property, are generally unsuitable to be directly

applied in the SOC environment.

To summarise, ServiceTrust should provide two functions:

1. Evaluate service consumers’ trust over service providers based on their

performance over past SLA enforcement in the long term; and

2. Protect the service consumers from two threats: malicious reputation

manipulation and QoS abuse

6.2 ServiceTrust mechanisms

In this section, we introduce a trust structure which consists of local transactional

rating, local trust, global trust and transactional trust, and the supporting

mechanisms.

6.2.1 Generating local transactional ratings

A local transactional rating describes a service consumer’s experience of an

individual service transaction with a service provider. Some early work [28, 51, 104],

which use binary rating systems for calculating a given peer’s reputation,

demonstrate that binary-value ratings work quite well for file-sharing systems, in

which a file is either a complete version or an incomplete version. An SLA in the

SOC environment can be seen as an equivalent of a file in a file-sharing system

because an SLA also only has two finalised status: fulfilled or unfulfilled,

representing a successful service transaction or a failed one. Using binary values to

rate service transactions is simple and does not require service consumers’ physical

participation. Another advantage of adopting binary-value ratings is that the ratings

106

are explicit – a service transaction is either successful or unsuccessful in fulfilling

the attached SLA. However, some recent work [100, 105] adopt numeric rating

systems, in which the ratings are in a certain interval, e.g. [0, 1]. Compared to

binary-value ratings, numeric-value ratings can model more accurately a service

consumer’s experience in a service transaction. However, it requires service

consumers’ direct participation in the rating process, which sometimes becomes an

obstacle to the extensive use of the application. Moreover, service consumers’ lack

of incentive and knowledge to report authentic and accurate ratings over service

transactions may result in undesired, inaccurate or even incorrect ratings.

To give application developers flexible choices, ServiceTrust supports both

binary-value and numeric ratings. For binary-value ratings, 0 and 1 are used to

represent a failed service transaction and a successful one respectively. The

definition of service consumer i’s local transactional rating over the nth service

transaction with service provider j, denoted as (n)
i, jr , is defined as follows:

(n)
i, j

0 service transaction failed

1 service transaction succeeded
r

⎧⎪
⎨
⎪⎩

=

(6.1)

Service consumers are also allowed to rate service transactions using a value in

the interval of [0, 1], with 0 and 1 representing complete dissatisfaction and

complete satisfaction respectively. Considering that service consumers might lack

the knowledge of QoS satisfaction, it is advisable for application developers to

provide the service consumers with necessary assistance during the rating process.

The mechanisms described in the rest of this chapter can accommodate both

binary-value and numeric ratings.

6.2.2 Aggregating local transactional ratings

To obtain a service consumer’s local trust over a service provider, local transactional

ratings generated from the service consumer’s past service transactions with the

107

service provider need to be aggregated. In the aggregation, we consider the temporal

dimension when evaluating the credibility of the local transactional ratings. It is not

only their values that matter, but also at what time they are recorded – we assume

that the local transactional ratings are recorded upon the completion of the service

transactions, which is also when the attached SLA is completed. The credibility of a

local transactional rating diminishes as time elapses. The ratings over a service

consumer’s recent service transactions with a service provider are more credible

than the old ones. Also, when combining a service consumer’s and other service

consumers’ personal local trust (as detailed in Section 26.2.3), the recent ratings from

one service consumer are more credible than the old ones from another service

consumer.

We use exponential moving average (EMA) scheme [21] to aggregate a service

consumer’s local transactional ratings over a service provider. Weights are computed

to represent the credibility of the ratings according to how old they are. The weight

of each older rating decreases exponentially, giving more credibility to recent ratings

whilst not entirely discarding older ones. By doing so, short-term fluctuation of

ratings can be smoothed out and long-term trend can be highlighted. Since the

threshold between short-term and long-term is application specific, ServiceTrust

uses parameterθ , as a time window, to specify valid ratings when aggregating the

local transactional ratings. Ratings lying outside ofθ are considered obsolete and

thus discarded in the aggregation.θ can be set accordingly by the application

developers to meet the requirements of applications.

The elapsed time since a service transaction has been performed is used to

express how old the corresponding rating is. In order to compute the elapsed time of

the ratings, ServiceTrust requires the rating time, noted by (n)
i, jt , i.e. the time when the

service transaction, to be recorded along with the rating in the form of 2-tuple:
(n) (n)
i , j i, j(r ,t) .

The process of calculating service consumer i’s local trust over service provider j

by aggregating the series of local transactional ratings over the past service

108

transactions between them, i.e. (1) (1) (2) (2) (n) (n)
i , j i , j i , ji , j i , j i , j[(r ,t),(r ,t),...,(r ,t)] , consists of the

following five steps.

1. Compute the elapsed time, denoted as (n)
i, jet , since each transaction was rated.

The series of local transactional ratings becomes:
(1) (1) (2) (2) (n) (n)
i , j i , j i , ji , j i , j i , j[(r ,et),(r ,et),...,(r ,et)] ;

2. Determine the value of the time windowθ ;

3. Divide the time frame confined byθ into s time slots;

4. Compute the arithmetic average value of the local transactional ratings in

each time slot, denoted as (1) (2) (s)
i , j i , j i , jr rar ,a ,...,a ;

5. Aggregate (1) (2) (s)
i , j i , j i , jr rar ,a ,...,a to obtain service consumer i’s local rating over

service provider j, denoted as i, jR , using exponential averaging scheme as

follows:

s
(k)k

i, j i , j
k 1

R (1) arα α
=

= −∑ (6.2)

where0 1α< < controls how fast the credibility of the ratings decreases over

time.

Besidesθ , two other parameters, s andα , are manoeuvrable. They can be set by

application developers to control the weight decrease in order to meet application

specific requirements. The bigger s andα are, the faster the weight decreases,

meaning the faster the old ratings inθ become incredible. Figure 6.1 gives an

example ofθ with s=7 and Figure 6.2 depicts an example of the weight decrease.

109

θ

s =

Figure 6.1 A sample time window (s=7)

Figure 6.2 An example of EMA weight decrease (α=0.1 and 0.3, and s =10)

6.2.3 Combining personal trust

The local trust introduced in Section 26.2.2 reflects a service consumer’s personal

opinion of a service provider. To comprehensively analyse a service provider’s

capability to enforce SLAs based on its historic performance, a service consumer’s

local trust should be combined with other service consumer’s local trust when

evaluating the service consumer’s global trust over the service provider. By doing so,

the service consumer can obtain a global and comprehensive view of the service

provider. A simple approach to the combination is to simply average all the local

trust. An advanced approach is to compute a weighted average of all the local trust,

where the weights represent the credibility of the local trust.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6 7 8 9

EM
A
 W

ei
gh

ts

θ(n)

α=0.1 α=0.3

110

The credibility of a service consumer’s local trust over a service provider

depends not only on how old the local transactional ratings are (see Section 26.2.1),

but also on how long the service consumer has had interactions with the service

provider. Experience with the service provider in the longer-term gives the service

consumer more information and knowledge about the service provider, thus enabling

the service consumer to predict the service provider’s ability and behaviour better

[29, 93]. It also provides a firmer basis for calculating the credibility of the service

consumer’s local trust over the service provider. Therefore, when incorporating other

service consumers’ local trust into evaluating a service consumer’s global trust over

a service provider, we consider the relationship duration between the service

consumers and the service provider, measured by the number of past service

transactions between them. The longer relationship duration a service consumer has

had with the service provider, the more credible its local trust over the service

provider is.

We adopt Rayleigh cumulative distribution functions [30] to calculate the

weights according to the number of a service consumer’s past service transactions

with the service provider. The credibility of service consumer i’s local trust over

service provider j, denoted as i , jβ , is calculated as follows:

2

i , j 2
x1 exp() (0)

2
β σ

σ
−= − >

(6.3)

whereσ is a parameter that inversely controls how fast i , jβ increases as the number of

interactions, denoted as x, increases.σ can be set by the application developers, from

0 to theoretically∞ , to capture the characteristics of different application scenarios.

Figure 6.3 presents an example of the calculation of i , jβ using differentσ .

Compared to other service consumers’ local trust, a service consumer can choose

to trust its own local trust more or less when evaluating its global trust over the

service provider. To reflect this nature, the weight assigned to the service consumer’s

own local trust over the service provider, denoted as i , jβ ′ , is computed as follows:

111

2

2i, j
x1 exp() () 0

2()
β σ ε

σ ε
−= − + >′
+

(6.4)

where x is the number of service transactions that service consumer i has had with

service provider j andε specifies how much more (using a negative number) or how

much less (using a positive number) the service consumer trusts its own local trust

over service provider j than other service consumers’.

Figure 6.3 An example of the calculation of i , jβ

Then service consumer i’s global trust over service provider j, denoted as i, jR� ,

can be calculated as follows:

i , j k , j k , j

k
i , j i , jR R Rβ β= ⋅ + ⋅′ ′ ∑� (6.5)

where i , jR′ is service consumer i’s own local trust over service provider j and k , jR is

the kth other service consumer’s local trust over service provider j.

112

6.2.4 Evaluating transactional trust

The scheme presented in this section can be applied to resist various types of QoS

abuse, e.g. execution time, availability and throughput, etc. Since the transaction

amount is usually one of a service consumer’s most important concerns about the

service in the SOC environment, we present a solution to resist transaction amount

abuse for demonstration.

To protect service consumers from transaction amount abuse, we incorporate the

transaction amount into estimating service consumers’ transactional trust for

individual service transactions. We define transactional trust as the probability at

which a service consumer believes the service provider will perform an individual

service transaction and deliver expected outcomes specified in the attached SLA.

Transaction amount abuse usually consists of two steps. First, the malicious

service provider fulfils service transactions with relatively small amounts to obtain a

service consumer’s trust. Second, the malicious service provider entices the service

consumer to give it an order for a service transaction with a large amount, and then

defraud the customer with fraudulent service transactions or inferior goods

afterwards. Under other circumstances, a fraudulent service transaction might also

be performed, e.g. a genuine service provider may make the transition into being

malicious when it gets an order for a service transaction with an unusually large

amount which reaches or crosses its threshold for being genuine.

We address this issue by evaluating the transactional trust in consideration of the

similarity between the quote on the forthcoming service transaction and the average

transaction amount of the successful service transactions the service provider has

performed. The base for this approach is the spirit of situational trust [69]:

experience from situations of a similar nature will give a means of determining risk

accurately. When evaluating the transactional trust, we consider two factors:

1. The average amount of successful service transactions that the service

provider has performed. In general, the larger the quote on a service

113

transaction is than the average amount of its past successful service

transactions, it is more likely that the service provider will provide a

fraudulent service transaction.

2. The extent of amounts of successful service transactions that the service

provider has performed. If a service provider has a large extent of amounts

of successful service transactions, the chance that it will provide a

fraudulent service transaction is slim.

Combining the considerations on the above two factors, we evaluate service

consumer i’s transactional trust for a forthcoming service transaction provided by

service provider j, denoted as i, jR , using formula (6.6).

 i, j i, jR Rγ= ⋅ � (6.6)

k
2

1()γ
Δ

=

(6.7)

new
ave

jj

q 1
cva

Δ = ⋅

(6.8)

M
m ave 2
j j

m 1
j ave

j

(a a)
cv a

=
−

=
∑

 (6.9)

where γ is the transactional amount impact factor, k is the parameter that controls

how fast the transactional trust decreases as Δ increases, newq is the quote on the

forthcoming service transaction, ave
ja is the average amount of the successful service

transactions provider j has performed, m
ja is the amount of the thm successful service

transaction provider j has performed, and jcv is the coefficient of variation of

1 2 m M
j j j ja ,a ,...,a ,...,a . Parameter k can be set by application developers according to the

114

requirements of the applications. For example, in the scenario where the fluctuation

of prices is relatively violent, such as the global crude oil market, a small k is

advisable.

Usually the smaller the transaction amount is, the more satisfactory it is for a

service consumer because the transaction amount is a negative property (see

Definition 4 in Section 4.3.2). However in relation to some positive QoS (see

Definition 3 in Section 4.3.2) such as availability and throughput, the higher the

better it is for the service consumers. In those cases, formula (6.10) can be used to

replace formula (6.8):

ave
j

new j

a 1
q cv

Δ = ⋅

(6.10)

6.3 Initial trust for new services

In the discussion so far, we assume that a service provider provides one type of

service. However, in the SOC environment, the service providers might be able to

provide multiple types of services with respective service identifications.

Accordingly, in ServiceTrust, a service consumer’s trust over a service provider is

service specific, and is estimated based on the service provider’s historic

performance over individual types of services. One issue that may occur is that when

a service provider starts offering a new service, there is no historic performance

information about the new service for service consumers to refer to. In this case, a

service consumer’s trust for this new service cannot be evaluated.

The development of a service consumer’s initial trust for a new service usually

goes through two stages: an exploratory stage and a commitment stage, which

reflects the general belief in the trust literature [10]. At the exploratory stage, the

service provider’s reputation will influence the service consumer’s intention to trust

the service provider. At the commitment stage, experience-based knowledge will

readily replace the tentative trust built at the exploratory stage [71]. Another factor

115

that influences a service provider’s tentative trust over a service provider is its

familiarity with the service provider [34, 67]. Familiarity is referred to as

understanding of the context which the service transaction is involved, and hence is

considered the precondition for tentative trust [67].

From the perspectives of both the reputation and the context, we assume that a

service provider with good reputation obtained from its existing services tends to

provide the new service at a high success rate. This assumption is acceptable at least

at the early stage of the new service’s appearance because the service provider has to

cater for the service consumers in order to quickly develop its reputation for the new

service and to attract more potential service consumers [76]. Therefore, a service

consumer’s initial trust for a new service can be estimated through looking into the

service provider’s reputations for its existing services.

We evaluate a service provider’s global reputation by aggregating its reputations

for individual services. The estimation of a service consumer’s initial trust for the

new service is based on the service provider’s global reputation. After interacting

with the service provider, the service consumer can gradually incorporate its direct

experience and knowledge of the service into developing its trust for the service

following the procedure presented in Section 26.2. In ServiceTrust, service consumer

i’s global trust over service provider j, denoted as i, jR̂ , based on its trust for service

provider j’s N individual existing services is calculated as:

N

(n)
i, j i , j

n 1

1R̂ RN =
= ∑ �

(6.11)

where (n)
i, jR� is service consumer i’s trust for the nth individual existing service

provided by service provider j.

116

6.4 Experimental evaluation

In this section, we first assess the effectiveness of ServiceTrust as compared to a

random service selection with no trust system enabled. Then we demonstrate

ServiceTrust’s resistibility against the threats of malicious reputation manipulation

and QoS abuse. All the experiments are based on the composite service presented in

Section 2.6.1. The issue of initial trust for new services is not directly related to

either the effectiveness on service selection or the resistibility against threats, and

hence is not included in the experiments.

6.4.1 Simulation configuration

Network model. We set up a SOC environment based on our previous work [42] in

which the service consumers look up the service providers in an efficient

decentralised way. The simulation environment consists of 400 service consumers

and 200 service providers. Service consumers can issue requests for services and

service providers respond to these requests. The service consumers and providers

communicate in a P2P manner. The service consumers can access all the information

about the service providers’ historic performance.

Node model. Five types of services are provided by the 200 service providers, 40

for each. Each service provider has an inherent success rate randomly picked from a

certain interval for its past and forthcoming service transactions. Different intervals

for inherent success rates, including [0.9, 1], [0.8, 1] [0.7, 1], [0.6, 1], [0.5, 1] and

[0.4, 1], are used to simulate different volatile environments, [0.9, 1] being the best

and [0.4, 1] being the worst. In all experiments, service providers perform service

transactions at their inherent success rates except under threat model #5 in

experiment #6. In the experiments with ServiceTrust enabled, genuine service

consumers select the available service provider they have the highest trust over

(global trust in experiments #1 to #5 and transactional trust in experiment #6), and

rate service transactions honestly. Malicious service consumers select service

providers and rate service transactions under corresponding threat models. The

threat models will be detailed in Section 26.4.3. In experiments where ServiceTrust is

117

disabled, service consumers randomly select service providers.

Simulation execution. The simulation proceeds in simulation cycles. Each

simulation cycle is subdivided into an evaluation cycle, a transaction cycle and a

rating cycle. The details about each cycle are as follows:

 In an evaluation cycle, each service consumer initiates an instance of the

composite service. Then the service consumers evaluate their global trust or

transactional trust over the service providers for the five component

services – manufacturing, rough processing, fine machining, land carriage

and shipping – that compose the composite service.

 In a transaction cycle, each service consumer requests five services – one

for each component service – based on the results from the trust evaluation

in the evaluation cycle. Service providers correspond and complete service

transactions. In each transaction cycle, each service provider can

accommodate up to a maximum of 40 service requests. If a service provider

is fully loaded, the service consumer will turn to the functionally equivalent

service provider it has the next highest trust over.

 In a rating cycle, service consumers rate the service transactions honestly or

under corresponding threat models. Binary rating values, described in

Section 26.2.1, are used 6

7.

Upon the completion of each simulation cycle, the success rates of overall

composite service instances are collected. Each experiment is run 20 times and the

results of all runs are averaged. We analyse the statistics to assess ServiceTrust by

measuring the average success rates of overall composite service instances.

ServiceTrust parameters. Table 6.1 summarises the parameters carefully chosen

for the simulation in order to calculate service consumers’ trust over service

7 We choose not to use numeric ratings to avoid unnecessary issue of modeling service

consumer’s satisfaction from QoS.

118

providers based on their historic performance in the long term.

Table 6.1 ServiceTrust parameters used in simulation

α θ s σ ε k

The base configurations used in each experiment are summarised in Table 6.2.

Table 6.2 Experimental settings

Experiments #1 - #6
#1

Number of
Service Providers

Number of
Service Types

#2 #3 #4 #5 #6

5 5 5 5 5 5

200 200 200 200 200 200

Number of Service
Consumers 400 400 400 400 400 400

Percentage of
Malicious Service
Consumers and

Providers

0% 10% -
70%

10% -
70%

10% -
70%

10% -
70%

10% -
70%

Interval for
Inherent Success
Rates of Service

Providers

[0.9, 1]
to

[0.4, 1]
in steps
of 0.1

[0.4 1] [0.4 1] [0.4 1] [0.4 1] NA

Number of
Simulation

Cycles
20 20 20 20 20 20

119

6.4.2 Effectiveness of ServiceTrust

In experiment #1, we compare the average success rates of overall composite service

instances with ServiceTrust enabled against disabled in volatile environments

without malicious attacks.

Experiment #1.

Setup. In experiments where ServiceTrust is enabled, service consumers evaluate

their global trust over service providers in the evaluation cycle. In the transaction

cycle, each service consumer issues five service requests to the available service

providers which it has the highest global trust over. The service providers

correspond by performing the service transaction at their own inherent success rates.

In the rating cycle, service consumers rate the service transactions honestly. In

experiments where ServiceTrust is disabled, the only difference is that service

consumers do not evaluate their trust over the service providers. Instead, they select

service providers randomly. Six volatile environments are simulated using different

intervals for the service providers’ inherent success rates.

Figure 6.4 Increase of average success rates of overall composite service
instances with ServiceTrust enabled

0
10
20
30
40
50
60
70
80
90

100

[0.9‐1] [0.8‐1] [0.7‐1] [0.6‐1] [0.5‐1] [0.4‐1]

A
ve
ra
ge
 S
uc
ce
ss
 R
at
e
(%

)

Interval of Historic Success Rates

ServiceTrust Disabled ServiceTrust Enabled

120

Discussion. Figure 6.4 depicts and compares the results from experiment #1. The

results show that ServiceTrust can significantly increase the average success rates of

overall composite service instances in different volatile experiments. As the

environment becomes more volatile, the average success rate decreases drastically in

the absence of ServiceTrust. But with ServiceTrust enabled, even when different

service providers’ success rates vary in the largest interval, i.e. [0.4, 1], the average

success rate of overall composite service instances still remains at 93% in contrast to

around 70% in the case of no ServiceTrust enabled.

6.4.3 Resistibility against threats

Table 6.3 Service consumers and providers’ behaviour

We now evaluate ServiceTrust’s resistibility against the threats of malicious

reputation manipulation and QoS abuse. Malicious reputation manipulation includes

121

patterns described by four threat models: individual and collective malicious

reputation boost, individual and collective malicious reputation ruin. The four threat

models describe different strategic malicious behaviour of the service consumers

who are manipulated or faked by malicious service providers to interact with targets

intentionally and to provide incorrect ratings. The threat model for QoS abuse

describes the service providers’ strategic change of behaviour in QoS offering. Table

6.3 lists the service consumers and providers’ behaviour under each threat model.

For QoS abuse, we evaluate the ServiceTrust’s resistibility against transaction

amount abuse for demonstration.

Experiment #2.

Threat model #1. Individual malicious reputation boost. Under this model,

malicious service consumers and providers do not recognise each other until they

interact. Malicious service consumers rate 1 over all the service transactions with

malicious service providers.

Setup. In each experiments, the service providers’ success rates of service

transactions are picked from the interval of [0.4, 1]. 10%, 20%, 30%, 40%, 50%, 60%

and 70% service consumers and providers are set malicious to simulate different

volatile environments. Service consumers are randomly picked to be malicious

while service providers with lower inherent success rates are more likely to be set

malicious. A malicious service consumer randomly selects available service

providers to request for services. Malicious service consumers rate 1 over all the

service transactions with malicious service providers.

Discussion. Figure 6.5 depicts the average success rates of overall composite service

instances in different volatile environments with ServiceTrust enabled and disabled

as the simulation proceeds through 20 simulation cycles. The results show that as the

percentage of malicious service consumers and providers increases the average

success rate throughout the simulation decreases, but still remains higher than

random service selection for most of the time (more than 99%). We observe that the

malicious attack can slightly decrease the average success rates from time to time by

122

boosting the malicious service providers’ reputations. It makes the genuine service

consumers trust and select the malicious service providers more. Those malicious

service providers have relatively low inherent success rates and thus bring down the

average success rates of overall composite service instances. We also observe that

the average success rates always recover to a normal level soon after decreasing due

to malicious attack (usually no more than 2 simulation cycles). The reason is that the

malicious service providers lose the genuine service consumers’ trust with their poor

performance due to relatively low inherent success rates. And the service consumers’

trust over the genuine service providers can be recovered by the correct ratings from

successful service transactions with the genuine consumer providers. The conclusion

is that ServiceTrust can well protect the service trust system from being undermined

by individual malicious reputation boost.

Figure 6.5 Average success rates in different volatile environments under threat

model #1

Experiment #3.

Threat model #2. Collaborative malicious reputation boost. Under this threat

model, malicious service consumers know about malicious service providers in the

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
ve
ra
ge
 S
uc
ce
ss
 R
at
e
(%

)

of Simulation Cycle

10%

20%

30%

40%

50%

60%

70%

Random

123

first place. They form a malicious collective by performing service transactions

among themselves and rate 1 over all such transactions.

Setup. The simulation is run with the similar configuration described in experiment

#2 albeit with the malicious service consumers behaving under threat model #2.

Figure 6.6 Averagge success rates in different volatile environments under

threat model #2

Discussion. Figure 6.6 depicts the results from experiment #3. The results are

similar to those from experiment #2. Service selection with ServiceTrust enabled

performs better than random service selection for most of the time. The average

success rate drops down from time to time but always recovers soon. The attack

from malicious service consumers can slightly decrease the average success rate in

the short term but cannot last long. The service trust system is safely guarded by

ServiceTrust from collective malicious reputation ruin.

Experiment #4.

Threat model #3. Individual malicious reputation ruin. Under this model, malicious

service consumers and providers do not recognise each other until they interact.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
ve
ra
ge
 S
uc
ce
ss
 R
at
e
(%

)

of Simulation Cycle

10%

20%

30%

40%

50%

60%

70%

Random

124

Malicious service consumers rate 0 over all the service transactions with genuine

service providers.

Setup. The experiment configuration is similar to that in experiment #2, albeit with

malicious service consumers behaving under threat model #3.

Figure 6.7 Averagge success rates in different volatile environments under

threat model #3

Discussion. Figure 6.7 depicts the results from experiment #4. The average success

rates of composite service instances when ServiceTrust is enabled are better than

random service selection for most of the time. The short-term decrease of the

average success rate caused by the malicious attack is insignificant. Service

consumers’ trust over the genuine service providers always recover soon after being

ruined by the malicious service consumers. This experiment demonstrates that

ServiceTrust can well resist the threat of individual malicious reputation ruin.

Experiment #5.

Threat model #4. Collective malicious reputation ruin. Under this model, the

malicious service consumers know about the malicious service providers beforehand.

125

They form a malicious collective. Malicious service consumers perform service

transactions only with service providers that do not belong to the malicious

collective and rate 0 over all such transactions.

Setup. The experiment configuration is similar to experiment #3. The only

difference is that malicious service consumers only request for services from

genuine service providers.

Figure 6.8 Averagge success rates in different volatile environments under

threat model #4

Discussion. Figure 6.8 depicts the results from experiment #5. The average success

rates of overall composite service instances rarely drop down to lower than 50%

under the malicious attack. The waves in Figure 6.8 demonstrate that the attack still

takes effect only in the short term. Both the genuine and malicious service

consumers select the genuine service providers, albeit with different aims. The

malicious service providers – the ones with relatively low inherent success rates –

are not selected by any service consumers at all. As a result, there are no ratings over

them in any simulation cycles. As presented in Section 26.2.2, those malicious service

providers will lose the service consumers’ trust and thus will not be selected any

more. Meanwhile, the genuine service consumers’ correct ratings can protect the

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
ve
ra
ge
 S
uc
ce
ss
 R
at
e
(%

)

of Simulation Cycle

10%

20%

30%

40%

50%

60%

70%

Random

126

genuine service providers from the malicious attack in the long term. Therefore, the

average success rate of overall composite service instances always remains at a very

high level. This experiment demonstrates that ServiceTrust has very good

resistibility against collective malicious reputation ruin.

Experiment #6.

Threat model #5. Transaction amount abuse. Under this model, the malicious

service providers provide fraudulent services at the probability of1 γ− (see formula

(6.7) in Section 26.2.4).

Setup. Service providers’ history of transaction amounts are generated using

randomly created normal distribution functions, ranging from 50 to 250 monetary

units. An example of three normal distribution functions used can be found in Figure

6.9. The quotes of requested service transactions are randomly picked from the

interval of [50, 250]. In this set of experiments, a malicious service provider is a

service provider whose average transaction amount is smaller than the quote of the

requested service transaction. A malicious service provider performs a fraudulent

service transaction at the probability of 1 γ− . We control the generation of the quotes

for requested service transactions and the history of transaction amounts of the

service providers to create different volatile environments with malicious service

consumers and providers consisting of a fraction of 10% to 70% in steps of 10%. To

identify ServiceTrust’s resistibility against transaction amount abuse, we only look

at the numbers of fraudulent services caused by unusually high transaction amounts.

The failed service transactions caused by service providers’ inherent failure rates are

not taken into statistics.

Discussion. Figure 6.10 depicts the results from experiment #6. The results show

that ServiceTrust can almost perfectly protect the service consumers from being

deceived by transaction amount abuse. In the most volatile environment with 70%

malicious service consumers and providers, the average success rate is still above

99%. The reason is that when the transaction amount is unusually higher than the

127

normal amounts that a service provider used to deal with, the service consumer’s

transactional trust over that service provider drops immediately and drastically. The

chance is very slim that a malicious service provider will be selected by a service

consumer.

Figure 6.9 An example of normal distribution functions used to generate service

providers’ historic transaction amounts

Figure 6.10 Average success rates in different volatile environments under

threat model #5

128

6.5 Discussion

ServiceTrust can help service consumers identify trustworthy service providers and

resist the threats of malicious reputation manipulation and QoS abuse. The service

consumers’ trust over the service providers can be taken into account as one of the

criteria to compare the service providers. Both SLA negotiation and SLA adaptation

can benefit from the trust information provided by ServiceTrust as they both involve

the process of service selection, i.e. service provider selection. Obviously, selecting

trustworthy service providers can minimise service failures caused by service

providers’ incapability at runtime.

ServiceTrust can provide more than the abovementioned functionality through

collecting and analysing more comprehensive information other than the results of

SLA enforcement, for example, QoS that service providers have ever proposed in

the process of SLA negotiation. As discussed in Chapter 5, the possible QoS that

service providers can provide can be used to facilitate SLA adaptation. Recall that

ServiceTrust estimates transaction trust based on service providers’ historic QoS, i.e.

QoS service providers have ever provided in past SLA enforcement. The

information of service providers’ historic QoS, collected by ServiceTrust, can be

used to estimate the possible QoS that the service providers can provide. By doing

so, the accuracy of the results from formulas (5.1)-(5.3), (5.5)-(5.6), (5.8)-(5.9),

(5.10) and (5.12) can be improved, which will improve the effectiveness of the SLA

adaptation approach presented in Chapter 5.

6.6 Summary

In this chapter, we presented ServiceTrust – a novel service trust system which

supports SLA enforcement based on SLA profiling. ServiceTrust can improve the

success rate of composite services by helping service consumers identify trustworthy

service providers through analysing service providers’ long-term reputation as

demonstrated by the experimental results. In addition, experimental results show that

ServiceTrust can well resist the following malicious threats: 1) individual malicious

129

reputation boost; 2) collective malicious reputation boost; 3) individual malicious

reputation ruin; 4) collective malicious reputation ruin; and 5) QoS abuse.

130

Chapter 7

Conclusions and future work

In this chapter, we summarise this thesis and the contribution of this thesis and

discuss some future research directions for SLA management for service

composition.

7.1 Summary of this thesis

The primary objective of this research is to investigate a comprehensive solution to

SLA management for service composition. The summary of this thesis is as follows:

 Chapter 1 introduced the basic concepts of SOC and service composition. It

also introduced the key issues addressed in this thesis and the structure of

this thesis.

 Chapter 2 introduced the related concepts involved in this thesis, including

service, service composition, SLA, as well as the major work related to

SLA negotiation, SLA adaptation and SLA profiling. It also presented the

research requirements analysis. Based on the requirements analysis, it was

argued that a comprehensive solution to SLA management for service

composition is needed. The issue of QoS-aware service composition must

be addressed at build time, runtime and completion time. Also, effective

and efficient SLA management for service composition must be provided in

an integrated way.

131

 Chapter 3 introduced the lifetime of SLA, including three major stages:

establishment, enforcement and completion. Each of these stages involves

one or more supporting SLA operations. In the model of SLA lifetime

proposed in this thesis, SLA negotiation is adopted to support SLA

establishment, SLA monitoring, compliance checking and adaptation

constitute SLA enforcement, and SLA profiling is performed upon SLA

completion. The SLA operations not only provide the required

functionalities at respective stage of the SLA lifetime, but also interact with

each other to provide a comprehensive and integrated solution to SLA

management for service composition.

 Chapter 4 presented Combinatorial Auction for Service Selection (CASS) –

an innovative SLA negotiation approach to support SLA establishment for

service composition based on combinatorial auction. In CASS, the

component services that compose a composite service are open for auction.

Candidate service providers are allowed to bid for multiple component

services that have multiple QoS properties. Round by round, the candidate

service providers can revise their bids. The final winning service providers

are selected to provide corresponding component services. According to the

experimental results, CASS can significantly improve the effectiveness of

the SLA negotiation for service composition in an efficient way.

 Chapter 5 introduced a new SLA adaptation approach to support SLA

enforcement for service composition. The proposed approach considers

both the benefit and the cost of the adaptation solution. The adaptation

solution that brings the most profit will be selected. In addition, the impact

of the adaptation of the faulty component service on other component

services is taken into account. Workflow patterns are used to specify the

scope of adaptation, aiming to fulfil the service consumers’ QoS

requirements for the composite services. As demonstrated by the

experimental results, the proposed SLA adaptation approach can achieve

132

the goal of satisfying service consumers’ QoS requirements for the

composite services much better.

 Chapter 6 introduced ServiceTrust – a novel service trust system to support

reputation-oriented service selection based on SLA profiling which is

performed upon the completion of SLAs. The trust architecture consists of

local transactional rating, local trust, global trust and transactional trust.

Those trust values are calculated based on service providers’ historic

performance over past SLA enforcement. As illustrated by the experimental

results, ServiceTrust can significantly improve the success rates of the

composite services and well protect service consumers from the threats of

malicious reputation manipulation and QoS abuse. The trust information

provided by ServiceTrust can also be used to enhance SLA negotiation and

SLA adaptation in an integrated manner.

7.2 Contribution of this thesis

The significance of this thesis is that it addresses the problem of QoS-aware service

composition at build time, runtime and completion time. This research investigates a

set of technologies that supports different SLA operations at different stages of SLA

lifetime. This research contributes significantly a lot to the challenging research area

of service composition. The major outcome of this research is a comprehensive and

integrated solution to SLA management for service composition. The effectiveness

of the proposed technologies that constitute the solution has been evaluated by

experiments. Therefore, this research illustrates cutting-edge technologies for SLA

management for service composition. The key contribution of the work presented in

this thesis is fourfold:

 The lifetime of SLA is proposed, which consists of three stages:

establishment, enforcement and completion. The SLA operations that

support each of the stages are also identified: SLA negotiation for

enforcement, SLA monitoring, compliance checking and adaptation for

133

enforcement, and SLA profiling for SLA completion. Moreover, the

interactions among the SLA operations that facilitate a comprehensive and

integrated solution to SLA management for service composition are also

presented.

 An innovative SLA negotiation approach for service composition, namely

Combinatorial Auction for Service Selection (CASS), is designed to

support SLA establishment. CASS captures the dynamics of the service

providers by allowing bidders to bid for combinations of component

services and to flexibly express their offers and preferences for the quality

of the component services. CASS also addresses the issue of

multi-dimensional QoS by adopting a flexible QoS model and a

multi-dimensional QoS-based bid evaluation scheme named Additive

Ranking Position Evaluation (ARPE). A heuristic solution is provided to

solve the winner determination problem. The ask QoS generation is

designed for coordinating the auction process. The experimental evaluation

shows that, by allowing the service providers to bid for combinations of

component services and the giving them the incentives to bid aggressively,

the effectiveness of the SLA negotiation can be significantly improved –

the quality of the composite service achieved from the SLA negotiation can

be improved. In addition, CASS is also demonstrated to be efficient in

environments on different scales.

 A new SLA adaptation approach to support SLA enforcement for service

composition based on workflow patterns is designed. Value of changed

information (VOC) is extended and replied to SLA adaptation for service

composition. VOC is used to compute the tradeoff between the expected

value and the cost from adapting the service. The SLA adaptation is

performed only when it will pay off. Workflow patterns are used to define

the scope of the adaptation when multiple component services need to be

adapted. By doing so, the adaptation can be confined within a certain scope,

134

limiting the impact of faulty component services on other component

services.

 A novel service trust system called ServiceTrust is designed to support

reputation-oriented service selection based on SLA profiling upon SLA

completion. ServiceTrust can quantify and compare the trustworthiness of

service providers based on their historic performance over SLA

enforcement. ServiceTrust combines a service consumers’ and other service

consumers’ personal trust to estimate the service consumer’s global trust

over a service provider. One unique feature of ServiceTrust is to calculate

the credibility of a service consumer’s trust over a service provider by

taking into account the temporal factor and the relationship duration

between them. Another feature of ServiceTrust is to evaluate service

consumers’ transactional trust over service providers by considering the

QoS of their past service transactions.

7.3 Future work

In the future, further investigation into SLA management for service composition

can be carried out in several directions:

 During the process of SLA establishment, before the SLA negotiation, the

service consumers’ requirements must be mapped to machine-readable

terms according to standard SLA specifications. This process is actually

dependent on who will automatically perform the SLA negotiation on

behalf of the service consumers. For example, if agent technologies are

adopted to automate the SLA negotiation, before the negotiation, the

service consumers’ QoS requirements must be translated and specified in

an agent-readable way.

 The impact from different bidder behaviours on the effectiveness and

efficiency of CASS can be taken into account when further elaborating

135

CASS. Furthermore, some add-on mechanisms can be designed to automate

or semi-automate the process of CASS by allowing service consumers and

providers to preset the thresholds of their offers to be proposed in CASS.

 The accuracy of VOC computation adopted in the SLA adaptation approach

can be improved by using ServiceTrust. The efficiency of the proposed

SLA adaptation approach can be evaluated through corresponding

experiments.

 The impact of adapting one faulty component service on a region, i.e. a

group of component services, instead of just one service can be

investigated.

 A complementary scheme can be designed to offer incentive to service

consumers to participate in ServiceTrust and provide correct ratings over

SLA enforcement. Furthermore, the resistibility of ServiceTrust against

more threats that exist in the open SOC environment can be further

investigated.

 Experiments can be conducted to assess the performance of the proposed

approaches in the cloud computing environment.

136

Bibliography

[1] Agarwal, V., Chafle, G., Dasgupta, K., Karnik, N. M., Kumar, A., Mittal, S., Srivastava, B.:
"Synthy: A System for End to End Composition of Web Services", Journal of Web
Semantics, vol. 3, no. 4, pp. 311-339, 2005.

[2] Agarwal, V., Dasgupta, K., Karnik, N. M., Kumar, A., Kundu, A., Mittal, S., Srivastava, B.
"A Service Creation Environment Based on End to End Composition of Web Services",
Proc of 14th International Conference on World Wide Web (WWW2005), Chiba, Japan,
2005, pp. 128-137.

[3] Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., Ford, M., Goland, Y.,
Guízar, A., Kartha, N., Liu, C. K., Khalaf, R., König, D., Marin, M., Mehta, V., Thatte, S.,
van der Rijn, D., Yendluri, P., Yiu, A., "Web Services Business Process Execution
Language Version 2.0", OASIS,
2007, 1http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf.

[4] Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Toshiyuki, N., Pruyne, J.,
Rofrano, J., Tuecke, S., Xu, M., "Web Services Agreement Specification (WS-Agreement)",
World-Wide-Web Consortium (W3C), 2007, 1http://www.ogf.org/documents/GFD.107.pdf.

[5] Ardagna, D., Pernici, B.: "Adaptive Service Composition in Flexible Processes", IEEE
Transactions on Software Engineering, vol. 33, no. 6, pp. 369-384, 2007.

[6] Baligand, F., Rivierre, N., Ledoux, T. "A Declarative Approach for QoS-Aware Web
Service Compositions", Proc of 5th International Conference on Service-Oriented
Computing (ICSOC2007), Vienna, Austria, 2007, Springer, pp. 422-428.

[7] Banerjee, D., Dürst, M. J., McKenna, M., Phillips, A., Suzuki, T., Texin, T., Trumble, M.,
Vine, A., Noji, K., "Web Services Internationalization Usage Scenarios", W3C,
2004, 1www.w3.org/TR/2004/WD-ws-i18n-scenarios-20040512/.

[8] Berbner, R., Spahn, M., Repp, N., Heckmann, O., Steinmetz, R. "Heuristics for QoS-aware
Web Service Composition", Proc of IEEE International Conference on Web Services
(ICWS2006), Chicago, Illinois, USA, 2006, IEEE Computer Society, pp. 72-82.

[9] Biron, P. V., Permanente, K., Malhotra, A., "XML Schema Part 2: Datatypes Second
Edition", W3C, 2004, 1http://www.w3.org/TR/xmlschema-2/.

[10] Blau, P.: "Exchange and Power in Social Life", John Wiley & Sons. New York, 1964.
[11] Bonatti, P. A., Festa, P. "On Optimal Service Selection", Proc of 14th International

Conference on World Wide Web (WWW2005), Chiba, Japan, 2005, pp. 530-538.
[12] Boutilier, C., Hoos, H. H. "Bidding Languages for Combinatorial Auctions", Proc of 17th

International Joint Conference on Artificial Intelligence (IJCAI2001), Seattle, Washington,
USA, 2001, pp. 1211-1216.

[13] Brassard, G., Bratley, P.: "Fundamentals of Algorithmics", Prentice-Hall, 1995.
[14] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Yergeau, F., Cowan, J.,

"Extensible Markup Language (XML) 1.1 (Second Edition)", W3C,
2006, 1http://www.w3.org/TR/xml11.

137

[15] Canfora, G., Penta, M. D., Esposito, R., Perfetto, F., Villani, M. L. "Service Composition
(re)Binding Driven by Application-Specific QoS", Proc of 4th International Conference on
Service-Oriented Computing (ICSOC2006), Chicago, IL, USA, 2006, Springer, pp. 141-152.

[16] Cardellini, V., Casalicchio, E., Grassi, V., Presti, F. L. "Flow-Based Service Selection for
Web Service Composition Supporting Multiple QoS Classes", Proc of IEEE International
Conference on Web Services (ICWS2007), Salt Lake City, Utah, USA, 2007, IEEE
Computer Society, pp. 743-750.

[17] Chafle, G., Dasgupta, K., Kumar, A., Mittal, S., Srivastava, B. "Adaptation in Web Service
Composition and Execution", Proc of IEEE International Conference on Web Services,
Chicago, Illinois, USA, 2006, IEEE Computer Society, pp. 549-557.

[18] Chafle, G., Doshi, P., Harney, J., Mittal, S., Srivastava, B. "Improved Adaptation of Web
Service Compositions Using Value of Changed Information", Proc of IEEE International
Conference on Web Services (ICWS 2007), Salt Lake City, Utah, USA, 2007, IEEE
Computer Society, pp. 784-791.

[19] Charfi, A., Khalaf, R., Mukhi, N. "QoS-Aware Web Service Compositions Using
Non-intrusive Policy Attachment to BPEL", Proc of 5th International Conference on
Service-Oriented Computing (ICSOC2007), Vienna, Austria, 2007, Springer, pp. 582-593.

[20] Chinnici, R., Moreau, J.-J., Ryman, A., Weerawarana, S., "Web Services Description
Language (WSDL) Version 2.0 Part 1: Core Language", W3C,
2007, 1http://www.w3.org/TR/wsdl20/.

[21] Chou, Y.-l.: "Statistical Analysis: With Business and Economic Applications", Holt,
Rinehart and Winston, 1969.

[22] Christensen, E., Curbera, F., Meredith, G., Weerawarana, S., "Web Services Description
Language (WSDL) 1.1", W3C, 2001, 1http://www.w3.org/TR/wsdl.

[23] Clement, L., Hately, A., von Riegen, C., Rogers, T., "UDDI Version 3.0.2", OASIS,
2004, 1http://www.uddi.org/pubs/uddi_v3.htm.

[24] Colan, M., "Service-Oriented Architecture Expands the Vision of Web Services",
2004, 1http://www.ibm.com/developerworks/webservices/library/ws-soaintro.html?S_TACT
=105AGX04&S_CMP=LP.

[25] Combe, C.: "Introduction to e-Business: Management and Strategy",
Butterworth-Heinemann, 2006.

[26] Cornelli, F., Damiani, E., di Vimercati, S. D. C., Paraboschi, S., Samarati, P. "Choosing
Reputable Servents in a P2P Network", Proc of 11th International Conference on World
Wide Web (WWW2002), Honolulu, Hawaii, USA, 2002, ACM Press, pp. 376-386.

[27] Cramton, P. S., Y., Steinberg, R.: "Combinatorial Auctions", MIT Press. Cambridge, Mass.,
2006.

[28] Damiani, E., Vimercati, D. C. D., Paraboschi, S., Samarati, P., Violante, F. "A
Reputation-Based Approach for Choosing Reliable Resources in Peer-to-Peer Networks",
Proc of 9th ACM Conference on Computer and Communications Security (CCS2002),
Washington, DC, USA, 2002, ACM Press, pp. 207-216.

[29] Doyle, S. X., Roth, G. T.: "Selling and Sales Management in Action: The Use of Insight
Coaching to Improve Relationship Selling", Journal of Personal Selling & Sales
Management, vol. 12, no. 1, pp. 59-64, 1992.

[30] Evans, M., Hastings, N., Peacock, B.: "Statistical Distributions", Wiley-Interscience, 2000.
[31] Fallside, D. C., Walmsley, P., "XML Schema Part 0: Primer Second Edition", W3C,

2004, 1http://www.w3.org/TR/xmlschema-0/.
[32] Farrell, J., Lausen, H., "Semantic Annotations for WSDL and XML Schema (SAWSDL)",

World Wide Web Consortium (W3C), 2007, 1http://www.w3.org/TR/sawsdl/.
[33] Fielding, R., Gettys, J., Mogul, J. C., Frystyk, H., Berners-Lee, T. "Hypertext Transfer

Protocol -- HTTP/1.1," RFC 2616, 1997.
[34] Gefen, D.: "E-Commerce: the Role of Familiarity and Trust", Omega, vol. 28, no. 6, pp.

725-737, 2000.

138

[35] Girish B. Chafle, Sunil Chandra, Vijay Mann, Mangala Gowri Nanda. "Decentralized
Orchestration of Composite Web Services", Proc of 13th International Conference on World
Wide Web (WWW2004), New York, NY, USA, 2004, ACM, pp. 134-143.

[36] Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., Nielsen, H. F., Karmarkar, A.,
Lafon, Y., "SOAP Version 1.2", W3C, 2007, 1http://www.w3.org/TR/soap12-part1/.

[37] Haas, H., Brown, A., "Web Services Glossary", W3C Working Group,
2004, 1http://www.w3.org/TR/ws-gloss/.

[38] Harney, J., Doshi, P. "Adaptive Web Processes Using Value of Changed Information", Proc
of 4th International Conference on Service-Oriented Computing, Chicago, IL, USA, 2006,
Springer, pp. 179-190.

[39] Harney, J., Doshi, P. "Speeding Up Adaptation of Web Service Compositions Using
Expiration Times", Proc of 16th International Conference on World Wide Web, Banff,
Alberta, Canada, 2007, ACM, pp. 1023-1032.

[40] He, Q., Yan, J., Jin, H., Yang, Y. "Adaptation of Web Service Composition Based on
Workflow Patterns", Proc of 6th International Conference on Service-Oriented Computing
(ICSOC08), Sydney, Australia, 2008, Lecture Notes in Computer Science, pp. 22-37.

[41] He, Q., Yan, J., Kowalczyk, R., Jin, H., Yang, Y. "Lifetime Service Level Agreement
Management with Autonomous Agents for Services Provision," Information Sciences,
2009, 1http://dx.doi.org/10.1016/j.ins.2009.01.037.

[42] He, Q., Yan, J., Yang, Y., Kowalczyk, R., Jin, H. "Chord4S: A P2P-based Decentralised
Service Discovery Approach", Proc of IEEE International Conference on Services
Computing (SCC2008), Honolulu, Hawaii, USA, 2008, IEEE Computer Society, pp.
221-228.

[43] Hoffmann, J., Bertoli, P., Pistore, M. "Web Service Composition as Planning, Revisited: In
Between Background Theories and Initial State Uncertainty", Proc of 22nd AAAI
Conference on Artificial Intelligence (AAAI2005), Vancouver, British Columbia, Canada,
2007, pp. 1013-1018.

[44] Huhns, M. N., Singh, M. P.: "Service-Oriented Computing: Key Concepts and Principles",
IEEE Internet Computing, vol. 9, no. 1, pp. 75-81, 2005.

[45] Hwang, S.-Y., Wang, H., Tang, J., Srivastava, J.: "A Probabilistic Approach to Modeling
and Estimating the QoS of Web-Services-Based Workflows", Information Sciences, vol. 177,
no. 23, pp. 5484-5503, 2007.

[46] Jøsang, A., Ismail, R., Boyd, C.: "A Survey of Trust and Reputation Systems for Online
Service Provision", Decision Support Systems, vol. 43, no. 2, pp. 618-644, 2007.

[47] Jaeger, M. C., Mühl, G., Golze, S. "QoS-Aware Composition of Web Services: A Look at
Selection Algorithms", Proc of IEEE International Conference on Web Services
(ICWS2005), Orlando, FL, USA, 2005, IEEE Computer Society, pp. 807-808.

[48] Jin, L.-j., Machiraju, V., Sahai, A.: Analysis on Service Level Agreement of Web Services.
Technical Report, HP
Laboratories, 1http://www.hpl.hp.co.uk/techreports/2002/HPL-2002-180.pdf, 2002.

[49] Köksalan, M., Zionts, S.: "Multiple Criteria Decision Making in the New Millennium",
Springer, 2001.

[50] Küster, U., König-Ries, B., Stern, M., Klein, M. "DIANE: An Integrated Approach to
Automated Service Discovery, Matchmaking and Composition", Proc of 16th International
Conference on World Wide Web (WWW2007), Banff, Alberta, Canada, 2007, ACM, pp.
1033-1042.

[51] Kamvar, S. D., Schlosser, M. T., Garcia-Molina, H. "The EigenTrust Algorithm for
Reputation Management in P2P Networks", Proc of 12th International World Wide Web
Conference (WWW2003), Budapest, Hungary, 2003, ACM Press, pp. 640-651.

[52] Keller, A., Ludwig, H.: "The WSLA Framework: Specifying and Monitoring Service Level
Agreements for Web Services", Journal of Network and Systems Management, vol. 11, no. 1,
pp. 57-81, March 2003.

139

[53] Khalaf, R., Mukhi, N., Weerawarana, S. "Service-Oriented Composition in BPEL4WS",
Proc of 12th International Conference on World Wide Web (WWW2003), Budapest,
Hungary, 2003.

[54] Ko, J. M., Kim, C. O., Kwon, I.-H.: "Quality-of-Service Oriented Web Service Composition
Algorithm and Planning Architecture", Journal of Systems and Software, vol. 81, no. 11, pp.
2079-2090, 2008.

[55] Kona, S., Bansal, A., Gupta, G. "Automatic Composition of Semantic Web Services", Proc
of International Conference on Web Services (ICWS2007), Salt Lake City, Utah, USA, 2007,
IEEE Computer Society, pp. 150-158.

[56] Kopecký, J., Vitvar, T., Bournez, C., Farrell, J.: "SAWSDL: Semantic Annotations for
WSDL and XML Schema", IEEE Internet Computing, vol. 11, no. 6, pp. 60-67, 2007.

[57] Kreger, H.: Web Services Conceptual Architecture (WSCA 1.0). IBM, 2001.
[58] Lam, S. K., Riedl, J. "Shilling Recommender Systems for Fun and Profit", Proc of 13th

International Conference on World Wide Web (WWW2004) New York, NY, USA, 2004,
ACM Press, pp. 393-402.

[59] Leff, A., Rayfield, J. T., Dias, D. M.: "Service-Level Agreements and Commercial Grids",
IEEE Internet Computing, vol. 7, no. 4, pp. 44-50, 2003.

[60] Leymann, F., "Web Services Flow Language (WSFL 1.0)", IBM,
2001, 1http://xml.coverpages.org/WSFL-Guide-200110.pdf.

[61] Li, Y., Huai, J., Deng, T., Sun, H., Guo, H., Du, Z. "QoS-aware Service Composition in
Service Overlay Networks", Proc of IEEE International Conference on Web Services
(ICWS2007), Salt Lake City, Utah, USA, 2007, IEEE Computer Society, pp. 703-710.

[62] Litke, A., Konstanteli, K., Andronikou, V., Chatzis, S., Varvarigou, T.: "Managing Service
Level Agreement Contracts in OGSA-based Grids", Future Generation Computer Systems,
vol. 24, no. 4, pp. 245-258 2008.

[63] Liu, Y., Tham, C.-K., Jiang, Y.: "Conformance Analysis in Networks with Service Level
Agreements", Computer Networks, vol. 47, no. 6, pp. 885-906, 2005.

[64] Liu, Z., Squillante, M. S., Wolf, J. L. "On Maximizing Service-Level-Agreement Profits",
Proc of 3rd ACM Conference on Electronic Commerce (EC2001), Tampa, Florida, USA,
2001, ACM, pp. 213-223.

[65] Ludwig, H., Dan, A., Kearney, R. "Cremona: An Architecture and Library for Creation and
Monitoring of WS-Agreements", Proc of 2nd International Conference on Service Oriented
Computing (ICSOC2004), New York, USA, 2004, pp. 65-74.

[66] Ludwig, H., Keller, A., Dan, A., King, R. P., Franck, R., "Web Service Level Agreement
(WSLA) language specification, Version 1.0", IBM,
2003, 1http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf.

[67] Luhmann, N.: "Trust and Power", Wiley, 1979.
[68] Mani, A., Nagarajan, A., "Understanding Quality of Service for Web services", IBM,

2002, 1http://www.ibm.com/developerworks/library/ws-quality.html.
[69] Marsh, S. P.: "Formalising Trust as a Computational Concept", PhD Thesis, Department of

Mathematics and Computer Science, University of Stirling, 1994.
[70] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D. M., Sheila, Narayanan, S.,

Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K., "OWL-S: Semantic
Markup for Web Services", World Wide Web Consortium (W3C),
2004, 1http://www.w3.org/Submission/OWL-S/.

[71] McKnight, D. H., Choudhury, V., Kacmar, C. "Trust in E-Commerce Vendors: A
Two-Stage Model", Proc of 21st International Conference on Information Systems
(ICIS2000), Brisbane, Queensland, Australia 2000, ACM Press, pp. 532-536.

[72] Milanovic, N., Malek, M.: "Current Solutions for Web Service Composition", IEEE Internet
Computing, vol. 8, no. 6, pp. 51-59, 2004.

[73] Milgrom, P.: "Putting Auction Theory to Work", Cambridge University Press, 2004.
[74] Milgrom, P.: "The Structure of Information in Competitive Bidding", PhD Thesis, School of

Humanities and Sciences, Stanford University, 1979.

140

[75] Milner, R.: "A Calculus of Communicating Systems", Springer, 1982.
[76] Mitchell, W.: "Dual Clocks: Entry Order Influences on Incumbent and Newcomer Market

Share and Survival When Specialized Assets Retain Their Value", Strategic Management
Journal, vol. 12, no. 2, pp. 85-100, 1991.

[77] Mohabey, M., Narahari, Y., Mallick, S., Suresh, P., Subrahmanya, S. V. "A Combinatorial
Procurement Auction for QoS-Aware Web Services Composition", Proc of 3rd IEEE
Conference on Automation Science and Engineering (CASE2007), Scottsdale, AZ, USA,
2007, IEEE Computer Society, pp. 716-721.

[78] Nanda, M. G., Chandra, S., Sarkar, V. "Decentralizing Execution of Composite Web
Services", Proc of 19th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA2004), Vancouver, BC,
Canada, 2004, ACM pp. 170-187.

[79] Narendra, N. C., Ponnalagu, K., Krishnamurthy, J., Ramkumar, R. "Run-Time Adaptation of
Non-functional Properties of Composite Web Services Using Aspect-Oriented
Programming", Proc of 5th International Conference on Service-Oriented Computing
(ICSOC2007), Vienna, Austria, 2007, Springer, pp. 546-557.

[80] Nielsen, H., Leach, P., Lawrence, S. "An HTTP Extension Framework," RFC 2774, 2000.
[81] OASIS, "OASIS: Advancing Open Standards for the Information

Society", 1http://www.oasis-open.org/home/index.php.
[82] Papazoglou, M. P. "Service-Oriented Computing: Concepts, Characteristics and Directions",

Proc of 4th International Conference on Web Information Systems Engineering (WISE2003),
Rome, Italy, 2003, IEEE Computer Society, pp. 3-12.

[83] Papazoglou, M. P., Georgakopoulos, D.: "Service-Oriented Computing", Communications of
the ACM, vol. 46, no. 10, pp. 25-28, 2003.

[84] Parkes, D. C., Kalagnanam, J.: "Models for Iterative Multiattribute Procurement Auctions",
Management Science, vol. 51, no. 3, pp. 435-451, 2005.

[85] Pistore, M., Marconi, A., Bertoli, P., Traverso, P. "Automated Composition of Web Services
by Planning at the Knowledge Level", Proc of 19th International Joint Conference on
Artificial Intelligence (IJCAI2005), Edinburgh, Scotland, UK, 2005, pp. 1252-1259.

[86] Ragone, A., Noia, T. D., Sciascio, E. D., Donini, F. M., Colucci, S., Colasuonno, F.: "Fully
Automated Web Services Discovery and Composition through Concept Covering and
Concept Abduction", International Journal of Web Services Research, vol. 4, no. 3, pp.
85-112, 2007.

[87] Ralph L. Keeney, H. R.: "Decisions with Multiple Objectives: Preferences and Value
Trade-Offs", Cambridge University Press, 1993.

[88] Resnick, P., Kuwabara, K., Zeckhauser, R., Friedman, E.: "Reputation Systems",
Communications of the ACM, vol. 43, no. 12, pp. 45-48, 2000.

[89] Rothkopf, M. H., Pekec, A., Harstad, R. M.: "Computationally Manageable Combinatorial
Auctions", Management Science, vol. 44, no. 8, pp. 1131-1147, 1998.

[90] Sandholm, T.: "Algorithm for Optimal Winner Determination in Combinatorial Auctions",
Artificial Intelligence, vol. 135, no. 1-2, pp. 1-54, February 2002.

[91] Skiena, S. S.: "The Algorithm Design Manual", Springer, 1997.
[92] Srivatsa, M., Xiong, L., Liu, L. "TrustGuard: Countering Vulnerabilities in Reputation

Management for Decentralized Overlay Networks", Proc of 14th International Conference
on World Wide Web (WWW2005) Chiba, Japan, 2005, ACM Press, pp. 422-431.

[93] Swan, J. E., Nolan, J. J.: "Gaining Customer Trust: A Conceptual Guide for the Salesperson",
Journal of Personal Selling & Sales Management, vol. 5, no. 2, pp. 39-48, 1985.

[94] Thompson, H. S., Beech, D., Maloney, M., Mendelsohn, N., "XML Schema Part 1:
Structures Second Edition", W3C, 2004, 1http://www.w3.org/TR/xmlschema-1/.

[95] van der Aalst, W. M. P., ter Hofstede, A. H. M., Kiepuszewski, B., P., B. A.: "Workflow
Patterns", Distributed and Parallel Databases, vol. 14, no. 1, pp. 5-51, 2003.

141

[96] Vedamuthu, A. S., Orchard, D., Hirsch, F., Hondo, M., Yendluri, P., Boube, T., Ü., Y.: Web
Services Policy framework (WS-Policy), Version 1.5. World Wide Web
Consortium, 1http://www.w3.org/TR/ws-policy/, 2007.

[97] Vedamuthu, A. S., Orchard, D., Hirsch, F., Hondo, M., Yendluri, P., Boubez, T., Yalçinalp,
Ü., "Web Services Policy 1.5 - Attachment", W3C,
2007, 1http://www.w3.org/TR/ws-policy-attach/.

[98] Verma, K., Doshi, P., Gomadam, K., Miller, J. A., Sheth, A. P. "Optimal Adaptation in Web
Processes with Coordination Constraints", Proc of IEEE International Conference on Web
Services (ICWS2006), Chicago, Illinois, USA, 2006, IEEE Computer Society, pp. 257-264.

[99] Wang, Y., Lin, K.-J.: "Reputation-Oriented Trustworthy Computing in E-Commerce
Environments", IEEE Internet Computing, vol. 12, no. 4, pp. 55-59, 2008.

[100] Wang, Y., Varadharajan, V. "A Time-Based Peer Trust Evaluation in P2P E-commerce
Environments", Proc of International Conference on Web Information Systems Engineering
(WISE2004), Brisbane, Australia, 2004, pp. 730-735.

[101] Wang, Y., Wong, D. S., Lin, K.-J., Varadharajan, V.: "Evaluating Transaction Trust and
Risk Levels in Peer-to-Peer E-Commerce Environments ", Information Systems and
E-Business Management, vol. 6, no. 1, pp. 25-48, 2008.

[102] Wilson, R.: "A Bidding Model of Perfect Competition", Review of Economic Studies, vol. 44,
no. 3, pp. 511-518, 1977.

[103] Wolter, R., "XML Web Services Basics", Microsoft,
2001, 1http://msdn.microsoft.com/en-us/library/ms996507.aspx.

[104] Xiong, L., Liu, L.: "PeerTrust: Supporting Reputation-Based Trust for Peer-to-Peer
Electronic Communities", IEEE Transactions on Knowledge and Data Engineering, vol. 16,
no. 7, pp. 843--857, 2004.

[105] Yu, B., Singh, M. P., Sycara, K. "Developing Trust in Large-Scale Peer-to-Peer Systems",
Proc of 1st IEEE Symposium on Multi-Agent Security and Survivability (MAS&S2004),
Philadelphia, PA, USA, 2004, IEEE CS Press, pp. 1-10.

[106] Yu, T. Z., Yue, Lin, K.-J.: "Efficient Algorithms for Web Services Selection with
End-to-End QoS Constraints", ACM Transactions on the Web, vol. 1, no. 1, pp. 2007.

[107] Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q. Z. "Quality Driven Web
Services Composition", Proc of 12th International Conference on World Wide Web
(WWW2003), Budapest, Hungary, 2003, pp. 411-421.

[108] Zeng, L., Benatallah, B., Ngu, A. H. H., Dumas, M., Kalagnanam, J., Chang, H.:
"QoS-Aware Middleware for Web Services Composition", IEEE Transactions on Software
Engineering, vol. 30, no. 5, pp. 311-327, May 2004.

	01front.pdf
	0BLifetime Service Level Agreement Management for Service Composition
	1BDeclaration
	2BAcknowledgements
	3BAbstract
	4BThe Author’s Publications
	5BTable of Contents
	6BL

	02whole.pdf
	7BChapter 1
	8BIntroduction
	1.1 22BIntroduction to service composition
	1.3 23BOverview of this thesis

	9BChapter 2
	10BLiterature review and requirements analysis
	24BBackground
	2.1.1 57BService
	2.1.2 58BService composition
	2.1.3 59BService level agreement
	2.1.3.1 91BPreliminary
	2.1.3.2 92BSLA specifications
	2.1.3.3 93BSLA specification standards

	2.2 25BResearch problem analysis
	2.3 26BSLA negotiation
	2.3.1 60BRelated work
	2.3.2 61BDiscussion

	2.4 27BSLA adaptation
	2.4.1 62BRelated work
	2.4.2 63BDiscussion

	2.5 28BSLA Profiling
	2.5.1 64BRelated work
	2.5.2 65BDiscussion

	2.6 29BRequirements analysis
	2.6.1 66BA motivating example
	2.6.2 67BSLA negotiation at build time
	2.6.3 68BSLA adaptation at runtime
	2.6.4 69BSLA profiling at completion time

	2.7 30BSummary

	11BChapter 3
	12BService level agreement lifetime
	31BIntroduction
	32BSLA negotiation
	3.3 33BSLA adaptation
	3.4 34BSLA profiling
	3.5 35BDiscussion
	3.6 36BSummary

	13BChapter 4
	14BFlexible negotiation in SLA establishment
	37BPreliminaries
	4.1.1 70BCombinatorial auction
	4.1.2 71BBidding language

	4.2 38BCASS procedure
	4.3 39BCASS mechanisms
	4.3.1 72BBidding constraints
	4.3.1.1 94BXOR bidding language
	4.3.1.2 95BDynamic minimum increment
	4.3.1.3 96BFinal deal-sealing round

	4.3.2 73BQoS model
	4.3.3 74BBid evaluation
	4.3.4 75BWinner determination
	4.3.5 76BAsk QoS generation
	4.3.6 77BCompletion criteria

	4.4 40BExperimental evaluation
	4.4.1 78BExperiment configuration
	4.4.2 79BEffectiveness evaluation
	4.4.3 80BEfficiency evaluation

	4.5 41BDiscussion
	4.6 42BSummary

	15BChapter 5
	16BRuntime adaptation in SLA enforcement
	43BAdaptation for composite service based on workflow patterns
	5.1.1 81BSequence pattern (Seq)
	5.1.2 82BParallel patterns
	5.1.3 83BOther patterns

	5.2 44BAdaptation method
	5.3 45BExperimental evaluation
	5.4 46BDiscussion
	5.5 47BSummary

	17BChapter 6
	18BEffective profiling in SLA completion
	48BDesign consideration
	6.2 49BServiceTrust mechanisms
	6.2.1 84BGenerating local transactional ratings
	6.2.2 85BAggregating local transactional ratings
	6.2.3 86BCombining personal trust
	6.2.4 87BEvaluating transactional trust

	6.3 50BInitial trust for new services
	6.4 51BExperimental evaluation
	6.4.1 88BSimulation configuration
	6.4.2 89BEffectiveness of ServiceTrust
	6.4.3 90BResistibility against threats

	6.5 52BDiscussion
	6.6 53BSummary

	19BChapter 7
	20BConclusions and future work
	54BSummary of this thesis
	7.2 55BContribution of this thesis
	7.3 56BFuture work

	21BBibliography

