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Abstract

Test suite based automated program repair (which is abbreviated as test suite based APR,
or simply APR) refers to a broad category of techniques that use input test suites to
automatically fix faulty programs. Test suite based APR techniques have been receiving
increasing attention in recent years, and several novel repair methodologies have been
developed that have yielded very promising results. However, APR still faces a number
of challenges, and there is a pressing need to both extend its scope of applicability, and
enhance its repair effectiveness.

This thesis reports on the application of metamorphic testing (MT) concepts to address
some challenging APR problems. A series of formalisations of different aspects of test
suite based APR are introduced, and later used to support the systematic measurements
and evaluations in the thesis. In order to extend the scope of applicability of test suite
based APR techniques, an integration of APR and MT, called APR-MT, is proposed. A
key advantage of APR-MT compared with conventional APR techniques is that it does not
rely on the availability and feasible use of a test oracle, and thus can be applied to repair a
broader range of programs. The problem of how to improve APR repair effectiveness is
also addressed, from two perspectives. Firstly, motivated by the observation that a better
input test suite helps APR techniques to deliver a higher repair effectiveness, a novel input
test suite generation approach is proposed. This approach uses specific information related
to program properties and failures, generating test suites that contain richer information
than those constructed by other approaches, such as random and coverage based. Secondly,
an innovative APR approach drawing on the strengths of MT, MTRepair, is proposed.
MTRepair has several novel aspects, including the use of a metamorphic relation instead
of a test suite as input, a quality based program validation procedure, and an incremental
repair process.

The proposed approaches were implemented into a set of prototype tools, and have
been evaluated using several subject programs from benchmark suites commonly used by
the APR community. These approaches are demonstrated to be not only feasible, but also



iii

effective, and have revealed some important and promising findings: (1) in the application
of APR-MT techniques, instead of complete test oracles, the use of metamorphic rela-
tions (which can be regarded as partial test oracles) does not significantly deteriorate the
repair effectiveness; (2) compared with random and coverage based test suite generation
approaches, the proposed input test suite generation approach is more effective for APR
techniques that semantically synthesise a repair; and (3) the characteristics of MTRepair
do contribute to a higher repair effectiveness.
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Chapter 1

Introduction

1.1 Automated program repair

The writing of correct programs has always been a great challenge, and even mature
commercial software systems are frequently shipped containing both known and unknown
bugs [Jalbert and Weimer, 2008]1 . Bugs can impede a program from delivering expected
functionality, thereby decreasing the quality of the overall software system. It is therefore
essential that program bugs be fixed in order to ensure the software quality.

Bug fixing is the activity aiming at transforming a faulty program into a correct one.
It is a crucial part of program debugging and program maintenance, and has historically
been considered the responsibility of programmers [Arcuri and Yao, 2008; Fry et al.,
2012]. Unfortunately, the manual bug fixing process is not only time-consuming and
complicated, but also can itself be error-prone — faults may propagate from one place
to others within a program [Malik et al., 2009], and inappropriate modifications of a
program may introduce new faults [Stutzke and Smidts, 2001]. Moreover, increases in the
complexity and the number of faults directly lead to increases in the demand for resources,
including financial costs, for fixing them [Britton et al., 2013]. There is, therefore, a great
demand for automated techniques for fixing bugs.

In the past decade, automated program repair techniques have emerged to automatically
repair faulty programs, without any human intervention [Arcuri, 2011; Arcuri and Yao,
2008; Gopinath et al., 2011; Jobstmann et al., 2005; Le Goues et al., 2013, 2015, 2012b;

1 In this thesis, the terms bug, fault and defect are used interchangeably.
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Monperrus, 2014; Pei et al., 2014, 2011; Wei et al., 2010]. This automatic repair process
can significantly reduce costs, especially compared with manual bug fixing, and also targets
to improve the quality of the program under repair (PUR).

A broad category of automated program repair is test suite based automated program

repair [DeMarco et al., 2014; Jeffrey et al., 2009; Kaleeswaran et al., 2014; Kim et al.,
2013; Le Goues et al., 2015, 2012b; Mechtaev et al., 2015, 2016; Nguyen et al., 2013;
Nguyen, 2014; Qi et al., 2014; Weimer et al., 2013, 2009], which takes as input a PUR
and a test suite, and attempts to produce a repair2. A repair is a program variant of the
PUR (candidate program) that can pass all the test cases in the provided input test suite.
Notably, the input test suite acts as a kind of specification for repairing the PUR — it must
contain at least one failing test case, for which the PUR’s output is incorrect; it may also
contain some passing test cases, for which the PUR’s outputs are correct. The failing test
cases provide information about faults in the PUR, and the passing test cases describe the
intended behaviour of the PUR. This thesis focuses only on test suite based automated
program repair, which will be abbreviated as test suite based APR, or simply APR.

Due to the popularity of test suites in both academia and industry, test suite based APR
is attractive and applicable from the practical point of view. Substantial progress has been
made in this area, with various novel approaches having been developed, demonstrating
the potential of APR techniques for repairing programs. ClearView [Perkins et al., 2009],
for example, has been shown to generate repairs that successfully eliminated security
vulnerabilities in seven out of ten defects. GenProg, a prominent test suite based APR
technique, has also successfully repaired 55 out of 105 defects in eight open-source C
programs, with an average cost per repair of only US$7.32 [Le Goues et al., 2012a]. Par
[Kim et al., 2013] has generated repairs for 27 out of 119 real bugs in open-source Java
projects. A random search based APR technique, RSRepair, has been reported to be more
efficient than GenProg in repairing 24 versions of seven real-life programs [Qi et al., 2014];
and SPR, another APR technique, has been demonstrated to be able to generate more
repairs than GenProg [Long and Rinard, 2015].

1.2 Motivation

In spite of the advances in test suite based APR, concerns remain about its scope of

applicability (how many application domains can the APR technique be applied in),
and the repair effectiveness (how effective is the APR technique at repairing programs)

2 In this thesis, the terms repair and patch are used interchangeably.
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[Le Goues et al., 2013, 2012b; Qi et al., 2015; Smith et al., 2015]. Both of these concerns
are critical for the practical application of APR techniques, but, due to the nature of test
suite based APR, both face several limitations [Le Goues et al., 2013; Monperrus, 2014].
There is, therefore, a pressing need to extend the scope of applicability for APR techniques
and to improve its repair effectiveness, and thereby increase the practical benefits of test
suite based APR techniques.

A key factor impacting the scope of applicability of test suite based APR techniques
is the test oracle [Le Goues et al., 2013] — a mechanism to verify the correctness of
any test case’s execution result [Barr et al., 2015; Liu et al., 2014]. Test suite based APR
requires a test oracle: the APR technique has to know the correctness of every execution
of the individual test cases of the input test suite, and thus these APR techniques may
not be applicable in the absence of a test oracle. In other words, the application of test
suite based APR techniques is restricted by the feasibility and availability of a test oracle.
Current test suite based APR techniques assume that there is a set of complete test cases
(both test inputs and test oracles). GenProg [Forrest et al., 2009], for example, applies
an oracle comparator function to check the output of each test input, and JAFF [Arcuri,
2011] checks the execution result of individual test cases against assertions. The majority
of other techniques (such as DirectFix [Mechtaev et al., 2015], NoPOL [DeMarco et al.,
2014], and SemFix [Nguyen et al., 2013]), simply use a set of test cases for which the
outputs are known.

Nevertheless, in many applications, a test oracle may not be available, or may be
available, but too expensive to be applied — a situation known as the test oracle problem
[Barr et al., 2015]. Similar to other software engineering activities such as testing and fault
localization, test suite based APR faces the test oracle problem. Any approach that can

alleviate the test oracle problem in APR will extend the scope of applicability for APR

techniques. This thesis represents the first study to address the test oracle problem in test
suite based APR.

Improving repair effectiveness has been a basic motivation in program repair research,
inspiring the development of innovative repair methods and strategies that support or
improve existing methods [Le Goues et al., 2013; Qi et al., 2015]. Since 2009, test
suite based APR has generated a growing body of research [DeMarco et al., 2014; Kim
et al., 2013; Le Goues et al., 2012b; Mechtaev et al., 2015, 2016; Nguyen et al., 2013;
Nguyen, 2014; Qi et al., 2014; Weimer et al., 2013, 2009]. The majority of these studies
focus on repair methodologies, proposing innovative APR methods for repairing different
types of faults, programs implemented in different languages, and large and complex
programs. Some other studies have proposed strategies to improve existing APR methods,
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or investigated factors affecting the repair effectiveness of existing APR methods: two
strategies have been proposed to improve APR techniques using genetic searches, one for
designing better fitness functions and the other for selecting appropriate representations of
program variants and operators [Fast et al., 2010; Le Goues et al., 2012c]. To enhance the
capability of APR techniques that use a stochastic search based repair process, a strategy
was proposed to leverage historical bug fixes from open source projects to assess the fitness
of candidate programs [Le et al., 2016b]. A controlled experiment was conducted to study
the impact of different fault localization techniques on APR [Assiri and Bieman, 2016].
Another recent empirical study investigated the effectiveness of different synthesis engines
for APR [Le et al., 2016a].

Most importantly, in-depth investigations into the repair results of some existing APR
techniques have revealed that their repair effectiveness is not encouraging because most of
the generated repairs are not correct [Qi et al., 2015], and repairs produced by some APR
techniques tend to overfit to the provided input test suites [Smith et al., 2015]. Therefore,
in spite of the effort already devoted to test suite based APR, more work is still needed to

further advance this field.

1.3 Contributions

The goal of this thesis is to report on extending the scope of applicability as well as enhanc-
ing the repair effectiveness of test suite based APR. Because an APR technique takes a test
suite as input (in addition to the PUR), and its repair process consists of several modules
(such as the module locating faulty statements and the module constructing repairs), both
the characteristics of the input test suite and the performance of these modules may impact
on the scope of applicability and repair effectiveness of the APR technique. Intuitively,
therefore, it should be possible to extend the scope of applicability and achieve a higher
repair effectiveness by improving the input test suite or the methodologies implementing
the repair process.

1.3.1 Formalisation of APR concepts

The repair effectiveness of an APR technique is reflected in its ability to generate repairs

(how likely a PUR can be repaired to pass the entire input test suite), and the quality of

its resulting repairs (how correct the constructed repair is with respect to the entire input
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domain). Although test suite based APR has been intensively studied, there has been little
exploration of systematic approaches for repair effectiveness evaluation, especially with
respect to the quality of the repairs. Furthermore, no study has yet been conducted to
quantify the effectiveness of the input test suite from the perspective of program repair.

In order to develop systematic approaches to evaluate APR techniques and input test
suites, a series of concepts for test suite based APR are formalised. The formalisation
provides systematic approaches for measuring the quality of a repair, and also characterises
the impact of input test suites on APR. Based on these concepts, some evaluation metrics
for APR techniques, and for measuring the effectiveness of input test suites on APR, are
proposed. These formalisations and evaluation metrics form the basis of the investigations
reported in this thesis.

1.3.2 Program repair without the need for a test oracle

To extend the scope of applicability of APR techniques, an approach to alleviate the test
oracle problem of test suite based APR is proposed. The basic idea of the approach involves
integration of metamorphic testing (MT) [Chen et al., 2003, 2011], a testing strategy that
is effective in alleviating the test oracle problem, with test suite based APR. The approach
makes changes to both the input data and some modules of the conventional APR process,
and the resulting integrated technique, called APR-MT, can be applied without reference
to a test oracle. This study makes the following key contributions:

• Framework. A general framework is developed to support the approach, which
describes in detail how to integrate MT with test suite based APR, including how
to handle the input data and how to adjust some of the APR process modules. The
framework can be adapted to a wide range of APR techniques.

• Implementation. The proposed framework is applied to two different APR tech-
niques, GenProg [Le Goues et al., 2012b] and CETI [Nguyen, 2014], resulting in two
APR-MT techniques, GenProg-MT and GenProg-CETI. Because both GenProg-MT
and CETI-MT no longer require a test oracle to repair a program, they can be applied
regardless of whether or not one exists. These two implementations demonstrate the
feasibility of the proposed framework.

• Evaluation. An empirical study is conducted to investigate the effectiveness of
the APR-MT techniques. The experiments compare the repair effectiveness of
GenProg-MT and CETI-MT with that of GenProg and CETI, in terms of the ability
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to repair programs from the IntroClass benchmark suite [Le Goues et al., 2015]. The
empirical results show that the proposed integration is both practically feasible and
effective, and thus successfully extends test suite based APR techniques to a broader
application domain.

1.3.3 A novel approach for constructing effective APR input test suites

APR techniques repair the PUR by referring to the input test suite. Moreover, it is a
common practice for the APR technique to accept a repair if it passes all test cases of
the given input test suite. Obviously, the input test suite therefore has a direct impact on
the repair effectiveness. Intuitively, a good test suite should provide useful information
for the repair of the PUR, hence giving a higher repair effectiveness. Many studies
have expressed a strong desire for better test suites in order to achieve higher repair
effectiveness [Monperrus, 2014; Qi et al., 2015; Smith et al., 2015]; however, to date, there
have been few attempts to design new input test suite generation approaches specifically
for APR.

With the observation that the enhancement of the input test suite will in turn improve

the repair effectiveness of the APR techniques, a novel input test suite generation approach
for APR is proposed. The key contributions are as follows:

• A novel approach for APR test suite generation. A novel input test suite genera-
tion approach for APR, using the concepts of metamorphic relation and metamorphic

failure-causing condition [Chen et al., 2003, 2011], is proposed. In addition to the
information associated with individual test cases of the test suite, the resulting input
test suite contains information related to the satisfaction and violation of the relevant
metamorphic relations. The rationale of this approach is that violated metamorphic
relations provide additional useful information for APR. This is the first instance of
a test suite generation approach purposely designed for APR.

• Empirical evaluation. A series of experiments are conducted to compare the
proposed approach against random and code coverage based test suite generation
approaches. In the experiments, three APR tools (Angelix [Mechtaev et al., 2016],
CETI [Nguyen, 2014], and GenProg [Le Goues et al., 2012b]) are applied to both the
Siemens programs [SIR, 2005] and large scale programs taken from the ManyBugs
benchmark suite [Le Goues et al., 2015]. The empirical results show that the
approach is promising, especially for APR techniques that utilise the input test suite
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for semantically constructing repairs or candidate programs, such as Angelix and
CETI.

• New insights. The experimental results lead to an in-depth analysis of the interplay
between the input test suites and the relevant APR techniques. This provides new
insights for future APR research.

1.3.4 MTRepair: An MT based APR approach

Inspired by the characteristics of MT and its related concepts, a new APR approach is
developed. The key contributions are as follows:

• The design of a novel APR approach. MTRepair, an APR approach built on a
series of concepts related to MT, is proposed. MTRepair accepts a metamorphic
relation and a PUR as input — an input test suite is no longer needed — and its goal
is to generate a repair that can satisfy the given metamorphic relation. To construct a
repair, MTRepair adopts a specific measurement for validating candidate programs
and conducts the repair tasks in an incremental manner.

• Implementation and evaluation. The MTRepair approach is implemented into
a prototype tool, and evaluated using some subject programs from the IntroClass
benchmark suite [Le Goues et al., 2015]. The comparison between MTRepair and
GenProg shows that MTRepair is more effective for repairing the selected subject
programs.

1.4 Organisation

The rest of this thesis is structured as follows.

Chapter 2 introduces some background to the thesis. It first presents the details of test
suite based APR, and then introduces MT, explaining how it is typically conducted. Finally,
the chapter explains the concept of metamorphic failure-causing conditions, and further
illustrates how they can be generated.

Chapter 3 focuses on the formalisation of APR concepts. It first provides formalisations
for repair quality, followed by a systematic approach to measuring and comparing repair
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quality. Based on this, a series of concepts related to APR are formalised. Finally, the
chapter provides a series of formalisations to characterise the APR input test suite, leading
to a systematic approach for measuring the effectiveness of input test suites.

Chapter 4 examines the problem of extending the scope of applicability of APR
techniques by alleviating the test oracle problem. It first presents the framework for
integrating MT with test suite based APR, explaining how to alleviate the test oracle
problem of test suite based APR. Then, it gives the implementation details of two APR-MT
techniques, CETI-MT and GenProg-MT. This chapter presents the empirical studies into
these techniques, and analyses the experimental results. Finally, some important issues
related to the proposed approach are discussed.

Chapter 5 presents a novel approach for constructing effective input test suites specifi-
cally for APR. It first gives a motivating study to reveal the impact of input test suites on
repair effectiveness. The chapter then presents a novel test suite generation approach, and
the experimental results demonstrating the effectiveness of input test suites constructed by
the approach. This is followed by a discussion of the relationship between input test suites
and APR techniques. Finally, this chapter discusses properties of APR input test suites,
and limitations of the proposed test suite generation approach.

Chapter 6 discusses the APR approach MTRepair. It first explains the motivations
behind the design of MTRepair, then presents the MTRepair methodology, including an
overview of the entire repair process and a description of core strategies of MTRepair.
This chapter finally provides implementation details of MTRepair, and reports on its
experimental evaluation.

Chapter 7 summarises the thesis, and discusses possible research directions and topics
for future work.



Chapter 2

Background

This chapter provides the background for the research presented in this thesis. First,
an overview of test suite based automated program repair is presented in Section 2.1,
then, metamorphic testing and metamorphic failure-causing conditions are introduced in
Sections 2.2 and 2.3, respectively.

2.1 Test suite based automated program repair

Test suite based automated program repair (which, in this thesis, will be referred to as test
suite based APR or simply APR) uses the information provided by an input test suite to
repair a program. APR accepts as input a faulty program (which is known as the program

under repair, PUR), and a test suite containing both passing and failing test cases — the
PUR produces correct outputs for individual passing test cases, but incorrect outputs for
failing test cases. APR attempts to fix the PUR by producing a repair — a program variant
of the PUR (candidate program) that can pass all test cases in the input test suite. If such a
program variant can be generated, a repair is said to have been completed with respect to
the input test suite; otherwise, the APR technique is said to have failed to repair the PUR.

To clearly explain the test suite based APR procedure, the program Max (Figure 2.1) is
used as an illustrative example. Max attempts to find the maximum of two input integers,
but it contains a fault at line 1. The procedure for repairing Max is shown in Figure 2.2.
For the given test cases, Max computes correct outputs for test cases t1 and t2, but gives
incorrect output for t3. In this situation, the two passing test cases (t1 and t2) and the failing
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i n t Max ( i n t x , i n t y )
{

1 : i f ( x>=y +10) / * Should be : i f ( x>=y ) . * /
2 : r e t u r n x ;
3 : e l s e
4 : r e t u r n y ;

}

Fig. 2.1 Program Max (with fault)

int Max(int x, int y)
{
1: if(x>=y+10)
2: return x;
3: else
4: return y;
}
The PUR

Passing test cases:
t1 = (12, 1)
t2 = (0, 5)
failing test cases:
t3 = (2, 1)

The input test suite

Program repair
process

int Max(int x, int y)
{
1: if(x>=y+1)
2: return x;
3: else
4: return y;
}

No repair is produced.

A repair :

OR

Fig. 2.2 Illustrative example of test suite based APR

test case (t3) constitute an input test suite for repairing Max. Given the PUR Max and this
input test suite, an APR technique uses its specific repair algorithm to explore a repair: for
example, a possible repair with respect to this input test suite is given in Figure 2.2.

Although different APR techniques may produce different repairs (even if using the
same PUR and input test suite), all repairs pass the entire input test suite. On the other
hand, it is also very likely that a repair may not be delivered. The reason for these
various outcomes is that repairs are determined by several factors, including: the repair
algorithm; the class of faults in the PUR; and the information provided by the input test
suite. Most importantly, (i) test suite based APR requires a test oracle to determine whether
an individual test case of the input test suite passes or fails, and (ii) a repair constructed by

APR may still fail on test cases not included in the input test suite.

Typically, test suite based APR techniques are classified as either generate-and-validate

or semantics-based [Le Goues et al., 2015; Mechtaev et al., 2016]. Generate-and-validate
techniques construct a set of candidate programs, based on which a validation process
determines whether or not a repair exists (e.g., AE [Weimer et al., 2013], ClearView
[Perkins et al., 2009], GenProg [Forrest et al., 2009; Le Goues et al., 2012a,b], JAFF
[Arcuri, 2011], Kali [Qi et al., 2015], PAR [Kim et al., 2013], PACHIKA [Dallmeier et al.,
2009], RSRepair [Qi et al., 2014], and TrpAutoRepair [Qi et al., 2013]). Semantics-based
techniques, on the other hand, encode the input test suite into a formula or constraint that



2.2 Metamorphic testing 11

the expected repair should satisfy, based on which some technique is applied to derive the
repair (e.g., Angelix [Mechtaev et al., 2016], CETI [Nguyen, 2014], DirectFix [Mechtaev
et al., 2015], NoPOL [DeMarco et al., 2014], and SemFix [Nguyen et al., 2013]). These
two classes of APR techniques use very different repair processes, with both strengths and
weaknesses.

2.2 Metamorphic testing

Metamorphic testing (MT) [Chen et al., 1998, 2001, 2003; Liu et al., 2014; Segura et al.,
2016; Zhou et al., 2016] is a property-based software testing approach, the most basic and
important concept of which is the metamorphic relation (MR), which specifies program
properties through a relation among multiple test cases and their outputs. In MT, MRs are
used for generating test cases and for checking test results. MT differs from conventional
testing methods in that instead of focusing on the correctness of each individual output,
it checks the relationships among the inputs and outputs of multiple executions of the
program under test. This means that MT does not require a test oracle, and therefore can

alleviate the test oracle problem [Chen, 2015].

A growing body of research has reported that MT has excellent fault-detection capability
[Chen et al., 2016, 2005; Kuo et al., 2010; Lindvall et al., 2015; Murphy et al., 2009; Núñez
and Hierons, 2015; Segura et al., 2015; Xie et al., 2011; Zhou et al., 2012], including
successfully detecting real-life faults in the Siemens suite [Xie et al., 2013] and two popular
compilers [Le et al., 2014]. Moreover, MT has been applied to test various applications
facing the test oracle problem, including scientific programs [Kanewala and Bieman, 2013],
machine learning algorithms [Xie et al., 2011], heuristic algorithms [Barus et al., 2011],
web services [Chen et al., 2012], model transformations [Jiang et al., 2014], bioinformatics
programs [Chen et al., 2009], and data access systems [Lindvall et al., 2015].

The ShortestPath (SP) program can be used to illustrate how MT works, and also to
demonstrate how MT alleviates the test oracle problem: SP accepts an undirected graph and
two of its vertices as inputs, and then searches through the graph to find the shortest path
from one vertex to another vertex. For example, consider the graph shown in Figure 2.3.
Suppose all edges in this graph have the same length. Although there are several paths from
vertex V1 to V7 (such as ‘V1−V2−V4−V5−V6−V7’ and ‘V1−V2−V3−V4−V5−V6−V7’),
SP will report the shortest path from V1 to V7 as ‘V1−V2−V4−V5−V7’ (the highlighted
path shown in Figure 2.3).
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V1
V3

V2

V4

V5

V6

V7

Fig. 2.3 A shortest path from vertex V1 to vertex V7

Testing SP may face the test oracle problem, because it can be difficult and expensive
to verify whether the shortest path between two selected vertices of a large graph is
correct or not. Nevertheless, SP can be tested using MT by considering a property
related to the SP algorithm: that the length of the shorted path between two vertices
remains unchanged regardless of which vertex is selected as the starting point, that is:
|SP(G, a, b)| = |SP(G, b, a)| (where G is an undirected graph, and a and b are two of
its vertices). This is an MR, and it can be used to construct test cases as well as to check
whether or not the relevant property is satisfied by the target program.

Given an undirected graph G0, consisting of the n vertices v1, ..., vn (n > 1), and assume
the existence of a test case t1 = (G0, vi, v j), where 1≤ i≤ n, 1≤ j ≤ n and i 6= j. Based
on t1, another test case can be constructed according to the MR above: t2 = (G0, v j, vi).
In this case, t1 is referred to as the source test case, and t2 is the follow-up test case. In
MT, source test cases may be constructed by applying some existing test case generation
strategy, but follow-up test cases must be constructed from source test cases according
to the relevant MR. A source test case and its follow-up test case form a metamorphic

test group (MTG) of the relevant MR. For example, mtg1 = (t1, t2) is an MTG for the MR
above. Given a set of source test cases and an MR, a set of MTGs can be constructed and
then used to test a program.

To test program SP using mtg1, MT executes SP with t1 and t2, obtaining their outputs
SP(t1) and SP(t2) (referred to as the source and follow-up outputs, respectively). Then,
instead of verifying the correctness of the individual outputs, MT checks the source and
follow-up test cases and their outputs against the relevant MR — MT checks whether or
not |SP(t1)|= |SP(t2)| holds. If this relationship does not hold, it indicates that SP violates
the above MR, and, therefore, is faulty. In this case, mtg1 is a violating MTG revealing
violation of the MR; otherwise, mtg1 is a non-violating MTG. In general, although it is
possible to confirm that at least one test case of a violating MTG fails, it is not possible to
know exactly which one.

It is important to emphasise that MT can be applied regardless of whether or not a test

oracle exists. In particular, the synergy between MT and a test oracle in some applications
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can deliver specific advantages: previous studies have demonstrated MT’s application
beyond testing, in activities such as proving [Chen et al., 2011], fault localization [Xie
et al., 2011], fault tolerance [Liu et al., 2014], and validation [Zhou et al., 2016]. In this
thesis, MT is applied to test suite based APR, representing the first attempt to explore the
strength of MT in program repair. In the study investigating alleviation of the test oracle
problem of APR, MT is applied without the use of a test oracle (Chapter 4). However, in
the study of the input test suite generation approach (Chapter 5) and the study of repair
methodology (Chapter 6), MT is used with a test oracle.

As already observed, a core task in MT is the identification of MRs, which, when
done, means that the entire MT procedure can be conducted automatically. Unsurprisingly,
the effectiveness of MT is highly associated with the effectiveness of the MRs used, and
an important observation is that the application of diverse MRs can enhance the fault
detection capability of MT [Cao et al., 2013; Liu et al., 2014]. To date, several strategies
for selecting and generating MRs have been proposed [Chen, 2015; Liu et al., 2012; Mayer
and Guderlei, 2006; Zhang et al., 2014]. When applying MT, it is common that several
MRs are identified, and that MTGs from multiple MRs are used. Furthermore, although a
program can be determined to be faulty by any violating MTG, different violating MTGs
(either from the same MR or different MRs) may reveal different failures of a program,
and may thus also provide different information to assist in repairing the program.

2.3 Metamorphic failure-causing condition

The basic motivation of software testing is to reveal program failures. In conventional
testing, program failures are detected with concrete failing test cases. Other than these
concrete failing test cases, it may sometimes be possible to obtain a condition on program
input parameters under which the execution of the program leads to a failure. Similarly, in
MT, in addition to concrete violating MTGs, it may be possible to find characterisations of
MTGs that lead to violations of a specific MR. Such a condition can characterise violating
MTGs and is referred to as a metamorphic failure-causing condition (MFCC).

The concept of MFCCs was first proposed in a study of MR proving [Chen et al., 2011].
An MFCC carries specific information about how any MTG satisfying the MFCC will
violate the relevant MR. In other words, an MFCC characterises a set (finite or infinite) of
MTGs for which the relevant MR is violated. Consequently, MFCCs contain information
about a group of concrete metamorphic test cases, and thus have great potential for program
debugging. MFCCs can be constructed in a number of ways, but in this thesis, the technique
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of semi-proving [Chen et al., 2011] was used. Next, semi-proving is briefly introduced,
after which, the procedure for constructing MFCCs is illustrated.

2.3.1 Semi-proving

Semi-proving [Chen et al., 2011] is an integrated method of program proving, testing and
debugging, based on MRs. It attempts to prove MRs by means of symbolic execution
and constraint solving. While conventional software testing techniques (including MT)
generate concrete failing test cases (such as “a = 2, b = 5” to detect failures in a program
that accepts two input parameters a and b), semi-proving can generate MFCCs that describe
the condition(s) under which an MR will be violated (such as “b = 2a+1”).

For verification, semi-proving takes a program P and a metamorphic relation MR as
input, and verifies P against MR. Although an MR may involve two or more executions
of the program under test, for ease of presentation, assume that MR involves only two
executions of P. The core procedure for verification can thus be outlined as follows:

First, take a source symbolic input vector Is and perform symbolic evaluation of P

using Is: let os
1, os

2, . . . , os
n (n > 0) be the symbolic outputs, and let cs

1, cs
2, . . . , cs

n be their
respective path conditions. Then, by referring to MR, a follow-up symbolic input vector
I f is generated to conduct another symbolic evaluation: let o f

1 , o f
2 , . . . , o f

m (m > 0) be the
relevant symbolic outputs, and c f

1 , c f
2 , . . . , c f

m be their respective path conditions — m

may or may not be equal to n. For each cs
i (i = 1, 2, . . . , n) and each c f

j ( j = 1, 2, . . . , m),
the conjunction of cs

i and c f
j is evaluated: if there is no contradiction, then there must

exist a source execution path under condition cs
i , followed by a follow-up execution path

under condition c f
j . Semi-proving will then check whether the MR is satisfied under this

combination (that is, under the condition given by cs
i ∧ c f

j ). If a violation is detected,
semi-proving will report MFCCs under which the violation will occur. If all possible
combinations of paths are verified and no violation is detected, then the relevant MR is
proven. As a reminder, in situations where the underlying symbolic analysis tool cannot
analyse or generalise all possible paths, semi-proving can still be used as a symbolic testing
technique to verify MRs on a finite number of paths [Chen et al., 2011].
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Path
Max(a, b) Max(b, a)

Path Condition Output Path Condition Output
P1:

cs
1: (a≥ b+10) a c f

1 : (b≥ a+10) b
(1, 2)
P2:

cs
2: (a < b+10) b c f

2 : (b < a+10) a
(3, 4)

Table 2.1 The source and follow-up symbolic evaluation results of Max

2.3.2 Illustration of the MFCC generation

Using the example program Max (Figure 2.1), how semi-proving generates MFCCs will
next be illustrated. If maximum denotes the intended program’s functionality, then one
possible MR is as follows:

MR1: maximum(a, b) = maximum(b, a), where a and b are two valid integers.

To verify Max against MR1, semi-proving uses a source symbolic input Is = (a, b)

and a follow-up symbolic input I f = (b, a) to conduct the source and follow-up symbolic
evaluations, the results of which are shown in Table 2.1.

Next, consider the following four conjunctions: (i) cs
1∧c f

1 ; (ii) cs
1∧c f

2 ; (iii) cs
2∧c f

1 ; and
(iv) cs

2∧ c f
2 . It is found that (i) is a contradiction and, therefore, will not be considered.

Furthermore, (ii) will not be considered because the outputs for cs
1 and c f

2 are both a, which
will not violate MR1. For the same reason, (iii) will not be considered either. Conjunction
(iv) is equivalent to b−10 < a < b+10, which is not a contradiction: semi-proving will
therefore check whether or not MR1 can be violated under this condition. Because the
outputs for cs

2 and c f
2 are b and a, respectively, semi-proving will identify the conjunction

“b−10 < a < b+10∧b 6= a” (which is equivalent to “b−10 < a < b OR b < a < b+10”)
as an MFCC. Any MTG ((a, b),(b, a)) satisfying this MFCC (such as a = 1, b = 2) will
cause a violation of MR1, that is, cause Max(a, b) 6= Max(b, a), and hence reveal a fault.

It should be noted that semi-proving may construct multiple MFCCs for a given program
and MR. These MFCCs, although related to the same MR, involve different source and
follow-up executions, and thus may capture different information about the violation of the
MR. Furthermore, if more than one MR is used, MFCCs from different MRs can express
information related to the violations of different MRs.



Chapter 3

Formalisations

This chapter formalises a series of APR concepts which will be used to enable systematic
evaluation of APR techniques and input test suites. First, some fundamental repair quality
concepts are formalised, followed by some key concepts in test suite based APR. This
leads to the creation of evaluation metrics for measuring the repair effectiveness of APR
techniques. Next, formalisations characterising APR input test suites are provided, giving
some evaluation metrics for measuring the effectiveness of input test suites. Finally, the
chapter reviews related work and discusses the advantages of the proposed evaluation
metrics.

3.1 Formalisation of repair quality

When repairing a PUR with respect to a given test suite, a program variant of the PUR is
accepted as a repair if it passes all test cases in the given test suite. Such a program variant
is formally referred to as a plausible repair [Qi et al., 2015]. However, although plausible
repairs pass all test cases in the given test suite, they may still fail on inputs outside of the
given test suite.

Definition 1 (Plausible Repair) Let P be a PUR and T be a test suite. A program variant

of P is a plausible repair for P with respect to T iff it passes all test cases of T .

Obviously, many different plausible repairs may exist for the same P and T . Ideally, a
plausible repair should completely rectify the PUR — it should produce correct outputs for
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i n t isUpward ( i n t in , i n t up , i n t down )
{

1 : i n t b i a s , r ;
2 : i f ( i n )
3 : b i a s = down ; / * Should be : b i a s = up +100 . * /
4 : e l s e
5 : b i a s = up ;
6 : i f ( b i a s >down )
7 : r = 1 ;
8 : e l s e
9 : r = 0 ;
1 0 : r e t u r n r ;

}

Fig. 3.1 Motivating example

all possible inputs to the PUR (the entire PUR input domain) — in which case it is referred
to as a correct repair. In reality, however, such an ideal situation may not always occur,
which raises concerns about the quality of a repair: how correct is a repair with respect to
the entire input domain.

Consider the program isUpward (Figure 3.1), which is taken from a traffic control
avoidance system [Do et al., 2005]. The intended functionality of this program is to check
whether (100× in+up)> down (where in, up, and down are three input parameters, and
in can have a value of either 1 or 0).

Suppose there is a test suite T1 that contains two test cases: one passing (in = 0,up =

300,down = 200), and one failing (in = 1,up = 150,down = 200). With respect to T1, a
plausible repair of program isUpward can be constructed by replacing the statement on
line 3 with “bias = up + 100”, resulting in a correct repair. Other plausible repairs also
exist, such as by replacing line 3 with “bias = 201” (denoted R1), or with “bias = up +
87” (denoted R2). Unlike the correct repair, however, neither R1 nor R2 produces correct
outputs for all elements of the isUpward input domain.

R1 fails when the input satisfies the condition (in = 1)∧ ((201≤ down < up+100)∨
(up+100≤ down < 201)), and R2 fails when (in = 1)∧ (up+87≤ down < up+100).
To reveal the differences between these two repairs in terms of their quality, their failure
regions [Ammann and Knight, 1988], which are the regions formed by their failing inputs,
are analysed. Let Region1 and Region2 denote the failure regions of R1 and R2, respectively
(under the assumption of in = 1). Then Region1 is enclosed by the lines L and L1, and
Region2 is enclosed by the two parallel lines L and L2 (Figure 3.2). Although neither R1

nor R2 is correct, the sizes of their failure regions differ significantly: R2 has far more
correct outputs than R1, and therefore, intuitively can be considered a higher quality repair
than R1.
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down

up

L2: down = up+ 87

L: down = up+ 100

0

L1: down = 201

Region1:

Region2:

Fig. 3.2 The failure regions of two repairs differ dramatically in size

Clearly, the ability to evaluate repair quality in terms of how close a repair is to
the correct program is very desirable, but, to date, little work has been done examining
systematic approaches for such evaluations [Diallo et al., 2015]. In the following, some
concepts related to the quality of a repair are defined. DP denotes the entire input domain
of program P.

Definition 2 (Repair Quality) Let R be a plausible repair of program P. The quality of

R, denoted θ
DP
R , is the ratio of the number of inputs for which R gives correct outputs to

the number of all inputs in DP (i.e., the pass rate of R for DP).

According to Definition 2, a correct repair should pass all possible inputs of a program,
and therefore have a quality score of 1. However, although Definition 2 is intuitively
appealing, the pass rate of an entire input domain may not be easily obtained in practice.
Therefore, instead of attempting to measure the pass rate for the entire input domain,
a more practical approach is to measure the pass rate for a given benchmark test suite,
referred to as an evaluation test suite.

Definition 3 (Repair Quality with Respect to an Evaluation Test Suite) Let R be a plau-

sible repair of program P. For a given evaluation test suite TE , the quality of R with
respect to TE , denoted θ

TE
R , is the ratio of the number of test cases in TE for which R

gives correct outputs to the number of all test cases in TE (i.e., the pass rate of R for TE).

Although Definition 3 is less appealing than Definition 2, it is much more applicable
in practice, and is therefore used when Definition 2 cannot be applied. As observed from
Figure 3.2, according to Definition 2, the repair R2 is of higher quality than the repair
R1, because it fails for far fewer inputs of DisU pward than R1. A problem arises with
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Definition 3, however, when R1 may appear to be of higher quality than R2 with respect
to an arbitrary TE . Consider a TE that consists of inputs in which the value range of
variable up is [73,125]: a simple analysis shows that R1 fails on fewer TE inputs than R2,
and therefore, following Definition 3, would be considered to be of higher quality than
R2. Thus, selection of a suitable evaluation test suite in the application of Definition 3 is
critical: if it is not possible to measure θ

DP
R , then an appropriate TE (such that the relevant

θ
TE
R will be a good estimator for θ

DP
R ) must be identified.

With the above definitions, it is now possible to compare the quality of two repairs.

Definition 4 Let R1 and R2 be two plausible repairs of program P.

(i) R1 and R2 are of equal quality iff θ
DP
R1

= θ
DP
R2

.

(ii) R1 is of higher quality than R2 iff θ
DP
R1

> θ
DP
R2

.

Definition 5 Let R1 and R2 be two plausible repairs of program P, and TE be an evalua-

tion test suite.

(i) R1 and R2 are of equal quality with respect to TE iff θ
TE
R1

= θ
TE
R2

.

(ii) R1 is of higher quality than R2 with respect to TE iff θ
TE
R1

> θ
TE
R2

.

For brevity, θR will be used to refer to θ
DP
R or θ

TE
R when there is no ambiguity.

3.2 Formalisation of test suite based APR

Test suite based APR repairs a program with respect to an input test suite, producing either
a plausible repair (that passes all test cases of the input test suite) or no repair at all. The
repair effectiveness of an APR technique, therefore, is twofold: the capability of generating
repairs (how likely a PUR can be repaired to pass the entire input test suite), and the quality
of the repairs, which has been described in Definitions 2 and 3.

Definition 6 (Repair Context) A repair context is an ordered pair ∆ = <P, A >, where

P is a PUR, and A is an APR technique to be applied to repair P.
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Definition 7 (Repair Process) Let T be an input test suite for a repair context ∆ = <P,

A >. A repair process RP : (∆,T ) 7→ (R or null) is a process where A is applied together

with T to repair P, producing a repair result, which is either a plausible repair R or null

(no plausible repair).

A repair process can be conducted only if T can detect failures for P. A successful

repair process is one yielding a plausible repair; otherwise, it is a failed repair process.
Following the practice of most APR tools (which terminate when a plausible repair is
produced [Le Goues et al., 2012b; Mechtaev et al., 2016; Qi et al., 2014]), in this thesis,
a successful repair process yields one and only one plausible repair. Furthermore, where
there is no ambiguity, the word repair is used to refer to a plausible repair.

Obviously, an APR technique’s ability to generate repairs can be measured by collecting
all its produced plausible repairs. Following other APR studies [Le Goues et al., 2012b;
Nguyen et al., 2013; Qi et al., 2014], the term success rate is used to denote this metric:

Definition 8 (Success Rate) Given an APR technique A and a series of repair contexts

D={∆1,∆2, . . . ,∆n} (n≥ 1), where ∆i = <Pi, A > (1≤ i≤ n, and Pi denotes the ith PUR).

Let T = {T1,T2, . . . ,Tn} be a series of input test suites where the application of Ti to ∆i

corresponds to a repair process RP i (1 ≤ i ≤ n). The success rate of A with respect
to D, denoted SRA , is defined as x

m , where x is the number of resulting plausible repairs,

which is also the number of successful repair processes among {RP1,RP2, . . . ,RPn},
and m (m≤ n) is the number of repair processes conducted.

SRA is in the range [0, 1], and it is possible that the same input test suite may be
applied to repair different PURs (i.e., Ti may be the same as Tj; 1 ≤ i, j ≤ n and i 6= j).
Higher SR values indicate better plausible repair generation capabilities. In addition to the
success rate, an APR technique can also be evaluated according to the quality of all of its
resulting repairs. A preferred APR technique is expected to be effective in terms of both
success rate and repair quality.

3.3 Formalisation of the input test suite

The input test suite plays an important role in test suite based APR: it is the only source of
information (apart from the PUR) to assist the repair process, and it also provides the only
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criterion for determining a plausible repair. Different test suites may contain different test
cases, and thus express different information about the PUR: therefore, the use of different
input test suites may yield different repair results for a given APR technique and PUR.
This means that the input test suite has a direct impact on the repair effectiveness of an
APR technique [Le Goues et al., 2012b; Monperrus, 2014; Nguyen et al., 2013]. Thus, it is
necessary to evaluate the effectiveness of the input test suite from the perspective of APR.

Although many studies have reported the impact of input test suites on repair effective-
ness, to date, none have quantified this impact, nor has any study attempted to measure the
effectiveness of the input test suites. In the following, a series of concepts for characterising
APR input test suites are introduced.

Definition 9 (Applicable Input Test Suite) An input test suite T is applicable to a repair

context ∆ = <P, A > iff RP : (∆,T ) 7→ R.

According to Definition 7 and Definition 9, application of an applicable input test suite
to a repair context yields exactly one plausible repair.

Definition 10 (Applicability of Input Test Suites) Given a series of repair contexts D
= {∆1,∆2, . . . ,∆n} (n ≥ 1), let T = {T1,T2, . . . ,Tn} be a series of input test suites where

the application of Ti to ∆i corresponds to a repair process RP i (1≤ i≤ n). The appli-
cability of T with respect to D, denoted aDT , is defined as x

n , where x is the number of

resulting plausible repairs, which is also the number of successful repair processes among

{RP1,RP2, . . . ,RPn}.

According to this definition, aDT is in the range of [0, 1], and, as with the success rate
(Definition 8), it is possible that Ti may be the same as Tj (1 ≤ i, j ≤ n and i 6= j). The
applicability of a series of input test suites indicates its probability of yielding a plausible
repair, and hence is a fundamental concept for the evaluation of input test suites for APR.
Note that this concept is closely related to that of the success rate (Definition 8) used in
previous studies [Le Goues et al., 2012b; Nguyen et al., 2013; Qi et al., 2014].

Definition 11 Let D be a series of repair contexts, and T1 and T2 be series of input test

suites with applicability aDT1
and aDT2

, respectively.

(i) T1 and T2 are of equal applicability with respect to D iff aDT1
= aDT2

.

(ii) T1 is of higher applicability than T2 with respect to D iff aDT1
> aDT2

.
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For a given series of repair contexts involving the same APR technique, a series of
input test suites with higher applicability is better in terms of assisting the APR technique
to produce plausible repairs. A high applicability score is only one expected characteristic
of good input test suites: it is obvious also necessary to examine the quality of the resulting
repairs.

Definition 12 Given a repair context ∆ = <P, A >, let T1 and T2 be two input test suites

that are both applicable to ∆.

(i) T1 and T2 are of equal effectiveness with respect to ∆ iff the resulting plausible repairs

of T1 and T2 are of equal quality.

(ii) T1 is of higher effectiveness than T2 with respect to ∆ iff the resulting plausible repair

of T1 is of higher quality than that of T2.

To measure the overall effectiveness of input test suites — considering both applicability
and repair quality — a new concept of usefulness is proposed. A repair process, involving
application of an input test suite to a repair context, produces either a plausible repair or
no repair: a plausible repair result affects both the applicability and the repair quality;
but a result with no repair affects only the applicability. Intuitively, “no repair” is the
worst result, and can be interpreted as a dummy repair with a quality score of 0. This
interpretation enables calculation of the average quality score of all results (both plausible
repairs and dummy repairs).

Definition 13 (Usefulness of Input Test Suites) Let D = {∆1,∆2, . . . ,∆n} (n ≥ 1) be a

series of repair contexts, and T = {T1,T2, . . . ,Tn} be a series of input test suites, where

the application of Ti to ∆i yields a repair result Ri (1≤ i≤ n) (which is either a plausible

repair or a dummy repair, null). Let θRi be the quality score of Ri, 1≤ i≤ n (θRi = 0 if Ri

is null). The usefulness of T with respect to D is defined as
(

n
∑

i=1
θRi

)
÷n, which is also

equal to aDT×q when aT > 0, where aDT is the applicability score of T with respect to D,

and q is the mean quality score of all plausible repairs in {R1,R2, . . . ,Rn}.

For the purpose of illustration, suppose the application of 10 input test suites to 10
repair contexts yields 10 repair processes, among which only 6 successful repair processes
respectively produce 6 repairs, with the quality scores of {0.80,0.87,0.90,0.92,0.93,0.90}.
According to Definition 10, the applicability of the set of input test suites (10 input test
suites) is 6

10 = 0.6. Moreover, the average quality of all 6 repairs is 0.89. Therefore,
according to Definition 13, the usefulness of the set of input test suites is 0.6∗0.89 = 0.53.
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3.4 Related work

3.4.1 Repair quality

As explained by Le Goues et al. [2013, 2012b], repair quality is critical to the practical
usefulness of APR techniques, whereas its evaluation has not yet been fully addressed.

While most previous APR studies report on the success rates (the percentage of success-
ful repair processes) of the APR tools for the investigated subject programs, many other
metrics have also been used to evaluate the repair quality. Perkins et al. [2009], for example,
tested repairs against designed external hostile attacks. Le Goues et al. [2012b] studied
programs with security defects and evaluated the repair quality with fuzz testing. Assiri
and Bieman [2014] measured the repair quality by calculating the percentage of failed
repairs and the average percentage of failed tests in regression test suites — thus focusing
on the overall quality of a set of repairs. When evaluating the performance of different
APR strategies, Arcuri [2011] used an additional set of 1,000 test cases, independent of the
input test suite used to construct the repair. This evaluation, however, only counted repairs
that had a 100% pass rate — it did not distinguish between repairs with a 99% pass rate and
those with a 1% pass rate. Pei et al. [2014] manually inspected repairs to determine how
many could fix the fault without introducing new ones. Smith et al. [2015] emphasised that
the evaluation of repair quality should be done independently from the repair construction,
and used both black-box and white-box test suites such that when one was used to generate
a repair, the other was used to evaluate the repair quality. Their experimental results show
that multiple factors (including the nature of the input test suite, and characteristics of the
faulty program) affect the repair quality. Quality aspects other than functionality have also
been studied, with Kim et al. [2013], for example, conducting a user study to measure the
acceptability of repairs, and emphasising the importance of developer acceptance. Fry et al.
[2012] also conducted studies examining the maintainability of repairs.

The concept of repair quality in this thesis differs from previous studies in several
aspects. In this chapter, the pass rate for an entire input domain was proposed as a
fundamental metric for repair quality. However, because the pass rate for the entire input
domain may not be obtainable, the pass rate of an evaluation test suite was proposed as a
possible alternative. In such a case, such an evaluation test suite would need to be carefully
designed so that the evaluation result (pass rate) could be representative and statistically
meaningful.
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Diallo et al. [2015] proposed concepts of absolute and relative correctness, where
absolute correctness refers to a program’s correctness with respect to its specification, and
relative correctness involves comparisons amongst multiple programs, and identification of
the one that is “more” correct (with respect to the specification). Their concept of absolute
correctness corresponds to a quality score of 1, according to Definition 2. Checking
the relative correctness between two programs involves comparing two sets of initial
states (which can be represented by the inputs to the program) for each of which the
corresponding program has correct behaviour: if the set for one program is a superset
of that for the other, then the first program is the more correct of the two. Obviously,
if one program is regarded as relatively more correct than another, then it should also
have a higher pass rate, with respect to Definition 3. However, according to the relative
correctness definition in Diallo et al. [2015], one program may not necessarily be more
correct than another, even if it has a higher pass rate according to Definition 2 — this will
happen when the set of passing test cases for the program with the higher pass rate does not
include those for the other program. Because of this, the relative correctness in Diallo et al.
[2015] is a special instance of the definitions of repair quality in this thesis (Definitions
2 and 3). Furthermore, their concept of relative correctness requires the comparison of
at least two programs, but the repair quality concept in this thesis does not have such a
constraint.

3.4.2 The APR input test suite

The importance of the input test suite for APR has been well recognised by researchers.
Le Goues et al. [2012b] have pointed out that the input test suite’s size and scope directly
impact on the repair quality, and that too many test cases may impede running time as
most of the repair cost is related to the validation of the candidate programs using the test
suite. Nguyen et al. [2013] reported that the success rate of APR tools decreases when
the number of test cases of the input test suite increases, and that repairs generated with a
small number of test cases may not be valid for other test cases. Furthermore, Monperrus
[2014] emphasised the need for assessing the test suite effectiveness, and argued that: “if
the research community is able to characterise what a good test suite is, we can simply
clarify the [APR] problem statement as follows, ‘given a good and trustable test suite,
generate a patch that makes the test suite passing (on page 238).’ ”

Further analyses and experimental studies have revealed some useful characteristics
of good input test suites. Assiri and Bieman [2014] analysed the effectiveness of three
different types of test suites for operator repair, and found that the branch coverage criterion
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had a positive impact on the repair quality. Smith et al. [2015] experimented with two APR
tools and found that the repair quality was proportional to the coverage of the test suite
used for the repair. They also pointed out that more characteristics of input test suites for
APR should be further investigated.

This chapter contributes to a better understanding of the nature of good test suites for
APR, and also provides a systematic approach to measure the effectiveness of APR input
test suites.



Chapter 4

Program repair without the need for a
test oracle

This chapter presents an approach to extending the scope of test suite based APR. As
explained in Section 1.2 of Chapter 1, current APR techniques assume the existence
of a test oracle, and thus may not be applicable in situations where a test oracle is not
available. To enable application of APR in the absence of a test oracle, this chapter explains
how to integrate MT with conventional APR techniques. The chapter first proposes a
general framework for supporting the integration of MT and APR, and then demonstrates
the feasibility of the integration through two implementations involving two different
APR techniques. Finally, the effectiveness of the integrated techniques is empirically
investigated, with detailed experimental results and analyses presented.

4.1 Preliminary

A test oracle is a mechanism that can verify the correctness of any test case’s execution
result [Barr et al., 2015; Liu et al., 2014]. In practice, when a test oracle is not available,
or is available, but is too expensive to be applied, the situation is known as the test oracle
problem [Barr et al., 2015]. The test oracle problem is generally regarded as a fundamental
challenge in software testing, and has restricted the degree of automation and applicability
of many software testing methods.
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As with software testing, test suite based APR faces the test oracle problem due to its
reliance on the input test suite [Arcuri, 2011; DeMarco et al., 2014; Forrest et al., 2009;
Le Goues et al., 2013; Mechtaev et al., 2015; Nguyen et al., 2013]: during a repair process,
APR needs to know the test result of individual test cases — whether a test case passes or
fails, yielding a correct or incorrect output, respectively. Obviously, the application of test
suite based APR techniques is restricted by the availability and the feasible application of
the test oracle. In other words, alleviating the test oracle problem of APR will extend the
scope of applicability of APR techniques.

MT is a testing method that is effective in alleviating the test oracle problem, and
has been successfully applied to various application domains [Chan et al., 2005; Chen
et al., 2009; Xie et al., 2011]. Integration of MT with test suite based APR should
support the application of APR techniques in the presence of the test oracle problem, and
thereby extend their scope of applicability. This chapter focuses on the following research
questions.

RQ1 : How can MT be integrated with APR?

RQ2 : How effectively can MT-based APR techniques repair programs?

The rest of this chapter presents an integration framework and two implementations
(Section 4.2) to answer RQ1, followed by an empirical study (Section 4.3) and experimental
analysis (Section 4.4) to answer RQ2.

4.2 Test suite based APR in the absence of a test oracle

This section addresses the first research question, describing the proposal for alleviating the
test oracle problem of test suite based APR. First, a framework to support the integration
of MT and test suite based APR, is proposed, then two implementations of the framework
are presented by incorporating MT into two APR techniques — the generate-and-validate

technique GenProg and the semantics-based technique CETI.
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Conventional APR techniques APR-MT techniques
Inputs (1) A faulty program;

(2) A test suite with at least one
failing test case.

(1) A faulty program;
(2) A set of MTGs with at least one
violating MTG.

Repair
process

Utilising information provided by
the input test suite.

Utilising information provided by
the set of MTGs.

Output (1) A repair passing the input test
suite or (2) null.

(1) A repair satisfying the set of
MTGs or (2) null.

Table 4.1 Correspondence between conventional APR and APR-MT techniques

4.2.1 Framework

In test suite based APR, the input test suite acts as a kind of specification for repairing a
PUR, and has two essential characteristics:

• The test outcome of each individual test cases is known.

• There is at least one failing test case in the test suite.

In the integration of MT and APR, the key step is to use a set of MTGs (the detail of
which is introduced in Section 2.2 of Chapter 2) as a substitute for a set of test cases. The
term APR-MT is used to refer to the integrated APR technique, and the integration is based
on the following correspondences between conventional APR and APR-MT.

• A test case in the conventional APR corresponds to an MTG in APR-MT.

• A test outcome of pass or fail in the conventional APR corresponds to an MTG’s
test outcome of satisfaction or violation.

In order to apply MT to test suite based APR, conventional APR techniques need to be
adjusted accordingly. Table 4.1 summarises the correspondences between conventional
APR and APR-MT, based on which, APR-MT can follow the same repair procedures
as conventional APR. The two groups of APR techniques use different information for
guiding their repair processes, and different criteria for selecting the resulting repair. Most
importantly, because APR-MT techniques verify the relationship among multiple test
cases rather than the correctness of individual outputs, a test oracle is no longer required:
APR-MT can be applied to repair a program facing the test oracle problem, and thus can
be applied to a broader range of programs.
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4.2.2 Implementations

To demonstrate the feasibility of the proposed integration framework, it was applied to
some APR techniques. As explained in Section 2.1 of Chapter 2, there are basically two
categories of APR techniques: generate-and-validate and semantics-based. Based on these
two categories, two APR-MT techniques, GenProg-MT and CETI-MT, were developed (by
integrating MT with the generate-and-validate technique GenProg and the semantics-based
technique CETI, respectively). This section presents these two APR-MT techniques, first
introducing the original APR technique, and then describing the implementation details of
the resulting APR-MT technique.

GenProg-MT

GenProg [Forrest et al., 2009; Le Goues et al., 2012a,b] is a typical generate-and-validate

APR technique that has shown promising repair results, and been used as a comparison
baseline in many APR studies [Kim et al., 2013; Nguyen et al., 2013; Qi et al., 2014; Smith
et al., 2015; Tan and Roychoudhury, 2015]. GenProg uses a genetic algorithm to repair a
program. The algorithm first creates an initial set of candidate programs (program variants
of the PUR), then, in each subsequent generation, the candidate programs are generated
using the crossover operator and mutation operator. Using the input test suite, GenProg
evaluates the fitness of each candidate program such that those with higher fitness are
more likely to proceed to the next generation. GenProg iterates this procedure, terminating
when either a candidate program that passes the entire input test suite is obtained (i.e., a
plausible repair is obtained), or a predefined maximum number of generations have been
searched (in which case no repair is reported).

During a GenProg repair process, the following two activities typically require a test
oracle:

(1) Localisation of faulty statements. When generating candidate programs, GenProg
operates on likely faulty statements. In order to select which statement to modify, GenProg
constructs a weighted path, which is a sequence of statements and their associated weight —
a statement’s weight is measured based on its coverage information of passing and failing
test cases from the input test suite. Obviously, during this procedure, identifying a test case
as passing or failing requires a test oracle.
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Execution of
violating MTGs

Execution of non-
violating MTGs

Validating C by
MT with U

Does C
satisfy U?

All programs
are validated?

Generating next generation
of candidate programs

Assigning weights to
statements

Constructing the initial set
of candidate programs

coverage information
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N
N

Program P , an MTG set U
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Validation

Fitness
Function

Return
C

no. of violating MTGs satisfied by C
no. of non-violating MTGs satisfied by C

Selecting an unprocessed
candidate program C

Fig. 4.1 The GenProg-MT approach

(2) Validation of candidate programs. Each generated candidate program is validated for
two purposes: to examine whether or not it is a plausible repair of the program under repair;
and, if not, to determine if it can be passed to the next generation of the repair process. The
first step in the GenProg validation procedure consists of testing candidate programs using
the input test suite and collecting the number of passing and failing test cases for each
candidate. Next, a fitness function, making use of the collected information, calculates
a fitness value for each candidate — candidate programs with higher fitness values are
more likely to be passed to the next generation. At this point, if any candidate program
meets the termination criterion (passing the entire input test suite), then it is reported as a
plausible repair. Clearly, again, evaluation of the fitness requires a test oracle.

GenProg-MT is an implementation of the integration framework applying MT to
GenProg, aiming to automatically repair programs without the need for a test oracle. It
basically imitates GenProg, but with slight adjustments to eliminate reference to the test
oracle.

The GenProg-MT workflow is shown in Figure 4.1, where differences between GenProg-
MT and GenProg — in the fault localisation and the candidate program validation — are
highlighted using dashed rectangles. GenProg-MT collects statement coverage information
from the execution of both violating and non-violating MTGs in a manner similar to how
GenProg gathers coverage information from passing and failing test cases. Since each
MTG contains multiple test cases, statements covered by an MTG are those visited by
at least one of its test cases. This coverage information is then used to assign weights to
individual statements. When validating, GenProg-MT applies MT to assess each candidate
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Algorithm 1: The CETI algorithm
Input: the faulty program P, the test suite T .
Output: a repair R passing T or a null indicating the fail of repairing P.

1 ps = /0;
2 sstmts = FaultLocalization(P, T );
3 for i = 1 to length(sstmts) do
4 s = sstmts[i];
5 for tpl ∈ all_tpls do
6 p_stmt = GenParameterizedStmt(s, tpl);
7 r_prog = GenReachabilityInstance(P, p_stmt, T );
8 ps = ps.add(r_prog);
9 end

10 end
11 for c in ps do
12 d = GenTestInputs(c);
13 if d 6= null then
14 R = GenARepair(c, d);
15 return R;
16 end
17 end
18 return null

program by testing it against the input set of MTGs, calculating the number of violating
and non-violating MTGs. This information is then fed into the fitness function to calculate
a fitness value for the candidate program. Accordingly, the GenProg-MT procedure no
longer requires a test oracle, and can thus be applied in situations with the test oracle
problem.

CETI-MT

CETI [Nguyen, 2014] is a semantics-based APR technique that uses knowledge of program
reachability and repair templates to create statements to repair C programs: the process is
outlined in Algorithm 1. Given a faulty program P and a test suite T (containing both test
inputs and test oracles), CETI first applies statistical fault localisation [Jones and Harrold,
2005] to identify a ranked list of statements in descending order of their likelihood of being
faulty (line 2), then iteratively processes the ranked list from top to bottom (lines 3 to 10).

With a suspicious statement s and a selected repair template (e.g., constant template,
operator template, etc.), CETI creates a parameterised statement p_stmt (line 6), where
some parameters without specific values are used. A reachability instance program r_prog

is then constructed from P by replacing s with p_stmt, and by encoding the requirement
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int Max(int x, int y, int uk 0)f
if(x>=y + uk 0)
return x;

else
return y;

g
void main() f

int uk 0;
if(Max(12, 1, uk 0) == 12 &&
Max(0, 5, uk 0) == 5 &&
Max(2, 1, uk 0) == 2 ) f
Location L;

g g

Fig. 4.2 A reachability instance program constructed by CETI with the application of the
constant template

of passing all test cases of T through a precondition for reaching a specific location L in
the program (line 7). Consider, for example, application of the constant template to the
faulty statement of program Max (Figure 2.1 in Section 2.1 of Chapter 2): CETI creates
a parameterised statement ‘if (x >= y + uk_0)’, where the constant 10 is replaced by a
parameter uk_0 (which has an unknown value). Based on this statement and the given
input test suite (Figure 2.2 in Section 2.1 of Chapter 2), CETI constructs the reachability
instance program as shown in Figure 4.2: a function main is created, with the location L

defined to only be reachable when the function Max produces correct outputs for all test
cases of the input test suite with a specified concrete value for uk_0.

CETI further uses the test input generation technique to find values for parameters used
by p_stmt in order to make the location L reachable (line 12). If such parameter values are
available, the application of these values concretises p_stmt and then yields a repair (line
14).

CETI-MT was developed by applying the integration framework to CETI, and accepts
as input a set of MTGs (rather than a set of test cases), whose information is then used
in the repair process. The CETI-MT repair process differs that of CETI in the following
ways:

(1) Using the MTGs to support the fault localisation. CETI-MT uses a non-violating
(or violating) MTG to locate likely faulty statements in the same way that CETI uses a
passing (or failing) test case. Moreover, the MTG coverage information is collected in the
same way as with GenProg-MT: the accumulated coverage information of test cases for an
individual MTG is collected.



4.3 Experimental setup 33

int Max(int x, int y, int uk 0)f
if(x>=y + uk 0)
return x;

else
return y;

g
int MR1Checker(int a, int b) f

if(a == b)
return 1;

else
return 0;

g
int main(int argc, char ** argv) f

int uk 0;
if(MR1Checker(Max(12, 1, uk 0), Max(1, 12, uk 0)) == 1 &&

MR1Checker(Max(0, 5, uk 0), Max(5, 0, uk 0)) == 1 &&
MR1Checker(Max(2, 1, uk 0), Max(1, 2, uk 0)) == 1 ) f
Location L;

g g

Fig. 4.3 A reachability instance program constructed by CETI-MT applying the constant
template

(2) Using the set of MTGs and relevant MR to construct the reachability instance program.
To produce a repair satisfying the input set of MTGs, CETI-MT constructs the reachability
instance program using the input MTGs and the relevant MR: to achieve this, the location L

in a reachability instance program is defined to only be reachable when the MR is satisfied
by all input MTGs.

To illustrate the differences between reachability instance programs created by CETI
and by CETI-MT, the program created by CETI-MT for program Max is presented in
Figure 4.3, where the same template is applied as was in Figure 4.2, and the metamorphic
relation MR1 (as defined in Section 2.3.2 of Chapter 2) is used. Comparing the two
programs, the first difference is that in addition to the function main, another function
MR1Checker is also created by CETI-MT: MR1Checker verifies the satisfaction of MR1

against every element of the input MTG set. Another difference between the two programs
lies in the main function itself: in Figure 4.3, the location L is defined to be reachable only
when all input MTGs satisfy MR1. With these modifications, CETI-MT can be applied
without any reference to a test oracle.

4.3 Experimental setup

Having demonstrated the feasibility of integrating MT with APR in the previous section,
the next issue is the repair effectiveness of the proposed integration (related to the second
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research question). An empirical analysis was used to answer the second research question,
that is, how effectively the proposed APR-MT technique can repair programs. This
section explains the design of the experiments, including: detailed information about the
subject programs and identified MRs; the construction of the test suites and MTG sets;
the configuration of the APR tools; and the measurements used to evaluate the repair
effectiveness.

4.3.1 Subject programs

A total of 1,143 versions of C programs from the IntroClass benchmark suite [Le Goues
et al., 2015] were used in the empirical study. These program versions were written by
students enrolled in an introductory C programming class. The IntroClass programs were
designed for automated program repair research, and although they are small in size,
this benchmark suite contains many incorrect programs involving various types of faults.
Furthermore, each of the IntroClass programs has accompanying black box and white box
test suites, both purposely designed for describing the behaviour of the target program.
It is therefore appropriate to use them to evaluate factors affecting the performance of
APR techniques, and they have actually been used for performance evaluation in many
studies [Ke et al., 2015; Le et al., 2016a; Oliveira et al., 2016; Smith et al., 2015]. A
summary of the subject programs is given in Table 4.2. For each subject program, two
MRs were identified. The programs and MRs are discussed in detail in the following.

Program checksum

The program checksum takes as input a line of string, namely, “c1...ci...cn” (n≥ 1), where
ci (1≤ i≤ n) represents a character. It first calculates the sum of all input characters, that
is, sum = ((int)c1 + ... + (int)ci + ... + (int)cn), and then outputs a string “Check sum is
X”, where the ASCII value of X is equal to (sum % 64+32) and has a value in the range
[32,95]. For example, if the input string is “AB”, then its output is “Check sum is #”,
because (int)A is 65, (int)B is 66, and (int)# is 35.

Using ts and t f to denote the source and follow-up test inputs, and xs and x f to denote
the ASCII values of character X in the source and follow-up outputs, i.e., (int)X, the
following MRs for checksum were identified:
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Name # versions LOC Description
checksum 69 max: 45 Computing the sum of a string

min: 15
avg: 27

digits 236 max: 190 Listing all digits of an integer
min: 15
avg: 40

grade 268 max: 53 Determining the grade of a score
min: 18
avg.: 29

median 232 max: 62 Computing the median of three integers
min: 13
avg: 24

smallest 177 max: 51 Computing the smallest of four integers
min: 17
avg: 25

syllables 161 max: 58 Counting vowel characters of a string
min: 12
avg: 29

Table 4.2 Subject programs

MR1: If t f is constructed by inserting a character ‘A’ (with ASCII value 65) at the end
of ts, then x f < xs if xs is 95 ((the sum of ts) % 64 = 63); or x f = xs +1, otherwise.

MR2: Suppose that ts contains n characters (n > 0). If t f is constructed by replacing
each character of ts with its successor in the ASCII table, then x f = xs + n % 64 if (xs−32)
+ n % 64 < 64; or x f = xs + n % 64 − 64, otherwise.

Program digits

The program digits accepts an integer N, and outputs every digit in N from the least
significant to the most significant. For example, if N is 1234, digits outputs the list “4, 3, 2,
1”.

Using Ns and N f to denote the source and follow-up test inputs, and arrays Ls and L f

to denote the source and follow-up outputs: for an array L, L.size denotes its number of
elements; L[0] is the first element (storing the least significant digit); and L[L.size - 1] is
the last element (storing the most significant digit). The following MRs were identified for
digits:



4.3 Experimental setup 36

MR1: Suppose that Ns contains n digits (n≥ 2). N f is constructed from Ns such that
N f = Ns / 10n−1, that is, N f becomes of the most significant digit of Ns. Then, L f .size =
Ls.size-(n-1), and L f [0] = Ls[Ls.size -1].

MR2: Suppose that Ns contains n digits (n≥ 2). N f is constructed from Ns such that
N f = |Ns|% 10 (where |.| denotes the absolute value). In this way, N f becomes the least
significant digit of Ns. Then, L f .size < Ls.size, and L f [0] = Ls [0].

Program grade

The inputs of grade are five floating point values, Ab, Bb, Cb, Db, and G, where the first
four represent thresholds for the four different passing academic grade levels ‘A’, ‘B’, ‘C’,
and ‘D’; and G denotes the score of a student. By comparing G with these thresholds,
program grade finally outputs “Student has a X grade” (where X is the symbol of the grade
level that is closest to G among all grade levels that are not greater than G) or “Student
has failed the course” when G < Db. For example, if Ab = 80.0, Bb = 70.0, Cb = 60.0,
Db = 50.0, and G = 73.0, then grade outputs “Student has a B grade”.

Using Gs and G f to denote the score values in the source and follow-up test inputs, and
Xs and X f to denote the output grades for the source and follow-up inputs, respectively, then,
using the same threshold values for both source and follow-up test inputs, the following
MRs were identified for grade:

MR1: Suppose that Gs takes a randomly selected value. If Gs is equal to the value of
one of the given thresholds, then G f is set to Gs−1, which results in X f being exactly one
level lower than Xs. Otherwise, G f is set to Gs−y, where y is a randomly selected positive
value, resulting in X f not being higher than Xs.

MR2: Let Gs have a value smaller than Ab. Two follow-up test inputs are constructed,
G1

f and G2
f , where G1

f takes the value of the grade level that is closest to Gs among all
grade levels that are higher than Gs, and G2

f takes a value from the range [Gs, G1
f ]. As a

result, either: (1) X2
f and Xs are of the same grade, while X2

f is lower than X1
f ; or (2) X2

f

and X1
f are of the same grade, but X2

f is higher than Xs.
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Program median

The program median accepts three integers as inputs, and then outputs their median. Using
ts and t f to denote the source and follow-up test inputs, with tsi (or t fi) representing the ith

(1≤ i≤ 3) integer of the input, and ms and m f to denote the source and follow-up outputs,
the following MRs were identified for median:

MR1: If t f is constructed from ts, such that t fi = tsi + |tsi|, then m f = ms + |ms|.

MR2: If t f is constructed from ts, such that t fi = −tsi , then m f = −ms.

Program smallest

The program smallest takes four integers as inputs, and outputs the smallest amongst them.
Using ts and t f to denote the source and follow-up test inputs, where tsi (t fi) denotes the ith

(1≤ i≤ 4) integer of the input, and xs and x f to denote the source and follow-up outputs,
the following MRs were identified for smallest:

MR1: If a is a randomly selected positive integer, and t f is constructed by adding a to
every integer of ts, then x f = xs +a.

MR2: If t f is constructed from ts, such that t fi =−tsi , then this results in the following
cases:

(1) If all elements of ts are identical, then x f + xs = 0.

(2) If every element of ts is less than or equal to 0, then x f > xs.

(3) In other cases, if xs ≥ 0, then x f < xs; otherwise xs + x f < 0.

Program syllables

The input of syllables is a string (of maximum length 20), and the output is a string “The
number of syllables is N”, where N is the number of vowel characters (‘a’, ‘e’, ‘i’, ‘o’, ‘u’,
and ‘y’) found in the input. For example, if the input string is “abiad”, then the output
is “The number of syllables is 3”. Using ts and t f to denote the source and follow-up test
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Program Tb Tw M1
b M1

w M2
b M2

w
checksum 6 10 6 10 6 10

digits 6 10 5 9 5 9
grade 9 9 9 9 7 7

median 7 6 7 6 7 6
smallest 8 8 8 8 8 8
syllables 6 10 6 10 6 8

Table 4.3 Sizes of test suites and MTG sets

inputs, and ns and n f to denote the values of N in the source and follow-up outputs, the
following MRs were identified for syllables:

MR1: If ts is split into two sub-strings, and each of them becomes a follow-up test case
(t1

f and t2
f ), then n1

f + n2
f = ns.

MR2: If ts contains less than 20 characters, and t f is constructed by randomly inserting
a vowel character into ts, then n f = ns + 1.

4.3.2 APR tools setup

GenProg and GenProg-MT Configurations

Both GenProg and GenProg-MT were used to repair the subject programs. For each subject
program, GenProg used the accompanying black and white box test suites (denoted Tb and
Tw, respectively); and MTG sets for GenProg-MT were prepared as follows:

(1) Mi
b (1≤ i≤ 2) is a set of MTGs for MRi of the target program, constructed using

the black box test cases as source test cases. Because some MRs have restrictions on their
source test cases, only those satisfying the relevant constraints were used, which meant
that it was possible for Mi

b to be smaller than Tb. However, as shown in Table 4.3, the
differences were very small, and thus Mi

b and Tb are said to be of similar sizes.

(2) Mi
w (1≤ i≤ 2) is a set of MTGs for MRi of the target program, constructed using

the white box test cases as source test cases. As can be observed from Table 4.3, Mi
w and

Tw are also of similar sizes.
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The experiments on GenProg and GenProg-MT involved the following pairs of APR
tools and input test suites or MTG sets — with each pairing being referred to as a scenario.

• GP-BTS: GenProg using input test suite Tb.

• GP-WTS: GenProg using input test suite Tw.

• MGP-BTG1: GenProg-MT using input MTG set M1
b .

• MGP-BTG2: GenProg-MT using input MTG set M2
b .

• MGP-WTG1: GenProg-MT using input MTG set M1
w.

• MGP-WTG2: GenProg-MT using input MTG set M2
w.

The first two scenarios (the GenProg scenarios) need a test oracle, but the other four
(the GenProg-MT scenarios) do not.

All of the scenarios were applied to repair faulty versions of the subject programs.
Since the repair processes of both GenProg and GenProg-MT are randomised, it was
necessary to run each tool multiple times for the same faulty program. For these two tools,
the randomisation of their repair processes relates to the value of a setting parameter, a
seed, such that the repair result of a repair process is reproducible when the same seed is
used. Following the approach taken in previous GenProg studies [Le Goues et al., 2015,
2012b; Qi et al., 2014], ten seed values were used in these experiments: for a given faulty
program, each scenario was applied to repair it ten times using these different seeds. The
values for the other parameters of GenProg and GenProg-MT were set to be the same as
those in the study by Le Goues et al. [2015]. All experiments were conducted on a 32-bit
Ubuntu 10.04 machine.

CETI and CETI-MT Configurations

CETI and CETI-MT were configured in a similar way to GenProg and GenProg-MT: Tb

and Tw were passed to CETI but the corresponding MTG sets were used by CETI-MT.
Thus, the experiments on CETI and CETI-MT involved the following scenarios.

• CE-BTS: CETI using input test suite Tb.

• CE-WTS: CETI using input test suite Tw.
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• MCE-BTG1: CETI-MT using input MTG set M1
b .

• MCE-BTG2: CETI-MT using input MTG set M2
b .

• MCE-WTG1: CETI-MT using input MTG set M1
w.

• MCE-WTG2: CETI-MT using input MTG set M2
w.

Because both CETI and CETI-MT use deterministic repair processes, application of
any of the above scenarios to a program involves only one execution of the relevant tool.
Moreover, parameters of CETI and CETI-MT were configured the same for repairing each
individual subject programs.

4.3.3 Measurements

According to the examination of evaluation metrics for APR techniques (Section 3.2 of
Chapter 3), the effectiveness of an APR tool should be measured by the success rate and
repair quality.

• Success rate: The success rate measures the APR technique’s ability to generate
repairs, as described in Definition 8 (Section 3.2 of Chapter 3), and has been applied
in many other APR studies [Le Goues et al., 2012b; Mechtaev et al., 2016; Nguyen
et al., 2013; Qi et al., 2014]. Obviously, higher success rates indicate better repair
generation ability.

• Repair quality. Definition 3 (Section 3.1 of Chapter 3) was used to measure the
repair quality in the experiments: that is, the repair quality was evaluated against
evaluation test data. As with Smith et al. [2015], independent test data (rather than
the repair test data) were used in the repair quality evaluation. Specifically, each
repair was evaluated by three sets of test data, including both a test suite and two
MTG sets. For example, in the experiments on GenProg and Genprog-MT, a repair
produced by GP-BTS was evaluated by Tw and Mi

w (1≤ i≤ 2); and a repair produced
by GP-WTS was evaluated by Tb and Mi

b (1 ≤ i ≤ 2). However, repairs produced
by MGP-BTGi were evaluated by Tw and Mi

w, while repairs from MGP-WTGi
were evaluated by Tb and Mi

b. Similarly, repairs from CE-BTS and CE-WTS were
evaluated in the same way as those from GP-BTS and GP-WTS, respectively; and
repairs from MCE-BTGi and MCE-WTGi were evaluated in the same way as those
from MGP-BTGi and MGP-WTGi, respectively.
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In all these evaluations, the passing rate (or non-violating rate) of the evaluation test
suite (or MTG set) was used as the repair quality measurement — a repair was tested
against Tb or Tw when using a test oracle; and against an MTG set when not using
an oracle. Generally, a higher passing rate (or non-violating rate) indicates that the
repair is of a higher quality, with respect to the evaluation data.

To further compare the repair effectiveness between GenProg-MT and GenProg (and
between CETI-MT and CETI), the scenarios above were classified into two groups. The six
GenProg and GenProg-MT scenarios were classified into groupB and groupW, as follows:

• groupB consisting of GP-BTS, MGP-BTG1 and MGP-BTG2.

• groupW consisting of GP-WTS, MGP-WTG1 and MGP-WTG2.

The six CETI and CETI-MT scenarios were also classified into groupB and groupW, as
follows:

• groupB consisting of CE-BTS, MCE-BTG1 and MCE-BTG2.

• groupW consisting of CE-WTS, MCE-WTG1 and MCE-WTG2.

These classifications are based on the correspondences between the test suites and
MTG sets. Obviously, all groupB scenarios use information from the black box test suite —
for example, GP-BTS uses Tb as the input test suite; and the two GenProg-MT scenarios
(MGP-BTG1 and MGP-BTG2) use M1

b and M2
b , whose source test cases are from Tb.

Similarly, all groupW scenarios relate to the white box test suite. Therefore, when applying
a GenProg (CETI) scenario and a GenProg-MT (CETI-MT) scenario of the same group
to repair a target program, the input test cases have the same origin. This eliminates
the impacts of different input data on repair results of scenarios of the same group, and
thus discrepancies between the repair results can be attributed to the APR technique used.
Because of this, the comparisons of GenProg-MT (CETI-MT) and GenProg (CETI) were
conducted in individual groups, within which the effectiveness of the GenProg (CETI)
scenario was compared with its corresponding two GenProg-MT (CETI-MT) scenarios.
That is, GP-BTS (CE-BTS) was compared with MGP-BTG1 and MGP-BTG2 (MCE-
BTG1 and MCE-BTG2); and GP-WTS (CE-WTS) was compared with MGP-WTG1 and
MGP-WTG2 (MCE-WTG1 and MCE-WTG2).
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According to the above classification, each group consists of one scenario with an
APR technique that needs a test oracle, and two scenarios for the corresponding APR-MT
technique that do not need a test oracle. Intuitively speaking, because an oracle can clearly
distinguish correct from incorrect execution results, and because an MR violation is less
specific (only indicating that at least one of the test inputs produces incorrect output),
it is natural to expect the APR technique to deliver a better repair effectiveness than its
corresponding APR-MT technique. The question, therefore, is whether or not the APR-MT
and APR techniques have comparable effectiveness, that is, whether or not GenProg-MT
is comparable to GenProg (or CETI-MT to CETI), in terms of the repair effectiveness.

4.4 Experimental results

The results from the experiments to answer the second research question are presented in
this section. The experimental design of GenProg and GenProg-MT involved ten repair
processes (with ten individual seeds per scenario) for each faulty version of the subject
programs. Consequently, a total of 20 (2×10) repair processes for GenProg and 40 (4×10)
for GenProg-MT were conducted to repair each faulty version. CETI and CETI-MT, on
the other hand, only used one repair process per scenario for each faulty version, giving
a total of two (2×1) processes for CETI, and four (4×1) for CETI-MT, to repair each
faulty version. Data were collected from all conducted repair processes, and the success
rates and repair quality for all tools were analysed with respect to the individual scenarios.
Since a faulty version failing all test cases of the input test suite (or violating all MTGs of
the input data) is considered to be extremely malformed, following the practice of Smith
et al. [2015], the repair results for such repair processes were excluded. The experimental
analysis compared the repair effectiveness of APR-MT tools (GenProg-MT and CETI-MT)
with that of the corresponding APR tools (GenProg and CETI).

4.4.1 Experimental results for GenProg and GenProg-MT

This section presents a comparison of the success rates of GenProg and GenProg-MT,
followed by an investigation of their resulting repair qualities, and finally a report on the
time taken by individual tools.
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GenProg and GenProg-MT success rates

This analysis investigates whether or not GenProg-MT has a comparable success rate to
GenProg. Due to the configuration of GenProg and GenProg-MT, ten repair processes for
each tool were conducted to repair individual program versions, with a faulty program
being regarded as repaired by a tool if at least one of the repair processes successfully
produced a repair. The success rates were therefore calculated on two different levels: (i)
SRp stands for the success rate at the repair process level (as proposed by Definition 8 in
Section 3.2 of Chapter 3), which is the ratio of the number of successful repair processes
to the total number of repair processes conducted; (ii) SRv stands for the success rate at the
faulty program level, which is the ratio of the number of programs successfully repaired to
the total number of programs to which the scenario was applied. The two success rates for
both tools for each program are summarised in Table 4.4, with the accumulated success
rates of individual scenarios summarised in the Total row: the accumulated SRp denotes
the ratio of successful repair processes to the number of conducted repair processes for
all subject programs; and the accumulated SRv denotes the ratio of the overall number of
successfully repaired faulty versions to the total number of faulty programs. Obviously, an
accumulated success rate reveals the overall ability of the relevant tool to produce repairs
for all the subject programs.

As explained in Section 4.3.3, the success rate comparisons were conducted within
groupB and groupW scenarios. According to Table 4.4(a), in the groupB comparisons,
MGP-BTG1 has higher success rates than GP-BTS for five of the six subject programs,
and lower rates for one (with respect to both SRv and SRp). However, MGP-BTG2 has
higher success rates than GP-BTS for three of the six programs, has an equal success rate
for one, and lower success rates for two (again, with respect to both SRv and SRp). On the
other hand, as shown in Table 4.4(b), in the groupW comparisons, MGP-WTG1 and MGP-
WTG2 both have higher success rates than GP-WTS for four of the six subject programs,
and similar or lower success rates for two (with respect to both SRv and SRp). Overall,
based on Table 4.4, it can be concluded that GenProg-MT is comparable to GenProg in
terms of success rates. It can also be observed from the last rows of Tables 4.4(a) and 4.4(b)
that GenProg-MT slightly outperformed GenProg in terms of the accumulated success
rates — because the GenProg-MT scenarios exhibited higher accumulated success rates
than those of GenProg. Therefore, the integration of MT and GenProg is effective in terms
of the success rate.
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Program GP- MGP- MGP-
BTS BTG1 BTG2

checksum
SRv

2
30 = 0.067 12

30 = 0.400 0
30 = 0.000

SRp
2

300 = 0.007 50
300 = 0.167 0

300 = 0.000

digits
SRv

18
99 = 0.182 27

99 = 0.273 10
88 = 0.114

SRp
136
990 = 0.137 239

990 = 0.241 67
880 = 0.076

grade
SRv

0
190 = 0.000 4

188 = 0.021 0
188 = 0.000

SRp
0

1900 = 0.000 10
1880 = 0.005 0

1880 = 0.000

median
SRv

65
166 = 0.392 113

120 = 0.942 144
153 = 0.941

SRp
288
1660 = 0.173 1129

1200 = 0.941 1412
1530 = 0.923

smallest
SRv

120
154 = 0.779 91

102 = 0.892 90
109 = 0.826

SRp
466
1540 = 0.303 899

1020 = 0.881 731
1090 = 0.671

syllables
SRv

5
108 = 0.046 0

21 = 0.000 19
108 = 0.176

SRp
25

1080 = 0.023 0
210 = 0.000 48

1080 = 0.044

Total SRv
210
747 = 0.281 247

560 = 0.441 263
676 = 0.389

SRp
917
7470 = 0.123 2327

5600 = 0.416 2258
6760 = 0.334

(a) Success rates of scenarios of groupB

Program GP- MGP- MGP-
WTS WTG1 WTG2

checksum
SRv

2
52 = 0.039 10

29 = 0.345 22
52 = 0.423

SRp
13

520 = 0.025 14
290 = 0.048 195

520 = 0.375

digits
SRv

65
173 = 0.376 20

89 = 0.225 103
168 = 0.613

SRp
401

1730 = 0.232 154
890 = 0.173 676

1680 = 0.402

grade
SRv

0
186 = 0.000 3

184 = 0.016 0
183 = 0.000

SRp
0

1860 = 0.000 7
1840 = 0.004 0

1830 = 0.000

median
SRv

32
152 = 0.211 96

103 = 0.932 127
136 = 0.934

SRp
140
1520 = 0.092 957

1030 = 0.929 1238
1360 = 0.910

smallest
SRv

144
149 = 0.966 89

94 = 0.947 81
152 = 0.533

SRp
1370
1490 = 0.919 868

940 = 0.923 771
1520 = 0.507

syllables
SRv

0
116 = 0.000 67

110 = 0.609 37
123 = 0.301

SRp
0

1160 = 0.000 472
1100 = 0.429 166

1230 = 0.135

Total SRv
243
828 = 0.293 285

609 = 0.468 370
814 = 0.455

SRp
1924
8280 = 0.232 2472

6090 = 0.406 3046
8140 = 0.374

(b) Success rates of scenarios of groupW

Table 4.4 Success rates for GenProg and GenProg-MT. SRv = number of versions repaired
/ number of versions to which the scenario is applied, and SRp = number of successful
repair processes/ number of repair processes conducted.

GenProg and GenProg-MT repair quality

This section reports on the quality of repairs produced by GenProg and GenProg-MT. The
aim of this investigation was to determine whether or not GenProg-MT is as effective
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as GenProg in terms of repair quality, that is, whether GenProg-MT can produce repairs
of similar quality to those produced by GenProg (the measurement of repair quality was
explained in Section 4.3.3). A series of comparisons were conducted on different sets of
repairs produced by both groupB and groupW scenarios. In each comparison, different
sets of repairs were evaluated using the same three sets of evaluation data, with the set
of repairs produced by GenProg compared with those produced by GenProg-MT. The
distributions of quality of repairs are next presented, followed by statistical analyses of both
groupB and groupW, the results of which are further explained to reveal the effectiveness
of GenProg-MT in terms of the repair quality.

Distribution of repair quality

A series of box plot graphs were used to graphically display the distribution of quality
in groups of repairs. In each box plot, a box describes the distribution of the quality of a
set of repairs with respect to an evaluation test suite or MTG set. Each box also displays
some important statistics of the collected data, including the median value (denoted by
a bar inside the box), the maximum and minimum values (denoted by bars outside the
box), and the 25th and 75th percentiles (denoted by the upper and lower edges of the box,
respectively). The results are presented in Figure 4.4, in which there are six sub-figures,
referring to the six subject programs. A sub-figure consists of six box plots, each of which
shows the distribution of the quality of three sets of repairs produced by groupB or groupW

scenarios, with respect to the corresponding evaluation data. Note that some box plots have
less than three sets of data presented — this is because the application of some scenarios
to the faulty versions of the relevant subject program failed to produce any repair, and thus
no information related to repair quality was collected. Naturally, scenarios producing no
repair were regarded to be less effective than scenarios that produced repairs.

It can be observed from Figure 4.4 that the repair quality for GenProg and GenProg-MT
fluctuates strongly amongst the different subject programs. Moreover, even for the same
subject program, the repair quality related to one scenario of a given APR tool also varies
for different evaluation test suites or MTG sets. However, it can also be observed that,
except for box plots containing data for only one APR tool (related to program grade and
the groupW comparison of program syllables), about one third of the box plots related to
these two tools show only minimal variations: the difference between the median values of
the groups of data is always less than 0.1.

Statistical analyses
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(a) Subject program: checksum
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(b) Subject program: digits

Fig. 4.4 Distribution of repair qualities

Although Figure 4.4 visually presents the differences between the repair qualities
of GenProg and GenProg-MT, in order to more rigorously compare their repair quality
effectiveness, statistical techniques were applied to conduct pairwise comparisons on
groupB and on groupW.

When comparing a pair of GenProg and GenProg-MT scenarios, the hypothesis test
was first applied to verify whether or not there was a significant difference between the
quality of the two groups of repairs. Due to the varying success rates of the different
scenarios (Table 4.4), two groups of data under comparison may have had different sizes.
Furthermore, the data referring to the quality of a set of repairs may not have been normally
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(c) Subject program: grade
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(d) Subject program: median

Fig. 4.4 Distribution of repair qualities (Continued)

distributed. Therefore, the Wilcoxon rank-sum test [Wilcoxon, 1945] was applied: it is a
non-parametric test to verify the null hypothesis that two groups of data come from the
same population, with a p-value less than 0.05 indicating rejection of the null hypothesis
at the 5% significance level.

The Wilcoxon rank-sum test was supplemented by measuring the magnitude of the
difference between the two groups of repairs — the effect size — by calculating the
Â12 statistic [Arcuri and Briand, 2011; Vargha and Delaney, 2000]. The Â12 statistic
is a non-parametric effect size measure that assesses the probability that one technique
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(e) Subject program: smallest
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(f) Subject program: syllables

Fig. 4.4 Distribution of repair qualities (Continued)

outperforms another one — based on two groups of data representing the capabilities of the
two techniques under comparison. Setting the data related to GenProg as the first group,
and that related to GenProg-MT as the second group, the following interpretations were
used: Â12 < 0.44 suggests that repairs produced by GenProg-MT are of higher quality
than those produced by GenProg; Â12 > 0.56 suggests that those by GenProg are of higher
quality; and an Â12 value between 0.44 and 0.56 indicates that repairs are of similar quality.
Furthermore, Â12 < 0.29 or Â12 > 0.71 indicates a large effect size; 0.29≤ Â12 < 0.36
or 0.71 ≥ Â12 > 0.64 indicates a medium effect size; and 0.36 ≤ Â12 < 0.44 or 0.64 ≥
Â12 > 0.56 indicates a small effect size.
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❵❵❵❵❵❵❵❵❵❵groupB
Evaluation data

Tw M1
w M2

w

GP- MGP- MGP- GP- MGP- MGP- GP- MGP- MGP-
Typical statistics BTS BTG1 BTG2 BTS BTG1 BTG2 BTS BTG1 BTG2

min 0.40 0.00 - 0.60 0.60 - 0.40 0.00 -
mean 0.40 0.47 - 0.60 0.72 - 0.40 0.53 -

median 0.40 0.50 - 0.60 0.70 - 0.40 0.50 -
max 0.40 1.00 - 0.60 1.00 - 0.40 1.00 -

GP-BTS vs. p= 0.386 Â12 = 0.320 p= 0.106 Â12 = 0.180 p= 0.165 Â12 = 0.220
MGP-BTG1 MGP-BTG1 is better. MGP-BTG1 is better. MGP-BTG1 is better.
GP-BTS vs. - - -
MGP-BTG2 GP-BTS is better. GP-BTS is better. GP-BTS is better.

❵❵❵❵❵❵❵❵❵❵groupW
Evaluation data

Tb M1
b M2

b

GP- MGP- MGP- GP- MGP- MGP- GP- MGP- MGP-
Typical statistics WTS WTG1 WTG2 WTS WTG1 WTG2 WTS WTG1 WTG2

min 1.00 0.00 0.00 1.00 0.83 0.00 1.00 0.00 0.67
mean 1.00 0.18 0.56 1.00 0.95 0.98 1.00 0.60 0.77

median 1.00 0.00 0.00 1.00 1.00 1.00 1.00 0.83 0.67
max 1.00 0.83 1.00 1.00 1.00 1.00 1.00 0.83 1.00

GP-WTS vs. p < 0.05 Â12 = 1.000 p < 0.05 Â12 = 0.643 p < 0.05 Â12 = 1.000
MGP-WTG1 GP-WTS is better. GP-WTS is better. GP-WTS is better.
GP-WTS vs. p < 0.05 Â12 = 0.972 p = 0.61 Â12 = 0.510 p < 0.05 Â12 = 0.867
MGP-WTG2 GP-WTS is better. Similar. GP-WTS is better.

(a) Subject program:checksum

❵❵❵❵❵❵❵groupB
Evaluation data

Tw M1
w M2

w

GP- MGP- MGP- GP- MGP- MGP- GP- MGP- MGP-
Typical statistics BTS BTG1 BTG2 BTS BTG1 BTG2 BTS BTG1 BTG2

min 0.40 0.00 0.00 0.44 0.11 0.00 0.44 0.00 0.56
mean 0.87 0.69 0.71 0.90 0.82 0.38 0.78 0.72 0.86

median 0.90 0.90 0.00 1.00 1.00 0.11 0.89 0.56 1.00
max 1.00 1.00 0.50 1.00 1.00 1.00 1.00 1.00 1.00

GP-BTS vs. p < 0.05 Â12 = 0.640 p < 0.05 Â12 = 0.580 p = 0.05 Â12 = 0.550
MGP-BTG1 GP-BTS is better. GP-BTS is better. Similar.
GP:BTS vs. p < 0.05 Â12 = 0.990 p < 0.05 Â12 = 0.790 p < 0.05 Â12 = 0.401
MGP-BTG2 GP-BTS is better. GP-BTS is better. MGP-BTG2 is better.

❵❵❵❵❵❵❵groupW
Evaluation data

Tb M1
b M2

b

GP- MGP- MGP- GP- MGP- MGP- GP- MGP- MGP-
Typical statistics WTS WTG1 WTG2 WTS WTG1 WTG2 WTS WTG1 WTG2

min 0.67 0.00 0.00 0.00 0.80 0.00 0.80 0.00 0.60
mean 0.93 0.76 0.25 0.94 0.96 0.47 0.94 0.89 0.93

median 1.00 0.92 0.00 1.00 1.00 0.20 1.00 1.00 1.00
max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

GP-WTS vs. p < 0.05 Â12 = 0.601 p = 0.15 Â12 = 0.470 p = 0.02 Â12 = 0.551
MGP-WTG1 GP-WTS is better. Similar. Similar.

GP-WTS p < 0.05 Â12 = 0.852 p < 0.05 Â12 = 0.768 p = 0.60 Â12 = 0.508
MGP:WTG2 GP-WTS is better. GP-WTS is better. Similar.

(b) Subject program:digits

Table 4.5 Statistical analysis of GenProg and GenProg-MT in terms of repair quality

Statistical analyses were conducted on both groupB and groupW scenarios. For each
subject program, the investigation of groupB consisted of six comparisons — compar-
isons of the set of repairs produced by GP-BTS with those produced by MGP-BTG1 (or
MGP-BTG2), using three different sets of evaluation data. Totally, 36 comparisons were
conducted on groupB (18 of which related to the comparison of GP-BTS with MGP-BTG1,
and 18 related to the comparison of GP-BTS with MGP-BTG2). Similarly, for groupW, 36
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❵❵❵❵❵❵❵❵❵❵❵❵groupB
Evaluation data

Tw M1
w M2

w

GP- MGP- MGP- GP- MGP- MGP- GP- MGP- MGP-
Typical statistics BTS BTG1 BTG2 BTS BTG1 BTG2 BTS BTG1 BTG2

min - 0.11 - - 1.00 - - 1.00 -
mean - 0.90 - - 1.00 - - 1.00 -

median - 1.00 - - 1.00 - - 1.00 -
max - 1.00 - - 1.00 - - 1.00 -

GP-BTS vs. - - -
MGP-BTG1 MGP-BTG1 is better. MGP-BTG1 is better. MGP-BTG1 is better.
GP-BTS vs. - - -
MGP-BTG2 Similar. Similar. Similar.

❵❵❵❵❵❵❵❵❵❵❵❵groupW
Evaluation data

Tb M1
b M2

b

GP- MGP- MGP- GP- MGP- MGP- GP- MGP- MGP-
Typical statistics WTS WTG1 WTG2 WTS WTG1 WTG2 WTS WTG1 WTG2

min - 0.89 - - 1.00 - - 1.00 -
mean - 0.98 - - 1.00 - - 1.00 -

median - 1.00 - - 1.00 - - 1.00 -
max - 1.00 - - 1.00 - - 1.00 -

GP-WTS vs. - - -
MGP-WTG1 MGP-WTG1 is better. MGP-WTG1 is better. MGP-WTG1 is better.
GP-WTS vs. - - -
MGP-WTG2 Similar. Similar. Similar.

(c) Subject program:grade

❵❵❵❵❵❵❵❵❵❵❵❵groupB
Evaluation data

Tw M1
w M2

w

GP- MGP- MGP- GP- MGP- MGP- GP- MGP- MGP-
Typical statistics BTS BTG1 BTG2 BTS BTG1 BTG2 BTS BTG1 BTG2

min 0.67 0.00 0.00 0.83 0.83 0.83 0.67 0.17 0.67
mean 0.89 0.63 0.57 0.95 0.98 0.99 0.87 0.78 0.98

median 0.83 0.67 0.50 1.00 1.00 1.00 0.83 0.83 1.00
max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

GP-BTS vs. p < 0.05 Â12 = 0.899 p < 0.05 Â12 = 0.436 p < 0.05 Â12 = 0.564
MGP-BTG1 GP-BTS is better. MGP-BTG1 is better. GP-BTS is better.
GP-BTS vs. p < 0.05 Â12 = 0.925 p < 0.05 Â12 = 0.390 p < 0.05 Â12 = 0.249
MGP-BTG2 GP-BTS is better. MGP-BTG2 is better. MGP-BTG2 is better.

❵❵❵❵❵❵❵❵❵❵❵❵groupW
Evaluation data

Tb M1
b M2

b

GP- MGP- MGP- GP- MGP- MGP- GP- MGP- MGP-
Typical statistics WTS WTG1 WTG2 WTS WTG1 WTG2 WTS WTG1 WTG2

min 0.00 0.00 0.00 0.00 0.71 0.00 0.00 0.14 0.00
mean 0.71 0.96 0.44 0.96 1.00 1.00 0.63 0.74 0.93

median 0.71 1.00 0.43 1.00 1.00 1.00 0.71 1.00 1.00
max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

GP-WTS vs. p < 0.05 Â12 = 0.112 p = 0.06 Â12 = 0.488 p < 0.05 Â12 = 0.388
MGP-WTG1 MGP-WTG1 is better. Similar. MGP-WTG1 is better.
GP-WTS vs. p < 0.05 Â12 = 0.899 p < 0.05 Â12 = 0.481 p < 0.05 Â12 = 0.170
MGP-WTG2 GP-WTS is better. Similar. MGP-WTG2 is better.

(d) Subject program:median

Table 4.5 Statistical analysis of GenProg and GenProg-MT in terms of repair quality
(Continued)

comparisons were conducted to study repairs produced by GP-WTS and by MGP-WTG1
(or MGP-WTG2).

Table 4.5 reports the results of the analyses, with each sub-table presenting the detailed
analysis for a subject program. In a sub-table, the p and the Â12 values for all twelve
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❵❵❵❵❵❵❵❵❵❵❵❵groupB
Evaluation data

Tw M1
w M2

w

GP- MGP- MGP- GP- MGP- MGP- GP- MGP- MGP-
Typical statistics BTS BTG1 BTG2 BTS BTG1 BTG2 BTS BTG1 BTG2

min 0.75 0.00 0.00 0.75 0.63 0.50 0.38 0.13 0.25
mean 0.83 0.68 0.57 0.93 0.97 0.99 0.84 0.66 0.89

median 0.75 0.75 0.50 1.00 1.00 1.00 0.88 0.75 0.89
max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

GP-BTS vs. p < 0.05 Â12 = 0.698 p < 0.05 Â12 = 0.427 p < 0.05 Â12 = 0.754
MGP-BTG1 GP-BTS is better. MGP-BTG1 is better. GP-BTS is better.
GP-BTS vs. p < 0.05 Â12 = 0.801 p < 0.05 Â12 = 0.388 p < 0.05 Â12 = 0.421
MGP-BTG2 GP-BTS is better. MGP-BTG2 is better. MGP-BTG2 is better.

❵❵❵❵❵❵❵❵❵❵❵❵groupW
Evaluation data

Tb M1
b M2

b

GP- MGP- MGP- GP- MGP- MGP- GP- MGP- MGP-
Typical statistics WTS WTG1 WTG2 WTS WTG1 WTG2 WTS WTG1 WTG2

min 0.25 0.00 0.00 0.25 0.63 0.38 0.00 0.25 0.63
mean 0.56 0.54 0.72 0.99 0.99 0.94 0.82 0.86 0.98

median 0.38 0.38 0.88 1.00 1.00 1.00 0.75 0.88 1.00
max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

GP-WTS vs. p < 0.05 Â12 = 0.562 p = 0.03 Â12 = 0.508 p < 0.05 Â12 = 0.426
MGP-WTG1 GP-WTS is better. Similar. MGP-WTG1 is better.
GP-WTS vs. p < 0.05 Â12 = 0.300 p < 0.05 Â12 = 0.575 p < 0.05 Â12 = 0.133
MGP-WTG2 MGP-WTG2 is better. GP-WTS is better. MGP-WTG2 is better.

(e) Subject program:smallest

❵❵❵❵❵❵❵❵❵❵❵❵groupB
Evaluation data

Tw M1
w M2

w

GP- MGP- MGP- GP- MGP- MGP- GP- MGP- MGP-
Typical statistics BTS BTG1 BTG2 BTS BTG1 BTG2 BTS BTG1 BTG2

min 0.70 - 0.00 0.70 - 0.00 0.88 - 0.25
mean 0.85 - 0.31 0.89 - 0.69 0.93 - 0.80

median 0.80 - 0.20 1.00 - 0.70 0.88 - 1.00
max 1.00 - 1.00 1.00 - 1.00 1.00 - 1.00

GP-BTS vs. - - -
MGP-BTG1 GP-BTS is better. GP-BTS is better. GP-BTS is better.
GP-BTS vs. p < 0.05 Â12 = 0.895 p < 0.05 Â12 = 0.658 p = 0.66 Â12 = 0.528
MGP-BTG2 GP-BTS is better. GP-BTS is better. Similar.

❵❵❵❵❵❵❵❵❵❵❵❵groupW
Evaluation data

Tb M1
b M2

b

GP- MGP- MGP- GP- MGP- MGP- GP- MGP- MGP-
Typical statistics WTS WTG1 WTG2 WTS WTG1 WTG2 WTS WTG1 WTG2

min - 0.00 0.00 - 0.50 0.00 - 0.00 0.33
mean - 0.31 0.47 - 0.98 0.71 - 0.02 0.80

median - 0.33 0.50 - 1.00 0.67 - 0.00 0.83
max - 0.50 1.00 - 1.00 1.00 - 0.50 1.00

GP-WTS vs. - - -
MGP-WTG1 MGP-WTG1 is better. MGP-WTG1 is better. MGP-WTG1 is better.
GP-WTS vs. - - -
MGP-WTG2 MGP-WTG2 is better. MGP-WTG2 is better. MGP-WTG2 is better.

(f) Subject program:syllables

Table 4.5 Statistical analysis of GenProg and GenProg-MT in terms of repair quality
(Continued)

pairwise comparisons (six for groupB and six for groupW) are also presented. Based on
the analysis, each comparison of two scenarios X and Y, leads to one of three conclusions,
either: (1) X is better (which indicates that repairs produced by X are of higher quality than
those produced by Y); or (2) Similar (which indicates that repairs produced by the two
scenarios are of similar quality); or (3) Y is better (which indicates that repairs produced
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Comparison Better Similar Worse
GP-BTS vs. MGP-BTG1 Tw 2 0 4

M1
w 4 0 2

M2
w 2 1 3

GP-BTS vs. MGP-BTG2 Tw 0 1 5
M1

w 2 1 3
M2

w 3 2 1
GP-WTS vs. MGP-WTG1 Tb 3 0 3

M1
b 2 3 1

M2
b 4 1 1

GP-WTS vs. MGP-WTG2 Tb 2 1 3
M1

b 1 3 2
M2

b 3 2 1

Table 4.6 Summary of comparison results

by Y are of higher quality than those produced by X). The overall comparison results for
individual pairs of scenarios are summarized in Table 4.6. For each pair of scenarios,
Table 4.6 reports the following:

• the number of comparisons in which the GenProg-MT scenario produces repairs of
higher quality than those produced by the GenProg scenario (reported in the Better

column).

• the number of comparisons in which the GenProg-MT scenario produces repairs of
similar quality to those produced by the GenProg scenario (reported in the Similar

column).

• the number of comparisons in which the GenProg-MT scenario produces repairs of
lower quality than those produced by the GenProg scenario (reported in the Worse

column).

Tables 4.5 and 4.6 show that GenProg and GenProg-MT have varying performance
with respect to different subject programs and different evaluation test suites (or MTG sets).
However, in the 36 groupB comparisons, MGP-BTG1 is similar or better than GP-BTS for
nine of the 18 cases; likewise, MGP-BTG2 is also similar or better for nine of the 18 cases
(both MGP-BTG1 and MGP-BTG2 are worse for the remaining groupB comparisons).
Moreover, for the 36 groupW comparisons, 13 show that MGP-WTG1 is similar or better
than GP-WTS, and another 12 show that MGP-WTG2 is similar or better than GP-WTS,
while the remaining 11 cases show that GP-WTS is better.
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Program GP- MGP- MGP- GP- MGP- MGP-
BTS BTG1 BTG2 WTS WTG1 WTG2

checksum 25.325 103.602 - 7.115 353.876 353.876
digits 14.049 16.025 51.096 35.517 76.584 66.031
grade - 224.906 - - 295.716 -

median 35.562 8.760 34.293 46.216 19.771 40.609
smallest 38.606 14.353 40.047 35.803 34.154 39.342
syllables 109.587 - 117.334 - 11.422 104.673
Average 35.915 14.634 38.420 36.308 29.440 51.680

Table 4.7 Repair time for different scenarios of GenProg and GenProg-MT (in seconds)

Overall, among the 72 results, GenProg-MT has 28 better results and 15 similar results
(and GenProg has 29 better results). This means that repairs produced by GenProg-MT
are of comparable quality to those produced by GenProg. In other words, GenProg-MT is
of similar effectiveness to GenProg, in terms of repair quality.

In summary, based on the experimental analysis of both the success rates and repair
quality, it can be concluded that GenProg-MT is of comparable repair effectiveness to
GenProg, and the integration of MT with GenProg is, therefore, not only feasible but also
effective. This further indicates that in the application of MT to GenProg, the use of the
less precise MRs (rather than the more precise test oracles) may not significantly impair
the repair effectiveness.

Repair time

In addition to the repair effectiveness, the time required for each successful repair
process was recorded: Table 4.7 summarises the average times required to generate a
repair for each subject program and each scenario over all faulty versions of the subject
program; and the overall average time spent per repair. Note that, when a scenario fails
to generate any repair for a subject program, no time information is collected and thus
a ‘-’ is allocated to the relevant cell of Table 4.7 (e.g., the cell corresponds to GP-BTS
and program grade). As can be seen from the table, GenProg and GenProg-MT have
different repair times for the different programs. Furthermore, the repair time (for both
tools) for each subject program varies with different input test suites (or MTG sets). In
general, GenProg and GenProg-MT had similar repair times. As shown in the last row of
Table 4.7, for the groupB scenarios, MGP-BTG1 required much less time than GP-BTS
to produce a repair; and MGP-BTG2 required a little more time than GP-BTS. Similarly,
for the groupW scenarios, MGP-WTG1 used less time than GP-WTS to produce a repair,
while MGP-WTG2 used more. It can also be observed that the discrepancies between the
average repair time required by these two tools are quite small.
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4.4.2 Experimental results for CETI and CETI-MT

This section reports on the experimental results for CETI and CETI-MT, which were
compared in a similar manner to the GenProg-MT and GenProg comparisons. However,
due to the differences between the configurations of these two groups of techniques (as
explained in Section 4.3.2), the analysis of CETI and CETI-MT differs in the following
ways: 1) the success rate was only calculated at the repair process level because only one
scenario repair process was conducted per faulty program; and 2) all repairs from different
programs (but from the same scenario) were put into one group in the statistical analysis
of the repair quality — the reason for this was that the number of repairs yielded from
scenarios of CETI and CETI-MT was relatively small, and thus classifying repairs with
respect to subject programs (as was done for the GenProg and GenProg-MT comparison)
is not appropriate for statistical analysis.

CETI and CETI-MT success rates

A comparison of the success rates for CETI-MT and CETI is presented in Table 4.83,
which shows the success rates for individual subject programs, and the overall accumulated
success rates (the ratio of the number of successfully repaired programs one scenario has
to the total number of programs that it has been applied to).

As can be observed from Table 4.8, scenarios for both CETI-MT and CETI have varying
success rates for different subject programs, but generally show similar effectiveness in
terms of the accumulated success rate. Consider, for example, the groupB scenarios MCE-
BTG1 and CE-BTS: MCE-BTG1 has higher success rates for three programs, equal rates
for one, and lower rates for two, resulting in similar accumulated success rates for both
scenarios (0.657 and 0.636, respectively). For the corresponding pair of groupW scenarios
(MCE-WTG1 and CE-WTS): MCE-WTG1 has higher success rates than CE-WTS for
three programs, lower rates for the other three, and these two have very similar accumulated
rates (0.628 and 0.626, respectively). Similar results can also be observed from the other

3 In order to apply CETI (or CETI-MT) to IntroClass programs, these programs were slightly modified
to change how inputs were accepted: the original programs accepted inputs through scanf or gets, but the
modified programs only accept inputs through command line arguments. Other programs were also modified
to ensure that the printf statements appear only in the main function, and that all other functions only use
the return statement to handle outputs. Therefore, some faults caused through improper reading of input
data or printing of output data were eliminated, which meant that the number of faulty versions detected by
individual test suites (or MTG sets) is slightly different from that reported in the experiments with GenProg
and GenProg-MT.
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Program CE- MCE- MCE-
BTS BTG1 BTG2

checksum 5
16 = 0.313 0

9 = 0.000 1
10 = 0.100

digits 12
98 = 0.122 42

92 = 0.457 11
83 = 0.133

grade 86
165 = 0.521 86

165 = 0.521 96
165 = 0.582

median 159
166 = 0.958 118

118 = 1.000 152
152 = 1.000

smallest 119
143 = 0.832 66

90 = 0.733 72
96 = 0.750

syllables 7
22 = 0.318 2

4 = 0.500 16
22 = 0.727

Total 388
610 = 0.636 314

478 = 0.657 348
528 = 0.659

(a) Success rates of scenarios of groupB

Program CE- MCE- MCE-
WTS WTG1 WTG2

checksum 5
38 = 0.132 0

8 = 0.000 1
32 = 0.031

digits 36
166 = 0.217 19

71 = 0.268 42
151 = 0.278

grade 86
161 = 0.534 85

161 = 0.528 96
161 = 0.596

median 151
152 = 0.993 101

101 = 1.000 135
135 = 1.000

smallest 144
144 = 1.000 67

91 = 0.736 117
141 = 0.830

syllables 1
15 = 0.067 2

4 = 0.500 17
22 = 0.773

Total 423
676 = 0.626 274

436 = 0.628 408
642 = 0.636

(b) Success rates of scenarios of groupW

Table 4.8 Success rates for CETI and CETI-MT

pairs of CETI-MT and CETI scenarios. In summary, it can be concluded that CETI-MT
can deliver comparable success rates to CETI.

CETI and CETI-MT repair quality

To further elaborate on the the repair effectiveness of CETI and CETI-MT, this section
focuses on the quality of repairs produced by the two techniques. As discussed in Sec-
tion 4.3.3, the quality of each repair was evaluated using a test suite and two MTG sets
(all of which were independent of the input test data), with comparisons conducted on
both groupB and groupW scenarios. The results are grouped according to scenario (rather
than subject program), giving six groupB comparisons and six groupW comparisons. The
distributions of repair quality are also presented, using box plot graphs. Moreover, the
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(a) Distributions of the repair quality

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤groupB
Evaluation data

Tw M1
w M2

w

CE- MCE- MCE- CE- MCE- MCE- CE- MCE- MCE-
Typical statistics BTS BTG1 BTG2 BTS BTG1 BTG2 BTS BTG1 BTG2

min 0.33 0.25 0.00 0.33 0.67 0.00 0.00 0.00 0.56
mean 0.82 0.90 0.81 0.86 0.99 0.83 0.80 0.89 0.94

median 1.00 1.00 0.89 1.00 1.00 1.00 0.88 1.00 1.00
max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

CE-BTS vs p <0.05 Â12 = 0.436 p <0.05 Â12 = 0.380 p <0.05 Â12 = 0.377
MCE-BTG1 MCE-BTG1 is better. MCE-BTG1 is better. MCE-BTG1 is better.
CE-BTS vs p <0.05 Â12 = 0.544 p <0.05 Â12 = 0.566 p <0.05 Â12 = 0.344
MCE-BTG2 Similar. CE-BTS is better. MCE-BTG2 is better.

(b) Statistical analysis results

Fig. 4.5 Comparisons of groupB repair quality

same statistical analysis techniques as in the experiments of GenProg and GenProg-MT
(Section 4.4.1) were used here.

The results of the groupB comparisons are summarised in Figure 4.5. In the six groupB

comparisons — three between CE-BTS and MCE-BTG1 and three between CE-BTS and
MCE-BTG2 — CETI-MT is shown to be better than CETI for four comparisons, is worse
for only one, and is similar to CETI for one. Specifically, MCE-BTG1 is shown to be
better than CE-BTS for all three cases; but MCE-BTG2 has one better case than CE-BTS,
one worse, and one similar.

A similar analysis conducted on the groupW scenarios (Figure 4.6) reveals CETI-MT
to be better than CETI for one of the six comparisons, worse for one, and similar for four:
MCE-WTG1 has one better case than CE-WTS, and two similar cases; and MCE-WTG2
has one worse case than CE-WTS, and two similar cases.

These results suggest that repairs constructed by CETI-MT are of comparable quality to
those constructed by CETI — CETI-MT is of comparable effectiveness to CETI, in terms
of the repair quality. Based on both the success rate and repair quality, it can be concluded
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(a) Distributions of the repair quality

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤groupW
Evaluation data

Tb M1
b M2

b

CE- MCE- MCE- CE- MCE- MCE- CE- MCE- MCE-
Typical statistics WTS WTG1 WTG2 WTS WTG1 WTG2 WTS WTG1 WTG2

min 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.71
mean 0.82 0.83 0.74 0.87 0.99 0.92 0.89 0.94 0.97

median 0.86 0.86 0.86 1.00 1.00 1.00 1.00 1.00 1.00
max 1.00 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00

CE-WTS vs p =0.4305 Â12 = 0.483 p <0.05 Â12 = 0.370 p =0.648 Â12 = 0.492
MCE-WTG1 Similar. MCE-WTG1 is better. Similar.
CE-WTS vs p <0.05 Â12 = 0.565 p =0.090 Â12 = 0.473 p <0.05 Â12 = 0.462
MCE-WTG2 CE-WTS is better. Similar. Similar.

(b) Statistical analysis results

Fig. 4.6 Comparisons of groupW repair quality

that CETI-MT can achieve comparable repair effectiveness to CETI. This further indicates
that the use of MRs by CETI-MT may not necessarily deteriorate the repair effectiveness
as compared with CETI.

Repair time

The time taken by CETI and CETI-MT to construct the repairs was also recorded: Table 4.9
presents the average time taken by a scenario to generate a repair for the relevant subject
program. As a reminder, when a scenario fails to generate any repair for a subject program,
no time information is collected and thus a ‘-’ is allocated to the relevant cell of Table 4.9
(e.g., the cell corresponds to MCE-BTG1 and program checksum). In addition, the Average

row gives the overall average time taken for a repair for each scenario. It can again be
observed that each scenario took different amounts of time to repair the different subject
programs, sometimes with CETI outperforming CETI-MT, and sometimes with CETI-
MT outperforming CETI. Although CETI generally used less time than CETI-MT, the
differences between their repair times are not significant.
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Program CE- MCE- MCE- CE- MCE- MCE-
BTS BTG1 BTG2 WTS WTG1 WTG2

checksum 84.435 - 33.979 15.166 - 36.482
digits 171.836 150.623 227.809 107.762 132.638 146.583
grade 0.565 1.395 1.065 0.170 1.406 1.112

median 2.408 5.410 4.891 3.716 3.704 4.339
smallest 1.288 2.432 2.555 0.294 2.350 2.394
syllables 108.453 1.843 324.082 72.497 2.715 143.299
Average 9.866 21.021 23.986 10.983 11.593 23.533

Table 4.9 Repair time for different scenarios of CETI and CETI-MT (in seconds)

4.4.3 Summary

In summary, the experimental results were very positive, showing that, even without the
use of a test oracle, GenProg-MT and CETI-MT were able to demonstrate comparable
effectiveness to GenProg and CETI. These results confirm the feasibility of applying MT to
APR, and also emphasise the practical effectiveness of APR-MT techniques. Furthermore,
it can be concluded that in the application of MT to test suite based APR, although the
less precise MRs (instead of the more precise test oracles) are used, the resulting repair
effectiveness may not significantly differ from that of the relevant APR technique.

4.5 Discussion

This section examines the implications of the empirical results, and discusses several
important factors impacting on the effectiveness of APR and APR-MT techniques.

4.5.1 Impact of MRs on the effectiveness of APR-MT techniques

It is generally recognised that different MRs have different impacts on the fault detection
capability of MT [Liu et al., 2014]. A new, but similar, observation from this study is
that MRs are crucial to the effectiveness of the APR-MT techniques. In the experiments,
although only two MRs (MR1 and MR2) were identified for each subject program, the
effectiveness with the MR1 MTG sets was quite different from that with the MR2 MTG
sets. Taking the program grade as an example: when using MR1, both MGP-BTG1 and
MGP-WTG1 yield sets of repairs, but GenProg-MT does not produce any repair when MR2

is used. Moreover, all repairs produced by MGP-BTG1 satisfy the MR2 MTG evaluation
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set, M2
w; and all repairs produced by MTG-WTG1 satisfy M2

b , as shown in Table 4.5(c).
This suggests that the effectiveness of the used MR is a factor to the effectiveness of
APR-MT technique. Furthermore, it will be worthwhile to investigate the effectiveness
of APR-MT techniques that use a set of MTGs based on multiple MRs. It will also be
important to study whether diversity in MRs is helpful to the APR-MT techniques, as
diversity has been observed to play an important role on the effectiveness of MT [Liu et al.,
2014].

4.5.2 Impact of the source test cases on the effectiveness of APR-MT
techniques

Intuitively, for the same MR, different source test cases should have different impact
on MT’s fault detection ability, as has previously been investigated by Barus [2010].
The empirical results presented here also show the impact of source test cases on the
effectiveness of the APR-MT techniques. For each MR used in the study, two sets of
MTGs were constructed (using Tb and Tw as source test suites). Both GenProg-MT and
CETI-MT produce different repair results with the use of these two MTG sets. For example,
consider the two MTG sets, M2

b and M2
w, which were constructed by using MR2 for program

checksum, GenProg-MT only successfully produced repairs when using M2
w, but not when

using M2
b . Similarly, when using MR2 for the program syllables, GenProg-MT produces

many more repairs with M2
w than with M2

b . These results imply that the effectiveness of
APR-MT techniques can be affected by the choice of source test cases.

4.6 Conclusion

Test suite based APR techniques have been widely studied in recent years, and many APR
techniques have shown great potential for repairing large scale and real-life programs.
However, current APR techniques usually assume the existence of a test oracle, a constraint
which severely restricts the scope of applicability of these APR techniques, particularly
where there is no available test oracle. Therefore, research into the alleviation of the test
oracle problem in APR is of significant and practical importance.

Motivated by the proven effectiveness of MT in alleviating the test oracle problem,
this chapter has proposed to integrate MT with test suite based APR to enable application
of APR techniques without the need for a test oracle. The correspondence between the



4.6 Conclusion 60

conventional and the integrated APR techniques (APR-MT techniques) was explained, and
a framework to facilitate the integration has been presented. Two APR-MT techniques,
GenProg-MT and CETI-MT, were developed based on the GenProg and CETI APR
techniques, and a series of experiments were conducted to compare the repair effectiveness
between GenProg-MT and GenProg (and between CETI-MT and CETI) by using the
IntroClass benchmark programs. The experimental results were very positive, showing
that, even without the use of a test oracle, the APR-MT techniques (GenProg-MT and CETI-
MT) were able to demonstrate comparable effectiveness to the original APR techniques
(GenProg and CETI). These results not only confirm the feasibility of applying MT to test
suite based APR, but also demonstrate the effectiveness of APR-MT techniques.



Chapter 5

A novel approach for constructing
effective APR input test suites

This chapter focuses on the development of an effective input test suite generation approach
for APR, designed with the goal of improving repair effectiveness. First, the impact of
input test suites on APR repair effectiveness is analysed and summarised. Then, a novel
input test suite generation approach for APR that leverages information derived from
violated MRs is proposed. The effectiveness of the proposed test suite generation approach
is empirically investigated, which is followed by a discussion of the interplay between
input test suites and the APR techniques used.

5.1 Preliminary

Test suite based APR attempts to automatically generate a repair that can fix a faulty PUR
by making use of the information associated with a given input test suite (which contains
at least one failing test case and also some passing test cases), and only considering a
PUR program variant as a repair if it passes all test cases in the given input test suite.
A failing test case in the input test suite captures some information associated with the
PUR’s fault that can be used by the APR technique to understand and correct the fault.
Even if all failures are caused by the same fault, different failing test cases may reveal
the nature of the fault in different ways and to different degrees. Consequently, the use of
different failing test cases may provide different kinds of help to repair the fault. Similarly,
an APR technique also relies on the passing test cases to understand the PUR’s intended
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Input
Output P/F

in up down
t1 0 300 200 1 P
t2 1 98 200 0 P
t3 1 101 200 0 F
t4 1 150 200 0 F

Test suite T1 = {t1, t3}
Test suite T2 = {t2, t3}
Test suite T3 = {t2, t4}

(a) Test cases and test suites for the program isUpward. The “P/F" column indicates
whether the test case is passing or failing.

❍❍
❍❍❍

❍❍❍
❍❍❍

APR
tool

Input
test suite T1 T2 T3

Angelix
−3 bias = down; −3 bias = down; −3 bias = down;
+3 bias = 201; +3 bias = up+100; +3 bias = up+87;

CETI
−9 r =0; −3 bias = down; −3 bias = down;
+9 r =1; +3 bias = up+100; +3 bias= up+66;

GenProg
−9 r = 0;

null null
+9 r = 1;

(b) Repair results from three APR tools under different test suites (“−i” and “+i” indicates the removal and
insertion of the ith statement, respectively, and “null” indicates no repair).

Table 5.1 Repairing the isUpward program

behaviour and functionality — obviously, different passing test cases express the intended
functionality in different ways. Therefore, for a given APR technique, the use of different

input test suites may yield different repair results, including, whether a repair can be
constructed to pass the input test suite, and the degree to which the generated repair is
a correct program (that is, the quality of the repair)4. In other words, for a given APR
technique, a good test suite should provide useful information to guide repair of the PUR,
and provide a higher repair effectiveness.

The impact of input test suites on the repair effectiveness of APR techniques can be
illustrated by taking the program isUpward (Figure 3.1 in Section 3.1 of Chapter 3) as
an example. Three test suites (denoted T1, T2, and T3) and three APR tools (Angelix
[Mechtaev et al., 2016], CETI [Nguyen, 2014], and GenProg [Le Goues et al., 2012b])
were applied to repair this program. Each application of an APR tool took a different input
test suite but kept the other configurations unchanged. Table 5.1 gives the details of the
test suites and the repair results for the APR tools for each of the three test suites.

4 Furthermore, in APR, the input test suite also affects fault localisation, which in turn affects the final
repair results.
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Consider first the two input test suites T1 and T2, which both contain the same failing
test case t3, but different passing test cases t1 and t2. Every APR tool produced different
repair results for these two test suites, as shown in the T1 and T2 columns of Table 5.1(b).
Notably, GenProg generated a repair when T1 was applied but failed to produce any repair
for T2. Angelix and CETI produced a repair for both test suites, but the quality of the
resulting repairs were different: in both cases, the resulting repair for T2 was correct
but that for T1 was not. Similarly, consider the input test suites T2 and T3, which both
contain the same passing test case t2, but different failing test cases t3 and t4. Angelix and
CETI produced correct repairs using T2 but incorrect ones using T3, as shown in the last
two columns of Table 5.1(b). Finally, for the input test suites T1 and T3, which contain
completely different test cases, Angelix and CETI produced different repairs (neither of
which was correct) using these two test suites, but GenProg generated a repair with T1 but
none with T3.

From the above analysis, it can be observed that: for a given APR technique, the use

of different input test suites can yield different repair results; and for a given input test

suite, its application to different APR techniques can yield different repair results. In other
words, the repair results depend on both the APR technique and the input test suite. These
observations motivate the search for better input test suites for APR, inspiring the study of
APR test suite generation. This chapter presents an input test suite generation approach
specifically for APR.

5.2 A novel approach for APR test suite generation

This section describes the input test suite generation approach for APR. The approach is
based on MT and MFCCs (the details for which were introduced in Chapter 2, Sections
2.2 and 2.3, respectively). The intuition behind the approach is introduced in Section 5.2.1,
and the technical details are presented in Sections 5.2.2 and 5.2.3. Finally, characteristics
of the generated test suites are summarised in Section 5.2.4.

5.2.1 Intuition and motivation

MT uses MRs to construct a set of follow-up test cases from a given set of source test
cases, and, in this way, can be applied as a new test case generation strategy. The success
in detecting unknown faults in some Siemens suite programs [SIR, 2005] and hundreds of
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real-life faults in two popular C compilers suggest that MTGs are effective for detecting
faults [Le et al., 2014; Xie et al., 2013]. Moreover, an MFCC carries core information
about the violation of MRs that should be very useful for APR. It is also likely that MTGs
that do not violate the MRs will also be useful for APR — because they show the expected
behaviour with respect to the MRs.

The above intuitions motivated an investigation into APR input test suite construction
that would include test cases from MTGs satisfying the identified MFCCs, and from MTGs
not satisfying them. An APR technique using such a test suite5 would not only obtain
information about the individual test cases, but also acquire information about the relevant
MRs. Moreover, a resulting plausible repair (if successfully generated) would not only
pass each individual test case, but also satisfy the MRs for the relevant MTGs in the test
suite. Such a test suite is, therefore, expected to be very useful for delivering better APR
repair effectiveness.

5.2.2 Generating test cases from an MFCC

Here, test case generation based on a single MFCC is explained. Recall that an MFCC
is expressed as a constraint on the input parameters of a program, and it describes the
condition under which the relevant MR is violated. Therefore, both the MFCC constraints
and the MR are used to construct test cases.

Given a PUR, an MR6, and an MFCC, the first step is to solve the MFCC to generate
a concrete source test case. Next, the corresponding follow-up test case is generated by
referring to the given MR. In this way, an MTG (denoted g) for which the PUR violates
the given MR is obtained. It should be noted that the output of the PUR must be incorrect
for the source or the follow-up test case (or both): at least one test case in g fails.

A set of MTGs satisfying the negation of an MFCC is also constructed — such MTGs
may or may not violate the given MR (because there could be multiple MFCCs for the
same MR), but, compared with g, they should carry different kinds of information: they
therefore complement g for APR. A straightforward approach for constructing such a set of
MTGs is to negate every clause in the conjunctive normal form of the MFCC. This strategy,
however, may yield a large number of expressions to be solved, resulting in a large number

5 Here, it is assumed that, in addition to the metamorphic relations being used, there is an oracle for every
test case in the test suite.

6 For ease of presentation, the MR in this chapter is assumed to involve only one source and one follow-up
execution. Treatment of other cases is similar.
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of test cases (especially when the MFCC is a long expression). Because a large number
of test cases can incur high repair costs in APR, this approach is not desirable. However,
another characteristic of MRs can be used: an MR specifies how the follow-up input
parameters are related to the source input parameters. Source and follow-up execution
results can differ because some parameters can be assigned different values in the two
executions. These parameters, referred to as dominating input parameters of the MR,
are expected to have a higher impact on the satisfaction/violation of the MR than other
parameters. By definition, at least one dominating input parameter exists. Yet, an MFCC
may not necessarily contain clauses involving dominating input parameters. By only
negating clauses involving dominating parameters, the number of constraint expressions to
be solved can be reduced, thereby giving a smaller number of test cases for APR.

To formally explain the above strategy, consider an illustrative MFCC structured in
the following form: s1∧ s2∧ . . .∧ su∧ su+1∧ su+2 . . .∧ su+k, where s1, s2, . . . , su (u > 0)
are clauses involving at least one dominating input parameter, and su+1, su+2, . . . , su+k

(k ≥ 0) are clauses without any. For this MFCC, the following u+1 constraints will be
constructed7:

c1 ≡ ¬s1∧ s2∧ s3∧ . . .∧ su∧ su+1∧ su+2 . . .∧ su+k,

c2 ≡ s1∧¬s2∧ s3∧ . . .∧ su∧ su+1∧ su+2 . . .∧ su+k,

. . .

cu ≡ s1∧ s2∧ s3∧ . . .∧¬su∧ su+1∧ su+2 . . .∧ su+k,

cu+1 ≡ ¬(s1∧ s2∧ s3∧ . . .∧ su)∧ su+1∧ su+2 . . .∧ su+k.

Each of the above constraints represents a negation of the MFCC. Moreover, solving
the above u+1 constraints will give u+1 concrete source test cases, based on which the
respective follow-up test cases can then be generated. These test cases, in addition to the
MTG test cases that satisfy the MFCC, will form a test suite.

7 This treatment is for the situation where u > 0. When u = 0 (that is, when the MFCC does not involve
any dominating input parameter), every clause of the MFCC is negated, one by one.
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To illustrate this, consider a program P that accepts three input parameters a, b, and c.
Suppose an MR is specified as P(a,b,c) = P(b,a,c), and an MFCC for P under this MR is
(a < b)∧ (b > 4)∧ (c < 10). One solution to this constraint is t0 : (a = 0, b = 20, c = 1),
for which the follow-up input is t ′0 : (a = 20,b = 0,c = 1). Since a and b are the dominating
input parameters, and they are only involved in the a < b and b > 4 clauses in the MFCC,
the following constraints are constructed:

c1 ≡ ¬(a < b)∧ (b > 4)∧ (c < 10)),

c2 ≡ (a < b)∧¬(b > 4)∧ (c < 10)), and

c3 ≡ ¬((a < b)∧ (b > 4))∧ (c < 10)).

Solutions to c1, c2, and c3 can be, for instance, t1 : (a = 6, b = 5, c = 9), t2 : (a =

2, b = 3, c = 8), and t3 : (a = 4, b = 3, c = 7), respectively, for which the follow-up inputs
are t ′1 : (a = 5, b = 6, c = 9), t ′2 : (a = 3, b = 2, c = 8), and t ′3 : (a = 3, b = 4, c = 7). An
APR test suite for the given program under the given MR and MFCC could therefore be:
{t0, t1, t2, t3, t ′0, t ′1, t ′2, t ′3}.

5.2.3 Generating a test suite from a set of MFCCs

When an MR has multiple MFCCs, test suites can be constructed from individual MFCCs,
and then combined to form a final test suite. The entire test suite generation procedure
is outlined in Algorithm 2, the input to which is a metamorphic relation MR and a set of
relevant MFCCs of the PUR, denoted M — M was constructed by conducting semi-proving
[Chen et al., 2011] on the PUR, using MR. The output is a test suite T for repairing the
PUR. The algorithm first identifies a set of dominating input parameters of MR, denoted
DP (line 2). Then, for each MFCC, the procedure described in Section 5.2.2 is repeated
(lines 3 to 11). The subroutine GenMTGFromAConstraint (line 4) first solves the current
MFCC (mi) to get a source test case, and then generates the corresponding follow-up test
case by referring to the metamorphic relation MR. Both the source and follow-up test cases
are included in T (line 5). Line 6 generates a set of negations {n1, n2, . . . , nk} based on
mi and DP, using the method presented in Section 5.2.2. For each generated negation n j,
the subroutine GenMTGFromAConstraint is called to construct an MTG that satisfies n j
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Algorithm 2: Generating a test suite for a PUR from a set of MFCCs of an MR
Input: MR: a metamorphic relation,

M = {m1, m2, . . . , ms} (s > 0): a set of MFCCs of MR for the PUR.
Output: A test suite T for the PUR.

1 T = /0;
2 DP = GetDominatingParameters(MR);
3 for each mi in M do
4 mtg = GenMTGFromAConstraint(mi, MR);
5 T = T ∪{t : t ∈ mtg};
6 negations = GenerateNegations(mi, DP);

/* Let negations be {n1, n2, . . . , nk}, (k > 0). */
7 for each n j in negations do
8 mtg = GenMTGFromAConstraint(n j, MR);
9 T = T ∪{t : t ∈ mtg};

10 end
11 end

(line 8). Both the source and follow-up test cases of the MTG are added to T (line 9). It
should be noted that Algorithm 2 can be applied only when MR detects failures for the
PUR, in which case M is non-empty. Moreover, once Algorithm 2 is successfully applied,
the resulting test suite T must contain at least one failing test case, and thus can be used as
an input test suite for repairing the PUR.

Algorithm 2 can also be adapted for multiple MRs, each of which has at least one
MFCC for the PUR. In this situation, the algorithm is repeated on each MR, and the union
of the test suites generated will be the final test suite for repairing the PUR.

5.2.4 MFCC based input test suites

The proposed input test suite generation approach makes use of information about the
violated MRs and MFCCs. The constructed test suite, therefore, has the following charac-
teristics:

(1) The input test suite captures information related to program properties. A test
suite consists of MTGs, each of which is a group of source and follow-up test cases for
the relevant MR. This means that, in addition to the information captured by individual
test cases, test cases belonging to the same individual MTGs also encode the relevant MR
to a certain extent. Specifically, test cases from non-violating MTGs specify the relevant
MR that should be satisfied, while those from violating MTGs relate to the faults that led
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to the relevant MR violation. As a result, when the input test suite is used for repairing a

program, the resulting repair (if successfully constructed) not only passes all the input test

suite test cases, but also satisfies the relevant MRs on all the input test suite MTGs.

(2) The input test suite contains passing test cases useful for fixing the fault. A test
suite may contain two categories of passing test cases. The first category comes from
MTGs constructed by solving MFCCs. Each such passing test case has a corresponding
failing test case of the same MTG — this group of passing and failing test cases is attached
to an MR. The passing test case, therefore, provides information that can be used to repair
the program to satisfy the relevant MR on the MTG. The second category of passing test
cases come from MTGs constructed by solving negations of MFCCs, and are constructed
by negating some clauses of the relevant MFCC — thus they have similar execution paths
to the failing test cases derived from the MFCC. This second category of test cases provides
useful information about how to repair the program to make the failing test cases pass.
Regardless of the category of passing test cases involved in the test suite, they all assist the

APR technique to construct a plausible repair.

5.3 Experimental design

This section presents the design of a series of experiments conducted to examine the
effectiveness of the proposed test suite generation approach. The experiments involved the
use of different APR tools, and test suites constructed by different approaches.

5.3.1 Subject programs and MRs

Since the ultimate goal of APR is to provide solutions to industrial bug fixing practice, the
experimental evaluation used both seeded faults (from small and medium-sized programs)
and real-world faults (from large programs). The seeded faults were in subject programs
from the well known Siemens suite [SIR, 2005], downloaded from the Software-artifact
Infrastructure Repository (SIR)8. The real-worlds faults were in two subject programs
from the ManyBugs benchmark suite [Le Goues et al., 2015]9. Table 5.2 summarises the
subject packages used in the experiments, listing the name, number of faulty versions, and
number of source lines of code (SLOC).

8 http://sir.unl.edu
9 http://repairbenchmarks.cs.umass.edu

http://sir.unl.edu
http://repairbenchmarks.cs.umass.edu
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Name Versions SLOC
tcas 41 173
print_tokens2 10 570
schedule 9 412
schedule2 10 374
replace 32 564
gmp 2 145,000
gzip 5 491,000

Table 5.2 Subject packages

MRs for tcas

The program tcas is an aircraft collision avoidance application. It accepts 12 input parame-
ters of the signed integer type, based on which an operation (up, down, or unresolved) is
recommended for the aircraft to take in order to avoid collisions. Using argi (1≤ i≤ 12)
to denote the ith input parameter, the expected functionality of tcas is summarised as
follows: (1) let cond1 be c1∧ c2∧ c3 and, if cond1 is true, the output is up; (2) let cond2

be c1∧¬c2∧ c4 and, if cond2 is true, the output is down; and (3) in other situations, the
output is unresolved, where

c1 ≡ (arg2 = 1)∧ (arg1 > 600)∧ (arg5 ≤ 600)∧
(((arg11 = 1)∧ (arg3 = 1)∧ (arg10 = 0))∨
(arg11 6= 1)),

c2 ≡ ((arg12 = 1)∧ (arg8 +100 > arg9))∨
((arg12 = 0)∧ (arg8 > arg9)),

c3 ≡ (arg4 < arg6)∧ (arg9 < Thresh[arg7]), and

c4 ≡ (arg6 < arg4)∧ (arg8 ≥ Thresh[arg7]),

where Thresh is a predefined array to be explained shortly.

Based on the above functionality, the following MRs were identified (where ts, t f , Os,
and O f denote the source test case, follow-up test case, source output, and follow-up
output, respectively):
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MR1:

(1) When Os is up, t f is constructed to make c3 false, then O f and Os must be different.
In this case, t f can be constructed as follows: let t f .arg4 be ts.arg6, t f .arg6 be ts.arg4,
and t f .arg8 be ts.arg9.

(2) When Os is down, t f is constructed to make c1 false, then O f and Os must be
different. In this case, t f can be constructed as follows: if ts.arg11 is 1, then let
t f .arg3 be ts.arg3− 1; otherwise, let t f .arg1 and t f .arg5 be (ts.arg1 + ts.arg5)/2,
where “/” denotes integer division.

(3) When Os is unresolved, t f is constructed to make both c3 and c4 false, then O f and
Os must be identical. In this case, t f can be constructed as follows: let t f .arg4 and
t f .arg6 be (ts.arg4 + ts.arg6) / 2.

MR2:

The tcas program uses an array to store a list of threshold levels, Thresh[4] = {400,
500, 640, 740}. These threshold values are used to decide whether or not there is an
adequate separation between two aircrafts’ routes. arg7 can take a value of 0, 1, 2, or 3,
which specifies the currently used threshold level, namely, Thresh[arg7]. Changes to the
threshold level should not affect the output if certain input conditions hold true. Therefore:

(1) If ts.arg7 is 2 or 0, then let t f .arg7 be ts.arg7+1, t f .arg8 be ts.arg8+100, and t f .arg9

be ts.arg9 +100;
(2) If ts.arg7 is 1, then let t f .arg7 be ts.arg7 +1, t f .arg8 be ts.arg8 +140, and t f .arg9 be

ts.arg9 +140.

Then O f and Os must be identical.

MR3:

(1) When Os is up, t f is constructed to make c2 false by adjusting the values of arg8 and
arg9.

(2) When Os is down, t f is constructed to make c2 true by adjusting the values of arg8

and arg9.
(3) When Os is unresolved, t f is constructed to satisfy either cond1 or cond2 by adjusting

the values of arg1, arg2, arg5, arg6, arg8, arg9, and arg11.
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Then O f and Os must be different.

MRs for print_tokens2

The program print_tokens2 is a lexical analyser, accepting a text file as input, and outputting
all tokens and their corresponding categories.

MR1: Deleting comments.

The source test case contains some comments, and the follow-up test case is constructed
by deleting these comments. Since print_tokens2 does not parse comments, the source and
follow-up outputs should be identical.

MR2: Transformation into identifier tokens.

An identifier token starts with an alphabetic character and consists of alphanumeric
characters. Some error tokens and keyword tokens can be transformed into identifier

tokens by removing or adding some characters. For example, an error token “1a" can be
transformed into an identifier token “a" by deleting the “1,” and a keyword token “and" can
be transformed into an identifier token “andx" by adding an “x”.

MR2 assumes that the source test case only contains the above categories of error and
keyword tokens, and that the follow-up test case is constructed by adding or removing
some characters based on the source test case so that the follow-up test case will be parsed
as a list of identifier tokens. Thus, the total number of error and keyword tokens in the
source output is equal to the number of identifier tokens in the follow-up output.

MR3: Transformation into digital tokens.

A digital token consists of numeric characters. A digital token can be used to construct
another digital token by adding some digits, and an error token starting with a digit can
also be turned into a digital token by removing its non-digital characters.

MR3 assumes that the source test case only contains the above categories of digital and
error tokens, and that the follow-up test case is constructed by adding or removing some
characters based on the source test case so that the follow-up test case will be parsed as
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a list of digital tokens. Hence, the total number of digital and error tokens in the source
output is equal to the number of digital tokens in the follow-up output.

MRs for schedule and schedule2

Both schedule and schedule2 conduct priority based scheduling on a list of jobs, using
non-preemptive and preemptive scheduling, respectively. Both programs use three internal
job queues to maintain jobs with different priorities, Q1, Q2, and Q3 — where Q3 has the
highest priority and Q1 has the lowest. The input to both programs includes three integers
(s1, s2, s3), representing the initial sizes of the three queues, and a list of commands
representing the operations to be performed. Two MRs were identified for both programs,
in each of which the source and follow-up test cases take the same values for s1, s2, and s3,
but different lists of commands.

MR1: The source test case for MR1 includes a sequence of commands that create a new
job for Q2 and request to schedule it before all other jobs in Q2. The follow-up test case
includes a sequence of commands that create a new job for Q1 and then upgrade it to be
the last job in Q3. The source and follow-up test cases are equivalent in the sense that their
outputs should give the same scheduling results.

MR2: MR2 observes that invalid commands (such as creating an invalid job or upgrading a
non-existing job) should have no effect on the scheduling output because these commands
should be discarded. MR2, therefore, constructs the follow-up test case by inserting invalid
commands into the command list of the source test case. The source and follow-up outputs
should be identical.

MRs for replace

The program replace is the most complex one in the Siemens suite, and covers the most
varieties of logical errors [Liu et al., 2006]. The program is a text parser that uses pattern
matching and text substitution. It accepts three input parameters: an expression pStr, which
describes a pattern to be matched using a regular-expression-like syntax, a string sStr, and
a string aStr. The program replace substitutes sStr for every substring of aStr that matches
the pattern specified by pStr. For the MRs identified below, (pStr1, sStr1, aStr1) and (pStr2,
sStr2, aStr2) denote the source and follow-up test cases, respectively.
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MR1: In this MR, sStr1 = sStr2, aStr1 = aStr2, and pStr2 uses square brackets to re-express
pStr1 in the context of sStr and aStr. The two outputs should be identical. For example:
both ‘[b]’ and ‘@b’ mean ‘b’, and both ‘?b’ and ‘[ˆ]b’ mean a string starting with an
arbitrary character but ending with character ‘b’. Therefore, replace ‘ab’ ‘r’ ‘abc’ and
replace ‘[a]b’ ‘r’ ‘abc’ should both return ‘rc’; replace ‘@b’ ‘r’ ‘ab’ and replace ‘[b]’ ‘r’
‘ab’ should both return ‘ar’; and replace ‘?b’ ‘r’ ‘ab’ and replace ‘[ˆ]b’ ‘r’ ‘ab’ should both
return ‘r’.

MR2: In this MR, sStr1 = sStr2, aStr1 = aStr2, and pStr2 is equivalent to pStr1 (in the
context of sStr and aStr), using the range operator ‘-’ to re-express pStr1. The two outputs
should be identical. For example: ‘[bcdef]’ and ‘[b-f]’ both mean a character from ‘b’
to ‘f’, and ‘[a-g]’ means a character from ‘a’ to ‘g’. Therefore, replace ‘[bcdef]’ ‘r’ ‘c,’
replace ‘[b-f]’ ‘r’ ‘c,’ and replace ‘[a-g]’ ‘r’ ‘c’ should all return ‘r.’

MR3: In this MR, the follow-up test case is constructed based on both the source test case
and the source output, according to the following three cases:

(1) The entire string of aStr1 completely matches pStr1, in which case pStr2 is con-
structed by appending aStr1 to pStr1, and aStr2 is constructed by concatenating two
copies of aStr1. The two outputs should be identical. For example: replace ‘a’ ‘r’ ‘a’
and replace ‘aa’ ‘r’ ‘aa’ should both return ‘r’.

(2) Only a part of aStr1 matches pStr1, in which case pStr2 is constructed using the
negation of the other part of aStr1. The two outputs should be identical. For example:
replace ‘a’ ‘r’ ‘ax’ and replace ‘[ˆx]’ ‘r’ ‘ax’ (where ‘[ˆx]’ means a non-’x’ character)
should both return ‘rx’.

(3) The source execution does not find any match, in which case sStr2 and aStr2 are set
to be the same as sStr1 and aStr1, respectively, and pStr2 becomes a re-expression of
pStr1 using square brackets. The two outputs should be identical.

MRs for gmp

gmp is a library for arbitrary precision arithmetic containing several functions imple-
menting different functionalities. Two MRs were identified for gmp, each for a different
functionality.
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MR1: MR1 focuses on the gmp exponentiation function mpz_powm10, which accepts
three multiple precision integers b, x, and y, as input parameters, and calculates the value
of bx%y (where % denotes the remainder operator).

In MR1, the source and follow-up test cases take the same values for b and x, but
different values for y. Using y1 and y2 to denote the values of y in the source and follow-up
test cases respectively, MR1 assumes that y1 is non-zero and odd, such that bx < y1, and
constructs y2 as y1 ∗ y1. The source and follow-up outputs should be identical.

MR2: MR2 focuses on another function, mpz_gcdext11, which calculates the greatest
common divisor g of two multiple precision integers a and b, and also returns the coeffi-
cients s and t such that s∗a+ t ∗b = g. One specific property of mpz_gcdext is that when
the absolute values of a and b are equal, then t is calculated according to b while keeping
the value of s a constant.

Using a1 and b1, and a2 and b2 to denote the values of a and b in the source and
follow-up test cases, respectively, MR2 assumes that a1 and b1 have the same absolute
value, and constructs the follow-up test case such that a2 = b2 = x, where the absolute
value of x is less than that of a1, and x is randomly selected. As a result, the values of s in
the source and follow-up outputs are identical.

MRs for gzip

gzip is a data compression utility that accepts a series of options for encoding a compression
or decompression operation, and the files on which the operation will be conducted. If gzip

successfully accomplishes the operation, then the corresponding outputs are available (e.g.,
the relevant compressed or decompressed files), otherwise an error message explaining the
cause of the failed operation is output. The following two MRs were identified for gzip:

MR1: Reading files from stdin.

gzip treats the symbol ‘–’ as an indicator of an input from the stdin. Therefore, when
multiple files need to be handled simultaneously, gzip can read them from the stdin.

MR1 makes use of the above property of gzip. It assumes that both source and follow-up
test cases involve decompression operations on two files, one of which is directly provided

10 https://gmplib.org/manual/Integer-Exponentiation.html
11 https://gmplib.org/manual/Number-Theoretic-Functions.html

https://gmplib.org/manual/Integer-Exponentiation.html
https://gmplib.org/manual/Number-Theoretic-Functions.html
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to gzip while the other one is provided through stdin. MR1 requires that the source and
follow-up test cases read different files from stdin: if the source test case has gzip read the
first file from stdin, then the follow-up test case requires gzip to read the second file from
stdin. As a result, gzip should produce the same outcome for both test cases (i.e., success
or fail), for example: ‘gzip -df a.gz – < b.gz’ and ‘gzip -df – b.gz < a.gz’ should either
both succeed or both fail.

MR2: Using the same suffix for compression and decompression.

By default, gzip considers files with the suffix ‘.gz’ as compressed. To specify a
different suffix, the option ‘-S’ can be used with the other compression or decompression
options. Although some user-specified suffixes may be regarded as invalid for gzip, it is
natural to assume that gzip should accept (or refuse) the same set of suffixes for different
operations. For example: if a suffix is considered valid for a compression operation, then it
should also be valid for a decompression operation.

MR2 assumes that the source test case involves a compression operation with a given
suffix, and that the follow-up test case involves a decompression operation with the same
suffix, in which case gzip should produce the same outcome for both test cases. For
example: if ‘gzip -c -S ‘.a’ 1.txt’ succeeds, then ‘gzip -d -S ‘.a’ 1.txt.a’ should also succeed.

5.3.2 Test suite based APR tools used in the experiments

Three APR tools were used in the experimental evaluation, each adopting very different
methodologies to repair a program.

The first tool was GenProg12 [Le Goues et al., 2012a,b; Weimer et al., 2013, 2009],
which has been used as a baseline APR tool in many studies [Kim et al., 2013; Nguyen
et al., 2013; Qi et al., 2014; Smith et al., 2015; Tan and Roychoudhury, 2015]. GenProg
constructs candidate programs using genetic algorithm. In each generation of the genetic
algorithm, a set of candidate programs are created using crossover and mutation operators.
The fitness value of each candidate program is calculated using the input test suite, and
candidates with higher fitness values are more likely to progress to the next generation.
This process is repeated until a candidate program that passes all test cases of the input
test suite is obtained, or the maximum number of generations has been reached. In the
experiments, the latest version of GenProg (version 3.0) was configured in the same way

12 http://dijkstra.cs.virginia.edu/genprog/

http://dijkstra.cs.virginia.edu/genprog/
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as in the studies by Le Goues et al. [2012b], including that the search algorithm was the
genetic algorithm, each population was of size 40, there was a maximum of ten generations,
etc. Because the GenProg repair process involves a randomised procedure, to obtain a
reliable result, GenProg was run ten times (using ten different random seeds) for each PUR
and each test suite.

The second tool used was CETI13. Unlike GenProg, which uses only statements from
the PUR to fix bugs without inventing new code, CETI produces a repair by replacing
a PUR statement with a newly created one [Nguyen, 2014]. Given a PUR and an input
test suite, CETI first locates suspicious statements by applying statistical fault localisation
techniques [Jones and Harrold, 2005]. For each suspicious statement, CETI constructs a
list of reachability instance programs using different repair templates. The reachability
instance programs are then used to synthesise the repairs. CETI terminates the repair
process when either a repair is produced, or all of the generated reachability instance
programs have been processed. Because CETI has a deterministic repair process, it was
only applied to each PUR and input test suite once, and was configured in a similar way to
in the study by Nguyen [2014]. As a reminder, more details about GenProg and CETI can
also be found in Section 4.2.2 of Chapter 4.

The third tool was Angelix14, which conducts a semantics-based analysis to synthesise
a repair [Mechtaev et al., 2016]. Given a PUR and an input test suite, Angelix first
transforms the PUR into a semantically equivalent program, and then attempts to identify
faulty statements by applying the Jaccard formula (one of the commonly used formulas
in statistical fault localisation [Jones and Harrold, 2005]) at the expression level. With a
ranked list of suspicious expressions, Angelix modifies the PUR by replacing the suspicious
expressions with symbolic values. It then extracts semantic information for repairing the
PUR by conducting symbolic executions using the input test suite test cases. Angelix then
performs component-based synthesis to construct a repair. In the experiments, Angelix
was only applied to each PUR and each input test suite once, and was configured in the
same way as in the study by Nguyen [2014] for the Siemens programs, and in the study by
Mechtaev et al. [2016] for the ManyBugs programs

For each of the above APR techniques, a 12-hour time limit was set for each repair trial,
regardless of the test suite type — if a repair process could not finish within 12 hours, it
was terminated.

13 https://bitbucket.org/nguyenthanhvuh/ceti
14 http://angelix.io

https://bitbucket.org/nguyenthanhvuh/ceti
http://angelix.io
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Algorithm 3: The generation of Tr and Tr

Input: P: a PUR,
n: the size of each test suite Tr that is to be generated.

Output: Tr: a collection of Tr’s, where each Tr contains at least one failing test case
for P.

1 Tr = /0;
2 numberOfTrials = 0;
3 while sizeof(Tr)< 10 and numberOfTrials < 2000 do
4 Tr = GenerateARandomTestSuite(P, n);

/* Generate a test suite Tr containing n random test cases. */
5 numberOfTrials = numberOfTrials + 1;
6 if Tr contains at least one failing test case for P then
7 Tr = Tr∪Tr;
8 end
9 end

5.3.3 Test suite generation approaches

In the experiments, three test suite generation approaches were compared, as outlined in
the following:

(1) Gm: the proposed approach. In this study, semi-proving, using the symbolic engine
KLEE [Cadar et al., 2008], was used to construct MFCCs for the faulty programs. Further-
more, Algorithm 2 was implemented to generate test cases from a set of MFCCs using the
constraint solver STP [Ganesh and Dill, 2007]. The resulting test suite was denoted by Tm.

(2) Gr: enhanced random approach. A procedure to generate a set (Tr) of random test
cases (such as random integers, strings, and expressions) for the PURs was implemented,
with the resulting test suite set to be the same size as Tm. However, it was found that
such a purely random Tr often did not contain any failing test case and hence could not
be used for APR. Therefore, another procedure was used to (i) enforce the inclusion of
failing test cases in Tr, and (ii) generate a set (Tr) of such test suites. The procedure is
described by Algorithm 3: each Tr contains n test cases (which is the size of Tm), and Tr

contains no more than ten test suites (Tr’s). The maximum number of trials was set to
2000, after which, if none of the test suites had caused a failure in the given program, then
the algorithm terminated and Tr was an empty set.

(3) Gc: white-box approach based on code coverage. The test case generation tool
KLEE [Cadar et al., 2008], which is known for generating high coverage test cases, was
used to generate the test suite denoted Tc.
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In both the Gm and Gc experiments, KLEE was configured to use the default search
heuristics: “random-path interleaved with nurs:covnew” — where “nurs:covnew” means
“use Non Uniform Random Search (NURS) with Coverage-New heuristic”15. Furthermore,
the execution time of KLEE was restricted to a maximum of 120 seconds for the Siemens
suite programs and 480 seconds for the ManyBugs suite programs, as was done by other
researchers [Mechtaev et al., 2016; Nguyen et al., 2013]. In most cases, KLEE could
successfully finish within this time limit.

5.4 Experimental results

This section presents the results of the experiments conducted to examine the effectiveness
of the proposed input test suite generation approach. It should be noted that only input
test suites containing at least one failing and one passing test case were used to repair the
programs [Smith et al., 2015].

5.4.1 Independent and dependent variables

In the Angelix experiment, the repair context and test suite generation approach were
independent variables. There were a total of 109 repair contexts (109 faulty programs),
for each of which, three different test suite generation approaches were used to generate
the input test suite. The dependent variable was the repair result, which was either null
(corresponding to an inapplicable input test suite and failed repair process), or a plausible
repair (corresponding to an applicable input test suite and successful repair process). The
independent and dependent variables in the CETI experiment were the same as those for
Angelix.

In contrast, the independent variables in the GenProg experiment were the repair
context, the test suite generation approach, and the random seed. The application of an
input test suite to a repair context involved ten runs of GenProg, each of which was based
on a different random seed. As with the other experiments, the dependent variable in the
GenProg experiment was the repair result (either null or a plausible repair). Therefore, the
GenProg experiments on a repair context and a test suite generation approach involved ten
different repair processes, each of which was based on a different random seed but was
applied to the same PUR with the same input test suite — these ten repair processes yielded

15 https://klee.github.io/docs/options/

https://klee.github.io/docs/options/
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repair results of null or a plausible repair. In this study, the application of an input test suite
to GenProg was regarded to yield a repair for a PUR if at least one of the corresponding
repair processes successfully produced a repair.

5.4.2 Analysis of the usefulness of input test suite generation approaches

The experimental evaluation involved comparisons of the proposed approach with other
test suite generation approaches (random and code coverage based), according to their
effectiveness for APR.

Based on the evaluation metrics proposed in Section 3.3 (Chapter 3), different input
test suites can be compared according to their applicability, repair quality and usefulness

— applicability and repair quality each describe a single aspect of the input test suite
effectiveness, and usefulness describes the overall effectiveness. The effectiveness of a test
suite generation approach can be measured by the effectiveness of its test suites, thus a
comparison of two approaches can be achieved by comparing the effectiveness of their
resulting test suites.

The following sections report on the performance of the three approaches under study,
with respect to their applicability and the quality of their resulting repairs. Using the
applicability and repair quality, an overall usefulness score for each approach is then
calculated (according to Definition 13, in Section 3.3 of Chapter 3), and used to give a
final assessment of the effectiveness of the proposed test suite generation approach.

Applicability

The three test suite generation approaches were used to generate test suites for each of the
109 faulty programs, as summarised in Table 5.3. Because the faulty programs had different
source code, the test suites generated had differences, including containing different test
cases, and being of different size. As explained in Algorithms 2 and 3, it was possible for
Gm and Gr to not generate tests suites, in which case the test suite size was reported as 0.

Gm and Gc were applied independently, with the average, maximum, and minimum
sizes of their test suites summarised in the |Tm| and |Tc| columns of Table 5.3, respectively.
The Linux utility gcov was used to collect the Tc coverage data, with Scov and Bcov denoting
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Program |Tc| |Tm| |Tr|

tcas

Avg: 26
Max: 55 Avg: 50 Avg: 8 test suites
Min: 20 Max: 142 Max: 10 test suites
Bcov: 87.4% Min: 0 Min: 0 test suites
Scov : 98.5%

print_tokens2

Avg: 30
Max: 33 Avg: 29 Avg: 5 test suites
Min: 29 Max: 60 Max: 10 test suites
Bcov : 72.1% Min: 0 Min: 0 test suites
Scov : 81.7%

schedule

Avg: 40
Max: 44 Avg: 11 Avg: 4 test suites
Min: 35 Max: 35 Max: 10 test suites
Bcov : 78.2% Min: 0 Min: 0 test suites
Scov : 91.5%

schedule2

Avg: 43
Max: 51 Avg: 3 Avg: 4 test suites
Min: 34 Max: 6 Max: 10 test suites
Bcov : 81.3% Min: 0 Min: 0 test suites
Scov : 97.5%

replace

Avg: 50
Max: 57 Avg: 27 Avg: 2 test suites
Min: 45 Max: 93 Max: 10 test suites
Bcov: 83.4% Min: 0 Min: 0 test suites
Scov : 92.0%

gmp

Avg: 103
Max: 210 Avg: 4 Avg: 5 test suites
Min: 5 Max: 4 Max: 10 test suites
Bcov: 22.4% Min: 4 Min: 0 test suites
Scov : 45.4%

gzip

Avg: 5
Max: 6 Avg: 2 Avg: 0 test suites
Min: 4 Max: 5 Max: 0 test suites
Bcov: 20.0% Min: 0 Min: 0 test suites
Scov : 31.4%

Table 5.3 Test suite information

the average statement and branch coverage data of Tc, respectively (also reported in the
|Tc| column of Table 5.3).

As explained in Section 5.3.3, the size of Tr should be determined before applying Gr:
Gr is applied by referring to Tm. For each faulty program, there was one Tm and one Tr

(where a Tr is a collection of all Tr’s having the same size as Tm). When |Tm| = 0 (i.e.,
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Program
Angelix CETI

Gc Gm Gr(#P) Gr(#R) Gc Gm Gr(#P) Gr(#R)

tcas 16 26 32 274 16 30 35 320

print_tokens2 1 5 5 36 1 2 3 30

schedule 0 3 4 36 0 1 0 0

schedule2 0 3 1 10 0 0 0 0

replace 3 8 5 21 5 16 9 55

gmp 1 2 1 10 - - - -

gzip 0 1 0 0 - - - -

Total 21 48 48 387 22 49 47 405

(a) The Angelix and CETI results: the Gc and Gm columns report the number
of repaired programs (which is also the number of plausible repairs); the
Gr(#P) column reports the number of repaired programs; and the Gr(#R)
column reports the number of plausible repairs.

Program

GenProg

Gc Gm Gr

#P #R #P #R #P #R

tcas 12 54 16 88 28 1841

print_tokens2 2 17 2 20 5 189

schedule 0 0 2 9 3 92

schedule2 0 0 3 21 4 223

replace 5 25 13 83 7 433

gmp 1 10 1 10 0 0

gzip 0 0 0 0 0 0

Total 20 106 37 231 47 2778

(b) The GenProg results: the #P column reports the number of repaired
programs, and the #R column reports the number of plausible repairs.

Table 5.4 The numbers of repaired programs and plausible repairs (“-” means that the APR
tool is not applicable)

when Gm could not generate a failing test case within the time limit), then Tr was also set
to be empty. The Tr sizes are summarised in the |Tr| column of Table 5.3.
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Angelix CETI GenProg

Gc
21
109 = 0.1927 22

109 = 0.2018 106
1090 = 0.0972

Gm
48
109 = 0.4404 49

109 =0.4495 231
1090 = 0.2119

Gr
387

1090 = 0.3550 405
1090 = 0.3716 2778

10900 = 0.2549
Table 5.5 Applicability of the test suites generated by different approaches

In the experiments, all test suites were applied to all three APR tools (Angelix, CETI and
GenProg), to repair all subject programs. As explained (Section 5.4.1), the Gr performance
is the collective performance of all its test suites: a program is repaired by Gr if at least
one Tr has produced a repair. The number of plausible repairs from Gr is the total number
of plausible repairs from all individual Tr’s.

For Angelix and CETI, a program repaired by Gc or Gm corresponds to exactly one
resulting plausible repair, but a repair by Gr corresponds to between one and ten plausible
repairs (because of the existence of up to ten Tr’s): Table 5.4 (a) reports the number of
repaired programs for Gc and Gm, and the numbers of repaired programs and plausible
repairs for Gr.

For GenProg, a program repaired by Gc or Gm implies one to ten plausible repairs, but
a repair by Gr corresponds to up to 100 plausible repairs (because of the use of up to ten
Tr’s, each with ten different seeds). Table 5.4 (b) gives the details of repaired programs
and plausible repairs.

Table 5.5 presents the applicability scores of the test suites generated by three APR
tools. Table 5.5 shows that, with respect to the applicability scores for all three APR
tools, Gm outperforms Gc in all three comparisons, but only outperforms Gr for two (in
the context of Angelix and CETI). In summary, Gm displayed better applicability than the
other approaches in five out of six cases.

Repair quality

The examination of repair quality made use of an evaluation test suite formed by randomly
sampled test cases from the input domain. It also made use of Definition 3 rather than
Definition 2 (Section 3.1 of Chapter 3), which was not feasible for this study. The quality
of a repair was measured according to its pass rate for the evaluation test suite, which,
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(a) Distributions of the repair quality (for ease of presentation, the
lower bound of the y-axis is set to 0.9).

Min Mean Median Max
Gc 0.9456 0.9889 0.9999 1.0000
Gm 0.7938 0.9731 0.9987 1.0000
Gr 0.7938 0.9685 0.9885 1.0000
Gm vs Gc : p >0.05 Â12=0.4484

No significant difference between Gm and Gc
Gm vs Gr : p <0.05 Â12=0.6367

Gm outperformed Gr with a small effect size
(b) Statistics

Fig. 5.1 Quality of repairs produced by Angelix, with the application of different test suite
generation approaches

for each subject program, contained 30,000 test cases. A sample of 30,000 randomly
generated test cases should be sufficiently large to make the measurement close to the
repair quality if based on the entire input domain.

Figure 5.1(a) presents the repair quality details for Angelix, with three box plots
showing the distribution of quality for the three test suite generation approaches. In each
box plot, the horizontal line inside the box denotes the median; the top and bottom of the
box denote the 25th and 75th percentiles, respectively; and the top and bottom bars outside
the box represent the maximum and minimum values, respectively (excluding outliers,
which are shown as points outside the top or bottom bars). Figure 5.1(a) indicates that, for
Angelix, application of Gr yields repairs of lower quality than the other two approaches.

A statistical analysis was conducted to compare all Gm repairs with those for Gc

and Gr. In this comparison, the samples were independent (repairs resulted from the
use of test suites from different approaches), and the sample sizes varied (the different
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(a) Distributions of the repair quality

Min Mean Median Max
Gc 0.6274 0.9775 1.0000 1.0000
Gm 0.9208 0.9956 1.0000 1.0000
Gr 0.8590 0.9861 0.9921 1.0000
Gm vs Gc : p >0.05 Â12=0.5195

No significant difference between Gm and Gc
Gm vs Gr : p <0.05 Â12=0.7836

Gm outperformed Gr with a large effect size
(b) Statistics

Fig. 5.2 Quality of repairs produced by CETI, with the application of different test suite
generation approaches

numbers of repairs for individual approaches are shown in Table 5.4). Therefore, the
non-parametric Wilcoxon rank-sum test [Wilcoxon, 1945] was used to check whether
there was a statistically significant difference between two samples. In addition to the
statistical significance, the practical significance (the effect size) was examined with the
Â12 statistic [Arcuri and Briand, 2011; Vargha and Delaney, 2000], which measures the
probability that the first method outperforms the second method. Gm was set to be the first
method, therefore Â12 gives the probability that application of Gm yields higher quality
repairs than the other method under comparison. Gm is considered comparable to the other
method if Â12 is between 0.44 and 0.56; it outperforms the other if Â12 > 0.56; and it
underperforms the other if Â12 < 0.44. Moreover, the effect size can be considered as:
“large” if Â12 > 0.71 or Â12 < 0.29; “medium” if Â12 > 0.64 or Â12 < 0.36; and “small”
if Â12 > 0.56 or Â12 < 0.44.

The calculaed statistics are shown in Figure 5.1(b). The Wilcoxon rank-sum test
suggests that there is no statistically significant difference between the repairs yielded from
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(a) Distributions of the repair quality

Min Mean Median Max
Gc 0.3543 0.9602 0.9998 1.0000
Gm 0.6780 0.9767 0.9987 1.0000
Gr 0.4825 0.9821 0.9895 1.0000
Gm vs Gc : p > 0.05 Â12=0.4418

No significant difference between Gm and Gc
Gm vs Gr : p < 0.05 Â12=0.6443

Gm outperformed Gr with a medium effect size
(b) Statistics

Fig. 5.3 Quality of repairs produced by GenProg, with the application of different test suite
generation approaches

Gm and Gc (because p> 0.05), but that there is a statistically significant difference between
the repairs from Gm and Gr (p < 0.05). The Â12 statistic indicates that for Angelix, Gm

outperformed Gr with a small effect size.

A similar analysis was performed for repairs constructed by CETI and GenProg (Fig-
ures 5.2 and 5.3), showing that Gm and Gc yielded repairs of similar quality, but Gm

outperformed Gr with a large effect size for CETI and a medium effect size for GenProg.

In summary, in terms of the repair quality, Gm was comparable to Gc and outperformed
Gr, for all three APR tools. Furthermore, the magnitude of the outperformance of Gm over
Gr varied for different APR tools.
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Angelix CETI GenProg

Gc 0.1906 0.1973 0.0933

Gm 0.4286 0.4475 0.2070

Gr 0.3438 0.3664 0.2503

Table 5.6 Usefulness of the test suites generated by different approaches

Usefulness

The overall effectiveness of individual test suite generation approaches was investigated
using the usefulness score, which was calculated based on the applicability and repair
quality data. Table 5.6 presents the usefulness scores, and shows that Gm performs better
than Gc for all three tools (Angelix, CETI and GenProg), and better than Gr for two
(Angelix and CETI). Gr had the best score in one case: GenProg. Overall, Gm was the best
performer for five out of six cases, which means that application of Gm can yield more
effective repair results most of the time.

5.4.3 Interplay between the test suite generation approaches and the
APR techniques

As explained in Section 5.2.4, a key characteristic of the test suite constructed by the
proposed approach (Tm) is that it can provide information about some expected program
properties in addition to the information carried by the individual test cases. Intuitively,
because Tm contains richer information, it should be more useful than the randomly
constructed test suite (Tr). However, an apparently contradictory observation was obtained
from Section 5.4.2, where, for GenProg, Tr was more useful (a higher usefulness score)
than Tm. This particular observation triggered an in-depth analysis of the interplay between
the input test suites and the APR techniques.

Different APR techniques have different repair methodologies, and thus use the input
test suite in different ways. Because of this, an input test suite may show varying effective-
ness for different APR techniques, so does an input test suite generation approach. In the
study in this chapter, each test suite generation approach had different usefulness scores for
the three APR techniques, as shown in Table 5.6. The Angelix and CETI techniques use
the input test suite to derive a kind of specification for synthesising a repair, but GenProg,
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in contrast, only uses the test suite to validate candidate programs, not construct them. In
this sense, Angelix and CETI rely on the input test suite to a larger extent than GenProg.
Moreover, they use the input test suite in a similar way, which is quite different to how
GenProg uses it. Probably because of this, every test suite generation approach shown in
Table 5.6 had similar usefulness scores for Angelix and CETI, which were very different
from those for GenProg.

This analysis reveals an interplay between the test suite generation approaches and
the APR techniques. A good input test suite generation approach suitable for one APR
technique may not necessarily be good or suitable for another. Furthermore, it is much
more likely for an approach to retain similar effectiveness across APR techniques that use
the input test suite in a similar fashion than across those using it in very different ways.

Given the experimental results, and the nature of the proposed test suite generation
approach, it is possible to hypothesise that the more an APR technique makes uses of the
input test suite information, the better the repair effectiveness the approach will achieve.
As observed, the proposed approach was more useful than the other two approaches for
Angelix and CETI, and was better than the coverage based approach (but worse than
random) for GenProg. Consequently, it can be postulated that the proposed approach is

more appropriate for APR techniques that use the input test suite for the construction of a

repair or repair candidate — techniques such as Angelix and CETI.

Generally speaking, a systematic test suite generation approach is based on certain
intuitions and, therefore, its test suites will have specific characteristics pertaining to those
intuitions. Such test suites should be effective for the APR techniques whose intuitions are
supported by the test suites’ characteristics, but they should be less effective for others. It
is therefore inappropriate to argue whether an input test suite is effective, or useful, without
reference to any type of APR technique. Given the large variety of APR techniques, it can
be difficult to identify a test suite generation approach that is “the best” for all situations.
When studying APR test suite generation, therefore, it is important to understand the types
of APR techniques that can be best supported by the relevant test suite generation approach
under study. Furthermore, given an APR technique, it is essential to investigate what input
test suite characteristics support its effective use.
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5.5 Related work

Test case generation is a key step in software testing, which itself is an essential part
of software development. Automatically generated test cases have been found to be as
useful as manually generated ones for program debugging [Ceccato et al., 2015]. Some
test case generation approaches have been proposed specifically for program debugging
activities. Artzi et al. [2010] proposed a directed test case generation approach for fault
localisation that aims to generate a test suite with high branch coverage. Basically, given a
test case execution outcome, their approach constructs new test cases by negating some
clauses of the path constraint of this execution in a systematic way. The resulting test
suite, while smaller than other studied test suites, has been reported to be equally effective.
EntBug [Campos et al., 2013] is a search-based generation approach designed to improve
fault localisation effectiveness by using the diagnostic accuracy to guide the generation.
The study has shown the resulting test suite to successfully reduce uncertainty in ranking
potential faults. The BugEx approach [Röβ ler et al., 2012] uses a test case generation
approach to identify failure causes: a search-based testing technique that constructs passing
test cases from a given failing test case such that comparisons between the executions of
the passing and failing test cases can help to reveal information about the root cause of the
failure.

This chapter has described a test suite generation approach designed to improve the
repair effectiveness of APR techniques. The approach differs from others in two ways:
firstly, it makes use of both MRs and MFCCs; and secondly, it applies negation operations
on MFCCs with respect to the relevant MR. Because of this, the resulting test suites capture
essential information related to the violation and satisfaction of the specific MRs.

5.6 Discussion

This section discusses several issues related to input test suites, and presents an analysis of
some limitations of the study.
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Program
Angelix CETI GenProg

Gc Gm Gr Gc Gm Gr Gc Gm Gr

tcas 44 164 124 3 58 8 42 40 21
print_tokens2 66 317 47 71 168 54 380 116 146
schedule - 38 90 - 141 - - 45 106
schedule2 - 90 16 - - - - 25 28
replace 141 339 26 652 334 473 169 263 289

gmp 916 1396 141 - - - 387 28 -
gzip - 158 - - - - - - -
Average 96 248 105 154 154 74 159 126 75

Table 5.7 Mean repair costs, measured in execution time (seconds) per repair, including
the test suite generation time and the APR tool execution time (“-” means that no repair
was generated and thus no time cost collected)

5.6.1 Input test suites for APR

Time costs

Producing a plausible repair involves time for both (1) the test suite generation and (2) the
APR tool execution.

Table 5.7 summarises the mean repair costs (time) associated with the three test suite
generation approaches. The time for Gm includes both the MFCC generation time and the
time taken to construct test cases from the MFCCs. For Gc and Gr, because test suites exist
prior to repairing the program, the repair costs only include the APR tool execution time.

Table 5.7 shows that not only do the time costs vary with different approaches, but
even the times for each individual approach vary for different ARP tools or subject
programs. Because of the variation in performances, no conclusions can be drawn from the
comparisons between Gm and Gc (or Gr) with respect to individual pairs of APR tools and
programs. When considering the average time cost per repair (as shown in the Average
row of Table 5.7), Gm performed comparably to Gc (taking more time for Angelix, less for
GenProg, and the same time for CETI), but required more time than Gr for all three APR
tools.

However, it may not be meaningful to consider the average time cost per repair for
an APR test suite generation approach without also considering the quality of the repair.
Construction of a high quality repair is likely to require more time than construction of a
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lower quality one. As observed from the experiments on the motivating example (Section
5.1), the application of the input test suite T2 to Angelix took ten seconds to generate a
high quality repair, but the application of the input test suite T1 only took three seconds
to get a lower quality repair; likewise, with CETI, the use of T2 generated a high quality
repair in 2.068 seconds, but the use of T1 got a lower quality one in only 0.960 seconds.
Clearly, therefore, the extra time taken by Gm cannot be simply interpreted as an indication
of ineffectiveness: Gm always yields higher quality repairs than Gr, for all three APR tools
(as reported in detail in Section 5.4.2).

Unlike Gc and Gr, application of Gm incurs the additional costs of identifying MRs. In
this chapter, although the MRs were manually identified, the process was not expensive.
Previous studies involving MT and the Siemens programs had already revealed some
essential MRs [Xie et al., 2013], which provided very useful guidance for the identification
of new MRs. Because the gmp and gzip programs are commonly used (and hence their
functionality is well understood), MR identification for them was also not difficult: as
explained in Section 5.3.1, the gmp MRs use only some basic mathematics, and the gzip

MRs only use some common features.

Nevertheless, it should be noted that MR identification should have taken place during
the software testing phase, when MT was first applied, not in the APR phase, after the
failure had been detected. Obviously, the choice of testing method or test case generation
approach should be made before testing can begin. The proposed test suite generation
approach Gm should be applied when MT is the chosen testing method [Segura et al.,
2016], and hence the cost of identifying MRs can be excluded in this study. For the same
reason, the test suite generation time for Gr and Gc have also been excluded.

Characteristics of input test suites

Size of the input test suite. Previous studies have reported that the use of large input test
suites can increase the repair time [Le Goues et al., 2012b; Nguyen et al., 2013]. The size
of the input test suite has also been reported to affect the repair quality and the number
of repaired programs [Le Goues et al., 2012b; Nguyen et al., 2013]. Although a similar
observation has been made in the present study — Tc and Tr were of different sizes, and
they resulted in different numbers of repaired programs, repair quality, and execution
times — it has also been shown that test suite size is not the only factor affecting the repair
results. In the comparison between Gm and Gr, for example, the constructed test suites
were designed to be of equal sizes, but they yielded very different repair results in terms of
the repair costs, quality, and number of programs repaired.
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(b) Branch coverage.

Fig. 5.4 Coverage of test suites generated by different approaches (for ease of presentation,
a limit was set on the lower bound of the y-axis)

Input test suite coverage. Previous studies have also reported that high-coverage test suites
have a positive impact on the repair quality [Assiri and Bieman, 2014; Smith et al., 2015].
To investigate this, the coverage information of the test suites used in the experiments was
examined: Figure 5.4 shows that the Gc test suites achieved the highest statement coverage
and branch coverage. The Wilcoxon rank-sum test and Â12 confirmed that, among the
three approaches, Gc test suites had the best coverage, and Gm had the worst.

Although the intuition that a test suite with high coverage should yield high quality
repairs is partially supported by the study in this chapter — the coverage based test suites
did indeed result in higher quality repairs than the random test suites — the study also
showed that, in spite of the difference in coverage, Gc and Gm yielded repairs of similar
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quality, and, more importantly, Gc had much poorer applicability. It can be concluded,
therefore, that although coverage is a factor, it appears not to be the most important one
influencing the APR input test suite effectiveness.

5.6.2 Limitations

Symbolic executions

The proposed test suite generation approach makes use of MFCCs, which in this study
were generated using semi-proving. The practical applicability of this implementation,
therefore, is determined by the capability of the underlying symbolic execution engine.
While there are well known open challenges for symbolic execution techniques, such as the
complexity of the path conditions and the path explosion problem, innovative algorithms
and optimisation strategies have been developed to alleviate these problems [Boonstoppel
et al., 2008; Cadar et al., 2008; Cadar and Sen, 2013; Godefroid et al., 2005; Păsăreanu
and Visser, 2009; Sen et al., 2005]. For example, the symbolic execution engine KLEE,
which has been successfully applied to various software systems [Cadar and Sen, 2013],
uses a mixture of concrete and symbolic executions, and applies various constraint solving
optimisations to cope with complex path conditions [Cadar et al., 2008].

Identification of metamorphic relations

As explained in Section 5.6.1, the MRs used in the study were identified manually, without
referring to the faults embedded in the subject programs. These MRs turned out to be
effective for the detection of failures and the construction of good APR test suites, but
further assessment of the APR effectiveness based on different MRs is beyond the scope
of this dissertation. While it is widely accepted that different MRs have different fault
detection capabilities, the identification of effective MRs is an open and increasingly active
research area [Cao et al., 2013]. Liu et al. [2014] showed that identification of suitable
MRs is possible, even for inexperienced testers. Zhou et al. [2016] extended MT into a
user-oriented testing framework, where MRs can be identified without knowledge of the
PUT system specifications or design. Chen [2015] developed a systematic methodology for
MR identification, and implement the related tool support. Future progress in automating
MR identification will enhance the efficiency of the proposed test suite generation method.
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5.6.3 Threats to validity

In terms of the internal validity, it is critical to ensure that the test suite generation methods
have been correctly implemented and the experimental data correctly collected: every
step of the implementation was carefully verified, and both the intermediate and final
experimental data have been thoroughly inspected.

A potential threat to the external validity of the experimental results may be that the
study only used three APR tools and a small set of subject programs. Nevertheless, the
results reported are still representative because the APR tools implement different APR
methods, and the subject programs have also been widely used in the literature.

There should little threat to the construct validity of the experimental results. All of the
metrics and statistical methods have been properly justified, and the related concepts have
also been formally defined.

5.7 Conclusion

The systematic construction of good input test suites for test suite based APR is a challeng-
ing task. This chapter has proposed a novel test suite generation approach for APR, the
basic rationale behind which is that MRs are necessary properties of the intended program’s
functionality and, hence, violated MRs carry rich semantic information that can be used
to fix faults in the PUR. The approach was applied with three APR tools (Angelix, CETI,
and GenProg) to repair some small and medium-sized programs in the Siemens suite, and
some very large programs from the ManyBugs benchmark suite. In the empirical study,
the proposed approach was compared with two other test suite generation approaches —
an enhanced random approach, and a code coverage based approach. The empirical results
clearly show that the proposed approach had best performance for Angelix and CETI, and
was also better than the coverage based approach for GenProg.

Further analysis of the experimental results revealed why the proposed test suite
generation approach was more effective for Angelix and CETI (which use the input test
suite to construct repairs) than for GenProg (which does not use the input test suite to
construct repair candidates). The basic observation was that the more an APR technique
makes use of the input test suite information, the better will be the effectiveness of the
proposed approach. An important conclusion from this is that because of the strong
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interplay between the APR technique and the test suite generation approach, analysis of the
usefulness of a test suite generation approach should take into account the APR techniques
used.

In conventional APR test suite generation approaches, failing and passing test cases
are used to identify faults and intended functionality, respectively. The proposed test suite
generation approach not only includes the individual failing and passing test cases, but
also incorporates the violating and non-violating MTGs. The special construction of these
MTGs, which exploit the cause leading to an MR violation, means that the resulting test
suite contains specific information pertaining to the nature of the fault and the expected
functionality of the intended program. Such test suites have been shown to be very useful
for some APR techniques.



Chapter 6

MTRepair: An MT based APR
approach

This chapter introduces a new APR approach called MTRepair, which is based on the
concepts of MT and MFCC, and aims to generate a plausible repair that satisfies a given MR.
In this chapter, the motivation behind the design of MTRepair is first explained, and then a
brief overview and description of the MTRepair technical details are given. A prototype
tool was also implemented to support the MTRepair approach, and an experimental analysis
was conducted to examine its repair effectiveness.

6.1 Motivation

One of the major challenges in test suite based APR relates to the description of the

intended PUR functionality [Monperrus, 2014; Qi et al., 2015; Tan et al., 2016]. In most
APR studies, the input test suite has served as a kind of specification, both revealing
failures and encoding intended functionality. Intuitively, however, the PUR’s functionality
specified in such a way may not be complete, potentially resulting in plausible repairs that
pass all input test suite test cases, but fail other test cases (not in the input test suite) [Qi
et al., 2015; Smith et al., 2015]. In other words, specifying the PUR functionality (for APR)
with test cases (especially those are not comprehensive) may yield low quality repairs, thus
reducing the effectiveness of APR techniques. To address this problem, an effective input
test suite generation approach for APR was developed, as described in Chapter 5. The
study of the input test suite generation approach not only demonstrated promising results,



6.1 Motivation 96

but also highlighted the interplay between input test suites and APR techniques, revealed
that it is very difficult, if not impossible, to develop an input test suite generation approach
effective for all APR techniques. It is therefore worthwhile to examine and design new
repair methodologies that make use of other information to encode the PUR functionality.

On the other hand, the majority of APR techniques validate candidate programs

against the given input test suite, and do not compare the quality with that of the PUR.
Consequently, there is no guarantee that a plausible repair is of higher quality than the
PUR, with respect to the entire input domain. If the input test suite is not sufficiently
comprehensive, then a resulting plausible repair, even if it passes more input test suite
test cases than the PUR, may not necessarily be of higher quality over the entire input
domain. It is therefore important that an APR technique conducts more reliable validation
of candidate programs, and constructs repairs of higher quality than the PUR.

Finally, with existing APR techniques, a candidate program is either accepted as a

plausible repair or ignored (without being considered as a potential alternative to the PUR

for constructing a plausible repair). Intuitively, various ways should exist to rectify a PUR,
with each possibly requiring different degrees of technical detail. Clearly, it is preferable
that a repair be constructed through a single repair action — for example, GenProg uses a
genetic operator to construct a candidate program [Le Goues et al., 2012b], while SemFix
constructs repairs by replacing PUR statements with a newly generated ones [Nguyen et al.,
2013]. Nevertheless, if such direct repair construction is not possible, then an alternative
may be to construct a successful candidate program — a candidate program that is of
higher quality than the PUR. Such a successful candidate program should be much closer
to the final repair than the PUR, and thus should be used as a substitute for the original
PUR to construct a plausible repair.

Motivated by these observations, a novel APR approach, referred to as MTRepair,
has been developed. MTRepair is a semantics-based APR technique, and makes use of
different strategies to address each of the above issues, as discussed in the following.

• Use MRs instead of input test suites. MTRepair uses MRs to describe the intended
functionality of the PUR, and thus accepts an MR and a PUR as input. Because
an MR relates to program properties, it should capture more information about
the program’s functionality than some test cases. Accordingly, MTRepair treats a
candidate program that can satisfy the given MR as a plausible repair.

• Validate a candidate program to check whether it is of higher quality than the
PUR with respect to the given MR. Based on the evaluation metrics proposed in
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Chapter 3, MTRepair measures the quality of a program with respect to the entire
input domain and the relevant MR. Moreover, an MFCC based measurement is used
to compare the quality of a candidate program with that of the PUR.

• Use an incremental approach to conduct the repair task. Unlike all existing APR
techniques, MTRepair starts with the given PUR, but may operate on a sequence
of different programs during a repair process. That is, once a successful candidate
program is constructed, MTRepair stops repairing the current PUR and initiates a
new repair procedure using the candidate program instead. In this way, a sequence
of repair actions is conducted to incrementally repair the faults of the original PUR.

6.2 MTRepair overview

The MTRepair repair process is presented in Algorithm 4. MTRepair accepts as input,
a PUR (referred to as the original PUR to avoid confusion) and an MR, and attempts to
produce a plausible repair that satisfies the MR. MTRepair first checks if the MR can detect
the original PUR failures, which is done by conducting semi-proving on the original PUR
and the MR (line 1) — the repair process only continues if the MR can detect them. Next,
MTRepair attempts to iteratively repair a sequence of different PURs (line 6 to line 21),
including the original PUR and some successful candidate programs constructed in the
repair process. A repair result is finally reported as either: (1) null, if no plausible repair
and no successful candidate programs are constructed (line 10); or (2) a plausible repair, if
one is constructed (line 15); or (3) the last successful candidate program (line 12). Similar
to other APR techniques, outcomes (1) and (2) indicate the failure and success of a repair
process, respectively. However, MTRepair may also have outcome (3), where a successful
candidate program is reported as a repair if no plausible repair is constructed. The reason
for accepting such a successful candidate program is that, although it does not completely
satisfy the given MR, it is of higher quality than the PUR with respect to the MR.

MTRepair attempts to repair a current PUR (denoted PUR) using the information about
PUR’s MFCC constraints and the given MR. The function RepairAPUR (which will be
explained in Section 6.3.3) constructs a set of candidate programs that are then validated
to identify a successful candidate program. Basically, a candidate program is constructed
by replacing one statement in PUR with a newly synthesised one. RepairAPUR returns
either a successful candidate program Pc; or a null, indicating that the repair of PUR failed,
and thus MTRepair could not construct a plausible repair for the original PUR (line 7). In
the case of a successful candidate program, if Pc is also a plausible repair, then MTRepair



6.2 MTRepair overview 98

Algorithm 4: MTRepair conducts an incremental repair process.
Input: the faulty program P, and the metamorphic relation MR.
Output: a repair R satisfying MR or a null indicating the fail of repairing P.

1 Mp = SemiProving(P, MR);
2 if Mp is not null then

/* MR detects failures for P. */
3 PUR = P;
4 Mpur = Mp;
5 Ps = null;

/* Ps records the last successful candidate program, and is null if no successful candidate
program has been constructed. */

6 while True do
7 Pc = RepairAPUR(PUR, Mpur, MR);

/* Pc is the repair result of PUR, which is either a successful candidate program of PUR, or a
null if MTRepair fails to construct any successful candidate program for PUR. */

8 if Pc is null then
9 if Ps is null then

10 return null;
/* Neither a plausible repair nor a successful candidate program is available, thus

MTRepair fails to repair P. */
11 else
12 return Ps;

/* When a plausible repair is not available but a successful candidate program is
available, return the last successful candidate program Ps as a repair. */

13 end
14 else if Pc satisfies MR then
15 return Pc;

/* Pc is reported as a plausible repair. */
16 else
17 Ps = Pc;

/* Ps records the last successful candidate program. */
18 PUR = Pc;
19 Mpur = CollectMFCCs(Pc);

/* Hereafter, MTRepair starts to repair Pc. */
20 end
21 end
22 end

terminates the repair process (line 15); otherwise Pc is treated as a new PUR to be further
repaired (line 18). In this way, the entire repair process iteratively repairs a sequence of
different PURs until a plausible repair is obtained or all the repair resources are exhausted.

Obviously, the entire MTRepair repair process of repairing the original PUR consists
of a series of procedures repairing individual PURs. All these PURs form a sequence, the
first of which is the original PUR. This means that every time a new PUR is used, it is one
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int median(int a,int b,int c)
1: { int m=c;
2: if(b < c) {
3: if(a < b− 5) //should be: a < b
4: m=b;
5: else {
6: if(a < c)
7: m=a;}}
8: else {
9: if(a > b)
10: m=b;
11: else {
12: if(a > c)
13: m=a; }}
14: return m; }

int median(int a,int b,int c)
1: { int m=c;
2: if(b < c) {
3: if( a <= b-5 )
4: m=b;
5: else {
6: if(a < c)
7: m=a;}}
8: else {
9: if(a > b)
10: m=b;
11: else {
12: if(a > c)
13: m=a; }}
14: return m; }

int median(int a,int b,int c)
1: { int m=c;
2: if(b < c) {
3: if( a <= b-2 )
4: m=b;
5: else {
6: if(a < c)
7: m=a;}}
8: else {
9: if(a > b)
10: m=b;
11: else {
12: if(a > c)
13: m=a; }}
14: return m; }

int median(int a,int b,int c)
1: { int m=c;
2: if(b < c) {
3: if( a <= b-1 )
4: m=b;
5: else {
6: if(a < c)
7: m=a;}}
8: else {
9: if(a > b)
10: m=b;
11: else {
12: if(a > c)
13: m=a; }}
14: return m; }

(a) The original program. (b) The candidate program Pc1 .

(c) The candidate program Pc2 . (d) The candidate program Pc3 .

Fig. 6.1 MTRepair repairing a PUR containing one fault

step closer to the construction of a plausible repair. As a result, all PURs used in the repair
process together imply a chain of repair actions that gradually fix the original PUR, and in
turn incrementally improve its quality. This differs from existing APR techniques (whose
repair actions are all performed on the original PUR, but for MTRepair, repair actions may
be performed on different PURs), and can deliver additional benefits and effectiveness.

The following two examples illustrate the MTRepair repair process. The first example
shows the effect of applying an incremental repair process to gradually fix a single fault,
and the second demonstrates the benefit of the incremental repair process for repairing a
program with multiple faults.

MTRepair fixes a single-fault program. Figure 6.1 shows MTRepair repairing a
faulty version of the program median, which aims to output the median of three input
integers. It starts with the original PUR and MR2 for program median (as defined in Section
4.3.1 of Chapter 4), which produces a successful candidate program Pc1 (Figure 6.1(b)).
MTRepair therefore next attempts to repair Pc1 (rather than the original PUR), using a
similar procedure, which in turn yields a successful candidate program Pc2 (Figure 6.1(c)).
MTRepair next attempts to repair Pc2 , which results in a successful candidate program Pc3

(Figure 6.1(d)). Note that Pc3 satisfies MR2 and thus is reported as a plausible repair. It
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int median(int a, int b,int c)
1: { int m=c;
2: if(c <= a <= b||b <= a < −c)
3: m=a;
4: if(c <= b <= a||a <= b <= c)
5: m=b;
6: if((c <= b&&a >= c) || (c >= b&&a <= c) //multiple faults.
7: m=c;
8: return m;
9: }

int median(int a, int b,int c)
1: { int m=c;
2: if(c <= a <= b||b <= a < −c)
3: m=a;
4: if(c <= b <= a||a <= b <= c)
5: m=b;
6: if(( c > b &&a >= c) || (c >= b&&a <= c)
7: m=c;
8: return m;
9: }

int median(int a, int b,int c)
1: { int m=c;
2: if(c <= a <= b||b <= a < −c)
3: m=a;
4: if(c <= b <= a||a <= b <= c)
5: m=b;
6: if((c > b&&a >= c) || ( c<b &&a <= c)
7: m=c;
8: return m;
9: }

(a) The original program.

(b) The candiate program Pc1 . (c) The candiate program Pc2 .

Fig. 6.2 MTRepair repairing a PUR containing two faults

can be observed that MTRepair processes successive programs in the order “the original
PUR”→ Pc1 → Pc2 → Pc3 (changes between these programs are highlighted in rectangles
in Figure 6.1). In this way, the quality of the original PUR is improved in an incremental
manner, and eventually the fault is fixed.

MTRepair fixes a program with multiple faults. Figure 6.2 shows MTRepair using
MR1 for program median (also defined in Section 4.3.1 of Chapter 4) to repair a faulty
version containing two faults (with changes made to individual PURs again highlighted in
rectangles). In this example, a plausible repair satisfying MR1 is obtained after repairing
two PURs: the original PUR (Figure 6.2(a))→ Pc1 (Figure 6.2(b)), with Pc2 (Figure 6.2(c)),
the successful candidate program of Pc1 that satisfies MR1 reported as a repair. Importantly,
the two generated candidate programs (Pc1 and Pc2) each individually fix one fault, which
shows that although the repair process only modifies one statement at one time, MTRepair
can effectively repair programs containing multiple faults.

6.3 MTRepair technique

MTRepair is a semantics-based APR technique. In addition to the incremental repair pro-
cess explained in the previous section, another innovation lies in how candidate programs
are generated and validated — two activities guided by MFCCs as well as the given MR.
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6.3.1 Candidate program validation in MTRepair

Because both repairs and the candidate programs constructed during a repair process are
program variants of the PUR, their quality can be evaluated using the same measurement
used for repair quality. Hereafter, where there is no ambiguity, the expression “quality of a

program” will refer to the quality of a repair, a candidate program, or a PUR.

According to the earlier formalisations of repair quality (Section 3.1 of Chapter 3), the
quality of a program should be measured with respect to the input domain (denoted DP).
This should require an analysis of the program’s failure-causing condition (a constraint
describing all failing inputs), but because of the difficulties associated with obtaining the
failure-causing condition, MTRepair instead approximates it with the MFCC (Section
2.3 of Chapter 2): instead of measuring the quality of a program with respect to its input
domain, the quality is measured in terms of both the input domain and the relevant MR by
making use of MFCCs. This measurement not only enables characterisation of a plausible
repair that satisfies the given MR, but also supports comparison of a candidate program’s
quality with that of its PUR. The MFCC based measurement and MTRepair’s candidate
program validation strategy are explained in the following.

MFCC based quality measurement

Given a program P and a metamorphic relation MR, ∀t : t ∈DP, an MTG of MR, (t, t ′), can
be constructed if MR can be applied to t — where t is used as a source test case and t ′ is the
follow-up test case of t according to MR. As a result, all such MTGs constitute the MTG
domain of P for MR, which is denoted G MR

P . If P satisfies MR, then G MR
P should contain

only non-violating MTGs, otherwise, it contains at least one violating MTG. Intuitively,
the more non-violating MTGs that G MR

P has, the higher the quality P should have with
respect to MR and DP. Accordingly, the quality of a program can be measured with respect
to an MR, and thus the quality of any two programs implementing the same algorithm can
be compared with respect to an MR.

Definition 14 (Repair Quality with Respect to an MR) If P is a program implementing

a given algorithm and MR is a metamorphic relation of that algorithm, then the quality of

P, with respect to MR, denoted θ MR
P , is the ratio of the number of non-violating MTGs to

the total number of MTGs in G MR
P (i.e., the non-violating rate of P for G MR

P ).
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Definition 15 If P1 and P2 are two programs implementing the same algorithm, and MR

is a metamorphic relation of the algorithm, then:

(i) P1 and P2 are of equal quality, with respect to MR iff θ MR
P1

= θ MR
P2

.

(ii) P1 is of higher quality than P2, with respect to MR iff θ MR
P1

> θ MR
P2

.

As explained in Section 3.1 of Chapter 3, although the pass rate of the entire input
domain is the ultimate measurement, this measurement faces the difficult requirement
of needing to explore the entire input domain. The same problem arises when applying
Definitions 14 and 15. However, MFCCs can alleviate this problem, and hence provide a
feasible way for comparing two programs.

As explained in Section 2.3 of Chapter 2, an MFCC characterises a (possibly infinite)
set of MTGs for which the relevant MR is violated. When a program violates an MR,
multiple MFCCs may exist. The final MFCC constraint, which is the disjunction of all
MFCCs for the MR, describes all possible violating MTGs for the MR.

If Mp is an MFCC constraint of P and MR, then it corresponds to a set of violating
MTGs: GMp = {g|g satisfies Mp}. GMp = /0 indicates that there are no violating MTGs
satisfying Mp, and thus P satisfies MR — in this case, no MFCC is generated for MR

and Mp is said to be null. If GMp 6= /0, then a smaller GMp indicates a smaller number of
violating MTGs of G MR

P , and thus a higher quality of P, with respect to MR. Based on this,
the MFCC based quality measurement can be defined as follows.

Definition 16 If M1 and M2 are two MFCC constraints derived from two different pro-

grams using the same MR (and GM2 and GM2 are the corresponding violating MTG sets),

then M2 is said to refine M1, denoted M2 @ M1, iff

(1) M1 is not null and M2 is null; or

(2) Both M1 and M2 are not null, and GM2 ⊂ GM1 .

Obviously, if a candidate program yields no MFCC for a given MR, then it satisfies the

MR and thus should be returned as a plausible repair.

Proposition 1 Let P1 and P2 be two implementations of an algorithm, and MR be a

metamorphic relation of that algorithm. Let Mp1 and Mp2 be MFCC constraints on P1 and

P2 for MR. If MP2 @ MP1 , then P2 is of higher quality than P1, with respect to MR.
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Algorithm 5: MTRepair validates a candidate program against its PUR.
1 Function ValidateACandidate(Mp, Pc, MR)
2 Mc = SemiProving(Pc,MR);
3 if Mc = null then
4 return 2;

/* Pc satisfies MR. */
5 else if Mc @ Mp then
6 return 1;

/* Pc is of higher quality than its PUR with respect to MR. */
7 else
8 return 0;

/* Pc is not of higher quality than its PUR with respect to MR. */
9 end

Proof. According to Definition 16, the relationship of Mp2 @ Mp1 implies that P2

has a smaller set of violating MTGs than P1. Because of this, P2 should have a higher
non-violating rate than P1 for G MR

P . Therefore, it follows from Definition 15 that P2 is of
higher quality than P1, with respect to MR. �

Validating a candidate program

MTRepair validates a candidate program to check whether it is of higher quality than its
PUR. The validation procedure is implemented by function ValidateACandidate (Algorithm
5), the input to which is the MFCC constraint of the current PUR (Mp), the candidate
program (Pc), and the given metamorphic relation (MR). To compare Pc with its PUR, the
MFCC constraint for Pc (denoted Mc) is first constructed by applying semi-proving on Pc

using MR (line 2). Then, Mp and Mc are compared according to Proposition 1, resulting
in one of three possible outcomes: (1) Mc is null, suggesting that Pc satisfies MR (line 4);
or (2) Mc is not null but Mc @ Mp, indicating that Pc does not satisfy MR, but is of higher
quality than its PUR, with respect to MR (line 6); or (3) Mc is not of higher quality than its
PUR (line 8).

6.3.2 Candidate program construction in MTRepair

MTRepair basically operates on only one statement at one time, and follows the practice
of other APR techniques [Nguyen et al., 2013; Nguyen, 2014] of designing repair actions
to modify the right-hand side of an assignment statement or the conditional expression
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of a predicate statement. This results in every candidate program being constructed by
replacing one of the statements of its PUR with a newly created one.

Given a program P, Pc← P[s′/s] denotes a candidate program constructed from P by
replacing the statement s with the statement s′. The core task of constructing Pc, therefore,
is to create a statement s′ from s. MTRepair uses information from repair templates,
the given MR, and the MFCC constraint of P to synthesise s′. The first step involves
creation of a parameterised statement st by applying a repair template to s, based on which
a program Pt can be constructed: Pt ← P[st/s]. The statement st has some parameters
without specific values, which are declared symbolic in Pt . MTRepair then extracts a repair

constraint16 that encodes the requirement on an expected repair according to the given
MR, from a series of concolic executions on Pt . The repair constraint describes a condition
on the parameters of st , the satisfaction of which suggests a way to enable Pt to satisfy the
given MR to a certain extent. In other words, if the repair constraint can be successfully
constructed and solved, then the result can be used to set the st parameters, and thus yield
s′. MTRepair currently uses a similar set of templates to those used by Nguyen [2014]:
for example, applying the constant template to an assignment statement ‘a=b+2’ yields
a parameterised statement ‘a=b+x’, where the constant ‘2’ of the original statement is
replaced with parameter ‘x’.

Next, the construction of a repair constraint is explained. Let Mp denote the MFCC
constraint of P for a metamorphic relation MR, then, as explained in Chapter 5, a test suite
T can be constructed from Mp. A subset set of T (which consists of a set of MTGs) is used
to derive a repair constraint. That is, G = {g1, ..., gn}(n≥ 1), where each gi (1≤ i≤ n)
is either a violating MTG (which reveals MR violations, and thus suggests functionalities
to be rectified), or a non-violating MTG whose execution on P covers s (which relates to
the successful executions involving the current s, and thus indicates functionalities that
should be retained).

MTRepair aims to extract a repair constraint that describes the condition under which

Pt can satisfy MR on all MTGs of G. To this end, it concolically executes Pt using MTGs
of G. For an MTG gi, the concolic executions on Pt involve the use of both the source test
input tsi and the follow-up input t fi (again, it is assumed that MR involves two executions)
— denoted Pt(tsi) and Pt(t fi), respectively. If Pt(tsi) involves u paths, and Pt(t fi) involves v

paths, then cs
j and os

j denote the path condition and the relevant output of the jth path of
Pt(tsi) (1≤ j ≤ u), and c f

k and o f
k denote the path condition and the relevant output of the

kth path of Pt(t fi) (1≤ k ≤ v). The constraint encoding the condition for Pt to satisfy MR

on gi is:

16 This study follows Nguyen et al. [2013] in their use of the term repair constraint.
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ci =
∨u

j=1(
∨v

k=1(c
s
j∧ c f

k )∧ ((os
j, o f

k ) satisfies MR)).

The first part of ci, (cs
j∧ c f

k ), indicates that when tsi exercises the jth path of Pt(tsi), its
follow-up test case t fi exercises the kth path of Pt(t fi). The second part, (os

j, o f
k )satisfies MR,

denotes that for these two executions, their outputs satisfy the relationship specified by MR.
Thus, if ci can be successfully constructed and solved, then the solution suggests a way
to create s′ from st such that Pc will satisfy MR on gi. Accordingly, the repair constraint
specifying satisfaction of MR on all MTGs of G is:

Cond =
∧n

i=1 ci.

If Cond can be constructed and solved, then its solution can be applied to st to construct
Pc. More importantly, such a Pc will satisfy the given MR on all MTGs of G. If it is not
possible to construct and solve Cond, then this indicates that the current repair action
cannot construct a candidate program that makes all MTGs of G non-violating.

The procedure of constructing a candidate program can be illustrated using the program
Pc1 from Figure 6.1(b) (i.e., Pc1 is the currently considered PUR), which was repaired by
applying MR2 of program median: median(x, y, z) = −median(−x, − y, − z), where x, y,
and z are three valid integers. Pc1 violates MR2 and yields the following two MFCCs.

m1 = (x < z)∧ (y < z)∧ (y−5 < x < y);

m2 = (x > z)∧ (y > z)∧ (y < x < y+5).

The MFCC constraint for MR2 is (m1 ∨m2), and the MTG set used to synthesise
a candidate program contains four MTGs: g1 = ((−94, − 91, − 48),(94, 91, 48));
g2 = ((8, 6, −58),(−8, −6, 58)); g3 = ((−97, −99, −64),(97, 98, 64)); and g4 =

((−64, 8, − 95),(64, − 8, 95)). Solving m1 and m2 gives the two violating MTGs g1

and g2, respectively; while g3 and g4 are two non-violating MTGs whose executions cover
the faulty statement of Pc1 .

Suppose the constant template is applied to the faulty statement of Pc1 , which means
that s is ‘if(a<=b-5)’, then st becomes ‘if(a<=b-arg1)’, then Pt can be constructed from
Pc1 by replacing s with st , and by adding a symbolic declaration for arg1. MTRepair then
runs Pt on the four MTGs — for example: running Pt with g1 includes the two concolic
executions Pt(-94, -91, -48) and Pt(94, 91, 48). Exploring all paths of these two executions
reveals that MR2 is only satisfied on g1 for two paths: one for Pt(-94, -91, -48) exercising
the trace of ‘’1-2-3-4-14’, and giving the output ‘-91’; and one for Pt(94, 91, 48) exercising
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the trace of ‘’1-2-8-9-10-14’, and giving the output ‘91’. Therefore, a repair constraint
derived from g1 based on the path conditions of these two paths is:

c1 = (−94≤−91−arg1)∧ (−91 ==−(91)).

Similarly, the repair constraints derived from the other three MTGs are:

c2 = (−8≤−6−arg1)∧ (6 ==−(−6)).

c3 = (−97 >−99−arg1)∧ (−97 ==−(97)).

c4 = (64 >−8−arg1)∧ (−64 ==−(64)).

Thus, the final repair constraint for synthesising a candidate program from Pt is Cond =

c1∧ c2∧ c3∧ c4, the solving of which yields the solution arg1 = 2. Using this solution, st

becomes ‘if(a<=b-2)’ (s′), and a candidate program is constructed by replacing the s in Pc1

with s′ (which is Pc2 in Figure 6.1(c)).

6.3.3 Repairing a PUR

Although the ultimate goal of MTRepair is to construct a plausible repair that satisfies the
given MR, for any currently considered PUR, the immediate target focuses on creation of
a successful candidate program.

The procedure for repairing a currently considered PUR is implemented in the func-
tion RepairAPUR (Algorithm 6), which is iteratively invoked by the main procedure in
MTRepair (line 7 of Algorithm 4). The input to RepairAPUR is the current PUR P, the
given metamorphic relation MR, and the MFCC constraint of P (denoted Mp). The first
step is to construct a test suite T from Mp, according to the method explained in Chapter
5 (line 2). This function then uses statistical fault localisation and T to construct a list
of ranked suspicious statements (line 3). It then iteratively operates on P to construct
candidate programs by replacing each of the suspicious statements with a synthesised
statement: a candidate program is constructed using information from the given suspicious
statement, the selected repair template, P, MR, and Mp, as described in Section 6.3.2 (line
7). Once a candidate program Pc is constructed, it is compared with the PUR P in terms
of quality by invoking function EvaluateACandidate (line 9), as detailed in Algorithm
5. If Pc is a successful candidate program of P, the procedure terminates and returns Pc
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Algorithm 6: The repairing of a PUR
1 Function RepairAPUR( P, MR, Mp)
2 T = GenTSFromMFCCs(MR, Mp);
3 stmt_list = FaultLocalization(P, T );

/* Applying a statistical fault localization technique. */
4 for i← 1, length(stmt_list) do
5 s = stmt_list[i];
6 for tpl ∈ tpl_list do

/* tpl_list stores a list of templates. */
7 Pc = SynthesizeACandidate(P, Mp, MR, s, tpl);
8 if Pc is not null then

/* A candidate program Pc is constructed if the synthesis procedure is successful. */
9 r = ValidateACandidate(P, Pc,MR);

10 if r ≥ 1 then
11 return Pc;

/* Pc is of higher quality than P with respect to MR, then MTRepair terminates
the repairing of P. */

12 end
13 end
14 end
15 end
16 return null;

to the main procedure (line 11); otherwise, it constructs other candidate programs using
different suspicious statements or templates. If all possible candidate programs have been
constructed and evaluated to be of lower quality than P, that is, MTRepair fails to repair P,
then the function terminates and returns a null (line 16).

6.4 Implementation

To support the MTRepair approach, a prototype tool was developed, the architecture of
which is shown in Figure 6.3. The tool accepts a faulty C program (the PUR) and an MR
as inputs, and continues until a plausible repair satisfying the given MR is generated, or all
possible candidate programs have been examined.

To repair a PUR with respect to the given MR, MTRepair first constructs the MFCC
constraint for the PUR, using an MFCC generator (which is implemented with the symbolic
execution engine KLEE [Cadar et al., 2008] and the constraint solver STP [Ganesh and
Dill, 2007]). The generated MFCC constraint is then used by a test case generator that
implements the test suite generation approach described in Chapter 5 to construct a test
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Fig. 6.3 The architecture of MTRepair tool.

suite that is used to locate faults and to synthesise candidate programs. In the current
implementation, MTRepair applies the Tarantula technique [Jones and Harrold, 2005] to
generate a ranked list of suspicious statements.

The candidate program synthesizer implements the methodology presented in Section
6.3.2 to generate candidate programs from the current PUR. It applies KLEE to conduct
concolic execution and uses STP to solve the repair constraint. Note that the MFCC
generator runs KLEE with symbolic inputs, but the candidate program synthesiser uses
concrete inputs.

Once a candidate program is successfully generated, it is validated with the candidate

program validator, which implements the methodology presented in Section 6.3.1. The
validator invokes the MFCC generator to construct MFCCs for the candidate program.
The final validation is conducted on the two MFCC constraints Mp and Mc (denoting
constraints on the current PUR and one of its candidate programs, respectively) according
to Proposition 1: if no MFCC is constructed from the candidate program, then the candidate
program is reported as a plausible repair, otherwise, the following mechanism is used to
identify the refine relationship between Mp and Mc:

If cond1 and cond2 are satisfiable, and cond3 is unsatisfiable, then Mc @ Mp, where
cond1 is (Mp∧Mc), cond2 is (Mp∧¬Mc), and cond3 is (¬Mp∧Mc).

In this way, the validator solves the conditions to compare a candidate program with
its PUR. If a candidate program is of lower quality than its PUR, then it is ignored; if it
satisfies the given MR, then it will be reported as a plausible repair; otherwise, it replaces
the current PUR to become the program to be repaired in the next stage of the repair
process.
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6.5 Evaluation

Currently, the MTRepair approach is implemented into a preliminary prototype to demon-
strate the basic repair algorithm. In the evaluation, we selected programs from the Intro-
Class benchmark suite, which is a standard benchmark for evaluating early-stage new APR
methods [Le Goues et al., 2015]. Specifically, the MTRepair approach was evaluated in an
empirical study involving two subject programs (median and smallest) from the IntroClass
benchmark suite [Le Goues et al., 2015]17. The empirical study compared the effectiveness
of MTRepair with that of GenProg in terms of the success rates and the repair quality
(using the repair effectiveness metrics defined in Section 3.2 of Chapter 3). For a given
input test suite, GenProg was run ten times (using different random seeds) on individual
faulty programs, but MTRepair was run only once on each program with the given MR.

The success rates for both tools were calculated based on the number of faulty versions
that were repaired. The repair quality was evaluated using Definition 3 (Section 3.1 in
Chapter 3), and an evaluation test suite containing 500 randomly selected test cases was
constructed for each subject program. The statistical techniques used in Chapters 4 and 5
were also used to compare the quality of repairs from the two tools: Wilcoxon rank-sum
test [Wilcoxon, 1945] was used to check whether or not the quality of repairs from the two
tools was significantly different; and the Â12 statistic [Arcuri and Briand, 2011; Vargha
and Delaney, 2000] examined the practical significance of the difference — detailed
information about these two statistical techniques can be found in Sections 4.4.1 and 5.4.2
(in Chapter 4 and Chapter 5). Again, in the calculation of Â12 statistic, the data related
to GenProg was set as the first group, and that related to MTRepair was set as the second
group.

The GenProg experiments used two input test suites, BTS and WTS (the black and
white box test suites provided by the IntroClass benchmark suite). The repairs generated by
GenProg in the experiments reported in Chapter 4 were reused, but this time the quality of
these repairs was evaluated using the new evaluation test suite. The MTRepair experiments
reused MRs for the subject programs (as reported in Section 4.3.1 of Chapter 4): MTRepair
used two MRs (MR1 and MR2) to repair faulty versions of each subject program. For
ease of presentation, GenProg-BTS and GenProg-WTS denote the application of GenProg

17 The programs grade and syllables were not included in the study because some of their MRs involve
multiple follow-up executions; digits was excluded because the output is an array rather than a single value;
and checksum was excluded because its input and output are of different types. The current implementation
of MTRepair assumes that the MR involves only one source and one follow-up execution, and that the
input and output of a PUR are of the same data type. It can only handle single output programs. Improving
MTRepair to be able to handle a broader range of MRs and programs will be part of the future work.
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(a) Distributions of the repair quality

GenProg-BTS vs GenProg-BTS vs GenProg-WTS vs GenProg-WTS vs

MTRepair-MR1 MTRepair-MR2 MTRepair-MR1 MTRepair-MR2

p <0.05 Â12 = 0.880 p <0.05 Â12 = 0.741 p >0.05 Â12 = 0.510 p >0.05 Â12 = 0.451

GenProg-BTS is better. GenProg-BTS is better. Similar. Similar.

(b) Statistical analysis results

Fig. 6.4 Repair quality analysis for program median

with BTS and WTS, respectively; and MTRepair-MR1 and MTRepair-MR2 denote the
application of MTRepair with MR1 and MR2, respectively.

In the experiments on program median, the success rates of MTRepair-MR1 and
MTRepair-MR2 were 0.993 and 0.474, respectively — those for GenProg-BTS and
GenProg-WTS were 0.392 and 0.211, respectively (as reported in Table 4.4 of Chapter
4). The distribution of the quality of repairs constructed for program median is displayed
in Figure 6.4(a). The statistical analysis on repair quality (Figure 6.4(b)) suggests that
MTRepair (both MTRepair-MR1 and MTRepair-MR2) performed less well than GenProg-
BTS, but comparably to GenProg-WTS. In summary, compared with GenProg-BTS, both
MTRepair-MR1 and MTRepair-MR2 had higher success rates, but yielded repairs of lower
quality. On the other hand, both MTRepair-MR1 and MTRepair-MR2 had higher success
rates than GenProg-WTS, and they also constructed repairs of comparable quality to those
generated by GenProg-WTS.
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(a) Distributions of the repair quality
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(b) Statistical analysis results

Fig. 6.5 Repair quality analysis for program smallest

Figure 6.5(a) shows the distribution of the quality of repairs for program smallest. In
the experiment, the success rates for MTRepair-MR1 and MTRepair-MR2 were 0.923
and 0.838, respectively — those for GenProg-BTS and GenProg-WTS were 0.779 and
0.966, respectively (as reported in Table 4.4 of Chapter 4). Thus, both MTRepair-MR1 and
MTRepair-MR2 had higher success rates than GenProg-BTS. A statistical analysis of the
repair quality (Figure 6.5(b)) shows that MTRepair-MR1 was comparable to GenProg-BTS,
but that MTRepair-MR2 outperformed GenProg-BTS. Compared with GenProg-WTS,
both MTRepair-MR1 and MTRepair-MR2 had lower success rates, but they both yielded
repairs of higher quality.

It can be observed that MTRepair had lower success rates only in comparison with
GenProg-WTS on program smallest, and it had lower quality repairs only in comparison
with GenProg-BTS on program median: in all other cases, MTRepair had higher success
rates and higher or comparable repairs qualities, compared with both GenProg-BTS and
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GenProg-WTS. In summary, MTRepair was overall more effective than GenProg for
repairing the subject programs.

6.6 Related work

To date, a large amount of APR techniques have been developed, which are usually
classified into two groups: the generate-and-validate techniques and the semantics-based
techniques. A broad group of generate-and-validate APR techniques are based on iterative
searching, where in each iteration, a candidate program is constructed and validated
against the input test suite. This procedure is repeated until a candidate program that
can pass all test cases of the input test suite is found and reported as a repair, or the
stopping criterion is met. A well known method in this category is the Genetic Program
Repair (“GenProg”) [Le Goues et al., 2012a,b; Weimer et al., 2009], which uses genetic
programming to repair programs. GenProg has achieved promising repair results on some
real-world programs. Several studies have been conducted to improve GenProg, such as by
designing better fitness functions [Fast et al., 2010], selecting better representations for
program variants and operators [Le Goues et al., 2012c], and by designing new algorithms
for constructing the search space [Weimer et al., 2013]. Inspired by GenProg, Qi et al.
[2013, 2014] used a random search in the repair process, and applied test case prioritisation
to reduce the repair cost. Seeing that GenProg may generate nonsensical repairs, Pattern-
based Automatic program Repair (PAR) was proposed to apply fix patterns learned from
human written patches and evolutionary computing to construct the repairs [Kim et al.,
2013].

After inspecting the repairs constructed by three APR tools, Qi et al. [2015] found that
“[t]he overwhelming majority of the reported patches are not correct and are equivalent to
a single modification that simply deletes functionality (on page 24).” They presented an
APR tool Kali that generates candidate repairs by only deleting functionality, and found
that the repair effectiveness of Kali was at least as good as that of the three investigated
APR tools. Long and Rinard [2015] applied a staged program repair (SPR) strategy
and a condition synthesis technique to enrich the search space and improve the search
efficiency. Prophet [Long and Rinard, 2016] is another approach that uses knowledge
learned from previous successful patches to estimate the probability of a candidate repair
being correct, and prioritises the candidate repairs in the search space according to their
estimated probabilities. Prophet has been shown to produce more high quality repairs
than SPR. Another approach by Tan and Roychoudhury [2015], relifix, looks at software
regression errors. It takes two versions of the source code as input, together with a test suite
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containing at least one failing test case that shows a regression error. The relifix approach
employs a random search to iteratively construct and validate the candidate programs. Le
et al. [2016b] proposed making use of historical bug fixes from open source projects to
assess the fitness of candidate programs during a stochastic search based repair process.
This proposed history driven APR technique was reported to be able to produce more good
quality repairs than both GenProg and PAR.

Several other generate-and-validate APR methods that construct the set of candidate
repairs without using iterative search, have also been developed. ClearView [Perkins et al.,
2009], for example, identifies a set of correlated invariants that characterise normal and
erroneous executions of the PUR, and constructs a set of candidate repairs that enforce the
invariants. The PACHIKA tool [Dallmeier et al., 2009] takes a Java PUR and mines object
behaviour models for both passing and failing runs. It then derives the set of candidate
repairs by referring to the differences between the passing and failing models, and the
candidate repairs are validated against the regression test suite.

In contrast, semantics-based APR techniques directly generate the repair without
constructing or validating “candidate repairs.” This is done by making use of various
program analysis techniques to encode the conditions under which the fault can be repaired
with respect to the input test suite, and then synthesising a repair to satisfy these conditions.
SemFix [Nguyen et al., 2013] and DirectFix [Mechtaev et al., 2015] are both semantics
based program repair methods: SemFix uses symbolic execution, constraint solving, and
program synthesis to repair programs; and DirectFix uses constraint solving and component
based program synthesis to construct the simplest patch. A comparison between SemFix
and DirectFix showed that the DirectFix repairs are simpler and lead to fewer regression
errors [Mechtaev et al., 2015]. Based on SemFix and DirectFix, a more recent technique,
Angelix [Mechtaev et al., 2016], has been developed and applied to large scale real-world
programs. NoPOL [DeMarco et al., 2014] uses satisfiability modulo theory to construct
repairs for a class of predicate faults. CETI [Nguyen, 2014] transforms the task of program
repair into a program reachability problem, and applies test input generation techniques
to search for a solution to the reachability problem, which, if it exists, is then combined
with the applied repair template to create a repair. BugFix [Jeffrey et al., 2009] and
MintHint [Kaleeswaran et al., 2014] also use program analysis techniques to synthesise
repair suggestions.

The majority of the APR techniques described above use an input test suite to encode the
intended PUR functionality. Recently, Tan et al. [2016] introduced anti-patterns to generate-
and-validate APR techniques in order to alleviate the incomplete specification caused by
using the input test suite. A set of anti-patterns capturing disallowed modifications to a
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PUR can be applied to any generate-and-validate APR techniques, and can be used in
additional to an input test suite. During a repair process, such anti-patterns can help to
filter out a candidate program that is incorrect or incomplete but that passes all test cases
of the given input test suite. There is, therefore, a higher chance of generating a correct or
complete repair (that is, a higher quality repair). These anti-patterns are used together with
the input test suites, and should be identified prior to conducting the repair task. Compared
with all the above techniques, MTRepair does not require an input test suite, using MRs
instead.

Existing APR techniques neither compare a candidate program with its PUR in terms
of quality, nor make use of successful candidate programs of higher quality than the
PUR. The only study that discusses comparing a candidate program with its PUR was
by Diallo et al. [2015, 2016], who used the concept of relative correctness to examine
whether or not a candidate program was more correct than its PUR, with respect to the
given specification. They also proposed rectifying the given program in a stepwise manner.
However, their study focused on discussing and demonstrating the benefits of such a
proposal, rather than providing an implementation. Moreover, although the concept of
relative correctness appears to reveal similar information to the proposed concept of higher
quality, the applications face different challenges.

6.7 Conclusion

In spite of the advances in APR, many challenges still remain. In this chapter, an APR
approach for alleviating some of these challenges has been proposed. The approach,
called MTRepair, was designed and implemented by based on the strengths of MT and
MFCCs. It uses an MR instead of an input test suite as input, with a plausible repair (if
successfully generated) satisfying the given MR. One of the innovations of MTRepair is in
its use of an MFCC based measurement, which supports a candidate program validation
procedure that compares a candidate program against its PUR, in terms of their quality.
This validation procedure enables the exploration of successful candidate programs (that
is, candidate programs that are of higher quality than the PUR), and also forms the basis
for an incremental repair process. The effectiveness of MTRepair has been demonstrated
through experiments on some subject programs of the IntroClass benchmark suite, with
MTRepair exhibiting higher effectiveness than GenProg.

It is important to emphasise that the effectiveness of MTRepair is highly related to
the effectiveness of the MR used. Therefore, similar to the challenge of selecting better
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input test suites for test suite based APR, one challenge for MTRepair is the selection of
effective MRs. While this study demonstrated only basic components of MTRepair, the
MTRepair approach can be further improved and optimised by designing new strategies
towards some of its components. On the other hand, to increase its practical impact, more
empirical studies should be conducted using MTRepair to further examine its applicability
and scalability.



Chapter 7

Conclusion

7.1 Summary

Although test suite based automated program repair (referred to as test suite based APR,
or simply APR) has made significant progress in the past decade [DeMarco et al., 2014;
Fast et al., 2010; Kim et al., 2013; Le Goues et al., 2012b,c,c; Mechtaev et al., 2015, 2016;
Nguyen et al., 2013; Nguyen, 2014; Qi et al., 2014; Weimer et al., 2013, 2009], many
challenges remain. This thesis has focused on some of these challenging APR problems,
aiming to extend the scope of APR applicability and improving its repair effectiveness.

The first contribution of this thesis is a series of formalisations of APR concepts. These
formalisations contribute to the characterisation of test suite based APR as well as the
impact of input test suites on APR. Based on the formalisations, important evaluation
metrics have been developed to enable the systematic evaluation of the repair effectiveness
of APR techniques, and measurement of the effectiveness of APR input test suites.

The second contribution of this thesis is a strategy enabling the application of APR

techniques without the need for a test oracle. This strategy is designed to alleviate the
test oracle problem of APR in order to extend its scope of applicability. It integrates
metamorphic testing (MT) with test suite based APR, using a set of metamorphic test

groups (MTGs) as a substitute for an input test suite. Because of the characteristics of MT,
the integrated techniques (referred to as APR-MT techniques) use MT checking mecha-
nisms to determine the outcome of individual MTGs rather than a test oracle. A general
framework to support the integration of MT and test suite based APR was developed,
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yielding APR-MT techniques that no longer rely on a test oracle. Based on this framework,
two APR-MT techniques, GenProg-MT and CETI-MT, were implemented by combining
MT with the APR techniques GenProg and CETI, respectively. The effectiveness of the
APR-MT techniques was investigated through an empirical study comparing APR-MT
with conventional APR, using the IntroClass benchmark suite [Le Goues et al., 2015]. The
empirical results showed both GenProg-MT and CETI-MT performing comparably to their
corresponding APR techniques in terms of repair effectiveness: in other words, application
of MT to test suite based APR not only alleviates the test oracle problem, but also delivers
effective repair results. Therefore, the proposed strategy successfully extends the scope of
applicability for test suite based APR techniques.

The third contribution of this thesis is a novel input test suite generation approach for

APR that aims to enhance the APR repair effectiveness by using effective input test suites.
This study started with an analytical investigation into the impact of input test suites on
the repair effectiveness of APR techniques, which led to identification of the need for
systematic input test suite generation approaches for APR. Based on this, a novel input test
suite generation approach for APR was developed, making use of information from violated
metamorphic relations (MRs) and metamorphic failure-causing conditions (MFCCs). An
empirical study was conducted to compare the proposed approach with random and code
coverage based test suite generation approaches, showing the superiority of the proposed
approach in terms of the repair effectiveness. Further experimental analysis provided
insights into the interplay between the input test suite construction and the relevant APR
techniques, concluding that the effectiveness of an input test suite generation approach
cannot be discussed without reference to the APR technique used.

The fourth contribution of this thesis is a proposal for an MT based APR approach,
which was motivated by some challenging problems and issues faced by current APR
techniques, including: the incomplete description of the intended functionality of the
program under repair; the need for a more reliable validation of candidate programs; and
the benefits of making use of a candidate program that is of higher quality than the program
under repair. A novel semantics-based APR approach that makes use of the strengths of
MT and MFCCs, referred to as MTRepair, has been developed. MTRepair has several
distinct characteristics, including the use of MRs as input, the MFCC based validation
procedure, and the incremental repair process. The repair effectiveness of MTRepair was
demonstrated through experiments on some subject programs of the IntroClass benchmark
suite [Le Goues et al., 2015].

Being based upon MT, the strategies and approaches presented in this thesis also
face the challenge of identifying appropriate MRs, which is a fundamental challenge for
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all applications of MT. However, much effort has been devoted to this issue, providing
some useful guidelines for identifying effective MRs [Cao et al., 2013; Liu et al., 2014;
Mayer and Guderlei, 2006]. Furthermore, there have recently been some approaches to
systematically generating MRs [Chen, 2015; Liu et al., 2012; Zhang et al., 2014], some
of which are even supported by automated tools. Any advances in the identification of
effective MRs will also make the proposed approaches more effective and efficient.

In addition to the issue of effective MR identification, the proposed test suite generation
approach and MTRepair approach are also influenced by the performance of the symbolic
execution technique used. To enhance the capability of symbolic execution techniques,
several strategies have been developed to process complex path conditions and to han-
dle the path explosion problem [Boonstoppel et al., 2008; Păsăreanu and Visser, 2009].
Accordingly, an increasing number of symbolic execution engines have been developed
[Cadar et al., 2008; Cadar and Sen, 2013; Godefroid et al., 2005; Sen et al., 2005]. The ef-
ficiency of the proposed approaches can be enhanced by applying more powerful symbolic
execution engines. Furthermore, any limitations caused by symbolic executions may also
be alleviated by developing new approaches to generate MFCCs.

7.2 Future work

The research presented in this thesis can be further explored in several directions.

Other applications of the proposed approaches. The investigation of the APR-MT
technique applied MT to two APR techniques (CETI and GenProg), and the study of input
test suite construction involved application to three APR techniques (Angelix, CETI and
GenProg). GenProg is a generate-and-validate APR technique, but Angelix and CETI
are semantics based. Due to the large variety of APR techniques, it will worthwhile to
apply these two studies to a wider range of APR techniques to study their effectiveness.
Furthermore, APR-MT, the input test suite construction approach, and MTRepair were all
evaluated using selected subject programs. Although these subject programs have been
commonly used in APR research, it is still important to investigate the scalability of the

approaches by applying them to more large-scale programs. These follow-up studies
will consolidate the strength of the proposed approaches, and also increase their practical
impact.

Analysis of the impact of MRs on the proposed approaches. All of the proposed
approaches are driven by MT, and therefore, as with all other MT based applications, MRs
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play a critical role whose impact should be thoroughly investigated. An important future
study will be to analyse the effectiveness of different MRs in order to derive guidelines
for identifying effective MRs for the approaches. Furthermore, although the proposed
approaches can support application of multiple MRs, the current studies only applied one
MR at one time. It will therefore be necessary to investigate the application of multiple
MRs, and analyse the degree to which diverse MRs can impact on the approaches. These
studies will provide useful insights and guidelines for the practical application of the
approaches.

Investigation of strategies to enhance the proposed approaches. The input test suite gen-
eration approach and the MTRepair approach make use of MFCCs, which are constraints
encoding the MTGs that violate the relevant MR. In the presented studies, the MFCCs
were constructed using semi-proving. Since semi-proving is built upon symbolic execution,
the effectiveness and efficiency of the approaches are basically restricted by the strength of
the underlying symbolic engines. However, because of the nature of MFCCs, it should be
possible to find alternative construction methods. A future research direction, therefore,
will be to explore the possibility of using other techniques to construct MFCCs, thereby
enabling different implementations of the test suite generation approach and the MTRepair
approach. A more effective and efficient MFCC generation method should increase the
effectiveness of both the input test suite construction approach and the MTRepair approach.
Moreover, studies focusing on this topic will increase the flexibility of the approaches, such
that different appropriate implementations can be used for different application contexts.
On the other hand, by its nature, MTRepair terminates with a successful candidate program
(a program that is of higher quality than the current PUR) in the procedure of repairing an
intermediate PUR, and then continues to repair such a successful candidate program if it is
not a plausible repair. Obviously, the identification of a successful candidate program is
crucial to the final outcome of MTRepair, and an identification of an inappropriate success-
ful candidate program may lead to no repair, or a repair resulted from a lengthy sequence
of repair actions. More advanced strategies assisting the identification of successful as
well as appropriate candidate programs can improve the repair effectiveness of MTRepair.
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