
A QSQL-based Collaboration Framework to Support Automatic Service
Composition and Workflow Execution

Kaijun Ren1,2, Jinjun Chen2, Nong Xiao1, Weimin Zhang1 ,Junqiang Song1

1College of Computer, National University of Defense Technology, Changsha, Hunan 410073，P.R. China
renkaijun@nudt.edu.cn

2Centre for Information Technology Research, Swinburne University of Technology, Melbourne 3122, Australia
jchen@swin.edu.au

Abstract

In high performance computing field such as

climate, biology, we often need to integrate resources
across distributed, heterogeneous, and autonomous
systems to enable e-scientists to solve complex
scientific problems in collaborative way. However,
current resource (service) collaboration methods still
suffer from either low efficiency for automatically
building a composition plan because of the involved
ontology reasoning and manual processing, or lacking
of flexibility for resource’s sharing to support the
execution of such composition plans. In this paper, we
present a QSQL-based collaboration framework to
support automatic service discovery, composition and
execution. Our proposed method has the following two
distinguished characteristics. First, for a given query,
abstract composition plans can be automatically
created basing on QSQL without much ontology
reasoning. Secondly, concrete service instances can be
dynamically bound to abstract service composition
plans at runtime by considering multiple non-
functional factors. Totally, our proposed method will
not only facilitate e-scientists quickly create
composition plans from a large scale of service
repository; but also make resource’s sharing more
flexible.

1. Introduction

In high performance computing field such as
climate, biology, we often need to integrate resources
across distributed, heterogeneous, and autonomous
systems to enable e-scientists to solve complex
scientific problems in collaborative way. However,
current resource (service) collaboration methods still
suffer from either low efficiency for automatically
building a composition plan because of the involved
ontology reasoning and manual processing, or lacking
of the flexibility for resource’s sharing on supporting

the execution of such composition plans. For example,
there exist many different research efforts aimed at
automating service composition. Especially, semantic
service compositions that take semantics of services
into account to automatically solve the discovery and
composition problem, have been an recent active
research field [1, 2, 3, 4, 5]. However, despite the
merits and the importance of semantic information
contained by services, some drawbacks existing in
most semantic-based composition methods have
prevented them moving forward. One drawback is the
low efficiency brought by the direct reasoning
algorithm. For instance, the paper[6] provided a hybrid
match method based on the direct reasoning for OWL-
S[7] described services. The provided examples
contain 582 services, 29 query requests, the average
response time for each query is about 8 seconds when
being simulated in the computer with 2.4G cpu, 1024M
memory. Besides, involving a large number of manual
processing can be regarded as another weakness.
Finally, in high performance computing fields, service
collaboration and sharing still face some other solid
problems. For example, the traditional meteorological
application programs are often bundled with special
hardware resources or platform-dependent, which
mean that these programs are only able to be executed
in specialized grid nodes. As such, even if other grid
nodes are free, the user-selected meteorological
application service can only be responded and
processed by those grid nodes where those special
meteorological programs resided. As a result, grid
resources cannot be shared and collaborated efficiently
and flexibly.

For the above issues, in this paper, we present a
QSQL-based collaboration framework to support
automatic service composition and execution. With this
framework, QSQL (Quick Service Query List) where
the important reasoning relationships among ontology
concepts and the published service information have
been stored can make sure the quick query response
during service discovery. Further, a QSQL- based

The 3rd International Conference on Grid and Pervasive Computing - Workshops

978-0-7695-3177-9/08 $25.00 © 2008 IEEE
DOI 10.1109/GPC.WORKSHOPS.2008.24

87

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on November 5, 2009 at 20:30 from IEEE Xplore. Restrictions apply.

collaboration framework can facilitate e-scientists
quickly and intelligently construct abstract service
workflow. In addition, the detached technologies
between grid service instance and abstract service

function description in this framework can also make
grid resource and service sharing more flexible. Finally,
the experiment demonstrates that our proposed method
is not only feasible, but more efficient and applicable.

 The remainder of this paper is structured as
follows. Section 2 presents the principle for QSQL-
based collaboration framework. Section 3 presents the
simulation and evaluation. Section 4 discusses the
related work. The final section presents the conclusion
and future work.

2. QSQL-based Collaboration Framework

2.1. Framework Description

Figure 1 shows our proposed collaboration
framework. With this framework, when service
providers advertise their services, the produced wsdl
documents will be recorded in a virtual service center.
Especially, these wsdl documents will be departed into

two parts. One part represents service functional
description mainly including inputs/outputs and
operations; and the other part represents concrete
service instances which mainly includes non-function

properties. Service functional description will be
annotated by semantic information such as adding
ontology concepts to their inputs/outputs parameters by
semi-automatic methods[8] (as shown in the middle of
Figure 1). Currently, many semantic tools and methods
have been proposed to help annotate semantic
information to services[5, 9, 10, 11] according to the
semantic similarities[12, 13]. Further, these semantic-
annotated services will be published to QSQL by
service publication algorithm for forming a quick
service index list. The upper right part of Figure 1
shows the dynamically built QSQL (we will discuss
this in section 3). The upper left part of Figure 1 is the
registration center of grid service instances. The main
aim of this center is to make grid resource’s
collaboration more flexible. First, in grid environments,
when service providers advertise their services, these
services will probably be deployed in many grid nodes.
Thus, the same service can be executed in multiple grid
nodes. Therefore, we need an efficient method to

Figure 1. QSQL-based collaboration framework

Domai n Model 1Grid
Node

1

VO：
QoS Information

Service
Deploies

Depl oy
1

Precondi t i on
Ef f ect
WS_Pol i cy
Inf erence

... ...

Grid Service Instance Center

Depl oym

Precondi t i on
Ef f ect
WS_Pol i cy
Inf erence

... . . .

Gr i d
Node

n

VO：
QoS Information

Servi ce
Depl oi es

Depl oy
1

Precondi t i on
Effect
WS_Pol i cy
Inference

Depl oyk

Precondition
Effect
WS_Policy
Inference

... ...

WS1

Virtual Service Center

A

A7

A6A4A3

A2A1

A8

A5

A9

Operation A6

Input A1 B3 . . .
Output B2

. .
. . . .

WS2

Operation B6

Input A1 B3 . . .
Output B2

. .
. . . .

... ...

WSn

Operation A9

Input A1 B3 . . .
Output B2

. .
. . . .

Domai n Model 2

B

B7

B6B4B3

B2B1

B8

B5

B9
Ontology Concept Vertex A

1

Link
Domain

A
A3

Quick Service Query List

Super_l

Sub_l

Sib_l

...

A4 ...

Operat i on
Vectors

WS1

Exa_V
Plg_V
Sib_V

..

INPUT
Vectors WS1

Exa_V
Plg_V
Sib_V

...

WS1

WS1WS7

WS1

Domain Ht t p: //10. 129. 211. 79: 8080
/ont ol ogi es/ Concept s. owl

A ...

A4 ...

... ...

OUTPUT
Vectors

Exa_V
Plg_V
Si b_V

...

WS1

A3 ...

A6 ...

Composing Abstract Service Workflow

WS2

WS7

WS3

WS11

WS8

WS4 WS21

The Choices of Service Instances

node1. WS2

node8. WS7

node2. WS21node7. WS4

node5. WS8

node3. WS11

node4. WS3

88

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on November 5, 2009 at 20:30 from IEEE Xplore. Restrictions apply.

decide which grid node will more suitably execute
user’s requirement. For this aim, in our methods, we
developed and designed grid service instance center
which will offer important information for dynamically
binding concrete service instances to abstract service
model by the scheduling algorithm. The basic working
procedures are as follows. First, all gird nodes, where
concrete service implementations of some abstract
service models in virtual service center have been
deployed in advance, should be registered in this center.
Second, the execution conditions of service instances
such as precondition and effects should be
simultaneously advertised to this center. Third, some
non-functional properties of services such as cost,
contracts should also be bounded to this center with
corresponding service instances. Finally, the dynamic
information of grid nodes including the state of
CPU/MEMORY, running processes, job queue needs
to be updated periodically. Normally, users care more
about whether their needs can be quickly met rather
than which grid nodes will response to their requests.
Therefore, ideal grid systems should be transparent for
users, and our collaboration approach is exactly an
embodiment of such requirements. First of all, as
shown in the right-hand bottom of Figure 1, e-
scientists or users can quickly and intelligently find a
single service or more abstract services as a
combination to form an abstract service workflow by
our provided service discovery algorithm or
composition algorithm from QSQL. Second, the
resource scheduling and service instance selection
algorithm will dynamically determine which grid
nodes to execute the corresponding service instances
by judging the global information such as QoS
information, user-demanded constraints and other
information. The left bottom of Figure 1 shows the
ideas. Consequently, our QSQL-based solution results
in an effective sharing and collaboration of grid
resources and services. In the following sections, we
will give a detail about the building of abstract service
workflow plans and their execution.

2.2. Summary of QSQL

In order to overcome the low discovery efficiency
brought by the traditional semantic service discovery
algorithm based on direct reasoning, we have proposed
a QSQL-based service discovery method in [14]. In
brief, QSQL is an efficient service index list which was
built dynamically when services were published. In
QSQL, the semantic relationships between ontology
concepts and published service models can be recorded
in the special designed data structures basing on graph
storage theory. Such data structures mainly include two
parts. One part is the domain of link which is mainly
used to avoid repeat reasoning when service models to
be published possibly have the same mapped ontology
concepts from those previously published service
models. Another part is the domain of data which is
primarily used to record service information in
corresponding INPUT/OUTPUT data vectors such as
Exact_vector 、 Plugin_vector 、 Sib_vector 、

Grapar_vector 、 Grachd_vector according to their
corresponding semantic relationships. Table 1 gives the
formal definition of all INPUT/OUTPUT vectors in the
domain of data of ontology concepts.

2.3. Creating Abstract Workflow Plan from
QSQL

 QSQL can facilitate e-scientists quickly and
intelligently construct abstract service workflow. The
procedure can be done either in static way or dynamic
way.
Static creation: It takes place during design-time, and
it is provided for skilled users. Skilled users usually
have good knowledge about how to compose service
process to finish a complex task. In our QSQL-based
framework, skilled user only needs to query some
necessary ontology concepts from QSQL. Then, based
on these returned concepts, they can construct an
inputs/outputs flow. Finally, QSQL discovery engine

89

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on November 5, 2009 at 20:30 from IEEE Xplore. Restrictions apply.

will find concrete abstract service models recorded in
QSQL to fill out or replace the corresponding
inputs/outputs flow according to the before and after
the input-output relations. During the whole process,
QSQL discovery engine does not need to do any
reasoning.
Dynamic creation: It is primarily provided for
ordinary users. Usually, it is difficult for these users to
build up workflow service composition by manual way
like static creation. What they need to do is to give the
requirement description. Semantic translator handler
will extract the key information such as output, input
and type. According to the information, the dynamic
discovery model cooperated with QSQL discovery
engine module can build up the abstract process flow
from QSQL by employing a backward chaining
composition algorithm with less much reasoning.
Therefore, the design of dynamic composition is
transparent to users.

2.4. Instance Selection for

Executing Abstract Workflow Plan
When the generated abstract workflow plan is

executed in grid environments, the same abstract
service model can probably be executed in multiple
grid nodes. Therefore, we need an efficient scheduling
algorithm to decide which grid node will be more
suitable for executing such abstract service model. For
this aim, in our methods, we developed and designed
grid service instance center which will offer important
information for the execution of concrete service
instances by schedule algorithm. According to the
afore-mentioned description in QSQL-based
collaboration framework, for each service instance, the
related information such as QoS information should be
registered into the center. Generally, such registration
information can be achieved from the following
sources: service providers, user’s feedback and active
grid execution monitoring. Service providers may
advertise their partial QoS information such as cost,
security. The client side can provide user’s feedback
about their using experience of services such as
reputation, response time. Active grid execution
monitoring cooperates with grid component, which not
only can detect the states of grid node in which the
services deploy such as cpu_capacity,
memory_capacity, availability, the number of running
processes, but can also monitor the states of network
such as connection bandwidth and network traffic
factors. Our collaboration framework provides both the
capturing and the updating mechanisms for QoS
information.

In our information registration model, the registered
information is divided into two categories, namely

obtained information and computed information.
Obtained registered information such as cpu_capcity,
memory_capcity, scalability, availability, cost,
network_bandwith, number_of_processes generally
can be captured directly from grid nodes where service
instances have deployed previously or from the
provider side, or from the network which services
depend on. Obtained QoS information needs to be
updated whenever they change. Computed registration
information is the information which needs to be
computed based on the obtained basic registration
information.

3. Simulation and Evaluation

Presently, we have built a meteorological grid
prototype(http://grid.cma.gov.cn:8080/gridsphere/cmag
), which are running across several province in china.

Based on this prototype, we have finished some
simulation experiments to prove the performance
brought by our collaboration framework. Considering
the current lack of meteorological application services,
the experiment produced 3000 abstract service models
for testing by using the concepts of the six selected
ontology domains[15] as the inputs and outputs of all
service collections. In addition, we also produced 30
queries for each domain. In our experiment, we mainly
finished the comparison and analysis of the
performance between QSQL-based collaboration
method and the traditional collaboration method based
on direct reasoning during service composition.

During discovery of service composition, we
produced 180 queries. For each query and each
discovery method (QSQL, the traditional direct
reasoning, keyword), the response time and the
corresponding discovery results have been recorded.

Table 2 shows the average response time by using

different discovery methods for 180 queries. As we see,
the response time (258ms) by using QSQL-based
collaboration method is the lowest. By comparison, the
response time (9104ms) by using the traditional direct
reasoning collaboration method is the highest. Because
the large number of ontology reasoning was processed
at service publication stage, the discovery algorithm in
QSQL had a quick response to any query request

Table 2. Average response time for each query

Discovery Methods Average Response Time
 for Each Query

QSQL-based
Collaboration 258(ms)

Direct Reasoning
Collaboration 9014(ms)

Keyword-based
Collaboration 273(ms)

90

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on November 5, 2009 at 20:30 from IEEE Xplore. Restrictions apply.

without any reasoning. Therefore, the response time by
using QSQL-based collaboration method is similar to
the time by the keyword-based collaboration method.
Contrarily, the traditional direct reasoning
collaboration method including a great deal of
ontology reasoning during discovery period had a long
response to process any query request, and the
corresponding average response time is even 34 times
more than the response time for QSQL-based
collaboration method. Accordingly, the collaboration
efficiency basing on QSQL has been improved greatly.
Figure 2 shows the response time’s distribution when
the direct reasoning collaboration discovery algorithm
continuously processed 20 queries.

Figure 2. Response time of 20 query requests
continuously processed by direct reasoning-based
collaboration method

 As shown in figure 2, when the direct reasoning
collaboration algorithm continuously processed the
queries, the response time appeared the increase. This
is because when the discovery algorithm continuously
processed the queries, the involved large number of
ontology reasoning produced more instances, which
means they needed more free memory space. However,
the RAM memory was limited in our running
environment, so the garbage collection engine in JVM
had to work to release more memory which cause to
more latency.

4. Related Work

Over the last several years there has been
substantial progress in building grid applications by
composing them from predefined components and web
services. The myGrid project is one of Semantic Grid
projects and aims to provide a problem-solving
workbench for biologists. Taverna is part of the
myGrid project[16], focused on building middleware to
support data intensive experiments in molecular
biology. Taverna has more than a thousand services
that can be used as components in workflows. Triana
provides an elegant and well tested composition tool

and a large toolbox of ready-touse components[17].
For grid application, Triana uses a software layer,
called the grid application prototype, to distribute
subsystems of the workflow graph to remote grid
resources for execution. Kepler takes is based on an
actor oriented model that allows hierarchical modeling
and dataflow semantics[18]. The Kepler tools support a
well designed graphical composition interface that is
very intuitive and easy to use. Chen et. al. [19]outline a
knowledge-based framework which provides advice as
the user constructs a workflow. The system allows the
user to store workflows, hence facilitating reuse.
Cardoso and Sheth [20] propose a framework which
provides assistance to the user by recommending a
service meeting the user’s needs. This is done by
matching the user-specified Service Template (ST)
with the Service Object (SO). Vikas et.al.[21] describe
a two-step methodology for end to end composition of
web services by semantically annotating web service
components, their service creation environment can
then be used to generate potential workflows for
achieving the desired functionality reusing existing
web services. Shalil et.al.[22] propose a dynamic and
adaptive mechanism for automating the construction of
experiment workflows. Verma, K et.al [23]
implemented a scalable infrastructure of Web service
registries for semantic publication and discovery of
services. It is implemented as a P2P network of UDDI
registries. The authors in [24] gave an analysis and
comparison for the present service composition
platforms.

By comparison, our proposed QSQL-based
collaboration framework is a little different from the
above mentioned methods. QSQL can make a large
number of ontology reasoning processed at service
publication stage. Thus we can make sure the quick
query response and high recall and precision rate
without much reasoning during service collaboration
discovery. Further, a QSQL-based collaboration
framework not only can facilitate e-scientists quickly
and intelligently discover services, interact with them
and compose scientific workflows, but also can make
grid resource and service’s sharing more flexible.
Therefore, our proposed method is not only feasible,
but more efficient and applicable.

5. Conclusions and Future Work

In this paper, we have presented a new efficient
QSQL-based collaboration framework to support
automatic service discovery, composition and
execution. Specially, with QSQL (Quick Service
Query List), the large number of ontology reasoning is
processed at service publication stage which enables

91

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on November 5, 2009 at 20:30 from IEEE Xplore. Restrictions apply.

the quick query response in service discovery.
Therefore, our proposed collaboration framework can
not only offer the convenience for e-scientists to
quickly and intelligently discover services, compose
scientific workflows without much reasoning, but also
enable grid resources and services to be shared more
flexible. Our simulation experiment has demonstrated
that our method’s advantages over the traditional
collaboration methods basing on direct reasoning.

In the future, we will focus on making the QSQL-
based collaboration framework work in the prototype
of Chinese Meteorological Application Grid.

6. Acknowledgement

We are very grateful for the foundation support
by the National “973” Research Plan Foundation of
China under Grant No. 2003CB317008 and by
National Nature Science Foundation of China under
Grant No. 60573135, 40505023 and 60736013.

7. References
[1]Brahim Medjahed, A.B., A Multilevel Composability

Model for Semantic Web Services. IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA
ENGINEERING, 2005. 17(7): p. 954-968.

[2]Keita Fujii, T.S., Semantics-Based Dynamic Service
Composition. IEEE Journal on Selected Areas in
Communications, 2005. 23(12): p. 2361-2372.

[3]Ulrich Küster, B.K., Mirco Stern,Michael Klein. DIANE:
An Integrated Approach to Automated Service
Discovery, Matchmaking and Composition. in the 16th
International World Wide Web Conference. May 2007.
Banff, Alberta, Canada: ACM Press.

[4]Danny Gagne, M.S., Scott Bennett,Susan Powers. Using
Data Semantics to Enable Automatic Composition of
Web Services. in 2006 IEEE International Conference on
Services Computing. September 2006. Chicago,USA:
IEEE computer society.

[5]Katia Sycara, M.P., Julien Soudry,Naveen Srinivasan,
Dynamic Discovery and Coordination of Agent-Based
Semantic Web Services. IEEE Internet Computing, 2004.
8(3): p. 66-73.

[6]Matthias Klusch, B.F., Mahboob Khalid,Katia Sycara.
Automated Semantic Web Service Discovery with
OWLS-MX. in the 5th International Joint Conference on
Autonomous Agents and Multiagent Systems. 2006.
Hakodate,Japan: ACM.

[7]David Martin, M.B., Jerry Hobbs,Etc. OWL-S: Semantic
Markup for Web Services. in
http://www.w3.org/Submission/OWL-S. 2004.

[8]Jacek Kopecky, T.V., Carine Bournez ,Joel Farrell
SAWSDL: Semantic Annotations for WSDL and XML
Schema. IEEE Internet Computing, 2007. 11(6): p. 60-
67.

[9]IBM Semantic Tools for Web Services. Available from:
http://www.alphaworks.ibm.com/tech/wssem. Accessed
on Jan 21, 2008.

[10]Radiant:WSDL-S/SAWSDL Annotation Tool. Available
from: http://lsdis.cs.uga.edu/projects/meteor-
s/downloads/index.php?page=1. Accessed on Jan 21,
2008.

[11]The OWL-S Editor. Available from:
http://owlseditor.semwebcentral.org/download.shtml.
Accessed on Jan 21, 2008.

[12]M. Andrea Rodrı´Guez, M.J.E., Determining Semantic
Similarity among Entity Classes from Different
Ontologies. IEEE Transaction on Knowledge and Data
Engineering, 2003. 15(2): p. 442-456.

[13]Jorge Cardoso, A.S., Semantic e-Workflow
Composition. Journal of Intelligent Information Systems,
2003. 21(3): p. 191-225.

[14]Kaijun Ren, J.S., Jinjun Chen, Nong Xiao,Cancan Liu. A
Pre-reasoning based Method for Service Discovery and
Service Instance Selection in Service Grid Environments.
in The 2nd IEEE Asia-Pacific Service Computing
Conference. 2007. Tsukuba Science City,Japan: IEEE.

[15]Selected domain Ontologies
:people+pets.owl,travel.owl,countries.owl,consciousness
1.owl,koala.owl,generations.owl. Available from:
http://protegewiki.stanford.edu/index.php/Protege_ontolo
gy_library. Accessed on Dec 21, 2007.

[16]T. Oinn, M.A., J. Ferris, D. Marvin,and Etc., Taverna: a
tool for the composition and enactment of bioinformatics
workflows. Bioinformatics, 2004. 20(17): p. 3045-3054.

[17]David Churches, G.G., Andrew Harrison, Jason
Maassen, Craig Robinson, Matthew Shields, Ian Taylor,
Ian Wang, Programming scientific and distributed
workflow with Triana services. Concurrency and
Computation: Practice and Experience, 2006. 18(10): p.
1021 - 1037.

[18]Bertram Ludäscher, I.A., Chad Berkley, Dan Higgins,
Efrat Jaeger, Matthew Jones, Edward A. Lee, Jing Tao,
Yang Zhao, Scientific workflow management and the
Kepler system. Concurrency and Computation: Practice
and Experience 2006. 18(10): p. 1039 - 1065.

[19]G. Nadarajan, Y.-H.C.-B., Translating a typical business
process modelling language to a Web Services Ontology
through lightweight mapping. IET Software, 2007. 1(1):
p. 1-17.

[20]Jorge Cardoso, A.P.S., Semantic E-Workflow
Composition. Journal of Intelligent Information Systems,
2003. 21(3): p. 191-225.

[21]Vikas Agarwal, K.D., Neeran Karnik,and Etc. A Service
Creation Environment Based on End to End Composition
of Web Services. in www2005. 2005. Chiba, Japan.:
ACM.

[22]Shalil Majithia, D.W.W., and Etc. Automating scientific
experiments on the semantic grid. in ISWC2004. 2004.

[23]Rohit Aggarwal, K.V., John Miller, William Milnor.
Constraint Driven Web Service Composition in
METEOR-S. in 2004 IEEE International Conference on
Services Computing. September 2004. Shanghai,China:
IEEE computer society.

[24]Zakaria Maamar, D.B., Philippe Thiran, Chirine
Ghedira,Schahram Dustdar, Subramanian Sattanathan,
Towards a context-based multi-type policy approach for
Web services composition. Data and Knowledge
Engineering, 2007. 62(2): p. 327-351.

92

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on November 5, 2009 at 20:30 from IEEE Xplore. Restrictions apply.

