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Abstract

Observations of Galactic globular clusters in the last two decades and the more recent

detection of gravitational waves from compact binary mergers have prompted us to exam-

ine the role of stellar evolution, especially that of stars more massive than 9 M�, in stellar

populations. While numerical simulations have shown that massive stars, particularly

those in binaries, can dramatically impact the evolution of star clusters and vice-versa,

their evolution remains highly approximated in most population synthesis codes.

Therefore, in this thesis, we develop a new framework for modelling the evolution of

stars in population synthesis codes. The METhod of Interpolation for Single Star Evo-

lution (METISSE) uses interpolation within a grid of pre-computed single stellar tracks

to calculate stellar parameters. It is an improvement over the existing approach of the

Single Star Evolution (SSE; Hurley et al., 2000) fitting formulae, as the use of interpola-

tion allows the user to easily use different sets of stellar evolution tracks, computed with

different input parameters.

We focus on the role of massive stars in regulating the properties of their populations,

especially binaries. Due to their apparent rarity and short lives, the evolution of mas-

sive stars remains poorly constrained by observations. These gaps in our knowledge of

massive stars force stellar evolution codes to make certain assumptions while modelling

their evolution. The result is a variety of stellar models in the literature which can differ

significantly from one another, especially for very massive stars.

We examine the differences in the predictions of massive star models from five projects:

BPASS, BOOST, GENEVA, MIST and PARSEC. We find that besides the differences

in the physical approximations such as chemical composition, mass-loss rates, and con-

vective boundaries, various methods used in the treatment of numerical instabilities in

one-dimensional codes can also contribute to differences found in the massive stellar mod-

els. Moreover, the interplay of these methods with other physical inputs can also lead to

potential bias in constraining the latter.

To quantify the differences arising due to the numerical treatments related to density

inversions in massive stars, we perform a systematic study of the impact of these methods
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within the stellar evolution code MESA using a single set of assumptions. Even when using

the minimum enhancements needed to overcome numerical instabilities, we find that the

differences between the methods can be non-trivial.

While the ultimate solution of these numerical treatments might lie in a three-dimensional

modelling approach, in combination with future observations dedicated to constraining the

physical processes operating in massive stars, it is important to test the results of popu-

lations synthesis using different models of massive stars. We demonstrate the usefulness

of METISSE in achieving this purpose, by using it with stellar models computed not just

with different input parameters but also from different stellar evolution codes: MESA and

the Bonn code. We find that the uncertainties in modelling the evolution of massive stars,

such as their radiation dominated envelopes, can impact their properties such as the maxi-

mum radial expansion and mass of the remnants obtained through their interpolation. We

thus establish the suitability of METISSE in systematic studies dedicated to exploring the

impact of uncertain parameters in stellar evolution on the properties of binary populations

and dynamical systems of stars.

We update METISSE to include the impact of mass changes, such as through binary

interaction. We compare stellar tracks computed by SSE and METISSE using the same

set of input models from Pols et al. (1998) while adding mass loss on top. We find that

with the current set of assumptions for modelling additional mass loss in METISSE, it can

reproduce the results from SSE for low-mass-loss rates. However, for high-mass-loss rates

we find differences in the behaviour of stellar radii, indicating the need for a re-evaluation

of our assumptions for extra mass loss. We find similar results when comparing METISSE

with detailed models computed by MESA using the same mass-loss rates, confirming the

source of discrepancy.

We integrate this updated version of METISSE with the Binary Stellar Evolution

(BSE; Hurley et al., 2002) code. Preliminary results from the evolution of an initially

wide massive binary system, computed using METISSE and SSE respectively with BSE,

presents an example of the impact the variance in radius can have on the behaviour of

binaries. While the discrepancy in the behaviour of radius signifies the need for immediate

future work in improving METISSE, the success of METISSE in reproducing results of

other evolutionary parameters and its seamless integration with BSE is encouraging.
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This thesis provides the necessary groundwork for exploring the impact of massive stars

in stellar multiples and star clusters. It paves the way forward to obtaining new insights

into the interaction within binaries and dense cluster systems. With minor modifications,

METISSE will help us answer the questions pertaining to recent observations, such as

the origin and evolution of compact binary systems as the source of gravitational wave

emissions.
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1
Introduction

Since the dawn of astronomy, our view of the cosmos has changed a lot. As our telescopes

improved, so did our understanding of the Universe. A good example is globular clusters

(GCs), which were first spotted by Abraham Ihle in 1665 (Halley, 1715) as a fuzzy patch

of light. By 1764, telescopes were able to resolve individual stars in the clusters (Messier,

1774). For the nearly two centuries that followed they were considered to be a relatively

simple, static system of stars. It was only in the mid-twentieth century that the role

of dynamical interactions between the member stars in GCs was established (Meylan &

Heggie, 1997). By the end of the twentieth century they had gained a central position

in astronomy as a test-bed for theories of stellar and galactic evolution (Heggie & Hut,

2003).

In the last few decades, high-resolution data from both ground- and space-based tele-

scopes have enabled us to observe unprecedented details in these stellar systems. Recent

photometric and spectroscopic images of GCs have revealed that the chemical makeup

of their member stars is much more complicated than previously thought. Galactic GCs

have been found to contain not just one but multiple populations (MPs) of stars, with

each population showing peculiar abundance variations (Bastian & Lardo, 2018; Milone,

2020). The origin of these abundance variations largely remains unsolved, and is an active

area of research.

Advancements in our capabilities to observe the Universe in the electromagnetic wave-

lengths have been further complemented by the detections of neutrinos, cosmic rays, and

1
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gravitational waves (GWs) resulting from various astrophysical processes, starting a new

era of multi-messenger astrophysics (Mészáros et al., 2019). Among the most useful non-

electromagnetic signals are the GWs that are emitted following the merger of compact

binary systems of neutron stars and black holes (Abbott et al., 2016). Such mergers can

happen either through dynamical interactions in dense stellar systems such as globular

clusters and galactic nuclei, or through certain evolutionary processes in isolated binary

systems. The GW signals from these mergers can be detected by current ground-based

detectors and can help reveal unforeseen details about the Universe that are otherwise

invisible in the electromagnetic regime.

As observatories improve in terms of better detectors both in the electromagnetic and

gravitational wave regimes, it is required that the models generated by our codes mimic the

observational results closely. Hence the need for realistic models of multiple-star systems

such as stellar binaries and star clusters. To create such models, one needs to simulate the

evolution of a large number of stars (a population) while taking into account the different

interactions between them through a technique known as population synthesis. Population

synthesis codes help us simulate the complicated physical processes operating in stellar

systems in a fast, computationally robust manner. This permits the evolution of millions

of stars, allowing us to simulate large stellar systems like star clusters as well as identify

the evolutionary pathways that can lead to phenomena of interest such as GW mergers.

Both the phenomena of MPs in GCs and the emission of GWs through compact binary

mergers require comprehending the contribution of massive stars in both binary and star

cluster environments. However, stellar evolution remains highly approximated in most

population synthesis codes. While in the past, this may have been sufficient to reproduce

observations of stellar systems, current and upcoming observations require an improved

and up-to-date treatment of stellar evolution, especially for stars more massive than around

9 M�. These massive stars are the precursors of many vivid and energetic phenomena in

the Universe, however their evolution remains shrouded with uncertainties. Massive stars

are born less often compared to lower mass stars and are short lived, thus it is hard to

get observational constraints on their lives. Dedicated telescopic surveys of massive stars

in nearby galaxies (Evans et al., 2011; Kaper et al., 2011; van Gelder et al., 2020) have

significantly improved our understanding of them in the recent years. It is, therefore, a
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great time to reconsider the way we model them in binary populations and star clusters

and test them with the present-day observations.

The aim of this thesis is to combine our most up-to-date understanding of massive

stars with population synthesis studies to explore the lives of massive stars and their role

in modifying the properties of stellar multiples and star clusters. In the following sections,

we provide a summary of massive star evolution, binary evolution and globular cluster

evolution and the different ways they can be modelled with various codes. We then give

an overview of the problem of MPs and GWs, followed by possible solutions in the form

of populations synthesis. We conclude with an outline of the rest of this thesis.

1.1 Modelling stellar evolution

The life of a star can, in theory, be modelled by using the set of differential equations

governing the structure and evolution of the star. These are mainly the equations of

stellar structure together with the equations for energy generation and transport inside

the star. Since stars are three-dimensional (3D) objects, the ideal way to solve these

equations would be using 3D codes. However, modelling the complete evolution of stars

with 3D codes is currently infeasible. Therefore, the evolution of stars is usually modelled

using one-dimensional (1D) codes.

In the Lagrangian formulation of these equations, a star of total mass M , can be divided

into cells of mass m, such that r = r(m, t) denotes the radius of the star containing

the mass cell m at time t, % = %(m, t) denotes the density while P is pressure and T

is temperature at the edge of the cell. Assuming the star is spherically symmetric, in

hydrostatic and thermal equilibrium, then its structure and evolution can be given by the

following equations (cf. Kippenhahn et al., 2012).

Equation for the conservation of mass:

∂r

∂m
=

1

4πr2%
. (1.1)

Equation for the conservation of momentum:

1

4πr2

∂2r

∂t2
= −∂P

∂m
− Gm

4πr4
, (1.2)
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where G represents the gravitational constant.

At hydrostatic equilibrium, the acceleration term on the left hand side vanishes and the

equation reduces to,
∂P

∂m
= − Gm

4πr4
. (1.3)

Equation for the conservation of energy: If l is the luminosity (rate of energy

flowing outward through a sphere of radius r), εn is the energy generated by nuclear

reactions, εv is the energy lost in the form of neutrinos, cP is the specific heat capacity at

constant pressure, then conservation of energy gives,

∂l

∂m
= εn − εv − cP

∂T

∂t
+
δ

%

∂P

∂t
, (1.4)

where, δ =

(
∂ ln %

∂ lnT

)
P

.

Equation for chemical changes: If Xi denotes mass fractions of the nuclei of

elements i = 1, . . . , I having masses mi, and rij is the reaction rate (number of reactions

per unit time per unit volume transforming nuclei from type i to type j ) then,

∂Xi

∂t
=
mi

%

∑
j

rji −
∑
k

rik

 . (1.5)

Equation for the thermal stratification:

∂T

∂m
= − GmT

4πr4P
∇ , (1.6)

where,∇ =

(
d lnT

d lnP

)
.

This equation describes the transport of energy in the star. If the energy is transported

through radiation then,

∇ = ∇rad =
3

16πacG

κlP

mT 4
.

In the above equation, κ denotes the mean opacity, c is the velocity of light and

a = 7.57× 10−15 erg cm−3 K−4 is the radiation density constant. If, however, the energy
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is carried by convection, then the value of ∇ is given by the 1D approximation for convec-

tion process in stars; the mixing length theory (MLT; Böhm-Vitense, 1958; Böhm, 1963).

It is further supplemented by additional mixing process such as convective overshoot,

semiconvection and diffusion (Kippenhahn et al., 2012).

Solving these non-linear and coupled partial differential equations requires various

inputs such as the equation of state (to describe the thermodynamic properties of the

stellar matter), nuclear physics (to provide energy generation mechanisms and their rates)

and opacity tables (to determine energy transport mechanism inside stars) along with

other boundary conditions.

One dimensional stellar structure and evolution codes work by dividing a star into

smaller regions based on either radius or mass. Then, they solve the above set of equations

while applying appropriate boundary conditions at the center and the surface to give a

model of the stellar structure at any instant. A time sequence of these stellar models

gives what is commonly known as a stellar track, depicting the evolutionary path followed

by the star. The final output is in the form of an evolutionary track with a large set of

properties for each point in the model at any given instant.

Depending on the mass, the metallicity and the evolutionary phase of a star, mass loss

through stellar winds can be computed using a combination of observations and compu-

tational models. However, the above equations do not include a mechanism for stellar

mass loss. Hence, mass loss is calculated explicitly from parameterized prescriptions (e.g.,

Reimers, 1975; Vink et al., 2000) at each time step before solving these equations.

Similar to convection, the impact of rotation on the evolution of stars is implemented

using a 1D approximation, such as the ‘shellular approximation’ (Kippenhahn & Thomas,

1970; Meynet & Maeder, 1997) while magnetic fields are implemented, for example, through

the Spruit–Tayler dynamo (Spruit, 2002).

In the last few decades, 1D stellar evolution codes (also known as ‘detailed’ codes)

have progressed a lot. The development of sophisticated numerical methods for simulating

physical processes and newer input data in the form of opacity tables and nuclear reaction

rates has led to the development of modern and improved stellar structure and evolution

codes (Langer, 2012; Ekström et al., 2020). Examples include the Cambridge STARS code

(Eggleton, 1971), the Bonn code (Brott et al., 2011a), the Geneva code (Eggenberger et al.,
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2008), PARSEC (Bressan et al., 2012), FRANEC (Degl’Innocenti et al., 2008), MESA

(Paxton et al., 2019), BPASS (Eldridge et al., 2017), STAREVOL (Decressin et al., 2009)

and KEPLER (Weaver et al., 1978).

Detailed codes are the current best way of modelling stellar evolution, although mod-

elling a population of stars with them can be computationally very expensive. Thus rapid

stellar evolution codes, that approximate the evolution of stars using evolutionary tracks

from 1D stellar evolution codes, are used for the purpose of population synthesis (see

Section 1.8 for details).

1.2 MESA

In this thesis we use Module for Experiments in Stellar Astrophysics (MESA: Paxton

et al., 2011, 2013, 2015, 2019) for computing detailed models of massive stars. MESA is

an advanced one dimensional stellar structure and evolution code. It has been developed as

an improvement over the EZ stellar evolution code (Eggleton, 1971; Paxton, 2004), and is

capable of solving the coupled differential equations of the stellar structure simultaneously

for all mass cells from the center to the surface and their evolution with time.

It can evolve stars for a wide range of masses and metallicities. Different prescrip-

tions exist in MESA for computing mass-loss rates within the various evolutionary phases

of stars. For dust-driven winds of cool stars, the mass-loss schemes of Reimers (1975),

Bloecker (1995), de Jager et al. (1988), Nieuwenhuijzen & de Jager (1990), and van Loon

et al. (2005) are available. For radiation-driven winds of hot stars Kudritzki et al. (1989),

or Vink et al. (2000, 2001), or Gräfener & Hamann (2008) can be used. For massive stars,

mass loss can also be modelled using a collective ‘Dutch’ scheme (Glebbeek et al., 2009).

The scheme follows Vink et al. (2000, 2001) for hot winds, de Jager et al. (1988) for cool

winds and Nugis & Lamers (2000) for Wolf-Rayet winds.

Convection and the associated mixing processes such as overshooting, semiconvection,

and thermohaline mixing are modelled using the MLT. In addition to the original version

by Böhm-Vitense (1958), other modified versions of MLT from Cox & Giuli (1968), Bohm

& Cassinelli (1971), Mihalas (1978) and Kurucz (1979), and Henyey et al. (1965) are also

included in MESA. Including the effect of diffusion and gravitational settling is also an
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option. For other input data, MESA makes use of up-to-date surface boundary conditions,

equation of states, opacity tables, nuclear reaction network and reaction rates for both

thermonuclear and weak reactions.

While the effect of stellar rotation on chemical and angular momentum transport is im-

plemented using the shellular approximation (Meynet & Maeder, 1997), that of magnetic

fields is incorporated using the Spruit-Tayler dynamo (Spruit, 2002; Heger et al., 2005).

The effect on mass loss owing to rotation is also included from Heger et al. (2000). Addi-

tional capabilities include the effect of oscillations through GYRE (Townsend & Teitler,

2013; Townsend et al., 2018), astroseismology through ADIPLS (Christensen-Dalsgaard,

2008) and radial stellar pulsations through RSP (Smolec & Moskalik, 2008).

Apart from the vast number of input options that MESA provides for modelling various

physical process, customized prescriptions can also be added through the ‘other’ routine

of MESA. The code is open source and parallelizable via thread-safe modules. It has an

active user community and is continuously being updated to include newer physics and

input data.

1.3 Massive stars and their evolution

Stars that are massive enough to undergo core collapse at the end of their lives are termed

massive stars. The minimum initial mass at which this happens is uncertain and depends

on various factors such as the properties of convective overshoot or the chemical compo-

sition of the star. At solar metallicity, the minimum initial mass of massive stars can be

between 8–12 M� (Poelarends et al., 2008). In general, stars above 9 M� are considered

massive stars.

Massive stars are born, like any other star in the Universe, out of molecular clouds of

dust and (primarily) hydrogen, albeit less often than their low-mass counterparts (Salpeter,

1955; Kroupa, 2001). Even at birth, they are much more luminous (>104 L�) and hotter

(>25 000 K) than low-mass stars. Due to their high luminosity they emit copious amounts

of ionizing radiation (Strömgren, 1939; Spitzer, 1978), regulating star formation and the

evolution of galaxies (Gatto et al., 2017; Kennicutt & Evans, 2012). Their high luminosity

combined with their large radius also leads to rapid mass loss from the surface in the form
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of stellar winds. These winds further enrich the interstellar medium with nuclear processed

material (Lamers, 2008) and drive shocks into the surrounding medium, producing X-rays

and providing yet another source of ionisation and heating of the interstellar medium

(Weaver et al., 1977).

To support themselves against gravitational collapse, massive stars undergo nuclear

burning rapidly, lasting only for a few million to a few tens of million years before they

run out of fuel. Depending on the properties of the core towards the end of their lives,

they either undergo a supernova explosion or silently implode to form neutron stars and

black holes. In some cases, e.g. in the case of a pair-instability supernova, the explosion

completely disrupts the star and does not leaves any stellar remnant. Supernova explosions

again release high energy radiation and are a primary source of heavy elements in nature

(e.g., Maund et al., 2017).

The birth properties of neutron stars and black holes can be determined by the pa-

rameters of the stellar core at the time of collapse, along with other parameters such as

the total mass and the binding energy of the star. These compact remnants are further

responsible for several observed transient processes, such as gamma-ray bursts (e.g. Yoon

et al., 2006; Szecsi, 2017), X-ray binaries (Verbunt, 1993) and gravitational-wave events

(e.g. Stevenson et al., 2019; Mapelli et al., 2020).

Throughout their lives, massive stars play an important role in shaping their surround-

ings, yet how exactly they undertake their journey from birth to death remains unsettled

(e.g., see Langer, 2012). Uncertainties in the physical inputs for these stars such as the

mass-loss rates (Smith, 2014; Renzo et al., 2017), nuclear reaction rates (Heger et al.,

2002; Fields et al., 2018), impact of rotation (Heger et al., 2000; Maeder, 2009) and the

magnetic field (Walder et al., 2012; Keszthelyi et al., 2019) hinder determining their ex-

act evolutionary path. Moreover, most massive stars are predicted to occur in binaries,

complicating their evolution even further.

A common evolutionary pathway for massive single stars is given by the Conti scenario

(Conti, 1975; Maeder, 2009), depicted in Figure 1.1. In this scenario (Lamers & Levesque,

2017), massive stars spend most of their lives as OB type main-sequence stars. Those

with initial masses in the range of 9–30 M� evolve to become red supergiants (RSGs)

while burning helium in the core. They spend the rest of their nuclear burning lives as a
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Supernova OB star

Blue Supergiant

Red Supergiant9−30 M☉

30−40 M☉
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Red SupergiantO star

O star Wolf-Rayet
star

Wolf-Rayet
star

Figure 1.1 Schematic representation of the Conti scenario for the evolution of non-rotating,
massive single stars at solar metallicity.

RSG before exploding in a Type II supernova. Stars with initial mass between 30–40 M�

may also go through the RSG phase. However, owing to their high luminosity, rapid mass

loss strips-off their hydrogen-rich envelope and these stars end their lives in a stripped

envelope supernovae (Type IIb or Type Ib/c). Stars more massive than 40 M�, experience

high mass-loss rates while still burning hydrogen in their core, and evolve directly to a

naked helium star phase. However, this scenario is not a definite one as uncertainties in

massive stellar evolution can easily complicate this simple picture.

The evolution of stars more massive than 40 M� is also complicated by the presence

of sub-surface elemental opacity bumps (Cantiello et al., 2009; Gräfener et al., 2012).

The already high luminosity of these stars, in combination with the presence of these

opacity bumps, can exceed the Eddington luminosity: the maximum luminosity required

to balance inward gravitation pressure and outward radiation pressure (Eddington, 1926).

Proximity to the Eddington luminosity has been attributed as the cause of several observed
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effects, including inflation of massive star envelopes (Sanyal et al., 2015) and enhanced

mass-loss rates in the form of luminous blue variables (LBVs; Bestenlehner et al., 2014;

Gräfener, 2021). From a computational perspective, if the luminosity carried through

radiation exceeds the local Eddington luminosity in the low-density envelopes of massive

stars, it can result in numerical difficulties, inhibiting further computation of stellar models

beyond that point (Maeder, 1987; Paxton et al., 2013). This problem is exacerbated

by the fact that very few massive stars are observed beyond the Humphreys-Davidson

limit (Humphreys & Davidson, 1979), the same region in the Hertzsprung–Russell (HR)

diagram where the aforementioned numerical issues relating to the Eddington luminosity

occur in stellar models. Thus 1D stellar evolution codes have to use certain fixes to evolve

massive stars through this computationally difficult phase. While these fixes help with

computing the evolution of massive stars until core collapse, their interplay with other

physical parameters of massive stars adds yet another element of uncertainty in massive

star models.

The challenges in computing the evolution of massive stars are significant, but so is

their importance in a wide range of astrophysical fields. With the rise in our observing

capabilities, as well as improvements in our computing abilities, it is a great time to test

different models of massive stars with population synthesis codes.

1.4 Binary stellar evolution

Two stars gravitationally bound to each other are said to form a binary system. These

binary systems can be born in such a state (binary by birth) or can be formed through

dynamical interactions in dense stellar systems.

In a reference frame co-rotating with the orbit of a binary system, different equipoten-

tial surfaces can be defined around the component stars, where the potential is determined

by the gravitational pull of the two stars and their motion around each other. A critical

equipotential surface, known as the Roche surface, consists of two teardrop shaped poten-

tial surfaces (called Roche lobes) around each star which meet at the inner Lagrangian

point (L1, see Figure 1.2). The effective radius of a Roche lobe can be defined as the

radius of a sphere containing the same volume as the true Roche lobe.
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Figure 1.2 Equipotential surfaces for a binary system of stars. The critical equipotential
surface passing through the inner Lagrangian point L1 is known as the Roche surface or
Roche lobes (Image sourced from Misra et al., 2020).

As a star evolves to become a giant and or a supergiant, its stellar radius can exceed

its effective Roche lobe radius and the star is said to be filling its Roche lobe. Even

when both stars in the binary are within their respective Roche lobes, they can still

interact through wind accretion and tides (Tout et al., 1997; Hurley et al., 2002). These

interactions can change the orbital separation between the stars and can therefore alter

their Roche geometry. Once either star is able to fill its Roche lobe, the process of mass

transfer through Roche-lobe overflow can be initiated. When material from one of the

stars in the binary system expands beyond L1, it becomes (gravitationally) dominated by

the pull of the second star. Depending on the energy and momentum of the material, the

outer layers of this star can be accreted by the companion star. This can change the mass,

angular momentum and the surface composition of both stars.
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If this expansion occurs beyond the outer Lagrangian point of the system L2, then

the outer layer of the star can escape the pull of both stars and form a common envelope

around them (Paczynski, 1976; Ivanova et al., 2013). The common envelope is a temporary

phase in the life of a binary system of stars. The motion of the stellar cores inside this

envelope occurs at the expense of their orbital energy and causes subsequent decay of the

orbit and the ejection of the envelope. If this decay does not lead to a stellar merger before

the envelope is ejected, it can leave behind two tightly orbiting cores.

Binary interactions – particularly episodes of mass transfer – can lead to completely

different evolutionary pathways compared to single stellar evolution, producing objects

such as Algols (van Rensbergen et al., 2011), X-ray binaries (Verbunt, 1993) and millisec-

ond pulsars (Phinney & Kulkarni, 1994), as well as phenomenon such as novae (Kraft,

1964), gamma-ray bursts (Izzard et al., 2004), and stellar mergers (de Mink et al., 2014).

Binary interactions are also important for the chemical enrichment of the galaxy (De Don-

der & Vanbeveren, 2004; Eldridge & Stanway, 2020) and may have served a pivotal role

in the reionization of the early Universe (Stanway et al., 2016; Götberg et al., 2020).

For massive stars the impact of binary interactions is even more important. The binary

fraction for massive stars is almost one hundred percent compared to only fifty percent

for Sun-like stars (Moe & Di Stefano, 2017). The high occurrence of massive stars in

binaries can lead to mass-transfer episodes in about seventy percent of the stars, leading

to mergers in every third binary system thus formed (Sana et al., 2012). If at the time of

merger both stars were compact objects – neutron stars and black holes – the gravitational

waves generated during the merger can be detected by the GW detectors here on Earth.

The parameters measured from GW signals, such as the spins and masses of the binary

components, can be used in constraining the evolution of massive stars and interaction

with their neighbours (e.g., Stevenson et al., 2015, 2017).

Similar to stellar evolution, the evolution of binaries can be modelled with detailed

stellar evolution codes. The PNS code (De Donder & Vanbeveren, 2004), the Twin code

(Glebbeek et al., 2008), the Bonn code (Yoon et al., 2010), BinStar (Siess et al., 2013),

BPASS (Eldridge et al., 2017), and MESA (Paxton et al., 2015) are a few examples of the

detailed codes that can compute the evolution of a binary system of stars and the different

interactions between them. However, owing to their large computational costs these codes
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are not suited for the purposes of population synthesis.

Therefore, binary populations synthesis codes, such as IBIS (Tutukov & Yungelson,

1996), BSE (Hurley et al., 2002), STARTRACK (Belczynski et al., 2002, 2008), binary c

(Izzard et al., 2004; Claeys et al., 2014), SEBA (Toonen & Nelemans, 2013), COMPAS

(Stevenson et al., 2017; Vigna-Gómez et al., 2018), MOBSE (Giacobbo et al., 2018) and

COSMIC (Breivik et al., 2020), are used for computing the evolution of a population of

binary stars. These codes employ approximate methods for isolated binary evolution, and

can take into account the impact of supernovae and necessary binary physics such as the

effect of tidal interactions, mass transfer and common envelope evolution. Some of them

also include tools for the statistical analysis of GWs (e.g., Barrett et al., 2018) and other

binary processes such as novae (Kemp et al., 2021) and certain supernovae (Ruiter et al.,

2014; Stevance et al., 2020).

1.5 Star cluster evolution

Typically found in the halos and bulges of galaxies, GCs are gravitationally bound collec-

tions of a large number of stars. For decades they have been useful not only for the study

of galaxy properties in general but, within our Galaxy, they have served as an ideal test

bed for the theories of stellar evolution (Heggie & Hut, 2003). They are the oldest and the

most massive of the star cluster populations. They are also incredibly dense and dynamic.

The gravitational interactions between their member stars can lead to the formation of

binary or multiple stellar systems which in turn can form objects such as millisecond pul-

sars (Verbunt et al., 1987; Ransom, 2008), blue stragglers (Sandage, 1953; Piotto et al.,

2004) and fast radio bursts (Kirsten et al., 2021; Kremer et al., 2021). Open clusters are

an avenue of interest as well. Although they are smaller and comparatively less dense

than GCs, the dynamical interactions between stars in an open cluster can still lead to the

formation of objects such as blue stragglers (Johnson & Sandage, 1955; Ahumada & La-

passet, 2007). Therefore, it is necessary to consider the contribution from stellar dynamics

while answering any questions related to star clusters.

The current state of computing and technology enables direct modelling of these sys-

tems. The orbits of N objects in a cluster constitute the classical N -body problem, the
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generalisation of Newton’s Law of gravitation for a system of N interacting bodies. For a

system of N bodies of mass mi (i = 1, . . . , N) at position ri, the equation of motion due

to gravitational interaction is given by

mi
d2ri
dt2

=

n∑
j 6=i,j=1

Gmimj (rj − ri)

‖rj − ri‖3
. (1.7)

For more than three bodies, there exist no analytical solutions to this equation, so it

is solved through numerical integration. Also, while collisions can safely be ignored for

galaxy scale N -body dynamics, they should be taken into account for accurately modelling

star clusters as stellar interactions play an important role in their dynamical evolution.

GCs can be modelled by approximate statistical methods using the Fokker-Planck Model

(Drukier, 1993; Dull et al., 1997) and Monte Carlo Models (Giersz & Heggie, 2003; Ro-

driguez et al., 2021) or by direct integration using N -body models (Aarseth, 2003). In

the direct integration method, the equation of motion is solved for each star and hence is

the most precise method. This preciseness, however, comes at the cost of computational

resource and time, so relevant simplifications are made to reduce the run-time.

The dynamical environment of a cluster can directly influence its member stars which

in turn can affect the evolution of the cluster itself (Heggie & Hut, 2003). For example,

as stars evolve their mass can change owing to winds or mass transfer in a binary. This

can lead to a change in the gravitational force experienced by the stars, thereby changing

their dynamics. Conversely, the dynamical motion of stars can alter their interaction

with the companion and so their evolution. Hence, realistic modelling of globular clusters

requires including the contribution from the evolution of individual stars. As described

in Section 1.8, this is achieved by using rapid stellar evolution algorithms. Use of these

algorithms makes it possible to include effects such as mass-loss due to stellar winds and

follow binary evolution in detail for the GC evolution (Hurley et al., 2001).

1.6 Multiple stellar populations in globular clusters

It was long assumed that all stars in a given GC were formed almost at the same time

and out of the same material, hence constituting a simple stellar population varying only

in mass. It was possible to fit a color-magnitude diagram of stars in a GC by just one
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Figure 1.3 Color-magnitude diagram showing multiple populations of stars in the globular
cluster NGC 2808. Image by M. Kornmesser, L. L. Christensen (ESA/Hubble).

isochrone and study the concepts of stellar evolution with it. This simple image of GCs

first came into question when Osborn (1971) noted the nitrogen enhancement in the Red

Giant Branch (RGB) stars of the same magnitude in M10 and M5. This was followed

by the detection of cyanogen (CH, CN and NH) anomalies in other RGB stars (Norris,

1987). Correlations and anti-correlation in light elements like sodium and oxygen were

soon established for various stars in different GCs (e.g. Sneden et al., 1992). An extreme

mixing scheme was proposed (e.g. Denisenkov & Denisenkova, 1990) to explain the CN

relation in RGB stars but it was unable to explain the observations of stars near the

main-sequence turnoff (e.g. Cannon et al., 1998).

A strong blow to the simple stellar population theory came when three distinct main

sequence bands were observed in the photometric observations of NGC 2808 (Piotto et al.,

2007) through the Advanced Camera for Surveys on the Hubble Space Telescope. This

split indicated three generations of stars formed discretely at three separate epochs with

different helium content (see Figure 1.3). Bragaglia et al. (2010) extended this work by
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studying the chemical composition of two main-sequence stars in the same cluster, one

each from the two extreme main sequences. The first star, taken from the reddest main

sequence had a composition similar to that normally found in field stars, while the second

star from the bluest MS showed depletion of carbon and magnesium and enhancement of

nitrogen, sodium and aluminium, a pattern indicative of the second population of stars.

Similar results were later obtained for other clusters and the theory of multiple stellar

populations in GCs was established, demolishing the long-lived picture of simple stellar

populations.

1.6.1 Key observations

Galactic globular clusters as young as 2 Gyr show a split in their stellar populations. This

split has been observed not just in bright RGB stars but stars at all evolutionary phases

(Gratton et al., 2019). There seems to be at least two distinct populations present in the

GCs, one comprised of stars with a composition similar to those of field stars of the same

metallicity (primordial branch) and others showing a spread in the chemical abundance

of its stars (enriched branch or branches). The enriched populations in all GCs have been

observed to exhibit all or most of the following relations: correlation in the abundances of

elements like lithium & oxygen (Li-O), sodium & nitrogen (Na-N) and an anti-correlation

of nitrogen with carbon (N-C), sodium with oxygen (Na-O), magnesium with aluminium

(Mg-Al) and nitrogen (N) & sodium (Na) with helium (He).

Despite the variation in these light elements, the composition of heavier elements [Fe/H]

and the sum of C+N+O have been observed to be fairly constant between the populations

for most GCs (known as Type I clusters; Milone et al., 2017). These relations are charac-

teristic of high-temperature hydrogen burning operating via Mg-Al, Ne-Na chains or the

CNO cycle (Langer et al., 1993; Prantzos et al., 2007), further supported by the variation

in the helium content obtained by the photometric observations of these stars. A small

number of clusters, known as Type II clusters also show variation in iron and s-process

elements (Marino et al., 2015).

Apart from the variations in chemical abundances, MPs also exhibit differences in their

dynamical properties (D’Ercole et al., 2008). For example, the enriched population in most

of the clusters seems to be concentrated towards the centre (Lardo et al., 2011) and has
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low velocity dispersion (e.g. Bellazzini et al., 2012) relative to the primordial population.

Multiple populations have also been observed for GCs outside the Milky Way, e.g.

in Large Magellanic Cloud (LMC, Mucciarelli et al., 2009) and Small Magellanic Cloud

(SMC, Dalessandro et al., 2016). Although the extent of the correlation and substructure of

stellar populations differs from cluster to cluster, it does exhibit a dependence on the total

mass of the cluster, indicating the role of GC properties (Milone, 2020). The phenomenon

of MPs is not shown by stars in open clusters (Bragaglia et al., 2012; Vallenari, 2014) or

the galactic field (Carretta et al., 2010), again suggesting a phenomenon unique to GCs.

1.6.2 Proposed explanations

Several scenarios have been proposed as a possible explanation for the observed chemical

abundances in the stellar populations in GCs. A key element to this problem are the

proton capture reactions that operate at high-temperatures of around 75 million Kelvin

(MK: Langer et al., 1993). These temperatures can not be achieved by the low mass stars

that are observed in GCs today but could have been attained inside the more massive

stars that died out long ago. The following have been proposed as possible sources of

enrichment in GC stars.

1. Intermediate mass stars (∼ 5–8 M�) on the asymptotic giant branch:

The outer layers of intermediate-mass stars can reach very high temperatures (up to

100 MK) during the asymptotic giant branch phase of the evolution due to interaction

of the envelope with the hydrogen burning shell (dredge-up). This can cause high-

temperature hydrogen burning or hot bottom burning at the base of these envelopes.

Products of this reaction can be transported via convection from the base of the envelope

to the surface of the star and then expelled in stellar winds (Karakas & Lattanzio, 2014;

D’Antona et al., 2016).

2. Fast rotating massive stars (≥ 15 M�):

Massive stars can sustain hydrogen burning reactions at high temperatures (&75 MK)

in their cores during the main-sequence phase of evolution. If such stars are rotating at

sufficiently high speeds (close to the limit of breakup) then the processed material can
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be transported to the surface through rotational mixing and centrifugally expelled to

enrich the cluster medium (Prantzos & Charbonnel, 2006; Decressin et al., 2007b,a).

3. Interacting binaries:

The formation and disruption of binaries due to dynamical interaction is quite common

in GCs. Mass transfer in a binary system from a massive donor star can directly pollute

a main-sequence or pre-main-sequence accretor star with processed material (Bastian

et al., 2013; Jiang et al., 2014). Further, non-conservative mass transfer and stellar

mergers in a massive binary system can shed large amounts of the enriched outer layers

of the constituent stars into the surroundings. Assuming all massive stars in GCs were

once part of a binary system, substantial amounts of enriched matter can be lost to

the cluster, and then subsequently used to form multiple generations of stars (de Mink

et al., 2009b; Wang et al., 2020).

4. Massive red supergiants (≥ 80 M�):

Massive stars at the end of their main sequence can become RSGs if they do not

lose their envelope completely due to wind mass loss. Stellar models show that at

sufficiently low metallicity (Z = 0.02 Z�, [Fe/H] = -1.7; Szécsi et al. 2015), even stars

with initial mass ≥80 M� can become RSGs while burning hydrogen in their core as

they undergo envelope inflation near the Eddington limit (Sanyal et al., 2015). Their

deeply convective envelope can transport products of hydrogen burning to the surface

where it can be lost in the stellar winds (Szécsi et al., 2018; Szécsi & Wünsch, 2019).

In the classical self-enrichment scenario, material lost by the first generation stars

through one (or a combination) of the above factors gets trapped in the cluster potential.

This material can then either pollute the second generation stars or the second population

stars can form out of it (Gratton et al., 2012; Bastian & Lardo, 2018). With sufficient

dilution from non-enriched material, this can explain most of the observed abundance

anomalies but it does not explain how clusters like Ruprecht 106 (Villanova et al., 2013) can

lack MPs. Also, enriched stars make up 50–70 percent of the present day GC population

(Carretta et al., 2009), imposing a mass budget required to form these stars.

Other theories, such as disc accretion by low-mass stars (Bastian et al., 2013), frag-

mentation from very massive stars (∼ 104 M�; Denissenkov & Hartwick, 2014), or the
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primordial branch stars forming out of the enriched stars (reverse order for formation,

Marcolini et al., 2009), have been proposed to explain the origin of MPs. Due to the im-

portance of dynamical interactions in the evolution of globular clusters, simulations based

on the dynamics of gas (D’Ercole et al., 2008; McKenzie & Bekki, 2021) and stars in GCs

(Vesperini et al., 2013, 2021) have also been developed. Although, so far none of them

has been successful in explaining the observations completely (Bastian & Lardo, 2018;

Mastrobuono-Battisti & Perets, 2021).

The problem of multiple stellar populations has challenged our conventional notions of

star clusters. It requires unravelling the early evolution of GCs when massive stars would

have lived and explaining the complex formation history of these clusters. Therefore,

alternate models for GCs are needed that can take into account the impact of updated

models of massive stars on the long-term dynamical evolution of clusters.

1.7 Gravitational waves

GWs are ripples in spacetime generated by the time variations of the mass quadrupole

moment of the source. They were predicted by Albert Einstein in 1916 in his general theory

of relativity (Einstein, 1916). On 14 September 2015, the advanced Laser Interferometer

Gravitational-Wave Observatory (aLIGO) detected a GW signal from the merger of two

black holes (GW150914; Abbott et al., 2016). This event marked the first direct detection

of GWs. Since then, there have been more than 50 such detections from the merger of

binary systems of black holes (BHs), binary systems of neutron stars (NSs), and binary

systems containing a BH and a NS (Abbott et al., 2019, 2021a,b). A schematic diagram

showing the masses of the compact remnants obtained with GW observations is presented

in Figure 1.4.

This list contains the special event GW170817 which originated due to the merger

of two NSs along with a kilonova explosion (Abbott et al., 2017b,c). It was observed in

both the GW and electromagnetic regimes and helped make progress towards answering

questions behind various mechanisms such as gamma-ray bursts (Abbott et al., 2017a),

the origin of r-process elements (Kasen et al., 2017), the NS equation of state (Abbott

et al., 2018a) and even constraining the physics of general relativity (The LIGO Scientific
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Collaboration et al., 2018). At the same time, along with other GW detections, it raised

new questions like how massive BHs and NSs form, what is their number and size in the

Universe, and what is the role of environment on the evolution of binaries (Ricci, 2019). It

hence became necessary to reconsider the origin and evolution of compact binary systems

as the source of GW emissions.

1.7.1 Mechanisms for the formation of compact binary systems

Three main channels for the formation of compact binary systems have been proposed.

1. Dynamical formation in the dense stellar environments:

Gravitational interactions in dense stellar systems can not only affect stellar evolution

but can also lead to the formation of binary stellar systems (Heggie & Hut, 2003).

Figure 1.4 Mass of neutron stars, black holes and their merger products obtained through
gravitational wave signals and electromagnetic observations. The two highlights in the
centre represent the recently announced black hole-neutron star mergers detected through
GWs (Abbott et al., 2021b). Image by Frank Elavsky and Aaron Geller, Northwestern
University, LIGO-Virgo
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Simulations have shown that the three-body dynamics inside globular clusters (Hurley

et al., 2016; Rodriguez et al., 2016; Antonini & Gieles, 2020), young stellar clusters

(Mapelli, 2016; Banerjee, 2017), and nuclear star clusters (Antonini & Rasio, 2016;

Arca Sedda, 2020) can not only cause binary systems of neutron stars and black holes

to form but also tighten and merge in the Hubble time to produce gravitational waves

detectable by current detectors.

2. Tightening of isolated binaries through mass transfer and common envelope evolution:

Binary interactions alter the orbital properties of the system, and may even tighten a

binary sufficiently to merge within the age of the Universe. This can happen via stable

mass transfer within late phases of evolution (van den Heuvel et al., 2017; Neijssel

et al., 2019; Gallegos-Garcia et al., 2021) or via common envelope evolution (Eldridge

& Stanway, 2016; Stevenson et al., 2017; Giacobbo & Mapelli, 2018). As explained in

Section 1.4, these phenomenon can lead to a tight binary system which, if the stars are

massive enough, can later evolve into a compact binary and merge to give rise to the

observed GW signals.

3. Chemically homogeneous evolution in very close tidally locked binaries:

If a single star is rotating rapidly, then mixing due to rotation can cause even the

outer layers of stars to be transported to the center and participate in nuclear burning.

Because of their homogeneous structure, these stars evolve compactly on the main se-

quence to form a massive helium star and eventually end their lives as massive compact

remnants. In close binary systems, changes in angular momentum due to the effect

of tides, mass transfer, and merger processes can also induce high rotation-rates and

thus chemically homogeneous evolution in stars. At the end of their lives, such stars in

binary systems can develop into a tight system of a compact binary which can merge in

4–11 Gyr after formation to produce GWs (Mandel & de Mink, 2016; Marchant et al.,

2016; Riley et al., 2021).

In addition to the above three channels, low-metallicity Population III stars, primordial

black holes, Kozai-Lidov oscillations (Lidov, 1962; Kozai, 1962) induced through interac-

tion in higher order stellar multiples or by the central BH in galactic nuclei on the binary
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system have also been proposed as sources of binary BH mergers (Inayoshi et al., 2017;

Kimpson et al., 2016; Liu & Lai, 2021). Attempts to constrain fractional mix between the

field and binary channels indicate that a combination of channels might be responsible for

the current population of GW signals (Zevin et al., 2017, 2021).

Given that the evolution of stars in dense stellar systems is different from that in a

galactic field (Heggie & Hut, 2003), it is important to explore different formation channels

of compact binary mergers. This need is further amplified by the detection of the most

massive binary black hole merger event to date, GW190521 (Abbott et al., 2020; Abbott

et al., 2020), where the mass of the merger product, 142 M�, corresponds to that of an

intermediate-mass BH while the masses of the component BHs, 66 M� and 85 M�, lie in

the pair-instability mass gap.

Pair instability results from the production of electron-positron pairs in the core during

the late evolutionary phases of a massive star. For stars with a carbon-oxygen core mass

in the range of 30–60 M�, it results in enhanced mass loss in the form of pulsations while

for stars with a carbon-oxygen core mass in the range of 60–120 M�, it can lead to the

total destruction of the star (Fowler & Hoyle, 1964; Fraley, 1968; Woosley, 2017), leaving

behind no remnant. Thus, the occurrence of pair instability predicts an absence of BHs

in a mass range of 55–130 M�, known as the pair-instability mass gap. However, the

exact value of this gap is uncertain and depends on the uncertainties in the evolution of

massive stars and physics of pair-instability supernovae (Stevenson et al., 2019; Farmer

et al., 2019; Renzo et al., 2020; Mapelli et al., 2020). While such massive black holes can

also form through multiple mergers in star clusters (Anagnostou et al., 2020; Dall’Amico

et al., 2021; Mapelli et al., 2021; Kimball et al., 2021), formation through isolated binary

evolution cannot be ruled out (Belczynski, 2020) owing to large uncertainties in massive

stellar evolution (Costa et al., 2021; Farrell et al., 2021b; Vink et al., 2021).

Understanding how compact binaries form not only presents a unique opportunity to

test the existing massive stellar evolution models, it also allows us to develop new theories

to better understand the evolution of these stars. The knowledge acquired through GWs

can be further used to constrain uncertain parameters in massive single star evolution

(Stevenson et al., 2015), such as the nuclear reaction rates, (Farmer et al., 2020) and binary

evolution such as the efficiency of mass transfer (Bouffanais et al., 2021) and common
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envelope evolution (Wong et al., 2021).

1.8 Integrating stellar evolution with population synthesis codes:

an overview

The need to integrate a method of stellar evolution with binary population synthesis and

stellar dynamics codes was first realized in the late nineties when space-based telescopes

such as Hubble and Chandra started showing intricate details in different stellar systems.

In order to explain these observations, it became important to account for the role of

stellar evolution on the different stellar interactions, through dedicated stellar recipes.

The high computational costs of detailed stellar evolution codes prohibited their direct

use in population synthesis codes. Therefore, rapid stellar evolution codes were developed

to address the problem (see e.g., Hut et al., 2003, for an overview of the topic).

These codes exploited the similarities between the stellar tracks produced by the de-

tailed codes, and the underlying physics, to condense the tracks into a handful of fitting

formulae. Instead of generating a detailed stellar track every time one could just use these

fitting formulae to generate new tracks (Eggleton, 1996). The use of these fitting formulae

in populations synthesis successfully explained the behaviour of many stellar systems at

that time (e.g. Hurley & Shara, 2003). However, recent observations of various stellar

systems, such as the phenomenon of MPs and the GWs as outlined in Section 1.6 and

Section 1.7, require updating these algorithms with the latest results from stellar mod-

elling. Moreover, uncertainties in massive stellar evolution further add the requirement

of testing different models of massive stars in population synthesis codes. Ideally, the

underlying stellar evolution method employed in population modelling should fulfill the

following criteria:

• it should not require an intensive amount of computing resources, i.e., it should be

computationally cheap;

• it should be fast and robust so as to not impede the progress of the overlying popu-

lation synthesis code;

• it should be able to communicate efficiently with the overlying code;
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• it should allow easy swapping of different stellar tracks, so that different models of

massive stars can be tested;

• it should be able to provide information about stellar properties and structure, such

as the chemical composition of the stellar surface, or the binding energy of the stellar

envelope, that can be used to compare with observations.

Based on the above requirements, the existing methods of modelling stellar evolution

in population synthesis codes can be evaluated as follows.

1.8.1 Detailed stellar evolution codes

One-dimensional stellar evolution codes are the current best way of modelling stellar evo-

lution. The advent of high-performance computers and parallel programming methods

has made it possible to use them directly for population synthesis purposes e.g. Church

et al. (2009), BPASS (Eldridge et al., 2017), and the Astrophysical Multipurpose Software

Environment (AMUSE; Portegies Zwart et al., 2009, 2013; Pelupessy et al., 2013).

The use of detailed codes provides the flexibility of using a range of input parameters

in the stellar models. In terms of output, parameters related to both the structure and

the evolution of the stars can be easily extracted at any time-step. Nevertheless, sim-

ulating a population of stars with a detailed code is computationally expensive. It can

take a few minutes to a few hours to evolve a single star. These codes are also liable

to break down at times owing to numerical difficulties and can impede the progress of

population synthesis codes. Even though the models produced by the detailed codes best

describe the evolution processes in the star, for testing different parameters related to

population synthesis, these grids will have to be computed over and over again that can

lead to a large accumulated computational cost. These computational costs are usually

mitigated by using low spatial and temporal resolution in the simulations or simplifying

the input physics such as using a small nuclear reaction network or a simplistic equation

of state. However, physical processes such as convection and rotation become important

in massive stars and require sophisticated modelling methods with higher temporal and

spatial resolution, increasing the computational cost and the potential for numerical issues

to develop. User intervention and expertise is often required to push detailed codes past
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failure points. The data from these simulations also needs to be manually checked for

any non-physical results which would arise from erroneous numerical evolution of a model

star. Thus, despite their obvious advantages, detailed codes are not the best method for

current population synthesis requirements.

1.8.2 Defining fitting formulae for the stellar tracks

The method of using fitting formulae for stellar tracks relies on defining polynomial fits for

each part of a stellar track (obtained from a detailed code) and then using those formulae

to generate new tracks. The resulting codes are computationally cheap, fast and robust,

and are hence well suited to the requirements of population synthesis.

The earliest attempts to achieve this were by Wielen (1968) and Chernoff & Weinberg

(1990). These works employed simple schemes for stellar lifetimes and mass loss to form

white dwarfs or undergo supernovae. A more accurate method was developed by Eggleton

et al. (1989), where the authors devised sophisticated formulae for calculating the lumi-

nosity, radius and core mass as function of the mass and the age of the star. This work

was later improved by Portegies Zwart & Verbunt (1996) and Tout et al. (1997), who also

extended the formulae to include the impact of binary interactions.

Hurley et al. (2000) further expanded the work of Tout et al. (1997) to include the

impact of metallicity and developed a full set of formuale, fitted to the set of stellar tracks

computed by Pols et al. (1998) using an updated version of the Cambridge STARS code

Eggleton (1971). The evolution formulae were incorporated into a rapid stellar evolution

algorithm to form the Single Star Evolution (SSE; Hurley et al., 2000) code. Using SSE,

stars in the mass range 0.1–100 M� and metallicity range Z = 10−4 to 0.03 can be

evolved starting from the Zero Age Main Sequence (ZAMS; Tout et al., 1996) up to and

including their respective remnant phases. An extension of SSE for binary stars is given

through the Binary-Star Evolution (BSE) algorithm (Hurley et al., 2002).

With the latest developments in stellar astrophysics, especially those related to massive

stars, the SSE formulae are now outdated and there is a pressing need to update them.

Since these fitting formulae were calculated using a particular set of tracks, they need to

be redefined to use a different, more recent set of stellar tracks. This task has been under-

taken by Tanikawa et al. (2019), who updated the SSE formulae for metal-poor massive
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stars. Even with the updated fitting formulae, this only covers a particular subset of the

parameter space and the user is still limited to results from a single set of evolutionary

tracks.

Determining the impact of varying input parameters to stellar evolution modelling

(such as overshooting or nuclear reaction networks) on a population requires several dif-

ferent sets of tracks, and it is an arduous task to define a new set of formulae for each set

of tracks (Church et al., 2009). Hence, there is a need for a more flexible method as an

alternative.

1.8.3 Interpolating between a set of stellar tracks

Interpolation is the method of estimating an intermediate value of a quantity that is known

only at a discrete set of points and can be used to estimate the properties of a star using

that of neighbouring mass stars with similar properties (Schaller et al., 1992). It employs

grids of tabulated data, generated from the output of detailed stellar evolution codes for

a discrete set of tracks.

In this method, the stellar parameters interpolated from a given set of detailed tracks

are calculated in real time. Therefore, codes produced using this method are not only fast,

accurate and robust but can also make use of different stellar evolutionary grids, evolved

with different parameters. To achieve this, one simply needs to change the input stellar

tracks to generate a new set of stellar parameters. This method can also be used over a

much wider variety of stellar parameters beyond the usual quantities (e.g., the total mass

of the star, luminosity, temperature and radius) with hardly any additional effort.

To ensure the accuracy of the output, the grid of stellar models used should be dense

enough, thus requiring a certain amount of computer memory (∼GigaBytes) for stor-

ing and loading tracks. Thus, despite a being a popular choice for constructing stellar

isochrones (e.g. Schaller et al., 1992; Bergbusch & VandenBerg, 2001), memory require-

ments made it difficult to use interpolation in population synthesis codes involving stellar

interactions in the past.

With modern computing facilities with gigantic data storage capabilities, this approach

is becoming more popular due to its increased feasibility. In the past few years, codes

exploiting the method of interpolation such as SEVN (Spera et al., 2015; Spera & Mapelli,
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2017) and ComBinE (Kruckow et al., 2018) have been developed to study the formation

channels of GW progenitors. These codes are offering new insights into the impact of

changing physical inputs on GW formations channels, by using a range of stellar models

calculated with detailed codes as input.

However, uncertainties in stellar evolution are not limited to physical inputs and the

numerical techniques employed by different stellar evolution codes can also have a non-

negligible impact in determining the evolutionary pathway of a star. Thus it is equally

important to quantify the effect of numerical uncertainties in modelling the evolutionary

pathways of different stars and compare the tracks computed with different codes.

1.9 Thesis outline

The goal of this thesis is to shed light on the role of massive stars in modifying the

behaviour of stellar populations, and to determine if they can help in explaining some

otherwise perplexing recent observations.

To achieve this, we have developed a new code for modelling stellar evolution in pop-

ulation synthesis codes: METhod of Interpolation for Single Star Evolution or METISSE

uses interpolation to rapidly compute stellar evolution parameters and can easily switch

between using input stellar tracks evolved using different physical inputs, and even with

different stellar evolution codes. It has been designed to serve as an alternative to the

commonly used SSE fitting formulae in population synthesis codes and can be easily in-

corporated in any code which uses SSE as its single star evolution mechanism.

The work in this thesis can be categorised in two major parts. The first part (comprised

of Chapters 2 and 3) examines the differences in the predictions from several different sets

of massive star models. The second part (Chapter 4 and 5) describes the capabilities of

METISSE in the context of single and binary stellar evolution, and evaluates its usefulness

by utilising a few different sets of stellar models.

In Chapter 2, we explore five commonly used sets of models of massive stars, computed

with different 1D stellar evolution codes, with an aim of finding a reliable set of models to

use in METISSE. We compare the models in terms of their physical inputs as well as the

numerical techniques that were used in computing them.
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In Chapter 3, we investigate numerical issues in the modelling of massive stars related

to the proximity of their extremely luminous envelopes to the Eddington-limit. We per-

form a systematic study of the solutions employed by different stellar evolution codes to

facilitate the evolution of stellar models beyond these issues and the impact they can have

in predicting the evolutionary pathways of massive stars.

Chapter 4 describes the methodology of METISSE and its capabilities as a standalone

single stellar evolution code. We also use METISSE to demonstrate that uncertainties in

modelling the evolution of massive stars, such as their radiation dominated envelopes, can

impact their evolutionary outcome, including remnant masses and maximal radial expan-

sion. These differences in the predictions of different stellar models can have important

implications in accounting for the recent observations of the stellar populations.

In Chapter 5, we update METISSE to include the impact of additional mass changes

and compare the results to those obtained with SSE fitting formulae using the same set

input data. We also test the validity of the mass-loss implementation in METISSE us-

ing detailed models computed with MESA. Finally, we present preliminary results from

integrating METISSE with the binary population synthesis code, BSE. We show how

variations in the predictions of stellar parameters such as the radius of the star can affect

mass transfer in binary systems, and thus can have a major impact on predictions for the

populations of compact binaries that will go on to merge and be observed in gravitational

waves.

The final Chapter 6, concludes the work while highlighting the importance of this

thesis and the science that METISSE will enable in the future.



2
Examining the differences in massive star models

from various simulations

All models are wrong, but some are useful.

—George Box

2.1 Introduction

Stellar evolutionary model sequences serve as input for a broad range of astrophysical

applications; from star-formation (e.g. Gatto et al., 2017) to galaxy evolution (e.g. Wein-

berger et al., 2020), from cluster dynamics (e.g. Heggie & Hut, 2003) to gravitational-wave

studies (e.g. Vigna-Gómez et al., 2018). These sequences provide an easy and powerful way

to account for both individual stars (e.g. Schneider et al., 2014) and stellar populations

(e.g. Brott et al., 2011b) in a given astrophysical environment.

One dimensional (1D) model sequences (from now on: stellar models) can be computed

from first principles (Kippenhahn & Weigert, 1990) and have become a household tool in

astrophysical research. But when it comes to stars more massive than ∼ 9 M� – those

that, despite being rare, provide the bulk of the radiation, chemical pollution and the

most exotic death throes in the Universe (Woosley et al., 2002) – stellar models are still

riddled with large uncertainties.

High-mass stars are born less often than their low-mass counterparts (Salpeter, 1955)

and have comparatively shorter lives (Crowther, 2012). Consequently, observational con-

29
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straints on their evolution are more difficult to obtain. The situation is further complicated

by many massive stars being observed to be fast rotators (Ramı́rez-Agudelo et al., 2013),

which breaks down perfect symmetry, and to have a close-by companion star (Sana et al.,

2012), breaking the assumption of perfect isolation. Even for isolated, non-rotating sin-

gle stars, the physical conditions both inside (Heger et al., 2000) and around (Lamers &

Cassinelli, 1999) the star are so peculiar and complex that developing appropriate numer-

ical simulations becomes highly challenging. This is why the evolution of massive stars

remains an actively studied field to this day.

Much progress has been made in the last few decades concerning massive stars and

their evolution. Mass loss in the form of high-velocity winds from massive stars is being

intensively studied and accounted for in the models (Smith, 2014; Sander & Vink, 2020).

Observations of massive stars from the Large and Small Magellanic Clouds are being used

to constrain the efficiency of interior mixing processes (Brott et al., 2011a; Schootemeijer

et al., 2019a). 1D stellar models have also been updated to account for the effects of

rotation (Maeder, 2009; Costa et al., 2019) and magnetic fields (Maeder & Meynet, 2005;

Takahashi & Langer, 2021) which can significantly change their evolutionary paths (Walder

et al., 2012; Petit et al., 2017; Groh et al., 2020).

Despite the progress, there are still many open questions surrounding the lives of

massive (&9 M�) and ‘very’ massive (here designated as &40 M�) stars, and in the absence

of well-defined answers, stellar evolution codes make use of different assumptions. Earlier

studies comparing models of massive stars from different codes (e.g. Martins & Palacios,

2013; Jones et al., 2015) have already established that the differences in the physical

parameters such as mixing and mass-loss rates adopted by various stellar evolution codes

can affect the evolutionary outcome of these stars.

Here we highlight another major uncertainty arising due to the numerical treatment

of low-density envelopes of very massive stars. These stars have luminosity close to the

Eddington-limit and changes in the elemental opacities during their evolution can lead to

the formation of density and pressure inversions in the stellar envelope (Langer, 1997).

The presence of these density inversions can cause numerical instabilities for 1D stellar

evolution codes. To deal with these instabilities, the codes use different pragmatic solutions

whose interplay with mixing and mass loss can further vary the evolution of massive stars.
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The role of the Eddington limit and the associated density inversions in massive stars is

well known within the stellar evolution community but remains relatively unknown outside

the field. With the surge in the use of massive star models, for example, in gravitational-

wave event rate predictions and supernova studies, it has become important to be aware

of this issue. Our goal is to present the broader community with a concise overview,

including how it affects the evolutionary properties such as the radial expansion and the

remnant mass of very massive stars. To this end, we compare models of massive and

very massive stars from five published sets created with different evolutionary codes: (i)

models from the PAdova and TRieste Stellar Evolution Code (PARSEC; Bressan et al.,

2012; Chen et al., 2015); (ii) the MESA Isochrones and Stellar Tracks (MIST; Choi et al.,

2016) from the Modules for Experiments in Stellar Astrophysics (MESA; Paxton et al.,

2011); (iii) models (Ekström et al., 2012) from the Geneva code (Eggenberger et al., 2008);

(iv) models from the Binary Population and Spectral Synthesis (BPASS; Eldridge et al.,

2017) project; and (v) the Bonn Optimized Stellar Tracks (BoOST; Szécsi et al., 2020)

from the ‘Bonn’ Code.

We describe the major physical ingredients used in computing each set of models in

Section 2.2 and Section 2.3. In Section 2.4, we compare the predictions from each set of

models in the Hertzsprung-Russell diagram, as well as the predictions for the maximum

radial expansion of stars, and their remnant masses. Finally we draw conclusions in

Section 2.5.

2.2 Physical inputs

2.2.1 Chemical composition

The chemical composition of the Sun is often used as a yardstick in computing the metal

content of other stars. However, the exact value remains inconclusive and has under-

gone several revisions since 2004 (see Basu, 2009; Asplund et al., 2021, for an overview).

Therefore, different stellar models often make use of different abundance scales.

The BPASS, PARSEC, Geneva and MIST models base their chemical compositions

on the Sun, while the BoOST models use a mixture tailored to the sample of massive

stars from the FLAMES survey (Evans et al., 2005) with ZGal = 0.0088. For stellar winds
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and opacity calculations, BoOST models use Z = 0.017 from Grevesse et al. (1996) as

the reference solar metallicity. The BPASS models use solar abundances from Grevesse

& Noels (1993) with Z�= 0.02. The PARSEC models follow Grevesse & Sauval (1998)

with revisions from Caffau et al. (2011) and Z�= 0.01524. Geneva models use Asplund

et al. (2005) abundances with Ne abundance from Cunha et al. (2006) and Z�= 0.014

while, finally, the MIST models base their abundance on Asplund et al. (2009a) with

Z�= 0.01428.

For the purpose of comparison here, we use Z = 0.014 models for each set except for

BoOST where we use the Galactic composition, Z = 0.0088 as the closest match. Iron is

an important contributor to metallicity, as numerous iron transition lines dominate both

opacity and mass-loss rates, therefore directly affecting the structure of massive stars (e.g.,

Puls et al., 2000). The stellar models compared here have similar iron content, with the

normalised number density (AFe = log(NFe/NH) + 12.0) ranging from 7.40 (for BoOST

models) to 7.54 (for MIST models).

2.2.2 Mass-loss rates

Stellar mass is a key determinant of a star’s life and evolutionary outcome. It can, however,

change as stars lose their outer layers in the form of stellar winds, and through interactions

with a binary companion. Consequently, mass loss can affect not only the structure and

chemical composition of the star, but is also important in determining its final state (Renzo

et al., 2017).

For massive stars, the effects of mass loss are even more pronounced. The mass loss

experienced by hot massive stars (O type stars and Wolf–Rayet stars) is known to be

line-driven (Lamers & Cassinelli, 1999) while that of cool massive stars (red supergiants,

Levesque, 2017) is suggested to be dust-driven. Both types of mass loss are an intensively

studied subject. However, the complexity of the problem of atomic and molecular tran-

sitions in the wind together with the rarity of stars at these high masses means that the

model assumptions are usually based either on a few observations (a small sample of stars)

or on what we know about the wind properties of low-mass stars.

All models in this study follow Vink et al. (2000, 2001) for hot wind-driven mass-loss.

The PARSEC, Geneva, BPASS and MIST models follow de Jager et al. (1988) for cool
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dust-driven mass-loss and Nugis & Lamers (2000) for mass loss in the naked helium star

phase. The Geneva models further switch to Crowther (2000) for hydrogen-rich stars with

logTeff/K ≤ 3.7. The BoOST models follow Nieuwenhuijzen & de Jager (1990) for cool

winds and Hamann et al. (1995, reduced by a factor of 10) for stars with surface helium

mass fraction > 0.7. For computing mass-loss rates of stars with surface helium mass

fraction between 0.4 and 0.7, BoOST models linearly interpolate between the mass-loss

rates of Vink et al. (2001) and Hamann et al. (1995, reduced by a factor of 10).

To account for the dependence of the mass-loss rates on the chemical composition,

BoOST, MIST and BPASS models scale the mass-loss rates by a factor of Z0.85 (Vink

et al., 2001) 1. Geneva and PARSEC models also use additional mass-loss as described in

Section 2.3.

2.2.3 Convection and overshooting

Internal mixing processes such as convection and overshooting play an important role

in determining both the structure and evolution of massive stars (e.g., see Sukhbold &

Woosley, 2014). Similar to mass loss, these processes represent another major source of

uncertainty in massive stellar evolution (Schootemeijer et al., 2019a; Kaiser et al., 2020).

In 1D stellar evolution codes convection is modelled using the Mixing-Length Theory

(Böhm-Vitense, 1958, MLT) in terms of the mixing length parameter αMLT. However,

3D simulations suggest that convection in massive stars might be more sophisticated and

turbulent than described by MLT (Jiang et al., 2015).

The BoOST, Geneva, PARSEC and BPASS models used here follow standard MLT

(Cox & Giuli, 1968) for convective mixing with mixing length parameter αMLT = (1.5, 1.6,

1.74, 2.0) respectively. MIST follows a modified version of MLT given by Henyey et al.

(1965) with αMLT = 1.82. Convective boundaries in PARSEC, Geneva and BPASS mod-

els are determined using the Schwarzschild criterion (Schwarzschild, 1958). BoOST and

MIST use the Ledoux criterion (Ledoux, 1947) for determining convective boundaries with

semiconvective mixing parameters of 1.0 and 0.1, respectively. For determining convec-

tive core overshoot, Geneva and BoOST use step overshooting with overshoot parame-

1Note that for some models the factor Z0.69 is quoted, depending on whether the dependence of the
terminal velocity on Z is explicitly considered or not.
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ter αov = (0.1, 0.335). MIST uses exponential overshooting following Herwig (2000) with

αov = 0.016. PARSEC uses overshoot from Bressan et al. (1981) with αov = 0.5. BPASS

uses the overshoot prescription from Pols et al. (1998) with αov = 0.12. For comparison,

the rough equivalent in the step overshooting formalism would be 0.2, 0.25 and 0.4 for the

MIST, PARSEC and BPASS models respectively (See Choi et al., 2016; Pols et al., 1998;

Bressan et al., 2012, for details of each method).

MIST and PARSEC also include small amounts of overshoot associated with convec-

tive regions in the envelope. However, apart from modifying surface abundances, envelope

overshoot has a negligible effect on the evolution of the star (Bressan et al., 2012). Rota-

tional mixing also plays an important role in the evolution of massive stars, however, for

simplicity we only compare non-rotating models for PARSEC, MIST, Geneva and BPASS.

For BoOST, although we do use slowly rotating (100 km s−1) models, this small difference

in the initial rotation rate is again not relevant from the point of view of the overall

evolutionary behaviour (Brott et al., 2011a).

Major input parameters used in each set of models are summarized in Table 2.1.
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2.3 Eddington luminosity and the numerical treatment of density

inversions

The Eddington luminosity is the maximum luminosity that can be transported by radiation

while maintaining hydrostatic equilibrium (Eddington, 1926). In the low-density envelopes

of massive stars changes in the elemental opacities during the evolution of stars can cause

the local radiative luminosity to exceed the Eddington luminosity (Langer, 1997; Sanyal

et al., 2015). To maintain hydrostatic equilibrium, density and pressure inversion regions

form in the stellar envelope. In the absence of efficient convection (which is also typical for

the low-density envelopes, Grassitelli et al. 2016), this can lead to convergence problems

for 1D stellar evolution codes (Paxton et al., 2013). Owing to numerical difficulties, the

time-steps become exceedingly small, preventing further evolution of the star. While less

massive stars are only affected by this process in their late evolutionary phases (Harpaz,

1984; Lau et al., 2012), very massive stars can exceed the Eddington-limit already during

the core-hydrogen-burning phase (Gräfener et al., 2012; Sanyal et al., 2015) and inhibit

computation of their evolution. Therefore, 1D stellar evolution codes have to employ

various solutions to compute further evolution of very massive stars.

In PARSEC models, density inversions and the consequent numerical difficulties are

avoided by limiting the temperature gradient such that the density gradient never becomes

negative (see Sec. 2.4 of Chen et al., 2015; Alongi et al., 1993). Limiting the temperature

gradient prevents inefficient convection and the evolution of the stars proceeds uninter-

rupted. Also, the models include a mass-loss enhancement following Vink (2011) whenever

the total luminosity of the star approaches the Eddington-luminosity.

MIST models suppress density inversions through the MLT++ formalism (Paxton

et al., 2013) of MESA. In this method, the actual temperature gradient is artificially

reduced to make it closer to the adiabatic temperature gradient whenever radiative lu-

minosity exceeds the Eddington luminosity above a pre-defined threshold. This approach

again increases convective efficiency, helping stars to overcome density inversions. Addi-

tionally, radiative pressure at the surface of the star is also enhanced in the MIST models

to help with convergence (Choi et al., 2016).

In the extended envelopes of massive stars, the density scale height is much larger
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compared to the pressure scale height (which is typically used for computing the mixing

length). Therefore, setting the mixing length to be comparable with the density scale

height helps avoid density inversion (Nishida & Schindler, 1967; Maeder, 1987). The

Geneva models include this treatment when computing models with initial masses greater

than 40 M� with αMLT = 1.0 (see Sec. 2.3 of Ekström et al., 2012). Additionally, the mass-

loss rates for the models are increased by a factor of three whenever the local luminosity in

any of the layers of the envelope is higher than five times the local Eddington luminosity.

BoOST models do not include any artificial treatment to prevent massive stars from

encountering density inversions. Instead, their models undergo envelope inflation when

massive stars reach the Eddington limit (Sanyal et al., 2015). On encountering the density

inversions in their envelopes, the computation of very massive stars becomes numerically

difficult. Further evolution of such stars is then computed through post-processing. It

involves removing layers from the surface of the star (which would anyway happen due

to regular mass loss) while correcting for surface properties such as effective temperature

and luminosity (Szécsi et al., 2020).

BPASS models also allow density inversions to develop in the envelope of massive

stars. However, these models are able to continue the evolution without numerical dif-

ficulties, most likely due to the use of a non-Lagrangian mesh (see Stancliffe, 2006, for

an overview) and the resolution factors being lower than in other models (J.J. Eldridge,

private communication, also see Eggleton, 1973).

2.4 Comparing the models

2.4.1 Differences between models in the Hertzsprung–Russell diagram

The evolution of stars can be easily represented through tracks on the Hertzsprung-Russell

(HR) diagram, depicting the evolutionary paths followed by a series of stars. Figure 2.1

presents the HR diagram of stars of various initial masses from the five simulation ap-

proaches. The observational analogue to the Eddington-limit is the Humphreys–Davidson

limit or HD-limit (Humphreys & Davidson, 1979). Since the luminosity of a star depends

on its mass, more massive stars also are more luminous. This means they can easily exceed

the Eddington-limit, develop density inversions and require the use of numerical solutions
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Figure 2.1 Hertzsprung–Russell diagrams of the massive single star models analysed in this
work. All models have near solar composition. Symbols mark every 105 years of evolution.
Only the core-hydrogen- and core-helium-burning phases are plotted. The dashed red
line marks the observational Humphreys–Davidson limit (Humphreys & Davidson, 1979)
where relevant. The tracks become more varied with increasing initial mass. This is
because the codes apply various treatments for the numerical instabilities associated with
the Eddington-limit proximity, cf. Section 2.3.

as discussed in Section 2.3.

From Figure 2.1 we see that the tracks of the 25 M� (or 24 M� in some cases) stars

agree well during most of the evolution. This is because stars of this mass do not exceed

the Eddington limit and are thus not affected by the related numerical treatments. The

minor differences in their tracks are due to the difference in physical inputs (Section 2.2)

between the simulations. For example, the differences in the position of the main-sequence

(MS) hook feature in the HR diagram arise due to the varied extent of convective overshoot

used in each set of models.
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A 40 M� star is clearly affected by the numerical treatment employed during the post-

main sequence phase of its evolution, as evidenced by the difference in the tracks in the HR

diagram shown in Figure 2.1. More massive stars, i.e, those with initial masses 80/85 M�

and 120/125 M�, can exceed the Eddington-limit in their envelopes while on the MS

and therefore their simulations differ significantly from each other. At these masses, the

mass-loss rates can be as high as 10−3− 10−4 M� yr−1, completely dominating over every

other physical ingredient in determining the evolutionary path. While all tracks have been

computed with similar prescriptions for wind mass loss (cf. Section 2.2), the actual rates

can be strongly modified by the numerical methods adopted by each code in response to

numerical instabilities (Section 2.3), resulting in vast differences in the tracks.

2.4.2 Predictions of maximum stellar radii

The radial expansion of a star plays a significant role in determining the nature of binary

interaction as it can lead to episodes of mass transfer in close interacting binaries. Recent

studies indicate that most of the massive stars occur in binaries (Sana et al., 2012; Moe

& Di Stefano, 2017). Therefore, predictions of stellar radii become even more important

for determining the binary properties of massive stars.

Figure 2.2 shows the maximum radial expansion achieved by massive stars from each

simulation. For stars with initial mass up to 30 M�, all simulations predict the formation

of a red supergiant. The maximum difference in the radius predictions here is .1000 R�.

For higher initial masses, the predictions for maximum stellar radii become more divergent

as proximity to the Eddington-limit increases and numerical treatments adopted by each

code modify the mass-loss rates.

The greatest difference in the maximum radius predictions (&1000 R�) occurs for stars

with initial masses between 40 and 100 M�. Above ∼ 100 M�, stars have even higher mass-

loss rates which can completely strip a star of its envelope before it can become a red-

supergiant. Such stars evolve directly towards the naked helium star phase and have much

smaller radii. Therefore, for stars with initial masses more than 100 M�, the difference

between the maximum radius predictions by each simulation reduces to .100 R�. The

predictions in this mass range seem to further converge into two groups: PARSEC and

MIST represent one group predicting smaller radii compared to the second group which
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consists of BoOST and BPASS models. Since the maximum initial mass of a star in the

Geneva set is 120 M�, we cannot comment on the behaviour of their models outside of

this range.
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Figure 2.2 Maximum stellar radii as a function of the initial mass of the star. Similar
to Figure 2.1, differences in the physical inputs and the numerical methods adopted by
each code can lead to a difference of more than 1 000 R� in predictions in terms of the
maximum radial expansion achieved by the stars.

2.4.3 Remnant mass predictions

Stellar evolutionary models provide an easy way of estimating the properties of stellar

remnants such as black holes and neutron stars, which are needed in many fields includ-

ing supernova studies (e.g. Aguilera-Dena et al., 2018; Raithel et al., 2018), gamma-ray

bursts progenitors (e.g. Yoon et al., 2006; Szecsi, 2017), and gravitational-wave event rate

predictions (e.g. Stevenson et al., 2019; Mapelli et al., 2020).

Following Belczynski et al. (2010) we show in Figure 2.3 how the uncertainties in the

models we compare here also pose a challenge for the predictions of remnant properties.

Remnant masses have been calculated from the carbon-oxygen core mass and the total

mass of the star at the end of the core helium-burning phase using the prescription of

Belczynski et al. (2008) (same as the StarTrack prescription in Fryer et al., 2012).
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The remnant masses are heavily influenced by the modelling assumptions (cf. Sec-

tion 2.2) and the numerical methods (cf. Section 2.3) especially above Mini = 40 M�

where the most massive black holes are predicted. We find that the mass of the black

holes predicted by the different sets of models can differ by ∼ 20 M�. The maximum

black hole mass varies from about 20 M� for BPASS models to about 38 M� for MIST

and PARSEC models and 35 M� for the BoOST models. Since all the models we study

have near-solar metallicity and therefore rather high mass-loss rates, none of them stays

massive enough at the end of their lives to undergo pair-instability.

Similar variability is found in the core mass and the final total mass of the star (from

which the remnant masses have been calculated). BPASS models consistently predict

the lowest values of final core mass and the total mass for most of the massive stars while

BoOST predictions are the highest. MIST and PARSEC models predict values in between.

The Geneva models do not provide information on core masses, hence we omit them from

the analysis of the core mass and the remnant mass. However, we do show their predictions

for the final total mass which, for stars up to 100 M�, are similar to the predictions of

BPASS models.

Similar to the predictions of maximum stellar radii in Figure 2.2, the predictions of

final masses for stars with initial mass & 100 M� separate into two groups, although the

groups are slightly different this time, BPASS and MIST represent one group predicting

smaller final masses compared to the second group consisting of BoOST and PARSEC

models.

2.5 Conclusions

We compare 1D evolutionary models of massive and very massive stars from five indepen-

dent simulations. Focusing on near-solar composition, we find that the predictions from

different codes can differ from each other by more than 1000 R� in terms of maximum

radial expansion achieved by the stars and about 20 M� in terms of the stellar remnant

mass. The differences in the evolution of massive stars can arise due to physical inputs

like chemical abundances, mass-loss rates, and internal mixing properties. However, very

massive stars, that is stars with initial masses 40 M� or more, show a larger difference in
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Figure 2.3 Final masses of stars as a function of their initial mass, MZAMS. The top
panel shows the mass of stellar remnants as predicted by the BPASS, BoOST, MIST and
PARSEC models. The middle panel shows the carbon-oxygen core mass and the bottom
panel shows the total mass of the star at the end of the core helium-burning phase, as
used in the calculation of the remnant masses. Differences in the evolutionary parameters
for massive stars can cause variations of about 20 M� in the remnant masses between the
stellar models from various simulations.
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evolutionary properties compared to lower mass stars. For these stars, the differences in

the evolution can be largely attributed to the numerical treatment of the models when the

Eddington-limit is exceeded in their low-density envelopes.

The different methods used by 1D codes to compute the evolution of massive stars be-

yond density inversions (or to avoid the inversions) can modify the radius and temperature

of the star, and can therefore affect the mass-loss rates. A phenomenological justification

for the mass loss enhancement comes from the fact that there are stars observed with ex-

tremely high, episodical mass loss, i.e. luminous blue variables (Bestenlehner et al., 2014;

Sarkisyan et al., 2020). However, other studies, such as the recent measurement of a ap-

proximately 20 M� black hole in the Galactic black hole high-mass X-ray binary Cyg X-1

(Miller-Jones et al., 2021), suggest that the mass-loss rates for massive stars at near-solar

metallicity may be lower than usually assumed in the 1D stellar models (Neijssel et al.,

2021). The exact nature of wind mass loss for very massive stars remains disputed (Smith

& Tombleson, 2015). Moreover, variation in remnants masses in Figure 2.3 shows other

uncertainties in massive star evolution can lead to differences at least as large as variations

in mass-loss rates, which could also easily explain the formation of a 20 M� black hole in

Cyg X-1 in the Galaxy.

None of the solutions that the BoOST, Geneva, MIST and PARSEC models employ can

currently be established as better than the others. In each case they have been designed to

address numerical issues in 1D stellar evolution. However, the interplay of these solutions

with mass-loss rates and convection further adds to the uncertainties in massive stellar

evolution. Therefore, a systematic study to untangle the effect of the treatment of the

Eddington-limit from other physical assumptions will be conducted in the near future

(Chapter 3).

In the case of BPASS the stellar models evolve without requiring any numerical en-

hancement. Whether this is a result of using a non-Lagrangian mesh (the ‘Eggletonian’

mesh, which is more adaptive to changes in stellar structure) or if this is an artifact of

bigger time steps (that helps stars skip problematic short-lived phases of evolution) is

currently not known. A separate study to explore the effect of the ‘Lagrangian’ versus the

‘Eggletonian’ mesh structure for massive stars (similar to Stancliffe et al. 2004 study for

low and intermediate mass stars) is highly desirable.
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In conclusion, it is crucial to be aware of the uncertainties resulting from numerical

methods whenever the evolutionary model sequences of massive stars are applied in any

scientific project, such as gravitational-wave event rate predictions or star-formation and

feedback studies.

We only focus on massive stars as isolated single stars in this work. However, there is

mounting evidence that massive stars are formed as binaries or triples, thus treating them

as single stars might not be correct (e.g. Klencki et al., 2020; Laplace et al., 2021). Several

studies have shown that binarity can heavily influence the lives of massive stars through

mass and angular momentum transfer (de Mink et al., 2009a; Marchant et al., 2016) and

can therefore help in avoiding density and pressure inversion regions in stellar envelopes

(Shenar et al., 2020).

We also limit our study to massive stars at near-solar metallicity, where due to high

opacity, the numerical instabilities related to the proximity to the Eddington-limit are

maximum. Since opacity decreases with metallicity, opacity peaks become less prominent

at lower metallicity. Nevertheless, stars with low-metal content also reach the Eddington-

limit, although at higher initial masses (Sanyal et al., 2015, 2017). While progenitors of

currently detectable gravitational-wave (GW) sources may have been born in the early

Universe where the metal content is sub-solar (cf. Santoliquido et al., 2021), high star-

formation rates at near solar metallicities offer a fertile ground for the formation of more

GW sources, although less massive compared to sub-solar metallicity (Neijssel et al., 2019).

As such, there is good motivation for studying the behaviour and reliability of massive star

models across a wide range of metallicities. We explore the effect of the Eddington-limit

at sub-solar metallicities in Chapter 3 and Chapter 5.

Collecting observational data as well as improvements in 3D and hydrodynamical mod-

elling will help us better constrain the models of massive stars in the future. Until then,

however, we urge the broader community to treat any set of stellar models with caution.

Ideally, one would implement all available simulations as input into any given astrophysical

study, and test the outcome also in terms of stellar evolution related uncertainties. With

tools such as METISSE (Agrawal et al., 2020) and SEVN (Spera et al., 2019), this task is

becoming feasible.
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Data Availability

All the stellar models used in this work are publicly available: PARSEC, MIST, Geneva

BPASS, BoOST.
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3
A systematic study of super-Eddington envelopes

in massive stars

Stars must have a luminosity inferior to the Eddington limit, otherwise “... the radiation

observed to be emitted ...would blow up the star”

—Eddington (1926)

3.1 Introduction

Stars more massive than about 9 M� are key to several astrophysical processes. During

their lives, they enrich their surroundings with ionising flux and nuclear processed ma-

terial while altering the dynamics of their host systems. At the end of their lives, these

massive stars again expel copious amount of radiation and metal-rich matter in the form

of supernovae, leaving behind compact remnants: neutron stars and black holes. Further-

more, mergers of these compact remnants result in gravitational wave (Abbott et al., 2016,

2017b) emission and can also lead to the formation of rare elements (Kasen et al., 2017).

Therefore, a better understanding of how these stars evolve is crucial in comprehending

their contribution to the evolution of star clusters and galaxies.

The evolution of massive stars is typically modelled using one-dimensional (1D) stellar

evolution codes. In the last few decades, these stellar evolution codes have progressed a

lot and so has our understanding of massive stars. Together with the advances in our

observing capabilities (Evans et al., 2011; Simón-Dı́az et al., 2015; Wade et al., 2014;

47
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Abbott et al., 2016), the development of sophisticated numerical methods for simulating

physical processes and newer input data in the form of opacity tables and nuclear reaction

rates has led to the development of modern and improved stellar structure and evolution

codes (Langer, 2012; Ekström et al., 2020).

Even with these new capabilities, 1D modeling of massive stars is limited by a number

of approximations. Several evolutionary properties of massive stars such as the mass-loss

rates (Smith, 2014; Renzo et al., 2017), nuclear reaction rates (Heger et al., 2002; Fields

et al., 2018) and rotation (Heger et al., 2000; Maeder, 2009) remain uncertain. The high

mass of these stars makes it feasible for sophisticated physical process to operate in these

stars but their short lives makes it difficult to obtain observational constraints.

One such process is the treatment of convective transport of energy through the Mixing

Length Theory (MLT; Böhm-Vitense, 1958). In this theory, energy is transported through

fluid elements supported by buoyancy forces. These elements travel over a radial distance

known as the mixing length after which they dissolve in their surroundings. MLT assumes

hydrostatic equilibrium in stars, meaning no acceleration of particles and depends only on

local conditions (i.e., local values of pressure, density etc.), without taking into account

other parts of the star. Time-dependency and non-local treatments are included through

ad-hoc methods such as convective overshoot, semiconvection and diffusion (e.g., Renzini,

1987; Kippenhahn et al., 2012).

The simplicity of MLT makes it a popular choice for many stellar evolution codes.

However, in the low-density envelopes of massive stars, convection as given by MLT is

inefficient. Changes in the elemental opacity as the star evolves can cause the radiative

luminosity to exceed the Eddington-luminosity and lead to the formation of density and gas

pressure inversions in the sub-surface layers. The presence of density inversions has been

attributed as the source of several instabilities such as the dynamical instability (Stothers

& Chin, 1993), the convective instability (Langer, 1997), and the strange-mode instability

(Saio et al., 1998, 2013) in massive stars. Observationally, these have been linked to stellar

variability phenomena such as stochastic low-frequency photometric variability (Pedersen

et al., 2019; Bowman, 2020), spectroscopic macroturbulence (Simón-Dı́az & Herrero, 2014;

Simón-Dı́az et al., 2017) and episodic mass ejection behaviour in luminous blue variables

(LBVs: Bestenlehner et al., 2014; Gräfener, 2021).
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From a numerical perspective, the presence of density inversions in the inflated en-

velopes of supergiant stars requires 1D stellar evolution codes to take prohibitively short

time-steps (of the order of hours and minutes) leading to convergence issues (Maeder, 1987;

Alongi et al., 1993; Paxton et al., 2013). Evolving stars past these numerical difficulties

in the supergiant phase has been a long standing challenge for the 1D stellar evolution

approach. As shown in Chapter 2, stellar evolution codes often resort to numerous prag-

matic methods to evolve stars such as enhancing the convective efficiency (e.g. Ekström

et al., 2012) or limiting temperature gradients such that the density gradient is always

positive (e.g. Chen et al., 2015). While these methods help evolve stars through numer-

ically difficult phases of evolution, they can also modify their surface behaviour, such as

the radius evolution and mass-loss rates.

The different methods used by 1D codes and their interplay with other physical pa-

rameters of massive stars can alter the dynamics of stellar evolution, thereby adding a

potential bias to any study aiming to determine the properties of these input parameters

from the evolution of a star. While other uncertainties in the evolution of massive stars

have received considerable attention in a number of studies, the role of density inversions

has not been explored to the same extent.

In Chapter 2, the comparison of stellar models from five different codes revealed large

differences in the evolutionary behavior of stars more massive than 40 M� around solar

metallicity (at Z = 0.014). The maximum radial expansion predicted by different stellar

models varied by more than 1000 R� and the predictions of remnant mass varied by 20 M�.

However, the stellar models also had different physical inputs beside the treatment of

density inversions arising due to the Eddington luminosity, making it difficult to untangle

the impact of this process from other inputs. There is therefore a need for a systematic

study of the impact of these methods within a single code and single set of assumptions.

In this work, we perform a study of the impact of density inversions on the evolution

of massive stars up to 110 M� using consistent input parameters. Since Chapter 2 focused

only on solar metallicity stars, we choose a metallicity ten times lower than solar here to

demonstrate the impact of density inversions at a metallicity relevant to the progenitors of

current gravitational wave observations (e.g. Stevenson et al., 2017). As we show here, the

different methods used by 1D codes can have a non-negligible impact on the evolutionary
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properties of massive stars. These differences are important, as they can help us explain the

formation of gravitational wave progenitors and other observations of stellar populations.

The paper is organised as follows. We provide an overview of the physics related to

density inversions in Section 3.2. In Section 3.3, we describe our standard or default set

of models with MESA and discuss the effect of density inversions on their completeness.

We recompute the models that fail to reach the end of evolution, using three different

numerical methods in Section 3.4 and compare the impact of these methods in predicting

the different evolutionary properties of massive stars in Section 3.5. In Section 3.6, we

compare the stellar models from Section 3.4 with the observations of massive stars and

conclude our study in Section 3.7.

3.2 Physics of density inversions in massive stars

In this section, we describe the conditions for the formation of density and gas pressure

inversions in stellar envelopes and their impact on modelling the evolution of massive stars.

For a spherically symmetric star containing mass m(r) inside radius r and with ra-

diative opacity κ(r) and density ρ(r), the luminosity that can be carried by radiative

transport of energy is given by

Lrad(r) = − 4πr2c

ρ(r)κ(r)

dPrad

dr
, (3.1)

where Prad denotes the radiation pressure and c is the speed of light.

The Eddington luminosity gives the maximum value of luminosity that can be trans-

ported by radiation while maintaining hydrostatic equilibrium (Eddington, 1926). The

expression for the Eddington luminosity is given by

LEdd(r) =
4πcGm(r)

κ(r)
, (3.2)

where G represents the gravitational constant. The total pressure P in the star is the sum

of the radiation pressure, Prad and the gas pressure Pgas. Using equations 3.1 and 3.2 and

the equation of hydrostatic equilibrium dP/dr = −Gm(r)κ(r)/r2, the ratio of radiative

luminosity to the Eddington luminosity can be defined as
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Lrad

LEdd
=
dPrad

dP
=

[
1 +

dPgas

dPrad

]
. (3.3)

Normally, the luminosity transported by radiation (Lrad) is less than the Eddington-

luminosity (LEdd) inside a star, and the density and gas pressure of stellar material decrease

with the stellar radius (dρ/dr < 0, dPgas/dr < 0). However, during the evolution of the

star, changes in the elemental ionisation states can lead to an increase in the opacity κ(r).

In the low density (ρ � 1 g cm−3) radiation pressure dominated (Prad/P ≈ 1) envelopes

of massive stars, an increase in opacity can reduce the Eddington luminosity below the

radiative luminosity ( Lrad
LEdd

> 1). Since dPrad/dr is always less than 0, when Lrad
LEdd

> 1

Equation 3.3 implies dPgas/dr > 0 i.e., a gas pressure inversion.

From the ideal gas equation of state, Pgas can be expressed as a function of ρ and

Prad. Using Equation 3.3, the condition for density inversion (dρ/dr > 0) can therefore be

written as

Lrad

LEdd
>

[
1 +

(
∂Pgas

∂Prad

)
ρ

]−1

(3.4)

(Joss et al., 1973; Paxton et al., 2013).

The effect of density inversions on the evolution of massive stars is complex and remains

an active field of research (Mihalas, 1969; Érgma, 1971; Langer, 1997; Owocki et al., 2004;

Cantiello et al., 2009; Sanyal et al., 2015). Gräfener et al. (2012) found that an increase in

the radiative luminosity near the opacity peak due to the iron-group elements (at ∼2×105

K) leads to the formation of an ‘inflated envelope’ containing density inversions (also see

Ishii et al., 1999; Petrovic et al., 2006). In this state, the star has an extended radiative

envelope with a relatively small convective core. As pointed out by Sanyal et al. (2015),

these inflated stars are different to classical red supergiants, as envelope inflation does not

require hydrogen shell burning and can even occur while the star is on the main sequence.

For hydrogen-rich stars, the formation of the inflated envelope reduces the opacity

and therefore the radiative luminosity, driving down Lrad/LEdd. However, as the envelope

expands, its outer layers become sufficiently cool to encounter opacity bumps due to helium

ionization (at ∼2×104 K) and hydrogen recombination (at ∼104 K) and further expansion

no longer reduces Lrad/LEdd.

The presence of density inversions in the inflated envelopes makes it difficult to match
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solutions of stellar structure equations in the envelope (Maeder, 1987, 1992). The com-

bination of low gas pressure and the high entropy at the base of the inflated envelope

leads to numerical difficulties if time-steps are large (Paxton et al., 2013). To avoid these

difficulties, stellar evolution codes are forced to adopt exceedingly small time-steps and

struggle to complete the evolution of these stars.

3.3 Stellar Models: the standard set

Module for Experiments in Stellar Astrophysics (MESA: Paxton et al., 2011, 2013, 2015,

2018, 2019) is an advanced one dimensional stellar structure and evolution code. MESA

solves the coupled differential equations of stellar structure simultaneously with the energy

transport equation for all mass cells from the surface to the center. In this work, we make

use of version 11701 of MESA.

Convection is treated as a diffusive process with convective boundaries determined by

the Ledoux criterion. To account for convection due to varying opacity in layers, we use

the Henyey et al. (1965) treatment of MLT with mixing length parameter, αMLT = 1.82.

Semiconvection is implemented using Langer et al. (1985) with αsemiconvection = 1.0 while

a small amount of Thermohaline mixing is used (αth = 2.0) following Kippenhahn et al.

(1980). For convective overshooting we follow the calibration adopted by Brott et al.

(2011a): step overshoot with f = 0.335 and f0 = 0.05. We only apply overshooting in the

core and not in the convective envelope.

Mass loss is modelled using the commonly used MESA ‘Dutch’ scheme (Glebbeek et al.,

2009) with the mass loss scaling factor, ηDutch = 1.0. The scheme follows Vink et al. (2000,

2001) for hot winds, de Jager et al. (1988) for cool winds and Nugis & Lamers (2000) for

Wolf-Rayet winds.

Opacities are calculated using OPAL (Iglesias & Rogers, 1993, 1996) Type I and Type

II (at the end of hydrogen burning) using Asplund et al. (2009b) photospheric abundances.

Electron screening is included for both the weak and strong regimes using the ‘extended’

option in MESA, which computes the screening factors by extending the classic Graboske

et al. (1973) method with that of Alastuey & Jancovici (1978), and adopting plasma

parameters from Itoh et al. (1979) for strong screening. Boundary conditions at the surface
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of the star are calculated using the ‘Eddington_grey’ option of MESA, which uses the

Eddington T-tau integration (Eddington, 1926) to obtain temperature and pressure in the

outer layer of the stars.

Nuclear reaction networks can have a non-trivial effect on the evolution of massive

stars (Farmer et al., 2016), especially the inclusion of elements like iron and nickel (Nabi

et al., 2019). Hence, we make use of an extensive grid of isotopes for the nuclear reaction

network in our models to closely follow the evolution of massive stars. The network has

been chosen to match globular cluster observations and has 72 elements, including Mg, Li

and Fe. The reaction rates are determined using the Jina Reaclib database (Cyburt et al.,

2010).

We use high spatial resolution with mesh_delta_coeff = 0.5 and the maximum rela-

tive cell size max_dq = 5× 10−4. Model to model structure variation is kept modest with

varcontrol between 7× 10−4 and 10−3, and additional constraints are used to limit time

steps where necessary.

We compute the evolution of stars in the mass range of 10–110 M� at metallcity,

Z = 0.00142 ([Fe/H] = -1). All stars start from the pre-main-sequence (PMS) with uniform

composition and the goal is to evolve each model until the point of carbon depletion in

the core (Xc ≤ 10−2). Following Choi et al. (2016), we adopt solar scaled abundances

from Asplund et al. (2009b), with Solar metallicity Z� = Z�,protosolar = 0.0142. The

primordial helium abundance Yp is taken to be 0.249 while the protosolar helium abundance

Y�,protosolar = 0.2703. Initial hydrogen (X) and helium abundances (Y) for PMS models

are calculated using the following formula

Y = Yp +

(
Y�,protosolar − Yp

Z�,protosolar

)
Z, (3.5)

X = 1− Y − Z.

Models are evolved without mass loss from the PMS until the zero-age main sequence

(ZAMS), defined as when the central hydrogen abundance reduces by 1 percent of the

initial value. Evolution is then restarted (including mass loss) using the stellar model saved

at ZAMS, and continues until either the termination condition is reached (Xc ≤ 10−2) or

the end of 96 CPU-hrs (running parallel on 4 cores for 24 hrs).
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Figure 3.1 Hertzsprung-Russell (HR) diagram showing stellar models from the standard
set coloured by the maximum of Lrad/LEdd (left panel) and the minimum of Pgas/Ptotal

(right panel). The blue cross marks the end of core hydrogen burning and the red cross
marks the end of core helium burning (where applicable). The brown dashed line in the
left panel denotes the position of the observational Humphreys & Davidson (1979) limit
beyond which few stars are observed, while the grey dashed line signifies the luminosities of
the brightest red supergiants as inferred by Davies et al. (2018). Density inversions in the
envelopes of stars with initial masses 30 M� and above causes the evolution of these stars
to become halted at logTeff/K ≈ 3.7, and their models fail to finish core carbon burning.

3.3.1 Results

The set of models evolved using the physical inputs described above fail to reach the end of

carbon burning in the core within the allocated time (24 hrs) for stars more massive than

20 M�. Hereafter, we refer to this set as the ‘standard set’ and label it as ‘NoModifier’ in

the figures, since the models were computed without any modifications to facilitate their

evolution. The results for the standard set are unaffected by the increase in temporal and

spatial resolution.

Figure 3.1 presents the stellar tracks in the Hertzsprung-Russell (HR) diagram for our

standard set of models. In the left panel, the tracks are coloured by the maximum of

Lrad/LEdd, while the right panel shows the minimum of Pgas/Ptotal for each stellar model.

We see that in these models Lrad can become close to LEdd and even exceed it by factors

of a few during the evolution as the stars encounter opacity bumps in their envelopes.

These opacity bumps are due to the partial ionisation states of iron and helium, as well
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as the recombination of hydrogen. However, for 10 and 20 M� stars, Pgas/Ptotal remains

high enough (>0.5) for their evolution to proceed uninterrupted (see Section 3.2).
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Figure 3.2 Temperature profile of a 110 M� star at the ZAMS evolved using the standard
set. Opacity peaks due to partial ionisation states of iron are present at 1.5 × 106 and
1.8× 105 K. However, Lrad is less than LEdd throughout the star and the evolution of the
star proceeds smoothly. See Section 3.3.1 for details of each panel.

Models with initial masses between 30 and 110 M� fail during core helium burning at

similar effective temperatures, logTeff/K ≈ 3.7. In these models, the stellar envelope in-

flates in response to the iron-opacity peak, thereby preventing density inversion. However,

as the star expands and cools, the minima in gas pressure fraction at the opacity peak

decreases as highlighted in the right panel of Figure 3.1. The evolution of these models

progresses smoothly until stars encounter the opacity peak due to hydrogen and helium in
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Figure 3.3 Temperature profile of a 110 M� star at the end of the simulation, evolved using
the standard set. Vertical black dotted line marks the boundary of the helium core. The
high luminosity of the star combined with the peak in opacity due to hydrogen and helium
ionisation around 104 K causes Lrad to exceed LEdd. This causes density and gas pressure
inversions at 3 × 104 K. However, the low-density of the environment renders convection
inefficient and the star struggles to evolve despite reaching supersonic convective velocities.

their sub-surface layers at logTeff/K ≈ 4.0. The envelope inflation there is not sufficient

to prevent the radiative luminosity from exceeding the Eddington luminosity, which leads

to the density inversions.

To elaborate on the conditions in the stellar interior, the temperature profiles for

a 110 M� star at the ZAMS (at logTeff/K = 4.77), and at the end of the track (at

logTeff/K = 3.72, corresponding to the final model reached after 24 hrs of computation),

are shown in Figure 3.2 and Figure 3.3.
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In panel (a) of Figure 3.2, Lrad shows a small increase corresponding to the opacity

peaks due to partial ionisation of iron at 1.5×106 and 1.8×105 K (panel b). In response to

the increase in Lrad, gas pressure dips a little (visible as a minimum in Pgas/Ptotal) in panel

e), although, density consistently decreases outwards (shown in panel c). The bottom panel

(g) shows the variation of the actual temperature gradient and the adiabatic temperature

gradient inside the star. Their difference, ∇T − ∇ad, is known as superadiabaticity (see

Section 3.4.3 for details). Al the location of the opacity peak, superadiabaticity is positive

but small and the convective velocity (vconv) is less than the sound velocity (vsound) (panel

f), signifying efficient convection. The specific entropy (S/NAkB) in panel (d) at the base

of the convective region is small and the evolution of the star proceeds smoothly.

In panel (b) of Figure 3.3, in addition to the iron opacity peak, opacity peaks cor-

responding to partial ionisation of helium and hydrogen recombination can be seen at

3.5 × 104 and 104 K. In contrast to Figure 3.2, the increase in opacity due to hydrogen

and helium ionisation increases Lrad such that it exceeds LEdd by more than a factor of

two, causing density and gas pressure inversion that can be seen in the other panels. How-

ever, the high value of superadiabaticity (∇T − ∇ad ≈ 10) renders convection inefficient

and prone to radiative losses. The convective velocity increases to increase the amount of

flux convection can carry, becoming more than the local sound speed. However, the high

value of specific entropy (S/NAkB ≥ 300) at the base of the convective envelope causes

time-steps to be small, of the order of days.

The evolution of the star is essentially halted until it is able to get rid of the density

inversion as mass loss slowly chips away the outer convective layers. However, evolving

the star this way requires a lot of computational time (e.g., it takes ≈ 200 CPU-hrs for a

40 M� star) which might not be feasible.

3.4 Stellar models: the model variations

In the absence of efficient convection, the radiation dominated envelopes of massive stars

in 1D modelling are prone to numerical difficulties (Stothers & Chin, 1979; Maeder, 1987).

Therefore, stellar evolution codes adopt various techniques to compute the evolution of

massive stars beyond these numerically difficult points (Alongi et al., 1993; Ekström et al.,
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Figure 3.4 HR diagrams showing the evolutionary tracks graded with the maximum of
Lrad/LEdd for stars in the mass range 30–110 M�, computed with the model variations
described in Section 3.4. The top panel shows the tracks computed with enhanced mixing
(αMLT = 5.46), the middle panel shows tracks with enhanced mass loss (ηDutch = 8.0
whenever L exceeds LEdd) and the bottom panel shows tracks computed with MLT++.
Similar to Figure 3.1, blue and red crosses mark the end of core hydrogen burning and core
helium burning while the brown and grey dashed lines signify the Humphreys & Davidson
(1979) limit and the Davies et al. (2018) limit respectively.
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2012; Paxton et al., 2013). The exact technique differs from code to code, however, they

can be summed up into the three main categories: using higher mixing length to increase

the efficiency of the mixing process, using higher mass-loss rates to remove layers with

numerical instabilities, or suppressing the numerical instability by limiting the temperature

gradient and thereby suppressing density inversions. We explore each of them in details

in the following subsections.

3.4.1 Enhancing internal mixing

In the convective transport of energy by MLT, the mixing length, l travelled by a fluid

element before dissolving in the surroundings is given in terms of the local pressure scale

height Hp and mixing length parameter αMLT such that l = Hp × αMLT. For a given

Hp, a higher value of αMLT implies a higher l and therefore better convective efficiency.

αMLT is a free parameter with a value that is often calibrated from the observations of

the sun and eclipsing binaries. For example, in the standard set of models in this work

the value of αMLT has been calculated using solar data (see Choi et al., 2016, for details).

There is increasing evidence that the value of αMLT is not universal and varies with the

evolutionary phase, mass and metallicity of the stars (Joyce & Chaboyer, 2018; Johnston,

2021).

While MLT gives fairly good results in the deep interiors of stars where density is

high and convection is nearly adiabatic (with negligible radiative losses), its limitations

start becoming apparent in low-density environments where the convection is highly su-

peradiabatic and prone to radiative losses (Maeder, 2009). In the presence of density

inversions, convective velocity becomes supersonic and convection is time-dependent. In

such situations both standard and non-adiabatic theories of MLT are out of their domain

of applicability.

While testing the models with a different theory of convective energy transport is

beyond the scope of this work, we do test the role of increased efficiency of convection on

the convergence properties of the models from the standard set that fail to reach the end

of carbon burning. Beginning with αMLT = 1.82 (used in the standard set), we compute

a series of stellar models with αMLT = 3.0, 3.64, 4.0, 5.0, 5.46, 7.28, 8.0 for stars with initial

mass 30 M� and above. We find that for αMLT ≥ 5.46, which is three times the value used
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in the standard set, the models are able to evolve without any numerical instabilities until

carbon depletion in the core.
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Figure 3.5 Temperature profile of a 110 M� star computed with the mixing length pa-
rameter, αMLT = 5.46. Similar to Figure 3.3, a density inversion can be seen in panel
(c). However, higher convective velocity (panel f) and smaller superadiabaticity (panel g)
resulting from the higher value of αMLT helps to keep the specific entropy small (panel d)
and time-steps large enough to evolve the model without numerical instabilities.

The top panel of Figure 3.4 shows the evolutionary tracks evolved with αMLT = 5.46.

From the figure we see that Lrad still exceeds LEdd in the stellar envelope, however, this

does not limit the time-steps of the computation of the stellar models. The reason for

this can be understood from Figure 3.5, where we show the temperature profile of 110 M�

star at a similar location in the HR diagram where the computation for the 110 M� star
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from the standard set became stuck. Similar to Figure 3.3, the stellar profile contains

opacity peaks due to ionisation of iron, helium and hydrogen (panel b), resulting in excess

Lrad (panel a) and the density and gas pressure inversions (panel c and e). However,

higher convective velocities resulting from higher αMLT imply that the convective fluid

element travels faster and transports more energy before it leaks out due to radiative

losses. The superadiabaticity in the outer layers is also smaller compared to the standard

case (∇T − ∇ad ≈ 2), meaning radiative losses are also smaller. The overall convective

flux is, therefore, higher than the standard case. The specific entropy remains small

(S/NAkB < 100) and time-steps large enough to efficiently compute the evolution of the

star until the end of carbon burning.

Increasing convective efficiency in this way helps compute the evolution of stars until

core carbon burning. However, it also changes the effective temperature of these stars and

makes them appear bluer in the HR diagram (Maeder, 1987; Kippenhahn et al., 2012).

Comparing the tracks with extra mixing (top panel of Figure 3.4), with the standard set

(left panel of Figure 3.1), we find that stellar models with extra mixing are indeed limited to

logTeff/K ≈ 3.73 in the HR diagram which is greater than the minimum logTeff/K ≈ 3.63

reached by models in the standard set. We discuss this further in Section 3.5.

3.4.2 Enhancing mass loss

Winds of hot massive main-sequence stars are optically thin line-driven winds. Due to

their high luminosity, massive stars can generate a high number of photons which can

be scattered via ions, transferring momentum with them which then accelerates material

outwards that can escape the gravitational potential of the star. As the star evolves to

the cool red supergiant phase, these winds transition to being dust-driven where they are

generated by the interaction of photons with dust grains instead of ions. Massive stars

can lose a substantial amount of mass through stellar winds, even their entire hydrogen

envelope to become naked helium stars. The mass loss in naked helium stars is again

driven by radiation pressure and can be higher by a factor of ten or more than their

hydrogen-rich counterparts (Smith & Tombleson, 2015)

The mass-loss rates for massive stars are highly uncertain (Renzo et al., 2017) and

can be affected by instabilities and processes other than described above. For example,
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Gräfener & Hamann (2008) and Vink (2011) have shown the contribution of optically thick

(clumped) winds in the presence of sub-surface opacity bumps in massive stars. More-

over, massive stars exceeding the classical Eddington limit can also experience episodes of

much stronger mass-loss rates (up to 10−3 M� yr−1), known as LBV eruptions or super-

Eddington winds (Lamers & Fitzpatrick, 1988; Humphreys & Davidson, 1994; Smith et al.,

2004). Despite being the stronger contributor to mass-loss rates for massive stars, the ex-

act rates and the mechanism behind the LBV eruptions remains disputed (Puls et al.,

2008; Smith, 2014; Owocki, 2015) and most stellar evolution models often exclude their

contributions in the mass-loss rates.

Apart from the uncertainties in the mass-loss rates of massive stars, the differential

equations of stellar structure and evolution do not include stellar mass loss. In stellar

evolution codes, the mass change at each time step is computed from parameterized al-

gorithms as time-averaged mass loss, before solving the equations of stellar structure.

The stellar variables are then adjusted accordingly to account for the mass change. High

mass-loss rates can therefore help remove outer layers in the stellar model containing the

density inversion, helping the stellar model avoid numerical instabilities (Petrovic et al.,

2006; Cantiello et al., 2009).

To determine the impact of enhanced wind mass-loss on the convergence properties

of models that fail to evolve in the standard set, we recomputed these models with in-

creased wind mass-loss rates for different evolutionary phases until the models are able

to evolve without numerical difficulties. We find that setting the mass loss scaling factor

to ηDutch ≥ 8.0, i.e., at least eight times the mass loss used in the standard set, whenever

the stellar luminosity exceeds the Eddington luminosity, leads to smooth evolution of the

stellar models with initial mass greater than or equal to 30 M�.

We also find that this mass-loss enhancement is only required for stars with a hydrogen-

rich envelope (Xsurf ≥ 0.4). Although naked helium stars can also exceed the Eddington-

limit and can develop density inversions in their envelopes, their evolution proceeds unin-

terrupted for our models without any numerical instabilities.

The models with extra mass loss as described above, with ηDutch = 8.0, are shown in

the middle panel of Figure 3.4. A 110 M� star with extra mass loss is able to evolve

to the end of carbon burning, while the maximum of Lrad/LEdd remains close to unity
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Figure 3.6 Temperature profile of a 70 M� star computed with extra mass loss, as de-
scribed in Section 3.4.2. Opacity-peaks due to the ionisation states of hydrogen, helium
and iron and associated density inversions can be seen in panel (b) and panel (c) respec-
tively. However, high mass-loss rates remove the layers containing the density inversion,
moderating the specific entropy at the base of the convective envelope and the model is
able to evolve until completion with reasonably large time-steps.

throughout the evolution. However, for models less massive than 70 M�, the maximum of

Lrad/LEdd can be up to 8, similar to models in the standard set. These values of Lrad/LEdd

do lead to the formation of density inversions, as shown in the temperature profile of the

70 M� star in Figure 3.6, but enhanced mass-loss rates (∼ 10−4 M� yr−1 at this point)

help remove the outer layers containing density inversions before specific entropy at the

base of the envelope becomes large or time-steps become too small. Thus, all models are

able to evolve smoothly to completion without any numerical instability.
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Extra mass loss helps compute the evolution of massive stars all the way through to

carbon depletion in their core. However, it also influences the structure and evolutionary

properties of the stars as explained in Section 3.5.

3.4.3 Suppressing density inversions

According to the MLT, convection sets in when the temperature gradient of the surround-

ing material is greater than the gradient interior to the moving element: ∇T > ∇element.

For convection to transport the maximum possible energy, the element should move adi-

abatically, i.e. without dissipating energy in the surroundings or ∇T ∼ ∇ad.

The difference between ∇T and ∇ad is termed the superadiabaticity and is a measure

of the efficiency of convection (Maeder, 2009; Kippenhahn et al., 2012). For efficient con-

vection, superadiabaticity is positive but close to 0. It means that the element loses hardly

any energy as it traverses the mixing length. However, a higher value of superadiabaticity

(& 10−2) implies that the element suffers energy-losses as it travels, and by the time it

reaches the end of the mixing length it is left with hardly any energy, thereby, rendering

the convective transport of energy quite inefficient.

In the envelopes of massive stars superadiabaticity is the order of unity and the con-

vective transport of energy given by MLT is inefficient, providing fertile ground for density

inversions to form and be sustained. Some authors even consider density inversions to be

non-physical, possibly an artifact of the MLT and 1D stellar evolution (Ekström et al.,

2012) while others consider the possible presence of some unknown mixing mechanism

that helps stars get rid of density inversions in nature (Paxton et al., 2013). Either way,

since these density inversions are associated with numerical instabilities in the models of

massive stars, many stellar evolution codes suppress them either by limiting ∇T or by

reducing ∇T to make it closer to ∇ad. This reduces the superadiabaticity, thereby making

convection efficient and helping stellar models overcome numerical instabilities.

MESA uses the latter approach of reducing ∇T in the stellar envelope through a

method known as MLT++. In this method, whenever the superadiabaticity exceeds a pre-

defined threshold gradT_excess_f1, MESA decreases ∇T to make it closer to ∇ad. The

amount of decrease is given by the combination of the parameter gradT_excess_f2 which

can be defined by the user, and the parameter gradT_excess_alpha which is calculated
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based on the the maximum of Lrad/LEdd and the minimum of Pgas/Ptotal (see Appendix C

for details). In general, a smaller gradT_excess_f2 implies a larger reduction in the

superadiabaticity and more efficient convective transport of energy.
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Figure 3.7 Temperature profile of a 110 M� star computed with the MLT++ method
of MESA. The method artificially reduces the difference between ∇T and ∇ad in the
stellar envelope, acting as an source of additional envelope mixing (see Section 3.4.3 for
details). The small envelope mixing used here is not enough to suppress density inversions
completely (panel c) but it does help to keep the specific entropy small (panel d), and
therefore time steps reasonable.

We find that using the default values of the MLT++ parameters completely sup-

presses density inversions but it also gives unrealistic values of luminosity for the most

massive stars in our set. Therefore, we test the models in the standard set with dif-

ferent combinations of parameters in MLT++, as described in Appendix C. Compared
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to the default values of the MLT++ parameters, we find that using a smaller value of

gradT_excess_f2=10−1, therefore a smaller reduction in the superadiabaticity but oc-

curring more frequently inside the star (with λ1 = 0.6 and β1 = 0.05) is sufficient for the

smooth evolution of the models without any numerical instabilities or inaccuracies.

The stellar models evolved using MLT++ are shown in the bottom panel of Figure 3.4.

The evolutionary paths of models computed with MLT++ are quite similar to models

evolved with extra mixing. Although, unlike the models with extra mixing, models with

MLT++ are not limited to logTeff/K ≈ 3.73 and evolve to lower effective temperatures.

The temperature profile of a 110 M� star evolved with MLT++ (Figure 3.7) again shows

a similar behaviour compared to the temperature profile of the 110 M� star evolved with

extra mixing (Figure 3.5), at similar logL and logTeff . However, MLT++ artificially

reduces ∇T, such that the superadiabaticity and the specific entropy at the base of the

convective envelope remain small despite having smaller convective velocity compared to

the 110 M� model with extra mixing.

3.5 Implications

Each of the three methods described in Section 3.4 help compute the evolution of massive

stellar models in the standard set until the end of carbon burning. However, in the process

they also modify the evolutionary pathway of the stars and impact their evolutionary

outcome. In this section, we compare the set of stellar models obtained with the minimum

numerical enhancement from each method and determine the impact of these methods on

the structure and evolution of the massive stellar models.

3.5.1 Structure of the star

Figure 3.8 shows the Kippenhahn plot of a 110 M� star—depicting regions within the star

by mass as a function of time in the period leading up to the end of the run—for each of

the models computed with the numerical fixes described in Section 3.4. The evolution of

the 110 M� model evolved using MLT++ is similar to the model with extra mixing but

quite different to the evolution of the model computed with extra mass loss.

All three models start with a 90 M� convective core, (shown by the green hatching)
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Figure 3.8 Kippenhahn diagrams showing the structure of a 110 M� star evolved with en-
hanced mixing (top-left), with MLT++ (top-right) and with enhanced mass loss (bottom).
The Y-axis represents the mass co-ordinate inside the star while the X-axis represents the
time remaining in the life of the star before end of the run is reached. Green, purple and
red hatching mark the regions with convection, overshooting and semiconvective mixing,
respectively. In all three panels, the helium core boundary is the outermost location where
the hydrogen mass fraction is less than 0.01, while the helium mass fraction is ≥ 0.01, and
is represented by the blue dashed line. Similarly, the carbon core boundary is defined as
the outermost location where the hydrogen and helium mass fraction are less than 0.01
while the carbon mass fraction is ≥ 0.01. It is represented as the red dashed line.

accompanied by a 3 M� overshoot region outside the core, (shown by the purple hatching).

The convective core decreases in size as the star evolves through the main-sequence.

In models computed with extra mixing and MLT++, thin strips of convection, two

close to the surface and the third at about 90 M�, are formed as the star encounters

the hydrogen, helium and iron opacity bumps in the final 106 years of its evolution. The
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envelope inflation due to the iron opacity bump causes the star to become a red supergiant

before core hydrogen burning can finish. The star suffers higher mass-loss rates as a red

supergiant that can be – seen as a rapid decline in the total mass of the star (black solid

line) – until a 60 M� helium core is formed – depicted by a blue dotted line in the figure.

The star continues to lose mass, as the core helium burning and the hydrogen shell burning

ensues, although at a comparatively lower rate. It ultimately loses its envelope to form a

naked helium star in the final 105 years of its evolution, before finally forming a roughly

50 M� carbon core in the end.

In the model computed with enhanced mass loss, mass-loss rates are quite high (>

10−5 M� yr−1) during the main-sequence evolution. The convective core shrinks rapidly

in response to high mass-loss rates. The star loses its outer layers before any sub-surface

convection region can form, becoming a naked helium star shortly after a 50 M� helium

core is formed. The final product is a 40 M� naked helium star with a 35 M� carbon core.

The similarities in the evolution of the models using MLT++ and enhanced mixing can

be understood as follows. In models with enhanced mixing, convection is already efficient

in the core, owing to its high density and increasing αMLT (and therefore the mixing length)

hardly makes any difference. However, the density in the subsurface of layers of the star

can be ≈10−10 g cm−3 and convection is highly inefficient, therefore increasing αMLT leads

to more efficient convective transport of energy in the stellar envelope.

For models using MLT++ to suppress density inversions, the story is similar. Re-

ducing the temperature gradient (superadiabaticity) prevents radiative losses from the

convective cells, making them more efficient at transporting energy. However, near the

centre convection is nearly adiabatic and the value of superadiabaticity is small (<10−4),

therefore MLT++ is not applicable there. Thus models with high αMLT and MLT++

produce similar core structure.

For models with extra mass-loss the evolution is quite different from the first two cases

as the star loses quite a lot of mass even on the main sequence. This same trend continues

for the post-main sequence evolution. Therefore, it has the least of both the helium and

carbon core masses. Similar to the other two methods, the 110 M� model again loses all

its envelope and ends up as a naked helium star during the core helium burning phase.

Interestingly, the maximum mass-loss rate encountered by the 110 M� star with extra
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mass loss is lower than the models with enhanced mixing and with MLT++, as shown in

Figure 3.9. However, models with extra mass loss by construction have higher mass-loss

rates during most of the main sequence, therefore they become a naked helium star without

ever undergoing the red supergiant phase where the peak in mass-loss rates usually occurs

(due to the large radius of the star). Models with enhanced mixing and MLT++ lose their

envelope later in the evolution as they encounter high mass-loss rates as a red-supergiant

and therefore end up with higher total mass compared to the model with extra mass loss.
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Figure 3.9 Variation in mass-loss rates with time for a 110 M� star evolved with extra
mixing (blue line), extra mass loss (pink line) and with MLT++ (orange line). While the
maximum mass-loss rate encountered by the 110 M� model with extra mass loss is less
than the maximum mass-loss rate encountered by the models evolved with the other two
methods, it still ends up being the least massive of all in the end. See Section 3.5.1 for an
explanation.

3.5.2 Final mass and remnant properties

Massive stars are expected to end their lives in supernovae, leaving behind compact rem-

nants (neutron stars and black holes) in a core-collapse or a pulsational-pair instability

supernova or undergoing complete disruption in a pair-instability supernova. Their demise

as a supernova explosion is also important for modifying the chemical and energy makeup

of their surroundings, paving way for the formation of new generations of stars. Further-
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Figure 3.10 The top panel shows the mass of stellar remnants as a function of their initial
mass, as predicted by sets of models with different numerical enhancements using the
Belczynski et al. (2008) prescription. The bottom panel shows the final total mass (solid
line) and the carbon-oxygen core mass (dashed line) that were used in calculating the
remnant mass. For stars more massive than 60 M� the differences in the remnant mass
can be up to 14 M�.

more, stellar remnants are important for studies across a wide spectrum. They are the

progenitors of X-ray binaries, gamma rays bursts, and compact binary mergers that lead
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to gravitational waves. Hence, it is important to quantify the differences between the

properties of the remnants formed by the massive star models.

There are many prescriptions available in the literature that relate the final properties

of the star with the mass of the remnant it would form (e.g., Eldridge & Tout, 2004;

O’Connor & Ott, 2011; Fryer et al., 2012; Ertl et al., 2016). Here we use the Belczynski

et al. (2008) prescription, which is the same as the StarTrack prescription in Fryer et al.

(2012), to calculate the mass of the stellar remnants for each set of models. The method

uses the total mass and the core mass of the star at the end of carbon burning to calculate

the mass of the remnant (we refer the interested reader to Section 6.1 of Agrawal et al.,

2020, for further details of the method).

Following Belczynski et al. (2010), we plot the remnant mass of the stars as a function

of their initial mass as given by the three sets with numerical enhancements in Figure 3.10.

The top panel of the figure shows the remnant mass of the stars while the bottom panel

shows the final total mass of the star and mass of the carbon-oxygen core.

For all the sets of models, the Belczynski et al. (2008) prescription predicts the forma-

tion of black holes with masses in the range of 13–50 M�. The difference in the mass of

black holes as predicted by each set is less than 2 M� for stars with initial masses up to

60 M�, with the exception of the 30 M� star where the model with extra mixing predicts a

significantly higher remnant mass (22 M� black hole) compared to other two sets (13 M�

black hole). For stars more massive than 60 M� the curve diverges rapidly, and the dif-

ference between the remnant masses can be up to 14 M�. A similar trend can be seen in

the total mass and core masses for each set. For the 30 M� star, the model with extra

mixing predicts a higher final total mass but lower carbon-oxygen core mass compared to

the other two sets. This is because a larger mixing length in the model leads to a more

compact star with lesser mass loss. Thus, the 30 M� model is able to retain most of its

envelope and ends up with the final total mass of 26 M�. Similarly, the origin of differences

in the black hole mass predictions can be traced back to the mass-loss rates experienced

by each model which themselves are dependent on the surface properties of the star.
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3.5.3 The maximum radial expansion

Figure 3.11 shows the maximum radial expansion achieved by the stars during their evo-

lution, computed with the three different numerical fixes. The maximum difference in the

maximum radial expansion is ∼2000 R� which occurs between models with extra mass loss

and models with MLT++, for the most massive 110 M� star in the set. For models with

extra mixing and MLT++ which appear to undergo similar evolutionary paths and final

fates, the difference in maximum radial expansion can still be up to 1000 R�, especially for

stars in the mass range 30–80 M�. Even for the 110 M� star, where the difference between

models with extra mixing and MLT++ appears to be the least, the maximum radius can

differ by 500 R�. This has important implications for the binary evolution of the star, as

radial proximity determines the episodes of mass transfer in close binary systems.
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Figure 3.11 Maximum radial expansion achieved by a star during its lifetime as a function
of its initial mass, as predicted by the three sets of stellar models with numerical enhance-
ments. The difference in predictions of the maximum radial expansion by each models
varies between 500–2000 R�, and can have important implications if the star is in a binary
system.

These differences in the stellar radii are again the result of the numerical enhancements

used in each set. For models with initial masses greater than 60 M� and computed with

extra mass loss, high mass-loss rates strip the envelope of the stars before they can become
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a red supergiant. Thus these stars evolve directly towards the naked helium star phase

and show the least radial expansion. For stars with extra mixing, a higher mixing length

means the fluid element is more efficient at transporting energy through convection. This

decreases the size of the convective cells in the envelope and the model remains more

compact and at higher effective temperatures than the models from the other two sets.

An interesting case is presented by models with MLT++ where reducing the tem-

perature gradient can have the same effect as excess envelope mixing (Sabhahit et al.,

2021). For stars up to 50 M�, models using MLT++ closely mimic the behaviour of mod-

els with extra mass loss, although beyond 50 M�, the excess envelope mixing in models

with MLT++ makes them resemble more closely the models with enhanced mixing.

3.6 Clues from observations: the Humphreys-Davidson limit

It is well established that the evolution of massive stars is highly uncertain. It is riddled

with many physical and numerical problems. Therefore the need for numerical fixes arises.

To make matters worse, it is difficult to say which method is closer to reality as there is

an apparent scarcity of massive stars in the region of the HR diagram where numerical

issues with density inversions occur.

First characterised by Humphreys & Davidson (1979), the Humphreys-Davidson (HD)

limit defines the region in the HR diagram above logL/L� = 5.8 where very few massive

stars in the Galaxy have been observed to date. Using recent observations of red super-

giants in the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC),

Davies et al. (2018) found the limiting luminosity of the brightest red supergiants to be

logL/L� = 5.5 in both galaxies, slightly lower than previous studies. The LMC and SMC

are lower metallicity environments than the Milky Way, closer to the metallicity used

in this work. The findings of Davies et al. (2018) also suggest that the maximum red

supergiant luminosity does not vary strongly with metallicity.

While the absence of massive stars as red-supergiants beyond the HD limit may not help

trace the exact evolutionary path of massive stars, it does provide an important clue that

stars more massive than about 40 M� do not spend much time in the HD region. In recent

years, several studies (e.g., Castro et al., 2018; Kaiser et al., 2020; Vink et al., 2021) have
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tried to constrain the different mixing mechanisms (such as semiconvection, overshooting),

mass-loss rates and binary properties of massive stars by using stellar models evolved with

different physical inputs to reproduce the HD limit. However, they also employ numerical

fixes for instabilities due to density inversions to compute the complete evolution of the

stellar track. Using these numerical fixes interferes with other physical inputs and adds

an implicit bias in the computation of models. As these numerical fixes can be different

across different stellar evolution codes, results obtained with them might not reflect the

true value of the physical parameter being constrained for the massive stars.

Studies that do not employ any numerical fixes (e.g. Klencki et al., 2018) are usually

limited to stars less massive than 30 M� or to the evolutionary phases before numerical

instabilities arise in more massive stars. While this helps avoid bias due to numerical

methods, it also inhibits exploring the late stage evolution of massive stars, such as the

end of core helium burning and beyond. Thereby, affecting the potential studies involving

stellar remnants and transients.

Some studies also show that the HD limit can also be reproduced by stellar models

by just using these numerical fixes. For example, using just MLT++ as the source of

excess envelope mixing in massive stars up to 50 M�, Sabhahit et al. (2021) were able to

reproduce the lack of massive stellar models beyond the HD limit and the Davies limit at

Galactic (Z = 0.017), LMC (Z = 0.008) and SMC (Z = 0.004) metallicity.

Recently, Gilkis et al. (2021) showed that using significantly enhanced mixing param-

eters in stellar models can reduce the time spent by stars beyond the HD limit. Following

Gilkis et al. (2021), in Figure 3.12 we show the amount of time stars spend beyond the HD

limit as a function of initial mass for each of our sets of models. We see that the models

computed with extra mass loss spend the least time (except for a 40 M� stellar model)

while most of the massive stars computed with enhanced mixing and MLT++ can spend

between 2×105 and 4×105 years in the HD region. Therefore, models with extra mass loss

may appear to be closest to observations (or lack of observations) of massive stars. This,

however, has serious implications for gravitational wave observations, as the maximum

black hole mass predicted by this set of the model is just 35 M� (see Figure 3.10).

To unravel this problem, we plot the evolutionary tracks, colored according to the

mass-loss rates, from the set computed with the extra mass loss in Figure 3.13. Despite



3.6. Clues from observations: the Humphreys-Davidson limit 75

the enhancement near the Eddington-limit, the maximum mass-loss rates for models with

enhanced mass loss seem to be consistent with the typical mass-loss rates for massive stars

(Smith, 2014). The maximum mass-loss rate of 1.8×10−3 M� yr−1 is experienced by stars

in the 40–60 M� mass range during the red supergiant phase of their evolution. However,

these rates only last for a maximum of 7×103 yrs. For stars more massive than 60 M�, the

maximum mass-loss rates are an order of magnitude lower, about 3 × 10−4 M� yr−1, and

last between 3× 102–2× 104 yrs. The lower mass-loss rates encountered by more massive

stars are a consequence of the enhanced mass loss during their main-sequence evolution.

These stars experience mass-loss rates of about 10−5 M� yr−1 for more than 3× 105 years.

Therefore, they lose a significant portion of their envelope while on the main-sequence and

do not undergo the red-supergiant phase of evolution.

Whether massive stars can retain these high mass-loss rates for prolonged periods of

time is currently questionable. Moreover, several authors have recently argued that mass-

loss rates for massive stars should be lower, rather than higher, than what is commonly

used in computing massive single star models (e.g., Beasor et al., 2020; Vink & Sander,

2021). Interaction with a companion in a binary system can lead to higher mass-loss
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Figure 3.12 Time spent beyond the Humphreys-Davidson limit as a function of the initial
mass of the star as given by each set of stellar models with numerical enhancements.
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Figure 3.13 HR diagram showing the mass-loss rates for stars in the mass range 30–110 M�,
computed with the extra mass loss described in Section 3.4.2.

rates, but again the smaller radii predicted by these models (Figure 3.11) makes binary

interactions less likely. Therefore, the validity of mass-loss rates in models computed

with extra mass-loss, or in general any of numerical fixes used by the codes cannot be

ascertained at present.

Mixing process such as rotation, semiconvection and overshooting have also been shown

to have large impact on the red supergiant phase of evolution for massive stars and on

the reproducibility of the HD limit (Schootemeijer et al., 2019a; Higgins & Vink, 2020;

Gilkis et al., 2021; Sabhahit et al., 2021). Further, many studies suggest that magnetic

fields can have a significant effect on the sub-surface convection regions of the stars and

hence on the density inversions. For example, Jiang et al. (2018) have shown that the

turbulent velocity fields around the iron opacity peak can be escalated in the presence of

magnetic fields. We have not explored the role of semiconvection, rotation, magnetic fields

and binarity in this work, each of which we acknowledge can have a significant impact on

the evolution of massive stars. Evolving massive stellar models with these properties is

important and will be a part of future work.
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3.7 Conclusion

In this work, we performed a systematic study of the impact of the Eddington limit and

the subsequent density inversions on computing the evolution of massive stars with the

1D stellar evolution code MESA. Using commonly used input parameters for massive

stellar models, we compute the non-rotating evolutionary tracks of 10-110 M� stars for

Z = 0.00142. Models with initial masses between 30 and 110 M� in this standard set fail

to reach the end of core carbon depletion (Xc ≤ 10−2) as the time-steps become too small

(of the order of days) as models encounter density inversions in the sub-surface layers. We

find that this is due to large specific entropy (S/NAkB ≥ 300) at the base of the convective

envelope.

We recompute the models for 30–110 M� stars using three numerical fixes: enhancing

the mixing length parameter, enhancing mass-loss rates and suppressing density inversions

through adopting MLT++. These three are a general form of the methods used by different

stellar evolution codes to resolve numerical instabilities associated with density inversions

in models of massive stars. With each method, we are able to compute the evolution of

massive stars up to carbon depletion in the core.

To determine the least impact each method can have on the evolution of the star,

we pick the sets with the minimum enhancement for each method. With these, we find

that density inversion regions can still form in these models, but the specific entropy stays

small and the evolution of models proceeds smoothly, i.e, without time-steps becoming

too short.

We compare the stellar models evolved using each method. Even with sets of models

with minimum numerical enhancement from each method, the remnant mass of the stars

can vary by up to 14 M� while the maximum radial expansion achieved by stars can vary

by up to 2000 R� between the sets. These differences are important for comparing stellar

models with observations and the possible feedback on the evolution of massive stars. For

example, the above differences can have huge implications for studies involving binary

interactions of stars and stellar remnants.

We also find that the differences in the various evolutionary properties predicted by

the set of models computed with extra mixing and those using MLT++ are quite small.
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However, these models show a difference of 1000 K in the minimum effective temperatures

achieved by the star as a red supergiant (cf. Section 3.4.3). The effective temperature

is critical for determining the spectral properties and surface abundances of the stars

(Davies et al., 2013). Thus, this discrepancy in the effective temperature can be significant

for studies involving abundance properties of massive stars, such as galactic chemical

composition studies.

In commonly used 1D stellar evolution models, a combination of these methods is

used and not necessarily limited to their minimum value. Thus, the differences in the

evolutionary properties of massive stars can he higher than what we get here, as shown in

Chapter 2.

Here we considered an intermediate value of metallicity (Z = 1.42×10−3), as this is the

metallicity where progenitors of current gravitational wave observations are more likely

to form. Due to the dependence of opacity on chemical composition and the diminishing

effect of opacity peaks at lower metallicities (Sanyal et al., 2017), numerical issues related

to the proximity to the Eddington limit become less prominent at lower metallicities. For

example, using the same set of input parameters as the standard set (Section 3.3), we

find that stellar models fail to evolve for initial masses beyond 20 M� at higher (solar)

metallicity (Z = 1.42×10−2) but evolve smoothly for initial masses up to 100 M� at lower

metallicity (Z = 1.42× 10−4).

Multi-dimensional stellar models suggest that convection can be more turbulent and

non-localised than assumed by MLT (Kupka, 2009). 3D modelling of the density inversion

regions in massive stars by Jiang et al. (2015, 2018) showed a complex interplay of con-

vective and radiative transport dependent on the ratio of the photon diffusion time to the

dynamical time and a smaller convective flux compared to 1D codes. There are ongoing

efforts to improve the treatment of mixing 1D codes using results from 3D simulations

(Arnett et al., 2019; Schultz et al., 2020).

As observations of massive stars become more accessible, and our ability to compute

3D models of massive stars improves, the problem of density inversions might be resolved

in future. Meanwhile, it is important to be aware of and acknowledge the impact different

numerical methods can have on the evolutionary model sequences of massive stars.
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4
METhod of Interpolation for Single Star Evolution

One decade’s supercomputer is the next decade’s desktop.

—Hansen, Kawaler & Trimble in Stellar interiors

4.1 Introduction

Modelling the integrated properties of stellar systems such as galaxies or star clusters

requires the use of population synthesis codes which can simulate a large number of stars

(a population) and the myriad interactions between them. In order to produce realistic

models of such systems which can be compared to modern observations (e.g. Mackey,

2008), it is important to include an up to date treatment of stellar evolution.

Stellar evolution is typically modelled using a one-dimensional (1D) stellar structure

and evolution code, which we refer to as a ‘detailed stellar evolution code’. Such codes

solve the differential equations of stellar structure (namely for mass, momentum and en-

ergy conservation, energy generation and transport) within the star, at different points in

time to compute a sequence of stellar structure models. Detailed evolution codes are a

recommended way to evaluate both the structure and the evolution of stars but running

them for a population of stars can be computationally expensive and time consuming.

With the advent of high-performance computers and parallel programming methods,

detailed evolution codes are being used in combination with stellar dynamics and popula-

tion synthesis codes e.g. Church, Tout, & Hurley (2009) and Astrophysical Multipurpose

Software Environment (AMUSE; Portegies Zwart et al., 2009, 2013; Pelupessy et al., 2013).

81



82 Chapter 4. METISSE

However, detailed stellar evolution codes can break down at times owing to numerical dif-

ficulties which can impede the progress of the overlying simulation (Aarseth, Tout, &

Mardling, 2008). Physical processes such as convection and rotation become important

in massive stars and require sophisticated modelling methods with higher temporal and

spatial resolution, increasing the computational cost and the potential for numerical issues

to develop. User intervention and expertise is often required to push detailed codes past

failure points. The data from these simulations also need to be manually checked for any

non-physical results which would arise from erroneous numerical evolution of a model star.

While there are considerable differences in the evolutionary tracks for stars of various

masses and metallicities, if the step in mass and metallicity is small, the changes are usually

smooth enough to parameterize. Furthermore, for most population synthesis requirements

only the global parameters of the stars such as mass, radius, and luminosity are needed.

Similarities between the stellar tracks can be exploited and the output of a detailed code

for a few stars can be parameterized in the form of formulae (Eggleton, 1996). These

formulae can then be used to calculate evolution properties for a large number of stars.

The earliest attempts to include the effects of stellar evolution in the study of star clus-

ters were made by Wielen (1970), Terlevich (1987) and Chernoff & Weinberg (1990). The

authors employed simple schemes for stellar lifetimes and only accounted for the mass lost

in the form of planetary nebulae or during supernovae events. A more accurate method was

developed by Hurley, Pols, & Tout (2000) in the form of the Single Star Evolution (SSE)

package obtained using polynomial fits to the set of stellar tracks by Pols et al. (1998). It

was an expansion of the work by Eggleton, Fitchett, & Tout (1989) along the lines of Tout

et al. (1997). The SSE package employs fitting formulae and analytical expressions for the

underlying physics to describe quantities such as the radius and luminosity of a star given

its mass, metallicity and age. Fitting formulae have been a popular choice for population

synthesis codes because the resulting algorithms are computationally inexpensive, fast and

robust.

Two decades later, ground-based telescopes such as the Very Large Telescope (Schilling,

1998; Moorwood, 2009) and Keck (Kassis et al., 2018) have been observing fainter and rarer

stars while the Hubble Space Telescope (Paresce, 1991; Stockman, 1994), Chandra X-ray

Observatory (Wilkes, 2019) and Gaia (de Bruijne, 2012; Eyer et al., 2019) have monitored
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complex stellar phenomena from space. Furthermore, interferometers such as the Very

Large Array and the Atacama Large Millimeter Array have helped us probe the formation

and afterlives of stars through radio observations (Matthews, 2019). Advances in multi-

messenger astronomy have also provided us with unprecedented data with which we can

better understand the universe. The IceCube Neutrino Observatory (Williams & IceCube

Collaboration, 2020) is detecting high energy neutrinos from stellar outbursts, while the

Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO; Aasi et al., 2015)

and Advanced Virgo (Acernese et al., 2015) detectors continue to report gravitational-wave

observations from the merging of compact binaries (Abbott et al., 2016, 2017b, 2019; The

LIGO Scientific Collaboration & the Virgo Collaboration, 2020).

Together with the advances in our observing capabilities the development of sophisti-

cated numerical techniques in programming and newer input data in the form of opacity

tables and nuclear reaction rates has led to the development of modern and improved

stellar structure and evolution codes with updated physics (Paxton et al., 2019). Thus,

there is a pressing need to update the fitting formulae used in SSE using the data from

up-to-date stellar evolution tracks.

Re-calculating the fitting formulae from a new set of stellar tracks is a non-trivial task

(Church et al., 2009). Tanikawa et al. (2019) recently performed an update of the SSE

formulae for metal-poor massive stars. However, even with the updated fitting formulae,

this only covers a particular subset of the parameter space and the user is still limited to

results from a single set of evolutionary tracks. There is thus a need for a more flexible

method which is also fast, robust and can easily make use of different stellar evolution

tracks.

Interpolation between a set of pre-calculated evolutionary tracks provides a promising

alternative. This method employs tabulated data from 1D stellar evolution codes to esti-

mate stellar parameters for a desired star. Unlike fitting formulae, stellar parameters from

the given set of detailed tracks are calculated in real time with this method. Hence, one

just needs to change the input stellar tracks to generate a new set of stellar parameters.

Although interpolation between stellar tracks has been extensively used to construct

stellar isochrones (e.g. Schaller et al., 1992; Bergbusch & VandenBerg, 2001), the mem-

ory requirement for storing and loading the tracks made it difficult for computationally
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expensive codes involving stellar dynamics to make use of interpolation in the past. With

modern computers, computer memory is readily available and recently, the codes SEVN

(Spera, Mapelli, & Bressan, 2015; Spera & Mapelli, 2017) and ComBinE (Kruckow et al.,

2018) have employed the method of interpolation over a range of stellar parameters to

study the properties of gravitational wave progenitors. Presently, interpolation offers the

most viable option for an efficient, robust and flexible approach.

In this paper, we present results from our newly developed synthetic stellar evolution

code METhod of Interpolation for Single Star Evolution (METISSE). It uses interpolation

to approximate the properties of a star of given mass and metallicity at any age. It

is a modern Fortran code and can serve as an alternative to SSE fitting formulae in

stellar dynamics and population synthesis codes. It relies on the concept of Equivalent

Evolutionary Phases (EEPs) and can make use of stellar tracks from a variety of stellar

evolution codes. In this work, we have used sets of stellar tracks computed using the

Cambridge STARS code, Modules for Experiments in Stellar Astrophysics (MESA) and

the Bonn Evolutionary Code (BEC) as input to METISSE. Using the MESA and BEC

tracks in METISSE, we predict stellar parameters such as the maximal extent of the

radius or the remnant mass for massive stars and compare the results in terms of their

physical ingredients. We thus demonstrate the usefulness of METISSE in systematic

studies dedicated to exploring how uncertain parameters in stellar evolution effect the

properties of binary populations and dynamical systems of stars.

This paper is organized as follows. We provide an overview of evolutionary tracks for

different stars and the concept of EEPs in Section 4.2. We describe the construction of

METISSE as a standalone stellar evolution code in Section 4.3. In Section 4.4 we intro-

duce the three sets of stellar models that we have used to show METISSE’s capabilities.

We validate results obtained with METISSE by comparing to SSE in Section 4.5. In Sec-

tion 4.6, we present results from METISSE using stellar tracks computed with MESA and

BEC as input. We mention the key differences between these tracks and their implications

in Section 4.7. We discuss caveats and potential future work in Section 4.8 and conclude

the paper in Section 4.9.
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4.2 Stellar life and EEPs
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Figure 4.1 Hertzsprung–Russell (HR) diagram showing evolutionary tracks for stars of
mass 1, 5 and 15 M� at a metallicity of Z = 0.0142. Different evolutionary phases are
highlighted along each track. The post-asymptotic giant branch phase has not been plotted
for clarity.

Stars have varied lives depending on their mass and chemical composition. Owing to

the differences in their evolution, stars experience different evolutionary phases and trace

different paths on a Hertzsprung–Russell (HR) diagram (see, e.g., Cox & Giuli, 1968;

Kippenhahn & Weigert, 1990, for an in-depth discussion of the evolution of stars). Stellar

tracks highlighting different evolutionary phases are shown in Fig. 4.1.

A low-mass star like our Sun (1 M�) burns hydrogen (H) via the proton-proton chains

in a radiative core. This causes the surface temperature and the luminosity to increase

moderately while the star is on the main sequence (MS). At the end of MS, the core is

not hot enough to ignite helium (He) and contracts, becoming degenerate at some point

on the Hertzsprung Gap (HG). The envelope, however, cools and expands as the star
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ascends the Red Giant Branch (RGB). The H burning in the shell surrounding the core

adds to the core mass until it becomes hot and massive enough to ignite He off-center

in a thermonuclear run-away (He flash). The star descends the giant branch as the core

expands due to a decrease in the hydrostatic pressure and burns He in the core while

on the horizontal branch. It ascends the Asymptotic Giant Branch (AGB) at the end of

core He burning, and then transitions to the Thermally Pulsating-AGB (TPAGB) where

it eventually loses its envelope to become a white dwarf (WD).

An intermediate-mass (e.g. 5 M�) star, on the other hand, burns H via the Carbon-

Nitrogen-Oxygen cycle in a convective core. The effective temperature of the star decreases

during the main-sequence evolution, making it move redwards on the HR diagram. Mixing

by convection causes the sudden depletion of H in the region surrounding the core. In the

absence of nuclear energy generation in the core, the star contracts on a thermal time-

scale, producing the hook-like feature on the HR diagram seen at the end of the MS.

H-shell burning ensues as the star ascends the giant branch. He ignition happens at the

tip of the RGB, in semi-degenerate conditions without a flash, and the star burns He in a

blue loop, ascending the AGB at the end of He burning and ending life most likely as a

carbon-oxygen white dwarf.

Massive stars (e.g. 15 M�) behave similarly to intermediate-mass stars during the main-

sequence phase. Their core becomes hot enough to ignite He on the HG, close to the end

of the MS so these stars do not become red giants as low and intermediate-mass stars

do. Instead, they continue fusing elements in the core while rapid shell burning adds to

the core mass and causes the envelope to slowly expand, thereby making the star a red

supergiant (RSG). Finally, with the formation of an iron core, the star runs out of fuel

and ends its life in a supernova (SN) explosion.

Modelling stars through different evolutionary phases using detailed evolution codes

typically requires numerous and unequal steps in time. Using the output of a detailed code

directly to create an interpolated new track can thus be inefficient and even inaccurate.

A track obtained by sequentially interpolating between the same numbered lines in neigh-

bouring mass tracks, might not represent the actual evolution of the star (the evolution we

would obtain by simulating the star through detailed codes). Using time as a parameter

for interpolation would also not serve the purpose as the associated timescales can again
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be different for different mass stars. For example, it takes about 10 billion years for a

1 M� star to complete H burning in its core while a 15 M� star can complete all the fusion

reactions and form a remnant in just a few million years.

Utilizing evolutionary features such as the depletion of the central hydrogen mass

fraction to a certain value along stellar tracks (similar to Simpson et al., 1970) provides

more accurate ground for comparison. These features mark the boundary of evolutionary

phases in a stellar track and divide the track into what are known as Equivalent Evolution-

ary Phases (EEPs; Prather, 1976; Bergbusch & VandenBerg, 2001). For different stellar

tracks, EEPs are readily identifiable by a set of physical conditions. The portion of an

evolutionary track between each EEP is further subdivided into an equally spaced set of

points. The final product is an EEP-track containing stellar parameters at a fixed number

of points. Depending on how many phases a particular track has, the total number of

points on an EEP-track can vary. A new track can be generated by interpolating between

corresponding points of the neighboring mass tracks.

In the remainder of the paper we use the term ‘stellar model’ to mean the same as the

sequence of stellar models or a stellar track while the term ‘set of stellar models’ or ‘set

of stellar tracks’ means evolutionary tracks of stars with different initial masses but the

same metallicity.

4.3 METISSE

METhod of Interpolation for Single Star Evolution (METISSE) is a synthetic stellar evo-

lution code which uses interpolation to compute evolutionary tracks for many stars using

tracks for a finite set of stars. The tracks for input are evolved using detailed stellar

evolution codes and should be converted to EEP form for use in METISSE. The EEPs

can be identified with programs like ISO (e.g. Dotter, 2016) or by direct inspection (e.g.

Szécsi et al., 2020). Given a set of EEP-tracks, a schematic of how METISSE calculates

the properties of a star within the input mass range is described next.
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4.3.1 Interpolation scheme

The mass interpolation routine used in this work is adapted from the ISO code (Dotter,

2016). For a particular value of metallicity, first the corresponding EEP-tracks are read by

METISSE. Next, the tracks with initial masses that immediately envelop the input mass

are located from the given set. A new track is interpolated by the method of monotonic

interpolation with a piece-wise cubic function (Steffen, 1990). No interpolation occurs at

this stage if the track for the mass in question is already present in the set (up to some

tolerance defined by the user).

Depending on the metallicity, stars greater than a certain mass do not undergo some

evolutionary phases (e.g. the red-giant branch). Interpolation between tracks where some

undergo a certain phase and others do not, can result in an incorrect new track. To handle

this we identify certain critical mass tracks in the set of EEP tracks for a given metallicity.

Both the search and the interpolation method change if the input mass falls near a critical

mass, such as the mass above (or below) which stars do (or do not) ignite He on the

HG. In this case, the track is either linearly interpolated or extrapolated if necessary. In

Section A.1 and Section B.1, we provide details on how these critical masses are identified.

The mass interpolated track, however, contains stellar parameters for a set of ages.

These generally differ from the age at which evolution parameters are required by a pop-

ulation synthesis code. So another interpolation is performed in age within the newly

interpolated track to return stellar parameters at any given time. Section B.2 details the

step by step interpolation process in METISSE.

4.3.2 Stellar phases

From an input set of models, METISSE determines the location of certain major EEPs to

assign stellar evolution phases similarly to SSE (Hurley et al., 2000) to the interpolated

tracks. The key EEP names and the corresponding SSE phases are listed in Table 4.1.

As an example, the EEP points corresponding to the location of primary EEPs from Choi

et al. (2016), which are also the default EEP values in METISSE, are listed in the last

column of the table. For different sets of stellar models, where primary EEPs might be

located at different EEP points, the value of these EEPs can be redefined by the user.
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Table 4.1 SSE phases with the EEP name used by METISSE to identify the start of each
phase and the corresponding EEP number.

No. Stellar Phase EEP name EEP
valuea

0 Main Sequence (MS) M <= 0.7 M� Zero-Age 202
Main Sequence (ZAMS)

1 Main Sequence (MS) M > 0.7 M� Zero-Age 202
Main Sequence (ZAMS)

2 Hertzsprung Gap (HG) Terminal-Age 454
Main Sequence (TAMS)

3 First Giant Branch (GB) Base of Giant Branch
(BGB)

a

4 Core Helium Burning (cHeB) core He Ignition (cHeI) 605
5 Early Asymptotic Giant Branch (EAGB) Terminal-Age 707

core He Burning (TAcHeB)
6 Thermally Pulsating AGB (TPAGB) TPAGB 808
7 Naked Helium Star MS (HeMS) None –
8 Naked Helium Star HG (HeHG) None –
9 Naked Helium Star Giant Branch (HeGB) None –
10 Helium White Dwarf (HeWD) None –
11 Carbon-Oxygen White Dwarf (COWD) None –
12 Oxygen-Neon White Dwarf (ONeWD) None –
13 Neutron Star (NS) None –
14 Black Hole (BH) None –
15 Massless remnant None –

Notes. a The EEP values here denote the default in METISSE and correspond to
the location of primary EEPs from Choi et al. (2016), except for the BGB EEP which
is identified separately for each track. For different stellar models, the value of these
EEPs (including the BGB EEP) can be redefined by the user.
For phases 7-15, see section 4.3.2 for how these are calculated.

To ensure that the interpolation occurs between equivalent evolutionary phases for

each star, each stellar phase should occur at the same EEP value and hence at the same

line number across the input stellar tracks. For evolutionary phases that do not occur in

all evolutionary tracks, the EEP value is treated as a continuation of the preceding phase.

For example, the base of the giant branch (BGB) may be missing for massive stars, so the

BGB EEP there is treated as a part of the HG. This ensures that the successive phases,

such as the core Helium burning phase start at the same EEP for all stars.

As outlined in Section 4.2, low and intermediate-mass stars enter a remnant phase after

losing their envelope on the AGB while high-mass stars fuse elements all the way until
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iron in their core before becoming a remnant. However, modelling the evolutionary phases

beyond carbon burning is numerically difficult and the phases themselves are short lived,

hardly contributing to the overall evolution of the stars. Hence, we assume that the star

has reached the end of its life when it either reaches the end of the detailed track during

the AGB phase or when the carbon-oxygen core mass exceeds the maximum allowed core

mass (c.f. equation 75 of Hurley et al., 2000):

Mc,SN = max (Mch, 0.773Mc,BAGB − 0.35) , (4.1)

where Mch denotes the Chandrasekhar mass and Mc,BAGB is the core mass at the start

of the AGB phase of the star. The stellar parameters at this stage are used to determine

the type and the properties of the remnant that the star would form. Corresponding

parameters are calculated using the methods described in Section A.2.

At each step, we also check if the star has lost its hydrogen envelope. For massive

single stars, this can occur during late evolutionary stages. For low-mass stars this can

only occur in binary systems where mass transfer prematurely removes the envelope of the

donor star. The evolution of such stripped (naked helium) stars is different compared to

other stars and helium star models are needed to follow their subsequent evolution (Pols

& Dewi, 2002; Woosley, 2019; Laplace et al., 2020). Currently in METISSE we revert to

using the fitting formulae outlined by Hurley et al. (2000) for evolving stars after they lose

their envelope. In the future, we will make use of helium star model data in METISSE

to treat the evolution of naked helium star phases by interpolating in a set of helium star

models in METISSE (as in Spera et al., 2019).

4.4 Stellar models

In order to interpolate a stellar track of a given mass and metallicity, METISSE requires a

set of EEP-tracks of the same metallicity. These are calculated with detailed evolutionary

codes. In this paper, we make use of stellar models calculated using three different detailed

stellar evolution codes. Below we describe these models and how they are converted to EEP

form for application in METISSE. Additional details about these models are discussed in

Section 4.7.
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4.4.1 POLS98 models

The POLS98 models were used for computing the original SSE fitting formulae by Hurley

et al. (2000) and were evolved by Pols et al. (1998) using an updated version of the stellar

evolution code STARS (Eggleton, 1971). The stellar models cover metallicities between

Z = 0.0001 and Z = 0.03. There are about 25 tracks between 0.5 and 50 M� for each

metallicity. Depending on their initial mass, these tracks have been computed from the

ZAMS to different end points. The evolution of massive stars was computed until central

carbon ignition. For stars with initial mass less than 1 M�, tracks are complete up to the

occurrence of the degenerate helium flash while for intermediate-mass stars the evolution

ends at the start of the first thermal pulse on the asymptotic giant branch.

In this paper, we use the sets of tracks labelled as the OVS tracks by Pols et al. (1998).

The tracks were computed with enhanced mixing (described in Section 4.7.3) and assume

no mass loss due to stellar winds. For application in METISSE, the tracks are converted

into the EEP-format by use of critical turning points defined in Table 2 of Pols et al.

(1998) and a weighted metric function from Dotter (2016).

4.4.2 MESA models

Modules for Experiments in Stellar Astrophysics (MESA; Paxton et al., 2019) is a modern,

open-source stellar evolution code. In order to test METISSE, we have used MESA version

11701 to compute a set of stellar tracks for metallicity Z = 0.00142. The set consists of 25

tracks of non-rotating single stars between 9 and 200 M�. The tracks have been computed

from the pre-main sequence until carbon depletion (Xc ≤ 10−4) in the core, although for

the purposes of testing METISSE, only the phases after the ZAMS are relevant.

When computing these tracks, we have used the physical inputs described in Chapter 3

except for the mass-loss rates, overshooting parameters, and the use of MLT++, which

are described separately in Section 4.7 of this paper. Output tracks from MESA have been

converted into EEP-format with ISO (Dotter, 2016).
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4.4.3 BEC models

The Bonn Code, which we refer to as ‘BEC’ in this paper, is a detailed stellar evolution

code which has been used in the last decades in various science projects (see e.g. Heger,

Langer, & Woosley, 2000, Petrovic et al., 2005, Yoon, Langer, & Norman, 2006 and

references therein). Here we apply a set of models computed with this code and published

in the BoOST project (Szécsi et al., 2020). These models are slowly rotating (at about

100 km s−1) and have been computed from the ZAMS until the end of core helium burning.

The BoOST project published stellar models as well as interpolated tracks between

these models. Here we have made use of only the former. We use their dwarfA set of

models which have a metallicity Z = 0.00105. The tracks are optimized for astrophysical

applications such as population synthesis and the format of the published models does

already fulfil the requirements of the EEP-tracks.

4.5 Testing METISSE with POLS models

The main requirement of a synthetic stellar evolution code such as METISSE is for the

interpolated tracks to replicate the underlying detailed evolutionary tracks as closely as

possible. In this section we check the accuracy of METISSE by comparing its output with

the detailed models and we also compare the results obtained by METISSE with those

by SSE (Hurley et al., 2000). To make a direct comparison with SSE, the stellar tracks

generated with METISSE use the set of detailed tracks by Pols et al. (1998) as input.

Because the input models do not include mass loss in stellar winds, all the results shown

in this section, with both SSE and METISSE, do not have mass loss enabled either, except

during the formation of the remnant (in the form of planetary nebula or supernova ejecta,

cf. Sections A.2 and 4.3.2).

4.5.1 Accuracy of interpolated tracks

To test the quality of tracks computed with METISSE, we interpolated evolutionary tracks

for certain initial masses present in the Pols et al. (1998) set of detailed models. Usually,

if an EEP-track is already present in the set of input tracks, METISSE would simply

return that track and would not perform an interpolation in mass. Hence, we sequentially



4.5. Testing METISSE with POLS models 93

removed the detailed track for each input mass from the set before interpolating a new

track. The interpolated tracks and the corresponding detailed tracks from Pols et al.

(1998) are shown in Fig. 4.2.
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Figure 4.2 HR diagram showing tracks interpolated by METISSE (solid lines) with de-
tailed tracks by Pols et al. (1998) and the detailed tracks themselves (dashed lines) for a
metallicity of Z = 0.02. For each mass, the detailed track was removed from the set before
performing interpolation.

We find that the tracks interpolated by METISSE are in good agreement with the de-

tailed tracks. To quantify this agreement we calculate the relative difference in luminosity

(L) and surface temperature (Teff) between detailed and mass interpolated EEP tracks.

For most evolutionary phases, the average difference between the track interpolated with

the Steffen (1990) scheme and the detailed track is less than 3 per cent for both quanti-

ties. For the core helium burning (blue loop) phase the variation in L can be up to 10

per cent. The greatest dissimilarity occurs if the input mass is close to a critical mass

(cf. Section A.1). In Fig. 4.2, the 5 M� track falls near the critical mass above which

C ignition can occur non-degenerately in the core while the 10 M� track falls near the
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critical mass above which He ignition occurs on the HG. Unlike the other tracks, where

third order interpolation has been used, these two tracks have been linearly interpolated

from their neighbouring tracks and in this case the average difference can be as high as 21

per cent in L and 13 per cent in Teff during the core helium burning phase.

We note that the quality of interpolation also depends on the density and the com-

pleteness of the input tracks (cf. Section 4.8). For a denser grid of stellar models, tracks

interpolated by METISSE mimic detailed tracks even more closely.

4.5.2 Comparison with SSE
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Figure 4.3 HR diagram comparing tracks interpolated by METISSE (solid lines) with
tracks computed by the fitting formulae of SSE (dashed lines) for metallicity Z = 0.02.
Both methods use detailed tracks by Pols et al. (1998) as input and assume no mass loss
in stellar winds.

Any two methods of synthetic stellar evolution using the same input data should be

able to produce matching output. Hence in Fig. 4.3, we compare the tracks interpolated

by METISSE using Pols et al. (1998) models and tracks generated by SSE for the same
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Figure 4.4 He-core mass at the base of the AGB (MHe,BAGB: left panels) and CO-core
mass at the end of AGB (MCO: right panels) as a function of the ZAMS mass (MZAMS)
of the star for different metallicities (Z, as indicated in each panel). Star symbols show
the values predicted by SSE while circles denote the values predicted by METISSE for a
uniform distribution of stars of initial mass between 1 and 50 M�, assuming no mass loss
due to stellar winds. Corresponding values from Pols et al. (1998) are marked as a cross.

input mass and metallicity (Z = 0.02). Because the set of stellar models used by the

two codes is the same, the difference in the tracks simply reflects the difference between

the use of fitting formulae and that of using interpolation. As is evident from the figure,

METISSE is able to better preserve the finer details in the tracks, for example those during

the Hertzsprung Gap.

These seemingly tiny details in the tracks can lead to non-trivial dissimilarities in

predicting other stellar properties. To show this, in Fig. 4.4, we plot the He core mass of

stars at the base of the AGB (corresponding to the TAcHeB EEP) and the CO core mass
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at the end of AGB (corresponding to the TPAGB EEP for low and intermediate-mass

stars, and C ignition for massive stars) as predicted by METISSE and by SSE for stars in

the mass range 1 to 50 M� with metallicities Z = 0.02 and Z = 0.0001. For Z = 0.02 the

core masses predicted by METISSE agree well with SSE. There are some discrepancies in

the prediction of CO core mass for stars with initial mass greater than about 40 M�. The

differences are larger for lower metallicity (Z = 0.0001) and extend down to 20 M� stars.

These differences are a result of how the evolution of the CO core is treated in each

code. On the AGB, the CO core of a star grows in size owing to He-shell burning. If

the star is massive enough, the core at some point can reach sufficient conditions to ignite

carbon and the mass of the CO core can decrease. In SSE, the evolution of the CO core

of a star has been simplified, allowing the CO core mass to grow until it reaches Mc,SN

(Equation 4.1). On the other hand, METISSE makes no prior assumptions and relies on

the input set of detailed models to provide information about the CO core mass of the

interpolated track. It can, therefore, more accurately relay the behaviour of the CO core

that has been computed in the detailed input stellar models. This illustrates the reliability

of stellar parameters computed with METISSE.

4.5.3 Timing and performance

In METISSE, input tracks from the chosen detailed evolution code need to be read and

loaded in the computer memory before any interpolation can be performed. Depending

on the density of the input set of models, the memory requirement can be of the order of

Megabytes to Gigabytes. The memory required depends not only on the number of tracks

but also on the amount of data read for each track.

The number of data columns from the input tracks can be easily controlled by the user

in METISSE. By selecting fewer columns, one can speed up the runs and reduce memory

usage. This is useful for simulating systems with millions of stars (e.g. globular clusters

in N-body simulations). If more surface abundances are needed, for example, to trace the

evolution of different elements in stellar populations, the columns can be included from the

detailed stellar models with only a modest increase in the memory usage and computing

time.

To compare the performance of METISSE with SSE, we computed 10 to 105 stellar
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Figure 4.5 Timing METISSE: solid line represents the time taken by METISSE while the
dashed line is the time taken by SSE as a function of number of stars evolved. The timing
is for a single 2.3 GHz Intel i5 core.

tracks between 1 and 50 M�, evolving each star up to 12 Gyr for each method. For a fair

comparison, the input set of tracks and data columns used by METISSE were kept the

same as in SSE. In Fig. 4.5, we show the average time taken by METISSE compared to

that by SSE to evolve different numbers of stars. For SSE the increase in run-time with

the number of stars is linear. METISSE requires more time (0.8 s here) in the beginning

to process the set of input tracks, independent of the number of stars evolved. Hence, for

fewer stars, METISSE takes longer than SSE to complete the run. For larger populations

however, the time taken to process the input tracks becomes a negligible fraction of the

total run time and METISSE becomes almost three times faster than SSE.

It is necessary to emphasize here that like memory, the time taken by METISSE

does increase depending on the number of input stellar tracks. Overall, it can be safely

concluded that at the very least METISSE is comparable to SSE in terms of performance.
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Figure 4.6 HR diagram showing tracks in the mass range 9 to 100 M� interpolated with
METISSE with detailed tracks from MESA (for Z = 0.00142, left panel) and tracks from
BEC (for Z = 0.00105, right panel) as input. For clarity, only selected tracks from each
set are shown.

4.6 METISSE with MESA and BEC: Predicting properties of

massive stars

Massive stars are responsible for the chemical enrichment of their surroundings. They

are precursors of astrophysical transient phenomena including supernovae and gamma-ray

bursts, progenitors of compact objects. As these stars are rare in nature, their evolutionary

parameters, such as mass-loss rates, mixing processes and nuclear reaction rates, are not

very well constrained (see, for example, Farmer et al., 2016; Renzo et al., 2017; Fields et al.,

2018). Therefore stellar evolution codes make certain assumptions about the interior and

physics of these stars which can lead to different evolutionary outcomes. In order to

check the validity of these assumptions, it is necessary to compare their predictions with

observations of massive stellar populations. For this one needs to be able to apply different

stellar evolution models in population synthesis codes.

Built exactly for this purpose, METISSE can read different sets of evolutionary tracks,

including those generated by different stellar evolution codes. The only requirement is

that the input tracks should be in the EEP format. In this section, we demonstrate the
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capability of METISSE to use sets of evolutionary tracks evolved using BEC and MESA.

We apply the sets of stellar models introduced in Sections 4.4.2 and 4.4.3 respectively, as

an input to METISSE and interpolate 100 stars uniformly distributed in mass between

9 and 100 M� at metallicity Z = 0.00142 for MESA tracks and Z = 0.00105 for BEC

tracks. The HR diagram for a subset of both the detailed and interpolated tracks is shown

in Fig. 4.6. We use the results presented in this section to explore the impact of stellar

evolution parameters on the evolution of massive stars.

We also compare said outcomes to those obtained using SSE for Z = 0.00142. For SSE

the maximum mass of the detailed tracks used for calculating the fitting formulae was

about 50 M�. Stars above this mass are calculated by extrapolating the fitting formulae

from less massive stars. Moreover, detailed tracks of Pols et al. (1998) do not include wind

mass loss. Consequently, mass-loss in SSE is modelled by removing the mass from the

stellar envelope. We have used the mass-loss rates of Belczynski et al. (2010) in the SSE

tracks presented here.

4.6.1 Impact on remnant mass

Massive stars are the progenitors of compact objects: neutron stars and black holes whose

mergers result in the emission of gravitational waves observable by LIGO/Virgo (Abbott

et al., 2016). Therefore, the ability to accurately predict stellar remnant masses is crucial.

The remnant masses can be calculated from the total mass and the core properties of the

stars using prescriptions such as those in Fryer et al. (2012).

For tracks interpolated with METISSE using MESA and BEC models, we calculate

the mass of stellar remnants in the manner outlined in Section A.2. We have followed Bel-

czynski et al. (2008) for calculating the mass of remnants (same as StarTrack prescription

in Fryer et al., 2012). For stars with final CO core mass less than 5 M�, the prescription

yields a remnant mass based on the iron-nickel (FeNi) core mass of the star while for stars

with CO cores more massive than 7.6 M�, it is assumed that the whole star collapses to

form a black hole. In between the two regimes, partial fallback from the star is assumed

and the mass of the remnant follows a linear fit between the FeNi core mass and the total

mass of the star. The FeNi core mass itself is calculated from the CO core mass. To ac-

count for mass lost due to neutrino cooling of stellar cores before the supernova explosion,
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Figure 4.7 The mass of stellar remnants versus the mass of their progenitors, as predicted
by SSE (yellow crosses), METISSE with MESA (blue circles) and METISSE with BEC
(red stars). The grey area above 50 M� shows the region where stars may encounter pair
instability. See section 4.6.1 for details.

the baryonic mass of the remnant obtained above is converted to its gravitational mass

(following Equations 3 and 4 of Belczynski et al., 2008). This simple model assumes no

mass gap (Özel et al., 2010; Farr et al., 2011) between neutron stars and black holes.

Following Belczynski et al. (2008) we suppose the maximum neutron star mass to be

3 M� in this work, although the maximum observed is 2.14 M� (Cromartie et al., 2020).

The relationship between core mass and remnant mass may not follow this simple relation;

recent works have suggested that in some mass ranges, certain stars may form neutron

stars while others form black holes (e.g. Sukhbold & Woosley, 2014; Ertl et al., 2016;

Sukhbold & Adams, 2020).

In Fig. 4.7, we plot the results in terms of remnant mass obtained using SSE, METISSE

with MESA models and METISSE with BEC models against ZAMS mass of their progen-

itors. For the BEC models, stars with initial masses greater than 80 M� have final core

masses greater than 50 M�. Stars with core masses from about 50 to 130 M� are expected

to encounter the well-known pair instability condition during their post-He-burning evo-

lution (typically during O-burning), leading to enhanced mass loss or total destruction
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of the star (Fowler & Hoyle, 1964; Fraley, 1968; Woosley, 2017; Stevenson et al., 2019).

Currently, we do not take into account the effect of pair instability or pulsational pair

instability when predicting remnant masses in METISSE but, for reference, the region

where pair instability becomes relevant is highlighted in the figure.

We find that there is a striking variation in remnant mass predicted by SSE and both

the MESA and BEC models in METISSE. For stars with ZAMS mass between 9 and

18 M�, the three sets of tracks agree well. For stars with ZAMS masses between 19 and

30 M�, there is a linear increase in the remnant mass owing to partial fall-back of matter

on to the collapsing core during the supernova explosion. For MESA tracks the rise in

remnant mass is slower than the other two sets of tracks and peaks at around a 40 M�

ZAMS mass while for SSE the local maximum occurs around 30 M�. BEC tracks do not

show any such decline and the difference in the remnant mass between MESA and BEC

becomes pronounced (about 20 M�) for stars with a ZAMS mass more than 40 M�.

The mass of the remnant is clearly influenced by the choice of stellar models and the

different choices of stellar parameters adopted therein. We discuss these differences, their

origins and their impact on the remnant masses in Section 4.7.

4.6.2 Impact on radius evolution

Most stars expand as they evolve, becoming giants. This is especially important for stellar

evolution in binary systems because the expanding star can fill its Roche lobe and initiate

a phase of mass transfer in the system. Hence, accurately predicting the extent of radial

expansion for a star is necessary to determine the evolution of binary systems.

In Fig. 4.8, we plot the maximum radii of stars uniformly distributed in mass between

9 and 100 M� calculated with MESA and BEC models in METISSE and with SSE. Similar

to Fig. 4.7, there is disparity between the results obtained with the three sets of tracks.

For SSE and BEC the maximum radial expansion achieved by the stars increases with

initial mass (aside from a slight decrease for SSE near 15 M�). For MESA tracks however,

the trend changes considerably beyond 40 M�: the maximum radius decreases until 55 M�

reaching a minimum of about 100 R� before slowly increasing for more massive stars.

The lower radii predicted by the various models impact the outcome of close binary

interaction. The number of interacting binaries with orbital separations that lie within
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Figure 4.8 Maximum radii obtained by stars as a function of their ZAMS mass, symbols
are the same as in Fig. 4.7. The dashed lines (indistinguishable here) represent the ZAMS
radius for each of the three sets.

the range between the minimum radius (Rmin) and the maximum radius (Rmax) of the

star can be given by

N =

∫ Rmax

Rmin

dN

da
da . (4.2)

Assuming a distribution of binary orbital separations a that is flat in log a (Öpik, 1924;

Abt, 1983), dN/da ∝ 1/a, for Equation 4.2 we can write

N ∝
∫ Rmax

Rmin

1

a
da = [ln a]Rmax

Rmin
= lnRmax − lnRmin . (4.3)

Therefore, the ratio between the number of interacting binaries predicted by for ex-

ample MESA to SSE can be given as

NSSE

NMESA
=

lnRSSE
max − lnRSSE

min

lnRMESA
max − lnRMESA

min

. (4.4)

We applied Equation 4.4 to each stellar track in the three sets. On average, SSE

predicts 1.6 times more interacting binaries than METISSE with MESA. Doing a similar

exercise using the BEC tracks, we find that SSE predicts 1.3 times more interacting binaries

than METISSE with BEC. Both numbers are comparable to differences in uncertainties
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in the initial conditions of binaries (de Mink & Belczynski, 2015; Klencki et al., 2018).

The difference can be larger for the most massive stars. E.g. for a 60 M� star, SSE

predicts 2.3 times more interacting binaries than MESA, and 1.4 times more than BEC.

However, to account for the fact that massive stars are less common in nature, we weight

the above average by an initial mass function with a power law index of α = −2.3 for

masses above 1 M� (Salpeter, 1955; Kroupa, 2001). For this more realistic population

of binaries, SSE still predicts 1.25 times more interacting binaries than MESA and 1.18

times more interacting binaries than BEC. We further discuss the origin of these differences

Section 4.7.

4.6.3 Impact on main-sequence lifetime
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Figure 4.9 Main-sequence lifetime of stars as a function of their ZAMS mass, as predicted
by SSE (dashed dotted line), METISSE with MESA tracks (solid line) and METISSE with
BEC (dashed line).

Young massive star clusters are instrumental in the study of stellar dynamics and

the stellar mass function (Portegies Zwart, McMillan, & Gieles, 2010). A key method

for determining the age of star clusters is to use the main-sequence turnoff age which

requires estimation of the main-sequence lifetime of stars (Pols et al., 1998; Kalirai &

Richer, 2010). The MS lifetime can differ between models owing to the difference in the
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treatment of mixing processes inside the star. Processes like convection and overshooting

can help replenish H supply in the core, prolonging the time spent in the MS phase.

Mixing parameters are often calibrated using values from a solar model and might not be

applicable to massive stars (Joyce & Chaboyer, 2018). Differences in the MS lifetimes of

massive stars, as predicted by different sets of tracks, can be useful to explain phenomena

such as extended main-sequence turnoffs and the age spread observed in young massive

star clusters (Johnson et al., 2001; Li et al., 2017).

In Fig. 4.9, we plot the time spent on the MS by stars of mass 9 to 100 M� as predicted

by SSE, METISSE with MESA and METISSE with BEC. The difference in predicted

lifetimes varies from about 0.5 Myr for a 40 M� star to about 4 Myr for a 9 M�, between

each set. This corresponds to roughly 10 to 20 per cent of the total time spent in the MS

phase. In Section 4.7.3, we discuss the effect on the MS lifetimes arising from differences

between the treatment of convection and the choice of the overshooting parameters adopted

in the input stellar models.

4.7 Understanding the differences between input stellar models

As METISSE relies on having an input set of detailed models to provide information

about the interpolated track, the difference in the properties of massive stars obtained

with MESA and BEC models in METISSE pointed out in Section 4.6 can be attributed

to the input parameters employed while computing the detailed stellar models.

In this section we discuss the role of three major contributors (i) modelling of radi-

ation dominated envelopes of massive stars, (ii) mass-loss rates and (iii) convection and

overshooting parameters. Although other factors such as rotation, chemical composition

and surface boundary conditions can also have an impact on the structure and evolution

of massive stars, the discussion of these requires dedicated future studies.

4.7.1 Massive stellar envelopes and the role of the Eddington luminosity

The Eddington limit for a spherically symmetric star in hydrostatic equilibrium is defined

as the maximum outward radiative motion of stellar material that can be balanced by the

inwards acting gravitational force (Eddington, 1926; Owocki, Gayley, & Shaviv, 2004).
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For a star containing mass m(r) inside radius r and radiative opacity κ(r), the expression

for the Eddington luminosity is given by

LEdd(r) =
4πcGm(r)

κ(r)
. (4.5)

Hence a critical limit, known as the Eddington factor can be defined (following Langer,

1997) as

Γ =
L(r)

LEdd(r)
=

κ(r)

4πcG

L(r)

m(r)
. (4.6)

For massive stars, the luminosity inside the stellar envelope can exceed the Eddington

limit (Γ > 1) due to elemental opacity peaks (Iglesias, Rogers, & Wilson, 1992; Cantiello,

Langer, Brott, de Koter, Shore, Vink, Voegler, Lennon, & Yoon, 2009), e.g, towards the

end of the main sequence. Moreover, the outer envelopes of massive stars are dominated

by radiation pressure and the convective transport of energy given by standard Mixing

Length Theory (MLT; see Section 4.7.3) becomes inefficient. As shown by Joss, Salpeter,

& Ostriker (1973), Γ > 1 combined with inefficient convection can lead to pressure and

density inversion inside the stars, dp/dr > 0 and dρ/dr > 0. This means that density

and gas pressure increases outwards for massive stars with super-Eddington luminosity in

their outer envelopes and can cause numerical difficulty in modelling stars with 1D stellar

evolution codes (Paxton et al., 2013). To push the evolution of a star beyond this point,

1D stellar evolution codes adopt different approximations.

In the BEC stellar models, density and pressure inversion inside the stellar envelope

causes the hydrostatic expansion of the outermost layers of the star (envelope inflation,

Sanyal et al., 2015, 2017). The stellar models develop an extended, tenuous envelope

in response to temperature and density inversions until the Eddington limit is no longer

exceeded. The star becomes a supergiant1 even while burning hydrogen in the core which

affects its structure and evolution. The small time-steps required to resolve the inflated

envelope of a star on the hydrodynamical time-scale pose a numerical difficulty for the

post-main-sequence evolution (Sanyal et al., 2015). The BEC track with initial mass of

100 M� here has been post-processed in the framework of the BoOST project to include

1As pointed out by Szécsi et al. (2015), core-hydrogen burning cool supergiants are different from the
usual red supergiants which expand in response to H-shell burning.
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Figure 4.10 HR diagrams showing stellar tracks evolved using MESA (left) and BEC (right)
and coloured according to their central helium mass fraction. For clarity, only nine (out of
the 25 computed in this work) MESA tracks are shown here. The differences in the tracks
are due to different physical inputs, as discussed in Section 4.7.

a smooth approximation of the core helium burning phase (see Szécsi et al., 2020, for

details).

In MESA, the density and pressure inversion can be mitigated through a formalism

known as MLT++. For each model, MESA calculates (cf. equation 38 of Paxton et al.,

2013):

λmax ≡ max

(
Lrad

LEdd

)
and βmin ≡ min

(
Pgas

P

)
. (4.7)

Based on these parameters, MESA can artificially decrease the superadiabaticity (the

difference between the isothermal and adiabatic temperature gradients) when stars ap-

proach their Eddington limits. Adopting the MLT++ formalism helps with the conver-

gence of the models. However it can modify the radius and luminosity of the star and

hence affect the mass-loss rates (Paxton et al., 2013). MESA models in this work make use

of the MLT++ formalism. Radiative pressure at the surface of the star is also enhanced

to help with convergence of the model.

To investigate the effect of Eddington limit proximity on the stellar models, we plot

the detailed stellar tracks from MESA and BEC in Fig. 4.10. Each track is coloured based

on the He fraction in the centre of the star to show the location of the star during core

He burning. The figure shows that stars evolved with MESA burn helium at higher tem-

peratures and smaller radii compared to BEC where stars burn He at lower temperatures
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Figure 4.11 Pre-supernova mass (left) and final CO core mass (right) of stars as a function
of their ZAMS mass, symbols are the same as in Fig. 4.7.

and larger radii.

With MESA, a 50 M� star approaches the Eddington limit at the end of the main

sequence. The proximity to the Eddington limit causes the star to experience high mass-

loss rates which expose the hotter inner layers and the star moves bluewards in the HR

diagram. The onset of H-shell burning causes the star to expand, lowering the surface

temperature, making it lose even more mass. Therefore, local minima for both remnant

masses and maximum radii are encountered for the tracks interpolated from MESA models

in this region (i.e. about 45 to 55 M� stars in Fig. 4.7 and Fig. 4.8). Stars more massive

than 60 M� lose their envelope in MESA and become naked He star before they can finish

burning He.

In Fig. 4.11 we plot the total mass and the core mass of stars (before supernova

explosion) with respect to their initial mass as given by SSE, METISSE with MESA

models and METISSE with BEC models. The total masses for MESA and BEC tracks

show only a small variation until 40 M�. Beyond 40 M�, stars evolved with MESA start

experiencing increased wind mass-loss rates owing to their proximity to the Eddington limit

and hence end up with a lower mass. Stars evolved with BEC in the 40 to 100 M� range

undergo envelope inflation as they encounter the Eddington limit inside the envelope.

They experience owing due to the cool supergiant phase (see details in Section 4.7.2).

None of the stars in the BEC models used here lose their envelope completely. Hence their

remnant masses and maximal radii increase almost linearly in this region and are higher
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than those of MESA tracks.

The extrapolation of stellar models in the BEC and the MLT++ method of MESA are

numerical solutions employed to push forward the evolution of massive stars when they

encounter the Eddington limit. A more accurate treatment of the super-Eddington limit

in 1D stellar evolution codes is not available. In fact, recent 3D simulations show that

the 1D stellar evolution codes might not be modelling these envelopes accurately at all

(Jiang et al., 2015, 2018). Note that METISSE provides enough flexibility that, if new

stellar models with an updated treatment of Eddington limit proximity are published in

the future, it will be straightforward to use them with METISSE.

4.7.2 Mass loss schemes

Depending on the mass, the chemical composition and the evolutionary phase of a star,

mass loss through stellar winds can have a considerable effect on the evolution of stars.

For massive stars, wind mass loss and its role in stellar evolution is particularly important

(see e.g. Smith, 2014; Renzo et al., 2017).

Proximity to the Eddington limit on the stellar surface can also lead to departure

from hydrostatic equilibrium and possible turbulence and mass outflows that exhibit as

enhanced stellar winds (Humphreys & Davidson, 1994; Owocki et al., 2004). Although

very massive stars (in the form of luminous blue variables) have been observed to undergo

such high wind mass loss episodes, the presence of super-Eddington winds and their exact

contribution is unconfirmed and remains a debated topic in the literature (Langer, 1997;

Smith, 2017).

The MESA models used here are computed with mass-loss rates from Vink et al.

(2001) for Teff > 10 000 K and de Jager, Nieuwenhuijzen, & van der Hucht (1988) for

Teff < 10 000 K. In addition, they include a contribution to mass loss by super-Eddington

winds. We find that the super-Eddington mass-loss rate calculated in the default MESA

can be extremely high (about 10−2 M� yr−1). Hence we scale down the super-Eddington

wind mass loss by a factor of 10 and only apply it whenever the surface luminosity exceeds

1.1 times the mean Eddington luminosity (mass-weighted average of LEdd, see Equa-

tion 4.5, from the surface up to the region with optical depth of 100). Additionally, the

maximum mass-loss rate we allow is capped to 1.4 × 10−4 M� yr−1 following Belczynski
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et al. (2010).

The BEC tracks also include mass-loss rates of Vink et al. (2001) for Teff > 22 000 K.

Below this, the mass-loss rate of Nieuwenhuijzen & de Jager (1990) is applied whenever

it exceeds the rate of Vink et al. (2001). Although an enhancement of the mass loss due

to rotation is an option in BEC as per Yoon & Langer (2005), the models here are slowly

rotating (at 100 km s−1) and thus the rotational enhancement of mass loss (which becomes

important when the star rotates close to the Keplerian critical rotational rate) does not

contribute significantly.

To examine the effect of the above schemes on the results obtained in Section 4.6 we

plot the total mass of stars during different evolutionary phases in Fig. 4.12. We find

that for both MESA and BEC, most of the mass loss happens towards the end of the

core hydrogen burning (MS) and core helium burning (cHeB) phases. Towards the end

of the main sequence, when BEC models become H-burning cool supergiants, the major

contribution to mass loss comes from the supergiant mass-loss rates of Nieuwenhuijzen &

de Jager (1990). Stars evolved with MESA, on the other hand, either experience mass loss

according to Vink et al. (2001) or through super Eddington winds, depending on whether

their surface luminosity exceeds the Eddington limit by 10 per cent.

As shown in Fig. 4.10, MESA models at 20 M� and above burn helium at different

effective temperatures to those from the Bonn code, and therefore experience a different

kind of mass-loss treatment. The massive stars in the BEC tracks experience mass-loss

rates of Nieuwenhuijzen & de Jager (1990) during core helium burning due to their low

effective temperatures but now at high luminosity. Hence, they lose more mass during this

phase than towards the end of the main sequence. The MESA tracks up to 40 M� demon-

strate moderate mass loss during cHeB because the models continue their slow transition

from Vink et al. (2001) to de Jager et al. (1988) mass-loss rates. More massive stars with

MESA, those experiencing super-Eddington winds, can lose their envelopes completely

and become naked helium stars when this major mass-loss episode kicks in during cHeB.

The remainder of the evolution of such stars is performed with fitting formulae for helium

star models from SSE and the mass-loss scheme of Hamann et al. (1995) is applied (see

Section 4.3.2 for details). We find that MESA stars do not spend much time in this phase

and, as shown in Fig. 4.12, hardly lose any mass.
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Figure 4.12 Mass of the star at different evolutionary phases calculated by METISSE with
MESA (left panel, solid lines) tracks and BEC tracks (right panel, dashed lines). For each
star, the dot represents the initial mass and the cross represents the pre-supernova mass.
For explanation see Section 4.7.2

For SSE tracks, mass-loss rates have been calculated by Belczynski et al. (2010). Stars

above 38 M� experience mass loss at 1.5× 10−4 M� yr−1 whenever the surface luminosity

(L) exceeds 105 L� and radius (R) satisfies 10−5RL0.5 > 1.0 R� L�
0.5 (see equation 8 of

Belczynski et al., 2010), and end up with lower remnant masses, similar to models evolved

with MESA with METISSE.

Chemical composition also plays a key role in determining mass-loss rates. Stars with

higher metal content have higher opacities and therefore have higher mass-loss rates (Vink

et al., 2001; Puls et al., 2015). Following Vink et al. (2001), a metallicity dependence of

Z0.86 is included into the treatment of mass loss in all models. The stellar models here have

approximately the same Z, that is, nearly one tenth of solar as per Asplund et al. (2009b).

The initial metallicity of the MESA models is Z = 0.00142 with element ratios scaled down

from solar composition. BEC models are computed with Z = 0.00105 and have chemical

composition scaled by a factor of 2 down from that of the Small Magellanic Cloud (SMC).

While differences in the abundances of individual metal elements also influence the opacity
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and energy transport rates, the main contributors to the winds of massive stars are iron-

like elements (Puls, Springmann, & Lennon, 2000). As shown in fig. 1 of Szécsi et al.

(2015), except for carbon and nitrogen, SMC abundances are proportional to those of

Solar and the contribution of these two elements to line driving (and thus to mass loss) is

relatively minor.

4.7.3 Convection and overshooting

Massive stars have convective cores owing to a steep temperature gradient in the interior.

These cores can overshoot beyond convective boundaries into non-convective regions due to

finite particle velocities and cause enhanced mixing of elements inside stars (Böhm, 1963;

Shaviv & Salpeter, 1973; Maeder, 1975). Thus the location of convective boundaries is

important to determine the evolution of massive stellar cores and the lifetimes of different

evolutionary phases of a star (Langer, 2012).

Convection and overshooting are complex 3D processes, although in 1D stellar evolu-

tion codes they are treated using the mixing length theory (MLT; Böhm-Vitense, 1958) or

some modified version of it. Convection is modelled in terms of the mixing length parame-

ter αMLT over a region determined by the Ledoux or Schwarzchild criteria (Kippenhahn &

Weigert, 1990). Overshooting can be modelled with the step overshoot prescription where

the convective boundary is simply extended by a fraction of the pressure scale height,

given by the parameter δov (Böhm, 1963; Stothers & Chin, 1975).

The MESA models in this work use convection parameters calibrated to the Sun and

a modified version of MLT by Henyey, Vardya, & Bodenheimer (1965) with αMLT = 1.82

(Choi et al., 2016). Convective-overshoot is assumed to vanish exponentially outside the

convective region with δov = 0.016 (Magic et al., 2010; Choi et al., 2016). This is roughly

equivalent to δov = 0.2 in the step overshooting model.

On the other hand, BEC models have used standard MLT (Böhm-Vitense, 1958) with

αMLT = 1.5 and step overshoot with δov = 0.335 (Langer, 1991; Brott et al., 2011a). The

overshoot values have been calibrated to massive stars observed with the VLT-FLAMES

survey (Hunter et al., 2008). Both the MESA and BEC models have the Ledoux criterion

to determine convective boundaries.

Stars evolved with MESA have larger convective efficiency owing to the greater αMLT
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which decays exponentially outside the fiducial convective region while the larger δov in the

BEC models means a more extended region for convection. However, other factors such

as the adopted nuclear reaction rates and opacities in BEC lead to shorter MS lifetimes

compared to MESA models (Fig. 4.9).

In SSE, the formulae for determining main-sequence lifetimes were calculated with

models of Pols et al. (1998), where the authors adopted standard MLT with αMLT = 2.0

while overshooting was modelled through a modification of the Schwarzchild criterion.

Their overshooting coefficient (δov = 0.12) approximates to δov ∼ 0.4 in the step over-

shooting prescription for the most massive stars (∼50 M�) in the set. Due to the high

value of the overshooting parameter, combined with the efficient mixing length parameter

in the Pols et al. (1998) tracks, SSE predicts even longer MS lifetimes for stars compared

to the MESA and BEC models (Fig. 4.9).

Mixing processes are not very well constrained for massive stars (Schootemeijer et al.,

2019b). In particular, the convection and overshooting parameters are sensitive to quan-

tities like opacities (Stothers & Chin, 1991) and the Solar abundance scale (Magic et al.,

2010). Processes such as semiconvection (Langer, Fricke, & Sugimoto, 1983) and rota-

tional mixing (Heger et al., 2000) also contribute significantly to the evolution of such

stars. There are ongoing efforts to improve constraints on the mixing parameters with 3D

hydrodynamic simulations (Trampedach et al., 2014, Magic, Weiss, & Asplund, 2015) and

asteroseismic measurements (Noels et al., 2010). METISSE can be useful in the future

to study the effects of varying different mixing parameters and comparing the outcome to

observed populations of massive stars. This is a major advantage over an SSE style code

in that any piece of physics in the stellar models can be changed without having to find a

whole new set of fitting formulae.

4.8 Caveats and future work

Interpolation has the advantage of being fast, robust and able to utilize different sets of

stellar evolution models with ease. As with any other method, it has some limitations as

well. We discuss some of these in this section and how METISSE aims to address them.
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4.8.1 Quality and completeness of input stellar tracks

Results produced by METISSE are a direct reflection of the quality of the input stellar

models. Fine details in the input models can be reproduced but so can the flaws. For the

calculation of stellar tracks up to their respective remnant phases, input models should

at least be evolved until the formation of a CO core, because the CO core mass is needed

to calculate remnant properties (Belczynski et al., 2008; Fryer et al., 2012). To avoid

propagation of inaccuracies of the stellar models in the results obtained, input tracks need

to be checked thoroughly for flaws and incompleteness.

The set of input stellar models should also be dense, particularly near mass cutoffs,

to ensure accuracy of the interpolation. If some tracks are incomplete due to convergence

issues, METISSE can attempt to calculate the missing phase as described in Section A.3.

However, it fails if many tracks are incomplete over a small mass range or if the set of

input models is too sparse.

4.8.2 Mass and metallicity limits

Currently in METISSE stellar tracks can only be interpolated for the same metallicity as

the input models. Although interpolation between tracks of different metallicity could be

implemented, the interpolated track might not be a good approximation of a detailed track

of the same mass and metallicity unless these two metallicities are sufficiently close. Even

then, tracks for interpolation will have to be carefully selected because the occurrence of

evolutionary features in a track also depends on the metallicity.

Interpolation in METISSE is also bounded between the highest and lowest mass track

present in the set of input models. Extrapolation can lead to spurious results if the tracks

used for the extrapolation are sparsely distributed. Hence, we do not extrapolate beyond

the maximum mass track of the input set in METISSE. However, we do extrapolate a new

track from higher masses if an input mass falls between a critical mass (cf. Section A.1)

and the initial mass of the next track. Because the density of stellar tracks where these

mass cut-offs occur is usually high, the tracks obtained are a suitable approximation to

the evolution of such stars. We are currently working on a new version of METISSE to

further limit the reliance on extrapolation near mass cutoffs.
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4.8.3 Information about stellar structure

Stars in binary systems can transfer mass on to each other if they expand beyond their

Roche-lobe radii. If the mass transfer is significant, it can affect the structure and the

evolution of the member stars. It can, for example, affect the structure of the core and the

burning shells (Renzo et al., 2017) which can be crucial to determine the type of remnant

formed by the star. Therefore, details of the stellar interior are needed to accurately

compute properties of stars in response to mass transfer in a binary system.

Creation and storage of large sets of stellar evolution models and the use of them

in conjunction with detailed codes for binaries as done by the Binary Population and

Spectral Synthesis (BPASS; Eldridge & Stanway, 2016; Eldridge et al., 2017) project and

the Brussels code (De Donder & Vanbeveren, 2004) is another way to account for the

stellar structure in response to mass transfer in binaries. However, it requires expertise to

maintain and run such models.

We intend to apply METISSE in binary population studies in the future. While

METISSE cannot compute changes to the internal structure of a star in response to mass

transfer, it can easily interpolate between any stellar structure parameters provided by

the detailed models, thus extending more widely than the main parameters of total mass,

core mass, luminosity and radius. Examples include the mass of the convective envelope

(important for mass transfer), the moment of inertia (important for tidal evolution, c.f.

de Mink et al., 2013) and the envelope binding energy (important for common envelope

evolution, c.f. Loveridge, van der Sluys, & Kalogera, 2011; Xu & Li, 2010).

4.9 Conclusions

We have presented our new code METISSE and its capabilities as a standalone synthetic

stellar evolution code. METISSE can simulate stars from the ZAMS to the end of the

full range of stellar remnant phases, including naked helium star phases. We find that

METISSE better reproduces stellar tracks than the SSE fitting formulae with the same

input data. METISSE is similar in performance to SSE with the added advantage that it

can be easily used with different sets of stellar evolution tracks.

Massive stars are the progenitors of compact objects, neutron stars and black holes,
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whose merging result in the emission of gravitational waves observable by LIGO/Virgo

(Abbott et al., 2016). We have used METISSE to demonstrate that uncertainties in

modelling the evolution of massive stars, such as their radiation dominated envelopes,

can have a remarkable influence on their evolution. Such uncertainties can impact the

radial expansion of stars and the properties of stellar remnants, which can subsequently

change the interactions in binary and star cluster environments. Therefore, the ability

to accurately predict stellar remnant masses is crucial when attempting to account for

present day observations of compact object populations.

Surveys dedicated to the study of massive stars (Evans et al., 2011; Kaper et al.,

2011; van Gelder et al., 2020) have advanced our understanding of these stars. In the

coming years, instruments such as the James Webb Space Telescope (JWST: Gardner,

2003), the Giant Magellan Telescope (GMT: McCarthy & Bernstein, 2014), the Large

Synoptic Survey Telescope (LSST: LSST Science Collaboration et al., 2009) and the Laser

Interferometer Space Antenna (LISA: Amaro-Seoane et al., 2017) will further boost our

knowledge of stars and stellar systems. As the data from newer observations becomes

available, and the stellar structure and evolution codes become better at modelling stellar

phenomena, both in 1D and 3D, we will be able to include the updated stellar models in

our population synthesis codes through METISSE.

Since METISSE has been written in the same variable and file structure as SSE, it will

be easy to include it in population synthesis codes as an alternative to SSE (Hurley et al.,

2000). In the future we plan to publicly release METISSE as well as integrate it with

the binary population synthesis codes BSE (Hurley, Tout, & Pols, 2002) and COMPAS

(Stevenson et al., 2017; Vigna-Gómez et al., 2018) and the star cluster modelling code

NBODY6 (Aarseth, 2003). Using METISSE will not only help us to include up to date

treatments of stellar evolution in population synthesis codes but will also enable us to

study the role of different stellar evolution parameters on the evolution of stellar systems

and make predictions to pave the way for the new missions.
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5
The role of stellar evolution in mass transferring

binaries and gravitational wave progenitors

“What is better than a star.. a binary star”

—Anonymous

5.1 Introduction

Stellar binaries play an important role in the evolution of the universe, opening up evolu-

tionary pathways that would otherwise remain inaccessible through the evolution of single

stars (see e.g., Eldridge, 2020). For massive stars, the role of binary evolution is even

more crucial (Sana et al., 2012; de Mink et al., 2013) as massive binaries lead to the for-

mation of X-ray binaries (Verbunt, 1993), gamma-ray bursts (Woosley & Heger, 2006),

kilo-novae (Abbott et al., 2017a) and gravitational waves (Abbott et al., 2016), amongst

many other astrophysical marvels. Recent studies even indicate the role of stellar triples

in determining high-mass stellar evolution (Moe & Di Stefano, 2017).

With the recent release of the second LIGO-VIRGO gravitational wave (GW) cat-

alogue (Abbott et al., 2021a), we now have 50 GW signals from the merger of binary

systems of neutron stars and black holes, the end states of massive stars. The parameters

measured from GW signals, such as the spins and masses of the binary components, helps

us determine the evolution of massive stars and their interaction with their neighbours

(e.g., Stevenson et al., 2015, 2017).

117
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With the numbers of GW detections expected to increase significantly in the future

(Abbott et al., 2018b), gravitational-wave astronomy is leading the way in shedding light

onto the lives of massive stars. It is, therefore, a great time to incorporate the latest

models of massive stars in our population synthesis codes and determine the impact of

binarity on their evolution of stellar populations.

Population synthesis codes serve as the tool to calculate key properties and interactions

between stellar populations in galaxies and star clusters. However, keeping such codes up-

to-date with the latest results of stellar evolution studies is an arduous task as many

population synthesis codes rely on fitting formulae to approximate single star evolution.

These formulae are fast and robust but are not adaptable to changes in the stellar tracks.

Recently, the method of interpolating between stellar tracks has gained popularity as

it provides the flexibility of switching between the sets of stellar tracks. Codes like SEVN

(Spera et al., 2015) and COMBINE (Kruckow et al., 2018) make use of this method to

compute single star properties for binary evolution. This helps study the effect of varying

input physics on stellar tracks and hence on population synthesis models.

However, uncertainty in massive stellar evolution is not limited to the physical inputs

but also depends on numerical techniques employed by different stellar evolution codes

for evolving such stars. As shown in Chapter 3, these numerical methods can have a

non-trivial impact on the evolution of massive stars. It is, therefore, crucial to compare

not just the tracks computed with different physical inputs but also the tracks that are

evolved with different codes.

Large uncertainties in the evolution of massive stars, both physical and numerical,

also keeps us from an understanding of massive close binary systems (Dorn-Wallenstein

& Levesque, 2020; Belczynski et al., 2021). To address this problem, we have developed

MEthod of Interpolation for Single Star Evolution (METISSE; Agrawal et al., 2020) as

an alternative to the Single Star Evolution (SSE; Hurley et al., 2000) fitting formulae in

population synthesis codes. METISSE interpolates between sets of pre-computed stellar

tracks to approximate evolution parameters for a population of stars. However, unlike

other codes, METISSE can readily make use of stellar models computed with different

stellar evolution codes. This allows us to test the predictions of stellar models computed

using different codes on the evolution of stellar populations.
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In this work, we update METISSE to include the implications of additional mass

changes, such as mass loss through stellar winds, or mass loss/gain through mass transfer,

that is not present in the underlying detailed stellar evolution tracks used as input. We

combine this updated version of METISSE with the Binary Stellar Evolution (BSE; Hurley

et al., 2002) code. This study lays the groundwork needed to combine our most up-to-date

understanding of massive stars with population synthesis codes to constrain the forma-

tion of GW progenitors in stellar multiples and star clusters. We briefly summarise the

capabilities and method of METISSE as a single stellar evolution code in Section 5.2. We

describe our implementation of extra mass loss in METISSE in Section 5.3. In Section 5.4

we test the validity of the implementation by comparing the stellar tracks interpolated

by METISSE with additional mass loss to the results from SSE and from the 1D stellar

evolution code Modules for Experiments in Stellar Astrophysics (MESA; Paxton et al.,

2019). In Section 5.5 we briefly review the physics of mass transfer in binary systems. We

present preliminary results using METISSE in BSE and compare the results from using

SSE in BSE in Section 5.6. We present conclusions and discuss potential future work in

Section 5.7.

5.2 METISSE as single star evolution code

METISSE is a synthetic stellar evolution code that can quickly compute the evolution

of many stars by interpolating between a finite set of models computed with 1D stellar

evolution codes (also known as detailed stellar evolution codes). METISSE has been

designed to serve as an alternative to the SSE fitting formulae in population synthesis

codes such as BSE and NBODY6 (Aarseth, 2003). However it can also be used as a stand-

alone code, for example, for population synthesis of single stars, or to test input stellar

tracks. Further capabilities of METISSE are described in Agrawal et al. (2020).

The SSE package consists of several subroutines (sub-program units in Fortran), where

each subroutine has a particular role. These subroutines are called by an overarching

subroutine called Evolv1 for calculating the evolution of a single star. For computing

the evolution of a binary star, the subroutines in Table 5.1 are called twice by a similar

overlying subprogram Evolv2 to compute parameters of two stars at every time-step of
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NAME FUNCTION IN SSE FUNCTION IN METISSE

ZCNSTS Set all the constants of the formulae
which depend on metallicity

Read detailed models of given
metallicity and find mass cutoffs

STAR Derive the parameters that divide
the various evolution stages

Interpolate between detailed models
to get a track of given mass

HRDIAG Decide which evolution stage the
star is currently at, and calculate
the appropriate luminosity, radius
and core mass

Interpolate within the new track
to determine stellar parameters at
given age

MLWIND Derive the mass loss as a function of
evolution stage

Same as SSE

DELTAT Calculate the time-steps depending
on the stage of evolution

Same as SSE

Table 5.1 Major subroutines in the SSE and METISSE packages and their functionality
in each.

the evolution and calculate relevant binary evolution parameters. An exception to this is

the subroutine Zcnsts which needs to be called separately at the beginning of the program

for calculations dependent on the metallicity.

METISSE is structured to contain similar subroutines to SSE with the same func-

tionality. Major SSE subroutines, their functions and their equivalent in METISSE are

listed in Table 5.1. These subroutines mimic the behaviour of the SSE subroutines from

the outside, with the same name and input/output variables. They have been written in

FORTRAN90/95 and make use of the modern Fortran architecture for efficiently storing

and passing large arrays of data required for interpolation.

5.3 Implementing mass transfer in METISSE

The total mass of a star can change due to mass loss through stellar winds or due to mass

transfer during interaction with a binary companion. Depending on the evolutionary

phase, both mass loss and gain can have a substantial impact on the structure and the

evolution of the star. Hence, it is important to incorporate the effects of mass change in

the stellar tracks.

The stellar models from Pols et al. (1998) that were used in calculating the SSE fitting

formulae did not include mass loss. Any kind of mass loss or gain in SSE is added on

top of the existing formulae and stellar parameters are modified to reflect the change in
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mass. A change of stellar parameters in response to any kind of mass change is dealt with

by making use of the current mass of the star Mt and the ‘effective’ initial mass of the

star M0 (which can be distinct from the zero-age main-sequence – ZAMS – mass of the

star). Parameters such as luminosity, timescales and core mass are calculated depending

on M0 while the radius is calculated using Mt. On the main sequence, it is assumed that

M0 is equal to Mt and in response to any mass changes M0 is adjusted to account for the

corresponding change to the main-sequence lifetime.

In METISSE, if wind mass loss is already incorporated in the input stellar models

computed with a detailed code, one can simply interpolate between them to achieve the

same effect. It is, in fact, more accurate compared to fitting formulae as the changes to

stellar structure due to mass loss are better modelled in detailed codes and hence carried

over by METISSE. However, we still have to take into account the impact of wind mass loss

and subsequent changes in stellar parameters for input tracks computed without any mass

loss and mass changes resulting from interaction with a binary companion. Therefore, we

have improved METISSE to take into account changes in the evolutionary track of the

star due to such mass changes.

Before explaining the implementation of mass loss, we briefly summarize the usual in-

terpolation process in METISSE. For use in METISSE, input tracks must be divided into

equivalent evolutionary phases (Prather, 1976; Bergbusch & VandenBerg, 2001). These

phases are readily identifiable by the evolutionary features such as the central hydrogen

mass fraction, with examples being the main-sequence (MS) phase or the Hertzsprung

Gap (HG) phase. Each evolutionary phase is further sub-divided into an equally spaced

set of points called Equivalent Evolutionary Points (EEPs), fixed in number across all

masses. For a given initial mass, Mini, an evolutionary track is calculated by interpolating

between the corresponding EEPs of the neighbouring mass tracks. The type of interpola-

tion performed is either linear or monotonic piece-wise cubic interpolation (Steffen, 1990),

depending on the number of tracks available in the neighbourhood of Mini. The resulting

track is a collection of EEPs, containing stellar parameters at each EEP age. METISSE

further interpolates within the mass-interpolated track, between the EEPs enveloping the

given age, to calculate stellar parameters at any instant.

In the absence of any extra mass loss, mass interpolation only happens once for a star
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of the given initial mass. However, in the event of a mass change due to either mass loss or

gain, a new mass interpolated track is calculated following the procedure described below.

• For a mass change dm at a time t in a star’s life, the first step is to locate the nearest

EEP to t, say EEPi. Since evolutionary parameters of the input stellar tracks and

track corresponding to the current mass of the star are only stored at the EEPs, the

mass change is applied to the total mass of the star at EEPi to get Mnew.

• Next, we search all input tracks to find the two tracks whose mass at EEPi envelops

Mnew and linearly interpolate between their initial masses to get the initial mass

(M ′ini) of the star whose mass at EEPi will be Mnew.

• Finally we interpolate the track for the new initial mass (M ′ini).

The above procedure is repeated for every time-step whenever dm >10−8 M�, before

proceeding with the age interpolation to determine the stellar parameters for the age

at that step. For input tracks computed without any mass loss, the new initial mass,

M ′ini and Mnew in METISSE are the same as the effective initial mass, M0 and Mt of

SSE. To account for the effect of mass loss on different stellar parameters, we currently

apply similar assumptions in METISSE as in SSE, i.e., stellar parameters are designated

to be dependent on either the track corresponding to the current mass Mt or the track

corresponding to the effective initial mass of the star M0.

On the main sequence, the stellar parameters are highly sensitive to the total mass

of the star, therefore all parameters of the star beyond time t are calculated using the

new track. However, the lower mass star (assuming mass loss) at the same age would

have burned less hydrogen. Therefore, we follow SSE, and age the star to conserve the

main-sequence time and therefore the fraction of hydrogen burned. The new age tnew is

calculated using the main-sequence time for the old track (tMS) and the newly interpolated

track (t′MS) (cf. Hurley et al., 2000) as follows,

t′ =
t′MS

tMS
t. (5.1)

During the post-main-sequence evolution of the star, the core evolution is assumed

to be unaffected by the changes to the total mass. Thus, core mass and luminosity are
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calculated using the track corresponding to the total mass of the star at the end of the

main-sequence. Radius on the other hand is calculated using the new track corresponding

to the current total mass of the star. However, the time in the new track is modified to

conserve the age of star at EEPi (ti) and the duration of the current phase (tphase),

tnew = ti +
tphase

t′phase

(t′ − t′i), (5.2)

where primes denotes quantities after the mass loss. This allows surface parameters

to change according to the new total mass of the star while effectively conserving the core

properties.

For massive stars (Mini > 10 M�), mass loss due to stellar winds can be quite high

(∼10−4 M�yr−1) and the star can lose its envelope before nuclear burning is completed.

Depending on its mass and the evolutionary stage, the star can either become a helium

white dwarf or naked helium star. We currently revert to using SSE formulae for further

evolution of naked helium stars.

5.4 Testing the validity of implementation

In this section, we test the validity of the mass-loss implementation in METISSE described

in Section 5.3. To calculate mass-loss rates across different evolutionary phases, we follow

the algorithm described by Belczynski et al. (2010), which is the latest mass loss algorithm

available in SSE. We apply these mass-loss rates consistently across all models we consider

in this paper, including in METISSE to stellar tracks without mass loss (both those from

Pols et al., 1998 and those from MESA), in SSE (which is also based on Pols et al. (1998)

models without mass loss) and in MESA for computing detailed models with mass loss.

Below we briefly describe the different components of the mass-loss scheme.

If the surface luminosity (L) of the star exceeds 105 L� and radius (R) satisfies 10−5RL0.5 >

1.0 R� L�
0.5, a fixed mass loss of 1.5×10−4 M� yr−1 is applied (see equation 8 of Belczyn-

ski et al., 2010), to account for Luminous Blue Variable (LBV) behaviour of the stars. For

stars whose effective surface temperature, Teff , is in the range of 12500 K and 50000K,

mass-loss rates from Vink et al. (2000, 2001) are used with the iron bi-stability jump

temperature at 25000K. For stars more luminous than 4000 L�, the mass-loss rate from
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Nieuwenhuijzen & de Jager (1990) is applied with a metallicity correction factor of 0.5

from Kudritzki et al. (1989).

Where none of the above conditions are met, i.e., for low mass stars, wind mass-

loss rates from Kudritzki & Reimers (1978) are used on the giant branch (GB) and from

Vassiliadis & Wood (1993) on the asymptotic giant branch (AGB), including the thermally-

pulsating AGB (TPAGB). For naked helium stars, and for stars with small hydrogen-rich

fractional envelope mass (µ; see equation 97 of Hurley et al., 2000) the wind prescription

from Hamann & Koesterke (1998) is used (reduced by a factor 1 − µ in the latter case)

with a metallicity scaling factor of Z0.86 from Vink & de Koter (2005).

We use Z = 2 × 10−2 as reference solar metallicity in calculating the mass-loss rates

as they have originally been scaled from this value. Everywhere else we adopt Z =

1.42 × 10−2 from Asplund et al. (2009a) as our solar reference. For Pols et al. (1998)

models, the closest available metallicity is Z = 10−2, so we use this value while comparing

results from METISSE and SSE.

Fig 5.1 shows the evolutionary tracks, computed with and without mass loss with

METISSE using Pols et al. (1998) models at metallicity Z = 10−2. The effect of mass

loss is visible on the stars more massive than 10 M� in the Hertzsprung–Russell (HR)

diagram. Tracks with mass loss are less luminous than tracks without mass loss. For the

40 M� track, the inclusion of mass loss leads to a completely different final state, i.e., a

naked helium star when mass loss is included, compared to a red supergiant when not

including any mass loss. At the end of its life, the 40 M� star without any mass loss forms

a 36 M� black hole while the same star with mass loss forms just an 11.3 M� black hole.

This simple comparison highlights the impact of mass loss in stellar evolution, especially

for massive stars.
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Figure 5.1 Hertzsprung–Russell (HR) diagram showing tracks interpolated by METISSE
using detailed tracks from Pols et al. (1998) for metallicity, Z = 10−2. Solid lines represent
tracks without any mass loss while dashed lines represent the tracks including wind mass
loss as described in Section 5.4.

5.4.1 Comparing tracks with mass loss for METISSE and SSE

In this section, we compare the stellar tracks given by the fitting formulae of SSE with

the tracks interpolated by METISSE with mass loss using the Pols et al. (1998) models

in the mass range 0.5–50 M� at Z = 10−2 metallicity. We exclude stars less massive than

10 M� in our comparison here, as wind mass-loss rates are too small for them to cause

any visible difference.

5.4.1.1 Differences in the HR diagram

Figure 5.2 shows the comparison between the evolutionary tracks computed by METISSE

and SSE. Inspection of the figure reveals that the tracks agree reasonably well during

the main-sequence but start diverging during post-main-sequence evolution. The maxi-

mum difference occurs for stars more massive than 10 M� towards the end of core helium



126
Chapter 5. The role of stellar evolution in mass transferring binaries and gravitational

wave progenitors

3.54.04.55.0

log10(Teff/K)

4.0

4.5

5.0

5.5

6.0

lo
g 1

0
(L

/L
�

)

10 M�

15 M�

20 M�

30 M�

40 M�

50 M�

1 R� 10 R� 100 R� 1000 R�

Z = 0.01
METISSE
SSE

Figure 5.2 HR diagram comparing stellar tracks with mass loss as computed by SSE and
METISSE using Pols et al. (1998) models for Z = 10−2. For both sets wind mass-loss
rates from Belczynski et al. (2010) were used in computing the tracks.

burning, where METISSE systematically predicts lower Teff than SSE.

As shown in Agrawal et al. (2020), METISSE is better at reproducing input stellar

tracks than the fitting formulae from SSE. The discrepancy between the methods is the

main source of variation in the 10 M� track in Figure 5.2. However, for more massive

stars, the differences towards the end of the core helium burning phase are arising from

technical details relating to how mass loss is implemented. To further understand the

origin of these differences, we compare the radial evolution of the stars as predicted by

METISSE and SSE in Figure 5.3.

SSE predicts a monotonic increase in radii during core helium burning for stars more

massive than 10 M�, unless they lose their envelope and become naked helium stars.

METISSE, on the other hand, predicts comparatively lower radii for the same phase of

evolution. A substantial effect of the lower radii predicted by METISSE for post-main-

sequence evolution is on the 30 M� star. While SSE predicts that the 30 M� star will
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Figure 5.3 Radius versus time for stellar tracks computed with mass loss using METISSE
(solid lines) with Pols et al. (1998) models and using SSE (dashed-dotted lines) for Z =
10−2. For stars more massive than 15 M�, the radial evolution agrees for most of the
evolution except beyond core helium burning.

become a naked helium star, METISSE predicts the formation of a red supergiant at the

end of core helium burning. We further explore implications of this difference in radius in

the next few subsections.

5.4.1.2 Differences in evolutionary timescales

In Figure 5.4, we compare the difference in the evolutionary timescale for each phase as

predicted by METISSE and SSE. Overall, the timescales computed by METISSE are in

good agreement with SSE. For 10 and 50 M� stars the difference is .0.1 Myr, while for

the 30 M� star it is .0.4 Myr. The maximum difference in timescale, 0.6 Myr, occurs for

a 15 M� star. This is due to the proximity of the effective initial mass of the star to one

of the critical masses at 16 M�. The critical masses in METISSE serve as the lower limits

above which certain physical properties start to appear for stellar tracks and interpolation

between these can lead to physically incorrect tracks (cf. Agrawal et al., 2020). Therefore,

at each step of mass loss, the intermediate tracks during the evolution of 15 M� stars in

METISSE have been extrapolated from 16 M� and 20 M� models, leading to the slight



128
Chapter 5. The role of stellar evolution in mass transferring binaries and gravitational

wave progenitors

MS HG RGB CHeB AGB TPAGB HeMS HeHG
Evolutionary phase

0

5

10

15

20

25

30

T
im

e/
M

y
rs

10 M�
15 M�
20 M�
30 M�
40 M�
50 M�
SSE

Figure 5.4 Time spent by stars in the different evolutionary phases as predicted by
METISSE (solid lines) and SSE (dashed-dotted lines). Acronyms on the x-axis rep-
resent the following phases: MS: Main Sequence, HG: Hertzsprung Gap, RGB: Red
Giant Branch, CHeB: core helium burning, AGB: Asymptotic Giant Branch, TPAGB:
Thermally-Pulsating AGB, HeMS: helium Main Sequence, HeHG: helium Hertzsprung
Gap.

deviation from a 15 M� star computed with SSE.

5.4.1.3 Differences in the evolution of total mass with time

In Figure 5.5, we show the total mass of the star with time as computed by METISSE

and SSE. The evolution of total mass for the 10 M� and 50 M� stars matches very well

between the codes. For other stars, the decrease of mass with time is quite similar for

most of their evolution. Differences appear only in the last ∼1 Myr, where SSE predicts

a steeper decrease in mass compared to METISSE for 20, 30 and 40 M� stars. To better

understand the origin of these differences, we plot the total mass of the star as a function

of its zero-age main-sequence mass at the end of different evolutionary phases for both SSE

and METISSE in Figure 5.6. We find that the total mass of the stars agrees well until core

helium burning begins (at the end of the HG) but starts to differ thereafter. By the end of

nuclear burning (before the star becomes a remnant), the maximum difference predictions

can be up to 1.5 M�, and happens for 25 and 30 M� stars. The variations in mass are
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Figure 5.5 Evolution of total mass with time for stars computed with mass loss by
METISSE (solid lines) and SSE (dashed-dotted lines). During the late evolution of the
20–40 M� stars, METISSE predicts a shallower decrease in mass compared to SSE. This
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Figure 5.6 Total mass of the star as a function of its Zero-Age Main-Sequence (ZAMS)
mass as predicted by SSE (orange dots) and METISSE (blue crosses). The top panel
represents the total mass at the end of the HG (when core helium burning begins) while
the bottom panel shows the values at the end of the nuclear burning life of the star (before
the star becomes a remnant).
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similar to the variations in the stellar tracks in the HR diagram during core helium burning.

Since mass-loss rates depend on the surface properties of the star, these differences can be

attributed to the differences in the tracks in the HR diagram, particularly radius.

5.4.1.4 Differences in the evolution of core mass with phase

As a star loses its envelope owing to stellar winds, the role of the core becomes increasingly

important in determining stellar properties, especially the final fate of the star. There

are several ways for determining the core boundaries in the detailed models based on

properties such as chemical composition and sound speed (compressibility). Usually, the

core is defined as the region interior to the boundary depleted in the element(s) undergoing

nuclear fusion in the core and rich in the nuclear product(s). Core boundaries are not fixed

but can increase e.g., as shell burning adds processed material, or even decrease e.g., as

convection, dredge-ups and other mixing events dilute the outer layers of the core with

the unprocessed material from the envelope.

In Figure 5.7 we show the core mass of the star with evolutionary phase for stellar

tracks computed by METISSE and SSE. Following the SSE convention, the core mass

here represents the mass of the helium-rich core for phases up to the AGB and the mass of

the carbon-oxygen core for phases beyond the AGB (including naked helium star phases).

Similar to Figure 5.6, we plot the core mass of the star as a function of its zero-age main-

sequence mass for SSE and METISSE at the end of the HG (when core helium burning

begins) and at the end of nuclear burning life (before the star becomes a remnant) in

Figure 5.8.

From Figure 5.7, we see that the core masses at the end of each evolutionary phase for

stars up to 20 M� show a good agreement between METISSE and SSE, with the maximum

difference being 0.2 M� for a 15 M� star at the end of the HG. Moreover, METISSE is

better able to reflect the variation in core mass with time (due to mixing, shell burning

etc.) compared to SSE where the fitting formulae are designed to only register the increase

in core mass.

For stars with initial masses of 40 M� and above, where both SSE and METISSE

predict the formation of a naked helium star, there can be a difference of up to 1.4 M�

in the core masses (helium core) during the HG between the two codes. However, these
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differences reduce to ∼0.6 M� (carbon-oxygen core) in the end as the star becomes a naked

helium star and both codes switch to using fitting formulae for naked helium stars.
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Figure 5.7 Evolution of core mass with phase as predicted by SSE (dashed-dotted) and
METISSE (solid lines). Here the core mass represents the mass of the helium core up until
the AGB and the mass of carbon-oxygen core thereafter.

For the 30 M� star, the difference in the core mass prediction at the end of HG is less

than 0.1 M�. However, lower radii predicted by METISSE during core helium burning

causes a shallower decrease in mass. Therefore, despite having similar envelope mass

(19.50 M�) compared to SSE (19.56 M�) at the beginning of core helium burning, the

30 M� star in METISSE is able to retain its envelope and end its life as a red supergiant.

The difference in the evolutionary paths for the 30 M� star beyond core helium burning

shows up as a difference of about 3 M� in the core mass at the end of nuclear burning. It

is important to highlight that this difference is between the helium core mass in METISSE

and the carbon-oxygen core mass in SSE. The difference between the respective carbon-

oxygen core masses is only 0.2 M�.

In a nutshell, METISSE can closely reproduce the results from SSE with the exception

of a few cases. The majority of the differences between METISSE and SSE occur for

high-mass stars (defined as the stars that ignite helium on the HG and do not undergo the

RGB phase) in late phases of the evolution (core helium burning and beyond). The origin
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Figure 5.8 Core mass of the star as a function of its ZAMS mass as predicted by SSE
(orange dots) and METISSE (dark blue crosses). The top panel represents the core masses
at the end of the HG and the bottom panel shows the values at the end of the nuclear
burning life of the star. For all stars with MZAMS up to 25 M�, and the 30 M� star with
METISSE, that end their lives on the giant branch, the core mass represents the mass of
the helium core. Therefore, the masses of the carbon-oxygen core from SSE and METISSE
are explicitly plotted with yellow stars and blue pluses respectively. For stars that lose
their envelope during the evolution to become naked helium stars, the core mass represents
the mass of the carbon-oxygen core only.

of these differences can be traced back to the variation in the radial evolution of the star

during core helium burning, as predicted by METISSE and SSE (Figure 5.3). During core

helium burning, SSE uses a relative age of the star τ = (t− tHeI)/tHe (cf. Hurley et al.,

2000), and fitting formulae for radii of the star with the new total mass Mt to compute

the current radius of the star following the mass loss. Thus the formulae depend only on

the initial and final radius of the star during core helium burning and are independent of

the variations that may be present in-between. Moreover for high-mass stars in SSE, the

radius calculation transitions to using the fitting formulae for the AGB phase even before

the end of core helium burning (see Section 5.3 of Hurley et al., 2000).

In METISSE, the radius of the star after any instance of mass loss is calculated from

the new mass interpolated track. It depends both on the radial expansion properties of the

new track during core helium burning, and how the age is mapped between the EEPs in the
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old and the new track, for each time step. However, as the high-mass stars in METISSE

expand to become giants, they encounter high mass-loss rates and the age mapping given

by equation 5.2 is possibly unable to reflect the required change in age, leading to the

predictions of a smaller radii. Investigating the reason for these differences, and improving

METISSE to account for the behaviour of stellar radius will be an essential next step.

5.4.2 Comparing METISSE with detailed models with mass loss from

MESA

Any method of rapid population synthesis should be able to mimic the results of the

detailed evolution as closely as possible. The method for accounting for mass changes in

stellar tracks in METISSE shows good agreement with the results of SSE. However, the

ideal scenario will be to be able to reproduce results from detailed evolution computed

including mass loss. Therefore, in this section, we test the validity of our method using

models from MESA both with and without mass loss.

For this purpose, we have computed two sets of models with MESA for stars in the

mass range of 8–55 M� at metallicity Z = 1.42 × 10−2, using the same physical inputs

as discussed in Chapter 3 except for the mass-loss rates. The first set of models with

MESA have been computed without any mass loss. The models have been converted into

EEP-format using the ISO program (Dotter, 2016) to be used as a input in METISSE.

Mass-loss through winds has then been subsequently added using the method described in

Section 5.3. The second set of models has been computed using the mass-loss rates from

Belczynski et al. (2010), by modifying the subprogram unit run_star_extras in MESA

to match the implementation in METISSE.

In the left panel of Figure 5.9 we show the evolutionary tracks computed with and

without mass loss with MESA for metallicity Z = 1.42× 10−2. Differences in both radius

and luminosity are easily visible in the tracks more massive than 20 M�, most notably the

change in the position of the main-sequence-hook. The effect of mass loss becomes more

pronounced in tracks with higher initial masses.

The right panel of Figure 5.9 shows the comparison between the stellar models com-

puted by MESA with mass loss (labelled as MESA) and the stellar tracks computed by

adding mass loss in METISSE using stellar models without mass loss from MESA (labelled
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Figure 5.9 The left panel shows the evolutionary tracks computed with mass loss (dashed
lines) and without mass loss (solid lines) with MESA for metallicity Z = 1.42 × 10−2.
For the same metallicity, the right panel presents the comparison between stellar tracks
interpolated by METISSE (solid lines) using stellar models without mass loss from MESA
(adding mass loss on top) with the detailed models computed with MESA itself (dashed
lines), computed using the same mass-loss rates as in METISSE. Due to numerical in-
stabilities, the tracks computed with mass loss in MESA are incomplete for 20 M� and
above.
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Figure 5.10 Same as Figure 5.9 for metallicity Z = 1.42 × 10−4. All the tracks com-
puted with MESA are complete here and agree well with METISSE up to 30 M�. See
Section 5.4.2 for details.
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as METISSE). Up to 20 M�, the tracks agree well during the main-sequence and the HG

phases of evolution. The differences between the interpolated and the detailed tracks in-

crease with the mass-loss rates, and the two sets of tracks show significant deviation during

the core helium burning phase.

For stars more massive than 20 M�, the interpolated tracks exhibit a different be-

haviour compared to the detailed tracks even on the main-sequence. Not only are there

differences in the predictions of stellar radii but the luminosities of stars also differ. Sim-

ilar to the detailed tracks in the left panel, tracks computed with METISSE in the right

panel predict a change in the position of MS-hook, when mass loss in added in stars above

20 M�. Although, the degree of change is different and the hook feature does not coincide

between the two sets of tracks.

For Z = 1.42 × 10−2, detailed models with mass loss computed with MESA fail to

evolve during the core helium burning phase and hence are rendered incomplete for stars

with initial masses greater than 20 M�. This happens due to the presence of numerical

instabilities described in Chapter 3. We therefore, switch to a metallicity 100 times smaller

than solar value for a better coverage of the mass range.

Similar to Figure 5.9, the left panel in Figure 5.10 represents the evolutionary tracks

computed with and without mass loss with MESA for metallicity Z = 1.42 × 10−4 while

the right panel shows the stellar tracks computed by adding mass loss in METISSE using

stellar models without mass loss from MESA and the stellar models computed by MESA

with Belczynski et al. (2010) mass loss. At this metallicity, the mass-loss rates are usually

small (10−6–10−8 M� yr−1), except when stars become LBVs and the mass-loss rate jumps

to ∼10−4 M� yr−1. For stars up to 30 M�, wind mass loss is not strong (.10−8 M� yr−1),

and the tracks computed with METISSE agree well with MESA. Above 30 M�, the tracks

only agree until the HG. For a 55 M� star, MESA predicts that the star will burn core

helium as a supergiant while METISSE predicts that it will lose all its envelope during

core helium burning and will become a naked helium star instead.

This is further elaborated in Figure 5.11, where we plot the evolution of core mass and

total mass with time for a 55 M� star, as predicted by METISSE and MESA. For most of

the star’s evolution METISSE and MESA predict similar behaviour. At around 3.9 Myr

the star starts experiencing high mass-loss rates due to LBV winds. In METISSE, this
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continues until the star becomes a naked helium star at about 4.1 Myr. In MESA, however,

mass-loss rates drop at about 4.1 Myr as the star evolves towards lower radii and away

from experiencing LBV winds. The evolution of mass with time almost flattens out, with

about a 4.5 M� envelope remaining. Figure 5.12 shows the predictions of mass-loss rate

and stellar radii with time by METISSE and MESA for the last ∝1 Myr of evolution. As

the mass-loss rates ramp up due to LBV winds, the radius evolution in METISSE starts

differing from MESA. The difference in stellar radius further increases the difference in

the mass-loss rates, and finally leads to different evolutionary outcomes.

Aside from the reasons mentioned in Section 5.4.1.4, another possible reason for this

discrepancy in radius is that METISSE is interpolating between the models which are

in complete hydrostatic and thermal equilibrium. As we add mass loss, it interpolates

between lower mass models to get stellar radii, still in equilibrium. However, the removal
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Figure 5.11 Evolution of stellar mass with time for a 55 M� star at Z = 1.42 × 10−4,
as predicted by METISSE (shown in blue) and MESA (shown in green). The solid lines
represent the total mass of the star while the dashed lines represent the core mass of the
star. At high mass-loss rates, the predictions from METISSE start to differ from MESA.
While MESA predicts the end of the star’s life as a red supergiant star with an ∼4 M�
envelope, METISSE predicts the formation of a naked helium star at the end of 4.13 Myr.
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Figure 5.12 Zooming in on the last 1 Myr of the life of a 55 M� star evolved using METISSE
(solid line) and MESA (dashed line) for Z = 1.42× 10−4. The top panel shows the mass-
loss rates with time while the bottom panel shows the evolution of stellar radius with time.
At about 3.9 Myr, as mass-loss rates spike up due to LBV mass loss, METISSE predicts
different radial evolution compared to MESA.

of the outer layers of a star through mass loss disturbs both hydrostatic and thermal equi-

librium in the star. Depending on the structure of the envelope, whether it is convective

or radiative, the star either expands or contracts to restore equilibrium. If the mass-loss

rates are low, fewer layers are removed from the star and its structure remains almost

unaltered. However, at high mass-loss rates, more mass layers are removed from the star,

therefore the degree of adjustment of the stellar radius to restore the equilibrium is also

high. A detailed code like MESA can encapsulate such details and therefore predicts a

different evolutionary path for a star with a high-mass-loss rate.

The SSE assumption of calculating luminosity using the effective initial mass of the

star does not hold true for high-metallicity massive stars in METISSE, when stellar models

without mass loss from MESA are used as input (Figure 5.9). In future, the assumptions

on how the stellar parameters respond to mass changes in METISSE will be improved to

make METISSE mimic detailed evolution as closely as possible.
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5.5 Mass transfer in binary systems

Two stars gravitationally bound to each other and orbiting a common centre of mass are

said to form a binary system. Binary stars can interact with each other in a myriad of

ways and studying their evolution is an active field of research. In this section we provide

a brief overview of mass transfer and its role in binary evolution.

In the co-rotating reference frame of the binary there exists equipotential surfaces

around each star known as ‘Roche lobes’. They meet at the inner Lagrangian point (L1),

one of five Lagrangian points where the gravitational force exerted by the both stars is

balanced by the centrifugal force. The two Roche lobes can be considered to be almost

spherical, each with an effective radius known as the ‘Roche lobe radius’. The Roche lobe

radius is defined as the radius of the sphere containing the same volume as the Roche lobe,

and is a function of the mass ratio of the stars and the orbital separation between them

(Eggleton, 1983).

Most binary systems begin life with each star sufficiently distant that each star’s radius

is well below its corresponding Roche lobe radius (Abt, 1983; Duchêne & Kraus, 2013).

Even in this detached state, stars can still interact through tides, gravitational radiation,

magnetic braking, and through the accretion of stellar winds (Tout et al., 1997; Hurley

et al., 2002). As the stars expand to become giants and supergiants, their radii can

change by several orders of magnitude. If one of the stars in the binary system (the

donor) expands beyond its Roche lobe radius, its outer layers become dominated by the

gravitational influence of the second star (the accretor). Material flows through L1, and

depending on its energy and momentum, can be accreted by the companion star. The

binary is now in a semi-detached state and is said to be undergoing mass transfer through

Roche-lobe overflow. A third possibility is that the accretor may fill its own Roche lobe

(due to its own stellar evolution or in response to mass transfer on it) and stars form a

contact binary system.

Following Kippenhahn & Weigert (1967), mass transfer in an interacting binary system

can be classified as one of three cases based on the evolutionary state of the donor star

when it first fills its Roche lobe.

1. Case A: if the donor is undergoing core hydrogen burning on the main-sequence,
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2. Case B: if the donor has finished core hydrogen burning and is undergoing hydrogen-

shell burning (HG, RGB, CHeB).

3. Case C: if the donor has finished core helium burning (AGB).

Binary interactions can change the mass, angular momentum and the surface compo-

sition of the individual stars as well as the properties of the binary system, such as the

orbital separation between the stars. If the total mass and the total angular momentum of

the system is conserved then the mass transfer is described as conservative. In the opposite

scenario, both mass and the angular momentum can be lost from the system and the mass

transfer is non-conservative. In general, Case A and Case B mass transfers tend to be

conservative while Case C mass transfer and wind-accretion are typically non-conservative

(Schneider et al., 2015).

It is also useful to classify mass transfer according to its stability. The stability of

mass transfer depends primarily on the response of the donor stellar radius and Roche

lobe radius to mass transfer (see, e.g., Soberman et al., 1997). Of critical importance is

the response of the donor’s envelope to mass loss (Webbink, 1985; Ge et al., 2015). If the

donor star has a radiative envelope, it will contract in response to the mass loss. Although

if the star is on the main-sequence, its nuclear evolution will again lead to an increase in

radius. Alternatively, angular momentum losses can lead to a reduction in the Roche lobe

radii of the stars. In the equilibrium scenario, the donor star stays large enough to just

fill its Roche lobe and transfer mass to the companion. The mass transfer is stable and

proceeds on the nuclear timescale of the donor star.

For HG stars with radiative envelopes, radial contraction of the donor due to mass

transfer can be outpaced by the radial expansion due to stellar evolution. This leads

to increasing mass transfer rates limited by the thermal time scale of the donor i.e., the

time needed to restore the thermal equilibrium of the star. In this case, mass transfer is

unstable and proceeds on the thermal timescale of the donor.

If the donor star has a deep convective envelope, its radius increases in response to

mass loss, and may quickly lead to a run away situation. The mass-transfer is unstable

and can have significant consequences on the evolution of the binary. For example, if the

expansion of the donor occurs beyond the outer Lagrangian point of the system, or the
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donor transfers more mass than the accretor can accrete (which is limited by its thermal

timescale), then the outer layers of the star form a common envelope around the binary

(Paczynski, 1976; Iben & Livio, 1993). As the cores spiral inside the common envelope,

their orbital energy is slowly transferred to the envelope, causing subsequent decay of the

orbit and may ultimately lead to the ejection of the envelope. If the orbital decay does

not lead to stellar merger before the envelope is ejected, it can leave behind two tightly

orbiting cores (Ivanova et al., 2013).

Common envelope evolution is a proposed channel for the formation of close binary

systems that can lead to phenomena such as Type Ia supernovae, X-ray binaries, and

compact binary coalescence. In general, episodes of most mass transfer tend to reduce the

orbital separation of stellar binaries. However, a binary system can also widen in response

to certain mass transfer episodes e.g., when mass transfer occurs conservatively from a

lower mass star to a more massive companion. Such a situation can arise, for example, in

Algol systems (Plavec, 1968; Paczyński, 1971). In these systems, an initially more massive

donor loses enough mass during its evolution through mass transfer to become less massive

than its less evolved companion.

Finally, if a star is massive enough, it will end its life in a supernova, leaving behind

a compact object (a neutron star or a black hole) or, in the case of a pair instability

supernova, leaving no remnant. Compact objects are thought to receive kicks when they

are born (Hansen & Phinney, 1997; Hobbs et al., 2005). A combination of mass loss during

the supernova explosion and the natal kick received by the newly formed neutron star or

black hole may significantly widen or even disrupt the binary (Blaauw, 1961; Janka &

Mueller, 1994).

5.6 METISSE in BSE

METISSE provides us with the ability to test the impact of stellar evolution on the pro-

genitors of GWs. However, we also require a binary evolution mechanism to predict the

evolution of compact binary systems whose mergers give rise to GWs. To achieve this, we

implemented METISSE in the binary evolution code BSE (Hurley et al., 2002). BSE is a

popular binary population synthesis code that can rapidly compute the evolution of stars
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in binary system, along with providing algorithms to model the necessary binary physics.

BSE relies on the subroutines and the fitting formulae from SSE to compute single stellar

evolution properties. The resulting algorithm is computationally cheap, fast and robust

and many other binary evolution codes such as STARTRACK (Belczynski et al., 2002,

2008), binary c (Izzard et al., 2004; Claeys et al., 2014), COMPAS (Stevenson et al., 2017;

Vigna-Gómez et al., 2018), MOBSE (Giacobbo et al., 2018) and COSMIC (Breivik et al.,

2020) are based on BSE.

A binary system in BSE is characterized by its metallicity, the mass of the primary

(initially more massive) star, the mass of the secondary (initially less massive) star, the

orbital period (or orbital separation), and the eccentricity of the orbit. The Roche lobe

radius for each star is given by the fitting formula from Eggleton (1983). The evolution of

the binary is classified in to two parts depending on if either of the stars are filling their

Roche lobe or not. The first part is for detached binary systems where neither of the stars

have filled their Roche lobes, and they interact (if at all) solely through wind accretion

and tidal interactions. Interaction of detached binaries through tides is treated using

parametrized formulae from Hut (1981), Zahn (1977) and Campbell (1984), while wind-

accretion from a companion star is estimated via the Bondi-Hoyle mechanism (Bondi &

Hoyle, 1944). The second part of the evolution is where one or both stars fill their Roche

lobes. The stability of mass transfer through Roche-lobe overflow is determined using

stability parameters from Webbink (1985), while the treatment of Roche-lobe overflow

closely follows Tout et al. (1997). If the binary reaches the state of common envelope,

the outcome of the common envelope evolution is determined by comparing the total

binding energy of the envelope and the orbital energy of the cores (Paczynski, 1976). The

efficiency of energy transfer from the orbit to the common envelope is determined through

the parameter α (Webbink, 1984) whereas the binding energy of the envelope depends on

the structure parameter λ (de Kool, 1990), both of which are treated as free parameters

in BSE due to large uncertainties in their values.

Angular momentum losses through gravitational radiation and magnetic braking are es-

timated using the weak-field approximation of general relativity (Landau & Lifshitz, 1975)

and parameterizations from Rappaport et al. (1983) and Skumanich (1972) respectively.

If either of the stars undergoes a supernova explosion, a kick velocity is taken randomly
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from a Maxwellian distribution following Hansen & Phinney (1997) with dispersion or root

mean-square velocity of 190 km sec−1, to calculate the loss in angular momentum from the

system. We refer readers to Hurley et al. (2002) for further details on binary evolution

with BSE.

5.6.1 Comparing binary evolution for METISSE and SSE
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Figure 5.13 HR diagram showing the evolutionary tracks for a 25 M� and 15 M� binary
system of stars with initial orbital period of 1800 days and Z = 10−2. Solid lines represent
the evolution of the binary as predicted by using METISSE in BSE with Pols et al.
(1998) models while dashed lines represent the predictions from using SSE in BSE. See
Section 5.6.1 for details of the evolution and mass transfer.

In this section, we test the implementation of METISSE in BSE using Pols et al.

(1998) models by comparing with results obtained using SSE in BSE. In particular, to

demonstrate the impact of uncertainties in massive stellar evolution on the formation of

gravitational-wave sources, we choose to investigate massive, wide binaries similar to the

progenitors proposed for double neutron star (Vigna-Gómez et al., 2018; Chattopadhyay

et al., 2020) and neutron star-black hole binaries (Chattopadhyay et al., 2021; Broekgaar-
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den et al., 2021). As an example, we study the evolution of a massive binary system of

stars with initial masses 25 M� and 15 M� at a metallicity Z = 10−2 in a circular orbit (ec-

centricity e = 0) with an initial orbital period of 1800 days. Mass loss due to stellar winds

is given by Belczynski et al. (2010) and remnant masses are calculated from Belczynski

et al. (2008) (also ‘StarTrack prescription’ in Fryer et al., 2012). The maximum neutron

star mass is assumed to be 3 M�. For a fair comparison between SSE and METISSE, we

nullify the kick velocity imparted to remnants during supernova explosions by setting the

dispersion factor for the Maxwellian distribution of velocity to zero. The full set of input

parameters used for both SSE and METISSE are listed in Table 5.2.

Figure 5.13 shows the HR diagram with the evolutionary tracks for each star, as pre-

dicted by BSE with METISSE and with SSE. The evolution of the binary system by each

method is summarized in Figure 5.14 while a comparison between the different evolution-

ary parameters of the binary is presented in Figure 5.15.

The left panel of Figure 5.14 depicts the evolution of the binary computed using BSE

with SSE. The system starts with both stars on the main sequence with an orbital sepa-

ration of 2128 R�. The large separation allows the binary to evolve as a detached system,

interacting primarily through wind accretion and tides. Some of the mass lost by the 25 M�

primary through stellar winds is accreted non-conservatively by the 15 M� secondary. The

mass loss through stellar winds increases the orbital separation of the binary to 2193 R�.

As the primary evolves, it expands and eventually fills its Roche lobe during the core

helium burning phase at 7.57 Myr, while the secondary is still burning hydrogen on the

main-sequence (Figure 5.15). Roche-lobe overflow ensues and mass is transferred from

the now 23.59 M� primary onto the 15.01 M� secondary. This mass transfer initially de-

creases the orbital separation as mass is transferred conservatively from the more massive

primary to the less massive secondary. The mass ratio reverses at the orbital separation

of 2183 R�, and further mass transfer only widens the binary. Mass transfer continues

as the primary evolves through the giant phases and stops at an orbital separation of

2573 R�, when the primary undergoes a supernova explosion at 8.26 Myr. The primary,

with a pre-supernova mass of 11.84 M� and a carbon-oxygen core mass of 7.1 M�, forms

a 9 M� black hole (BH). The secondary, on the other hand, has become a blue straggler

star with a total mass of 20.15 M�. The evolution of the secondary continues while the
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Figure 5.14 Evolution summary of a binary system consisting of a 25 M� and a 15 M� star
in a circular orbit with an initial orbital period of 1800 days. The left panel shows the
evolution of the binary as predicted by using BSE with SSE while the right panel shows
the evolutionary prediction from BSE with METISSE. Both SSE and METISSE predict
similar evolutionary pathways for the binary system. However, depending on when the
Roche-lobe overflow is initiated from the primary, the final properties of the system can
be different, such as the mass of the neutron star formed by the secondary.

companion BH grows through wind accretion to a final mass of 9.44 M�. The secondary

evolves to become a 13.95 M� giant with a 5.38 M� carbon-oxygen core before exploding

in a supernova at 13.89 Myr to form a 2.23 M� neutron star. By construction, no natal

kick is imparted to the newly formed neutron star, although the large amount of mass lost

during the supernova explosion disrupts the binary and the system becomes unbound.

METISSE initially predicts a similar evolutionary path for the binary, as shown in the

right panel of Figure 5.14 but the evolution diverges from SSE during core helium burning.

The primary evolves from a 25 M� main-sequence star to a 14.39 M� giant as the 15 M�

secondary accretes material from the wind of the primary to become a 16.25 M� star.
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Figure 5.15 Evolution of various evolutionary parameters of the binary system as predicted
by METISSE in BSE using Pols et al. (1998) models (solid lines) and SSE in BSE (dashed
lines). The dark blue colour represents evolutionary parameters for the 25 M� primary
while the light blue colour shows the same for the 15 M� secondary. Due to differences
in the radial evolution of the primary between SSE and METISSE, SSE predicts that the
primary fills its Roche lobe during core helium burning and is able to transfer more mass
to the secondary compared to METISSE. METISSE predicts that Roche-lobe overflow
occurs only in the final 104 years of the primary’s evolution, long after the primary has
finished burning helium in the core.

However, compared to SSE, METISSE predicts a smaller radius for the 25 M� star during

core helium burning (Figure 5.15). Thus the primary does not fill its Roche lobe until after

the end of core-helium burning. Mass transfer from the primary to the secondary through

Roche-lobe overflow starts at 8.56 Myr but is short-lived as the primary explodes only

104 yrs later in a supernova to become a 8.89 M� BH. During this brief period of Roche-
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lobe overflow, mass transfer from the less massive primary to the more massive secondary

increases the orbital separation from 2180 R� to 2785 R�, despite the secondary accreting

just 4 × 10−3 M�. The secondary evolves to become a giant star losing mass through

winds, some of which is accreted by the companion BH which grows to 9.03 M�. The

secondary ends its life in a supernova with a pre-supernova mass of 13.31 M�, and a core

mass of 3.85 M� to form a 1.36 M� neutron star. Similar to SSE, the system loses more

than 10 M� mass during the supernova, which is enough to disrupt the binary.

Discrepancies in the evolution of the binary system evolved using METISSE and

SSE are primarily caused by differences in the implementation of mass-transfer. Dur-

ing core helium burning, wind mass-loss rates for the 25 M� primary can be of the order

of 10−5 M� yr−1, and the current implementation of mass transfer in METISSE seemingly

under-predicts the stellar radii at high mass-loss rates, as discussed in Section 5.4.1. The

most notable impact of this discrepancy for the binary we consider is in determining when

Roche-lobe overflow is initiated, and therefore the amount of mass and angular momentum

transferred between the stars. SSE predicts that the Roche-lobe overflow is initiated earlier

in the primary’s life, during the core helium burning phase. However, METISSE predicts

that Roche-lobe overflow does not start until much later, after the primary has finished

core helium burning and lost a significant portion of its envelope (&10 M�) through stellar

winds.

However, another unrelated discrepancy can be seen between the METISSE and SSE

predictions of the BH mass when the primary undergoes supernova. SSE, despite pre-

dicting a lower pre-supernova mass for the primary, predicts the formation of a more

massive BH compared to METISSE. This discrepancy is a result of carbon-oxygen core

mass predicted by each code. METISSE relies on the underlying input tracks to provide

information about the carbon-oxygen core mass, and therefore can better capture its evo-

lution. SSE, on the other hand, uses a simplified method where the carbon-oxygen core

mass grows until a critical value is reached (see Section 5.2 of Agrawal et al., 2020, for

details), resulting in a higher carbon-oxygen core mass than METISSE.

To summarize, the successful implementation of METISSE in BSE paves way for binary

population synthesis studies. Once the differences in radius predictions between METISSE

and SSE with extra mass loss are resolved, it will be trivial to incorporate them in BSE.
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Parameter Value
Primary Mass ( M�) 25
Secondary Mass ( M�) 15
Metallicity 0.01
Maximum evolution time (Myr) 12000
Orbital period (days) 1800
Eccentricity 0.0
Reimers mass loss scaling factor 0.5
Binary wind enhancement 0.0
Helium star mass loss factor 1.0
Common-envelope efficiency parameter 3.0
Binding energy factor for common envelope 0.5
Tides On
White dwarf cooling scheme Hurley & Shara (2003)
Velocity kick at BH formation Off
Remnant mass scheme Belczynski et al. (2008)
Maximum NS mass ( M�) 3.0
Random number seed for kick 29769
Dispersion in the Maxwellian for the supernova kick
speed (km sec−1)

0.0

Wind velocity factor 0.125
Wind accretion efficiency factor 1.0
Bondi-Hoyle wind accretion factor 1.5
Fraction of accreted matter retained in nova eruption 0.001
Eddington limit factor 10.0
Gamma angular momentum loss -1.0

Table 5.2 Input parameters for BSE used in testing the implementation of METISSE and
comparing the output with SSE. See Hurley et al. (2002) for an explanation of each input
quantity.

5.7 Conclusion and future work

We updated our interpolation based rapid stellar evolution code METISSE to include

the impact of mass changes due to stellar winds and binary interaction. While METISSE

already had the capability to interpolate between detailed models that included wind mass

loss, it now has the capability to add extra mass loss, enabling its use for modelling mass

transfer in binary systems.

We tested the implementation of mass transfer by comparing tracks interpolated with

METISSE using stellar models from Pols et al. (1998), adding mass loss on top, with

the tracks computed using the SSE (Hurley et al., 2000) fitting formulae. We find that
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METISSE is able to closely replicate the results from SSE for low mass-loss rates. For high

mass-loss rates, we find a mismatch in the behaviour of the stellar radius, leading to differ-

ent amounts of mass loss, which in turn can lead to different evolutionary behaviour. We

find similar results when comparing METISSE with detailed tracks computed by MESA

using the same mass-loss rates.

We demonstrated that METISSE works in the binary evolution code BSE (Hurley

et al., 2002), and compared the results with BSE using SSE. The evolution of the binary

agrees well until differences in the radial evolution during core helium burning between

SSE and METISSE become dominant.

While this radius discrepancy is concerning, and is one of the most pressing topics

for future work with METISSE, the similarity in other evolutionary parameters in both

cases is extremely promising. With some modifications, METISSE will be ready for use

in the rapid binary evolution codes such as BSE to evaluate the effect of differing stellar

evolution on binary evolution outcomes. It can then be incorporated in similar codes

such as COMPAS (Stevenson et al., 2017; Vigna-Gómez et al., 2018), COSMIC (Breivik

et al., 2020) and N BODY6 (Aarseth, 2003) and used to perform populations synthesis

calculations for GW progenitors, along with many other studies.

The use of interpolation within METISSE offers great flexibility regarding input stellar

models as one can easily use models generated with different stellar evolution codes and

different input parameters. Similar to other interpolation based codes such as SEVN and

COMBINE, it uses the approach of switching to tracks of different mass in the presence

of mass transfer, although the method of finding the new track varies between the codes.

Moreover, while SSE uses fitting formulae for the stellar parameters that are explicitly

required in binary evolution, such as the core radius and envelope binding energy, other

interpolation-based codes require them as input data for interpolation. METISSE can

combine these options freely. Whenever the extra parameters required for binary evolution

are present in the input tracks, METISSE interpolates between them. Otherwise, it can

switch to using fitting formulae from SSE. This approach allows METISSE to be very

robust, an important requirement for population synthesis purposes.

Moreover, the modular structure of METISSE and its SSE-like subprogram units (cf.

Section 5.2) for interfacing makes it easier to make modifications in METISSE without
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affecting the working of the overlying population synthesis codes. This is useful not just

for implementing changes related to the current issues with mass transfer but also for

improving METISSE in future. An example of potential future work with METISSE

includes the use of detailed helium star models for stars that lose their hydrogen envelope

during nuclear burning (see Agrawal et al., 2020 for details).

In future, we will also revisit the assumptions underpinning mass transfer in METISSE

to better mimic the detailed evolution of binary systems. For example, the current imple-

mentation of extra mass transfer mechanisms in METISSE uses similar assumptions as in

SSE. Under these assumptions, the structure of the core is assumed to be unaffected by the

mass transfer. However, recent studies (Renzo et al., 2017; Laplace et al., 2021) indicate

that not only does mass transfer affect the core structure, the pre-supernova structure

of the core is different for massive single and binary stripped stars. Differences in the

internal structure of the star also have important consequences for the binding energy of

the envelope, which determines the outcome of common envelope evolution. Thus, there

are a plethora of possibilities with METISSE, and its future looks bright.
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6
Conclusion

“You are allowed to be both a masterpiece and a work in progress simultaneously”

—Sophia Bush

The evolution of massive stars is the basis of several astrophysical investigations, from

predicting gravitational-wave event rates to studying star-formation and stellar popula-

tions in clusters. However, uncertainties in their evolution present a significant challenge

while accounting for their behaviour in stellar population studies. This hurdle is further

exacerbated by the way stellar evolution is handled by the population synthesis codes –

codes used for modelling the evolution of large systems of stars and the various inter-

actions between them. Therefore, in this thesis we have explored the current state of

modelling the evolution of massive stars and, to apply this knowledge in simulating stellar

populations, we have developed an alternative approach for modelling stellar evolution in

population synthesis codes. In conclusion the three main outcomes of this thesis can be

listed as follows:

• Uncertainties in the evolution of massive stars, physical as well numerical, can sig-

nificantly impact their evolutionary outcomes.

• METISSE offers a computationally cheap, fast, robust approach to test predictions

of different models of massive stars in population synthesis simulations.

• With some modifications, METISSE can be used to explore the impact of these

uncertainties in binary stellar systems.

151
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6.1 Summary

In Chapter 2, we examined the differences in the models of massive stars with initial mass

between 9–200 M� at near-solar composition, computed using various one-dimensional

(1D) stellar evolution codes. We compared five sets of stellar models, namely, models

from the PAdova and TRieste Stellar Evolution Code (PARSEC; Chen et al., 2015), MESA

Isochrones and Stellar Tracks (MIST; Choi et al., 2016) from the Modules for Experiments

in Stellar Astrophysics (MESA; Paxton et al., 2011), models (Ekström et al., 2012) from

the Geneva code (Eggenberger et al., 2008), models from the Binary Population and

Spectral Synthesis (BPASS; Eldridge et al., 2017), and the Bonn Optimized Stellar Tracks

(BoOST; Szécsi et al., 2020) from the Bonn Code.

The different sets of stellar models have been computed using various physical inputs

such as the chemical composition, mass-loss rates, and internal mixing properties. Ad-

ditionally, the computation of these models also employed various methods to overcome

the numerical instabilities that arise due to the presence of density inversions in the outer

layers of massive stars. These density inversions result from the combination of ineffi-

cient convection in the low-density envelopes of massive stars and the excess of radiative

luminosity to the Eddington luminosity (the maximum luminosity required to balance

gravitational pressure in stars). At solar metallicity, such conditions are easily achievable

in the envelopes of stars more massive than 40 M�.

We find that predictions for the maximum radial expansion of a star can differ between

∼100–2 000 R�, while the mass of the stellar remnant can vary up to 20 M� between

various sets of models. We also find that stars with initial masses 40 M� and more, show

a larger difference in evolutionary properties compared to lower mass stars, signifying the

contribution of the methods used in treating the aforementioned numerical instabilities.

The differences in the stellar models are important, as these evolutionary models are

extensively used to explain the observations of stellar populations such as the gravitational-

wave event rate predictions. Moreover, comparing stellar models with observations is

helpful in determining the evolution of massive stars themselves. Hence, it is necessary to

untangle the impact of uncertainties arising due to numerical methods in 1D codes from

that due to physical processes in massive stars.
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We have quantified the impact of these methods on the evolutionary properties of

massive stars in Chapter 3. Using the stellar evolution code MESA with commonly used

input parameters for massive stellar models, we computed the evolution of stars in the

initial mass range of 10–110 M� at one tenth of solar metallicity. We find that the presence

of density inversions in the stellar models with initial mass greater than or equal to 30 M�,

leads to prohibitively small time-steps. Consequently these models fail to reach the end of

core helium burning in a reasonable amount of time. We then recomputed these models

using the same physical inputs but three different numerical methods to treat the numerical

instability. The three methods: using a larger mixing length to increase the efficiency of

the mixing process, using higher mass-loss rates to remove the outer layers of the star

where numerical instabilities occur, and suppressing density inversions by limiting the

temperature gradient, are general forms of the methods used by different 1D codes to

evolve massive stars beyond numerical instabilities.

Even when using the minimum enhancements needed to overcome numerical instabil-

ities, we find that the differences between the methods can be non-trivial: the maximum

radial expansion achieved by stars can again vary by up to 2 000 R� while the remnant

mass of the stars can vary by up to 14 M� between the sets.

We further try to analyze which of these methods can better mimic the behaviour of

massive stars in nature, by computing the time spent by stars beyond the Humphreys-

Davidson (HD) limit for each set of stellar models. The HD limit defines a region of the

Hertzsprung-Russell diagram where very few massive stars have been observed to date.

We find that the models computed with extra mass loss spend the least time in this

region (.105 yrs) compared to the models computed with other methods. This suggests

they are probably closest to the observations (or lack of observations) of massive stars.

However, other evolutionary properties predicted by this set of models such as the mass of

stellar remnants or the maximum stellar radii, present significant challenges in explaining

other observations of massive stars such as the masses of black holes inferred through GW

observations.

Since convection is a three-dimensional process, there are ongoing efforts to model the

behaviour of density inversions in massive stars using multi-dimensional codes (Jiang et al.,

2015, 2017, e.g.,) and develop alternative theories for modelling convection in massive stars
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(Arnett et al., 2018; Schultz et al., 2020). Thus the problem of density inversion in stars

and the associated numerical instabilities in 1D stellar evolution codes, might be resolved

in the near future. Until then, it is important to be aware of these uncertainties, both

physical and numerical, while accounting for the behaviour of massive stars in stellar

populations studies. The results of populations synthesis should be tested using different

models of massive stars.

However, as discussed in Chapter 4, the dependence of most population synthesis codes

on the fitting formulae for modelling single star properties prevents us from achieving this

goal. These fitting formulae have been a popular choice for population synthesis due to

their speed, robustness and ease of use. However, defining these formulae for different set

of tracks is a non-trivial task (Church et al., 2009).

To address this problem, we have developed the Method of Interpolation for Single

Star Evolution (METISSE; Agrawal et al., 2020) as an alternative to the Single Star

Evolution (SSE; Hurley et al., 2000) fitting formulae. It uses interpolation between sets

of pre-computed 1D stellar models to approximate the evolution of stellar parameters for a

population of stars. It is as fast as SSE and can better reproduce stellar tracks computed

using the STARS code compared to SSE. Importantly, the biggest advantage of using

METISSE is the capability to easily switch between different sets of input stellar models,

computed with different physical inputs and even with different 1D evolution codes.

METISSE is therefore well suited for systematic studies dedicated to probing the im-

pact of massive stellar evolution on the properties of stellar populations. We demonstrated

this by comparing stellar models computed with MESA and the Bonn code as input in

METISSE. We find that for stars in the mass range 9–100 M� at one tenth of solar metallic-

ity, the predictions of remnant masses can vary by up to 20 M�, while the maximum radial

expansion achieved by a star can differ by up to 2 000 R� for the two sets of stellar models.

These results are similar to those obtained in Chapter 3, thus validating the usefulness

of METISSE in exploring uncertainties in massive stellar evolution. These differences can

significantly impact the interactions between stars in binary and star cluster environments,

and can have vital implications while accounting for present day observations of compact

object populations.

Since massive stars are commonly found in binaries, and most of them can exchange
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mass with their companion (Sana et al., 2012; Moe & Di Stefano, 2017), it is important to

be able to account for the effects of mass changes in the stellar models. In Chapter 5, we

have updated METISSE to include the implications of additional mass changes, including

mass loss through stellar winds and mass transfer in a binary system, that are not already

present in the underlying detailed stellar evolution models used as input. To do this, we

have used similar assumptions that were used to add the impact of mass changes in SSE.

Using stellar models from Pols et al. (1998) and adding mass loss on top, we find that

METISSE can closely replicate the tracks obtained through SSE fitting formulae at low

mass-loss rates. However, for high mass-loss rates, we find a discrepancy in the evolu-

tionary parameters between METISSE and SSE. We trace the origin of this discrepancy

to be the variation in the radius predictions by METISSE and SSE. We further test our

assumptions for mass-transfer in METISSE using detailed tracks computed without mass

loss in MESA as input. We find METISSE exhibits a similar discrepancy in stellar radius

with detailed tracks computed by MESA using the same mass-loss rates.

To address this discrepancy, we will be modifying our assumptions for modelling mass

changes in METISSE in the future. For now, we have used METISSE to study the

impact of differences in the radial expansion on a massive, wide binary system of stars.

Such systems are similar to the progenitors proposed for double neutron star (Vigna-

Gómez et al., 2018; Chattopadhyay et al., 2020) and neutron star-black hole binaries

(Chattopadhyay et al., 2021; Broekgaarden et al., 2021). For this purpose, we integrated

METISSE in the binary stellar evolution code, BSE (Hurley et al., 2002). Using METISSE

in BSE with Pols et al. (1998) models as input, we compared the evolution of a binary

with initial masses 25 M� and 15 M� using SSE in BSE, at a metallicity Z = 10−2 in

a circular orbit with an initial orbital period of 1800 days. Both SSE and METISSE

predict similar evolutionary pathways for the binary system and even the same end state:

a disrupted system of a black hole and a neutron star. However, due to differences in

the radial evolution of the 25 M� primary between SSE and METISSE, SSE predicts that

the primary fills its Roche lobe during core helium burning and is able to transfer more

mass to the secondary compared to METISSE, whereas METISSE predicts that Roche-

lobe overflow occurs only in the final 104 years of the primary’s evolution, long after the

primary has finished burning helium in the core, leading to less mass transfer and hence
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the formation of a less massive neutron star compared to SSE.

We have thus demonstrated how differences in the predictions of stellar parameters

can impact the interaction of a star with its companion. As shown in Chapters 2–4,

the differences in radius prediction between models of massive stars can be greater than

1 000 R�, which in turn can have significant consequences on predicting the evolution of

massive binaries.

6.2 Future prospects

In this thesis we have developed a framework for exploring the contribution of massive

stars in populations synthesis studies. This framework can be applied to study a variety of

astrophysical problems such as the phenomenon of multiple stellar populations in globular

clusters and the origin of gravitational waves that have been described in the Introduction

(Chapter 1). We list three of several possible future avenues for research following up on

the work presented in this thesis.

1. Multiple studies have shown that rotation and magnetic fields in massive stars can

have a substantial effect on their evolution by modifying the mass-loss rates and

surface abundances (Maeder & Meynet, 2010; Walder et al., 2012; Keszthelyi et al.,

2019). These magnetic fields can also have a significant effect on the sub-surface

convection regions and numerical instabilities in massive stars (Jiang et al., 2018).

Recently, they have been invoked to explain properties of compact stellar remnants

including the formation of massive black holes detected in gravitational wave obser-

vations (Petit et al., 2017; Groh et al., 2020).

Thus one avenue of future research will be to investigate the role of rotation and

magnetic fields in modifying the properties of massive stars. The goal will be to

develop comprehensive grids of stellar models using MESA accounting for the effect

of rotation and magnetic fields. This will involve testing the existing methods of

modelling rotation and magnetic fields in MESA, and implementing new methods

based on the latest simulations (e.g., Takahashi & Langer, 2021).

These updated stellar models will have applications in many fields, including super-

nova studies and the study of massive binaries to predict the properties of compact
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binary mergers leading to gravitational wave emission. Moreover, METISSE pro-

vides enough flexibility that when new stellar models are ready in the future, it will

be straightforward to use them in the population synthesis codes.

2. We plan on continuing to develop the binary mass transfer capabilities of METISSE.

Binary mass transfer can result in dramatic differences in not only the surface prop-

erties but also the structure of the star. For example, it can affect the structure of

the core and the burning shells (Renzo et al., 2017; Laplace et al., 2021). This in

turn can have important consequences for determining the outcome of evolutionary

processes such as supernovae or common envelope evolution.

Moreover, improvements in modelling capabilities have seen a rise in the studies

dedicated to exploring the connection between the surface features of stars with

their structural properties (Farrell et al., 2021a). Results from these studies can

once again be incorporated in METISSE to improve modelling of the change in

structure with mass transfer processes in binaries.

Thus we will be revisiting the assumptions underpinning mass transfer in METISSE

to better mimic the detailed evolution of binary systems. METISSE has been care-

fully designed to allow easy integration of updates such as these without affecting the

working of the overlying population synthesis code. This will also be extremely useful

for extending other capabilities of METISSE such as those outlined in Chapter 4.

3. Despite its advantages, using interpolation to compute stellar parameters is still

an approximate method. With the advent of modern computing facilities, codes

similar to METISSE that rely on this method for population synthesis purposes

have become increasingly popular. While all of them work on the same underlying

principle – interpolating between a table of stellar parameters at each point in the

simulation – the details of the interpolation scheme and the method for sampling

within the tracks used by each code can be quite different. This can lead to disparities

in the evolutionary properties predicted by each code. Thus, a detailed comparison

of METISSE with other state of the art interpolation based codes such as SEVN

(Spera, Mapelli, & Bressan, 2015; Spera & Mapelli, 2017) and ComBinE (Kruckow

et al., 2018) will be an important part of future work. This comparison will assist in
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the identification and, where possible, mitigation of any systematic biases inherent

to METISSE.

4. Different population synthesis codes focus on different aspects of stellar populations

but stellar evolution is inherently basic to all of them. It is therefore important to

determine and characterise the uncertainties resulting from the evolution of single

stars.

We plan to integrate METISSE with a range of population synthesis codes and test

the predictions of different stellar models for populations of stars. This will include

binary population synthesis codes such as COMPAS (Stevenson et al., 2017; Vigna-

Gómez et al., 2018; Riley et al., 2021), COSMIC (Breivik et al., 2020), as well as

globular cluster modelling codes such as N BODY6 (Aarseth, 2003).

The integration of METISSE with binary population synthesis codes will allow a

range of up-to-date stellar evolution models to be used, providing better theoretical

constraints on uncertain parameters in binary evolution such as mass transfer, com-

mon envelope evolution and compact binary mergers. The integration of METISSE

with N -body codes, on the other hand, will bring entirely new capabilities to these

studies, including the ability to self-consistently vary stellar mass-loss rates and mix-

ing parameters. It will allow us to probe how uncertainties in stellar evolution can

impact stars in dynamical systems.

Upcoming observing runs with the current gravitational wave detectors aLIGO and

VIRGO, accompanied by the recent addition of KAGRA (Abbott et al., 2018b;

Kagra Collaboration et al., 2019), are expected to significantly increase the number of

future gravitational wave detections. The use of METISSE with different population

synthesis codes will enable us to constrain the formation channels of compact isolated

binaries versus those in globular clusters as progenitors of gravitational waves. Its

flexibility should be particularly useful in explaining exotic gravitational wave events

such as the detection of black holes in the pair instability mass gap (GW190521;

Abbott et al., 2020).

Finally, METISSE allows for the easy calculation of various additional stellar param-

eters including the surface abundances of stars. With some effort, we can apply this
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information to approximate changes in the surface abundances of the stars while

using METISSE to model the evolution of binaries (similar to, e.g., Izzard et al.,

2004). This will be useful in tracing the evolution of different elements in stellar

populations, and aid the study of the origin of multiple stellar populations in differ-

ent star clusters. Understanding how these populations could have formed can have

far-reaching consequences. It can shed light on the formation and the early evolution

of globular clusters and their role in the evolution of the galaxies.
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differens instruments (Catalog of nebulas and star clusters, that one discovers among

the fixed stars on the horizon of Paris; observed at the Naval Observatory, with various

instruments), https://www.biodiversitylibrary.org/bibliography/4004

https://ui.adsabs.harvard.edu/abs/2010NewAR..54...32M
https://ui.adsabs.harvard.edu/abs/2010ApJ...718.1378M
https://ui.adsabs.harvard.edu/abs/2015A&A...573A..89M
http://adsabs.harvard.edu/abs/2016MNRAS.458.2634M
http://adsabs.harvard.edu/abs/2016MNRAS.459.3432M
https://ui.adsabs.harvard.edu/abs/2020ApJ...888...76M
https://ui.adsabs.harvard.edu/abs/2021MNRAS.505..339M
http://adsabs.harvard.edu/abs/2016A%26A...588A..50M
https://ui.adsabs.harvard.edu/abs/2009MNRAS.395..719M
https://ui.adsabs.harvard.edu/abs/2015MNRAS.450..815M
https://ui.adsabs.harvard.edu/abs/2013A&A...560A..16M
https://ui.adsabs.harvard.edu/abs/2021MNRAS.505.2548M
https://ui.adsabs.harvard.edu/abs/2019PASP..131a6001M
https://ui.adsabs.harvard.edu/abs/2017RSPTA.37570025M
https://ui.adsabs.harvard.edu/abs/2014tmt..confE..61M
https://ui.adsabs.harvard.edu/abs/2021MNRAS.507..834M
https://www.biodiversitylibrary.org/item/87344


176 Bibliography
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Öpik, E. 1924, Publications of the Tartu Astrofizica Observatory, 25, 1

Osborn, W. 1971, The Observatory, 91, 223

Owocki, S. P. 2015, Instabilities in the Envelopes and Winds of Very Massive Stars, Vol.

412 (Springer International Publishing), 113

Owocki, S. P., Gayley, K. G., & Shaviv, N. J. 2004, ApJ, 616, 525
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A
Extra details on the METISSE methodology

A.1 Z-parameters and mass cutoffs

Searching within the set of stellar tracks to find neighbouring mass tracks for interpolation

may seem straight forward but there is a catch to it. The tracks of neighbouring masses

are usually similar in properties but certain features occur only in a range of masses and

not in others. Interpolation between these can result in incorrect tracks.

Hence, we define five critical masses similar to those defined by Pols et al. (1998).

These critical masses or Z-parameters are fixed for a given metallicity, and serve as the

lower limits above which certain physical properties start to appear for stellar tracks. They

are

• Mhook – Mass above which the hook feature starts to appear on the MS,

• MHeF – Mass above which He ignition occurs non-degenerately in the core,

• MFGB – Mass above which He ignition occurs on the HG,

• Mup – Mass above which off-centre C/O ignition can occur non-degenerately in the

core and

• Mec – Mass above which a star avoids electron captures on neon and proceeds to form

an iron core.

Some Z-parameters correspond to the behaviour of core properties and are useful to

determine the type of remnant a star will become. The locations at which these critical
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masses occur in the set are stored as an array of mass cutoffs. For any input mass, only

tracks whose initial masses are located within the mass cutoffs are used for the interpolation

in mass. If the input mass falls between a critical mass and the initial mass of the next

track then its track is extrapolated from the higher mass tracks.

Use of these critical masses not only helps avoid interpolation between dissimilar tracks

but also narrows down the range to search for the nearest mass track, thus saving compu-

tation time. Z-parameters and mass cutoffs are automatically located by METISSE for

any input set of stellar models. If the automatic location method fails to provide a correct

value, then METISSE has the option of using Z-parameters supplied by the user.

A.2 Stellar remnants

In METISSE, when the star reaches the end of its nuclear burning life either after the

AGB or by satisfying equation 4.1, it becomes a remnant. The type of remnant formed

depends on whether or not the core of the star is able to ignite carbon, and if the ignition

leads to the formation of an iron core, which can gravitationally collapse in a supernova.

Hence, in METISSE we utilize the corresponding critical mass cutoffs Mup and Mec (as

defined above in Sec. A.1) in the decision-making.

The type and mass of the remnant formed by a star can then be determined by com-

parison of the He core mass of the star at the base of the AGB (Mc,BAGB) to the core

masses at Mup (Mup,core) and Mec (Mec,core) as described below while other properties

(e.g., luminosity and radius) are calculated with SSE formulae (see section 6.2 of Hurley

et al., 2000). The outcomes are as follows,

1. White Dwarf: if the final CO mass of the star is less than the Chandrasekhar mass

(Mch), it can either become a carbon-oxygen white dwarf (CO-WD) if Mc,BAGB < Mup,core

or an oxygen-neon white dwarf (ONe-WD) if Mc,BAGB ≥Mup,core. The mass of the

white dwarf is taken to be the same as the final CO core mass of the star.

2. Neutron Star or Black Hole: if the final CO core mass of a star exceeds Mch,

it is assumed to explode in a supernova. If Mc,BAGB < Mup,core, then the carbon

ignites under degenerate conditions and the star leaves behind no remnant. On the

other hand, if Mc,BAGB ≥Mec,core the star undergoes core-collapse to form either a
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neutron star or black hole. The type and mass of the resulting compact remnant

can be calculated from one of the following prescriptions: (a) Belczynski, Kalogera,

& Bulik (2002) (b) Eldridge & Tout (2004) (c) Belczynski et al. (2008). In between

the two limits the star is assumed to explode as an electron-capture supernova and

form a neutron star of 1.26 M�.

A.3 Calculation of missing phases

With the EEP based format, one can define a limit on the number of data points depending

on how many phases a particular track has. This can be different for stars that undergo

C burning to become a neutron star or a black hole to that of stars that form a white

dwarf. Due to numerical and convergence issues there can be incomplete tracks present

in the input set of models. In such cases, even when a single track used for interpolation

has insufficient data points, the interpolated track is also rendered incomplete.

Hence, in METISSE we check if, after interpolation, the track has a certain minimum

required number of points. By default, this minimum is the TPAGB for low-mass stars

and end of C burning for high-mass stars. Both limits can be changed by the user for

different sets of stellar models. If the track is incomplete, METISSE searches in the input

set (within mass cutoffs) for complete tracks closest to the input mass and interpolates

the remaining track from there. The method works only if there are at least two complete

tracks within the mass cutoff and there are no large mass gaps in the input set.





B
Extra details on the METISSE methodology - Part

II

B.1 Criteria for identifying critical masses

The critical masses described in Section A.1 are identified using the following scheme in

METISSE.

1. Mhook:

For tracks with initial masses up to 3 M�, Mhook is the lowest initial mass of the track

where the maximum of the central temperature between the IAMS (Intermediate age

main sequence, defined as the point where the central hydrogen mass fraction drops

to 0.3) and TAMS EEPs is greater than the central temperature at the TAMS EEP

i.e.,

Tc,max > Tc,TAMS.

2. MHeF:

For tracks with initial masses up to 3 M�, where MHeF is found, the minimum

temperature for core helium burning is about 100 million Kelvin. In stars that

undergo the helium flash, a slight expansion of the core following the flash causes

the central temperature to decrease a little before increasing again with stable helium

burning.
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Thus, we identify MHeF as the initial mass of the least massive track whose central

temperature from the cHeI EEP to the TAcHeB EEP exceeds 25 million Kelvin at

all times, or,

log10(Tc,min) > 7.4.

3. MFGB:

MFGB is found in tracks with initial masses less than 20 M� and can be easily

identified by checking if the effective temperate at the cHeI EEP is greater than

6300 K, or

log10(Teff,cHeI) > 3.8

4. Mup:

Mup is the lowest initial mass of tracks where the absolute fractional change in the

central carbon-oxygen mass fraction exceeds 0.01 at the end of the AGB (TPAGB

EEP), or

∆(Mcarbon +Moxygen)/(Mcarbon +Moxygen) > 0.01

5. Mec:

The criteria for determining Mec in METISSE is the same as the criteria for deter-

mining high-mass stars in Dotter (2016). It is the lowest mass track where either of

the following conditions are satisfied:

(a) If the maximum of the central carbon mass fraction exceeds 0.4 during the

star’s lifetime but depletes to 0.05 by the end of it, i.e.,

Mcarbon,max > 0.4 and, Mcarbon,end < 0.05

(b) If central temperatures can exceed 300 million Kelvin,

log10(Tc,max) > 8.5.
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(c) If the initial mass of the star is more than 10 M�,

Mi ≥ 10 M�.

B.2 Details of Interpolation

To compute the parameters of a star with initial mass Mi and metallicity Zi, at time ti,

the following procedure is adopted in METISSE:

1. The input set of tracks for metallicity Zi is divided into smaller subsets based on

the different mass cutoffs (cf. Section A.1). The first step is to find the neighboring

mass tracks for interpolation within these subsets. This is done by identifying the

lowest critical mass cutoff Mcut(j) greater than Mi.

2. Next we find the track with initial mass Mmin closest to Mi, using a linear search

method within the subset of tracks with initial masses ≤Mcut(j) and > Mcut(j−1).

If the difference between Mmin and Mi is less than a certain tolerance defined by the

user (default is 10−4), then the new track is assigned the same parameters as that

of Mmin and interpolation is not needed.

If Mi is less than the initial mass of the second lowest mass track in the subset, or

greater than the initial mass of the second most massive track, then the new track is

generated using linear interpolation. If Mi is less than the initial mass of the lowest

mass track in the subset then it is linearly extrapolated from the higher mass tracks.

In all other cases, there are four tracks whose initial masses immediately envelop

Mi. If Mmin > Mi, these tracks correspond to the input tracks with initial masses

Mmin−2,Mmin−1,Mmin,Mmin+1. Otherwise, they correspond to the initial masses

Mmin−1,Mmin,Mmin+1,Mmin+2. The new track is then generated using monotonic

interpolation with a piece-wise cubic function (Steffen, 1990).

3. The new track contains a set of stellar parameters obtained through interpolation

in mass between corresponding EEP points in the neighbouring mass tracks. While

METISSE can interpolate in any user-defined set of columns, it compulsorily requires

certain columns as they are used for computing other evolutionary properties of the

star. These columns are: the age, the total mass of the star, the mass of the helium
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core, the mass of the carbon-oxygen core, the logarithm of the total luminosity and

the logarithm of the stellar radius. The logarithm of the effective temperature is

obtained using the black body formula at each time-step. After interpolation stellar

phases are assigned as described in Section 4.3.2.

4. To compute the stellar parameters at ti, a second interpolation occurs within the

mass-interpolated track, using a similar procedure as above. Using a linear search

method, we search for the EEP point corresponding to age tk closest to ti, within

the subset of ages constrained by the key EEPs relevant for the current evolution-

ary phase of the star. For continuity, here both EEPs are included in the subset,

excluding the need for extrapolation. Once neighbouring EEP points are identified,

stellar parameters at ti are obtained by linearly interpolating between tk and tk+1

(if tk < ti) or tk−1 and tk (if tk ≥ ti).



C
Details of MLT++

In MLT++, MESA makes convection efficient by reducing superadiabaticity in the stellar

envelope. In the regions where superadiabaticity is greater than threshold gradT_excess_f1,

it decreases ∇T to make it closer to ∇ad. The fraction of decrease is determined by the

parameter gradT_excess_alpha or α and is calculated based on the value of (cf. equation

38 of Paxton et al., 2013):

λmax ≡ max

(
Lrad

LEdd

)
and βmin ≡ min

(
Pgas

P

)
, (C.1)

For each stellar model, MESA computes α by comparing λmax with the thresholds λ1

and λ2 and βmin with β1 and β2 using the following conditions.

If λmax ≥ λ1 then,

α =



1 βmin ≤ β1

β1 + dβ − βmin

dβ
β1 < βmin < β1 + dβ

0 otherwise

. (C.2)
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If λmax ≥ λ2 then,

α =



1 βmin ≤ βlimit

βlimit + dβ − βmin

dβ
βmin < βlimit + dβ

0 βmin ≥ βlimit + dβ

. (C.3)

If λmax > λ2 − dλ then,

α =



1 βmin ≤ β2

λmax + dλ− λ2

dλ
β2 < βmin < β2 + dβ

0 otherwise

. (C.4)

The net fraction of decrease is determined by a combination of alpha and user defined

gradT_excess_f2 or f2 using the following equation,

αnet = f2 + (1− f2)(1− α). (C.5)

The excess fraction is then subtracted from ∇T, to give reduced ∇T,new as,

∇T,new = αnet ×∇T + (1− αnet)×∇ad. (C.6)

The default values for the different thresholds in the Equations C.2–C.4 are: λ1 = 1.0

and λ2 = 0.5, β1 = 0.35 and β2 = 0.25, dλ = 0.1 and dβ = 0.1. gradT_excess_f1 defaults

to 10−4 while the default value of gradT_excess_f2 or f2 is 10−3. These values can be

redefined by the user.

Equations C.2–C.4 yield a value of α between 0 and 1. The maximum fraction of ∇T

used in calculating ∇T,new is limited to f2 (when α = 1), with smaller f2 implying larger

contribution of ∇ad in the equation C.6 and therefore larger reduction in superadiabaticity.

We tested our models with for different values of f2, λ1 and β1. The HR diagram

for 110 M� stellar model, calculated with the four different combinations of parameters in

MLT++ is shown in Figure C.1. We find that using a small reduction in superadiabaticity
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with f2=10−1 and setting λ1 = 0.6 and β1 = 0.05 helps the stellar models reach completion

timely and without any numerical inaccuracies or difficulty.

3.84.04.24.44.64.8
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Default
λ1 = −1.0
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Figure C.1 Evolutionary tracks of a 110 M� star evolved with four different MLT++
parameter combinations. Apart from the changes indicated in the figure legend, default
values for all other MLT++ parameters have been used. A negative value of λ1 implies that
the maximum reduction in superadiabaticity is applied throughout the track. The tracks
corresponding to the default values of MLT++ and to λ1 = −1.0 are indistinguishable
here and predict unrealistic luminosities.
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