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Abstract

Bose-Einstein condensates (BECs) of dilute atomic gases are coherent macroscopic

systems with a well defined phase able to interfere and exhibit an interference pattern

ultimately given by their phase relationship. If the phase relationship between two

BECs randomly changes from realization to realization , it is considered that the two

BECs are phase incoherent even though they interfere in each individual realization.

In this thesis we present a set of experiments whose aim is to ”rephase”, i.e to

increase the coherence factor defined as the average of the cosine of the relative

phase of two initially incoherent condensates. The original idea was proposed by

Dalla Torre et al. in their 2013 paper (Phys. Rev. Lett. 110, 090404, 2013)

where the authors dealt with two condensate trapped in a double well potential

weakly coupled by tunneling, thus forming an external bosonic Josephson junction

and theoretically predicted the existence of universal scaling laws for the time de-

pendence of physical observables, focusing on the time evolution of the coherence

factor. We have extended the model to two component Bose-einstein condensates

of different hyperfine states trapped in the same magnetic trap and coupled by an

external microwave field, i.e an internal bosonic Josephson junction. This extension

of the original idea shows that universal dynamics (particulatrly rephasing of two

independent condensates) can be achieved in both external and internal bosonic

Josephson junctions.

We use Ramsey interferometry to obtain information about the phase relationship

of two interacting BECs. Our model shows that the effect of a weak coupling com-
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bined with the nonlinear interactions experienced by the two-component BECs can

rephase an initially incoherent ensemble, giving a well-defined phase relationship to

the system. For an incoherent system, we observe a uniform distribution of relative

phase φ after a given Ramsey evolution time t. For a given evolution time t in

the Ramsey interferometer, the relative phase distribution should cluster around

φ = 0. Controlling rephasing is no trivial task and it is dependent on how much the

wave functions of our two component overlap and how strong is the coupling be-

tween them. To increase the atomic interactions, we exploit the intrinsic immiscible

behaviour of two wave-functions.

To decrease the influence of technical noise on phase uncertainty, crucial for accurate

Ramsey interferometry, a new MW system was implemented in the experimental

setup. Our measurements, performed on thermal clouds, clearly show a reduc-

tion of the phase diffusion from 0.5 rad/s, obtained using the old apparatus, to 0.1

rad/s. In our quest to increase the interaction strength by minimising wave-function

overlapping we explored three different methods to produce spatially separated two-

component BEC (2CBEC): independent condensation, fast π/2 transfer and sub-

sequent collective oscillations and adiabatic transfer to a 50:50 superpositon. We

attempted to observe the rephasing effect in two-component BEC but unfortunately

we could not detect it in our experimental conditions. Possible reasons explaining

the lack of direct observation of the rephasing dynamics in 2CBEC, along with all

experimental data, are provided in the body of this thesis.
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CHAPTER 1

Introduction

The discovery of 4He superfluidity [3, 4] was for decades the only experimental ex-

ample of “a new kind of fluid” that shows collective phenomena. The remarkable

discovery opened up the challenge to understand very unusual properties this new

phase transition displayed, i.e. the absence of the fluid viscosity and the quantiza-

tion of vortices when the system is forced to rotate. It was quickly realized that

such unique features were the first realization of a statistical intrinsic nature the 4He

possesses. Indeed, the seminal work by Satyendra Nath Bose [5] already enlightened,

with several years of advance, the existence of a net separation of the behavior a

bosonic system should assume at low temperatures with respect to how fermionic

systems would react in the very same configuration. The spin statistics was then

understood to be the key that allows bosonic particles to undergo condensation

when the temperature isn’t high enough to promote them from the ground state.

The work of Fritz London [6] recognized this deep connection between bosons and

condensate while the fermionic superfluidity of 3He needed to be understood through

another mechanism that now is known to be a Cooper pair formation. The phase

transition temperature towards superfluidity of 4He, at Tc = 2.172 K, also called the

λ-point, turned out to be a thousand times higher than the 3He counterpart due to
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a macroscopic occupation of the system’s ground state, a condition that cannot be

exactly reproduced by a fermion where the Pauli exclusion principle denies multiple

occupation of the same state.

These early ideas and great insight in quantum mechanics impressed many when the

experimental techniques became as sophisticated enough to cool down a mixture of

bosonic gas. Finally, in 1995 the first Bose-Einstein condensation was observed [7–9]

with a vapor of 87Rb atoms, confined by magnetic fields and evaporatively cooled.

This discovery undoubtedly boosted the research on ultracold gases that were recog-

nized to be the main benchmark towards which address the quest for understanding

the quantum mechanical effects on a larger macroscopic scale. Since then indeed

many groundbreaking achievement have characterized the field of ultracold gases,

like the observation of macroscopic matter wave interference [10], the quantum vor-

tices in a rotating condensate [11], the presence of solitons [12–15], and the obser-

vation of the Mott insulator transition [16].

Most of the physics involved was easily modeled by mean-field interactions, due to

the dilute and weakly-interacting nature of Bose-Einstein condensates. The Gross-

Pitaevskii equation [17, 18] served the purpose since the interactions in a bosonic

mixture are not strictly required to obtain condensation, but, they are needed to

understand the properties of the condensate. Replacing the Schrödinger equation

with the Gross-Pitaevskii had also applications outside the scenario of bosonic mix-

tures, for example to model superconductors [19] and also describe optical vor-

tices [20]. Still a major challenge has been to proceed beyond the simple scheme

of a one-particle picture, to investigate strong interactions and the correlation of

condensates. In this context we have seen one great development of experimen-

tal techniques to ensure controllability and tunability of ultracold gases, e.g. the

reduction of dimensionality to observe the leading role of fluctuation around the

mean-field approach, the implementation of optical lattices [21, 22], and the use of

Feshbach resonances [23, 24] to tune interactions.

Multi-component BECs experiments have been of particular interest because of the
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rich physics their study allows. Cornell’s group was the first to achieve condensation

of rubidium 87 atoms in the states |F = 2,mF = 2〉 and |F = 1,mF = −1〉 using

sympathetic cooling [25] and, one year later, to produce a two component BEC by

transferring atoms from |F = 1,mF = −1〉 to |F = 2,mF = 1〉 by two-photon

microwave and radio frequency radiation [26]. Information on the relative phase

of a two component BEC can be obtained using Ramsey interferometry [27, 28]

where the first pulse prepares a coherent superposition and the second pulse extracts

the phase information as a population imbalance. The coherence of the system is

lost over time with corresponding loss of interferometric contrast. Inter-particle

interactions are primary contributors to the decoherence of trapped Bose-Einstein

condensates [29–31]. It is possible to reduce the dephasing associated with collisional

events by tuning the s-wave scattering length to zero using a Feshbach resonance,

as was done by Gustavsson et al. [32] or by using noncondensed atoms where the

combined contributions coming from greatly reduced densities and the identical spin

rotation effect (ISRE) [33] cooperate to increase the coherence time.

So far, these examples had proven the deleterious effects that interactions have on

the coherence of a system. However, interactions can have the rather surprising effect

of creating a coherent system out of an initially incoherent one. This ”rephasing”

mechanism was first proposed by Dalla Torre et al. [2], where the authors con-

sidered a quantum quench in which two initially independent condensates trapped

in a double well were suddenly coupled through uniform tunneling to form an ex-

ternal Josephson junction. They predicted the system would undergo ”rephasing”

dynamics whose effect was to increase the coherence factor [34]. Furthermore the

”rephasing” evolution was expected, in the limit of weak coupling, to follow a uni-

versal scaling law, with profound implication in the extension of universal behavior

from an equilibrium system, where they are well established, to a system out of

thermal equilibrium [35]. Extending the concepts of universality to non equilibrium

systems has indeed been the focus of different groups in recent years, especially

for closed systems, with some authors finding universal scaling laws at long evolu-
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tion times by using the Kibble-Zurek mechanism [36, 37] in systems slowly driven

across a second-order phase transition [38, 39] or suddenly quenched [40, 41]. The

rephasing dynamics predicted by Dalla Torre et al. differ from those predicted by

other authors because they show universality at both short and long times, with

relevant implication connecting short-time dynamics, appropriately described by

perturbation theory, to long-time, intrinsically non-perturbative dynamics [42].

In this thesis we have extended this model to two-component BECs coupled by an

external microwave field, forming an internal Josephson junction, and our simula-

tions are in excellent agreement with the results published by Dalla Torre et al. We

have run extensive simulations of the Gross-Pitaevski equation to obtain quantita-

tive result for the evolution of the nonlinear coefficient χ, which in our model takes

the place of the tunneling strength and is a crucial parameter for the observation of

rephasing dynamics. One major difference between the two models lies in the fact

that the rephasing characteristic time depends on the nonlinear interaction strength

χ, defined as [43]

χ =
1

2h̄
(U11 + U22 − 2U12) Ujk = gjk

∫
dr3|ψj|2|ψk|2 (1.1)

whose strength depends on the value of the interaction strength gjk = 4πh̄2ajk/m

and on the overlapping of the wave-functions ψ. For 87Rb the scattering lengths have

values a11 = 100.40a0, a12 = 98.006a0 and a22 = 95.47a0 [44], all very close together,

making χ ≈ 0 and therefore suppressing rephasing in a perfectly overlapping two

component BEC. The overlapping is therefore crucial in controlling the strength of

the nonlinear interactions and can be modified by exploiting the intrinsic immiscible

behavior of the wave-functions, a consequence of the fact that the scattering lengths

satisfy the immiscibility condition a2
12 ≤ a11a22 [45,46]. We have run extensive simu-

lations of the coupled Gross-Pitaevski equation to obtain quantitative results for the

evolution of the nonlinear coefficient χ. We have explored three different experimen-

tal methods to create initially incoherent and spatially separated condensates, the

prerequisites for rephasing to happen: independent evaporation of each component,
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fast π/2 pulse transfer and subsequent collective oscillations and adiabatic transfer

to a 50:50 superposition. All these methods will be thoroughly detailed in the

chapters to come. We have performed Ramsey measurements of the relative phase

distribution with the aim of detecting oscillations of the coherence factor that follow

the universal scaling laws obtained theoretically, the signature of rephasing. Finally,

the microwave setup used in the experiments has been improved, with a substan-

tial reduction of phase diffusion due to technical noise. The time evolution of the

phase stability has been accurately characterized using Ramsey interferometry with

thermal atoms and an almost fivefold reduction, from ∼ 0.5 rad/s to ∼ 0.1 rad/s,

measured.

1.1 Thesis structure

This thesis has the following organization:

In the second chapter we review the theoretical basis necessary to describe a BEC

in a mean-field framework. We outline the derivation of the Gross-Pitaevskii [47]

equations for two components coupled by an external field and in the presence of

losses using a variational principle, the Thomas-Fermi approximation and we discuss

dimensionality reduction methods starting from non-polynomial nonlinear coupled

Schrödinger equations which still capture transverse dynamics as variational param-

eters and ending, with the neglect of the radial terms, in a purely one dimensional

model. We briefly present the main ideas employed in the simulations of the coupled

Gross-Pitaevskii equations widely used throughout the thesis.

Chapter three provides an overview of the experimental setup. We describe the

optical excitation scheme, the magnetic potentials and the radio frequency and mi-

crowave systems used to cool, trap and manipulate the atoms. The microwave field

intensity for each polarization component is characterized using Rabi oscillations

and the magnetic field is calibrated with single photon MW spectroscopy. We have

implemented a new imaging system with increased magnification and resolution,
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from ∼ 27µm to ∼ 10µm. Finally we have increased the flexibility of the adiabatic

passage method for dual-state imaging [48], allowing it to be tuned to any transition

frequency by changing the timing of the microwave pulse as well as an external bias

field.

In the fourth chapter we introduce the Bloch sphere formalism and describe the

Ramsey interferometry technique, central to most of our experiments. A theoretical

analysis of the major contribution to the phase noise is given, with a distinction be-

tween purely quantum (intractable in a mean field approach), mean field (predicted

by mean field theory) and technical factors affecting phase noise.

The fifth chapter presents the results obtained in a set of Ramsey interference

experiments in phase and time domain performed on thermal atoms using a new

and improved microwave setup. We provide evidence for the reduction of technical

noise to a level below the corresponding quantum noise experienced by a BEC of

∼ 5.5 · 104 atoms. An analysis of other major sources of decoherence is performed

and Ramsey interferometry on BECs with small populations is carried out to try to

obtain quantum limited clock stability.

Chapter six is an introduction to the physics of bosonic Josephson junctions, both

external and internal. The theoretical foundation for the existence of the rephasing

effect is illustrated using initially the double well model developed by Dalla Torre et

al. [2] and then extended to the two-component case. We present internal Joseph-

son junction simulations that are in agreement with the original model by Dalla

Torre. Extensive two component GPE simulations are performed to characterize

the behavior of the nonlinear χ coefficient.

In the seventh chapter we present the measurements for the rephasing experiment.

We use three different approaches to create the right condition for rephasing: inde-

pendent condensation, fast π/2 splitting and adiabatic transfer to a 50:50 superposi-

tion. Each approach has its pros and cons, which we detail. Ramsey interferometry

is used to characterize the relative phase distribution from where the coherence
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factor is extracted and compared with the theoretical predictions. The coherence

of the system before the application of the rephasing sequence is also studied in a

similar way.

Finally, chapter eight provides concluding remarks and a brief summary of the

results of the thesis.
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CHAPTER 2

Two-Component BEC

This chapter provides an introduction to the theory of two-component Bose-Einstein

condensates, quantum systems composed of two interacting BECs. Condensates of

different elements and condensates of the same element in two different internal

states are all examples of two-components BECs. In Swinburne we focus on the cre-

ation and manipulation of two-component condensates in different hyperfine states,

chiefly |F = 1,mF = −1〉 and |F = 2,mF = +1〉 in the ground level of 87Rb.

Throughout this chapter the coupled Gross-Pitaevski equations (CGPE) are used

to provide a mean field description that has been successful in predicting with accu-

racy many properties of these quantum systems. The hydrodynamic description of a

two-component BEC is also briefly introduced and constitutes a useful complement

to a CGPE description, particularly when excitations need to be calculated.

2.1 Coupled Gross-Pitaevskii Equations

In the mean-field approximation the state of each BEC component can be described

by the condensate’s order parameter Ψi. The wave functions are normalized as∫
|Ψi|2d3r = Ni, where Ni is the number of atoms in state |i〉.The mean-field energy
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functional of a two component BEC is [47, 49]

E =

∫
dr

[
h̄2

2m
|∇Ψ1|2 +

h̄2

2m
|∇Ψ2|2 + V1(r)Ψ1 + V2(r)Ψ2

+
1

2
g11|Ψ1|4 +

1

2
g22|Ψ2|4 + g12|Ψ1|2|Ψ2|2

]
(2.1)

with g11 = 4πh̄2a11/m and g22 = 4πh̄2a22/m the coupling constants expressed in

terms of the s-wave scattering lengths for collisions between atoms occupying the

same state, while g12 = 4πh̄2a12/m is determined by the scattering length of atoms

occupying different sates. The first four terms in eq. (2.1) correspond to the kinetic

and potential energy in the external potential Vi and the remaining terms takes into

account the interaction between condensed atoms, well described in the low energy

limit by the s-wave scattering length ajk. It is possible to derive from eq. (2.1) the

coupled Gross-Pitaevskii equations (CGPE) for the two-component BEC from the

variational principle ih̄∂Ψi/∂t = δE/δΨ∗i :

ih̄
∂

∂t
Ψ1 =

(
− h̄2∇2

2m
+ V1(r) + g11|Ψ1|2 + g12|Ψ2|2

)
Ψ1

ih̄
∂

∂t
Ψ2 =

(
− h̄2∇2

2m
+ V2(r) + g22|Ψ2|2 + g12|Ψ1|2

)
Ψ2

(2.2)

Equations (2.2) do not take into account losses or electromagnetic coupling terms. If

we couple two components with the electromagnetic radiation h̄Ωeiωt, the inclusion

of such terms in the rotating-wave approximation leads to [50]

ih̄
∂

∂t
Ψ1 =

(
− h̄2∇2

2m
+ V1(r) + g11|Ψ1|2 + g12|Ψ2|2 − ih̄Γ1 +

h̄δ

2

)
Ψ1 +

h̄Ω

2
Ψ2

ih̄
∂

∂t
Ψ2 =

(
− h̄2∇2

2m
+ V2(r) + g22|Ψ2|2 + g12|Ψ1|2 − ih̄Γ2 −

h̄δ

2

)
Ψ2 +

h̄Ω

2
Ψ1

(2.3)

where δ = ω−ω1 is the detuning, Ω is the resonant Rabi frequency, Γ1 = 1
2
(γ111|Ψ1|4+

γ12|Ψ2|2), Γ2 = 1
2
(γ12|Ψ1|2 + γ22|Ψ2|2) are the loss rate and γ12, γ22, γ111 are loss

coefficients for two and three-body losses [51]. For the case of two-body losses, the

dominant process is spin-exchange interactions. However spin-exchange interactions
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are suppressed for the |1〉 = |F = 1,mF = −1〉 state used in our experiment due

to the conservation of total mF . In fact there is no state with mF < −1 in the

F = 1 manifold and the transfer of one of the atoms in the F = 2 manifold is ener-

getically forbidden due to the very low temperature. Two body losses are therefore

only relevant for the other state used in our experiment, |2〉 = |F = 2,mF = 1〉,

where collisions of the type |2, 1〉 + |2, 1〉 ⇒ |2, 0〉 + |2, 2〉 leads to the loss of

particle |2, 0〉 from the trap. In a superposition of two states collisions of the type

|1〉 + |2〉 ⇒ |2, 0〉 + |1, 0〉 are also possible and leads to two-body losses with loss

coefficient γ12. The experimentally measured values [52] for γ22 = 8.1 · 10−14 cm3s−1

and for γ12 = 1.51(19) · 10−14 cm3s−1.

Momentum conservation prevents molecule formation in two body collisions, but in

three-body collisions two atoms can form a molecule while the third carries away

momentum. When a molecule is formed the energy released is usually enough to

expel both the molecule and the atom from the trap. Both states experience three

body losses, but this loss process is negligible when compared to two-body losses

for atoms in state |2〉. The experimentally measured value [44] for the three body

coefficient is γ111 = 5.8 · 10−30 cm6s−1.

It is worth recalling the conditions of applicability for the CGPE of equations (2.2)

and (2.3); the total number of atoms N should be large, both to justify the concept

of Bose-Einstein condensation and to ensure the orthogonality of the many-body

wave functions Φi,a and Φi,b, defined, in the Hartree-Fock approximation, as

Φi,a(r1, r2, ..., rN) =

(
1√
N

Ψi,a(r1)

)(
1√
N

Ψi,a(r2)

)
...

(
1√
N

Ψi,a(rN)

)
(2.4)

In fact, if Ψi,a and Ψi,b are two solutions of the CGPE corresponding to two different

values of the chemical potentials µa and µb for component i, they are not, in general,

orthogonal [47], but the corresponding many-body wave functions become orthog-

onal in the thermodynamic limit since (Φi,a,Φi,b) = (N−1
∫
dr Ψ∗i,aΨi,b)

N tends to

zero when N →∞ because
∫
dr Ψ∗i,aΨi,b ≤ N . The diluteness condition |aij| � n−

1
3

must also be satisfied and the temperature should be low enough to allow us to
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ignore the quantum and thermal depletion of the condensate, respectively. Finally

the CGPE can only be used to investigate phenomena that take place over distances

much larger then the scattering length aij.

2.1.1 Hydrodynamic equations

It is possible, under general conditions, to use, instead of the CGPE equations (2.2),

an exactly equivalent set of equations for the density n = |Ψi|2 and the condensate

phase θi. If we multiply equations (2.2) by Ψ∗i and then subtract the complex

conjugate of the resulting equations we obtain [47, 49]

∂|Ψi|2

∂t
+∇ ·

[
h̄

2mi
(Ψ∗i∇Ψi −Ψi∇Ψ∗i )

]
= 0 (2.5)

which has the form of a continuity equation for the particle density. With the

introduction of the velocity of the condensate, defined as

vi =
h̄

2mi

(Ψ∗i∇Ψi −Ψi∇Ψ∗i )

|Ψi|2
. (2.6)

Equation (2.6) can be rewritten in the form

∂ni
∂t

+∇ · (nivi) = 0. (2.7)

We can further simplify equation (2.6) by expressing Ψi in terms of amplitude and

phase Ψi =
√
Nie

iθi

vi =
h̄

m
∇θi (2.8)

and finally obtain the equation of motion for the velocity

m
∂vi

∂t
= −∇(µ̃i +

1

2
mv2

i ) (2.9)

where

µ̃ = V (r) + n1g1i + n2gi2 −
h̄2

2m
√
ni
∇2√ni (2.10)

Equation (2.9) can be derived by taking the gradient of

− h̄∂φ
∂t

= − h̄2

2m
√
ni
∇2√ni +

1

2
mv2

i + V (r) + n1g1i + n2gi2 (2.11)
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Equation (2.11) explicitly gives the time evolution of the phase and can be obtained

after inserting the order parameter Ψi =
√
Nie

iθi into the CGPE and separating

real and imaginary parts. The quantity n1g1i + n2gi2 in equation (2.10) is the

chemical potential for a 2CBEC and, at zero temperature, can be related to the

pressure through the Gibbs-Duhem relation dp = ndµ, giving p = −∂E/∂V =

n2
1g1i/2 + n2

2gi2/2. Using the expression for the pressure, equation (2.9) can be cast

in the form

∂vi

∂t
= − 1

mni
∇p− 1

m
∇V (r) +

1

m
∇ h̄2

2m
√
ni
∇2√ni −∇

v2
i

2
(2.12)

Equations (2.7) and (2.12) resemble very closely the hydrodynamic equations for

a perfect fluid, with equation (2.7) having exactly the same form, while equation

(2.12) differing slightly from the corresponding Euler equation for a perfect fluid

∂vi

∂t
= − 1

mni
∇p− 1

m
∇V (r) + vi × (∇× vi)−∇

v2
i

2
(2.13)

the differences being the irrotationality of equation (2.12) in the absence of vortices

and the quantum pressure term 1
m
∇ h̄2

2m
√
ni
∇2√ni. The quantum pressure term de-

scribes forces due to spatial variations in the magnitude of the wave function and

dominates the pressure term on a length scale of the order of the coherence length

ξ ∼ h̄/(mnigii). The hydrodynamic equations are particularly suited to investigate

excitations and vortex behavior in BEC.

2.1.2 Ground state and Thomas-Fermi approximation

The ground state of a single BEC satisfies the time-independent GPE equation [53,

54]

µΨ =

(
− h̄2∇2

2m
+ V (r) + g|Ψ0|2

)
Ψ (2.14)

where g = 4πh̄2a/m is the coupling constant and a is the scattering length. Equation

(2.14) can be derived from the minimization of the energy functional

E =

∫
dr

[
h̄2

2m
|∇Ψ|2 + V (r)|Ψ|2 +

1

2
g|Ψ|4

]
(2.15)
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with respect to Ψ∗ with the constraint that the total number of atoms N is constant.

Throughout this thesis, the ground state is computed using the imaginary time

propagation method [55–57]. This method uses a time-dependent GPE

ih̄
∂

∂t
Ψ =

(
− h̄2∇2

2m
+ V (r) + g|Ψ|2

)
Ψ (2.16)

and makes a Wick rotation to imaginary time t→ τ = it. A trial function Ψ(r, τ0) =

Ψ0(r) is then propagated and normalized for every time interval [τn, τn+1]. Every step

decreases the energy functional eq. (2.15) and in the limit τ →∞ the ground state is

reached. Practically the computation ends when the energy functional drops below

a predefined value. The correct choice of the trial function Ψ0(r) is very important

to ensure the convergence. In the limit of small particle number or weak interaction

we can neglect the nonlinear term in the GPE eq. (2.14). The ground state, when

the potential V (x, y, z) is an anisotropic harmonic-oscillator given by

V (x, y, z) =
1

2
m(ω2

1x
2 + ω2

2y
2 + ω2

3z
2) (2.17)

is a Gaussian function of the form

ΨG =
1

π3/4(a1a2a3)1/2
ex

2/2a2
1ey

2/2a2
2ez

2/2a2
3 . (2.18)

When the particle number is large and the interactions repulsive, a trial wave func-

tion can be obtain by neglecting the kinetic energy term in equation (2.14), or

equivalently the quantum pressure term in equation (2.12). This is the well known

Thomas-Fermi approximation and the ground state takes the simple form

ΨTF =


√

µTF−V (x,y,z)
g

if V (x, y, z) < µTF

0 if V (x, y, z) ≥ µTF

(2.19)

It is possible to simulate the ground state for a 2CBEC using the CGPE (2.2), but

this approach does not reproduce the conditions usually found in the experiment.

The condensate is normally prepared all in state |1〉 and then half of it is transferred

in state |2〉 through the application of a 2-photon MW+Rf pulse (π/2 pulse). This
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leaves the 2CBEC in a non-stationary state that exhibits collective oscillations in

the form of breathing modes [58, 59].

It is worth mentioning that the imaginary time propagation method can produce

accurate estimates of the first excited state as well, provided that the initial trial

wave function has an odd symmetry [56].

2.1.3 Reduction to lower dimensions

In our experiment the condensate is trapped in an external potential with cylindrical

symmetry. The confinement is tighter in the radial direction compared to the axial

(ωr ∼ 10ωz). This geometry is commonly known as a ”cigar shape” trap. Due to the

high energy cost (∼ h̄ωr compared to ∼ h̄ωz) of producing an excitation along the

radial direction, we can assume the dynamics happen along the axial direction only.

This allows us to describe the 3D 2CBEC with an effective 1D treatment. The 3D

2CGPE equation can be reduced to a 1D 2CGPE by minimizing the action [60, 61]

with respect to Ψ∗i

A =

∫
L1 + L2 − U12|Ψ1|2|Ψ2|2dr dt (2.20)

where

Li = i
h̄

2

(
Ψ∗i
∂Ψi

∂t
−Ψi

∂Ψ∗i
∂t
− h̄

2m
|∇Ψi|2 − V |Ψi|2 −

1

2
Uii|Ψi|4

)
(2.21)

given the trial wave function

Ψi = φi(r, z, t)fi(z, t) =
er

2/(2a2
ir)

√
πair

fi(z, t) (2.22)

with air =
√
h̄/(miωir) the characteristic length of the harmonic oscillator and φi a

Gaussian function that correctly models the condensate in the weak interaction limit

and is acceptable in the strong coupling limit (a rigorous mathematical treatment

of the strong coupling limit can be found in [60, 62]).

Assuming φi varies slowly along the axial direction

∇2φi ≈
(
∂2

∂x2
+

∂2

∂y2

)
φi (2.23)
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we replace the trial wave function in equation (2.20) and after integrating along x

and y we are left with the Euler-Lagrange equation for the two variational functions

f1(z, t) and f2(z, t)

ih̄
∂

∂t
f1 =

[
− h̄2

2m

∂2

∂z2
+
mω2

1zz
2

2
+

g1

2πa2
1r

|f1|2

+ h̄ω1r +
g12

π(a2
1r + a2

2r)
|f2|2

]
f1 (2.24)

ih̄
∂

∂t
f2 =

[
− h̄2

2m

∂2

∂z2
+
mω2

2zz
2

2
+

g2

2πa2
2r

|f2|2

+ h̄ω2r +
g12

π(a2
1r + a2

2r)
|f1|2

]
f2 (2.25)

Equations (2.24) and (2.25) are the 1D equivalent of the 3D CGPE and can be

further simplified by neglecting the constant h̄ωir since it does not affect the dy-

namics. Equations (2.24) and (2.25) are valid in the weakly interacting regime,

when aii|fi|2 � 1. For the strongly interacting regime we cannot use the harmonic

oscillator characteristic length as the width of the Gaussian trial function, but we

have to introduce an additional variational parameter σi(z, t) and solve two addi-

tional Euler-Lagrange equations that will eventually give us explicit expressions for

σi in terms of fi (details in [60]).

The 1DCGPE can be obtained from equations (2.2) in a general way by neglecting

the radial terms and by replacing the nonlinear coefficient with

g1D
ij = gij

∫ ∞
0

|Ψi(r, z, t)|2|Ψj(r, z, t)|2dr (2.26)

where Ψi and Ψj are suitable trial function. It is important to remember the different

conditions in which a 1D BEC can be found. In the limit aii|fi|2 � 1 the system

is geometrically one dimensional but the BEC locally retains its three dimensional

features; if aii|fi|2 � 1 the condensate enters the 1D regime. This regime can still be

treated using a mean field theory if |fi|2a2
ir/aii � 1, otherwise one should use Lieb

and Liniger theory [63], which introduces beyond mean field effects. In the limit of

very low density, when a2
ir|fi|2/aii � 1, we enter the Tonks-Girardeau regime [64,65]
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where particles behave like impenetrable objects and an interacting Bose gas can be

described as a Fermi gas.

2.1.4 Simulation of the non-equilibrium dynamics of 2CBEC

The first step to efficiently solve equations (2.3) is to cast them in dimensionless

form. By introducing the harmonic oscillator length

ωm = min(ωx, ωy, ωz), a0 =

√
h̄

mωm
(2.27)

and by making the following change of variables

r→ r′ =
r

a0

, t→ t′ = ωmt,

E → E ′ =
E

h̄ωm
, Ψ→ Ψ′ = a

3/2
0 Ψ

(2.28)

we obtain

i
∂

∂t
Ψ′1 =

(
− ∇

2

2
+ V ′1(r) + g′11|Ψ′1|2 + g′12|Ψ′2|2 − iΓ′1 +

δ′

2

)
Ψ′1 +

Ω′

2
Ψ′2

i
∂

∂t
Ψ′2 =

(
− ∇

2

2
+ V ′2(r) + g′22|Ψ′2|2 + g′12|Ψ′1|2 − iΓ′1 −

δ′

2

)
Ψ′2 +

Ω′

2
Ψ′1

(2.29)

with

V ′1 =V ′2 =
1

2
(λ2

xx
2 + λ2

yy
2 + λ2

yy
2), λx,y,z =

ωx,y,z
ωm

, g′ij =
4πaij
a0

,

γ′111 =
γ111

ωma6
0

, γ′ij =
γij
ωma3

0

, Ω′ =
Ω

ωm
, δ′ =

δ

ωm

(2.30)

The solution to Equations (2.29) has the approximate form [66, 67]

Ψ
′(n+1)
i ≈ e−i∆tÂe−i∆tB̂Ψ

′(0)
i (r) (2.31)

and is found in two steps with a time splitting spectral scheme (TSSP). The first

step consist of finding a solution for the differential operator Â
i ∂
∂t

Ψ
′(1)
i (t, r) = −∇2

2
Ψ
′(1)
i (t, r) with n∆ < t ≤ (n+ 1)∆t

Ψ
′(1)
i (n∆t, r) = Ψ

′(0)
i (r)

(2.32)
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by Fourier transforming F(∇2Ψ
′(1)
i ), solving the resulting algebric equation and

then inverse Fourier transforming the result. The second step solves the remaining

nonlinear operator B̂
i ∂
∂t

Ψ
′(2)
i =

(
V ′1(r) + g′11|Ψ

′(2)
i |2 + g′12|Ψ

′(2)
j |2 − iΓ′1 + δ′

2

)
Ψ
′(2)
i + Ω′

2
Ψ
′(2)
i

Ψ
′(2)
i (n∆t, r) = Ψ

′(1)
i ((n+ 1)∆t, r) with n∆ < t ≤ (n+ 1)∆t

(2.33)

with an exact integration of equation (2.33). With the splitting scheme of equation

(2.31), called a Lie split, the approximation is first order in time and spectral in

space. This means we have to set a relatively small time step ∆t for precise results,

while the spatial grid can be coarse. The method can be improved by using a

different splitting scheme, called a Strang split [68], that approximates the solution

with

Ψ
′(n+1)
i ≈ e−i(∆t/2)Âe−i∆tB̂e−i(∆t/2)ÂΨ

′(0)
i (r) (2.34)

and improves the scheme to second order in time.



CHAPTER 3

Experimental Apparatus

In this chapter we provide a comprehensive description of the setup and the methods

used in the experiments. The system is designed to prepare a 87Rb Bose-Einstein

condensate (BEC) in the stretched state |F = 1,m = −1〉 of the ground state

manifold. The 87Rb atoms are trapped in an ultra high vacuum (UHV) chamber

using a magnetic field produced by multiple sets of coil surrounding the chamber

and an ”atom chip” placed inside the chamber, compatible with the requirement

for UHV. The atoms are cooled to temperatures in the range of several tens of µK

by the combined application of Doppler-limited optical molasses and sub-Doppler

polarization gradient cooling (PGC). The final cooling needed to reach the critical

temperature for BEC formation is achieved using the radio frequency evaporation

technique. Once the BEC phase has been reached, we manipulate the condensed

atoms by applying radio-frequency (RF) and micro-wave (MW) fields. The appli-

cation of these fields leads to coupling between the different hyperfine sub levels

and allows us to perform the two component BEC experiments (2CBEC) described

in the following chapters. Finally we extract information about the populations

of two states using a dual state absorption imaging technique combining adiabatic

population transfer with the Stern-Gerlach separation.
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3.1 Magnetic trapping

Neutral atoms can be trapped using the interaction between their permanent magnetic-

dipole moment and a static magnetic field, by inducing an electric-dipole moment

through the application of an inhomogeneous laser field, or using time varying fields

(e.g. TOP traps). Compared to the trapping of ions, who have a charge on which

an electromagnetic field can exert considerable Coulomb or Lorentz force, the forces

that can be applied on neutral atoms are rather weak, hence it is necessary to laser

cool them. The technique and the setup for our laser cooling system will be the topic

of the next section. In this section we focus our attention on magnetic trapping,

the interaction of a static magnetic field with a neutral atom, the types of magnetic

traps used in the experiment and the equipment employed to create them.

3.1.1 Interaction of an atom with a magnetic field

We start by considering the Hamiltonian describing the hyperfine energy levels of

an atom in a static magnetic field B. The total Hamiltonian Htot is the sum of the

hyperfine Hamiltonian Hhfs and the Hamiltonian describing the interaction with the

magnetic field HB:

Htot = Hhfs +HB (3.1)

with [69, 70]

Hhfs = AhfsI · J +

=0 for levels with J=1/2, as in 87Rb ground state︷ ︸︸ ︷
Bhfs

3(I · J)2 + 3
2
I · J − I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1)
(3.2)

HB =
µB
h̄

(gJJz + gIIz)Bz (3.3)

where Ahfs is the magnetic dipole constant, Bhfs is the electric quadrupole constant,

I is the total nuclear angular momentum, J is the total electron angular momentum,
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µB is the Bohr magneton, gj,i are respectively the electron and nuclear g-factors.

The static magnetic field B is taken to be along the z axis and the quantization

axis is chosen in the same direction. For weak magnetic field (B < 1000 G, see

figure 3.1), HB is a perturbation of Hhfs, F = J + I is a good quantum number, the

state of the atom can be expressed in the |F,mF 〉 base and the energy levels split

according to [70]:

∆E|F,mF 〉 = µBgFmFBz (3.4)

where gF is given by [71]:

gF = gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
+ gI

F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1)
(3.5)

For strong magnetic fields Hhfs becomes a perturbation of HB, J and I are good

quantum numbers, the state can be expressed in the |J,mJ I,mI〉 base and the

energies are given by:

E|J,mJ I,mI〉 = AhfsmJmI + µB(gJmJ + gImI)Bz (3.6)

For intermediate fields, perturbation theory cannot be applied and the Hamiltonian

Htot = Hhfs + HB needs to be diagonalized numerically. However, for states with

J = 1/2, as is the case of the ground state of alkali metals, we can apply the

Breit-Rabi formula [70, 72] (figure 3.1), that provides an analytical solution to the

problem:

E|J=1/2,mJ I,mI〉 = − ∆Ehfs
2(2I + 1)

+ gIµBmB ±
∆Ehfs

2

(
1 +

4mx

2I + 1
+ x2

)1/2

(3.7)

where x = (gJ − gI)µBB/∆Ehfs and m = mI ± 1/2 depending on the sign chosen

in equation (3.7)

As can be seen from equation (3.4), the energy of a state depends on the magnetic

field. Atoms in an inhomogeneous magnetic field will experience a spatially-varying
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Figure 3.1: Zeeman split of the hyperfine levels F=2 and F=1 in 87Rb calculated

using the Breit-Rabi formula, equation 3.7

potential proportional to gFmF . If gFmF > 0, the atom will experience a force

toward the regions of lower magnetic field and the corresponding states are called

low-field seekers. States with gFmF < 0 on the other hand will experience a force

toward the region of high magnetic field and are therefore called high-field seekers.In

regions where there are no electric currents it is impossible to have a local maximum

of the magnetic field and therefore the only states relevant for magnetic trapping

are low-field seeking states.

3.1.2 Quadrupole coils

We use a pair of identical coaxial coils carrying equal currents in opposite directions

to create a quadrupole magnetic field. In our experiments the quadrupole field is

used in conjunction with laser beams during the initial cooling stages (MOT and
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CMOT, see section 3.2.1). The coils used have a radius R = 7.5 cm, with n = 400

turns each. In order to produce a quadrupole field which is nearly uniform around

the minimum of the field, the coils should be in an anti-Helmholtz configuration,

which means they should satisfy the following conditions:

the current in each coil is equal in magnitude and opposite in direction;

the distance d between the two coils is d =
√

3R.

The condition on the current is satisfied by wiring the coils in series and driving

them with a single power supply. The usual values of the current range between 9.0

A and 9.2 A. The condition on the distance is not satisfied due to the constraint

imposed by the size of the vacuum chamber. The separation between the coils is

currently d ≈ 4R and cannot be reduced. Increasing the radius of the coils will

lead to an increase in inductance and resistance, with a consequent increase in

switching time and heating, both undesirable. Magnetic field simulations show only

a small departure from the ideal quadrupole potential, both in terms of linearity

and gradient strength for the present configuration. The current is controlled by

a switching circuit based around a high-power bipolar-junction transistor (BJT)

and an OP-amp feedback loop (figure 3.2). There are independent switches for

every element creating a magnetic field, with the exception of the Z and U-Wire

traps that share the same switch [73]. The switching speed differs by the nature

of the load, with mostly resistive loads, Z and U wire, being the fastest (few µs)

and highly inductive loads, quadrupole coils and large bias field coils, being the

slowest (hundreds of µs). Additionally, with an inductive load, is very important

to set the right parameters for the feedback loop, in order to damp the inevitable

LCR resonances (usually in the range of tens of kHz). The stability in time of the

magnetic field produced is also very important and we infer it by measuring the

stability of the voltage across a sense resistor. For the fields used during evaporative

cooling, when trap stability is paramount, we use water-cooled monitor resistors

built to strict tolerances to minimize fluctuations in the readings due to variations
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in the resistor itself. The voltage is stable in the mV range over a 20 seconds period.

The magnetic field generated by a single coil is [74], using cylindrical coordinates,

with the z-axis coaxial with the center of the coils:

Bz =
µ0I

2π

1√
(R + ρ)2 + (z − A)2

(
R2 − ρ2 − (z − A)2

(R− ρ)2 + (z − A)2
E(k2) +K(k2)

)
(3.8)

Bρ =
µ0I

2πρ

z − A√
(R + ρ)2 + (z − A)2

(
R2 + ρ2 + (z − A)2

(R− ρ)2 + (z − A)2
E(k2)−K(k2)

)
(3.9)

k2 =
4Rρ

(R + ρ)2 + (z − A)2
|B| =

√
Bz

2 +B2
ρ (3.10)

where E(k2) and K(k2) are elliptic integrals, A is the distance along the z-axis,

ρ =
√
x2 + y2 is the distance on a plane perpendicular to the z-axis, R is the coil

radius and µ0 = 4π · 10−7 T·m/A is the vacuum permeability. The fields of a pair

of coils in anti-Helmholtz configuration can be calculated as a superposition of two

such field with opposite currents I. From eqs. (3.8) and (3.9) it is clear that such a

configuration has only one point where the field is zero, and this point lies on the

z-axis halfway between the coils.The magnetic field around the minimum has the

form:

B = B′xx+B′yy +B′zz (3.11)

The potential generated is proportional to the field gradient and varies linearly,

providing a confining force ~F = ~∇(µ · ~B) in all three directions . However, due

to the Maxwell’s equations requiring that B′x + B′y + B′z = 0, the force is neither

harmonic nor central. The gradient of the magnetic field for the usual experimental

condition I = 9.2 A is ≈ 4.5 G/cm in the radial direction and ≈ 9.5 G/cm in the

axial direction.

It is a well known fact that the quadrupole field cannot be used to achieve BEC due

to Majorana spin-flip losses. This loss mechanism arises because atoms confined in

a quadrupole trap explore, as they move, regions where the magnetic field changes

in magnitude and direction. For the atoms to remain trapped, as we have seen in

3.1.1, they must remain in a weak-field seeking state. The atoms will remain in

a specific magnetic sub level as long as the Larmor frequency ωL = gFmfµBB/h̄,
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describing the precession of the magnetic moment around the magnetic field is fast

compared to the field variations. The assumption that the spin follows adiabatically

the local direction of the magnetic field is valid if

v · ∇B� ωL (3.12)

where v is the speed of a particle and ωL is the Larmor frequency. In regions of the

trap where the magnetic field is very weak, this condition is not satisfied, and atoms

will be ejected. For hot enough atoms, however, the losses will be small, because the

size of the region where Majorana spin-flip is relevant has size ∝
√

2h̄v/πµB′, with

v being the speed of the atoms, which is much smaller then the size of the cloud.

When the temperature drops, v decreases, decreasing the size of the ”hole”, but the

size of the cloud decreases even faster, giving a T−2 dependence of the loss rate with

the temperature [75]. For this reason condensation is achieved in a different field

configuration, a configuration with non-zero magnetic field everywhere, achievable

in a Ioffe-Pritchard trap.

3.1.3 Ioffe-Pritchard trap

One way to overcome the Majorana spin-flip losses is to confine atoms in a trap

with a non-zero minumum. The most common realization of such a trap is the

Ioffe-Pritchard (IP) [74–76]. The trapping field has the form:

B = Bb


1

0

0

+B′


0

−y

z

+
B′′

2


x2 + (y2 + z2)/2

−xy

−xz

 (3.13)

where Bb is a bias field. The modulus of the field, obtained by expanding to second

order near the minimum, which we make to coincide with the origin of our reference

frame, is:

|B| ≈ Bb +
B′′

2
x2 +

1

2

(
B′2

Bb

− B′′

2

)
(z2 + y2) (3.14)
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Figure 3.2: Schematics of the switch used in the experiment to drive the quadrupole

coils. The current through the inductive load ZL is kept at the desired value by

a feedback loop that compares the voltage drop VSense across the sensing resistor

RSense with the control voltage VCont selected by the user. To avoid fluctuation in

the current value due to change in the value of RSense, the sensing resistor is water

cooled .

The trapping potential created by this trap is well approximated, near the origin,

with an anisotropic harmonic potential of the form:

U ≈ µm
2

[(
B′2

B0

− B′′

2

)
ρ2 +B′′x2

]
(3.15)

where ρ2 = z2 + y2 and µm = gFµBmF . Far from the origin the potential is linear

along the radial direction (Uρ = µB′ρ) and harmonic along the axial.

The presence of a gravitational field modifies the potential to:

U = µm · |B|−mgz (3.16)

Gravity displaces the minimum so that the atoms are not positioned in it anymore.

The magnetic field gradient required to compensate gravity is B′ = mg/µm, which is

≈ 30 G/cm for atoms in |F = 1,m = −1〉. Atoms with different magnetic moment
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µ1, µ2 will then clearly occupy different positions in the trap, with a separation given

by:

∆z =
g

ω2

(
µ1

µ2

− 1

)
(3.17)

and ω is the trapping frequency in the direction of gravity for atoms with magnetic

moment µ1

3.1.4 Magnetic traps on a chip

The main advantages in using miniaturized current-carrying structures on a chip

surface to generate the magnetic field needed to trap atoms are:

• Very strong confinement (high field gradients)

• Strong anisotropy (extreme aspect ratios)

The magnetic field generated by an infinitely thin wire carrying a current I is:

B =
µ0

2π

I

r
(3.18)

It is clear from the previous equations that the closer the trap is to the wire, the

stronger will be the confinement. However, losses induced by temporal fluctuations

of the charge density inside the conducting wire, which creates a time dependent

magnetic field that can induce spin-flips, and heating effects on the trapped atoms

limit the minimum trap distance for copper wires to about 4 micrometers [77–79].

With superconducting wires these effects can be greatly suppressed, and the new

limiting factors come in the form of van der Waals and Casimir-Polder forces, that

cause atoms closer then a few hundred nanometers to fall on the trap surface [80]. In

our experiments we use copper wires to generate our trap and the minimum distance

of the cloud from the surface ranges from 140 to 180 micrometers.

A Z-shaped wire, combined with an homogeneous external bias magnetic field Bb

perpendicular to the central part of the wire, produces an harmonic potential anal-

ogous to a Ioffe-Pritchard trap [81]. The application of an additional field B⊥
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perpendicular to Bb in the y direction allows the trap bottom B0 of the Ioffe trap

to be adjusted. The field created by such a configuration is, for thin wire, infinite

end wires, close to the minimum and up to second order:

B(x, y, z) = B0 +
(y2 + z2)

2B0

(
2πB2

b

µ0I

)2

+
2µ0r0Id

2
hx

2

π(d2
h + r2

0)3
(3.19)

where dh is the length of the middle wire, r0 is the distance of the field minimum

from the wire and the equation is valid if r0 << dh. We use such a configuration

to trap atoms during the evaporation stage, in what we call a compressed magnetic

trap (CMT). The trap frequencies can be calculated using:

ωy = ωz =
2πB2

b

µ0I

√
µB

2mB0

(3.20)

ωx =
µ0Idh
π

√
µB

mBb(d2
h + r2

0)3
(3.21)

and m is the mass of the atoms. For the typical experimental conditions with I = 17

A, B0 = 3.23 G, Bb = 26 G and dh = 6.353 mm we have ωx = ωy ≈ 2π · 99.794

Hz and ωz ≈ 2π · 13.1 Hz, not far from the measured values ωx,y ≈ 2π · 97 Hz and

ωz ≈ 2π · 11.7 Hz. These formulae don’t take into account the finite size of the end

wires, providing results that differ slightly from the actual measured results. It is

possible to calculate the field more precisely by adding the field generated, using the

Biot-Savart law, by wire segments. Following this procedure, the field at a point P

created by a segment of length A is [82]:

B =
µ0I

4π

C ×A
|C ×A|2

(
A ·C
|C|

− A ·B
|B|

)
(3.22)

A U-shaped wire, again with a bias field Bb applied along the y direction, creates a

quadrupole trap and it is used, due to the increased strength when compared with

the field created by quadrupole coils, in the compressed MOT (CMOT) stage of the

BEC production.
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3.2 Laser Cooling

Laser cooling allows atoms to be cooled from the ∼500K of rubidium vapour released

from the dispenser to ∼ 40µK of the atoms just after polarization gradient cooling

(PGC). In this section a description is provided of the principles and realization of

the various stages of cooling.

3.2.1 The MOT

The first step in the cooling process is achieved by exploiting the dissipative and con-

fining force generated by two counter propagating, circularly polarized laser beams

on atoms moving in an inhomogeneous magnetic field. This step can be achieved

using a magneto-optical trap (MOT). To understand how this force is created we

should consider a 1D model of an atom with an F=0 ground state and F ′=1 excited

state. The model can then be extended to 3D and F → F ′ = F + 1 transitions.

The magnetic field created by quadrupole coils is zero at the origin. Its magnitude

increases linearly with position, while its direction always points away from the

origin. Two counter propagating laser beams of opposite circular polarization, σ+

and σ−, red detuned by δ from the F = 0 → F ′ = 1 transition, illuminate the

atom. If this atom is moving away from the origin in the x > 0 region, the Zeeman

shift cause the mF = +1 sub level to be shifted up, away from resonance and the

mF = −1 sub level to be shifted down, closer to resonance. If the polarization of

the beam coming from the right is chosen to be σ− then the atom will scatter more

photons from the σ− beam than from the σ+ and the atom will experience a force

toward the center of the trap. on the other side of the trap, for x < 0, the sub levels

are reversed and more photons will be scattered from the left propagating σ+ beam,

again sending the atom towards the center. The total force is [75]:

F =
h̄kγ

2

s0

1 + s0 + (2δ+/γ)2
− h̄kγ

2

s0

1 + s0 + (2δ−/γ)2
(3.23)

where s0 = I/Isat, with Isat the saturation intensity (for 87Rb and isotropic light
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polarization Isat = 3.576 mW/cm2) [69], γ is the spontaneous emission rate, h̄k is

the momentum per photon and δ± is the detuning given by:

δ± = δ ∓ k · v ± µ′B

h̄
(3.24)

µ′ = (gF+1mF+1 − gFmF )µB is the effective magnetic moment, k · v is the Doppler

shift and µ′B/h̄ is the Zeeman shift. When the Zeeman shift and the Doppler shift

are small compared to the detuning δ we can expand eq. (3.23) and obtain:

F = −β · v − κ · r β =
8h̄k2δs0

γ[1 + s0 + (2δ+/γ)2]2
κ =

µ′b

h̄k
β (3.25)

and β is the damping coefficient while b is the magnetic field gradient. As we can

see from eq. (3.25) the force is both cooling (term proportional to v) and confining

(term proportional to r). The lowest temperature (Doppler limit) achievable by

exploiting this damping force is:

TD =
h̄γ

2kB
(3.26)

and for rubidium is TD = 146µK. This limit, which is called Doppler limit, arises

because the spontaneous emission of photons is a stochastic process and the force

has fluctuations that produce heating. Such a process can be analyzed using the

Fokker-Planck equation [75].

The MOT laser used in the experiment is a commercial Littrow external cavity Top-

tica DLX110, red detuned by δ = −18 MHz from the cyclic transition 52S1/2(Fg =

2)→ 52P3/2(Fe = 3) to which it is locked by Doppler-free polarization spectroscopy.

The detuning is controlled by acousto-optical modulators (AOM) that also serve

as a high speed switch due to the fact that only the +1 diffraction order is cou-

pled to the fiber and delivered to the atoms. The power delivered to the atoms

is 200 mW. To prevent population loss to the dark state 52S1/2(Fg = 1) from the

short-lived 52P3/2(Fe = 3) (τ ≈ 26 ns) a repumping beam is mixed with the MOT

laser. This repumping beam is created by an external cavity Littrow configured

Toptica DL100 laser, frequency locked by Doppler free saturation spectroscopy to
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the transition 52S1/2(Fg = 1) → 52P3/2(Fe = 2). This transition is more favorable

than 52P3/2(Fe = 1) because Clebsch-Gordan coefficients are an order of magnitude

larger and repumping occurs faster. The repumping power delivered to the atoms

is ≈ 7 mW. Figure 3.3 provides a representation of the transitions used during laser

cooling.
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Figure 3.3: 87Rb energy levels together with the transitions used in the laser cooling

stage.

3.2.2 Polarization Gradient Cooling

It is possible to achieve further cooling by using polarization gradient cooling (PGC).

In our experiment use two counter propagating σ+ − σ− beams to create a linearly

polarized electric field which rotates by 2π over one optical wavelength. Atoms

at rest in such field will have the populations of their F = 1 state equally dis-

tributed between the light shifted mF = ±1 substates, with the sub-state mF = 0

more strongly populated. Moving atoms, by contrast, experience a rotation of the

polarization vector and we can think of them as dipoles trying to follow the polar-

ization vector. However, due to the finite optical pumping time, the population of
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the ground substates always lags behind the steady state-distribution for the local

polarization direction. This lag translates into an imbalance of population of the

mf = ±1 substates. More specifically, for atoms traveling toward the σ+ beam the

mf = 1 will be more populated than the mf = −1 and vice-versa for atoms moving

toward the σ− beam. This imbalance in turn cause more photons to be scattered

from one beam than the other, cooling down the atoms. The minimum temperature

achievable with PGC is [83]:

TPGC ≈
h̄γ2

IsatkB

I

|δ|
(3.27)

and depends inversely on the detuning δ and directly on the intensity I of the laser

beam. In the experiment, PGC is performed by using the MOT laser beams, which

already have the correct polarization pattern and by increasing the detuning from

18 MHz to ≈ 50 MHz. At the same time, the magnetic field gradient is reduced by

a factor of ten. This is done because in the presence of magnetic field the atoms are

damped toward a non-zero velocity given by ωz/k, where ωz is the Zeeman precession

frequency. The repumper beam is applied, for the same reasons explained in the

MOT section, throughout the PGC. At the end of a 10 ms cycle, the atoms have

a temperature of about 40 µK. The measured value is quite close to the result

TPGC = 26 µK obtained by applying equation (3.27) with the typical experimental

parameters I = 200 mW/cm2 and δ = 2π · 50 MHz.

3.2.3 Optical pumping

Optical pumping is not a cooling process, but it is a crucial step in BEC prepa-

ration. After the PGC the atoms are spread across all the magnetic substates

from mF = −2 to mF = +2. Only the low field seeking atoms can be trapped in

our compressed magnetic trap (CMT). In order to maximize the transfer of atoms

into the magnetic trap we optically pump them to |F = 1,mF = −1〉, which is

also the stretched state we use for BEC creation. The laser employed for optical

pumping is a home-made external cavity, Littrow configured, diode laser similar in
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design to a Toptica DL100. The laser is locked, using polarization spectroscopy,

to the 52S1/2(Fg = 2) → 52P3/2(Fe = 3) transition and then shifted down, by

double passing through an AOM, by 260 MHz to be detuned by ≈10 MHz from

the 52S1/2(Fg = 2) → 52P3/2(Fe = 2) transition. We chose to lock the laser around

52S1/2(Fg = 2)→ 52P3/2(Fe = 3) because this transition has a stronger polarization

resonance. The transition 52S1/2(Fg = 2) → 52P3/2(Fe = 2) was chosen because it

does not lead to cloud heating that would have occurred if a cycling transition such

as 52S1/2(Fg = 2) → 52P3/2(Fe = 3) was used. The optical pumping is performed

in two stages. In the first stage a mostly σ− with a small π-polarization component

optical pumping beam is applied simultaneously with a σ− polarized repumper beam

to avoid population loss to the dark state Fg = 1. This stage lasts for 1.6 ms. At the

end of the first stage, most of the atoms are in |F = 2,mF = −2〉. In the second stage

the repumper is shut off and the population is transferred from |F = 2,mF = −2〉

to |F = 1,mF = −1〉 via relaxation of the intermediate 52P3/2(Fe = 2) state. The

second stage lasts for 0.7 ms. The efficiency of the process is ∼ 90%. A schematic

representation of the transitions involved in the optical pumping process is presented

in figure 3.4

3.3 Hyperfine Manipulation

In our experiments we often deal with BECs of atoms in more than one hyperfine

state. This section describes the structure of 87Rb hyperfine states and how we

experimentally manipulate them.

3.3.1 Atomic system

Atoms of 87Rb in the 52S1/2 state have electron angular momentum quantum number

J = 1/2 and nuclear angular momentum I = 3/2. The total angular momentum F

can take values |J − I| ≤ F ≤ J + I, hence we have two hyperfine states, F = 1



34 Experimental Apparatus

𝐹′ = 2

𝐹 = 2

𝐹 = 1

52𝑆1/2

52𝑃3/2

-2 0 +2+1-1

𝝈−

𝝅

Figure 3.4: Optical pumping to the |F = 1.mF = −1〉 state. Blue lines represent

light absorbed from the optical pumping beam, with mainly σ− and a fraction of π

polarization. Green lines represent repumper radiation that prevents states different

than |F = 1,mF = −1〉 from being populated. Red dashed lines describe spontaneous

emission. A full description of the process is provided in the text.

and F = 2. In a external magnetic field, these hyperfine levels split into three

and five Zeeman sublevels, respectively. For weak magnetic field (B � 103 G) the

magnetic moment is µ1 ≈ −mFµB/2 for F = 1 and µ2 ≈ mFµB/2 for F = 2

(see figure 3.5). The Hyperfine splitting energy between F = 1 and F = 2 is

∆hfs ≈ 6.83462861090429(9) GHz [69] and lies in the microwave range. To create a

two component BEC (2CBEC) in a magnetic trap we are left with only two possible

low-field seeking state, |F = 2,mF = +1〉 and |F = 2,mF = +2〉, apart from

|F = 1,mF = −1〉, which is the state we condense to. We choose |F = 2,mF = +1〉

over |F = 2,mF = +2〉 because:

• |F = 1,mF = −1〉 and |F = 2,mF = +1〉 have the same magnetic moment,

apart from a very small second order Zeeman shift correction and they occupy

the same position in the trap.
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• |F = 1,mF = −1〉 → |F = 2,mF = +1〉 is a two photon transition, more

efficient by a factor ∼ 103 than the three photon |F = 1,mF = −1〉 → |F =

2,mF = +2〉

𝐹 = 2

𝐹 = 1

-2 0 +2+1-1
6.

84
4 

G
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z

~0.7 𝑀𝐻𝑧/𝐺

|𝟏〉

|𝟐〉

Figure 3.5: Ground state of 87Rb showing the two hyperfine levels F=1 and F=2

and their Zeeman split sublevels. The frequency separation between F=2 and F=1 is

≈ 6.844 GHz while the separation between sublevels is ≈ 0.7 MHz/G. The states |F =

1,mF = −1〉 and |F = 2,mF = 1〉 used in the experiments have been highlighted.

However this choice is not without a cost, since in the state |F = 2,mF = +1〉

two body recombinations are not suppressed and lifetime is shorter. For the special

case of B0 = 3.228917 G, the difference in Zeeman energy between the states |F =

1,mF = −1〉 and |F = 2,mF = +1〉 is independent of the fluctuations of B to first

order [84] (see figure 3.6). This provides us with the added benefit of differential

magnetic field noise insensitivity for the chosen transition. The Zeeman sublevels of

each hyperfine state experience a B dependent shift that can be precisely calculated

using the Breit-Rabi formula eq. (3.7), but is often approximated with ≈ 0.7 MHz/G.

For our usual condition of B = 3.229 G this shift amounts to 2.26 MHz. The splitting

between the states |F = 1,mF = −1〉 and |F = 2,mF = +1〉 around B0 is [84]

∆E = 2πh̄[f0 + β(B − B0)2] (3.28)
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f0 = 6.834678113.59 Hz β = 431.35947 Hz/G2 (3.29)

The hyperfine states and relative Zeeman sublevels are coupled by an electromag-

Figure 3.6: Energy difference of the levels |F = 1.mF = −1〉 and |F = 2.mF = 1〉

relative to the hyperfine splitting energy Ehfs/h = fhfs for different values of the

external magnetic field B. The minimum is reached for ≈ 3.229 G leading to the

cancellation of the first order Zeeman shift (red dot). The dependence of the energy

for small values of B around B0 is parabolic, see equation (3.28).

netic field through magnetic dipole transitions. The transition frequency can be

in the radiofrequency range (between Zeeman states) or in the microwave range

(between hyperfine states) and can be single or multiphoton. By considering the

coupling Hamiltonian Ĥrf = −µ̂ · Brf cosωrf t, where Brf is the amplitude of the

RF field and ωrf is the angular frequency of the RF field, it is possible to calculate

the coupling strength for every given transition and field polarization. If we assume:

µ̂ =
µBgf
h̄

F̂ (3.30)
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then the off-diagonal matrix elements of Href in the |F,mf〉 basis are:

RF σ± transitions: 〈F,mF ± 1|Ĥrf |F,mF 〉 =
h̄Ωσ

2

√
F (F + 1)−mF (mF ± 1)

(3.31)

MW σ± transitions: 〈F ′,mF ± 1|Ĥrf |F,mF 〉 = ± h̄Ωσ

2

√
(I ±mF + 1)2 − 1

4
)

(3.32)

MW π transitions: 〈F ′,mF ± 1|Ĥrf |F,mF 〉 =
h̄Ωπ

2

√
(2I + 1)2 − 4m2

F ) (3.33)

where Ωσ = µBgFB⊥/2h̄ is the Rabi frequency for the σ± transitions and Ωπ =

µBgFB‖/2h̄ is the Rabi frequency for π transitions. With the coupling strength and

by assuming that all atoms start at t = 0 in a stretched state |F,mF = ±F 〉, we

can calculate the populations at time t in each state by using [48]:

|ψmF |2 =
(2F )!

(F +mF )!(F −mF )!
|cF+mF

1 |2|cF−mF2 |2 (3.34)

where

|c1|2 =
δ2

Ω2
rf

+
Ω2
rf

Ω2
rf + δ2

cos2


√

Ω2
rf + δ2

2
t

 (3.35)

|c2|2 =
Ω2
rf

Ω2
rf + δ2

sin2


√

Ω2
rf + δ2

2
t

 (3.36)

and δ is the detuning while Ωrf is the coupling strength calculated before.

For two photon transitions like |F = 1,mF = −1〉 → |F = 2,mF = +1〉 the

treatment is slightly different. If both photons are sufficiently detuned from the

intermediate state (|F = 1,mF = 0〉 or |F = 2,mF = 0〉), then the three level

system can be reduced to two levels by adiabatic elimination [48]. The two photon

Rabi frequency is, to first order in the detuning from the intermediate level ∆:

Ω2ph ≈
Ω1Ω2

2∆
(3.37)

where Ω1,Ω2 are the coupling strengths for the RF and Mw transitions, respectively,

and we have assumed the two photon detuning δ2ph = 0.
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The leakage to an intermediate state is well approximated by [48]:∑
|i〉6=|1〉,|2〉

〈|ci|2〉 ≈
6Ω2

1 + 3Ω2
2

3∆2
(3.38)

Equations(3.37) and (3.38) shows that the smaller is the detuning ∆ from the inter-

mediate state, the faster is the Rabi frequency, but the higher will be the unwanted

leakage of atoms to the intermediate level. For this reason we keep ∆ = 2π×1 MHz,

which limits leakage to negligible levels and gives a two-photon Rabi frequency, in

typical experimental conditions, of Ω2ph = 2π × 510 Hz. Figure 3.7 provides a

summary of the relevant transitions, their polarizations and Rabi frequencies.

3.3.2 Microwave setup

We use two different microwave synthesizers to produce the microwave signal. The

first one is an Agilent E8257D with a frequency resolution of 0.001 Hz, switching

speed of 7 ms and phase noise as in table 3.1. With switching speed we refer to the

time required by the MW synthesizer internal electronics to modify the phase of a

signal.

Phase Noise at 10 GHz dBc/Hz

100 Hz -84

1 kHz -106

10 kHz -115

100 kHz -115

Table 3.1: Phase noise for an Agilent E8257D

The second synthesizer is a FSW-0010 QuickSyn with a frequency resolution of 0.001

Hz, switching time of 100 µs and phase noise as in table 3.2.
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Figure 3.7: MW transitions (red lines) and RF transitions (green line) used in

the experiments (top). The solid lines represent two photon transitions between the

clock states |F = 1,mF = −1〉 and |F = 2,mF = +1〉. To avoid population of

F = 2,mF = 0〉, the MW field is detuned by ≈ 1 MHz. The two photon detuning

is close to zero. The Rabi frequency for the two-photon transition is typically Ω2 ≈

2π · 125 Hz and the amplitude, obtained by fitting a sinusoid, is close to 1 (center).

One-photon MW transitions are used for MW spectroscopy and adiabatic passage

imaging sequence, particularly the π polarized |F = 1,mF = −1〉 to |F = 2,mF =

−1〉 transition (bottom). Pz is defined as the relative atom number difference (e.g

N2 −N1/N2 +N1)
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Phase Noise at 10 GHz dBc/Hz

100 Hz -83

1 kHz -112

10 kHz -122

100 kHz -121

Table 3.2: Phase noise for an FSW-0010 QuickSyn

The FSW-0010 has a much faster switching time and better phase noise charac-

teristics, but due to a problem with the triggering, which prevents us from doing

Ramsey spectroscopy in the phase domain, we use both. Both synthesizers are

locked to an external 10 MHz OCXO 8607 quartz oscillator for improved stability.

The signal produced by both synthesizers has a typical power of 3 dBm. This signal

is sent to a reflective switch (Agilent N9397A) that can be switched between a 50

Ω terminator and a 20 W MW amplifier. After being amplified it propagates along

a 50 Ω coaxial line to a uni-directional coupler which can be used as part of a

diagnostic circuit. After the unidirectional coupler, two MW isolators, circulators

with one absorbing port, dissipate all the power reflected by the antenna. We use

two different kinds of antenna: the first, now removed from the setup but used until

recently, was an impedance matched dipole antenna that radiated ≈ 90% of the

power and the other, currently in use, is a toroidal antenna that creates a field ≈

3 times stronger than the dipole antenna at the atom position. The antennas are

located outside the vacuum chamber, about 12 cm away from the atoms. Figure

3.8 provides a schematic description of the setup. The MW field generated has

all three polarization components with the power distributed unevenly between the

different polarizations (figure 3.7). Measurements [82] based on the Rabi frequency

of the single photon transitions |F = 1,mF = −1〉 → |F = 2,mF = −2,−1, 0〉 show

Ω− = 2π × 15.23(6) kHz for σ−, Ω+ = 2π × 7.23(5) kHz for σ+, Ωπ = 2π × 11.01(8)

kHz for π, signaling a higher distribution of power in σ− and π.
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Figure 3.8: MW setup scheme. The signal is produced by either the Agilent E8257 D

or the FSW-0010 synthesizers clocked by the OXCO quartz oscillator or the internal

clock (not shown) of the Agilent synthesizer. The signal from the reference oscillator

is fed directly to the MW synthesizers. A switch then sends the signal to the 20 W

amplifier and, via components that assure no reflected power can harm the amplifier,

to a dipole antenna. A small part of the signal (≈ −20 dB) is sent to diagnostic

instruments for measurements.

3.3.3 Magnetic field calibration

In order to measure the magnitude of the magnetic field, we perform single photon

microwave spectroscopy. The idea is to transfer the atoms from the condensed state

|F = 1,mF = −1〉 to one of the untrapped states |F = 2,mF = −2,−1, 0〉 via the

application of a MW pulse whose lengths tpulse > Ω for the chosen transition. Typical

pulse length are tpulse = 500 µs, corresponding to five full cycles for the σ+ transition,

which has the smallest Rabi frequency. Then the MW field is switched off and the

atoms are held in the trap for thold = 0.3 ms. During this holding time the Stern-

Gerlach effect separates the clouds, making it easy to measure the population of

outcoupled N2 relative to the total number of atoms N . By scanning the frequency of
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the MW field we obtain a Lorenzian shaped profile with the maximum corresponding

to the energy separation of the two coupled levels for the given magnetic field (see

figure 3.9). We want our magnetic field to be B0 ≈ 3.229 G at the trap bottom

and this implies a separation between the Zeeman substates fB0 ≈ 2.26 MHz and

a MW resonant frequency ftot ≈ ∆hfs + fB0 . The widths of the Lorenzian profiles

are different for different polarizations and range from Γ+ ≈ 10 kHz for σ+ to

Γπ ≈ 20 kHz for π. The main reason for this width lies in the size of the cloud

and gravitational sag. In fact, because of gravitational sag the cloud does not sit in

the potential minimum, but sees a field gradient of dB/dz. Different sections of the

cloud experience different magnetic fields which cause different energy shifts. The

energy difference between the top and bottom of a 105 atoms BEC is ≈ 18 kHz.

Other source of broadening are to be expected from motional effects (sloshing),

power broadening and magnetic field instabilities (e.g. stray fields).

3.4 Imaging

This section describes absorption imaging, the technique used in the experiment to

obtain information on cold atoms cloud. The laser used for imaging is a Toptica

DL100 locked to the transition F = 2 → F ′ = 3 using polarization spectroscopy.

The laser is controlled by MogLabs electronics and the detuning change by a double

pass AOM. The optical setup is described and the resolution is measured.

3.4.1 Absorption imaging

When an atomic cloud interacts with a laser beam of near-resonant light, it scatters

some of the light and creates a shadow in the beam that can be detected by a CCD

camera. This fluorescence problem can be simplified by approximating the cloud as

a two-level system and the laser beam as a monochromatic field. The approximation
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Figure 3.9: Microwave spectroscopy on the σ+ transition |F = 1,mF = −1〉 to

|F = 2,mF = 0〉. The number of atoms leaving the trap after being transfered in the

untrapped state F = 2,mF = 0〉 is measured and normalized over the total number of

atoms. A Lorentzian function is fitted (red line) and, after the application of Breit-

Rabi, equation(3.7), a magnetic field of 3.23 Gauss (left) and 1.5 Gauss (right) is

calculated. The slight asymmetry in the Lorentzian that can be observed for the lower

value of the magnetic field is due to gravity sag [85]. The width, taken as HWHM,

is ≈ 15 kHz

allows us to derive a set of optical Bloch equations [69, 86]

d

dt
ρgg = i

Ω

2
(ρ̃ge − ρ̃eg) + Γρee

d

dt
ρee = −iΩ

2
(ρ̃ge − ρ̃eg)− Γρee

d

dt
ρge = −(

Γ

2
+ i∆)ρ̃ge − i

Ω

2
(ρee − ρgg)

(3.39)

Where Ω is the resonant Rabi frequency, ∆ is the detuning and Γ is the natural decay

rate of the excited state. Equations (3.39) make use of a master equation approach

to model spontaneous emission and are valid in the rotating wave approximation.

In addition, there is no decay due to collisions and the motion of the atoms has been

neglected. The steady state population of the excited state is [69]

ρee =
(Ω/Γ)2

1 + 4(∆/Γ)2 + 2(Ω/Γ)2
(3.40)
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and the steady state photon scattering rate is

Rse =
Γ

2

(I/Isat)

1 + 4(∆/Γ)2 + (I/Isat)
(3.41)

with
I

Isat
= 2

(
Ω

Γ

)2

Isat =
cε0Γ2h̄2

4|ε̂ · d|2
(3.42)

From equation (3.42) it is clear that the saturation intensity depends on the po-

larization of the light ε̂ through the corresponding dipole interaction matrix ele-

ment. Isat = 1.67 mW/cm2 [69] for pure σ± light for the 87Rb 52S1/2(Fg = 2) →

52P3/2(Fe = 3) cycling transition, while Isat = 3.05 mW/cm2 [69] for π polarization.

Using equation (3.41) we can define the scattering cross section, which is equal to

the power radiated by the atoms divided by the incident energy flux

σ =
σ0

1 + 4(∆/Γ)2 + (I/Isat)
σ0 =

h̄ωΓ

2Isat
(3.43)

The Beer-Lambert law for absorption

dI

dz
= n(x, y, z)σ(I) (3.44)

allow us to express the column density n(z), in the resonant case (∆ = 0) as [87]

n(x, y) =
1

σ0

ln

(
Iabs
Ibg

)
+
Ibg − Iabs
Isat

(3.45)

where Ibg is the intensity of the light collected on a frame without atoms, Iabs is the

intensity from the absorption frame. To measure Isat we rewrite equation eq. (3.45)

as ∑
Ibg(1− eσ0n0) = IsatN − Isat

∑
n0 (3.46)

where the summation is done over the pixels of the frame. By varying the imaging

laser intensity Ibg and since the total number of atoms effectively present is inde-

pendent of Ibg and assumed to change only slightly from shot to shot, we obtain

a linear relationship between the atoms detected
∑
n0 and Ibg whose slope is Isat.

The intensity is measured by the CCD as counts per pixel according to the following

formula

I =
h̄ωk

qgApsτ
(3.47)
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where q is the quatum efficiency of the camera, g is the gain of the camera amplifier,

k is the counts per pixel and Aps is the effective pixel area. We obtain a value of

Isat = 8.4 · 103 ± 1.3 · 103 counts [85] for an effective pixel size of 4 µm, with the

uncertainty largely due to the instability in the atom number N (∼ 10% variation).

In order to compensate for imperfect light polarization, Doppler shift due to photon

recoil and the presence of additional sublevels that might be populated, all factors

that influence the value of Isat, it is possible to replace in the previous equations Isat

with Ieff > Isat and σ0 with σeff < σ0 and adjust them such that the detected atom

number is independent of the imaging laser intensity. In order to reduce fringing

and laser light fluctuations which also affect atom number measurement we use a

Princeton ProEm 512 CCD camera that allows us to collect the absorption and

reference frame with a delay as small as 400 µs by using a function called ”kinetics

mode” by the producer. Kinetics mode essentially consist of masking half of the

sensitve area of the CCD chip, reducing it from 512×1040 active pixels to 512×520

and exploit the much faster transfer rate of the charge stored in the pixel compared

to the slow A/D conversion process. This way only the top half of the camera

is exposed to the laser beam, the signal then shifted to the masked region with a

shifting time of ∼ 0.6 µs per row, adding up to ∼ 400 µs compared to the two second

usually required for a full readout.

3.4.2 Imaging System

We use two different lenses arrangements in our imaging setup. The first is a pair of

two back-to-back achromat lenses (Thorlabs AC508-150-B and AC508-500-B) with

focal lengths F1 = 150 mm and F2 = 500 mm and a diameter of 50 mm. The lenes

are positioned outside the vacuum chamber at a distance from the cloud which is

approximately equal to the first lens focal length. The CCD camera is placed on

a sliding support at the other lens focal point. The sliding support allows us to

compensate for imperfection in the positioning of the lenses, even though optimal
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focus is hard to achieve given the difficulty in positioning the first lens with respect

to the actual cloud. The theoretical magnification is M = F2/F1 = 3.3 giving a

theoretical effective pixel size of 16.3 = 4.8µm, where 16µm is the physical size of a

pixel for a ProEm 512 CCD camera. The measured value of the effective pixel size,

obtained by dropping a cloud under gravity and fitting the position with a parabolic

dependence, is 4 µm, giving an effective magnification of Meff = 4. The Rayleigh

limited resolution of the system is given by

σrayleigh = 1.22
λF1

D
(3.48)

where λ is the wavelength and D is the lens diameter. The diffraction limited

result for our case is 2σrayleigh = 5.72 µm but the real resolution is worse than

σrayleigh because part of the light is shadowed by the atom chip surface. The effective

resolution is obtained by measuring the Gaussian beam waist at the focal point. The

focal point is defined as the position of the CCD camera that minimizes the radial

FWHM of an imaged condensate of N ∼ 105 atoms. The minimum FWHM obtained

is 27.2 µm, 4.75 times worse then the ideal case. The typical Thomas-Fermi radius

for N ∼ 105 atoms trapped in our experimental conditions is ∼ 5 µm in the radial

and ∼ 50 µm in the axial direction.
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Figure 3.10: Imaging system setup. Two achromatic doublets with focal length 150

mm in a 4f configuration capture the image of the shadow created by an atomic cloud

illuminated by laser light resonant with the transition F = 2→ F ′ = 3 of 87Rb. The

image is then magnified by a microscope objective and focused on a CCD chip.

The second imaging setup, shown schematically in figure 3.10, uses two achromatic

doublets (LAP-150.0-30.0) with focal length 150 mm in a 4f configuration. This

configuration creates an image of the atom cloud with a 1:1 magnification. This

image is subsequently magnified by a microscope objective (×10 Olympus Aplanat)

and is focused on the CCD chip by a lens with focal length 200 mm. The nominal

magnification for the system is 10, but the measurements, performed with the same

technique described above, give a value 10.9, for an effective pixel size of 1.47 µm.

Typical images obtained with both configurations are shown in figure 3.11, along

with an image of the grating used to measure resolution for the configuration in-

volving the microscope objective. The resolution is measured first by imaging a

transmission grating with a 10 µm period and then fitting an Airy function to the

intensity distribution of a single slit giving a value ∼ 4 µm. This is the best-case-

scenario resolution, since everything is aligned correctly and focused optimally. The

effective value obtained from the waist at the focal point of a Gaussian profile fitted

to the minimum radial width of the condensate gives a value of ∼ 10 µm.



48 Experimental Apparatus

100 𝜇𝑚

Figure 3.11: BEC imaged with 10.9× magnification (left) and 3.3× (right). The

resolution is measured for the 10.9× system by fitting an Airy function to the inten-

sity distribution collected after imaging a transmission grating (bottom). The result

is ≈ 4µm.
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3.4.3 Dual state imaging, adiabatic passage

The imaging laser uses the cycling transition 52S1/2(Fg = 2) → 52P3/2(Fe = 3) ,

but we produce the condensate in |F = 1,mF = −1〉. To be imaged, the atoms

need to be transfered to the F = 2 manifold. This can be done by applying the

repumper laser just before imaging the cloud. However the atoms will be scattered

across all the F = 2 sub-levels and the recoil and heating associated with the absorp-

tion of photons from the repumper beam will affect the image. Additionally, when

imaging 2CBEC, since both components have almost the same magnetic moment,

they cannot be spatially separated using a Stern-Gerlach technique. Another way

of achieving the transfer relies on adiabatic passage [88]. This technique makes use

of the adiabatic theorem and the two-level crossing problem [89, 90]. The two-level

crossing problem deals with the transition probability between two dressed states

|+〉, |−〉 in the presence of a time dependent detuning that passes through zero. Far

away from resonance the dressed states coincide with the bare states and the energy

difference is big (see figure 3.12). Approaching the resonance the energy difference

decreases and if the detuning is swept too quickly it is possible to end up with a

superposition of states. The key result is the Landau-Zener probability

PLZ = e−2πΓLZ ΓLZ =
Ω2

4λ
λ =

∣∣∣∣d∆

dt

∣∣∣∣ (3.49)

that directly links the transition probability PLZ with the rate of change in the

detuning λ. In the experiment the detuning is controlled by the magnetic field

variation caused by the decay of current in the coils after switching off the current.

The MW frequency is kept constant and chosen to be resonant with one of the three

sub-levels |F = 2,mF = −2,mF = −1,mF = 0〉 allowed by single photon transition

selection rules. It is applied for 2 ms, 5.7 ms after the current has been switched

off. The duration and the time of application has been experimentally found to

optimize the transfer efficiency. We can transfer atoms from |F = 1,m = −1〉 to

the desired final state with an efficiency up to 99% (the efficiency differs slightly

between transitions due to the different amplitude of the three polarization).
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Atoms adiabatically transferred from |F = 1,mF = −1〉 receive a kick in the oppo-

site direction (or no kick at all) when subjected to a Stern-Gerlach sequence when

compared to atoms in |F = 2,mF = +1〉 allowing for spatial separation of the two

components and simultaneous dual-state imaging of 2CBEC. Furthermore there is

no heating of the cloud and no blur associated with photon emission and recoil.

Experimental data showing the efficiency of the transfer for different durations of a

π polarized microwave pulse and the width of the resonance are shown in figure 3.13.

The resonant frequency can be shifted by delaying the application of the microwave

pulse, which is equivalent, given the fact that the magnetic field is sweeping, to

a change in the relative energy of the two states coupled by the pulse (see figure

3.13). This was particularly relevant for the experiments where the FSW-0010 mi-

crowave synthesizer was used; in fact we had trouble setting a reliable frequency

jump between the optimal microwave frequency used during the experiment and the

optimal frequency for the adiabatic passage, forcing use to find the condition when

both frequency are equal.
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Figure 3.12: Adiabatic passage technique. The MW frequency is kept constant while

the magnetic field is swept through the resonance connecting |F = 1,mF = −1〉 to

|F = 2,mF = −1〉, from a positive to a negative detuning (top). Satisfying the

condition for adiabatic transfer, equation (3.49), guarantees that the population is

transfered almost completely (center). Each state is then separated using a Stern-

Gerlach kick and imaged simultaneously (bottom).
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Figure 3.13: (a) Adiabatic population transfer from |F = 1,mF = −1〉 to |F =

2,mF = −1〉 as a function of the duration of the MW pulse. After ≈ 1ms the

transfer efficiency is around 99%. (b) Transfer efficiency as a function of MW

detuning, with f0 = 6.8302 GHz. The transfer is robust against detuning, having a

width of about 200 kHz. (c) The frequency of the magnetic field resonant with the

transition can be changed by changing the waiting time between the beginning of the

magnetic field ramp and the microwave pulse. Blue points are measured after 1.2 ms

waiting, red points after 1.3 ms, yellow points after 1.4 ms and purple points after

1.5 ms.



CHAPTER 4

Quantum Noise

In this chapter we introduce the Bloch sphere, a useful tool for visualizing the

dynamics of a 2 level system. A description of Ramsey interferometry, a central

technique in most of our experiments, is provided in terms of Bloch vector evolution.

The final part of the chapter is devoted to an analysis of the major contribution of

phase noise, whose understanding is central to our experiments. A distinction is

made between quantum, mean field and technical factors affecting phase noise and

a description is provided for some relevant cases.

4.1 The Bloch sphere

The Bloch sphere formalism is a very convenient way of visualizing the dynamics

of a two level system. It is particularly powerful when used to describe Ramsey

interferometry, a technique often used in our BEC interferometry experiments. The

Bloch vector formalism is most easily derived for the case of a spin 1/2 system in a

magnetic field, but can be easily extended to include any two level system, most no-

tably a spinor condensate, coupled by electromagnetic radiation. The Hamiltonian

describing the interaction of a spin 1/2 particle with magnetic moment µ̂ = −γŜ,
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where γ is the gyromagnetic ratio and Ŝ is the spin operator, with a magnetic field

B is

ĤB = −µ̂ ·B (4.1)

By choosing as basis the states that have a well defined spin projection along the

z-axis, we can write [91] the spin operator Ŝ = h̄/2σ, where σ = [σx, σy, σz] is the

vector of Pauli-spin matrices. The density matrix for such a spin 1/2 system is a

2× 2 matrix that can be written as

ρ =
1

2
(1 + P · σ) =

1

2

 1 + Pz Px − iPy

Px + iPy 1− Pz

 (4.2)

where P = (Px, Py, Pz) is the Bloch vector with component defined by the expecta-

tion values of the spin operator through [92]

〈Ŝi〉 =
h̄

2
Pi (4.3)

as can be readily seen by remembering that the Pauli spin-matrices are traceless.

The length of the transverse component of the Bloch vector is a measure of the

coherence √
S2
x + S2

y =
h̄

2

√
P 2
x + P 2

y = h̄|ρ12| (4.4)

while the length of the longitudinal component represents the difference of the pop-

ulations in the two spin states

Sz =
h̄

2
Pz =

h̄

2
(ρ11 − ρ22) (4.5)

The Bloch vector lies on the Bloch sphere (figure 4.1) only for pure states, since

|P | = 1, while for maximally mixed states the Bloch vector magnitude is equal to

zero. The equation of motion for the density matrix is given by the von Neumann

equation [93]

ih̄
∂

∂t
ρ = [H, ρ] + Lρ (4.6)
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where L is the Liouvillian operator taking into account decay. The decay of Pz

represents the relaxation of the system to the lowest energy configuration while the

decay of Px and Py represents decoherence. The most common source of decoherence

is entanglement with an unaccessible state, such as a heat bath. Decoherence short-

ens the magnitude of the Bloch vector. It is worth noting that both these processes

are negligible in our experiment. The superposition of states we create remains

coherent throughout the experiment since interaction with an external reservoir is

minimal and relaxation happens on much longer time scale than the one used in the

experiments due to the long lifetime of the state used. What we mean by decoher-

ence in this chapter is the spreading of the Bloch vector representing a many particle

system, not its reduction in magnitude. This spread reduces the averaged magnitude

of the total Bloch vector in a given direction, while keeping the magnitude of each

individual vector constant. As already mentioned the Bloch sphere can be used to

represent any state of a two-level system. Starting from a general two level state

|ψ〉 = α|1〉+ β|2〉 (4.7)

where α and β are complex numbers and remembering the normalization condition

|α|2 + |β|2 = 1 (4.8)

we arrive, after switching to polar coordinates and considering symmetries, at the

form

|ψ〉 = cos

(
θ

2

)
|1〉+ eiφ sin

(
θ

2

)
|2〉 (4.9)

Any two-component superposition can be written by choosing θ ∈ [0, π), φ ∈ [0, 2π),

representing coordinates on the Bloch sphere with Bloch vector

P =


cos(φ) sin(θ)

sin(φ) sin(θ)

cos(θ)


(4.10)
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However there is some ambiguity in the representation of two-level states with Bloch

vectors, which has the mathematical justification that rotations in a 2D complex

vector space contain a double representation of rotation in 3D real space. As a

consequence state |ψ〉 and state −|ψ〉 have the same Bloch vector. The polar angle

θ describes the population imbalance between the two states, while φ represents the

relative phase. If we consider the specific case of a two level system coupled by

electromagnetic radiation we have the Hamiltonian

H =
h̄

2

 ∆ Ω e−iφ

Ω eiφ −∆

 (4.11)

and we can see that, in the case of strong coupling (Ω � ∆), θ = Ω t, where Ω is

the Rabi frequency, φ is the phase of the pulse and dφ/dt = ∆.

ȁ ۧ1

ȁ ۧ2

𝑧

𝑦𝑥 S

𝜽

𝝋

Figure 4.1: Bloch sphere and Bloch vector S representing a superposition of state |1〉

and |2〉 characterized by the angles θ and φ.
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4.1.1 Ramsey interferometry

Ramsey interferometry [94] is the technique we use in experiments to study the evo-

lution of the relative phase of a thermal cloud or two-component BEC. The Ramsey

sequence starts with a θ = π/2 MW+RF pulse that creates a 50:50 superposition

of atoms in the two hyperfine states |F = 1,m = −1〉, |F = 2,m = +1〉 and rotates

the Bloch vector from the north pole to the equatorial plane (figure 4.2). After an

evolution time t a second π/2 pulse is applied with a phase δφ with respect to the

first and the relative atom number difference Pz = (N2−N1)/(N2 +N1) is measured.

N1 and N2 are the numbers of atoms in state |F = 1,m = −1〉 and |F = 2,m = +1〉,

respectively. For a BEC we can express Pz as

Pz = Im

( ∫
2eiδφΨ∗2Ψ1d

3r∫
Ψ∗2Ψ2 + Ψ∗1Ψ1)d3r

)
(4.12)

and we can obtain Ψi with GPE simulations. In the frame rotating with the atomic

transition frequency, the evolution operator is

U(θ) =
1√
2


cos
(
θ
2

)
− i ∆

ΩR
sin
(
θ
2

)
−ie−iφ Ω

ΩR
sin
(
θ
2

)
−ieiφ Ω

ΩR
sin
(
θ
2

)
cos
(
θ
2

)
+ i ∆

ΩR
sin
(
θ
2

)

 (4.13)

where θ = ΩR · t and ΩR =
√

Ω2 + ∆2. This operator, applied to |ψ〉, tells us

how our state changes with time under the influence of the radiation field. For a

θ = π/2 pulse we have a 50:50 superposition as mentioned above, while for a θ = π

pulse we have an inversion of the populations. Free evolution happens when Ω = 0,

leaving only the terms on the main diagonal and causing the state to pick up a phase

proportional to the detuning. The Bloch vector representing a Ramsey sequence is
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given by

PRamsey =


cos(δφ) cos(φ− δφ) + sin(δφ)

sin(δφ) cos(φ− δφ)− cos(δφ)

sin(φ− δφ)


(4.14)

where φ = ∆ t − π/2 is the phase acquired during free evolution and δφ is the

relative phase between the Ramsey pulses. The Pz component of the Bloch vector

is proportional to the sine of the relative phase and an interference fringe can be

acquired by changing either the evolution time t or the relative phase δφ between

the pulses. Throughout this thesis, fringes acquired by changing the evolution time

are referred to as ”Ramsey interference in time domain”, while fringes acquired by

changing the relative phase are called ”Ramsey interference in phase domain”. The

amplitude of these fringes is the visibility and provides a measure of the coherence

of the system. Decoherence leads to a decrease of visibility over time, limiting the

duration of a Ramsey interference experiment.

Figure 4.2: Ramsey evolution illustrated on the Bloch sphere. Initially the atoms

are all in state |1〉 and a π/2 pulse (green arrow) brings the Bloch vector to the

equatorial plane. The system will then evolve for a time t, picking up a phase that

is read by the second π/2 pulse.”Reading” has to be interpreted has transforming

relative phase into relative population.
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4.2 Decoherence factors in a Ramsey sequence

Different factors influence the interferometric contrast of a Ramsey interferometry.

These effects can be grouped into four categories:

Quantum effects arise from the full quantum treatment of the condensate and

are referred to as quantum noise . The most relevant for our experiment are:

• The standard quantum limit , related to the basic quantum principle

that a measurement can only provide a probability distribution. It is also

called quantum projection noise , or shot noise, due to the similarity

of the fundamental noise found in lasers.

• Quantum phase diffusion reduces the visibility over time due to the

different evolution of the linear combination of Fock states that form a

BEC’s coherent state.

• Losses , through the fluctuation-dissipation theorem, force the phase to

diffuse over time.

Mean field effects are predicted by the semiclassical CGPE equations. Major

mean field effects are:

• Collisional shift generates a density dependent frequency shift that

translates into phase noise.

• Collective Oscillations , caused by the non-stationarity of the super-

position of states generated by the first Ramsey pulse. Therefore the

wave-function of each component starts to oscillate, trying to minimize

the energy, decreasing the overlapping and the visibility.

• Inhomogeneous phase growth . In a superfluid the gradient of the

relative phase is related to the relative velocity through

vi(r) =
h̄

m
∇φi(r). (4.15)



60 Quantum Noise

the non stationarity of the superposition leads to inhomogeneous phase

growth reflecting the different velocities experienced by the components

during the evolution

Technical noise from equipment used in the experiment. The most relevant

sources are:

• Local oscillator instability of the clock synchronizing the MW and

RF generators

• Imaging laser instability affecting the total number of atom measured

• MW and RF power fluctuations modifying the Rabi frequency and

creating an imperfect initial split

• Magnetic noise fluctuation changing to first order the detuning of

the intermediate state in the two photon transition and to second order

the detuning between the states, since the experiment is performed in the

magic field B = 3.23 G. Magnetic noise can also displace the trap.

• Fluctuation in the current creating the trap which causes a shift

in the position of the trap and consequently influence the effective MW

and RF intensity experienced by the atoms.

Finite temperature effects from the interactions with non-condensed atoms.

4.2.1 Standard Quantum Limit

Applying a coherent coupling to a BEC of atoms initially all in the same state

|Ψ0〉 = |1, N〉 creates the coherent spin state [95] (figure 4.3)

|α〉 =
N∑

N1=0

√
N !

N1!N2!
cN1

1 cN2
2 |N1, N2〉 (4.16)

|N1, N2〉 =
(â†1)N1

√
N1!

(â†1)N1

√
N1!
|0〉 (4.17)
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where a†1 and a†2 are the creation operators for state 1 and 2 respectively, c1 and

c2 are complex coefficients and N1 and N2 = N − N1 are the expectation values

for the atom number in each state. Such a state is akin to the coherent state

originally introduced by Glauber [96] in the context of quantum optics and used

in laser theory. Coherent states are minimum uncertainty states [97] for which the

Heisenberg uncertainty principle reads

∆x̂2∆ŷ2 = 1 (4.18)

∆x̂2 and ∆ŷ2 are the variances of two conjugate operators (position and momentum

or, as in our case, atom number and phase). The quantum limited uncertainty for a

phase measurement is obtained from the Heisenberg uncertainty principle and from

the Poissionian variance of the atom number in a coherent state, ∆N̂2 = 〈N〉 and

is equal to

∆φ̂ =
1√
〈N〉

(4.19)

ȁ ۧ1

ȁ ۧ2

𝑧

𝑦𝑥

S

Figure 4.3: Coherent spin state representation on a Bloch sphere. The fuzzy black

circle represents the isotropic quantum noise in the x − y plane around the mean

spin S, oriented along the x-axis.
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4.2.2 Quantum phase diffusion

The initial state for our interferometry experiments is a coherent state that can be

written as a superposition of Fock states, equation (4.16). Each Fock state |Ni, Nj〉

is an eigenstate of the Hamiltonian describing the dynamics of the system. The

Hamiltonian is determined by the interactions between the atoms, which in turn

depend on the operator n̂i,j that counts the atoms in each number state. From

this we can see that each Fock state forming our coherent state evolves in time

by picking up a phase proportional to its eigenvalue EFock which differs from state

to state. This leads to a diffusion of the phase in time [98, 99], with consequent

reduction of the visibility. This process is called ”phase collapse” and happens on

a characteristic time scale τc, after which the interference contrast is completely

lost [29]. However, after some additional time τrev the individual components re-

phase and the interference contrast can be (almost) completely recovered [16]. This

effect is called ”revival”. Quantum phase diffusion can easily be visualized on the

Bloch sphere, figure 4.4, where the circularly distributed quantum noise typical of

a coherent state is distorted by nonlinear interactions proportional to χS2
z into an

ellipse of increased phase noise ∆S2
y [31].

4.2.3 Losses

The fluctuation-dissipation theorem establishes a link between quantum noise and

losses which can be described using a Markovian master equation of the form [99,100]

dρ̂

dt
= − i

h̄
[Ĥ, ρ̂] +

∑
s

κs

∫
drLs[ρ̂] (4.20)

where κs is a coefficient characterizing the particular loss channel, the summation is

performed over the relevant loss channels and Ls[ρ̂] is a Lindblad operator describing

local n-body collisional losses given by

Ls[ρ̂] = 2Ôsρ̂Ô
†
s − Ô†sÔsρ̂− ρ̂Ô†sÔs (4.21)
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Figure 4.4: Quantum phase diffusion illustrated using the Bloch sphere. A coherent

state, with minimum and isotropic uncertainty, gets deformed into an ellipse by

interactions. The state is effectively squeezed in the direction θ, but if the squeezed

part is not turned to align it with the z-axis, there will be no reduction ∆Sz, only an

increase in ∆Sy

with Ôs reservoir coupling operators given by

Ôs(Ψ̂) =
∏
j

Ψs
j(r) (4.22)

and the product is performed over the quantum state involved in the corresponding

loss channel. For the two-component BEC case relevant to our experiment the loss

operators are therefore

Ô111 = Ψ̂3
1 (three-body losses) Ô22 = Ψ̂2

2 (two-body losses) (4.23)

Ô12 = Ψ̂2 (two-body iterspecies losses) (4.24)

In this derivation lost particles don’t interact with the BEC. Since particle number

must be conserved for massive particles at low energies, lost particles are transferred
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to different quantum states which are either expelled from the magnetic trap because

they are untrappable or because they have acquired enough kinetic energy in the

loss process to escape. The master equation is handled by the theory group at

Swinburne by using the Wigner distribution to get a Fokker-Planck equation which

in turn is transformed in a system of stochastic differential equations in either Ito or

Stratonovich form and solved numerically [101]. Another way of modeling losses is

by treating them as quantum jump operators in the interaction picture, with a full

mathematical treatment provided in Ref. [43]. Each loss event therefore corresponds

to a sudden shift of a coherent state into another coherent state with reduced mean

atom number and phase proportional to both the time tj at which the loss event

took place and the mean field interaction experienced by the atoms at tj. This is

because the mean field interaction is equivalent to a detuning that causes the spin

vector to precess around the z-axis. Losses randomly remove particles from state

|1〉 or state |2〉 changing this detuning and causing the states to either lag behind

or be boosted forward in their rotation, introducing phase noise, Fig.4.5.

4.2.4 Collisional Shift

For ultracold gas the thermal de Broglie wavelength is greater than the scattering

length and interactions between atoms cause an energy shift. This phenomenon

is well known in atomic clocks and one of the fundamental reasons limiting their

performance. The frequency shift can be written as [28]

∆ν12 =
2h̄

m
(α22a22n2 + α12a12n1 − α11a11n1 − α12a12n2) (4.25)

where αij is a coefficient which is 2 for non condensed atoms and 1 for a coherently

prepared two component BEC, aij is the scattering length and ni is the density. From

the section on Ramsey interferometry we have seen that the frequency of Ramsey

fringes depends on the detuning. The collisional shift is density dependent and for

a cloud in an harmonic trap the density distribution can be considered Gaussian in
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Figure 4.5: Loss induced dephasing. A loss event associated with the removal of

particle from state |1〉 cause the phase to shift clockwise, while losses from state

|2〉 cause a counterclockwise phase shift. Averaging over all stochastic processes

leads to dephasing. The loss event are assumed symmetric for the purpose of this

representation. The z-projection is thus unaffected by losses.

the case of a thermal cloud or Thomas-Fermi for a BEC. Different part of the cloud

will therefore evolve with different frequencies causing decoherence.

4.2.5 Inhomogeneous phase growth

In a superfluid the gradient of the phase is related to the velocity via

v(r) =
h̄

m
∇φ(r) (4.26)

After evaporation a condensate lies in its ground state, which is a stationary state

with v(r) = 0. Hence the phase across the condensate is uniform. The application

of the coupling two-photon pulse and the creation of a two-component BEC leaves

the system in an excited state with a non-zero relative velocity and consequently a

nonuniform relative phase. The components, due to the effect of repulsive interac-

tion, start to oscillate in the trap with a characteristic frequency (for our conditions
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fc = 3 Hz) with state |2〉 compressed in the center of the trap and state |1〉 squeezed

to the sides. After a time τc/2 the motion is reversed. The superfluidity of the

system should imply that this oscillatory motion will develop undamped, but the

presence of atomic loss actually dampens the oscillation. These dynamics predom-

inantly take place in the axial direction, due to the high energy required to create

an excitation in the radial direction. The motion in the radial direction can thus

be considered suppressed and the phase uniform. The relative velocity itself is

not constant, but has a complex spatial and time dependence that depends on the

details of the motion of each component in the harmonic potential. This time and

space dependence of the phase greatly contributes to the decrease in visibility [88].

The oscillatory nature of the motion means that after a full period, and in the

absence of other decoherence mechanism (i.e. losses), the interference contrast can

be completely recovered (see figure 4.6), giving rise to ”revival” of coherence similar

to those described in the quantum phase diffusion section, but with a completely

different physical justification [102]. Furthermore, the visibility is influenced by the

spatial overlap of the wave functions of each component and as we have seen, this

imperfect overlap changes with time due to the collective oscillation.

4.2.6 Interaction with a thermal cloud

The interaction of the condensed part of a cloud with the non-condensed (thermal)

part has been shown to cause decoherence. Sinatra and Castin have calculated the

effect due to finite temperature [103] and have shown that the variance of the relative

phase grows in time according to

∆φ2(t) = ∆φ2
0 + AT t

2 (4.27)

where ∆φ2
0 is the variance associated with the initial state. AT is a coefficient

that depends on temperature, interaction strength and number of atoms and, in

the thermodynamic limit, can be approximated at low temperature (kBT � ng)
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with [30]

AT ≈
8π4

15

a2ξ

V

(
kBT

h̄

)2(
kBT

ng

)3

(4.28)

where g = 4πh̄2a/m is the interaction coefficient, n is the BEC density, ξ is the

healing length and V is the volume occupied by the condensate. Usually the con-

densate we create are very pure with negligible thermal fraction for the first 200

ms of evolution. We might therefore neglect finite temperature effects for short

evolution times, but the contribution should be taken into account on longer time

scales.
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Figure 4.6: Simulated local spin projection pz = (n2 − n1)/(n2 + n1) along the axial

direction obtained for N = 5·104 atoms and a detuning ∆ = 2π·15 Hz in the presence

(top) and absence (bottom) of losses. Equal values of pz represent identical values

of relative phase across the condensate. For the lossy case the visibility is at its

peak at the beginning of the evolution, decreases to a minimum after 170 ms, corre-

sponding to the maximum separation between the two components and then increases

without ever reaching the original peak value. In the absence of losses visibility is

fully recovered after ≈ 350 ms, exhibiting an undamped periodic behavior.



CHAPTER 5

Coherence of thermal clouds and BEC,

Experimental results

The macroscopic quantum properties of BECs have been extensively studied in

the field of atom interferometry. Interference between condensates, either spatially

separated or in different quantum states have been used to perform very accurate

measurements and has the potential to be used to create a new generation of high

precision sensors. To improve the sensitivity of an interferometric measurement, high

particle numbers and long evolution times are important. Atoms, unlike photons,

can have strong interactions, leading to decoherence and limiting the timescale of the

measurements. Experiments in Swinburne [73,82,102] have achieved coherence time,

defined as the time at which the visibility maximum drops by 1/e, of 1.3 seconds for

a Ramsey sequence interferometry and 2.8 seconds for a spin-echo interferometry.

Simulation of the phase growth uncertainty [1], figure 5.1, obtained with a truncated

Wigner method, allows us to extrapolate a coherence time of 11 seconds when only

quantum noise is present. The dominant source of decoherence is thus technical

noise, mainly from local oscillator instability. For this reason we have upgraded

our system with a new, more stable, MW generator and a state of the art quartz

oscillator to synchronize the RF and MW generators used to produce the Ramsey



70 Coherence of thermal clouds and BEC, Experimental results

pulses. In this chapter we provide evidence of the reduction of technical noise to

level below the quantum noise and we attempt to measure the coherence time of a

BEC of 3 · 104 atoms.

Figure 5.1: Phase uncertainty evolution in a Ramsey interferometry. The black

bars represent experimental points. The red dashed line shows the growth of phase

uncertainty due to quantum noise simulated using truncated Winger method. The

solid blue line represents the sum of technical and quantum noise. The technical

noise clearly dominates over the quantum part. Adapted from Ref. [1]

5.1 Experimental sequence and fringe analysis

In this chapter we will be performing two types of experiments; the first is a phase

diffusion experiment using thermal atoms, designed to measure the classical noise

from our equipment and the second uses low atom number BEC and a much stabi-

lized setup to try to detect and quantify quantum contribution to the decoherence

of the condensate’s phase. Honours student Cambell Biggs participated in collecting
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measurements on the coherence of thermal clouds.

5.1.1 Phase diffusion experiments

To characterize the level of technical noise in our system we prepare noncondensed,

thermal atoms in the state |1〉 = |F = 1,mF = −1〉. We first trap ∼ 5 · 108

atoms in a mirror MOT in 12 s. After the MOT stage, atoms are transferred to a

CMOT created by passing a current in U-wire on the atom chip and by applying a

bias field. At this point the temperature of the cloud is Doppler limited at about

150 µK as measured from time of flight expansion. The cloud is further cooled

using polarization gradient cooling. To increase the efficiency of the polarization

gradient cooling we decrease the magnetic field to the point it only prevents atoms

from falling under gravity and we increase the trapping laser detuning. The result

is a cloud with a temperature of ≈ 40µK. The atoms are then optically pumped

in the selected state |1〉 = |F = 1,mF = −1〉. Approximately 1 · 108 atoms are

then transfered to the magnetic trap. We use a magnetic trap with axial frequency

fax ≈ 97.0 Hz and radial frequency fr ≈ 11.7 Hz. The trapping frequencies have

been measured by applying a small current to one of the end wire on the atom chip,

thus slightly displacing the cloud, and then monitoring the dynamics (figure 5.2).

To reduce the number of particle from 1 · 108 to a value which varies between 105 to

2·105 we use an inefficient evaporation process that removes the atoms from the trap

without letting them rethermalize, thus preventing condensation. The trap bottom

is set to ≈ 3.23 G to eliminate first order the Zeeman shift and provides first order

insensitivity to magnetic field fluctuations. A two-photon MW+RF pulse creates an

equal superposition of states |1〉 = |F = 1,mf = −1〉 and |2〉 = |F = 2,mf = +1〉.

The length of the π/2 pulse is 0.7 ms, giving a Rabi frequency Ω = 2π · 360 Hz.

The MW field is detuned by ≈ 2π · 1 MHz from the intermediate, untrappable

state |F = 2,mf = 0〉 to avoid leakage. The RF is provided to the atoms through

one of the end-wires on the chip while the MW is radiated by a dipole antenna
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placed outside the vacuum chamber, approximately 12 cm away from the atoms.

The second Ramsey interrogation pulse is applied after an evolution time which

can be variable when performing time-domain Ramsey interferometry or fixed when

the interferometry is in the phase domain. In the phase domain it is the different

phase relationship between the pulses, created using a built in function of the MW

synthesizer, that generates the Ramsey fringe. After the second pulse the cloud is

released and imaged using the adiabatic passage technique described in chapter 3.
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Figure 5.2: Measurements of axial (left) and radial (right) oscillation frequencies

in a magnetic trap with 3.23 G trap bottom. We imparted momentum to the cloud by

moving it away from the minimum through the application of a short current pulse

in one of the unused end-wires on the surface of the atom chip, displacing it in the

axial and radial direction at the same time. The measured values are ≈ 97.0 Hz in

the radial direction and ≈ 11.7 Hz in the axial.

The relevant quantity measured in every iteration is the atom number difference

Pz = (N2 − N1)/(N1 + N2). For analyzing the data we use the simplified fitting

function

Pz(N, t,∆, φ) = V(N, t) sin (∆t+ φmf + φmw) (5.1)

where V is the visibility, ∆ is the effective detuning of the two-photon drive, φmf

is the mean field driven relative phase, and φmw is the MW phase shift between

Ramsey pulses.For thermal atoms the mean field contribution is approximately linear

in the total particle number N and we rely solely on measurements to estimate it.
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Fluctuations in the atom number cause corresponding fluctuations in the value of

φmf which appear as phase noise and can lead to apparent phase collapse. The

knowledge of the relation between atom number and accumulated phase allows us

to correct for fluctuations and achieve good interferometric contrast on timescales

otherwise inaccessible. The time dependence of the mean field driven relative phase

φmf implies that corrections are more precise for Ramsey interferometry in phase

domain, where the evolution time is kept constant. In the time domain we could

acquire the atom number dependence for each point of a Ramsey fringe, but such a

procedure is time consuming.
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Figure 5.3: Ramsey interferometry of a thermal cloud in phase domain after 500 ms

of evolution (a) and zero-crossing experiment at 500 ms (b). The fitted function of

the zero-crossing experiment is used to correct the points on the Ramsey fringe for

atom number fluctuations. The fringe fit error gives the phase STD σ(φ). The phase

standard deviation can also be extracted from the zero-crossing data after correction.

Both measurements are significant for the correct recovery of the uncertainty of the

phase .

The correction for atom number variations is performed in a ”zero-crossing” exper-

iment. We first determine the value of the phase or the evolution time for which

Pz ≈ 0 and then we collect 10 to 20 points in this conditions. The zero-crossing is

chosen because the sensitivity of the phase to the variations in the atom number is
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maximal. The experimental points collected in zero-crossing experiments are fitted

with a linear function, the slope is extracted from the fit and the value obtained by

multiplying the slope by the total number of atoms measured for each point is sub-

tracted to the measured value of Pz, thus correcting for atom number fluctuations.

The visibility V is defined as the amplitude of the sinusoidal fit, equation (5.5).

The fitting function takes into account phase noise by introducing an exponentially

decreasing visibility V . If we assume the noise from all technical sources to be

Gaussian distributed, which is acceptable for the central limit theorem, then the

visibility decreases according to

V =

∫ +∞

−∞
sinφ

1√
2πσ2

e−
φ2

2σ2 = e−
σ2

2 (5.2)

where σ is the standard deviation obtained from the fit standard error. The phase

standard deviation can be obtained from a ”zero-crossing” experiment as well, using

the equation

φ(Pz) = arcsin

(
Pz
V

)
(5.3)

and defining σ = STD(φ(Pz)). However, knowledge of the visibility is required and

a phase or time domain Ramsey sequence must be performed. From an operational

point of view, the extraction of phase uncertainty from a zero-crossing experiment

follows the idea that in the absence of all sources of noise the points acquired must

have the same value of Pz = 0. Noise of all kinds displaces the points around

Pz = 0. Atom number fluctuations can be corrected as mentioned above either

through simulations or through fit in the case of thermal atoms. The remaining

phase spread is defined as phase standard deviation σ.

5.1.2 Quantum Decoherence of BEC experiments

For quantum decoherence experiments, the sequence is similar to the one described

in section 5.1.1 with the main difference that, to produce BEC, the evaporation

trajectory is optimized. The result is a pure condensate with the total atom number
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controllable from a minimum of 1.5 · 104 to a maximum of 105. The observable

measured is again the normalized atom number difference Pz = (N2−N1)/(N1+N2).

In a Ramsey sequence for a 2CBEC the atom number difference evolves as [82]

Pz(N, t,∆, φ) =
2

N
Im

[
ei(φ+∆t)

∫
Ψ∗2Ψ1d

3r

]
(5.4)

depending on atom number N , time t, detuning ∆ and MW phase φ of the second

Ramsey pulse and overlap between the two wavefunction Ψ1 and Ψ2. Such a depen-

dence is complex and requires the solution of coupled Gross-Pitaevskii equations.

We can again use a simplified fitting function of the form

Pz(N, t,∆, φ) = V(N, t) sin (∆t+ φmf + φ) (5.5)

and the agreement is good in phase domain for any evolution time, while in time

domain the agreement is good below 200ms (see figure 5.4).
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Figure 5.4: Comparison between CGPE simulation including particle loss of a Ram-

sey experiment with N = 1.5 · 105 atoms, detuning ∆ = 2π · 40 Hz (red solid line)

and the fitting function equation (5.5) (black dashed line). The analytical function

agrees well with the numerically calculated values within 200 ms. Notice the revival

starting at 240 ms which the simplyfied fitting model is unable to predict.

For a condensate the mean field phase φmf is not linear anymore in N, but follows
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the relationship given by [102]

φmf = α(t)N 2/5t (5.6)

where N is the number of atoms and α(t) is a time dependent coefficient which can

be measured or derived from simulations. The coefficient α(t) changes slowly with

time, allowing us to correct data in a 20 ms range using the same phase dependence

and introducing only a negligible error.

5.2 Phase diffusion, results

The results of previous experiments performed in Swinburne [73, 82,102] (see figure

5.1) have shown that the dominant source of phase diffusion comes from techni-

cal noise, most prominently phase instabilities in the MW generator and in the

local oscillator used to synchronize the MW and RF. We have switched from the

Agilent E8527D MW synthesizer originally used in the experiment performed by

Egorov [102] in 2011 to a more stable QuickSyn MW synthesizer FSW-0010 (Fig.3.8,

chapter3). The local oscillator used in previous experiments was the internal clock

of the Agilent E8257D. We have replaced it with an oven controlled crystal oscillator

OCXO 8607 made by Oscilloquartz. The experiments are performed using thermal

atoms to reduce the density dependent mean-field effects and achieve longer coher-

ence time. This in turn allows us to better isolate the contribution to phase noise

introduced by the different pieces of equipment used. Due to the absence of collective

oscillations and inhomogeneous phase growth [88], typical of superfluid systems, the

dephasing is slower and quantum dephasing [43] effects have negligible effects due

to the high particle numbers. Furthermore losses, a major source of dephasing, are

greatly suppressed by the reduced density.
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5.2.1 Phase diffusion with Agilent E8257D

As a starting point we decided to characterize the old setup used by Egorov [82].

This will serve as as a benchmark for comparison with the new configuration. The

Ramsey interferometry is performed in the phase domain, with the MW phase φ of

the second π/2 pulse chosen to vary in a range from 0 to 2π.

The Rabi frequency of the two-photon coupling is set to Ω = 2π · 700 Hz, the

same value as used in the original experiment [82]. The detuning is different, being

∆ = 2π · 20 Hz, compared to ∆ = 2π · 37 Hz previously used. The particle number

is markedly higher, ranging from 2 · 105 to 4 · 105 compared to the 4 · 104 to 7 · 104

obtained in 2011. Trap bottom is set to 3.23 G, giving a Zeeman splitting of ≈ 2.26

MHz. The MW frequency is 6.8314 GHz, while the RF frequency is 3.248 MHz,

making the intermediate state |F = 2,mF = 0〉 detuned by about 1 MHz. Data are

collected after t1 = 100 ms and t2 = 500 ms.

Figure 5.5 shows the results obtained from the experiments. The fitted visibility

at 100 ms is V = 0.95 and decreases to V = 0.8 at 500 ms. The phase diffusion is

estimated in two ways: the first estimation is obtained by calculating the standard

deviation of the experimental points (corrected for atom number fluctuations) from

the sinusoidal fit, equation (5.5). The second estimation is based on the standard

deviation of the linear fit from the zero-crossing experiment, as shown in figure 5.3.

At 100 ms the value obtained from the fringe fitting STD is 0.0573 rad, very close to

0.0576 rad obtained from the zero-crossing. At 500 ms the uncertainty on the phase

is 0.2739 rad from the fitting STD and 0.2749 rad from the zero-crossing. The phase

uncertainty growth rate is 0.51 rad/s, a value remarkably similar to the 0.50(8) rad/s

previously measured. Furthermore, we recovered the linear time dependence of the

phase diffusion of noncondensed atoms already observed by Ivannikov in his work

on atom clock stability [73].

We then installed the OCXO 8607 oven controlled crystal oscillator by directly

connecting it to the reference input of the Agilent MW synthesizer, causing the
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Figure 5.5: Ramsey interferometry in phase domain (a,c) and zero-crossing ex-

periment (b,d) performed with Agilent E8257D and internal clock synchronization.

Black dots are experimental data points, the red solid line in (a,c) is a sinusoidal

fit using equation (5.5),(b) is a linear fit while (d is a sinusoidal fit due to the fact

that the experiment has not been performed exactly at the zero-crossing.)

generator to lock to the clock signal. We acquired an additional set of points at

evolution time t1 = 100 ms, t2 = 300 ms and t1 = 500 ms, displayed in figure 5.6.

The measurements shows a reduction of the phase growth rate from 0.51 rad/sec

to 0.4 rad/sec, a 20% decrease that we attribute to the higher stability of the lo-

cal oscillator. Table 5.1 provides the experimental findings for the two different

configurations.
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Agilent E8257D synchronized by internal clock

Time (ms) Visibility V σ(φ) from fit (rad) σ(φ) zero-crossing (rad)

100 0.95 0.057 0.058

500 0.8 0.274 0.275

Phase uncertainty growth rate = 0.51 rad/sec

Agilent E8257D synchronized by OCXO

Time (ms) Visibility V σ(φ) from fit (rad) σ(φ) zero-crossing (rad)

100 0.95 0.03 0.043

300 0.82 0.114 0.115

500 0.78 0.198 0.201

Phase uncertainty growth rate = 0.4 rad/sec

Table 5.1: Summary of the visibility and phase standard deviation measured in the

phase diffusion experiment with Agilent E8257D MW synthesizer.
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Figure 5.6: Ramsey interferometry in the phase domain (a,c,e) and zero-crossing

experiment (b,d,f) performed with Agilent E8257D and OCXO 8607 crystal oscil-

lator. Black dots are experimental data points, the red solid line in (a,c,e) is a

sinusoidal fit using equation (5.5) and in (b,d,f) is a linear fit.

5.2.2 Phase diffusion with QuickSyn MW synthesizer

To test the QuickSyn MW generator we performed a series of Ramsey interferometry

experiments in time domain. The time domain was somehow forced upon us by the

fact that the synthesizer could not be triggered to change the phase of the second
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π/2 pulse. Time domain is inherently easier to implement experimentally, since the

MW generator continuously produces a signal that is fed to the atoms when the

MW switch is triggered. No trigger is required for the MW generator. The results

of the experiment are presented in Figure 5.7 while the relevant quantity measured

can be found in Table 5.2.

QuickSyn synchronized by OCXO

Time (ms) Visibility V σ(φ) from fit (rad) σ(φ) zero-crossing (rad)

100 0.91 0.003 0.01

500 0.72 0.08 0.07

700 0.72 0.058 0.06

1000 0.6 0.09 0.11

Phase uncertainty growth rate = 0.11 rad/sec

Table 5.2: Summary of the visibility and phase standard deviation measured in the

phase diffusion experiment with QuickSyn MW synthesizer and OXCO local oscilla-

tor.

It is immediately evident there is a drop by ≈ 80% in the phase diffusion growth rate

when compared with the previously used setup, from 0.51 rad/sec to 0.11 rad/sec.

Figure 5.8 offers a summary of the phase noise measured for all the experiments

performed and a comparison to the quantum phase noise simulated with a truncated

Wigner approach for a BEC of 5 · 104 atoms [102]. Such quantum noise shouldn’t
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Figure 5.7: Ramsey interferometry fringes in time domain (a,c,e,g) and zero-

crossing experiment performed at t = 108 ms (b), t = 503 ms (d), t = 706 ms

(f), t = 1001 ms (h) with QuickSyn MW generator and OCXO local oscillator.

The evolution time is chosen to match the Pz = 0 condition. The points in the zero-

crossing experiments follows an almost ideal linear dependence over a broad range of

atom number, while the sinusoidal fit is excellent for all times considered, indication

of very low phase instability.
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be considered indicative of the actual quantum noise present in the current set

of experiments. Since we are dealing with thermal atoms and with atom numbers

between 2·105 and 4·105 the real quantum noise in the experiment would necessarily

be smaller. Nevertheless it is possible to see how the improvement in the setup has

reduced the technical contribution to the phase growth to a level comparable, if

not smaller than the quantum noise in a BEC (Cf. with figure 5.1) . This will be

relevant in the other set of experiments performed in this chapter, for the estimation

of the coherence time of a BEC and the quantum phase noise measurements.

The linear dependence of the phase uncertainty on time, previously reported in

other Ramsey interferometry experiments for both thermal clouds and BEC [73,82],

is confirmed by the current observations. The error bars represents the statistical

uncertainty on σ(φ) and are calculated as ∆σ(φ) = σ(φ)/
√
M , where M is the

number of experimental realizations for each data point, ranging from M=20 to

M=30.

We can define an amplitude coherence time τamp at which the visibility drops by

1/e. The value, obtained from the exponential fit of the visibility decrease in figure

5.9 is

τamp = 11.5 s (5.7)

The phase coherence time τcoh, defined as the time at which the phase becomes

random, can be obtained from equation (5.2) by defining σ(φ) = β · t, where β is the

phase diffusion growth rate, observed to be linear in time. In other words, we define

the coherence time τcoh as the time at which σ(φ) =
√

2. The calculated value for a

Ramsey sequence with QuickSyn synthesizer is

τcoh = 12.9 s (5.8)
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Figure 5.8: Phase diffusion growth rate for a Ramsey interferometry with thermal

atoms. The experimental points obtained using QuickSyn MW generator and OCXO

local oscillator (red dots), Agilent E8257D and OCXO (purple dots), Agilent

E8257D and internal clock 2015 (green dots) and Agilent E8257D and internal

clock [102] (black dots) are displayed. The lines are linear fits for these points,

except the blue dashed line that represents quantum noise simulated with truncated

Wigner method for a BEC of 5·104 atoms. The phase noise measured with QuickSyn

MW generator and OCXO lies below quantum noise.

5.2.3 Inhomogenous dephasing and identical spin rotation

effect

In this section we will calculate the contribution to the decoherence due to inho-

mogeneous dephasing. Inhomogeneous dephasing occurs because trapped atoms

experience an inhomogeneous shift ∆(r) of the transition frequency due to com-

bined contributions of the trapping potential and atomic interactions. Since differ-

ent atoms explore different regions, they experience different frequency shifts and

therefore their spins precess at different speeds, therefore causing dephasing at a
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Figure 5.9: Ramsey interferometry for long evolution times. The black line is an

exponential envelope modeling the visibility decay, the red line is a sinusoidal fit

almost perfectly following the experimental points (black dots). The frequency of a

Ramsey fringe is framsey = 100.2 Hz. From the exponential envelope an amplitude

coherence time of 11.53 s is extracted.

rate characterized by an average inhomogeneity ∆0 give by [33, 84, 104]

∆0/2π =
2
√

2h̄

m
(a11 − a22)n̄ (5.9)

where n̄ is the average density. The average density can be estimated, assuming

normal distribution of n, from the peak density using n̄ = npeak/8, and the peak

density can be estimated from the total atom number, the trap frequencies and the

temperature with [49]

npeak =
N

(2π)3/2σ2
rσz

σ2
i =

kBT

mω2
i

(5.10)

Typical values of the temperature T in our experiment range from 250 to 350 nK,

while N ≈ 105, ωz = 2π · 11.7 Hz and ωr = 2π · 97 Hz. These values give a

npeak ≈ 1.5 · 1012 atom/cm3 and consequently a n̄ ≈ 0.5 · 1012 atom/cm3 . From this

we get ∆0 ≈ 2π · 0.2 Hz and we can extract the coherence time, in a way similar to

equation 5.2, by setting σ = ∆0t

V = e−∆2
0t

2/2 = e−t
2/τ2

0 (5.11)

leading to

τ0 =

√
2

∆0

≈ 1.1 s (5.12)
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Such a short coherence time comes as a surprise, but it is important to note that we

are in a regime where the identical spin rotation effect (ISRE) [33, 105, 106] occurs.

The identical spin rotation effect can be explained by dividing the atoms in two

classes having different spin precession rates around the z-axis: the fast and the

slow class. An atom is placed in the fast or slow class based on the average detuning

experienced. Due to the different precession rates the two classes start to dephase.

The ISRE cause the two spin polarizations to rotate around their sum, allowing the

slow class to switch place with the fast class. The two polarizations, now swapped,

continue to precess at the same speed, thus leading to rephasing. It is important

to note that the ISRE does not change the sum of the polarization which will stay

on the equatorial plane for an equal superposition. The ISRE will occur with the

frequency

ωISRE/2π = 2h̄|a12|n̄/m ≈ 4 Hz (5.13)

which is larger than ∆0 and the lateral elastic collision rate

γc =
32
√
π

3
a2

12n̄vT (5.14)

where vT =
√
kBT/m, is much smaller than ωISRE and the trap frequencies. The

ISRE effect is responsible for a dramatic increase in coherence time. A remark

should be made on the fact that an additional source of loss of contrast is due to

asymmetric losses that remove atoms predominantly from state |2〉. For this reason

estimates of the coherence time solely based on the contrast drop do not completely

describe the coherence property of the ensemble, and zero-crossing measurements

based on the spread are a nice complement.

5.2.4 Other sources of technical noise

Instability of the local oscillator and shot to shot fluctuations of the microwave and

radio frequency generator’s phase are not the only sources of technical noise. For

this reason we will briefly describe other effects that affect phase uncertainty.
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Imperfect preparation pulse

Fluctuations in the MW or RF power cause corresponding fluctuations in the AC

Stark shift, with slightly different Rabi frequencies Ω. This in turn will not lead

to a perfect π/2 pulse and the Bloch vector will not lie on the equatorial plane.

Fluctuations in the magnetic fields change the detuning of the MW field from the

intermediate level of the two-photon transition to first order, causing the similar

effects. The variance of Pz can be calculated using [107]

σ(Pz)
2 =

(
Ω

2

dPz
dΩ

)2(
δP

P

)2

+

(
dPz
d∆

)2

(δ∆)2 (5.15)

where Ω is the two-photon Rabi frequency, δP are the fluctuations in MW power,

δ∆ are the fluctuations in detuning ∆ and Pz can be expressed in terms of ∆ and

Ω as

Pz = α2 + (1− α2) sin(|∆|T + ε) (5.16)

with

α =
(|∆|/Ω)2 + cos(Ω

√
1 + (|∆|/Ω)2

(|∆|/Ω)2 + 1
(5.17)

ε = tan−1

(
[1 + 2(|∆|/Ω)2] cos(Ω

√
1 + (|∆|/Ω)2 · t) + 1

2|∆|/Ω
√

1 + (|∆|/Ω)2 sin(Ω
√

1 + (|∆|/Ω)2 · t)

)
(5.18)

In Figure 5.10 we can see a set of points showing the stability of a preparation pulse

of length 0.7 ms, Rabi frequency Ω = 2π · 360 Hz, intermediate detuning ∆ ≈ 2π · 1

MHz. The preparation pulse is stable within 1.6%. Measurements on the magnetic

field performed with a FluxGate magnetometer show fluctuation of the magnetic

field in the 15 mG range. This accounts for ≈ 1% of the uncertainty in Pz, with the

remaining 0.6% due to power fluctuations. The uncertainty in relative population

translates into frequency uncertainty through the collisional shift

∆ν12 =
2h̄

m
n(2a12 − a11 − a22)σ(Pz) (5.19)
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Figure 5.10: Preparation pulse uncertainty for a two-photon transition at 3.23 G

with QuickSyn MW synthesizer. The standard deviation is σ(Pz) = 0.016. The

red line represents the average, 〈Pz〉 = 0.025. The upward trend has already been

observed in Allan deviation measurements performed at Swinburne by Ivannikov et

al. The source has been identified in random walk frequency noise [73]

where n is the peak atomic density, typically ≈ 2 ·1012 cm−3 and σ(Pz) = 0.016 from

previous considerations. After substitution in equation (5.19) we obtain ∆ν12 =

−0.34 mHz and a contribution to the phase uncertainty growth of 0.002 rad/s.

Imaging noise

The relevant informations extracted in the experiment are obtained from absorption

imaging. In the experiment we collect two consecutive images on a CCD camera,

one containing the shadow cast by the atoms and the other in the absence of them.

The two images are then subtracted and the atom number per pixel follows the

formula [107]

Npx = c0

(
L ln

ei
ef

+
ei − ef
esat

)
(5.20)
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where c0 = 2πP 2/(3λ2M2), P is the pixel area, M is the magnification, esat is

the electron count corresponding to Isat = 1.67 mW cm−2, L = (4∆2 + Γ2)/Γ2 which

depends on the detuning and the natural linewidth of the transition used for imaging

and ei,f are the electron counts per pixel for the first and second image, respectively.

The electron counts per pixel depends on the intensity of the incident laser light

through

ei,f =
ηPτIi,f
h̄ω

(5.21)

where η is the quantum efficiency of the CCD camera, τ is the exposure time and

h̄ω is the energy per photon. The intensity of a laser is not constant, but follows

a Poissonian distribution. Consequently the detected atom number will fluctuate

with an uncertainty [107]

σ(N) = c0

√√√√∑
px

[
ef

(
1

esat
+
L

ef

)2

+ ei

(
1

esat
+
L

ei

)2
]

(5.22)

and the summation is performed over all the pixels. Egorov has characterized this

uncertainty [82] and found that it accounts for 2% of the measured atom number.

The corresponding frequency shift is

∆ν12 =
2h̄

m
n(a22 − a11)σ(N) (5.23)

which gives a contribution of -15 mHz and leads to a phase growth of 0.09 rad/sec.

From this consideration it seems that with the new MW synthesizer the phase

diffusion is mostly due to imaging laser shot noise.

5.3 Quantum decoherence of a BEC

In the previous section we have demonstrated the reduction of the phase diffusion

from 0.51 rad/s to 0.11 rad/s. Usign the new MW generator this value is below

the quantum phase growth for a BEC of ≈ 5.5 · 104 atoms. We perform Ramsey

interferometry experiments with pure condensates with a nearly absent thermal frac-

tion. This makes decoherence through interaction with a thermal cloud a negligible
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process. The particle number is kept low, below ≈ 3 · 104 atoms, half of the value

used in previous experiments in Swinburne [102], further increasing the contribution

of quantum noise to phase diffusion when compared with the simulations in figure

5.1 (quantum contributions to the phase uncertainty scale as 1/
√
N).Reduction of

the number of atoms has the additional benefit of minimizing the density dependent

mean field contributions, making data correction easier. The aim is to observe an

increased coherence time when compared to 1.3 seconds previously obtained and to

characterize the effect of quantum noise sources on phase diffusion.

5.3.1 Ramsey interferometry with BEC

This set of experiments follows the same procedure and is performed in the same

conditions as those with thermal atoms. The only difference lies in the fact the we

are preparing between 1 · 104 and 4 · 104 condensed atoms, with negligible thermal

fraction. Information on visibility and phase diffusion are obtained by directly com-

paring the results of GPE equations to our data points or through fitting with the

simplified function

Pz(N, t,∆, φ) = V(N, t) sin (∆t+ α(t)N 2/5t+ φ) (5.24)

where α(t)N 2/5t is the mean field contribution the phase. The coefficient α(t) is

estimated by fitting equation (5.24) to points obtained with GPE simulation of a

50/50 Ramsey sequence at different times and for different total atom number N ,

keeping only α as a free parameter. Figure 5.11 shows such a fit and we can see

that the fitting function, equation 5.24, closely follows the simulations, with some

discrepancy for 8 · 104 at 100 ms, but we do not have that many particles in the

experiment. In the range 1 · 104 to 4 · 104 the matching is almost perfect. The

detuning in the simulation is set at ∆ = 0. α(t) is slowly varying with time and

for t = 20 ms we have α = 0.75, at t = 100 ms α increases to 0.91 and then grows

very slowly with α = 1.04 at 400 ms. The knowledge of α(t) allows us to correct for

atom number fluctuations in the same way we did for thermal atoms.
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While running experiments with BEC we were plagued by technical problems whose

origin is not completely understood. As can be seen form figure 5.12 and 5.13 the

experimental points follow the simulations very well for the first 50 ms, but after

that the points starts to depart from the expected behavior and become highly ran-

domized around 100 ms. The experimental data only get worst at longer evolution

times, where the data points have a random distribution in atom number in zero-

crossing experiments (figure 5.14) and at 400 ms the visibility is only 0.2, while

from GPE simulations it should be 0.7, since it is very close to the maximum of

the revival, which happens after a full period of collective oscillations, 0.39 s for the

present experiment.
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Figure 5.11: GPE simulations including losses of Ramsey sequences with variable

atom number for (top) 20 ms and (bottom) 100 ms evolution time. The red line

is a fit to the simulated points using equation (5.24).
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Figure 5.12: Ramsey evolution in time domain for a BEC. The black dots are ex-

perimental points corrected for atom number fluctuations and the red line is a GPE

simulation for ∆ = 120 Hz and N = 3 · 104 atoms. The points follow the simulation

almost perfectly until 50 ms, where they start to deviate.
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Figure 5.13: Ramsey interferometry in time domain fitted with the simplified fitting

function, equation (5.24) (red line). The detuning is ∆ = 46 Hz and points are

corrected for fluctuations in atom number. The same trend as in figure 5.12 is

visible, with the points deviating around t = 50 ms and becoming randomized around

t = 100 ms.
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Figure 5.14: Ramsey interferometry in time domain (a,c) and zero crossing experi-

ments in the atom number domain (b,d) with condensed atoms. The visibility in (a)

is 0.3, matching the predicted visibility in GPE simulation since 180 ms correspond

to the maximum separation of the clouds under collective motion and maximally

non-uniform relative phase (see chapter 4, section 4.2.5). In (c) the visibility is only

0.2, much less then the expected 0.7 and the sinusoidal fit is very poor, clear sign of

rapid dephasing. The points in the zero-crossing experiments are highly randomized,

preventing fitting.

The most likely cause of instability in our system is related to the fact that the

MW synthesizer and the RF generator, which are both directly connected to the

local oscillator, cannot reliably lock on its signal. They stay locked for a while, and

then they randomly jump to a different phase. This can be inferred from figure 5.15

where points where taken consecutively in a zero-crossing experiment with BEC at

100 ms. It can be seen that the points follow an almost straight line, expected after

correction, and then they suddenly jump to a different value of Pz while retaining a
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similar slope.
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Figure 5.15: Zero-crossing experiment in the atom number domain showing a sudden

phase jump.The inability of the generators to lock on the local oscillator might be

a possible explanation for the quick dephasing rate experienced in the BEC experi-

ments.

In order to isolate the origin of the problem we have performed phase diffusion

experiment with thermal atoms and different combinations of MW synthesizer and

local oscillator. The result are summarized in figure 5.16 and show an increase in

phase growth rate of ≈ 2.7 times compared to our original setup, independent of

the particular MW generator, RF generator or local oscillator used. This is rather

disconcerting, because it points in the direction of something shared by all the

configuration, which can be the MW amplifier or the MW switch, with the additional

complication that the problem might lie in the way trigger pulses are generated

(Labview control software) or distributed (National Instrument board). The current

state of the system makes further progress impossible and the investigation of this

issue is of primary importance.
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Figure 5.16: Phase evolution with thermal cloud in the current state of the system.

The linear fit for the points (black dashed line) gives a phase diffusion growth rate

of 1.36 rad/s, 2.7 times the original setup (green dashed line) and 12.4 times the

improved setup (red dashed line). Furthermore there is a constant phase spread

at small evolution times, absent in the previous measurements.

5.4 Conclusion

In this chapter we initially described the improved a setup that reduces technical

noise below the quantum limit previously estimated by Egorov et al [102]. The

coherence time of a thermal cloud in a Ramsey interferometer has been extended

to 12 seconds. Then we moved to measure the quantum contribution to phase

diffusion in BEC, but we were hampered by a technical problem that caused our

system to decohere three times faster than observed with the old, non improved

setup. The explanation for such poor performance still eludes us, even though

we have performed extensive testing on all the components that could be isolated.

Unfortunately the setup is complex and some components cannot be easily isolated.

Sometimes the only way to test if they are working or not is by replacing them.
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Budget considerations have prevented us from replacing key components that might

have been responsible for the accelerate dephasing and as it stands, the system is

unable to perform Ramsey interferometry on time scale longer than 50 ms.



CHAPTER 6

Rephasing dynamics of a bosonic Josephson

junction

Josephson junctions are interacting quantum systems composed of two weakly cou-

pled, macroscopic quantum states. They were first realized in the context of super-

conductivity, when two superconductors are separated by a thin insulating barrier

and the electrons are allowed to tunnel across it. Josephson predicted [108] in 1962

that such system will develop a nondissipative current whose value depends on the

relative phase of the order parameter describing each superconductor through the

relation

I(φ) = Ic sin(φ) (6.1)

where Ic is the critical current and φ is the relative phase, with each superconductor’s

phase θ(r) assumed to be approximately uniform. This effect is called the direct

current Josephson effect and differs from the alternating current Josephson effect

which arises when a nonzero chemical potential difference µ = µ2 − µ1 is present,

causing the phase to rotate as [108]
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dφ

dt
= −µ

h̄
(6.2)

and creating an oscillating current across the junction. The Josephson relations

apply to any pair of weakly coupled quantum systems that can be described by

macroscopic wave functions [109]. BECs are among these systems, since they can

be described by the complex order parameter Ψ(r) =
√
ρ(r)eiφ.

Bosonic Josephson junctions (BJJ) can be experimentally made by spatially sep-

arating the condensate in a double well potential with the coupling provided by

tunneling. The coupling strength controlled by the height of the potential barrier

between the wells. This type of junction is called an external BJJ. Another way

to create a BJJ is to have condensed atoms sharing the same trap, but being in

different internal states. This is the path we follow at Swinburne and, since we

populate the hyperfine states |F = 1,m = −1〉 and |F = 2,m = +1〉 of 87Rb , the

coupling is provided by MW fields. These junctions are called internal BJJ.

When an external BJJ is subjected to a quantum quench, these systems are expected

to show ”rephasing” dynamics, first predicted by DallaTorre et al [2]. In other words,

initially independent, phase incoherent condensates will develop a well defined phase

relationship, present at all time scales, through the combined effect of the atomic

interactions and the tunneling coupling. This effect is also expected to be universal,

with the strength of the quench only affecting the time scale but ultimately leading

to the same outcome. In this chapter we describe both the external and internal

Josephson junction and give a description of the condition under which the rephasing

effect is expected to take place.

6.1 Double well Josephson junctions

A full quantum description of a double well Josephson junction can be given in

a two-mode approximation [110, 111]. Such a description is accurate at very low
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temperature due to the small separation between the ground and first excited state

of the double well, which are almost degenerate in the weak interaction case, and the

much bigger separation between the first and second excited states, greatly reducing

the probability for these states to be populated. The field operator can be written

as a superposition of these two states [112]

Ψ̂ = âgΦg(r) + âeΦe(r) (6.3)

where Φg(r) and Φe(r) are mean field spatial modes obtainable using GPE equation,

Eq. 2.3, âg and âe are the annihilation operators for a particle in the ground and

excited state respectively. Due to the symmetry of the problem, a more convenient

basis to describe the system uses the states for which the populations are sharply

peaked on the right or left well. Annihilation operators âL and âR for the left and

right side of the well are related to the previously defined ground and excited state

annihilation operators by

âL =
1√
2

(âg + âe) âL =
1√
2

(âg − âe) (6.4)

and the field operator in the new basis becomes

Ψ̂ =
1√
2

[âL(Φg + Φe) + âR(Φg − Φe)] =
1√
2

(Ψ1 + Ψ2) (6.5)

The Hamiltonian for a system of N bosons, trapped in a double well potential and

with contact interactions can be written as

Ĥ =

∫
dr

(
− h̄2

2m
Ψ̂†∇2Ψ̂ + Ψ̂†VDW Ψ̂ +

g

2
Ψ̂†Ψ̂†Ψ̂Ψ̂

)
(6.6)

where g is the interaction constant g = 4πh̄2a/m, a is the s-wave scattering length

and VDW is a double well potential. For the case of Oberthaler’s first realization of

a double well Josephson junction the confining potential was [113]

VDW =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) +

V0

2

(
1 + cos

2π

d
x

)
(6.7)
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After the substitution of equation (6.5) in equation (6.7) we obtain the two mode

Hamiltonian [112]

Ĥ2m =
Ec
8

(â†RâR − â
†
LâL)2 − Ej

N
(â†LâR + â†RâL) +

δE

4
(â†LâR + â†RâL)2 (6.8)

given the parameters

Ec = 8κg,e Ej =
N

2
(µe − µg)−

N(N + 1)

2
(κe,e − κg,g) (6.9)

δE =
κg,g + κe,e − 2κg,e

4
κi,j =

g

2

∫
dr|Φi|2|Φj|2 (6.10)

µg,e =

∫
dr

(
− h̄2

2m
Φg,e∇2Φg,e + Φg,e(VDW + gN |Φg,e|2)Φg,e

)
(6.11)

with the term proportional to Ec taking into account interaction within each well,

the term in Ej describing tunneling between the two wells and the term in δE

representing additional two particle processes. By neglecting the term in δE we

arrive at the Bose-Hubbard Hamiltonian [112]

ĤBH =
Ec
2
n̂2 − Ejα̂ (6.12)

where

n̂ =
â†RâR − â

†
LâL

2
(6.13)

is the population imbalance operator, divided by two since a particle jumping from

one side to the other of a double well changes the population by two and

α̂ =
â†RâL + â†LâR

2
(6.14)

is the tunneling operator. The mean value of the tunneling operator corresponds

to the first order spatial coherence function g(1)(r, r′) and measures the visibility of

the fringes obtained when the condensates are released from their traps. Depend-

ing on the ratio between the tunneling and the interaction energy Ec/Ej [114] the

ground state of the Bose-Hubbard Hamiltonian can be described by three different

regimes [115, 116]:
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Rabi regime for Ec/Ej � N−2, corresponds to the non-interacting regime,

where Rabi-like oscillations are driven due to the coupling provided by tun-

neling. The coherence is high and a relative phase can be defined.

Josephson regime for N−2 � Ec/Ej � 1, is the regime we are most inter-

ested in, characterized by small fluctuations in the atom numbers leading to

Josephson-like oscillations of the population imbalance. The coherence is still

high, allowing for the definition of a relative phase like in the Rabi case.

Fock Regime for 1 � Ec/Ej, the system is described by states with a well

defined atom number in each well, the coherence vanishes and the phase is

undefined. The phase is undefined in the sense that interference patterns can

still be observed but the patterns are changing from realization to realization

in the same conditions. The states show no temporal evolution and if the

initial state has been prepared with a population imbalance, that imbalance

will remain constant. The Fock regime is therefore not compatible with the

idea of ”a single condensate in a double well”, but corresponds to two inde-

pendent condensates on each side of the well. This case is called a fragmented

state [117].

A mean field description of the system is possible for large atom numbers by replacing

the creation and annihilation operators in equation (6.7) with complex numbers

according to the Bogoliubov prescription [118] âL,R =
√
NL,R(t)eiφL,R(t) and complex

conjugate for the creation operator. The mean field Hamiltonian reads

HMF =
Ec
2
n2 − Ej

√
1− 4n2

N2
cosφ (6.15)

where n = (NR−NL)/2 is the population imbalance and φ = φR−φL is the relative

phase. The equation of motion are [111]

dn

dt
= −1

h̄

∂HMF

∂φ
= −Ej

h̄

√
1− 4n2

N2
sinφ (6.16)
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dφ

dt
= −1

h̄

∂HMF

∂n
=
Ec
h̄
n+

Ej
h̄

4n

N2

(√
1− 4n2

N2

)−1

cosφ (6.17)

The quantities n and φ are canonically conjugate variables and the dynamics cor-

respond to that of a nonrigid pendulum with length proportional to the population

imbalance. When n = 0 and φ = 2mπ, with m integer, the system is in the

ground state and does not change. For a small population imbalance n2
0 � N2,

corresponding to a small initial kick given to the pendulum, or for an initial phase

sinφ0 ≈ φ0, corresponding to a small displacement from the ground state position,

the equations of motion become

dn

dt
= −Ej

h̄
φ

dφ

dt
=

(
Ec
h̄

+
4Ej
h̄N2

)
n (6.18)

and current will start to flow across the barrier and the population imbalance will

display harmonic (Josephson) oscillations given by

n(t) = n0 sin(ωpt+ φ0) (6.19)

where ωp is the characteristic plasma frequency

ωp =
1

h̄

√
Ej

(
Ec +

4Ej
N2

)
. (6.20)

If the initial population imbalance is large enough, so that the kick given to our

nonrigid pendulum is able to swing it over the vertical position, the mean population

imbalance will be different from zero. The critical value of the initial imbalance is

therefore given by

nc = 2

√
Ej
Ec

(
1− 4Ej

N2Ec

)
(6.21)

and above nc the condensate enters the macroscopic self trapping regime [115], a

state ultimately caused by particle self-interaction. The non rigidity of the pendulum

allows for oscillations to be found for small amplitude around φ = (2m + 1)π, a

condition unstable in a rigid pendulum.
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6.2 Two component Josephson junction

The internal state evolution of a 2CBEC can be described in Bloch vector notation

using the one-axis twisting Hamiltonian [119]

Ĥ

h̄
= δŜz + ΩŜθ + χŜ2

z (6.22)

where Ŝφ = cos(θ)Ŝx − sin(θ)Ŝy and Ŝx, Ŝy, Ŝz are the spin operator components,

defined in second quantization as

Ŝx =
1

2

∫
d3r(Ψ̂†2Ψ̂1 + Ψ̂†1Ψ̂2) Ŝy =

1

2

∫
d3r(Ψ̂†2Ψ̂1 − Ψ̂†1Ψ̂2)

Ŝz =
1

2

∫
d3r(Ψ̂†2Ψ̂2 − Ψ̂†1Ψ̂1)

(6.23)

where Ψ̂i = Ψ̂i(r) is the bosonic annihilation operator for an atom in state |i〉 at

position r. It follows that Ψ̂1(r) = â1ψ0(r) and Ψ̂2(r) = â2ψ2(r), where â1 and

â2 are bosonic annihilation operators and ψ1(r) and ψ0(r) are solution to the GPE

equation. The first term in equation(6.22) describes spin precession around the z-

axis at the detuning δ = ωd − ω0, ωd being the frequency of a two photon driving

pulse and ω0 being the frequency separation of the hyperfine states. The second

term describes spin rotations around an axis forming an angle θ with the x-axis at a

frequency Ω. It is straightforward to identify Ω with the Rabi frequency and θ with

the phase of the two photon coupling. The last, nonlinear term in Ŝz, with strength

χ, is due to elastic collision and twists the states on the Bloch sphere around the

z-axis with direction and speed of rotation dependent of the state’s distance with

respect to the equatorial plane. This term is central in the understanding of the

rephasing dynamics we want to observe and will be discussed in the next section.

The 2CBEC Hamiltonian can be rewritten in a form similar to equation (6.15),

thus highlighting the similarities between a two component BEC and a double well

Josephson junction [120]. By noting that

S2
y + S2

x = S2 − S2
z =

N2

4
− S2

z (6.24)
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where S =
∑N

j sj is the total spin of the system and N is the total number of atoms

and

Sθ =
N

2

√
1− 4S2

z

N2
cosφ Sz =

N2 −N1

2
= n φ = φ2 − φ1 (6.25)

with φ the relative phase and n the population imbalance defined in the previous

section. The Hamiltonian (6.22), after the substitution of equation (6.24) and (6.25)

becomes

Hjj = δn− Ω
N

2

√
1− 4S2

z

N2
cosφ+ χn2 (6.26)

which, for δ = 0 is nearly identical to the Hamiltonian of a double well Josephson

Junction. Following the same procedure used in the section on double-well Josephson

junctions we can write Hamilton’s equation for the time evolution of the conjugate

variables n and φ [50]

dn

dt
=
∂Hjj

∂φ
=

ΩN

2

√
1− 4n2

N2
sinφ (6.27)

dφ

dt
=
∂Hjj

∂n
= −2χn+

4Ωn

N
√

1− 4n2

N2

cosφ (6.28)

The set of equations (6.27)-(6.28) is exactly the same as for the double well, equations

(6.16)-(6.17).

6.3 Universal rephasing dynamics in a quenched

Josephson junction

Dalla Torre et al, in their 2013 paper [2], have studied the dynamics of a quantum

quench where two initially independent condensates are suddenly coupled. They

predicted that the time evolution of physical observables of the system, in the limit

of weak coupling, follows a universal scaling law of the form [2]

C(t) =

(
∆

µ

)η
R(∆t) (6.29)
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where C(t) is a generic observable, η is the scaling dimension corresponding to the

observable C(t), R(∆t) is a scaling function, µ is the chemical potential and ∆

is the size of the gap opened by the quench in an otherwise gapless Hamiltonian.

In this section we will briefly review their findings, with particular attention on

the coherence factor 〈cosφ〉 as the relevant observable. As we will see, the effect

of the quench will be to ”rephase”, or force coherence in the initially incoherent

independent condensates. The coherence factor is expected to follow the scaling

law, equation (6.29), at both short and long evolution time, providing a way to

link short-time dynamics, that can be found by perturbing steady state solution,

to long time dynamics, where perturbation theory does not apply. The original

proposal focused on two condensates trapped in a double well potential, coupled by

tunneling. The potential barrier separating each side of the well is initially kept high,

the coupling is negligible and the Hamiltonian describes two individual condensates

H(t) =
µ

N
(δn2

1 + δn2
2) (6.30)

where δn1,2 = Ψ†1,2Ψ1,2 − N/2, with Ψ1,2 being the bosonic field operators already

described in the double well Josephson junction section (Eq.6.5. This Hamiltonian

describes interactions among the atoms in the same condensate and is clearly gapless.

After some time t, the system is quenched by the sudden lowering of the potential

barrier with the condensate coupled through tunneling. The Hamiltonian after the

quench reads

H(t) =
µ

N
(δn2

1 + δn2
2)−Θ(t)j⊥(Ψ†1Ψ2 + H.c) (6.31)

where ⊥ is the tunneling coupling and Θ(t) is the Heaviside step function. This

Hamiltonian can be written in Josephson form by using Ψ1,2 =
√
N1,2e

iφ1,2 , giving

H(t) =
2µ

N
n2 − 2Θj⊥N cos(

√
2φ) (6.32)

If we treat the quench as a small perturbation we can approximate cos(
√

2φ) ≈ 1−φ2

and retrieve undamped harmonic oscillations with plasma frequency proportional to
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the gap size, ωp = ∆ = 2
√
µj⊥, given by

d2φ

dt2
= −∆2 sin(

√
2φ)√

2
(6.33)

This however is not the solution found by DallaTorre through exact diagonalization

of the full quantum Hamiltonian, equation (6.31). The solution shows strongly

damped oscillations at a frequency ∆, clarifying the non-perturbative nature of the

problem [2]. In fact the initial state has a large overlap with a macroscopic number

of eigenstates of the Hamiltonian after the quench, which forces us to consider all

high order expansions of the cosine and highlights the strongly interacting nature of

the quench.

The same predictions of damped harmonic oscillations can be obtained by applying

a semiclassical approach [121, 122] based on the truncated Wigner approximation.

This model correctly reproduces the results of the full quantum model and provides

an analytical expression for the time evolution of the relative phase. The application

of the semiclassical method leads to the surprising result that the dynamics follow the

equation of motion of a simple pendulum, with the quantum nature of the problem

entering through the initial conditions, for which φ is uniformly distributed between

0 and 2π. It is this uniform distribution of initial conditions which is responsible for

the damped oscillations.

In a 2CBEC internal Josephson junction, which is the case of interest for the exper-

imental setup in Swinburne, the application of the method discussed above leads to

the equation
d2φ

dt2
= −ΩN

2

(
2χ+

4Ωn

N
− 2Ω2 cosφ

)
sinφ (6.34)

which simplifies, in the case of weak coupling, to

d2φ

dt2
≈ −ΩN

2

(
2χ+

4Ωn

N

)
sinφ (6.35)

A graphical representation of the expected dynamics can be obtained using the

Bloch sphere, figure 6.1, and considering the one-axis twisting Hamiltonian, equation

(6.22). The introduction of the weak coupling displaces the the spin vector from
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the equatorial plane and, given χ 6= 0, allows them to rotate around the z-axis. It

is remarkable that different rotational velocities and different initial positions work

together to change the initial uniform distribution of the spin vectors, with coherence

factor defined as α = 〈cosφ〉 [34], equal to zero (incoherent), into a new, partially

coherent, distribution with a nonzero value of the coherence factor.

Solutions to sets of equation (6.35), corresponding to different, uniformly distributed

initial values of the relative phase and different evolution times can be seen in figure

6.2, while the evolution of the coherence factor is depicted in figure 6.3 The simu-

lations confirm the scaling ansatz of equation (6.29), with oscillation of frequency

∆ = 2
√
χΩ. The initially incoherent system reaches a coherence peak of about

α ≈ 0.78 after a time t ≈ 2 and then stabilizes around α ≈ 0.4 for longer times,

thus partially ”rephasing” the condesates. The universality of the dynamics can be

seen in figure 6.4, where the time evolution of the coherence factor follows equation

(6.29) for different ratios of coupling and interaction strength, with η = 0.
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Figure 6.1: Bloch sphere representation of the dynamics involved in rephasing. (a)

The blue fuzzy circumference on the equator represents a two component BEC with

equal population and uniformly distributed relative phase. Such a condition can be

created by independently condensing an equal mixture over many repetitions. (b)

The weak coupling Ω, represented by the green arrow, rotates the circumference

around Sθ, here chosen to be aligned with the x-axis. (c) Nonlinearites cause the

points on the circumference to rotate around the z-axis with a speed proportional to

the distance from the equatorial plane, according to χS2
z . Furthermore, due to the S2

z

dependence, points lying in the northern hemisphere rotate counterclockwise, while

points in the southern hemisphere rotate clockwise. Simplifying, different points

rotates with different speed starting from different initial positions but end up after

an evolution time t clustered together more tightly then when they started, thus in-

creasing the chance of detecting them in a specific range. This, combined with the

fact that at long evolution times we do not recover the initial uniform relative phase

distribution, is the essence of rephasing. Detuning is not shown in in this represen-

tation but it also causes rotation around the z-axis proportional to δSz. However the

linear Sz dependence is crucial, since northern and southern hemisphere rotate in the

same direction and no change in the probability distribution is caused by detuning.
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Figure 6.2: Distribution of the relative phase of two initially independent condensates

calculated using the semiclassical approach, equation (6.35). The time is expressed

in units of inverse plasma frequency, t = 1/2
√

Ωχ.



110 Rephasing dynamics of a bosonic Josephson junction

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

t

Xco
s
Φ
\

Figure 6.3: Time evolution of the coherence factor 〈cos(φ)〉 obtained with the semi-

classical approach, equation (6.35). The time is expressed in units of inverse plasma

frequency, t = 1/2
√

Ωχ.

Figure 6.4: Time evolution of the coherence factor calculated by exact diagonaliza-

tion of the Hamiltonian (6.31) for N=1000 particles. (a)Coherence factor for dif-

ferent values of the ratio j⊥/µ, with the red line being characterized by the strongest

coupling and the pink one by the weakest. (b) By rescaling the axes, the universal

behavior outlined by equation(6.29) is evident, with η = 0. Adapted from [2].
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The model discussed so far involves conditions that need to be analyzed more care-

fully in order for an experiment to be carried out. The ”sudden” quench is modeled

with a Heaviside step function, which is clearly an idealization of finite quenching

time involved in the experiment. The model of a sudden quench is expected to

hold if the finite quenching time τ is smaller than the inverse of the energy of the

highest excited scale. This puts a constraint on τ such that τ � 1/NΩ. Witthaut

et al. have pointed out in ref. [123] that the most probable excitation path does not

connect directly the ground to the highest excited state, thus giving a less stringent

condition τ � 1/2
√
χΩ. Another condition involves the coupling, supposed to be

weak, setting a constraint Ω � µ. Finally the coefficient χ requires careful consid-

eration, because, along with Ω sets the time scale of the dynamics. The expression

for χ can be written as [43]

χ =
1

2h̄
(∂N1µ1 + ∂N2µ2 − ∂N2µ1 − ∂N1µ2)〈N1〉,〈N2〉 (6.36)

showing a dependence on the derivatives of the chemical potential, which in turn is

defined as

µj = 〈ψj|hj|ψj〉+
∑
k=1,2

gjkNk

∫
dr3|ψj|2|ψk|2 (6.37)

and gjk = 4πh̄2ajk/m is as usual the interaction strength, with ajk the s-wave

scattering length, N1, N2 are the mean atom numbers and hj is the single particle

Hamiltonian. If we neglect the dependence of the spatial wave function on the

atom number, we can neglect the first term of equation (6.37) and we arrive at the

simplified version [124]

χ =
1

2h̄
(U11 + U22 − 2U12) (6.38)

Ujk = gjk

∫
dr3|ψj|2|ψk|2 (6.39)

From equation (6.38) we can see that χ depends on the scattering lengths and on

an overlapping integral of the wavefunctions of our 2CBEC. For the states |F =

1,m = −1〉 and |F = 2,m = +1〉 of 87Rb used in the experiments, the scattering

lengths are very similar in value (a11 = 100.40 a0, a12 = 98.01 a0, a22 = 95.44 a0) [44]
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and if the modes overlap equation (6.38) gives χ ≈ 0, suppressing the rephasing.

Control over the overlapping integral is achieved by relying on the non-miscibility

of the condensed states, which leads to a spatial separation of the modes and to a χ

different from zero. However having merely a positive χ does not solve the problem,

since it still can be small enough to cause rephasing dynamics to happen on a time

scale where other dephasing mechanism can hide the effect we are interested to

measure.

6.4 Immiscible 2CBEC and nonlinear interactions

A 2CBEC is said to be miscible if the wave function of each component are en-

ergetically favored to coexist over the same space. Otherwise the condensate is

said to be immiscible and the components wave functions will try to avoid each

other. One way to obtain a criterion that marks the passage between miscibility

and immiscibility is to use a Bogoliubov-deGennes analysis, which allows us to find

the excitation spectrum and the spatial modes of two stationary states. We consider

an initially homogeneous two-component condensate whose evolution is described by

the CGPE of chapter 2, equation 2.3. For simplicity we set the coupling, the losses,

the detuning and the trapping potential to zero (Ω = δ = Γi = Vi = 0). Excitations

for trapped condensates are more difficult to deal with, but lead to similar results

and a discussion can be found in [45] . We assume ψi,0(r, 0) to be a steady state

solution of the simplified CGPEs, with a temporal evolution given by

ψi,0(r, t) = e−
iµit

h̄
√
ni (6.40)

then we define δψi(r, t) as a perturbation on top of ψi,0(r, t) and we replace the new

state

ψi(r, t) = e−
iµit

h̄ (
√
ni + δψi(r, t)) (6.41)

in the CGPE. After neglecting terms higher then first order we are left with [46,125]

ih̄
∂

∂t
δψi = − h̄

2∇2

2m
δψi + giini(δψi + δψ∗i ) + gi2

√
nin2(δψ2 + δψ∗2) (6.42)
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Assuming solutions of the form

δψi = ui,ke
i(k·r+ωt) δψ∗i = vi,ke

i(k·r−ωt) (6.43)

leads to the Bogoliubov-de Gennes equations(
ω − h̄2k2

2m

)
uk,i =

∑
j=1,2

gij
√
nin2(uk,j + vk,j) (6.44)

(
−ω − h̄2k2

2m

)
vk,i =

∑
j=1,2

gij
√
nin2(uk,j + vk,j) (6.45)

The system of four coupled equation can be further simplified by shifting to the

basis of sum and differences of uk,j and vk,j in which the equations can be written

as  g11n1 g12
√
n1n2

g12
√
n1n2 g22n2

u1,j ± v1,j
u2,j ± v2,j

 =
h̄2k2

2m

(
1− 2mω

h̄2k2

)2
u1,j ± v1,j
u2,j ± v2,j


(6.46)

and the dispersion relation is given by

ω2 =
h̄2k2

2m

(
h̄2k2

2m
+ 2η±

)
(6.47)

with η± eigenvalues of the matrix

G =

 g11n1 g12
√
n1n2

g12
√
n1n2 g22n2

 (6.48)

The two eigenvalues η+ and η− corresponds to eigenvectors (u1,j + v1,j, u2,j + v2,j)

and (u1,j − v1,j, u2,j − v2,j) which in turn correspond to in-phase and out of phase

oscillations. In the long wavelength limit, k → 0, the dispersion relation reduces to

ω2 = η± =
n

4

(
g11 + g22 ±

√
(g11 − g22)2 + 4g2

12

)
(6.49)

which further reduces, in the case of equal densities nj = n/2, to

ω2 =
nh̄2π

m

(
a11 + a22 ±

√
(a11 − a22)2 + 4a2

12

)
(6.50)
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A homogeneous system is thus stable if no imaginary energies exist, which leads to

the condition [45, 46]

a2
12 ≤ a11a22 (6.51)

If equation (6.51) is violated the condensates will lower their energy by decreasing

the overlap for the case of repulsive interaction, or by increasing it for attractive in-

teractions. There is no stable state for attracting condensates in the untrapped case,

which will collapse, but the presence of a trapping potential allows for a condensate

with a number of particles below a critical value Nc to be stable. For rubidium 87

the scattering lengths do violate equation (6.51) and the ground state for different

atom number is shown in figure 6.5, where the immiscibility is clearly visibile.

Equation (6.51) is a useful tool for understanding the behavior of 2CBEC, however

the situation can change dramatically if a coupling is established between the con-

densates, as will be illustrated in the next chapter and as highlighted in Ref. [126].

The now dressed states have stationary states that depends on the strength and

detuning of the coupling, making the simple picture ”component 2 squeezed in the

middle and component 1 spread at the edge” typical of the bare states of 87Rb much

more complicated. Finally, in a recent paper, Lee et al [127] pointed out the crucial

dependence of miscibility on atom number, suggesting that equation (6.51) is not

the optimal parameter to characterize the miscibility of trapped atoms since the

interaction threshold between miscibility and immiscibility and different regimes of

immiscibility depends on the atom number of each component.

The simulation of the ground state of a 2CBEC allows us to estimate the rephasing

period since we have access to the overlapping integral and we can calculate the

coefficient χ (see figure 6.6).



Immiscible 2CBEC and nonlinear interactions 115

z (7m)
-50 -30 -10 10 30 50

ax
ia

l d
en

si
ty

0

0.1

0.2

z (7m)
-50 -30 -10 10 30 50

ax
ia

l d
en

si
ty

0

0.1

0.2

z (7m)
-50 -30 -10 10 30 50

ax
ia

l d
en

si
ty

0

0.1

0.2

z (7m)
-50 -30 -10 10 30 50

ax
ia

l d
en

si
ty

0

0.1

0.2

z (7m)
-50 -30 -10 10 30 50

ax
ia

l d
en

si
ty

0

0.1

0.2

z (7m)
-50 -30 -10 10 30 50

ax
ia

l d
en

si
ty

0

0.1

0.2

z (7m)
-50 -30 -10 10 30 50

ax
ia

l d
en

si
ty

0

0.1

0.2

z (7m)
-50 -30 -10 10 30 50

ax
ia

l d
en

si
ty

0

0.1

0.2

z (7m)
-50 -30 -10 10 30 50

ax
ia

l d
en

si
ty

0

0.1

0.2

z (7m)
-50 -30 -10 10 30 50

ax
ia

l d
en

si
ty

0

0.1

0.2
(i)

(g)

(c)

(a)

(e)

(h)

(f)

(d)

(b)

(j)

Ntot= 3x104

Ntot= 104

Ntot=5x104

Ntot= 9x104

Ntot= 7x104

Ntot= 105

Ntot= 8x104

Ntot= 6x104

Ntot= 4x104

Ntot= 2x104

Figure 6.5: Axial density distribution for the ground state of an equally populated

two component BEC with total atom number varying between 104 (a) to 105 (j).

The stronger repulsive interaction experienced by the clouds is responsible for the

increased separation with increasing particle number. The simulations have been

performed for the experimental trap frequencies ωax = 11.7 Hz and ωr = 97 Hz.



116 Rephasing dynamics of a bosonic Josephson junction

Atom number (x104)
0 5 10 15 20

@
 (H

z)

0

1

2

3

4

5

6

7

8

9

Figure 6.6: Nonlinear coefficient χ as a function of total atom number for the ground

state of an equally populated 2CBEC . χ increases by increasing the total number

of particles by virtue of the fact that the overlapping between each component wave

function decreases.



CHAPTER 7

Rephasing Dynamics of a bosonic Josephson

Junction, experimental results

In this chapter we present the result of the experiments aimed at achieving rephas-

ing in a Josephson junction, according to the theory presented in chapter 6. The

observation of such dynamics is required to validate the claim previously formulated

of universal behavior in systems away from equilibrium. While the original proposal

called for a realization in a double well, here at Swinburne we have the technology

to allow us to explore a different realisation. For this reason we have realized the

alternative condition in which the repulsive interactions experienced by a 50:50 su-

perposition of two hyperfine states of rubidium 87 provide a similar environment for

this dynamics to occur. The cleanest and most robust way to achieve this condi-

tion is to create the superposition of hyperfine states when the atoms are still not

condensed, and then condense them independently. This would guarantee the two

component system to be in their ground state, with a uniformly distributed initial

relative phase, crucial for our observations, provided by the spontaneous symmetry

breaking. Once this condition is achieved, then the ”sudden” and ”weak” coupling

is turned on in the form of a microwave field, and the phase converted in relative

population with the application of a π/2 pulse after varying evolution times, to
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recover the expected scaling relation. The universality would follow by varying the

strength of the microwave field. This is the focus of the first part of the chapter.

However there are technical challenges which have prevented us from obtaining con-

densates of the required size and purity to be useful, given the stringent requirements

outlined in chapter 6. We have consequently opted for a different approach, where

we condense the atoms in the same state and transfer half of them with a first π/2

pulse, wait for the two condensates to separate, then apply the rephasing coupling

and finally apply the second π/2 pulse, but crucially with a phase which is different

from the first one. This approach is equivalent to performing a standard Ramsey

interferometry, but with a randomized phase relationship between the two pulses,

which is equivalent to the uniform distribution of the relative phase achieved with

independent condensation. After many realizations, if the rephasing dynamics are

present, we should observe a clustering of experimental points around values of

relative population close to zero when compared to the case where the microwave

coupling is not applied, which in turn would signify a non-zero coherence factor.

This approach has its problems as well, since by creating the initial superposition

we are triggering other dynamics in the system, like breathing modes and nonuni-

form phase growth, which affects the absolute value of the visibility. Additionally, a

collective oscillation requires around 200 ms to create the right condition (nonlinear

coefficient χ large enough to generate rephasing on a meaningful time scale). This

time is long enough for other effects, like losses, to affect the coherence of the system

and to influence the separation. The results for this ”engineered” phase approach

will make up most of the second part of the chapter. Finally, in the third part,

in an effort to reduce collective oscillations and decrease the waiting time before

the application of the coupling, we have explored an adiabatic π/2 pulse to create

the initial superposition. Simulations have shown that if the initial π/2 pulse of a

Ramsey sequence is weak, the system follows the ground state and the oscillations

are greatly suppressed. However the solutions now depends on the strength and

the detuning of the weak initial π/2 pulse, leading to configurations that can differ
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greatly from the ground state of a 2CBEC, with state |1〉 at the sides of the trap and

state |2〉 in the middle. Those effects are not necessarily bad. On the contrary, they

can even help improve the quality of the interferometry, as will be explained later,

but add a layer of complexity in the control of the overlap. Furthermore, for both

the adiabatic and non adiabatic ”engineered phase” approaches the system cannot

be considered suddenly quenched, raising serious concern on their feasibility. All

these points and others will be treated more carefully in the concluding section.

7.1 Independent Condensation

Independent condensation of two atomic ensembles trapped in different states is the

most straightforward and clean way to create the conditions for the observation of

the rephasing dynamics described in chapter two, given our current experimental

setup. The experiment requires the creation of a mixture of two hyperfine states

before the condensation, so that the two components should truly be initially inco-

herent. Having fulfilled this condition, over many repetitions we expect to obtain

a uniform distribution of initial relative phases. A second π/2 pulse applied to

the condensates after some evolution time t should convert the phase into relative

population and the observable Pz, defined as

Pz =
N2 −N1

N1 +N2

(7.1)

where N1 and N2 are the populations in each state, should be uniformly distributed

between the maximum and minimum value of the visibility. The visibility itself

depends on the overlap between the wave functions of the two components, which is

not perfect since we need a separation in order to have a nonzero χ. This is expected

to decrease the visibility. The homogeneity of the phase across the condensates also

influences the visibility, but for a condensate in its ground state, as in this case,

there is no relative motion and the phase is indeed uniform. Finally the evolution

time t should be short, so that decoherence through losses or phase diffusion does
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not affect the system significantly. The distribution of Pz in the absence of coupling

should then be compared to the distribution of Pz in the presence of the weak cou-

pling Ω. The coupling, together with the interactions, should trigger the rephasing

dynamics causing the experimental points, uniformly distributed across the range of

the visibility for the evolution time t in the absence of coupling, to cluster around

some specific value of Pz, according to figure 6.2 in chapter 6. The coherence factor

〈cosφ〉 should then move away from zero, with the points more tightly clustered as

the contrast approaches 1 and then it should exhibit the damped oscillatory behavior

for longer evolution times highlighted in figure 6.3 of chapter 6.

We attempted to produce an incoherent 2CBEC of 87Rb by first trapping the atoms

into the state |F = 1,mF = −1〉, then by transferring half of them with a π/2 pulse

in state |F = 2,mF = +1〉 and finally evaporating the mixture to degeneracy. This

approach proved unfeasible at the usual experimental trap bottom of 3.23 Gauss

because of Zeeman shift of the magnetic levels. Between the states |F = 1,mF = −1〉

and |F = 2,mF = +1〉 and their respective mF = 0 states to which they are coupled

during evaporation there is a differential shift of ≈ 11 kHz. The result of this shift

is that we effectively cut in component |2〉 while component |1〉 is still non pure and

we always ended up with a decent sized |2〉 and a relatively thermal |1〉, or a pure |1〉

and a tiny |2〉. Remember that the size of the condensate is a primary concern since,

as explained in chapter 6, and as shown in figure 6.6, it drives the spatial separation

which in turn determines the nonlinear coefficient χ required for rephasing. The

next step consisted of using an RF coupling to evaporate state |1〉 and a MW field

to evaporate state |2〉 by coupling it to the untrapped |F = 1,mF = +1〉.

This approach failed for lack of power in the microwave field. State |2〉 was barely

affected by the coupling and increasing the evaporation length had a negative effect

on the total atom number due to the increased importance of losses for this state,

since it is not maximally stretched. We decided to lower the trap bottom to the

minimum value that allowed us to reliably produce a single component BEC, thus

decreasing the Zeeman splitting. It turned out that the minimum value achievable
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was ≈ 0.5 G, due to the fact that stray external magnetic field, switch instabilities

and current fluctuations can affect the trap bottom at even lower magnetic fields,

causing the final number of condensed atoms to fluctuate wildly or preventing con-

densation altogether. A normal evaporation cycle of 15 seconds would have caused

the population of state |2〉 , which has a lifetime of about 500 ms due to spin relax-

ation, to drop unacceptably low. We have used a two stage evaporation trajectory

based on the following scheme

• Efficient cooling of component |1〉 for 10 seconds in a 0.5 G trap. The final

evaporation frequency of this cooling sits at about 400 kHz, 30 kHz above the

condensation threshold

• Quick (≈ 1 ms) π/2 pulse to transfer half of the cold but non condensed atoms

in state |2〉

• Compressing of the trap to increase rethermalization efficiency without chang-

ing the trap bottom, stable at 0.5 G, on a 10 ms scale

• 100 ms evaporation of both components from an initial frequency of 420 kHz

to the final evaporation frequency of ≈ 370 kHz

This scheme was successful in achieving independent condensation, proof of which

is provided in figure 7.1, where the parabolic distribution typical of the condensed

state sits on top of a Gaussian distributed thermal fraction. To check that we did

actually achieve independent condensation and not just a 50:50 split of atoms already

condensed in state |1〉 we switched off the second evaporation sweep and repeatedly

observed simple thermal clouds for the two components. As an additional sign of

genuine independent condensation we looked for the separation of the cloud and

we checked for the suppression of relative motion. The relative motion was indeed

absent, but the separation was rather small.
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(a)

(b)

(c)

Figure 7.1: (a) Absorption images of a 2CBEC obtained through independent

condensation of component |1〉 (left) and component |2〉 (right) in a trap with

ωy,z = 2π · 97 Hz and ωx = 2π · 11 Hz. As can be seen from the images the thermal

fraction is substantial, and for this particular case accounts for ≈ 50% of the total

atom number. State |1〉 has 3.45 · 104 atoms of which 1.83 · 104 arecondensed. State

|2〉 has 3.18 · 104 atoms, 1.38 · 104 condensed. The compression of component |2〉 is

immediately visible.(b,c) Axial (left) and radial (right) density profile for compo-

nent |1〉 (b) and component |2〉 (c) after independent condensation. The condensed

part is clearly visible. The effective pixel size is 4.5µm.
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This was because of the substantial thermal cloud that always accompanies the

condensates produced with this method. The actual condensed part corresponds to

50% of the total atom number, which is typically between 6 · 104 to 7 · 104 atoms,

giving a value of only 1.5 · 104 to 1.75 · 104 condensed particles in each component,

much too small to provide a meaningful separation, as is depicted in figure 7.2.

Furthermore such a big thermal cloud has a negative effect on the interferometry

measurements, due to the decohering effects of the interaction between condensed

and non condensed atom detailed in chapter 4 and in reference [103]. All these

reasons forced us to abandon the independent condensation approach and switch to

the ”engineered phase” method.
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Figure 7.2: (a) Measured spatial density distribution of the condensed part for the

cloud shown in figure 7.1. N1 = 1.83 · 104 and N2 = 1.38 · 104. (b) Simulated

density distribution for the ground state of an equally split 2CBEC of Ntot = 2 · 104

atoms. The measurements closely resemble the simulations for the corresponding

total number of atoms, but the overlapping is unacceptably high.

7.2 Rephasing through engineered phase

In order to lessen the downsides of independent condensation we opted to implement

what we called an ”engineered phase” sequence to achieve the conditions for rephas-
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ing. The idea is simple: we realize a standard Ramsey sequence with an initial π/2

pulse with phase φ1 that we vary, from shot to shot, between 0 and 2π, creating

a uniform distribution. We then let the system evolve for a time t, we apply a

weak coupling Ω with a phase φ2 different from φ1 for a time τ compatible with the

expected rephasing period and we apply the second π/2 pulse with the same phase

as the weak coupling. The phase φ2 Figure 7.3 offers a Bloch sphere description of

the dynamics involved, and a schematic representation of the experimental sequence.

The relative population Pz is related to the relative phase φ at time T through

Pz = V · sinφ(T ) (7.2)

where V is the interference contrast. To make a more immediate comparison with

the simulation of chapter 6, expressed in terms of coherence factor 〈cosφ〉, we can

recover the phase from the measurements of Pz using

φ(T ) = arcsin(Pz/V) (7.3)

and then average over the cosine. It is clear that in the case without coupling we

should recover a uniform distribution of the relative phase with the mean value

〈cosφ〉 = 0. Therefore we look for variations in 〈cosφ〉 when the coupling is applied.

The coupling is expected to cause the experimental points to cluster around Pz = 0,

with the extent of the clustering following a damped oscillatory behavior represented

in figure 6.3 of chapter 6. However we tread on dangerous ground since the system is

not in equilibrium when the actual rephasing pulse is applied, due to the fact that the

initial π/2 pulse already causes the system to be in an excited state. The condition

for the system to be suddenly quenched is therefore violated, with implications that

require additional theoretical analysis in future extensions of this work.

The requirement for separation of the two wave functions are satisfied only through

the effect of breathing, since after the initial, quick π/2 pulse the wave functions

overlap.
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Figure 7.3: Engineered phase rephasing sequence. The condensate, initially (t = t0)

in state |1〉, is coherently transfered by a π/2 pulse with phase φ1 (blue arrow),

arbitrarily chosen to be in the x-axis direction, to state |2〉 (a) . The mean spin

vector S (black arrow), under the effect of the π/2 pulse, rotates around the x-axis

until it lies on the equator (b) and we have an equal superposition. By varying the

value of the phase φ1 we can send the mean spin vector S to an arbitrary position on

the equatorial plane thus creating, over many repetition, uniformly distributed initial

conditions (blue circle). After some time t1, chosen to maximize the nonlinear co-

efficient χ, a weak rephasing pulse (red arrow) is applied for a duration t = t2, with

a phase φ2, arbitrarily chosen at the beginning of the experiment and kept constant in

each repetition. During this evolution time the S vector rotates around the direction

of the weak coupling and at the same time nonlinearities (green arrows) cause a

rotation around the z-axis whose speed is proportional to χS2
z (c). A final π/2 pulse

(red arrow with the same phase φ2 as the weak coupling pulse converts the relative

phase into population difference Pz. If rephasing is observable, the probability of

measuring values close to Pz = 0 is expected to increase compared to the case when

the weak rephasing coupling is absent. The detuning is assumed to be close to zero

(δ ≈ 0)



126 Rephasing Dynamics of a bosonic Josephson Junction, experimental results

The separation is at its maximum after about 200 ms in our current experimental

conditions, which is a time long enough for the system to experience decoherence

through losses and phase diffusion. What is desirable during the application of

the coupling, a small overlap, it is undesirable for the interference contrast, that is

improved by a high overlap. Additionally relative motion of the condensates cause

the phase to be non-homogeneous, further reducing the contrast. We cannot avoid

the relative motion, since it is required for separation and we cannot control the

overlap in order to have different overlapping regimes during the coupling and just

before the last π/2 pulse is applied. This does not prevent the rephasing, but makes

it more difficult to be detected, since now the points are spread between a shorter

range of values of Pz and variations are more difficult to detect.

We also explored a different approach that was aimed at suppressing the collective

oscillation, reducing the waiting time before the application of the coupling, but still

achieving reasonable separation of the clouds. It uses a very weak π/2 pulse initially

creating the superposition so slowly that the components almost adiabatically follow

the ground state. This results in a reduction of the relative motion and a waiting

time of only 40 ms. However the miscibility now becomes dependent on the strength

of the pulse and the detuning, as well as on the number of atoms, making the initial

conditions more difficult to control .

Both methods and their experimental results will be described in detail in the next

sections

7.2.1 Rephasing with a fast π/2 splitting

Here we present the results for the fast π/2 splitting method. In this experiment

we first condense ≈ 105 atoms in state |F = 1,mF = −1〉 with a 3.23 G trap

bottom and then transfer half of them to |F = 2,mF = +1〉 with a MW+RF pulse

having a Rabi frequency Ωπ/2 = 2π ·1 kHz. The uncertainty associated with our π/2

transfer is usually ≈ 1%, which is a good approximation of an equal superposition.
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Additionally this is a non adiabatic transfer and the wave functions are effectively

”frozen” during its application. This means that at the end of the coupling the

wave functions for the two states almost perfectly overlap and the system is in a

non equilibrium state. Subsequently the components will start to oscillate out of

phase, with component |1〉 pushed toward the edge of the trap and component |2〉

compressed in the middle.
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Figure 7.4: Simulated time evolution of the root mean square width, giving an idea of

each component’s wave function width, defined as in equation (7.4), in the presence

(top) and absence (bottom) of particle losses. Oscillations with a period of ≈ 150

ms are visible in the lossless case, while the situation is more complicated when losses

are present. In the lossy case, component |2〉 (red trace), after an initial transient

behavior lasting around 400 ms, exhibit almost perfect sinusoidal oscillations with a

period of 170 ms. On the other hand the width of component |1〉 (blue trace), after

the initial transient, remains almost constant.
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Figure 7.4 show CGPE simulation of the root mean square width of the wave func-

tions of each component with respect to the axial direction, which is to say

xi,rms =

(∫
x2|Ψi|2dxdydz

)1/2

(7.4)

giving an idea of the width of each component of a condensate with Ntot = 105 in our

typical experimental conditions (ωx = 2π · 11 Hz, ωy = ωz = 2π · 97 Hz, scattering

length and losses as described in chapter 2). The simulations allow us to obtain

quantitative results on the period of oscillations, which are in agreement with the

measurements previously performed on the setup (see chapter 5 and Ref. [73, 82]).
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Figure 7.5: Simulated time evolution of the normalized density overlap λ in the pres-

ence (left) and absence (right) of particle loss. The window chosen to perform the

experiment lies between 150 and 190 ms, which minimizes waiting time while provid-

ing poor overlapping and in turn high nonlinear χ coefficient and shorter rephasing

period.

Figure 7.5 shows the evolution of the normalized density overlap λ defined as

λ =

∫
dr3|Ψ1|2|Ψ2|2√∫

dr3|Ψ1|4
∫
dr3|Ψ2|4

(7.5)

which is a crucial parameter in determining when the rephasing coupling should be

applied. The overlapping is at a minimum after 185 ms, but as can be seen from

the simulations, it quickly rises in about 30 ms to a value λ = 0.9.

Since this is a nonequilibrium situation, the best way to calculate the coefficient

χ is trough the derivative of the chemical potential, instead of the overlapping
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integral, using equation 6.36 of chapter 6. The derivative of the chemical potential

is calculated by evolving CGPE with different values of N1 and N2, usually N1 =

N/2 ± 103, N2 = N/2 ∓ 103. The results agree fairly well with the overlapping

integral method and give a value of χ ≈ 9 s−1 . With a coupling strength Ω =

2π · 75 Hz this gives a characteristic rephasing time τ = 1/2
√

Ωχ = 19.2 ms which

brings us into the high overlapping area, grinding the dynamics to an effective halt

after a single oscillation. For this reason we apply the rephasing coupling after 150

ms, which provides us with 50 ms of coupling time with a maximum overlap of

λ = 0.5. We wait for 150 ms after the first π/2 for the best separation condition

to happen and we apply a weak coupling in the form of a 2 photon MW+RF field

of Rabi frequency Ω ≈ 2π · 75 Hz and a different phase compared to the first

π/2. With the coupling on, we let the system evolve for a variable time t ranging

between 10 and 40 ms and then we apply a second π/2 pulse that concludes the

Ramsey sequence. This second pulse has the same phase as the weak coupling.

Additionally this phase changes from realization to realization in order to create a

uniform distribution of the relative phase between the first and second π/2 pulse

for any given evolution time t. The atoms are then released, fall under gravity for

10 ms and are imaged using the adiabatic passage method previously described in

chapter 3. The phase distribution obtained in the presence of coupling is compared

with the phase distribution extracted using the same Ramsey scheme, but in the

absence of coupling. We check for variation in the coherence factor 〈cosφ〉 which

signifies a tighter clustering of points around φ = 0 compared to the non rephased

(absence of coupling) case.

As an additional test to characterize the coherence of the system we perform Ramsey

interferometry in the phase domain at 10, 50, 100 and 150 ms. We fit the exper-

imental data with a sinusoidal function, equation 7.2, we recover the visibility V

and, after normalizing the measured Pz by the visibility extracted from the fit, we

calculate the phase shift. The phase shift is defined as the departure of experimental
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points from the ideal sinusoidal behavior and is calculated as

δφ = arcsin(Pz(ideal))− arcsin(Pz) (7.6)

where Pz(ideal) are points lying on the fitted sine for the corresponding relative phase

between the Ramsey pulses. Figure 7.7 shows some typical examples of Ramsey

fringes at different evolution time as they look after being collected in the experi-

ment, with the sinusoidal fit closely following the experimental points and, in polar

representation, the phase shift distribution. Figure 7.8 displays the coherence fac-

tor 〈cosφ〉 of the measured phase distributions for different evolution times. The

coherence is very high in the first 50 ms, with 〈cosφ〉 = 0.96 for t = 10 ms and

〈cosφ〉 = 0.91 for t = 50 ms. It drops to 〈cosφ〉 = 0.75 for t = 100 ms but

then it remains stable at this value after 150 ms of evolution, when the rephasing

experiment takes place. The error bars on each point of figure 7.8 are calculated as

σ(φ)/
√

(M − 1), where σ(φ) is the phase uncertainty extracted from the fit and M

is the number of measurements, with at least M = 60.

The results for the rephasing experiment are shown in figure 7.9. The Ramsey

fringes, collected in the presence and absence of coupling, form the basis for our

analysis. The visibility is low, on average V = 0.2, in agreement with the simulations

in figure 5.4, chapter 5. This is mostly due to inhomogeneous phase evolution across

the spatial extent of the condensate, but also due to decoherence and poor overlap.

As a first step we analyze the unrephased fringes by dividing the measured values

of Pz by the visibility and we recover the phase corresponding to each value of Pz

through the application of equation 7.3. This serves as an initial phase distribution

against which the rephased fringes are compared. The final step in the analysis

requires the phase of each of the measured values of Pz in a rephased fringe to

be obtained using the same procedure as for the unrephased case. Comparison of

the phase of points having the same Ramsey pulses relative phase in the presence

and absence of rephasing coupling should allow us to detect the motion due to the

coupling and an eventual departure from a uniform phase distribution.
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Figure 7.7: Ramsey fringes acquired by varying the phase of the second Ramsey

pulse after t = 10 ms (a), t = 50 ms (b), t = 100 ms (c) and t = 150 ms (d) of

free evolution. The red line is a sinusoidal fit while the black dots are experimental

points.
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Figure 7.8: Coherence factor obtained by taking the average of the cosine of the

phase distributed as in the polar plots of figure 7.7. The coherence is highest for

t = 10 ms with 〈cosφ〉 = 0.96, dropping to 〈cosφ〉 = 0.74 after t = 150 ms of free

evolution.
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Figure 7.9: (a,b,c,d,e) Ramsey fringes acquired by varying the phase of the second

Ramsey pulse after 150 ms of free evolution and the additional application of a

rephasing coupling with duration t = 10 ms (a), t = 15 ms (b), t = 20 ms (c),

t = 30 ms (d) and t = 40 ms (e). The red line is a sinusoidal fit while the black

dots are experimental points. (a1,b1,c1,d1,e1) Polar plots showing the relative

phase distribution corresponding to at least 40 measurements for each duration of

the rephasing pulse. The uniformity of the distribution suggests absence of rephasing.
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Having access to the phase allows us to plot the experimental data in polar coor-

dinates, providing a visual representation of the phase distribution. Rephasing is

expected to alter the distribution from uniform to peaked around φ = 0. The polar

plots clearly show uniformly distributed values of the relative phase, which is a first

indication that the effect of rephasing is not being observed under the experimental

conditions used. Numerical values of the coherence factor 〈cosφ〉 calculated by

averaging the cosine of the relative phase distribution for different duration of the

rephasing pulse, presented in figure 7.10, are all very close to zero, quantitatively

proving the ineffectiveness, under current experimental condition, of the coupling

pulse in increasing the coherence of the system. The error bars represents the

partial knowledge of the real density distribution resulting from a finite number of

measurements, scaling as σ/
√
M , where σ is the standard deviation of the measured

distribution and M is the total number of measurements, never below 44. Possible

explanation for this negative result will be provided in the concluding section of this

chapter.
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Figure 7.10: Coherence factor obtained by taking the average of the cosine of the

phase distribution found in a rephasing experiment with a fast initial π/2 splitting

(polar plot in figure 7.9). The coherence is close to zero, showing no appreciable

deviation from a uniformly distributed relative phase.
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7.2.2 Adiabatic transfer to 50:50 superposition

In this section we focus on the preparation of a spatially separated two component

BEC through the application of a weak coupling pulse that slowly drives half of the

particles from state |1〉 to state |2〉. Since we could not independently condense each

individual state and since the application of a pulse with Rabi frequency Ωr = 2π ·1

kHz leaves the system in a nonequilibrium state that oscillates and takes ≈ 170 ms

to separate, by slowly transferring atoms from one state to the other we can obtain

a final superposition that has a close resemblance to the actual ground state, greatly

suppressed spatial oscillations and can be achieved on a faster timescale. We run

simulations for the CGPE with a linear coupling of different strength and different

detuning and find unexpected complex dynamics. The dynamics are strongly de-

pendent on the coupling Ωr and the detuning δr. When the coupling is not present

we have the usual breathing collective modes and given the particular asymmetry

in the intra-species scattering length for rubidium 87 component |1〉 is pushed to

the wings and component |2〉 in the center. With the coupling strength increased

to Ωr ≈ 2π · 10, the trend reverses, with component |2〉 in the wings and |1〉 in the

middle. If the coupling is increased further, with Ωr ≈ 2π · 30 Hz, the amplitude

of the oscillations decrease to the point that we can consider it a stationary dressed

state [126], with very poor time averaged separation.

Immiscibility and spatial separation with an adiabatic transfer

We briefly take a break from experimental measurements and present the result of

the simulation for the evolution of a BEC initially in state |1〉 which is slowly driven

by a weak coupling Ωr. From this simulation we wanted quantitative information

about the parameters such as coupling strength, detuning δr and evolution time nec-

essary to create an equal superposition that most closely resembled the ground state

of a two component BEC. Later in this section, experimental evidence is provided

to confirm the prediction of the simulations.
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Figure 7.11 shows a simulation for Ωr = 2π · 5 Hz and δr = −2π · 30 Hz, with

Ntot = 3.4 · 105 atoms. The importance of detuning is immediately evident. Due to

mean field shift we had to find a value of δr that allows for an equal superposition

to be created. For the parameters of figure 7.11 only the edges of the clouds are

transferred to state |2〉 and we are always far away from an equal split. Figure 7.12

has the same coupling Ωr as in figure 7.11, but this time the detuning of −2π · 40

Hz allows for a much more efficient splitting, creating an almost 50:50 superposition

after ≈ 90 ms. The density distribution looks almost identical to the one expected

for the ground state, making it a good candidate. However the time required to

achieve this condition is somewhat long, and on this timescale dephasing, especially

due to losses (we are working with high atom numbers), becomes relevant. (The

total population drops from 3.4 · 105 to 2.5 · 105, down by ≈ 30%).

Increasing the coupling strength to Ωr = 2π · 10 Hz and with a detuning δr = 2π · 30

Hz we observed a swap of the density profiles, once again due to detuning allowing

coupling on the wings, with |2〉 on the sides and component |1〉 in the center (see

figure 7.13). This configuration is very different from the ground state, but has the

potential advantage of reducing the density of component |2〉, thus reducing losses

in the system (spin relaxation is not suppressed in |2〉). However this potential

advantage is offset by the tendency of component |1〉 to expand into component |2〉,

making the overlapping time-dependent again. We found conditions that we deemed

satisfactory for Ωr = 2π · 10 Hz and δ = 2π · 40 Hz, where we obtained a ground

state looking axial density distribution after only 30 ms, with very small losses

(the population drops only by 8%, figure 7.14). The separation is unfortunately

worse than for the actual ground state, but we believed the benefit of suppressed

oscillations and reduced waiting time would offset this potential problem. The

coefficient χ after 30 ms is ≈ 5 Hz, which is still acceptable.
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Figure 7.11: (a) Axial density evolution for state |1〉, Ωr = 2π · 5 Hz, δr = −2π · 30

Hz. (b) Axial density evolution for component |2〉, Ωr = 2π ·5 Hz, δr = −2π ·30 Hz.

(c) Evolution of the populations, N = 3.4 ·105, Ωr = 2π ·5 Hz, δr = −2π ·30 Hz with

losses. Total population in red, component |1〉 in blue and component |2〉 in green.

(d) comparison between the ground state (dashed lines) and the state obtained

after 100 ms of evolution (solid lines). Component |1〉 is in blue, component |2〉

is in red.
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Figure 7.12: (a) Axial density evolution for state |1〉, Ωr = 2π · 5 Hz, δr = −2π · 40

Hz. (b) Axial density evolution for component |2〉, Ωr = 2π ·5 Hz, δr = −2π ·40 Hz.

(c) Evolution of the populations, N = 3.4 ·105, Ωr = 2π ·5 Hz, δr = −2π ·40 Hz with

losses. Total population in red, component |1〉 in blue and component |2〉 in green.

(d) Comparison between the ground state (dashed lines) and the state obtained

after 90 ms of evolution (solid lines). Component |1〉 is in blue, component |2〉 is

in red.
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Figure 7.13: (a) Axial density evolution for state |1〉, Ωr = 2π ·10 Hz, δr = −2π ·30

Hz. (b) Axial density evolution for component |2〉, Ωr = 2π ·10 Hz, δr = −2π ·30 Hz.

(c) Evolution of the populations, N = 3.4·105, Ωr = 2π ·10 Hz, δr = −2π ·30 Hz with

losses. Total population in red, component |1〉 in blue and component |2〉 in green.

(d) comparison between the ground state (dashed lines) and the state obtained

after 40 ms of evolution (solid lines). Component |1〉 is in blue, component |2〉 is

in red.
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Figure 7.14: (a) Axial density evolution for state |2〉 ,Ωr = 2π · 10 Hz, δr = −2π · 40

Hz. (b) Axial density evolution for component |1〉, Ωr = 2π ·10 Hz, δr = −2π ·40 Hz.

(c) Evolution of the populations, N = 3.4·105, Ωr = 2π ·10 Hz, δr = −2π ·40 Hz with

losses. Total population in red, component |1〉 in blue and component |2〉 in green.

(d) comparison between the ground state (dashed lines) and the state obtained

after 28 ms of evolution (solid lines). Component |1〉 is in blue, component |2〉 is

in red.
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We run experiments to check if the adiabatic coupling method was indeed able to

produce the simulated density patterns and suppress collective oscillations. The trap

bottom was set at 3.23 G, the strength of the coupling pulse at Ωr = 2π·10 Hz and the

detuning ≈ −2π ·40 Hz. The detuning has been measured using Ramsey oscillations.

For perfectly resonant Ramsey pulses, the frequency of Ramsey oscillations in our

typical trap condition and for 2 · 105 atoms is ≈ 2π · 15 Hz, given by collisional shift.

The correct field detuning is characterized by a Ramsey frequency ≈ 2π · 25 Hz.

This frequency value can be obtained by using a field positively detuned by 2π · 10

Hz or a field negatively detuned by −2π ·55 Hz. The Ramsey fringes would have the

same frequency for both cases. However, in the event of a positively detuned field,

increasing its frequency would increase the frequency of the Ramsey oscillations. If

the field happens to be negatively detuned, increasing its frequency decreases the

frequency of Ramsey oscillations, thus providing an easy way to find the correct

detuning. The atoms were subject to the weak coupling field for a minimum of 10

ms to a maximum of 100ms, than immediately released from the trap and imaged

after 10 ms time of flight, with both population imaged at the same time using the

adiabatic passage method described in chapter 3. The results are displayed in figure

7.15-7.16.

The experimental results follow the simulations quite closely, with component |2〉

compressing in the middle as expected and component |1〉 more broadly distributed

in the trap. From the images there is a hint of the double structure in component

|1〉, but we were unable to clearly resolve it, the inability attributed to our lack of

imaging resolution. The overlap cannot reliably be estimated from measurements,

due to the falling time and the additional manipulation involved in the imaging

process, forcing us to rely on simulated values. On a side note, our estimate of

3.4 · 105 atoms proved to be too optimistic since we could produce condensates with

no more than 2.5 · 105 atoms for this particular experiment, which had the effect of

shifting the conditions for acceptable 50:50 superposition and overlap after 40 ms

of evolution, compared to 30 ms for 3.4 · 105, as can be seen in figure 7.16. We
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identified the conditions at t=40 ms as the most desirable and we proceeded to test

the absence of collective oscillations for this configuration by holding, without any

coupling applied, the atoms for as much as 100 ms and measuring the width of each

condensate. While the oscillations were not completely suppressed, they were less

intense than with the quick π/2 pulse (figure 7.18).
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Figure 7.15: Experimentally measured density distributions after (a) t = 20 ms,

N1 = 1.72 · 105, N2 = 2.48 · 105, N2/(N1 + N2) = 30.44% and (c) t = 30 ms,

for component |1〉 (blue dots) and component |2〉 (red dots). N1 = 1.05 · 105,

N2 = 1.07 · 105, N2/(N1 + N2) = 50.38%. (b,d) Theoretically simulated density

distribution after t = 20 ms and t = 30 ms, N = 2.4 · 105. Component |1〉 is in

blue and component |2〉 is in red. The Rabi frequency of the adiabatic coupling is

Ωr = 2π ·10 Hz, detuning is kept at δ = −2π ·40 Hz. Trap bottom is set at B0 = 3.23

G while trap frequencies have the typical values of 2π · 11 Hz in the axial direction

and 2π · 97Hz in the radial direction.
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Figure 7.16: Experimentally measured density distributions after (a) t = 40 ms,

N1 = 8.13 · 104, N2 = 1.17 · 105, N2/(N1 + N2) = 59.01% and (c) t = 50 ms,

for component |1〉 (blue dots) and component |2〉 red dots. N1 = 8.34 · 104, N2 =

1.15·105, N2/(N1+N2) = 57.59%. (b,d) Theoretically measured density distribution

after t = 40 ms and t = 50 ms, N = 2.4 · 105. Component |1〉 is in blue and

component |2〉 is in red. The Rabi frequency of the adiabatic coupling is Ωr = 2π ·10

Hz, detuning is kept at δ = −2π ·40 Hz. Trap bottom is set at B0 = 3.23 G while trap

frequencies have the typical values of 2π · 11 Hz in the axial direction and 2π · 97Hz

in the radial direction.
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Figure 7.17: Experimentally measured spatial evolution of the optical density of

component |2〉 (left) and component |1〉 (right)
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Figure 7.18: Axial oscillation widths for state |2〉 after the application of a quick π/2

preparation pulse (black) and an adiabatic π/2 pulse (red). For the adiabatic pulse

case the time has to be understood as waiting time after the initial 40 ms required

to create the superposition; the oscillations, while not absent, are strongly reduced.

Rephasing with an adiabatic coupling

This experiment was performed in a similar way to the fast π/2 splitting described

in section 7.2.1, the only difference being the Rabi frequency of the initial pulse, set

at Ωr = 2π ·10 Hz, detuned by δr = −2π ·40 Hz, and the higher initial atom number,
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with initial Ntot ranging from 2 · 105 to 3 · 105 instead of 105. The total number of

particles was increased to compensate for the generally smaller separation achievable

with this method (the higher the total number of particles the more the components

will push apart). After the required number of particles has been condensed, they

were slowly transferred to a 50:50 superposition of state |1〉 and state |2〉 over 30 ms.

The phase φ1 of this initial preparation pulse was again varied, from shot to shot,

between 0 and 2π, creating a uniform distribution. At this point the preparation

coupling was switched off and we waited for 20 ms. The suppression of oscillations

allowed us to consider the spatial distribution stationary during this waiting time.

We then sent the rephasing coupling pulse, with a Rabi frequency Ω = 2π · 75 Hz

and a duration between 20 and 40 ms, with a phase φ2 6= φ1 arbitrarily chosen

at the beginning of the experiment and kept constant afterwards. The observable

measured was once again Pz, and from the experimental data points we extracted

〈cosφ〉 and its distribution using the same method outlined in section 7.2.1. The

interference contrast V , calculated as the amplitude of a sinusoidal fit of a Ramsey

fringe in the experimental conditions had an average value of 0.3, mostly due to

poor overlap and coherence issues. A key difference from the fast π/2 experiment

lies in the fact that we are now using two Ramsey pulses of different strength, the

first being slow and the second being fast. This forces us to use two different RF

generator, since the amplitude is manually set at the beginning of the experiment for

each generator and cannot be changed during the experiment. The RF generators

are both clocked and synchronized by the MW generator internal 10 MHz quartz

oscillator, but the coherence of the system is not as good as the coherence achieved

after 50 ms for the fast π/2 experiment using a single RF generator, being equal to

0.8 instead of 0.91 (see figure 7.19).
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Figure 7.19: Ramsey interferometry in time domain used to measure the coherence

of the adiabatic coupling experiment. The red line is a sinusoidal fit while the black

dots are experimental points. The Polar plot provides a graphical representation of

the coherence of the system and is constructed by first recovering the phase of each

experimental point using equation (7.3) and then calculating the phase shift with

equation (7.6). The coherence is degraded by the imperfect synchronization of the

two RF generators used to produce the initial slow preparation pulse and the final

fast reading pulse. 〈cosφ〉 ≈ 0.8 after 30 ms of free evolution.

Typical examples of Ramsey fringes as they are acquired in the experiment along

with polar plot showing the relative phase distribution are shown in figure 7.20, while

the coherence factor, calculated as the average of the cosine of the relative phase

distribution plotted in figure 7.20, is displayed in figure 7.21. The results again

show no appreciable contribution coming from the rephasing pulse to changing the

distribution of the relative phase. The rephasing is once again undetectable in the

experimental conditions.
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Figure 7.20: (a,b,c) Ramsey fringes acquired by varying the phase of the second

Ramsey pulse after slowly transfering 50% of the population from state |1〉 to state

|2〉 over 50 ms and the additional application of a rephasing coupling with duration

t = 20 ms (a), t = 30 ms (b) and t = 40 ms (c). The red line is a sinusoidal

fit while the black dots are experimental points. The circumferences are polar plots

showing the relative phase distribution corresponding to at least 40 measurements

for each duration of the rephasing pulse. The uniformity of the distribution suggests

absence of rephasing.

7.3 Conclusions

We were unable to observe any significant change from the expected null value of

in the coherence factor 〈cosφ〉, corresponding to a uniform distribution of relative

phase, in experiments when a weak coupling was applied to an equal superposition

of atoms in the two hyperfine states |F = 1,mF = −1〉 and |F = 2,mF = +1〉.
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Figure 7.21: Coherence factor obtained by taking the average of the cosine of the

phase distribution found in a rephasing experiment with an adiabatic coupling (polar

plot in figure 7.20). The coherence is close to zero for the three different duration of

the rephasing pulse, showing no appreciable deviation from a uniformly distributed

relative phase.

In these experiments the way the relative phase is distributed can be interpreted as

measurements of the coherence of the condensate. This is because the condensate has

a well defined relative phase in each iteration of the experiment, but every iteration

uses a different relative phase of the coherent pulses used to manipulate the BEC in

a Ramsey sequence. This should create a uniform distribution of relative phases over

many repetitions, with zero average. This condition is the closest we could get to

”initial incoherence” after we abandoned the independent condensation strategy for

the reasons outlined in section 7.1. The theoretical framework presented in chapter 6

suggests that even for this case, the application of a weak coupling should change the

distribution of the relative phase and consequently the coherence factor compared

to the case when no coupling is applied. The weak coupling is expected to shift the

coherence factor away from zero. These effects are to be associated with a narrower

distribution of possible phases, thus justifying the term ”rephasing”, since the weak

coupling is forcing coherence by effectively eliminating some phase configurations

in the ”initially incoherent” (on average) system where all phase configurations are
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equally probable. However, as already mentioned, no change has been observed in

experiments performed with this weak coupling. In what follows we will present

some possible explanations for this negative result:

Poor initial coherence

The measurements on the coherence have shown that the system is only par-

tially coherent before the application of the rephasing pulse. The reason for

the decoherence is easily found for the fast π/2 rephasing experiment, since

the system has to evolve for 150 ms before the optimal condition for rephasing

are met. For the adiabatic transfer to a 50:50 superposition experiment the

decoherence comes through imperfect synchronization of the RF generators

needed to produce the field required to perform the experiments. In both

cases the coherence factor 〈cosφ〉 acquires similar values, 0.74 for the fast π/2

and 0.8 for the adiabatic preparation. The experiment we performed relied

on the creation of a uniformly distributed relative phase between the vector

representing the state of the system and the Ramsey pulses used to manip-

ulate it, achieved by assuming the state vector static and by changing the

relative phase between the Ramsey pulses. The vector was allowed to move,

in our model, only when the weak rephasing coupling was applied, and the

motion was expected to increase the likelihood of finding the state in phase

with the coupling pulse. The rotation speed was therefore only dependent on

the relative phase between the pulses, which replaces in our experiment the

relative phase between the condensate used in the theory, since now, due to

the fact that we are not independently condensing, but coherently transferring,

each state has one and the same phase. This is consistent with the theoret-

ical explanation given in chapter 6. It was the relative phase between the

condensates that determined how far away from the equator the state would

have gone once the constant phased weak coupling was to be applied, in turn

determining the state’s rotation speed, only now the roles between coupling
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and state are reversed. It is therefore not surprising that, if the initial phase

of the system is random, the effect we are trying to detect gets hidden and

smeared out. This is because decoherence acts to create a uniform distribution

of relative phases and rephasing does exactly the opposite, departing from it

toward a more peaked one. This is just a qualitative analysis, since we did

not run simulations for a less then ideal coherent system and we do not know

if the level of coherence found in our system is enough to destroy rephasing or

it only reduces its effect and changes its characteristic time.

The system is not quenched by the rephasing pulse

The theoretical background presented in chapter 6 assumed the system to be in

the ground state of a gapless Hamiltonian, which was a condition satisfied by

the independent condensation approach. Then, the sudden quench represented

by the weak rephasing coupling would have opened up a gap, exciting non-

adiabatic dynamics in the system. The coupling had to be weak, i.e less then

the chemical potential, to keep the newly formed Josephson Junction in the

Josephson regime and avoiding the Rabi regime that would have suppressed

rephasing. Unfortunately, creating a superposition by splitting the condensate

with a Ramsey π/2 pulse with ω = 2π · 1 kHz effectively quenches the system

much before the actual weak rephasing pulse is applied, opening the gap ef-

fectively at t=0, when only a single component is present and furthermore the

pulse strength does not satisfy the condition of being much weaker then the

chemical potential. The same is true for the adiabatic transfer to a 50:50 su-

perposition, with the difference that the pulse does satisfy the weak condition

and the system adiabatically evolves to a new state but now the rephasing

pulse can be seen as a mere continuation of the preparation pulse itself and

there is nothing ”sudden” and the gap is opened when we only have a single

component, clearly not representing the Hamiltonian described by equation

6.31. These considerations cast a doubt on the observability of the dynamics,
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but more theoretical analysis is required for a final answer and we did not have

the resources to carry it out.

Rephasing happens on a longer timescale

A possibility might be that rephasing is actually observable in our set of exper-

iments, but it happens on a longer time scale. This might come from errors in

the predictions of the rephasing period as done in chapter 6 or simply through

the neglect of relevant effects that might increase the period itself. We did not

make observations for longer then 40 ms after the application of the rephasing

pulse, mostly due to considerations regarding the extent of the overlapping,

which is time dependent, asymmetric losses, heavily affecting state |2〉 and de-

coherence, especially in the quick π/2 pulse case, that required a preliminary

evolution time of 150 ms.

Losses reduce the observability

We mostly focused our attention on how losses influence the oscillation dy-

namics and the overlapping between the two components. but there is another

aspect of losses that should be analyzed: losses cause the Bloch vector to move

away from the equator, thus modifying the subsequent evolution, as shown in

figure 7.22. From a qualitative point of view, the fact that our initial con-

dition is not represented by a circumference sitting at the equator removes a

symmetry from the problem and is expected to reduce the maximum value of

〈cosφ〉 and possibly affect the period of oscillations as well, since the equation

of motion in the new initial conditions has a non trivial dependence on the

initial conditions themselves, the rephasing coupling and the nonlinear coeffi-

cient. Quantitative information can only come from additional simulation for

initial conditions different to the equal split.
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Figure 7.22: Bloch sphere representation of a rephasing sequence for an even (a,b)

and an uneven (c,d) superposition of atoms in state |1〉 and |2〉 . The details of the

evolution have been explained in the caption of figure 7.3. Here the attention should

be directed to the fact that asymmetric losses takes the mean spin vector S away

from the equatorial plane. When an equal superposition is produced, the mean spin

vector S starts to rotate around the z-axis only after the rephasing coupling has been

applied, since Sz = 0 on the equatorial plane. When asymmetric losses are present,

the vector starts to rotate independently of the application of the coupling. However

this can be seen as just an offset, since all the points in the relative phase distribution

will rotate counterclokwise by the same amount, which is given by the extent of the

losses in the time between the preparation of the superposition and the application

of the rephasing coupling. For this reason, rephasing is expected to happen anyway,

since what matters for rephasing is the difference in rotational speed of points that

occupy different positions on the circumference representing relative phase after it

has been rotated by the rephasing pulse. In this regard points further away from the

equator still rotate faster than points closer to the equator, but this time all the points

rotate in the same direction, since they are all in the northern hemisphere and we

have lost the symmetry that made points at the same distance from the equator but

on opposite hemispheres rotate with the same speed. Furthermore the dynamics are

made more complicated by the inversion in the rotation that the points will experience

after crossing the equatorial plane. We do not have quantitative results, but from a

qualitative point of view a departure from an even superposition causes a decrease

in the amount of rephasing observable.
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CHAPTER 8

Summary and future directions

In this thesis we have described the theoretical justification for the existence of

universal rephasing dynamics in a Josephson Junction originally proposed by Dalla

Torre et al. [2] for a double well (external Josephson junction) and by us extended

to the two-component BEC case (internal Josephson junction). Chapter 6 provides

an introduction to the physics of the Josephson junction, either internal or external,

presents the main results obtained by DallaTorre et al. and details the calculations

needed to extend the description to a two-component system. It also presents our

simulations of the universal rephasing dynamics for an internal Josephson junction

that appear to be very similar to the results obtained in [2]. The chapter deals ex-

tensively with a major difference from DallaTorre’s double well model, the nonlinear

coefficient χ. CGPE simulations had to be performed to make predictions on the

magnitude of this crucial parameter, whose strength depends on the overlapping of

the wavefunctions as well as the derivative of the chemical potentials, both evolving

in a complex way.

We have attempted to detect the rephasing experimentally, using different approaches

described in depth in chapter 7. The first approach used independent condensation

of two hyperfine states in the same magnetic trap to create an initially incoherent
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(over many repetitions) system, to which the rephasing sequence was to be applied.

Difficulty related to the purity and the size of the condensates created with this

method forced us to abandon it in favor of a different approach we called ”engi-

neered phase rephasing”. At its core this experiment is a Ramsey interferometry

sequence in phase domain, where the relative phase of the Ramsey pulses changes

from realization to realization while the condensate superposition’s phase remains

constant, barring decoherence effects. We artificially ”engineer” a uniform relative

phase distribution, replacing nature’s spontaneous symmetry breaking precess dur-

ing condensation, which also have a uniformly distributed probability of picking any

phase between 0 and 2π. The rephasing, triggered by the application of a weak cou-

pling in the form of an external microwave field, should have caused this distribution

to shift away from being uniform, with an increased probability for the system to be

in phase with the second Ramsey pulse (relative phase φ = 0). We did not observe

any change in the coherence factor 〈cosφ〉, which measure, as the name suggests,

the degree of coherence of the system. For all the experimental points taken, corre-

sponding to different duration of the rephasing coupling, the coherence factor was

very close to zero, signifying uniformity in the relative phase distribution and hence

incoherence. The coherence factor, from theoretical simulations, was expected to

increase to 〈cosφ〉 ≈ 0.7 and then to oscillate around a mean value 〈cosφ〉 ≈ 0.4,

but none of this behavior was observed. We provided possible explanation to justify

the fact that we were not able to observe such phenomena in the end section of

chapter 7.

It is clear however that two-component BECs are not the optimal system to detect

such dynamics and the double well system originally proposed is in the opinion of

the author of this thesis is far better suited. The reason is simple: by forcing the

spatial separation of the two components and subsequent increase of the interaction

parameter in the two component BEC in order to replace the double well potential

as a way to control the optimal conditions for rephasing, we are giving away a lot

of flexibility and we are introducing additional decohering effects mostly due to the
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long waiting time. What can be done immediately after condensation in a double

well, needs at least 150 ms of evolution in a two-component BEC experiment , with

the corollary of losses, phase diffusion and lost contrast. The level of control over

the nonlinear coefficient χ, fundamental in determining the rephasing characteristic

time, is markedly inferior than the tunneling strength that takes its place in the

double well case. The coefficient χ is continuously changing, even during rephasing,

and its determination requires accurate knowledge of the state of the system just

before the coupling is applied. On the contrary, the tunneling strength is controlled

by the experimenter and kept constant throughout the measurements.

The rephasing dynamics expected from the theoretical model proved to be unde-

tectable under the experimental conditions. However the numerical simulations were

run under ideal conditions, without taking into account potentially relevant decoher-

ence effects. Additionally, the inability to condense directly in the two states without

a substantial thermal fraction forced us to explore different techniques, which do not

satisfy the sudden quench condition, casting a shadow on the possibility to use the

simulations to predict the outcome of the experiment.

Previous experiments at Swinburne have identified local oscillator instability as the

dominant source of decoherence limiting the coherence time of Ramsey measure-

ments. In chapter 5 we provided evidence on the implementation of a new microwave

system that reduces technical noise below the quantum limit previously estimated

by Egorov and Opanchuk. The coherence time of a thermal cloud in a Ramsey in-

terferometer has been extended to 12 seconds. The enhanced stability of the system

can be exploited in future experiments requiring high precision measurements and

long phase accumulation time.
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Kevrekidis, and D. S. Hall. Nonequilibrium dynamics and superfluid ring

excitations in binary Bose-Einstein condensates. Phys. Rev. Lett., 99:190402,

Nov 2007. (Cited on page 11.)

[53] Franco Dalfovo, Stefano Giorgini, Lev P. Pitaevskii, and Sandro Stringari.

Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys.,

71:463–512, Apr 1999. (Cited on page 13.)
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